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Abstract

A graph G is said to have a C-decomposition if E(G) can be partitioned into a
collection of subsets each induces a k-cycle. Clearly, if G has a Ci-decomposition,
then G is an even graph of order at least k and k divides |E(G)|. The graphs
satisfying the above two conditions are called k-sufficient. It is not difficult to see
that a k-sufficient graph may not have a Ci-decomposition. In this thesis, at first,
we study the k-sufficient r-regular graphs of order n in which Cy-decomposition
does not exist. By direct constructions, we'show that there are constraints on r
with respect to k and n. In order to decompose,an arbitrary r-regular graph of
order n into C}%’s, r has to be at least %Ttln, %n, 5, and 35 if k is 2t+1, 4, 2t,
and n respectively. On the second part, we also study the extremal k-sufficient
graphs which have no Ci-decomposition. As a 'consequence, the following results
are obtained: (i) If n is even, then ex(mCsrdecomp.) > () — (n — 2) — ¢, where
€, = 4 in case that n = 2 or 4 “{mod 6) and €; = 5 in case that n =0 (mod 6).
(ii) If n is odd, then ex(n; C3-decomp.) = (”;2) €, where €, = 4 in case that n = 1
(mod 6) and €, = 0 in case that n =3 or 5 (mod 6). (iii) For k > 4, if n is odd,
ex(n; Cy-decomp.) > (Z)—Q(n—3)—ek7n, where €, , € {0,3,4,5,...,k—1,k+1,k+2},
such that (g) —2(n—3) — €k, is amultiple of k. (iv) For k > 4, if n is even, ex(n; C-
decomp.) > (g) —2(n—3)— ”772 — €kn, Where €, € {0,3,4,5, ..., k—1,k+1,k+2},
such that () —2(n — 3) — %52 — ¢, is a multiple of k.
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1 Introduction

Graph decomposition is one of the most important topics in the study of graph theory.
The main reason is due to the fact that decomposing the complete graph of order v with
multiplicity A into a collection of complete subgraphs of order k is equivalent to construct
a balanced incomplete block design(BIBD), 2-(v, k, \) design. By replacing the complete
subgraphs of order k with k-cycles, we have a A-fold k-cycle system of order v. Both BIBD
and cycle system have been utilized in designing experiments with very high efficiency.
Therefore, it is interesting to study the graphs which have a Cy-decomposition and also
the graphs which have no Cj-decomposition. We start this thesis with some preliminaries

of graph theory.

1.1 The Preliminaries in/Graph Theory

In this section, we first introduce the‘terminologies and definitions of graphs. For details,
the readers may refer to the book ?Intreduction o Graph Theory”.[10]

A graph G is consisting of a vertex set-V(G), an edge set E(G), and a relation that
associates with each edge two vertices called its endpoints. A loop is an edge whose
endpoints are equal. Multiedges are edges having the same pair of endpoints. A simple
graph is a graph without loops or multiedges. In this thesis, all the graphs we consider
are simple. The size of the vertex set V(G), |[V(G)], is called the order of G. And the
size of the edge set E(G), |E(G)], is called the size of G.

If e = (u,v) is an edge of G, then e is said to be incident to u and v. We also say that
u and v are adjacent to each other. For every v € V(G), N(v) denotes the neighborhood
of v, that is, all vertices of N(v) are adjacent to v. The degree of v, deg(v) = |N(v)], is
the number of neighborhood of v. We denote that 6(G) is the minimum degree of G and
A(G) is the mazimum degree of G.

A cycle is a graph with an equal number of vertices and edges whose vertices can

be placed around a circle so that two vertices are adjacent if and only if they appear



consecutively along the circle. A k-cycle, Cy, is a cycle of size k. A Hamiltonian graph
is a graph with a spanning cycle, also called a Hamiltonian cycle which is denoted by C,
where n is the order of the graph.

A complete graph is a simple graph whose vertices are pairwise adjacent; the complete
graph with n vertices is denoted by K,. A graph G is bipartite if V(G) is the union of
two disjoint independent sets called partite sets of G. A graph G is ¢-partite if V(G) can
be expressed as the union of ¢ independent sets. A complete bipartite graph is a simple
bipartite graph such that two vertices are adjacent if and only if they are in different partite
sets. When the sets have the sizes s and t, the complete bipartite graph is denoted by
K. If the sets have the same size n, the complete bipartite graph is called balanced,
which is denoted by K, ,. Similarly, the complete g-partite graph is denoted by K, s, .. s,
and the balanced complete g-partite graph is denoted by Kg,) where each partite set has
n vertices.

