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Abstract

Let G be a graph and A(G) be the adjacency matrix of G. The charac-
cteristic polynomial of G, denoted by Ps(x), is det ( xI - A(G ) ) where I is
the identity matrix. The eigenvalues of a graph are the eigenvalues of its
adjacency matrix. In this thesis, we study the largest eigenvalue of bipart-
ite graphs. Mainly, an upper bound for the largest eigenvalues of certain
families of bipartite graphs is obtained.
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1 Introduction and Preliminaries

1.1  Motivation

Just as astronomers study stellar spectra to determine the make-up of distant stars, one
of the main goal in graph theory is to deduce the principal properties and structure of
a graph from a short list of easily computable invariants. The spectral approach, i.e.,
using the graph spectrum for general graphs is a step in this direction. Indeed, eige-
nvalues are closely related to almost all major invariants of a graph, linking one extr-
emal property to the other. There is no question that eigenvalues play a central role
in understanding a graph, especially starting from the knowledge of discovering the
largest eigenvalues of a graph.

Bipartite graphs are known to be a class of most beautiful and useful graphs in graph
theory. A tree is a subclass of bipartite‘graphs:1-7Also, bipartite graphs do have several
good properties related to their spectrum. Therefore, it is interested to study their la-
rgest eigenvalues.

1.2 Preliminaries

We start with an introduction of graph terms we use in this thesis. Let G = (V,E) be
an undirected finite graph without loops or multiple edges, where V is the vertex set
of GandE={( x,y) | X,y € V,x # y}istheedgeset. AgraphG = (V,E)
is bipartite if V is the union of two disjoint sets such that each edge consists of one
vertex from each set. A complete bipartite graph is a bipartite graph whose edge set
consists of all pairs having a vertex from each of two disjoint sets covering the
vertices. Let K, ¢ denote the complete bipartite graph with partite sets of sizes r and
s. The diameter of a graph G is the largest distance between vertices init. Let
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0(G),A(G) and y(G) denote the minimum degree, maximum degree and chromatic
number of G.. The adjacency matrix A(G) of a graph G is a symmetric (0,1) —
matrix determined by G with rows and columns indexed by the vertices of G and with

entries
AG), - {1, if X anq y are adjacent,
0, otherwise.

The characteristic polynomial of G is denoted by Pg (), i.e.,
Ps (X) =det (xI-A(G)),
where | is the identity matrix. The eigenvalues of a graph are the eigenvalues of it’s
adjacency matrix. If G is a graph with n vertices, then the eigenvalues of G are the
zeros A4,(G),---,4,(G) of the characteristic polynomial Pg (X) =det (xI-A(G))
=II(x- 4;(G)). The spectrum is the list of distinct eigenvalues with their
respective multiplicities My, --, M, ; we write
Spec (G) = [ A e A ]

m; .. m
Since A(G) is symmetric, all of its eigenvalues are real. We assume, without loss of
generality, that they are ordered in decreasing.order, i.e.,
A(G) =2 1,(G).
If it is clear which graph is under consideration, we write 4; = --- = A, inshort. We
also referto 4,(G) and 4,(G) as A {G) and A, (G), respectively.

The basic definitions and facts about the spectra of graphs are given together with a
description of some general graph theoretic notions and necessary facts from matrix
theory. Before starting our study, we give some preliminary results of matrix theory.

Lemma1.2.1. [1, Lemma8.6.9] Iff(x)=x"Ax, where A is a real symmetric
matrix, then f attains its maximum and minimum over unit vectors x at eigenvectors of
A, where it equals the corresponding.

Lemma 1.2.2. [1, Theorem 8.6.10] A real symmetric nxn matrix has real
eigenvalues and n orthonormal eigenvectors.

Lemma 1.2.3. [2, Theorem 0.1] The geometric and algebraic multiplicities of an
eigenvalue of a symmetric matrix are equal.



Lemma 1.2.4. [2, Theorem 0.10] Let A be a real matrix with eigenvalues 4;,--, 4,
and B be one of its principal submatrices; let B have eigenvalues #1,-*-, & Then
the inequalities An_m1 < 4 < 4; (i=1,..., m)hold.

The above inequalities are known as Cauchy’s inequalities and the whole lemma is
also known as interlacing theorem.

Relating the eigenvalues to other graph parameters requires several results from linear
algebra, including the Spectral Theorem and Cayley-Hamilton Theorem for real
symmetric matrices. The following lemmas connect the matrix theory with spectra
graph theory.

Lemma 1.2.5. [1, Proposition 8.6.6] The (i,j)th entry of A*counts the number of

Vi,V ;-walks of length k. The eigenvalues of A“ are (4; )<,

Lemma 1.2.6. [1, Theorem 8.6.14] The diameter of a graph is less than its number
of distinct eigenvalues.

Lemma 1.2.7. [1, Lemma 8.6.15}.% If H is.an induced subgraph of G, then A, (G) <
Amin(H) £ A (H) £ 2, (G).

Lemma 1.2.8. [1, Lemma 8.6.16] . Foreverygraph G, 6(G) < A, (G) < A(G).
Lemma 1.2.9. [1, Theorem 8.6.17] Forevery graph G, x(G) <1+ 4, (G).

