
A Graphical User interface Design
for Network Simulation

Yi-Bing Lin
Department of Computer Science and Information Engineering, National Chiao Tung Uniuersiq, Hsinchu, Taiwan,
Republic of China

Joe Geigel
Pittsburgh Supercomputing Center, 4400 Fifh Avenue, Pittsburgh, Pennsylvania

This article describes a prototyping effort of a flexible

graphical user interface (GUI) for a simulation tool

called COPS. The GUI is designed to allow parameter

setup for all modules in simulation model, and can be

easily replaced by new GUls implemented in different

languages/graphical tools. This article provides design

guidelines and implementation details of the flexible

GUI. 6 1997 by Elsevier Science Inc.

1. INTRODUCTION

Computer Operations Performance System (COPS) is
a simulation tool for network modeling. COPS con-
sists of five interactive components: the command
interpreter, the graphical user inte$ace, the library,
the simulation engine, and the output analysis. The
organization of COPS is illustrated in Figure 1. The
user constructs models by using the graphical user
interface (GUI). The command interpreter interacts
with the GUI and the model library to construct the
executable code for the simulated model. The simu-
lated model is then executed by the simulation en-
gine. The results are displayed by the output analysis
component.

A significant distinction between COPS and other
simulation packages is the interactions among the
components. In most simulation packages (Funka-
Lea et al.. 1991; MIL, 1991; Northern Telecom Ltd.,
1992; Vaughan and Newton, 19931, the components
are tightly coupled. On the other hand, COPS com-

,- _

Addrex\ correspondence to Dr. Yi-Bing Lin, Department of Com-
puter Science and Information Engineering, National Chiao Tung
University, Hsinchu, Taiwan. Republic of China. E-mail:
ii&i csie.nctu.edn.tw

J. SYSTEMS SOFTWARE 1997; 36: 181-190
0 1997 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

ponents are loosely coupled. Every COPS compo-
nent is executed by a process, and the interactions
among components are done by sending messages
between processes. Our loosely-coupled structure
provides the following advantages.

Because the COPS components are isolated in the
loosely coupled structure, a component can easily
be replaced. For example, we have built three user
interfaces; one implemented in HP Interviews
(Hewlett Packard, 1992) on in Unidraw (Vlissides
and Linton, 19901, and one in Tel (Ousterhout,
1990). We can integrate either implementation to
other COPS components without (or with little)
modifications.

Also, we can easily upgrade the simulation en-
gine to a faster one (e.g., a parallel simulator (Lin
1990). In most packages, the command interpreter
and the simulation engine are tightly coupled such
that simulation engine cannot be replaced without
replacing command interpreter.

The components can be executed on different
machines. Sometimes it is desirable 1:o execute

components in different machines. For example, it
is possible that the GUI is only available on a slow
machine. In such a case, we may prefer to execute
the simulation engine on a faster machine where
the GUI cannot be executed.

One may argue that communication overhead is
very high in the loosely coupled structure. In COPS,
most inter-component interactions are between the
GUI and the command interpreter. The execution
of the simulation engine is not affected by the
inter-component communication. Because the inter-

0164-1212/‘)7/$17.00
SSDlO164-1212(95300201-4

182 J. SYSTEMS SOFTWARE
1997: 36:181-190

Figure 1. Architecture for COPS.

actions between the GUI and the command inter-
preter are faster than human response, the perfor-
mance of the loosely coupled structure is not a
problem.

The details of the COPS system were discussed in
(Daly et al., 1992). The GUI related part of the
command interpreter was described in (Lin and Daly,
1995). In this article, we focus on the design and
implementation of the COPS GUI graphical objects.
The COPS GUI is a general purpose GUI for appli-
cations that make use of graphs as an underlying
data model (such as networking applications). This
GUI is an example of using a user interface manage-
ment system (Harbert et al., 1990; Johnson et al.,
1993; Mandelkern, 19931, which allows users to cre-
ate nodes, define and modify data attached to these
nodes, and create and delete connections (edges)
between nodes. The GUI support hierarchical graph
structures. Thus, the data attached to a given graph
object can also be a graph.