An even graph is a graph whosesdegree of vertices are even, and an odd graph is a graph
whose degree of vertices are odd.= A graph is called 7=regular if all its vertices have the
same degree r. A subgraph of G is a‘graph'H'such that V' (H) C V(G) and E(H) C E(G).
A factor of G is a spanning subgraph of G.7A kfactor is a spanning k-regular subgraph.
A matching of size k in G is a subgraph of k£ pairwise disjoint edges. If a matching covers
all vertice of G, then it is a perfect matching or 1-factor.

A graph G is k-sufficient if G is an even graph of order at least k and the size of G
is a multiple of k. A Cy-decomposition of G is a collection of edge-disjoint C}’s which
partition F(G). A graph G is called Cy-decomposable if G has a Cy-decomposition which
is denoted by Cj, | G; otherwise, Cj 1 G.

1.2 Cycle Systems and Known Results On Cycle Decomposition

If K,, has an m-cycle decomposition, i.e., C,, | K, then we refer to this decomposition as
an m-cycle system of order n. The study of cycle system dated back to 1847, Kirkman

proved the following result.



Theorem 1.1. [6] A 3-cycle system of the complete graph of order n exists if and only if
n=1or3 (mod6).

Since then, the existence of a k-cycle system of order n has attracted quite a few

researchers to work on this interesting topic. The following results are well-known now.

Theorem 1.2. [9] Let n be an odd integer and m be an even integer with 3 < m < n.
The graph K, can be decomposed into cycles of length m whenever m divides the number

of edges in K,.

Theorem 1.3. [1] For positive odd integers m and n with 3 < m < n, the graph K,
can be decomposed into cycles of length m if and only if the number of edges in K, is a

multiple of m.

From above three theorems, we can see that the order of complete graph is all odd
since the graph must be even. If n isan even integer;then we consider the decomposition

of K, — I where I is a 1-factor of 2K

Theorem 1.4. [9] Let n be an even integer andm be an odd integer with 3 < m < n. The
graph K, — I can be decomposed into eyclesrof length m whenever m divides the number

of edges in K, — I.

Theorem 1.5. [1] For positive even integers m and n with 4 < m < n, the graph K, — I
can be decomposed into cycles of length m if and only if the number of edges in K, — I is

a multiple of m.

Therefore, it is interesting to know whether K, — H can be decomposed into k-cycles
where H is a subgraph of K, such that K, — H is k-sufficient. The following results deal

with the case when H is a 2-regular or 3-regular subgraph.

Theorem 1.6. [5] Let F' be a 2-reqular subgraph of K,,. There exists a Cy-decomposition
of K, — E(F) if and only if n is odd and 4 divides |E(K,) — E(F)|.

Theorem 1.7. [2| Let F' be a 2-reqular subgraph of K,,. There ezists a Cg-decomposition
of K,, — E(F) if and only if n is odd and 6 divides |E(K,) — E(F)|.



Theorem 1.8. [8] Let U be any 2-factor of K, where n is even. Then there exists a 3-
factor T of K, with E(U) C E(T) such that K, — E(T) admits a hamilton decomposition.

If we decompose the other kind of graphs, not necessarily be complete graph, then we

have different results.

Theorem 1.9. [7] Let F be a set of q vertex-disjoint cycles with the length of the j-th
cycle being s;. Then there ezists a 2-factor U = F of Ky mm, such that Ky, pmm — E(U)

has a hamilton decomposition if and only if 22:1 55 = 3m.

Theorem 1.10. [3] There exists a maximal set S of m edge-disjoint Hamilton cycles in

K, if and only if n/4 <m < n/2.