Next, we give some preliminary results of spectral graph theory for bipartite graphs.
They play an important role in the proof of our main results.

Lemma 1.2.10. [1, Lemma 8.6.7] If G is bipartite and 1 is an eigenvalue of G with
multiplicity m, then — Zis also an eigenvalue with multiplicity m.

Lemma 1.2.11. [1, Theorem 8.6.8] The followings are equivalent statements about a
graph G.

(A) G is bipartite.

(B) The eigenvalues of G occur in pairs 4;,4; such that 4; = 4;.

(C) Ps () is a polynomial in x*.

(D)X 11 (4;)?""t =0 for any positive integer t wheren= |V (G ) |.



Lemma 1.2.12. [1, Example 8.6.3]  Spec(K, ;) :(

Jmno 0 —Jﬁﬁ}

1 m+n-2 1

Theorem 1.2.13. Let G be a bipartite graph with partite sets U ={U;,U,,...,U,} and
V ={v1,V2,...,Vq}. Let the adjacency matrix of G take the form

0 B
A=| o |
BT 0

where Bisa pxq matrixand B is the transpose of B. If v=[x y]" isan
eigenvector of A(G) for eigenvalye .7, where x™ =[x, X,,... X, 1, ¥ =[Y1, Y. ¥ql
then for each i and j
(@) Ax; = gBil Y5 Ay = 3 Byj - Xk-

I=1 k=1

) % = $x IN@NNW L 2yj = Ly INGING)L.

Proof. (a) Since v is an eigenvector for eigenvalue A , we compute

AV = Av = 0 BX'B X, Biw=4
=AV=(gT o)y [ BY=Ax Bl

Consider the ith element of By and jth element of B™x , we complete the proof.
(b) From part (a), we have

q q p p g
2% = By - () = 2By - (TBy X=X, (2 B; - By)
I-1 21 | ke kel vl
p P
=Elxk'|{| | Bii =By =1}|=k§1><k'|{| [Uj ~ VU ~ Vi }
p
Zglxx'lN(Ui)ﬂN(Uk)l-

q
Similarly, A%Y; =Y IN(vi)AN(v)]. m

1.3  Known results

The study of upper bounds of eigenvalues of trees occurred in [3]-[5]. In [5], it lists
the first largest to the seventh largest eigenvalue of trees, and lists the trees which
attain these bounds. The main tool of [3]-[5] is the idea of partial eigenvectors.



In this thesis we find the largest eigenvalue of specific subsets of bipartite graphs
which have the same partite sets, vertex number and edge number under consideration
(see Theorem 2.2.1). In the last part, we list the the first largest eigenvalue to the
eleventh largest eigenvalue of bipartite graphs of order 2n.



2 The main results

2.1  Essential Lemmas

In order to prove our main results, the following lemmas are essential. For completen-
ess, we give a proof here.

Lemma2.1.1. If Gisa graph with largest eigenvalue .2, then there exists a unit

Proof. Let Y=[Y1,Y2,. yn]T be a unit eigenvector for 4, Define X =[X,...,X,]
by Xi=|Yil. Then yT A(G)y = 2 > x"A(G)x, by Lemma 1.2.1. From the

definition X; =|y; | we have yT" A(G)y <x.A(G)x, Sothat 1 =xT A(G)x. Hence, x
is an eigenvector for 4, by Lemma 1.2.1. n

Lemma 2.1.2. If His asubgraphiofG then 4(H) < 4, (G).

Proof. If H is a subgraph of G then there exists an induced subgraph I of G such that
V(H) =V (I). From Lemma 2.1.1 there exists a unit eigenvector X = [, Xz,..., X, ] "for
eigenvalue 4, (H)such that X; =20,v1<i<n, wheren=|V(H)|. Since H < I, and
X; 20,V1<i<n, we have

AH) =xTAH)X= T x-x;< % x-x;=x A(Ix
A(H)ij:]' A(I)ij

From Lemma 1.2.1 and Lemma 1.2.7, we have x" A()x< 4 (1) £ 4(G), sothat
A (H) < 41 (G). .

Furthermore, we compute the largest eigenvalue of the special type of bipartite graphs.
Let G(p,q,r,s,t) be the bipartite graph with partite sets U={uy,U,,....u,} and
V=Avy,V,,.., Vol and E(G(p,q,r,s,1)) ={(uj,vj)[1<i< pl< j<q})

t
U (Ui, V) [(k=Dr+1<i<kr,(k-1s+1< j<ks},
k=1
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where p,q,r,s,t arepositive integers,and tr < p,ts < g.

Theorem 2.1.3.  2,(G(p,q,r,s,t)) = \/%[( pq + rs — 2rst) +\/p2q2 —2pqrs —

4 pgrst +4pr32t+4qrzst +r2s2 —4r252t].