The GUI acts simply as a filter between the user
and the graph application. It has no knowledge of
the application nor the consequences of the actions
performed by a user. It works hand in hand with a
master process which interprets user’s input and
determines proper responses to this input. Thus, the
GUI’s role is simply to notify an application of a
user’s actions. This approach places the responsibil-
ity of responding to these actions to the application
process.

Separating the task of accepting user input from
determining system response makes the GUI quite

Y.-B. Lin and J. Geigel

general. The data model and the sequence of user
interactions in completing a task is as simple or
complex as the master process guiding the GUI.

The COPS GUI was built using the C + + lan-
guage. We assume that the reader understands the
language.

2. GUI SYSTEM OVERVIEW

When a user starts up the COPS GUI, they are
presented with a graph editor where one can cre-
ate/delete nodes and connect/disconnect nodes
with links. In addition, each node can have data
associated with it. The associated data is referred to
as a GUI Object. Each GUI Object has a corre-
sponding dialog object managed by the GUI with
which the user can interact, modify, or view the data
associated with the object. GUI objects come in
three flavors. Each type differs from the other by the
kind of dialog item that used to display the data
associated with the object. Each is briefly described
below.

Graph Editor. A graph editor is a fully functional
graphical editor that allows a user to construct,
modify, and view graph like structures (see Figure
2(a)). It consists of three areas, a canua~ area in
which the user interacts directly with the graph
elements, a palette area in which users can select
different kind of nodes and links, and a menu bar
which gives users access to variety of different func-
tions. A graph editor appears when a user first starts
up the COPS GUI. In essence, upon startup, the
GUI creates a root GUI Object which is edited via a
graph editor.

In COPS, the nodes are assumed to have a num-
ber of input and output ports connected to it. Thus,
when connecting two nodes via a link, the output
port of one node is connected to the input port of
another. The graph editor allows addition, deletion,

Figure 2. Data Graph, Data Set, and Data
Table.

GUI Design for Network Simulation J. SYSTEMS SOF-lWARE 183
1997: 36:1X1-190

and renaming of the I/O ports. For graph models

that do not include ports, the graph editor can be set
so that each node only has a single input and a
single output port, collapsing the graph model to
that of connecting nodes via links without ports. The
addition/deletion capability can also be disabled.

Data Set. Data associated with a GUI object can
simply be a set of token/value pairs. This type of
GUI Object is a data set and is edittable via a dialog
box which lists the tokens and current values and
allows editing of these value (see Figure 2(b)).

Data Table. Data tables are use for data that is
matrix-like in structure. Like data sets, the data
associated with a data table will be presented in a
dialog box. However, rather than having a single
value for each token, an array of values for that
token is given. The data is presented as a matrix
with values corresponding to the same token given
as columns, and groupings of different tokens given
as row. The data table allows the user to add rows of
data, delete rows of data, or edit individual pieces of
data within a row (see Figure 2(c)>.

The GUI is essentially a naive process in the
sense that it does not know how to respond to a
given user’s action. In addition, it has no direct
access to the library which holds data values in-
cluded within the GIJI objects. Instead, the GUI
acts as a slave process to the command interpreter
that controls the library and determines the proper
response to a user’s action. The command inter-
preter is indeed a separate process and, in concept,
need not even reside on the same machine as the

GUI.
The command interpreter keeps a registry of all

active data objects currently being represented by
GUI Objects in the GUI. Because GUI Objects
correspond to objects in the application domain,
user actions on given active GUI objects can be
mapped directly to actions on application objects.
The correct response to a user action depends on
the GUI Object to which the user’s action was

addressed.
The sequence of user action and system response

is a communication between the command inter-

preter process and the GUI process, as shown in
Figure 3. After the user initiates an action via the
GUI (Step I), the GUI informs the command inter-
preter which action was taken and on which GUI
Object (Step 2). The command interpreter will then
consult its library and determine an appropriate
response for that action (Step 3). Responses include
silent acknowledgment of the action, creation of a

Figure 3. Communication between command interpreter
(CI) and GUI.

new GUI Object (as defined by the command inter-
preter), destruction of an already existing GUI ob-
ject, negative acknowledgement of an error (Step 4).
This response is then communicated back to the
GUI, who then carries out the response as in-
structed (Step 5).