Theorem 1.11. [4] There exists a mazimal set of m hamilton cycles in K, if and only
if,
1. Tnlp = 1)/4] <m < [n(p — 1)2] and
2.m>n(p—1)/4 if
(i) n is odd and p =1 (mod.4), ‘or
(i) p =2, or
(11i) n =1,
except possibly if n = 2m and except possibly if n > 3 is odd, p is odd, and m < ((n +

Dip—1)-2)/4

On these results, we can see the degree of these regular graphs are larger than 7. It
seems that if the degree of a graph G is large enough, then we can decompose G into k-
cycles as long as the graph is k-sufficient. Thus, we are interesting in finding the number

r such that an arbitrary k-sufficient r-regular graph which has a Cj-decomposition. For

k = 3, the following conjecture by Nash-Williams is worth of mentioning first.

Conjecture(Nash-Williams). Let H be a subgraph of K, (n # 9) such that K,, — H

is 3-sufficient and A(H) < $(n —1). Then C3 | K,, — H.



This conjecture is far from being proved at this moment. But, this upper bound on
H or equivalently the lower bound on K,, — H plays an important role in decomposition
problems. We shall first focus on the situation when K,, — H or the graph G we consider
is r-regular and k-sufficient but G is not able to be decomposed into k-cycles even if G is
k-sufficient. Of course, we are looking for r which is as large as possible. In next section,
we shall consider the r with respect to the order of G and show that if r is not large

enough, then an arbitrary k-sufficient r-regular graph does not have a Cy-decomposition.



2 Lower Bound of degree r

Let G be an arbitrary k-sufficient r-regular graph. It is not difficult to realize that to
determine whether G can be decomposed into k-cycles or not is not an easy task. Thus,
we are interesting in the situation when G is k-sufficient and r-regular but G has no
Ci-decomposition. Clearly, we looking for the number “r” as large as possible. First, we

introduce a couple of definitions.

Definition 2.1. Let G be a graph of order n with V(G) = {vg,v1,...,vp—1}. Given a
bijection function f: V(G) — {0,1,...,n — 1} such that f(v;) =4, 0 < i < n — 1. Define
the difference of v; and v; by d(i,j) = min{|j —i|, n—|j —i|}. A graph G of order n is a
difference graph G[D] if D C {1,2,...,[ 5]} and E(G) = {(i,i+k) (mod n)| for all k €
D}.

Definition 2.2. A graph G is a g-partite~K, graph with a difference set D C {1,2, .., 2]}
if there are ¢ partites Gy, Gy, ..., Gg-1 [in G5 whete each partite G;, 0 <t < ¢—1,is a
complete graph of order m. If there are edges between ¢; and G, 0 < ¢ < j < ¢—1, then
the edges between G; and G; denoted by E(G;:G;) induces a complete bipartite graph
K- So V(G) = UL, V(Gy) and E(GY =L E(G) VU E(Gi, G;) where d(i, j) = {k |
V k € D}. The g-partite-K,, graph is denoted Gyx,,) with D C {1,2,..,[1]}. Moreover,
let E1(G) = U, E(G;) and Ey(G) = E(G) \ Ei(G).

Example, let G denote the difference graph G[D]. Then, the graph H; given by Gy(x,,)
with D = {1} and the graph H, given by Ggx,,) with D = {1,2} are 4-partite-K,, graph

and 6-partite-K,, graph respectively. See Figure 1 and Figure 2 as illustration.

Lemma 2.3. If G is a difference graph G[D)] of even order n, where D = {i | i is odd},

then G contains no odd cycle.

Proof. In a difference graph, a cycle can be formed by two ways. First, the sum of the
difference of the edges in cycle is a multiple of the order of G. Second, the sum of the
difference of some edges in cycle is equal to the sum of the difference of others.

Now, D = {i | i is odd} and n is even. Since the odd sum of odd integers is not an

even integer, the proof follows. [



Figure ¥ Gy g with D = {1}.

Figure 2: Each edge is K, . This graph is G(x,,) with D = {1, 2}.



From this fact, the following result is easy to see.

Corollary 2.4. If G = Gayk,,) with D = {i | i is odd}, then Ey(G) contains no odd

cycle.

Lemma 2.5. Consider G = Gy, and suppose Ey(G) contains no Copqr. If 2k x

|Ev(G)| < |E2(G)|, then G is not Cayy1-decomposable.

Proof. Suppose G is Cyyi-decomposable. Since FE5(G) contains no Chyyq, we must
use at least one edge in E;(G) and at most 2k edges in F3(G) to form a Coryq. Thus,

2k x |E1(G)| = |Eo(G)|, a contradiction. ]

Now, we start the constructions with odd cycles decomposition.

