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摘要 

大多數關於雙環式網路之L-型的結果均以四個參數 l, h, p, n來描

述，但是這些參數在L-型為退化時，並不well-defined。首先，鄭與

黃提出了一個很有效率的演算法來得出雙環式網路的L-型的四個參

數，他們的演算法不論L-型是否退化均可執行。之後，陳與黃給了一

套規則來定義退化的L-型的四個參數。很不幸的，用上述兩種方法所

決定的 l, h, p, n未必一致。在這篇論文中，我們試著了解上述兩

種方法所決定的 l, h, p, n所代表的意義及它們之間的關係。 
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On Degenerate Double-Loop L-Shapes
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Abstract

Most of the results about the L-shapes of double-loop networks are given in
terms of the four parameters `, h, p, n. But these parameters are not well defined
in the degenerate case. Recently, Cheng and Hwang gave an efficient algorithm
to compute the four parameters `, h, p, n of an L-shape which works for both the
regular and the degenerate cases. On the other hand, Chen and Hwang gave a set
of rules to determine the four parameters of a degenerate L-shape. Unfortunately,
the solutions given by the above two methods do not always coincide. In this
thesis, we try to understand their respective meanings and their relations.

Keywords: Double-loop network, L-shape, degenerate.
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1 Introduction

The double-loop network has been well studied (see [7] for a recent survey) as the topology

for a communication network or computer network. For example, SONET (synchronous

optical network) is a double-loop network. Formally, a double-loop network DL(N ; a, b) has

N nodes 0, 1, · · · , N − 1 and 2N links, i → i + a, i → i + b (mod N), i = 0, 1, · · · , N − 1.

We assume that the weight of each of the 2N links is 1 and assume that gcd(N, a, b) = 1 so

that the network is strongly connected.

The minimum distance diagram (MDD) of DL(N ; a, b) is a diagram with node 0 in cell

(0, 0), and node v in cell (i, j) if and only if ia+ jb ≡ v (mod N) and i+ j is the minimum

among all (i′, j′) satisfying the congruence. Namely, a shortest path from 0 to v is through

taking i a-links and j b-links (in any order). Note that in a cell (i, j), i is the column index

and j is the row index. An MDD includes every node exactly once (in case of two shortest

paths, the convention is to choose the cell with the smaller row index, i.e., the smaller j).

Since DL(N ; a, b) is clearly node-symmetric, there is no loss of generality in assuming: node

0 is the origin of a path.

Wong and Coppersmith (WC) [9] proved that the MDD of DL(N ; a, b) (their proof

for DL(N ; 1, h) is easily extended to the general case) is always an L-shape which can be

characterized by four parameters `, h, p, n (see Fig. 1 (a)). These four parameters are the

lengths of four of the six segments on the boundary of the L-shape. Clearly,

N = `h− pn.

In [2], Chen and Hwang showed that necessarily ` > n and h ≥ p. Fig. 1 (b) illustrates an

MDD with a regular L-shape. Fig. 1 (c) illustrates one with an L-shape degenerate into a

rectangle.

Most of the results about the L-shape are given in terms of the four parameters `, h, p, n.

But these parameters are not well defined in the degenerate case. Recently, Cheng and

Hwang [5] gave an O(log N)-time algorithm to compute the four parameters `, h, p, n of an
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Figure 1: Minimum distance diagrams and L-shapes.

L-shape which works for both the regular and the degenerate cases. On the other hand, Chen

and Hwang [3] gave a set of rules to determine the four parameters of a degenerate L-shape.

Unfortunately, the solutions given by the above two methods do not always coincide. In this

thesis, we try to understand their respective meanings and their relations. Since it is also

of interest to know when will an L-shape degenerate, in this thesis we give necessary and

sufficient conditions depending on N , a, and b only.

2 Necessary and sufficient conditions for degenerate

L-shapes

The following five notations will be used throughout this thesis:

d = gcd(N, a), d′ = gcd(N, b), N ′ = N/d, a′ = a/d, and b′ = b mod N ′. (2.1)

Since gcd(N, a, b) = 1, clearly gcd(d, d′) = 1. Chen and Hwang [3] proved

Lemma 1 [3] A degenerate L-shape of height h and width ` satisfies one of the following

three conditions:

(1) hb 6≡ `a ≡ 0 (mod N).

(2) `a 6≡ hb ≡ 0 (mod N).

(3) `a ≡ hb ≡ 0 (mod N).