The COPS GUI is built on top of a C + + class
library called HP Interviews (Hewlett Packard,
1992). The library encapsulates a general Motif Style
GUI into an object oriented paradigm. It is a com-
mercial, Motif version of the Interviews package
that originated out of Stanford University. Some of
the higher level objects in the Interviews library
include dialog boxes, text editors, menus, and other
objects commonly found in general purpose GUIs.

3. IMPLEMENTATIONS OF THE COPS GUI

This section describes the implementations of the
COPS GUI graphical objects. In COPS, the objects
are implemented in C + + language (Geigel. 1993).

3.1. GUI Objects

The GUIOb j ect class is an abstract class that repre-
sents a group of edittable data managed by the GUI.
Each GUIObject has associated with a dialog ob-
ject. The dialog object is used by the user to manipu-
late the data within the GUIObj ect. Three types of
GUIObj ects are defined in the COPS GUI:

GraphEd-This class represents graph data. The
corresponding dialog object is a graph editor that
allows a user to interactively manipulate individual
graph objects.

DataBox-This class represents a group of textual
data. The corresponding dialog object is a Motif
style dialog box with textual fields.

DataTable-This class represents a matrix of tex-
tual data. The corresponding dialog object is a
Motif style dialog box that displays the matrix in
tabular form.

GUIObj ect s are the only objects that can di-
rectly send messages to the command interpreter

184 J. SYSTEMS SOFIWARE
1997: 36:181-190

Y.-B. Lin and J. Geigel

process. The messages are delivered through a static
CommChannel object that performs the actual com-
munication. The CommChannel object is described
in more detail in the next section.

3.2. Graph Editor

The graph editor is the means by which a user may
interactively manipulate the elements of a graph. It
allows creation, deletion, and movement of nodes
and links.

The general editor consists of three areas (see
Figure 4): the drawing area in which interaction with
the graph is performed, the drawing palette for se-
lecting “tools” used to interact with graph elements
(e.g., add new node, rotate, move, zoom, pan, etc.),
and a menubur for triggering other kinds of func-
tionality (e.g., file operations, editing operations such
as cut/paste, etc.).

Once created, these three areas are combined
into a single graph editor application. Each area is
discussed in more details below.

Drawing Palette. The drawing palette on a graph
editor contains model editing controls of the draw-
ing area. The palette is divided into three subareas
or decks as follows: The first deck contains the select
control (see Figure 4). This function places the edi-
tor into select mode where one can select and move
objects in the draw area. The second deck contains
the creator controls. These controls are used to
create new nodes and links and introduce them into
the draw area. In Figure 4, four node types are
defined: SO (source), SI (sink), Q (queue), and sub-
network. In the graph editor palette, there is a single
creator control for creating links, and one creator
control for each node type. The final deck contains a

Figure 4.

Palette
DRW AreP

Layout of a Graph Editor.

zoom control which allows zooming of the drawing
area.

Creation of new links and nodes into the draw
area is all taken care of by two COPS classes
LinkCreatorControl and NodeCreatorCon-

t rol. When the class is instantiated, a pointer to an
example object is passed in. When the control is
activated, a copy of this example object is created
and placed in the draw area.

Menu Bar. The menu bar is used to create a
series of pull down menus. It consists of four pull-
down menus: one for file operations (such as Load,
Store, New, and so on), one for editing operations
(such as Cut, Paste, Clear, and Change Node Name),
one for port operations (such as Add Port, Delete
Port, and Change Port Name), and a final one for
command interpreter defined operations (i.e., the
Options menu in Figure 4). Menu items in the
Options pulldown menu are determined by the com-
mand interpreter, which is intended for application
specific functions. When activated, these menuitems
will simply notify the command interpreter that they
have been activated and the command interpreter
will react appropriately. For example, COPS uses
this pull down to start a network simulation.