Proposition 2.6. There is a family of (2k+1)-sufficient r-regular graphs of order n which

2k+1

o n — 1.

have no Cyy-decomposition, where r =

Proof. Let G = Guyk,,) with D = {i |-ilis odd}, where m = (2k + 1)(2t + 1) for any
nonnegative integer ¢. For example k& = 1, G is given by Figure 1

First, we claim that G is (2k-+1)-sufficient:-Singe for all v € V(G), deg(v) = (m —
1)+m x2k=0 (mod 2), so G is an even.graph: Since |E(G)| = |E1(G)| + |Ex(G)| =

m(";l) x4k+m?xkx4k =0 (mod m)=0 (mod 2k+1), so the size of G is a multiple

of 2k + 1.
Next, F5(G) contains no Cy,y1 by Corollary 2.4. And G is not Cyiii-decomposable
since 2k x | Eo(G)| = 2k x ™= s df = 4k2m(m—1) < 4k*m? = |F»(G)| (by Lemma 2.5).
Hence G is a (2k + 1)—Sufﬁcient r-regular graph which has no Cy1-decomposition,

where r = deg(v) = (2k + 1)m — 1 = 2£p — 1. ]

Corollary 2.7. If every (2k + 1)-sufficient r-reqular graphs of order n have Coyyq-

t 2k+1

decompositions, then r has to be at least = —=n.

Proof. By the direct construction of Proposition 2.6, there is a family of (2k+1)-sufficient

r-regular graphs of order n which have no Cy,1-decomposition where r = 212;1” —1. So

if we want to decompose every (2k + 1)-sufficient r-regular graphs of order n, then r has

to be at least 2’““ n



Besides the construction of Proposition 2.6, there are another two family of graphs
which satisfy such conditions.

First, let H be a balanced complete bipartite graph of order 4¢t. Consider G is a
graph of order 4t where V(G) = V(H) and E(G) = E(H) UJ,; £(C;) where C; belongs
to partite set. We can choose these C; properly, such that the minimum degree of G
is as large as possible and G is (2k+1)-sufficient, but ), |E(C))| < %. Then G is not
Csky1-decomposable by a similar idea of Lemma 2.5.

Second, let G be a difference graph G[D] of even order. Choose D = AU B where
A ={i]|iis odd} and B C {j | j is even}, but |A] < ‘Q—i‘. Then G is not Copyi-

decomposable by a similar idea of Lemma 2.5.

Proposition 2.8. There is a family of 4-sufficient r-regular graphs of order n which have

no Cy-decomposition, where r = %n —1.

Proof. Let G = Gjx,,) with D = {1}, where m =8t + 3 for any nonnegative integer
t. Clearly, for all v € V(G), deg(v) = (m=1)+2m = 0 (mod 2), and |E(G)| =

m(";_l) X 5+ m? x 5 =480t* + 340t + 60. =0 {amod 4) . Thus, G is 4-sufficient.

For all 7, 0 < ¢ < 4, the size of E(Gy,Gyep)ris odd, but it is impossible to use an odd
number of edges in E(G;, Gi11) and some edges in F(G) to form a Cy. Thus, G is not
Cy-decomposable.

Hence G is a 4-sufficient r-regular graph which has no Cy-decomposition, where r =

deg(v) =3m —1=3n—1. ]

Corollary 2.9. If every 4-sufficient r-reqular graphs of order n have Cy-decompositions,

then r has to be at least %n

For even cycles, the lower bound we obtain is not as good as those we found for odd

cycles.

Proposition 2.10. There is a family of 2k-sufficient r-regular graphs of order n which

have no Cy-decomposition, where r = 5 — 1.



Proof. Let G; and G5 be the complete graphs of order 4kt + 1 respectively for any
nonnegative integer t. Let G be the graph of order 2(4kt+1) where V(G) = V(G1)UV (G,).
Choose E(G) = E(G1) U E(G2) U {(x1,11), (z2,y2)} \ {(z1,x2), (y1,y2)} where 1, xo €
V(G1) and 41, y2 € V(G3). (see Figure 3)

Figure 3: 2k-sufficient r-régular graph-which has no Cs,-decomposition.