We now prove
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Theorem 2 The L-shape of DL(N ; a, b) is degenerate if and only if one of the following

three conditions holds:

(C1) d > 1 and there exists 1 ≤ i ≤ min{d, N
d
− 1} such that db ≡ ia (mod N).

(C2) d′ > 1 and there exists 1 ≤ j ≤ min{d′ − 1, N
d′ − 1} such that d′a ≡ jb (mod N).

(C3) d > 1, d′ > 1 and d′a ≡ db ≡ 0 (mod N).

Moreover, (C1) ⇔ (1), (C2) ⇔ (2) and (C3) ⇔ (3). Also, if (C1) holds, then the degenerate

L-shape is of height d and width N/d; if (C2) holds, then the degenerate L-shape is of height

N/d′ and width d′; if (C3) holds, then the degenerate L-shape is of height d and width d′.

Proof. Necessity. Suppose the L-shape is degenerate and is a rectangle of height h and

width `. Then by Lemma 1, it satisfies (1) or (2) or (3). We first prove two claims.

Claim 1. If `a ≡ 0 (mod N), then h = d, ` = N/d and d > 1.

Proof of Claim 1. Let a = αd for some integer α. Note that the L-shape being degenerate

implies N = `h. Thus `a ≡ 0 (mod N) implies a ≡ 0 (mod h). Let a = βh for some

integer β. Then a = αd = βh. Hence d = βh
α

. Since 1 = gcd(α, N
d
) = gcd(α, `h

βh
α

) =

gcd(α, `α
β

), necessarily α|β. Therefore β
α

is an integer. Since d|N , we have β
α
|`. Suppose

β
α

> 1. Let `′ = `
β
α

. Then `′ < ` and `′a = `
β
α

βh = `hα = Nα ≡ 0 (mod N). Then

row 0 of the L-shape will contain two entries of 0, one at cell (0,0) and the other at cell

(`′, 0), a contradiction to the definition of an L-shape (recall that an MDD includes every

node exactly once). Therefore β
α

= 1. Consequently, h = d and ` = N/d. Since ` < N and

`d = N , clearly d > 1.

Claim 2. If the L-shape is degenerate and hb ≡ 0 (mod N), then h = N/d′, ` = d′ and

d′ > 1.

Proof of Claim 2. Since this proof is similar to that of Claim 1, we omit it.

We now prove the necessity of this theorem. First, assume the L-shape satisfies condition
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(1). By Claim 1, we have d > 1, h = d and ` = N/d. By the definition of an MDD, hb is the

first element in column 0 satisfying

hb ≡ ia + jb (mod N) with i + j ≤ h, i ≥ 0, j ≥ 0.

Therefore j = 0 for otherwise (h− j)b would be the first element. Also, i ≥ 1 for otherwise

hb ≡ 0 (mod N). Thus db = hb ≡ ia (mod N) for 1 ≤ i ≤ d. Since ` = N/d, we have

i ≤ N
d
− 1. We conclude db ≡ ia (mod N) for 1 ≤ i ≤ min{d, N

d
− 1}, which means (C1)

holds. The above discussion also shows that (1) implies (C1), i.e., (1) ⇒ (C1).

Next, assume the L-shape satisfies condition (2). Then the argument is similar except at

the end we have

`a ≡ ia + jb (mod N) with i + j < `, i ≥ 0, j ≥ 0.

The reason for the strict inequality that i + j < ` is by our construction on tie-breaking in

defining the MDD. Thus (C2) holds. So (2) ⇒ (C2).

Finally, assume the L-shape satisfies condition (3). By Claim 1, we have d > 1, h = d

and ` = N/d. By Claim 2, we have d′ > 1, h = N/d′ and ` = d′. Thus d′a = `a ≡ 0

(mod N) and db = hb ≡ 0 (mod N), which means (C3) holds. So (3) ⇒ (C3).

Sufficiency. Let the L-shape of DL(N ; a, b) be (`, h, p, n). First, assume that (C1) is

satisfied. Since db ≡ ia (mod N) for 1 ≤ i ≤ min{d, N
d
− 1}, we have h ≤ d. On the other

hand, ` ≤ N/d since (N/d)a = N(a/d) ≡ 0 (mod N). Therefore

N = `h− pn ≤ `h ≤ (N/d)d = N.

Necessarily,

` = N/d, h = d.