The action that occurs when a menu item is
activated is defined by the virtual MenuItem func-
tion Do () which is redefined for each derived class.

The main purpose of the graph editor is for a user
to interactively manipulate graph elements (i.e.,
nodes and links). The COPS GUI defines several
classes in the construction of what it knows as a
node. A general class is G-Node, which is used in
the construction of a COPS GUI node (see Figure
5). Similarly, with links, the COPS GUI defines
several classes used to make connections between
ports. The general class which includes all links used
by the GUI is G-Link (see Figure 5).

Figure 5. Class hierarchy of Graph Objects.

GUI Design for Network Simulation J. SYSTEMS SOFTWARE 185
1997: 36:1X1-190

A COPS GUI node is represented by the class
GUINode. Its visual representation is shown in Fig-
ure 6. In the figure, the GUINode consists of a base
node with ports attached to it. The ports are repre-
sented by the smaller squares to the left and right of
the base node. These ports are represented by the
class (;UIPort, and are themselves, derived from
G-Node. GUIPort s are connected to their corre-
sponding GUINode by a special class of G-Link
called PortToNodeLink. This link is invisible and
is managed by the GUI and thus cannot be explicitly
created, deleted, or moved by the user. Each port
has a name which is displayed next to the square
representing the port.

Connections between GUINodes are made via
GUILinks, a subclass of G-Link. Note that
GUIiinks connect G';JIPorts and not GUINodes
directly. These links are created, and deleted explic-
itly by the user. The user can attempt to connect two
GUINodes directly. In this case, the graph editor
will query the user between which ports the link is to
be created. This query is performed by the Graph
Editors link creation palette tool (LinkCreato.r-

Control).

Because GUINodes are to be manipulated as a
unit, when a user selects it, moves it, cuts it, or edits
it, all ports connected to the node must be selected,
moved, cut, or edited with it. Both G-link and
G_notie are derived from the class Clickable.

The C 1 ic.kable class provides for its subclasses to
define callback functions to be invoked when the
clickable is moved, selected, unselected, added,
copied, etc. This is done via virtual functions defined
by the ~1 ickable and redefined by any subclass of
cl ick<-lb le. Thus, these virtual functions must be
defined for each subclass of G-Node and G-Link.
A subclass is allowed to set many of the parameters
associated with a clic kable. (One such parameter
is visibility which allows the PortToNodeLink to
be invisible.) In Figure 5, the CompositeOb j ect

and ExtNode classes represent specialized types of

GUINodes. An ExtNode represents a graph’s con-
nection to the outside world (i.e., it is either a source
or a sink). The Compos i teOb j ec t is a node that
represents a subnetwork.

3.3. Data Box

The data box is used to represent a set of edittable
data displayed by a Motif Style dialog box (see
Figure 7). The dialog box contains a number of
editable fields each having its own textual label. It
may also contain user defined buttons which, when
pressed, will evoke the presentation of other data
related to the data being presented in the databox.
Lastly, the box contains a standard “Ok” button
which is used to make the dialog box disappear. Like
other GUIObj ect s, reaction to button presses, as
well as the changing of a value within a data field, is
determined by the command interpreter process.

Several classes are used to define databoxes:

DataBox-This class represents the data box itself.

Data1 t ems-This class represents a collection of
items that can be placed within a data box’s inte-
rior. Each DataBox contains a single member of
this class.

Data1 tern-This class represents a single item of
which the Data 1 t ems class is comprised.

There are two types of items that can be found in
a DataBox'S interior, resulting in two subclasses of
DataIEem:

Dat aVal ue-This class represents edittable data
fields. Each field has a textual label associated
with it. The field/label combination make up the
DataValue class (see Figure 8).

AC t ion-This class represents user-defined buttons
which are to be placed in a DataBox (e.g., the
Output button in Figure 8).

Consider the layout example of a DataBox shown
in Figure 8. The DataBox itself has two areas: the

label vnlue

Figure 6. Layout of a GUI node. Figure 7. Layout of a DataBox.