0 B . .
Proof. LetA= A(G(p,q,r,s,t)):{BT O} where B isa (0,1)-matrix such

that B; =1 ifandonly if (ui,vj)eE(G(p,q,r,s,t)), and A be the largest
eigenvalue of G(p,q,r,s,t). Note that
Bj =1 for 1<i<pts+1<j<q, and (1)

p p-r, if 1<j<ts,
ZBij={ (2)

i-1 P, otherwise .

From Lemma 2.1.1, there exists an eigenvector v =[x y] foreigenvalue ,; such
thatX; 20,y; 20 for 1<i< pl< j<q. Forthe jthcoordinate of Ax, and the
jth coordinate of Ay, we have

B
7 = (), = (AV); = ({BTVX}» =(B)i = > Bi ;. ©

By P ..
A=A pj=(AV)p,j = ([BTX}) p+i (8" X)j = _ZIB'J "X
i=

Hence, for ts+1< j<q Ay = _§1Bij L ﬁll.xi (by (1))
i= i=
~Tx
= (4)

g
Define w(x) = Exi and o(y) = _Zlyj, we compute
i=1 Ji=

i=1

p P q
Pa(x)= AT A = z(_zl_zlsij ¥;)  (by(@3))
= i=lj=
q p ts p q p
=X Y;XB)=A((Z y; 2Bj)+( X y;XBj))
=1 Ti=l =1 "i=l j=ts+1 "=l

=AYy (V@)

=ts+

=AYy 9y = o) - - £ y)

J:t5+
j=ts+
= A(p-Na(y)+rg-ts)ao(x), (by(4))

7
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Le. (27 - (rg - rst) o (x) = 4(p — )@(y).
By the similar steps, we have (22 —(sp —rst))w(y) = A(q —s)w(Xx). Hence,

(A% = (rq = rst))(4* = (sp = rst)) @(x)@(y) = A° (p - r)(q - S)@(X)@(Y). ()

claim: wo(x)o(y)=0.

Assume that @(x) =0. Then, Xj =0 for 1<i< p follows from X; =0 for
1<i<p. Sincefor 1< j<q, Yj isa linear combination of Xi,Xp, -, Xy (by
Theorem 1.2.13 (a) ), we have Y =0, for1< j<g. Hencey =[x y]T isa
zero vector which is a contradiction with to the fact that v is an eigenvector of
G(p,q,r,s,t), i.e., o(x) # 0. On the other hand w(y) = 0 by a similar way.
Therefore, o(X)w(y) # 0.

Since @(x)w(y) # 0, we have (1% — (rq — rst))(4% — (sp —rst)) = A (p—r)(q —s)
from (5), 50 (42)? — (pq + rs — 2rst)(4?) + rs(q — st)(p — rt) = 0. Hence

A= \/%[( pq + rs — 2rst) +\/(pq +rs—2rst)2 —4rs(q—st)(p—rt) = \/%[( pq + s —

2rst) + \/pzq2 —2pqgrs —4pgrst +4prszt +4qr25t +12s? —4r252t]. n

Lemma2.1.4. Let S={G|G is'bipartite with partite sets U ={u,U5,....us} and

V ={v1,V2,..vg}, |E(G) | =pgk,0=k=p=qgand d(u;)<d(up)<--<d(u,)}

and T={GeS|4(G)>A4(H),VH € S}. Then there exists a graph G T, such
that N(up) = N(up) =--- <= N(uy).

Proof. Let G; beagraphof T. FromLemma 2.1.1, there exists an unit

eigenvector V:[Xl Xp y, e yq]T for ﬂi(Gl) such that Xj >0, y] >0,
VI<i<pl<j<q So A4(Gy)=A4(Gy)-(vT -v) =v' (4 (Gy)v) =v' A(Gy)Vv
=2 » Xi Y j- We assume, without loss of generality, that Y1, Y,,-*,Yq are

(ui,vj)eE(Gl) . .
ordered in decreasing order , i.e., Y1 =Y =22 Yq. Let d; denote the degree of U;

of G;. Since ¥ 20,y;>0,v1<i<pl<j<q, we have
P d,
4(G)=2 X Xy <2[Xx-(X Yl (1)
(u;v)eE(G,) i=1 j=1
Let G be agraph of S, such that E(G) = _LpJ{(ui,Vj) |1<j<d;}
Note that N(u;) = N(up) =--- <= N(uy). =1
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From Lemma 1.2.1, we have
p d;
4G)=VTAGNV=2 T  x-y;=2[xx (2 Y] )
(u;.v;)eE(G) =1 j=1
SinceG; € T, we have 4,(G;) 2 4,(G), so

z[éxi -(jdzz'ly,- )12 4(Gy) =2 4(G) 2 2[§1xi -(jdzz'ly,- ), (by(1)and (2))

Sothat 44(G) = 4,(Gy), i.e.G isagraphof T suchthat N(u;) < N(u,) <
< N(up). [

We remark here that if S = {G | G is bipartite with partite sets U ={uy,U,,---,u,} and
V ={vi,vy,--.Vq} |E(G) |=pg-k 0=k=p=qand d(u;) <---<d(up)} and S' =
{G | G is bipartite with partite setsU ={u;,Up,---,up} and V ={vq,vy,---,v4}, | E(G)
|=pg-k O0=k=p=qgand N(u)<c---=N(u,)}. Lemma2.1.4says that the greate-
st largest eigenvalue of graphs of S is equal to the greatest largest eigenvalue of
graphs of §'. It is an important result teshelp us to prove the main theorem in the next
section.