For all v € V(G), deg(v) = (4kt+1) —1=0 (mod 2). |E(G)| = (4kt+1) x 4kt =0
(mod 2k). So G is 2k-sufficient.

Suppose that G is Cy-decomposable, then (x1,y;) and (z3,y2) belong to a Cy in G.
Next, we want to use (x1,y1), (22, ¥y2), ¢ edges in E(Gy) \ (1, 22) where 1 < ¢ < 2k — 3,
and 2k — 2 — g edges in E(G2) \ (y1,y2) to form a Cy. Since G is Cyp-decomposable
and |E(G1) \ (21,72)] = |E(Ga) \ (y1,90)] = A1 = 1 (mod 2k) = 2k — 1
(mod 2k), so we must choose ¢ edges properly such that ¢ = 2k — 2 — ¢ = 2k — 1
(mod 2k), it is a contradiction to 1 < ¢ < 2k — 3. Thus, G is not Cy-decomposable.

Hence G is a 2k-sufficient r-regular graph which has no Cy;-decomposition, where

r=deg(v) = (4kt +1)-1=12 — 1. o

Corollary 2.11. If every 2k-sufficient r-regular graphs of order n have Cor-decompositions,

then r has to be at least g

10



Proof. This follows immediately from Proposition 2.10. ]

Corollary 2.12. If every n-sufficient r-reqular graphs of order n have C,,-decompositions,

then r has to be at least %

Proof. The construction of this proof is the same as Proposition 2.10 except the order

of G and G are 2t+1 for any nonnegative integer ¢. [

[19e%)]

So, we conclude this section with a table for “r” in which G is an arbitrary r-regular

k-sufficient graph but G has no Cj-decomposition.

Table 1: The lower bound of r.
Cg C4 05 Cﬁ Ck, k is odd Ck, k is even Cn

3 3 5 n k n n

11



3 Lower Bound of ex(n ; Cy-decomp.)

Let F be a given graph. Then we define ex(n; F') = max{|E(G)| | |V(G)| = n, but G
contains no subgraph which induces F}. We call the graph G of order n an extremal graph
of F'if G contains no subgraph which induces F' and |E(G)| = ex(n; F'). In this section,

we will study a new topic “extremal graph of Ci-decomposition.”

Definition 3.1. We define ex(n; Ci-decomp.) = max{|E(G)| | [V(G)| =n, G is k —
suf ficient, but C) t G}. We call the graph G of order n an extremal graph of Cj-

decomposition if G satisfies the followings: G is k-sufficient, G is not Cy-decomposable,

and |E(G)| = ex(n; Cg-decomp.).
In what follows, we obtain the lower bound of ex(n; Cy-decomp.).

Lemma 3.2. Let G be a k-sufficient graph:'If there is an edge e in G, but e does not lie

in any k-cycle in G, then G is not:Cy-decomposable,

Although the idea of Lemma 3.2 is very simple, it is very useful in proving the following

results.

n

Theorem 3.3. If n is even, then ex(n; Cs-decomp.) = (}

) = (n—2) — ¢, where

en=5 if n=0 (mod 6)
en=4 ifn=2o0r4 (mod6); and

if n is odd, then ex(n; Cs-decomp.) > (";2) — €, where

en=4 ifn=1 (mod 6)
en=0 if n=3o0r5 (mod6).

Proof. Let H be the complete graph of order n — 2. Suppose V(H) = {vg, v1, ..., vn_3},
and choose V(H;) = {vo,v1, ..., vz o} and V(Hy) = V(H) \ V(Hy). If n is even, let
G be the graph of order n where V(G) = V(H) U {x,y} and E(G) = E(H) U (z,y) U
Usev ) (@, w) U U, cv ) (¥, v) \ E(C,) where E(Ce,) € E(H). Choose €, =5if n =0
(mod 6),and e, =4ifn=20r4 (mod 6)(see Figure 4). If nis odd, let G be the graph of
order n where V(G) = V(H)U{z,y} and E(G) = E(H)U{(x, z1), (z, 22), (y, 21), (y, 22) } \
E(C.,) where E(C,,) C E(H) and 2y, 23 € V(H). Choose ¢, =4ifn=1 (mod 6), and

12



Figure 4: €, =4 or 5 if n is even.