186 J. SYSTEMS SOFTWARE
1997: 36:181-190

r______i~~~i______:I,

___________--__---J

Figure 8. Layout of a DataValue.

interior, which is a Data1 t ems object, and a button
box, which contains standard buttons that are to
appear with the DataBox (in our case, merely the
“Ok” button). Note that user-defined buttons are
found in the interior and not in the button box.

All Dat aValues are stacked one on top of an-
other as they are listed in the definition of the
databox. Actions are aligned horizontally in a box
and this box is placed at the bottom of the DataBox’s
interior (after all of the DataValues).

3.4. Data Table

The data table is used to represent an array of
edittable data displayed by a Motif Style dialog box
(see Figure 9). The data concept is much like a
relational database system in which each row of the
array represents a single record of data and each
column represents field within a data record. Each
record has a keyfield which uniquely identifies the
record.

Buttons are provided to allow the user to add
records, delete record, select and receive additional
information about a record, and change the name
(value) of a key field in a record. The data table is
also provided with a list of default values for each of
the data fields. These default values will be supplied
when a new row is added to the table (except for the
key field which must be explicitly entered by the
user). Several classes are used to implement the data
table.

DataTable-This class represents the data table
itself.

DataTableRow-This class represents a single row
of data in the table.

Figure 9. Layout of a DataTable.

Y.-B. Lin and J. Geigel

Da t aTab eRowKey-This class represents the por-
tion of a DataTableRow that holds the key field
value. It is currently implemented as a radio but-
ton (which is how the user selects a given row).

DataTableValueEditorThis class represents a
single line text editor in which individual field
values of a row can be edited.

A data table contains four buttons: add (a row),
delete (a row), remain (a row), and (get) information
(see Figure 9).

The DataTableRow consists of a Data-
TableRowKey and a number of DataTableVal-
ueEdi tors, one for each field in the row (see
Figure 10). The DataTableRowKey is a radio but-
ton. This radio button is used to select a current
row. This button will inform the command inter-
preter that the user is choosing the currently se-
lected row. Pushing the radio button on the Data-
TableRowKey makes a row the currently selected
row on which button actions are to take place.

The DataTableRows are assembled into a verti-
cal strip managed by the DataTable (see Figure 9).
The four data table buttons are arranged into a
horizontal strip. This strip is placed below the data
rows. Finally, a sole “Ok” button is placed below the
data table button box. This “Ok” button is used
dismiss the data table.

to

4. COMMUNICATION BETWEEN GUI AND Cl

The CommChannel object is the communications
link between the COPS GUI and the command
interpreter process. All messages from individual
GUIOb j ect s to the command interpreter and vice
versa are routed through the CommChannel object.
The CommChannel keeps a registry of all active
GUIObj ects (with their id numbers) being man-
aged by the COPS GUI so that it may route replies
from the command interpreter to the appropriate
GUIObjects. Because of single CommChannel acts
as courier to all GUIObj ect s, only one instantia-
tion of the CommChannel is necessary. This single
instantiation must be available to all GUIObj ect s
and thus is specified as a static member of the
GUIOb j ect class.

: _ _ _ _ _ _ . . . :
;vOek~yfield ; field 1 field 2 field 3

.

T DataTableRow

DataTableRowKey DataTablevalueEditor

Figure 10. Layout of a DataTableRow.

GUI Design for Network Simulation

The CommChannel communicates with the com-

mand interpreter process in two ways. First, there is
a two way Inter Process Communication (IPC) link
between the two processes. The CommChannel it-

self is a subclass of the more general ~1 ient class
which is a class that establishes IPC with an instanti-
ation of a Server class. All messages between
GUIOb j ect s and the command interpreter are con-
veyed using this IPC link.

Every communication is initiated by the GUI and
consists three steps. The structure of the communi-
cation between the GUI and the command inter-
preter via the CommChannel is demonstrated in
Figure 11.