2.2  Main Theorem

Theorem 2.2.1. Let S, 4.y ={ G| G is bipartite with partite sets X =
{uy - uandY={v; - vu} |[E(G)|=pg-k,0=k=p=q} Thenfor
each Hin Spqk)

ﬂl(H)S\/%[(pq—k)+\/p2q2 _6pak +4pk +4gk 2 — 3k 2],

Proof.

Let S ={ G| G is bipartite with partite sets X = {u; -+ UpJandY= {v; - V.}
|E(G)|=pg-k,0=k=p=qgand N(u) =---= N(u,)}. By the result of Lemma 2.1.4
we just prove that for each H in S,

Zl(H)s\/%[(pq—k)+\/p2q2—6qu +4pk +4gk2 —3k2].



Note that \/%[( pq —k) ++/p2q2 —6pak + 4 pk +4gk? —3k?] is the largest zero
of equation x* —(pg—k)x? +k(p—k)(q—1). Hence, vH S,A=2(H),

2 —(pq-Kk)A* +k(p-k)(@-1) <0 implies that

ﬂs\/%[(pq—k)+\/p2q2 —6pqk + 4pk + 4qk 2 — 3kZ].

So, we claimthat wvH e S, A =4, (H), 2* - (pg—k)A2 +k(p-k)(q—1) <0.

0 B
Given H €S. Let 4(H)=21#0, A(H)={BT O} and v=[x y]" bean

eigenvector for eigenvalue 4, where X; 20and y; =0, VI<i<pl<j<q.
Let s be the positive integer such that d(u;) <---<d(ug) <q, and d(Ugy)=---=
d(up) =g. From Theorem 1.2.13 (b), we have

2 = Exc IN@INN@O)T< S [N) w0, where () = x,

So, ﬂzzx <(Zd(u ))W(X) (gs — k)w(x): (1)
For s+1<i< p, AX; _ZB,, y, =W(y) (Jby.Theorem 1.2.13 (a) ), i.e.,
Xeg = - =Xy, where w(y)= _Zly,--

J:

Claim1: X; #0, Vs+1<i<p.

Suppose not. Then A4-0=w(y)." TFhis implies foreach jefl---,q}, y; =0.
From Theorem 1.2.13 (a), we have Ax; = Z B, -y, =0,vi. Thisisacontradiction,
since v is a nonzero vector.

For s+1<i< P,
22X, = Zxk INU))IN(,)|  (Theorem1.2.13 (b))

=z X IN(U, )nN(uk)|+_§+xk|N(u AN
Zé -d(uy)+ _Zs:+xk q
=kz AU +(@(p-9)X

e (2 -a(p-9) = x4 = 3x(a-0 = ETIDueg ey @)

So, (22 ~a(p-9) $x = (7 ~a(p-9)(p-spx = ENLIO= . )
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Claim2: (1> -q(p-s))=0
. S
For s+1<i<p, (2 -q(p-s))x = XX -d(ug)=0. So, (A2 -q(p-5))=0
k=L

follows from Claim1: X #0,Vs+1<i<p.
From Claim 2 and (1), we have

S 2 — — —
(lz_q(p_s))glxi NG q(plzs))(qs k)W(X)_ 3)

From (2) and (3), we have

[— f— f— 2_ f— —_
(12 —q(p - s)w(x) < & k)(qlzl)(p S w(x)+ q(pl:))(qs %) wix).

From claim 1, we have w(x) >0 . So,

(12 —q(p-s)) < B=K@=D(P=3) (4" -q(p-s))(as —k)

22 22
_(gs—K)(2® —p+s)
_ - ,
S0 2* —(pq-k)A? < (gs —k)(s =p) < (qk=k)(k=p) = k(g -D(k - p), i-e.
A4 —(pg-k)A% +k(q-1)(p - k) < 0, and Theorem 2.2.1 is proved. n

From Theorem 2.1.3, and Theorem 2.2.1,"we know that the largest eigenvalue of
G(p,q,k,11) is the greatest largest eigenvalue of graphs of S(p q:k)- Let

S(n:m) be the set defined as S (h.my ={ G| G is bipartite with [V(G)| = n and |E(G)| =
m }. What is the greatest largest eigenvalue of graphs of S .y ?  Unfortunately, it
may not have the general form as the description of Theorem 2.2.1. Next, we try to
resolve this problem.

Here, we consider the case [V(G)| = 2n and |E(G)| = n? -k. Note that,
Ny

S(2n;n27k) = aL—JO S(nfa,n+a;k7az)

Let @ =max{ 4;(G)|G € S ,,.4:_y)} and

a, =max{ 1,(G)|G € S(n—a,n+a;k—a2)}'

Then ¢ =max{ aa|03as\_\/ﬂ }.
From Theorem 2.2.1, we have

11



o, =\/%[(pq—l)+\/p2q2—6pql +apl+4ql2 —317],

wherep=n-a,q=n+aand |= k-a?.
By direction computation, we have

o - \/g[(nz 0+ [T @ whete 1, (@) + 42 6

+4(k—a?)(k—a? +)n+(k—a?)(-4a> +9a® + (4k —4)a—3K) + 4a*.