€n =0ifn=30r5 (mod 6) (see Figure 5). Now, we delete a C, from K, _» to make

the graph 3-sufficient.

Figure 5: €, =4 or 0 if n is odd.

13



Since (x,y) does not lie in any 3-cycle in G, then G is not Cs-decomposable by
Lemma 3.2. So G is a 3-sufficient graph G with |[E(G)| = (3) —2 x %52 —¢, =
() — (n—2) — ¢, if n is even, and |E(G)| = (",°) — €, if n is odd, but G has no

C5-decomposition. Hence ex(n; Cs-decomp.) > () —(n—2) —¢, if n is even, and ez (n; Cs-

decomp.) > (";2) — ¢, if n is odd. [

)
en=0 ifn=1 ( )
€n=3 if n=3 (mod &)
€n="06 ifn=5 ( )
en=5 ifn=7 ( )

if n is even, then ex(n; Cy-decomp.) = (’2‘) —2(n—3)— ”T*Z _3

Proof. Let H be the complete graph of order n — 2. If n is odd, let G be the graph of
order n where V(G) = V(H)U{z,y} and E(G) = E(H)U{(x,y), (v, 2),(z,2)} \ E(C¢,)
where z € V(H), E(C.,) C E(H)(see Figure 6). Choose ¢, = 0 if n =1 (mod 8),
e&n=3ifn=3 (mod8), e, =6ifn=5 (mod8), ande, =5if n=7 (mod38).
If n is even, let G be the graph of ordern where V(G) = V(H) U {z,y} and E(G) =
EH)U{(x,y), (y,2), (z,2)} \{FUB(C,,)} where 2 € V(H), F is a perfect matching of
H, and E(C,,) C E(H). Choose €, = 3 if n is even. (see Figure 7) Finally, we delete a

(., to make the graph G 4-sufficient.
X y

Figure 6: K,_5 may minus a C,,.

14



Figure 7: K, 5 — I minus a C}.

Since (z,y) does not lie in any 4-cycle in G, then G is not Cy-decomposable by
Lemma 3.2. So G is a 4-sufficient graph G with?|E(G)| = (5) — 2(n — 3) — €, if n is
odd, and |E(G)| = (5) — 2(n — 3) = %52 =3 ifiniis.even,but G has no Ci-decomposition.

Hence ex(n; Cy-decomp.) > (5) =2(n = 3) = &, if niis odd, and ex(n; Cy-decomp.) >

(5) —2(n—3) — 252 — 3 if n is even, "

Similar to the constructions of Theorem 3.4, we can also construct graphs which can
not be decomposed into Cy, k > 5. Therefore, a lower bound for ex(n; Cy-decomp.) we

have.

Theorem 3.5. For k > 5, if n is odd, ex(n; Cy-decomp.) > (;L) —2(n — 3) — €xn, where
exn € {0,3,4,5, .., k—1,k+1,k+2}, such that the size of the graph is a multiple of k. If
n is even, ex(n; Cy-decomp.) = (Z) —2(n—3)— ”T_2 — €k, where €, € {0,3,4,5,.... k —

1,k+1,k+ 2}, such that the size of the graph is a multiple of k.
Clearly, the above construction also works for the case on C),-decomposition.

Theorem 3.6. Forn > 9, if n is odd ex(n; Cy-decomp.) > (5) —2(n —3) — 6. If n is
even ex(n; C-decomp.) > (5) —2(n—3) — 252 — 7.

To summarize this section, we use the following two tables to depict the study of this

15



topic.

Table 2: The lower bound of ex(n; Cy-decomp.) if n is odd.

Cs

Cr ke >4

Ch

ex(n; Cy-decomp.)

(g)—(n—i-Q)—en

(5) —2(n —3) — €xn

(3

)—2(n—3)—6

Table 3: The lower bound of ex(n; Cy-decomp.) if n is even.

Cs

Cr k>4

Ch

ex(n; Cy-decomp.)

16

(

n

)

—2(n—3)—T7




4 Conclusion

From the results obtained in thesis, we have quite a few examples of showing a Cj-
decomposition is not possible. But, for those graphs, say with large r in degree or with
large size, it is not known whether we can decompose them into k-cycles. We shall work
on those decompositions in the future. If possible, we would like to prove that the bounds

are sharp, especially those bounds on sizes.
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