4.1. Step 1: User Activated Action

When the user performs an action on one of
the GUIObj ects, this action is translated by the
GUIObj ect into a textual message to be sent to
the command interpreter. The message will contain
the identification number of the GUIObject send-
ing it. This message is sent to the single CommChan-

nel which routes it to the command interpreter via
the IPC link. It then waits for a reply.

Graph Editor. Most actions taken within a graph
editor must be conveyed to the command interpreter
for proper registry and response. The GraphEd ob-
ject, being the only GUIObject involved with a
graph editor, has the only direct link to the com-
mand interpreter. Thus, all other objects (menu-
items, palette, nodes, and links) must route message
through the GraphEd to which it belongs. A pointer
to this Gr aphEd object is contained in each one of
the graph editor subobjects that need to communi-
cate to the command interpreter.
Graph&3 can be used to edit previously save

graphs. The contents of a GraphEd is saved into a
file upon the GraphEd's exit. It is the responsibility

Figure 11. Communicating using the CommChannel.

J. SYSTEMS SOFTWARE 187
lYY7: 36:IXI-IV0

of the command interpreter to supply an initial
graph file when defining a GraphEd in a GUI dialog

file called cops . tmp . If it doesn’t, the draw area of
the graph editor will be empty upon its instantiation.

Data Box. Each data item within a data box is
assigned a numerical code value that is sent to the
command interpreter when that item is acted upon.
This code value is determined by the position of the
item in the definition of the data box as found in a
GUI Dialog file. This code is given to each
Data T t em upon instantiation.

As mentioned previously, all communication from
the GUI to the command interpreter is done via a
single CommChannel object. This CommChannel

object is accessible by all GUIObj ects (including
the DataBox), but is not accessible by components
of a G'JIObject (e.g., Daraltems). Thus, when a
data item is acted upon the message to be sent to
the command interpreter indicating this action must
be routed through the DataBox object to which a
Data I t em belongs. This is done via the Da t a I t em's
announce method. This method passes an appropri-
ate message to be routed through the ~dtdeox and
eventually to the command interpreter.

The sending of a message to the command inter-
preter is triggered by a user action on a Dat a~ t em.
For Actions. this happens when the button corre-
sponding the Act ion object is pressed. For
DataVai ues, a message is sent when a new value is
entered in the DataValueEdILr. The code, as
well as the new value entered, is first communicated
to the DataValue to which the DataValueEdi-

tor belongs. The DataVaj~ue. then, in turn, passes
the message to the DataBox to which it belongs.
DataBox communication is illustrated in Figure 12.

Data Table. Communication between the data
table elements and the command interpreter is han-
dled in very much the same way as with the
DataBox. Because the DataTakbi6> object is the
only object with access to the ('omnC:h,~nr:e I, all

Figure 12. Communication from DataBox components.

188 J. SYSTEMS SOFTWARE
1997: 36:181-190

Y.-B. Lin and J. Geigel

communication from interior objects must be routed
through the DataTable object.

Every data table button and every DataTable-

Row has a pointer to the DataTable to which it
belongs.

The messages that get sent from the GUI (a graph
editor, a data set, or a data table) to he command
interpreter is given in (Geigel, 1993).

4.2. Step 2: The Command interpreter Response

The command interpreter runs in a constant loop
waiting for commands from the GUI. When it re-
ceives a command, it reads it, interprets it, and then
sends a textual reply back to the GUI. The com-
mand interpreter will keep a list of objects, corre-
sponding to the dialogs (data sets, data tables, and
data graphs), that are currently active. When a com-
mand is received by the command interpreter, it
should route the command and it’s arguments to the
appropriate object. The details of the command in-
terpreter’s reaction is discussed elsewhere (Lin and
Daly, 1995). The reply of the command interpreter
can be one of several messages:

Return a silent acknowledgment: The acknowl-
edgement indicates that the command interpreter
has received and successfully interpreted the mes-
sage from the command from the GUI and that
no further action is required by the GUI.

Issue an error message to the user via an error
dialog box: This indicates that the command inter-
preter has received the command from the GUI,
however, some error has occurred during the in-
terpretation of the command. A description of the
error is given. This response will result in the GUI
displaying an error notification box.