Define M, =max{a|a = a,} . Note that fnx)(@+1) — f( () =4[(2a+1)n’ +
22a+1)(a® +a—-k)n+(5a* +2a° + (1—6k)a? + k?)].

Lemma 2.2.2.
(1) Mpy=1
2 M, = \_\/EJ if n is large enough.

Proof.
(1) It follows from fni @ = ok (0) = 4(n—k)? >0.
(2) If aand k are fixed, then (@ 1) #1fgm0(8) =c,n° +c,n+¢; , where
¢, =8a+4>0.HenceM,, = |_\/H for large enough n. C

2.3 The Ordering of Bipartite Graphs w.r.t the

Largest Eigenvalue

Theorem 2.3.1. Let G be a bipartite graph with 2n vertices. Then 4,(G) <n, and
equality holds if and only if G = K, ;..

Proof. If G is a bipartite graph with 2n vertices, then G < K, forsomep +q=
2n,1< p<n. From Lemma 2.1.2 and Lemma 1.2.12, we have 4 (G) < 41(K4) =

Jpa. Sothat 4(G)<+/pa =p@n—-p) =y—(p-m2+n? <n=4(Knp) m

Excluding the bipartite graphs satisfying equality in Theorem 2.3.1 leads to the
following result.

Theorem 2.3.2. Let G be a bipartite graph with 2n vertices, where n > 2 and
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G # K, Then 4(G) <vn? -1, and equality holds if and only if G = Ky n.1-

Proof.  If G is a bipartite graph with 2n vertices, G=K_ ,,then G < G(n,n11])
or Gc Ky, forsomep+qg=2n,1<p<n-1. So

1 (G) < max{4(G(n,n111)), max{A (K, 4) | pP+g=2nl< p<n-1}}.

We compute max{4; (K, )| p+q=2nl<p<n-1}}

=max{,/pq | p+q=2n1<p<n-T}  (byLemma1212)

:max{\/—(p—n)2 +n? [1<p< n—1}}:\/—((n—1)—n)2 +n? :\/n2 -1,
and 4(G(n,n111))

- \/%[(nz 11-2)+n*—2n2—4n2 +4n+4n+1-4] (by Theorem 2.1.3)

:\/%[(nz ~1)++n* -6n2 +8n-3],

Since 4n?—-8n+4=4(n-1)% >0, wehave 4 (G(n,nL11)

:\/%[(n2 “1)++n*—6n +8n-3]

< \/%[(nz —1)+\/(n4 —6n% +8n—3)+(4n°=8n+4)]

- \/%[(nz “D+nt—2n? +1]= \/%[(nz =1+ (0% —1)] = n? -1

=max{4 (Kpq) | p+0=2n1< p<ip=23}7So that
2 (G) < max{4,(G(n,n,111)), max{4 (K ) [ P+q=2n1< p<n-1}}

=N n2 -1= Zi(Kn—l,nﬂ)-

Note that this result says that if G # K, , then 2,(G) <+/n? -1 <n, i, the equality
in the Theorem 2.3.1 holds if and only if G = K,,, . So, we complete the proof
Theorem 2.3.1. [

Theorem 2.3.3. Let G be a bipartite graph with 2n vertices, where n>3,G = K
a.nd G * Kn_]_’rH_]_- Then

21 (G) < \/%[(nz _1)++n* —6n? +8n—3], and equality holds if and only if G =

G(n,n111).

Proof.  If G is a bipartite graph with 2n vertices, G # K, , and G # K3 1,1, then

13



G cG(nnlll), or G G(n-1,n+1111) or G K,4 forsomep+q=2n,
1<p<n-2. So 4(G) < max{4,(G(n,n111)), 4, (G(n-1,n+1111)),
max{4; (Kpq) | P+d=2n1<p<n-2}}. Wecompute 4;(G(n,n111))

=\/%[(n2 “1)++/n*—6n2+81-3], and 4 (G(n-1n+1111)),

:\/%[(nz —2)+\/n4 —8n%+8n+4], (byTheorem2.1.3)

and max{4(K,q)lp+q=2nl< psn—2}:/11(Kn_2,n+2):\/n2—4.
For n>3, wehave2n? —7>0, andsn® +8n-52>0, SO

4 (G(N-1,n+1111) = \/%[(nz —2)++/n*—8n2 +8n+4]

< \/%[(n2 —2)+/(n* —8n2 +8n+4)+ (202 -7)]

=§/1[(n2 —2)+\/n4 —6n%2+8n-3], and
max{A4 (K q) | p+0a=2nl1< psn—2}=/11(Kn_2,n+2)=x/n2 -4

_ \/%[nz —1+/n% —14n2 4+ 49]

< \/%[nz ~1++/(n* 1407 + 49) + (8n* 80 ~52)]

:\/%[nz ~1++n*—6n2 +8n=3].