Return an id number to the GUIObj ect from
where the original message originated: This re-
sponse conveys the id of a newly created node into
a graph. It is the correct response to the GUI
node creation commands.

Have the GUI exit gracefully: The command in-
terpreter instructs the GUI to gracefully exit. If an
error message is given, it is displayed to the user
before exiting. This is for the case of an abnormal
exit from the program.

Remove one or more active GUIOb j ec t s from
the GUI: The command interpreter instructs the
GUI to destroy a number of graphical objects
associated with the given ids.

As a result of the command, each of the above
action can be immediately followed by an indication
that a new GUI Object (graph editor, data box, or
data table) should be created by the GUI. The
description of this new Object will be described in
the file cops. tmp (see the next subsection).

4.3. Step 3: The GUI Response

When a reply is received, actions may be taken in
the GUI. In many cases, the response to a GUIOb-
j ect message may be the creation of a new GUIOb
j ect to be introduced to the GUI or modification
to an existing GUIObj ect. If this is the case, the
description of creating/modifying a GUIOb j ect is
generated by the command interpreter and commu-
nicated to the GUI via an ASCII file named
cops. tmp. It is the responsibility of the CommChan-
nel to read this file, either modify the GUIOb j ect s
or create the new GUIObj ect s, register them, and
introduce them into the GUI. The CommChannel

class includes a member of the Parser class, which
does the actual parsing of the cops. tmp file and
returns pointers to GUIOb j ect s defined in it.

The syntax of the cops. tmp file is given in Ap-
pendix A.

5. SUMMARY

This article presented the design of a flexible graphi-
cal user interface (GUI) for network simulation. The
flexible GUI was implemented in a simulation envi-
ronment called COPS (Daly et al., 1992). The imple-
mentation details were given. Our GUI design has
the following features:

The GUI provides convenient ways for parameter
creation/setup in all simulation modules.

The existing GUI can be easily replaced by a new
GUI implemented in different languages/graphi-
cal tools.

Several GUIs can be attached to the same simula-
tion environment.

REFERENCES

Daly, D., Kant, K., Lin, Y.-B. Mak, V., Mok, D., COPS: A
Computer Operations Performance Simulation System,
in Second Bellcore Symposium on Performance Modeling,
1992.

Funka-Lea, C. A., Kontogiorgos, T. D., Morris, R. J. T.,
and Rubin, L. D., Interactive Visual Modeling for Per-
formance, IEEE Sofnyare, 58-67 (September 1991).

Geigel, J., The COPS GUI-A Programmer’s Guide.
Technical report, Bellcore, 1993.

GUI Design for Network Simulation J. SYSTEMS SOFTWARE 189
lYY7: 36:1X1 190

Harbert, A., Lively, W., and Sheppard, S., A Graphical
Specification System for User-Interface Design, IEEE
Sofhlare, 12-20 (1990).

Hewlett Packard. Interviews Plus Programmer’s Guide,
1092.

Johnson, J. A., Nardi, B. A., Zarmer, C. L. and Miller,
J. R., ACE: Building Interactive Graphical Interactions,
Communication of ACM, 36(4):40-56 (1993).

Lin, Y.-B., Understanding the Limits of Optimistic and
Conservative Parallel Simulation. Ph.D. thesis, Depart-
ment of Computer Science and Engineering, University
of Washington, 1990. Technical Report 90-08-02, De-
partment of Computer Science and Engineering, Uni-
versity of Washington. August, 1990.

Lin, Y.-B., and Daly, D., A Flexible Graphical User lnter-
face for Performance Modeling. To appear in Software
-Practice & Experience, 1995.

Mandelkern. D., Graphical User Interfaces: The Next
Generation. Communication of ACM, 36(4):36-39
(199.7).

MIL 3, Inc. 0pnet Tool 0perations Manual, 1991.
Northern Telecom Ltd. Object Time Supplementary User

Guide, 1092.
Ousterhout, John K. Tel: An Embeddable Command Lan-

guage, in Proceedings 1990 Winter USENIX Conference,
IYYO.