Hence 4;(G) < max{4;(G(n,n,111)), Ax(&(n=1 n+1111)), max{4 (K p.q) |

p+g=2n1<p<n-2}}= 4(G(n,nlll) :\/%[n2 —1+\/n4 —6n% +8n-3].

Note that this result says that if G # K, and G # K31, then 4(G) <

\/%[nz —1+\/n4 —6n2+8n-3] <Vn?-1, for n>2, ie., the equality in the

Theorem 2.3.2 holds if and only if G = K1 n11- So, we complete the proof Theorem

2.3.2. n

Theorem 2.3.4. Let G be a bipartite graph with 2n vertices, wheren >3, G = K, ,
G#Kpgnand G #G(n,nl11). Then

24 (G) < \/%[(nz —2)++n*—8n2+8n+4], and equality holds if and only if G =
G(n-1n+1111).
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Proof.  If G is a bipartite graph with 2n vertices, G # K, ,,G# K, 3,1 and
G #G(n,n11), then G < G(n,n,211) or G < G(n,n112) or
GcG(n-1,n+1111) or GcKpy forsomep+q=2nl1<p<n-2. So,
4 (G) < max{4(G(n,n,2,11)), 4(G(n,n112)), 4 (G(n-1Ln+1111))

max{4 (Kpq) I P+d=2nl<p<n-2}}= max{\/%[(n2 ~2)++/n* —12n? + 24n

—12], \/%[(nz ~3)++/n*—10n2 +16n-7, \/%[(nz ~2)+4n* —8n? +8n+4],

Vn? -4} = \/%[(nz—z)+\/n4—8n2+8n+4], for n>3.

Note that this result says that if G # K, ,,G # K, 1,1, and G = G(n,n111), then

4(G) s\/%[(n2 “2)+n* —8n2+8n+4] < \/%[nz ~1+/n*-6n2 +8n-3]
for n >3, i.e., the equality in the Theorem 2.3.3 holds if and only if G =G(n,n,111).

So, we complete the proof Theorem 2.3.3. n

Theorem 2.3.5. Let G be a bipartite graph with 2n.vertices, where n>3,G = K ,
G#Kpani G#G(n,nlll) “and G #G(n=1,n+1111). Then

21 (G) < \/%[(nz —2)++/n* —12n2 +'2an=12]7:and equality holds if and only if G =
G(n,n,2,11).

Proof. If G is a bipartite graph with 2n vertices, G # K, 1, G # K3 11,
G=G(nnlll) and G=G(h-1,n+1111), then G < G(n,n,211)
or GcG(n,nll2)or GcG(n-14,n+1211)or GcG(n-1,n+1121) or
GcG(n-1n+1112) or G K,y forsomep+q=2n1<p<n-2. So,
4 (G) < max{4,(G(n,n,211)), 4(G(n,n1L2)), 4 (G(n-1n+1211)),
H(G(h-1L,n+1121)), 4(G(n-1,n+1112)),
max{4 (K q) | P+d=2n1<p<n-2}}
From Theorem 2.2.1 we have 4,(G(n,n,2,11)) > 4 (G(n,n,1,1,2)),
AH(GMIh-4,n+1211) > 41(G(n-1,n+112]1)), and
AH(GM-4,n+1211)> 4 (G(nh-1,n+1112)). So
21 (G) < max{4,(G(n,n,211)), 4 (G(n-1,n+1,2,11)), max{A4 (K, 4)| p+q=2n,
1< p<n-2}}

_ max{\/%[(n2 _2)++/n% —12n% + 24n-12],
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\/%[(nz —3)+\/n4 —14n? +24n+9],\/n2 —4}

:\/%[(nz—2)+\/n4 —12n2+24n—12], for n>3.

Note that this result says that if G # K, ,,G # K ,_1 111, G # G(n,n,111) and
G=G(n-1,n+1111), then

1,(G) < \/%[(nz “2)+n*—12n? + 24n-12] < \/%[(nz ~2)+4n* —8n +8n+4]

for n >3, i.e., the equality in the Theorem 2.3.4 holds if and only if
G =G(n-1,n+1111). So, we complete the proof Theorem 2.3.4, m

Theorem 2.3.6. Let G be a bipartite graph with 2n vertices, where n>4,G = K, ,
G#Kpini, G#G(n,n1LY), G=G(n-Ln+1111) and G = G(n,n,211). Then

2 (G) < \/%[(nz —3)++/n* —10n2 +16n— 7], and equality holds if and only if G =
G(n,n,112).

Proof. If G is a bipartite graph with 2n vertices, G # K, ,,G # K1 n,1,

G#G(n,nlll),G=G(n-1,n+1111) and:G #G(n,n,2,11)), then

4 (G) £ max{4;,(G(n,n,311)):4 (G(n,nL12)), 4, (G(n—-1,n+1211)),
max{41 (K 4) | P+ q=2n1<p=<n= 2}} ( by Theorem 2.2.1)

= max{\/%[(n2 ~3)++/n* Z18n2+48n - 27],

\/%[(nz _3)++yn* —10n? +16n—7],\/%[(n2 —3)+n* —14n% + 24n + 9],

n2—4}

:\/%[(n2 —3)+\/n4 ~10n%2 +16n-7], for n > 4.