Vaughan, P. W., and Newton, D. E., PRISM: An Object-
Oriented System modeling Toolkit. To appear in Inter-
nutional Journal in Computer Simulation, 1993.

Vlissides, J. M., and Linton, M. A. Unidraw: A Framework
for Building Domain-Specific Graphical Editors, ACM
Trunsactiotzs on Information Systems, 8(3):237-268 (July
I WON.

APPENDIX A
THE SYNTAX OF THE GUI DIALOG FILE

To edit the data of a node, it is the responsibility of the
command interpreter to inform the GUI of the structure
of the data and the method of editing to be used. This is
conveyed via a GUI dialogfile which will be produced by
he command interpreter when a specific “file : ” reply is
returned to the GUI. The syntax of the GUI Dialog file is
given below in BNF. Each production is explained in
detail when it is introduced. Keywords are presented in
san serif type. We only describe the syntax for the data
set. The syntax for the data table and the graph can be
found in (Geigel, 1993).

A.1. The File

(jik > * (objecf-list)

(object_list) 3 (object_list)(object) I(object)

The GUI dialog file is the means by which the command
interpreter communicates graph specific data to the GUI.

It also defines the method by which this data will bc
edited.

The GUI Dialog file is merely a list of descriptions of
GUI Objects that the GUI will create, display, and/or
modify as the result of a command sent to the Cl.

A.2. Objects

(object) = (data_set)l(graph)l(data_tahle)

There are three types of data objects, each corresponding
to a different user dialog method: the dataset, which
results in the creation of a dialog box, a graph, which
results in the creation of a graph editor, and a data table,
which results in the creation of a scrollable table within a
dialog box.

A.3. Data Set

(data-set) = %DATA((id): idatu-items))

(id) = (integer)

In a (data-set), the GUI is given a set of data for which
the user to edit. A data-set in A GUI dialog file results in
a dialog box containing the data in the data-set. The
dialog bok will contain a “done” button which the user
must explicitly press to conclude the edits on the data in
the set.

(data-items) = (dala_item)(data-uitems) I

(data-item)

(dam-item) =) (data_r~alue)l(action)

There are two types of data items: data values and actions,
each described in detail below.

A.3.1. Data values

(data_r,alue) = ?&VALUE

((quoted-string) , (string >) :

Data values are individual pieces of editable data. For
each editable value, the following parameters are given (in
this order): First is a prompt that identifies the data. This
is the (quoted_stting) parameter. (A (quoted-string) is
a character string enclosed in quotes. The string can
contain white space. This is in contrast to a {string) which
is not quoted and cannot contain white space). Secondly,
the current value of the data item is given. This is the
value that will originally be displayed for the data item
when the dialog box appears. When a data item has been
modified by the user, an integer corresponding to the
order of the modified item in the dialog box, as well as
the new value entered by the user, will be sent back to the
command interpreter. Error checking of the user input is
the responsibility of the Cl.

A.3.2. Actions

(action) * %ACTION((quofed_stting)~:

The second type of (data-item) is the (uction). An
(action) results in the creation of a button in the dialog

190 J. SYSTEMS SOFTWARE
1997: 36:181-190

box. The string (quoted-sting) indicates the label to be
placed on the button. When this button is pressed by the
user, an integer corresponding to the order in which the
action appears in the dialog box description. It will be sent
to the command interpreter. In most cases, this will trigger
the creation of another GUI dialog file as a response from
the command interpreter.

A.33. Dataset specification example. Below is an ex-
ample of a dataset specification:
%DATA { 2222222 ;

Y.-B. Lin and J. Geigel

%VALUE (“Data Item #l”, valuel);
%VAJLJE (“Data Item #2”, value2);
%VALUE (“Integer Data Item”, 34);
%ACTION (“Press Me”);
%ACTION (“Classes”);

This specification will create a dialog box with id 222222
that has three fields labeled “Data Item #l”, “Data Item
#2”, and “Integer Data Item”, with initial values valuel,
value2, and 34, respectively. The dialog box will also
contain two buttons labeled “Press Me” and “Classes”.