Note that this result says that if G # Ky n,G # Kp_q 1, G = G(n,n111),
G#G(h-L,n+1111) and G = G(n,n,211), then 4,(G) <

\/%[(nz ~3)+n*~10n2 +16n-7] < \/%[(nz ~2)++4n® —12n? + 24n-12]

for n >3, i.e., the equality in the Theorem 2.3.5 holds if and only if G =G(n,n,2,11).
So, we complete the proof Theorem 2.3.5. n

Theorem 2.3.7. Let G be a bipartite graph with 2n vertices, wheren > 6, G =K, ,
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G#Kygn1,G#G(n,n1L1),G=#G(n-1,n+1111),G # (n,n2L1) and G =
G(n,n,11,2). Then 4(G) < Vn? -4, and equality holds if and only if G = K_, n,».

Proof. If G is a bipartite graph with 2n vertices, G # K, ,,G # K},_1 n41,
G#Kngn1,G#G(N,n1L1),G=G(n-1,n+1111),G #(n,n2L1) and G =
G(n,n112), then 4;(G) < max{4;(G(n,n,3,11)), 4 (G(n-1,n+1211)),
max{41 (K, q) I P+q=2n1<p<n-2}} ( by Theorem 2.2.1)

= max{\/%[(n2 —3)+\/n4 —18n? + 48n - 271,

\/%[(n2—3)+\/n4—14n2+24n+9], Jn? —43
=vn%?—-4, for n > 6.

Note that this result says that if G # Kp,,G # Kn_q 1, G = G(n,n111),
G#G(h-L,n+1111),G #(n,n,211) and G = G(n,n11,2), then 4,(G) <

[h2_4 < \/%[(nz ~3)++/n*—10n% +16n-7],

for n >4, i.e., the equality in the Theorem 2.3.6 holds if and only if G =G(n,n,11,2).
So, we complete the proof Theorem 2.3.6. [~

Theorem 2.3.8. Let G be a bipartite graph with 2n vertices, where N2 6,G # K ,
G # K1 0:1,G # G(N,n111),G £ G (M= 1 n+1114),G # (n,n,211),G # G(n,n112)

a.nd G * Kn_27n+2- Then

2, (G) < \/%[(nz —3)++/n* —14n2 + 24n + 9], and equality holds if and only if G =

G(n-1,n+1211).

Proof. If G is a bipartite graph with 2n vertices, G # K, ,,G # K},_1 n41,

G # K1 n1,G #G(n,n111),G = G(n-1,n +1111),G # (n,n,211),G = G(n,n,L12)

and G # Kn—2,n+2' then

4 (G) <max{4(G(n,n,311)), 4(G(n-L,n+1211)), 4(G(h-2,n+2111)),
max{41(Kyq) I P+d=2n1<p<n-3}} (by Theorem2.2.1)

- max{\/%[(nz _3)++/n% —18n2 +48n-27],

\/%[(nz ~3)++/n* —14n? +24n+9],\/%[(n2 —5)++/n* ~14n? +8n +37],

\/n2—9}=\/%[(n2—3)+%4 —14n% +24n+9], for n > 6.
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Note that this result says that if G # K, ,,G # K, _1 1.1, G # G(n,n111),
G#G(n-1,n+1111),G # (n,n,211),G = G(n,n,11,2) and G # Ky_5 1,2, then

4 (G) < \/%[(nz ~3)+n* -14n? +24n+9] < /n? — 4,

for n> 6, i.e., the equality in the Theorem 2.3.7 holds if and only if G = K _5 .».
So, we complete the proof Theorem 2.3.7. n

Theorem 2.3.9. Let G be a bipartite graph with 2n vertices, where N >7,G = K, ,
G#Kygn1,G#G(n,n1L1),G=G(n-1,n+1111),G # (n,n,211),G # G(n,n,112),
G#Kpon2 and G=G(n-14,n+1211). Then

4L(G) < \/%[(nz -3) +\/n4 —14n? +24n —7], and equality holds if and only if G =
G(n-1Ln+1121).

Proof. If G is a bipartite graph with 2n vertices, G # K, ,,G # K},_1 h41,
G#Kpgn1,G#G(nnlL1,G#G(n-1,n+1111),G # (n,n,211),G = G(n,n112),
G# Ky on2 and G #G(n—1,n+1,211), then
M (G) £ max{4,(G(n,n,311)), 41({G(n-1,n+112]1)), 4(G(n-1,n+1112)),

L (G(n-2,n+2111), max{ (K 54) | p+g=2n1<p<n-3}}
(by Theorem 2.2.1)

_ max{\/%[(nz _3)+ A —T8n2 £ 48N —27],

\/%[(nz _3)+yn*—14n% +24n—-T7], \/%[(nz —_a)+n* —12n2 +16n+ 4],

\/%[(nz _5)+/n% —14n% +8n+37], Vn? -9}

:\/%[(nz—3)+\/n4 —14n2+24n—7], for n>7.

Note that this result says that if G # K, G # Ky n1, G = G(n,n111),
G=G(n-4,n+1111),G # (n,n,211),G = G(n,n,11,2),G # Kn-2.n+2 and

G=G(h-Ln+1211), then 4(G)<

\/%[(nz ~3)+n* ~14n? + 24n-7] < \/%[(nz _3)+n* —14n + 240+ 9],

for n>6, i.e., the equality in the Theorem 2.3.8 holds if and only if
G=G(n-1,n+1211). So, we complete the proof Theorem 2.3.8. n

Theorem 2.3.10. Let G be a bipartite graph with 2n vertices, where n =7,
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G#KnnG#Ky11:1,G#G(n,n1L1),G=G(n-1,n+1111),G # (n,n,2,11),
G+ G(n! n,1,1,2),G # Kn—2,n+ZlG # G(n -1n +1721111) and G # G(n -1n +1,1,2,1).

Then 4,(G) < \/%[(nz _4) ++/n* —12n2 +16n + 4], and equality holds if and only if

G= G(n-1n+1112).

Proof. If G is a bipartite graph with 2n vertices, G # K, ,,G # K},_1 n,1,

G#Kpgn1,G#G(nnlL1,G#G(n-1,n+1111),G # (n,n,211),G = G(n,n112),

G#Kpon2,6#G(n-1n+1211) and G #G(n—1,n+1122), then

M (G) < max{4(G(n,n,311)), 41 (G(n-1L,n+1112)), 4(G(h-2,n+2111)),
max{4 (K, q) I P+a=2n1<p<n-3}}  (by Theorem2.2.1)

= max{\/%[(n2 —3)+\/n4 —18n2 + 48n - 271,

\/%[(nz —4)++n* —12n? +16n+ 4], \/%[(nz ~5)++/n* —14n2 +8n +37],
Vn? -9}

:\/%[(n2_4)+Jn4 —12n2+16n+4], for. n> 7.

Note that this result says that if:6 #Kpn, G # Ky 1 q01, G = G(n,n,111),
G #G(n-1n+1111),G # (0, m211),G# 6N 112),G = Ky 54z,

G=G(n-Ln+1211) and G = G(nh=1,n+1121), then 4;(G) <

\/%[(nz —4)++n* —12n% +16n+ 4] < \/%[(nz ~3)+yn*-14n2 + 24n-7],

for n>7,i.e., the equality in the Theorem 2.3.9 holds if and only if
G=G(n-1,n+1121). So,we complete the proof Theorem 2.3.9. n

Theorem 2.3.11. Let G be a bipartite graph with 2n vertices, wheren > 7,G = K, ,
G#Kngn1,G#G6G(n,n1L1),G=G(n-1,n+1111),G # (n,n,211),G # G(n,n,112),
G#Kpon2,G#6G(n-1n+1211),G=G(n-1,n+1121) and G=G(n—-Ln+1],

1,2). Then 4(G) < \/%[(nz ~3)++/n* —18n2 1 48n - 27] = 4, (G(n,n,311)).

Proof. If G is a bipartite graph with 2n vertices, G # K, ,,G # K},_1 n41,

G # Kp1n,1,G % G(n,n111),G = G(n-1,n +1111),G # (n,n,211),G = G(n,n,11,2),
G#Kyon2,626(N-4,n+1211),G=G(n-L,n+1121) and G #
G(n-1L,n+1112), then 4, (G) < max{4(G(n,n,311)), 4 (G(n—-1,n+1311)),
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L (G(n-2,n+2111)), max{A4 (K, q4) [ P+0d=2n1<p<n-3}}
(by Theorem 2.2.1)

_ max{\/%[(nz _3)++/n* —18n2 +48n—27],

1
\/E[(n2 _4)++/n% —16n2 + 48n +16], \/%[(nz _5)+4/n% —14n2 +8n+37],

Vn? -9}= \/%[(nz —3)+\/n4—18n2 +48n-27],for n> 7.

Note that this result says that if G # K5, G # K11, G = G(n,n111),
G = G(n-1,n+1111),G # (n,n,211),G = G(N,1112),G £ Ky s n12: G =

G(n-4L,n+1211),6=#G(n-L,n+112]1) and G =G(n-1,n+1112), then 4(G)<

_ \/%[(nz ~3)+/n* —18n? + 48n - 27] < \/%[(nz —4)++n* —12n? +16n + 4],

for n>7,i.e., the equality in the Theorem 2.3.10 holds if and only if
G=G(n-1,n+1112). So, we complete the proof Theorem 2.3.10. m

Through a detail calculation, we are able to.find an‘upper bound for the largest eigen-
values of certain bipartite graphs.  Clearly,-as shown: in this thesis, these bounds are
in fact sharp bounds. But, at this moment:we are not able to find a more general ex-
picit form for the upper bounds of the largesteigenvalues of general bipartite grap-
hs, it is even harder when a general'graph is considered. It will be very useful if we
can also determine the second largest eigenvalues of certain bipartite graphs in the
near future.
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