It follows

`h = N,

i.e., the L-shape is degenerate. Moreover, `a = (N/d)a = N(a/d) ≡ 0 (mod N); hb = db ≡
ia 6≡ 0 (mod N) since 1 ≤ i ≤ `− 1. So (C1) ⇒ (1).
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The proof of (C2) is similar to that of (C1). Finally, assume that (C3) is satisfied. Then

since d′a ≡ db ≡ 0 (mod N), we have ` ≤ d′ and h ≤ d. Since d|N , d′|N and gcd(d, d′) = 1,

we have d′d ≤ N . Therefore

N = `h− pn ≤ `h ≤ d′d ≤ N.

Necessarily,

` = d′, h = d.

It follows

`h = N,

i.e., the L-shape is degenerate. Moreover, `a = d′a ≡ 0 (mod N); hb = db ≡ 0 (mod N).

So (C3) ⇒ (3).

Remarks. From the proof of Theorem 2, when an L-shape(`, h, p, n) degenerates into a

rectangle, it is reasonable to set ` to the width and h to the height of the rectangle. Moreover,

it is reasonable to set p = 0 or n = 0 since N = `h− pn and `h = N hold simultaneously.

3 Strongly isomorphic double-loop networks and de-

generate L-shapes

The following property was proved in [1].

Lemma 3 [1] If α and β are integers, not both zero, then there exist integers x and y such

that yα + xβ = gcd(α, β) and gcd(x, gcd(α, β)) = 1.

Let DL(N ; a, b) be a double-loop network. Then

Lemma 4 There exists an integer x such that gcd(x,N) = 1 and ax ≡ d (mod N).

Proof. Since gcd(N, a) = d, by Lemma 3, there exist integers x and y such that yN +xa =

d and gcd(x, d) = 1. Hence ax ≡ d (mod N). Moreover, y(N/d) + x(a/d) = 1 implies

gcd(x,N/d) = 1. It follows that gcd(x,N) = gcd(x, (N/d)d) = 1. Hence the lemma.
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Two double-loop networks DL(N ; a, b) and DL(N ; a′, b′) are strongly isomorphic if there

exists a z prime to N such that a′ ≡ az, b′ ≡ bz (mod N) or a′ ≡ bz, b′ ≡ az (mod N)

[8]. It is well known that two strongly isomorphic double-loop networks realize the same

L-shape. The following property greatly simplifies the proofs in the remaining sections.

Theorem 5 Let x be an integer such that gcd(x,N) = 1 and ax ≡ d (mod N). Let b′′ = bx

(mod N). Then DL(N ; a, b) and DL(N ; d, b′′) are strongly isomorphic.

Proof. This theorem follows from Lemma 4.

In the following, we characterize a degenerate L-shape by the four independent parameters

`, h, p, n. Set

m = `− p, q = h− n

for convenience; see Fig. 2(a). Then

Lemma 6 For a degenerate L-shape, at least one of m,n, p, q is zero and at most two of

m,n, p, q are zero. Moreover, it is impossible that both m and p, both n and q, or both m

and q are zero.

Proof. It is obvious that at least one of m,n, p, q is zero. Since ` = m + p and h = n + q,

if more than two of m, n, p, q are zero, then ` = 0 or h = 0 will happen, which is impossible.

Suppose two of m,n, p, q are zero. If both m and p (n and q) are zero, then ` = m + p = 0

(h = n + q = 0), which is impossible. If both m and q are zero, then ` = p, h = n, and then

N = `h− pn = 0, which is also impossible. Hence the lemma.

Corollary 7 There are only seven possible ways to view a degenerate L-shape. We define

these shapes by identifying the parameters which are set to zero: (S1): only m = 0, (S2):

only n = 0, (S3): only p = 0, (S4): only q = 0, (S5): m = 0 and n = 0, (S6): p = 0 and

q = 0, (S7): n = 0 and p = 0.
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h

`

p
n
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q

(a)

m = ε

(S1)

n = ε

(S2)

p = ε

(S3)

q = ε

(S4)

m = ε, n = ε

(S5)

p = ε, q = ε

(S6)

n = ε, p = ε

(S7)

Figure 2: The ways to degenerate an L-shape.

By Corollary 7, there are seven ways to view a degenerate L-shape as the product of a

limiting process operated on a regular L-shape. Fig. 2 (S2), (S3), (S5), (S6) and (S7) show

five processes of shrinking a subrectangle with a side (or two sides) of length approaching

zero; Fig. 2 (S1) and (S4) show two processes of cutting off a subrectangle with a side of

length approaching ` or h. When ε = 0, they all represent the same rectangle. But the

different underlying process can induce different values of (`, h, p, n).

Fiol, Yebra, Alegre, and Valero [6] pointed out that an L-shape, regular or degenerate,

always tessellates the plane. Then (`,−n) and (−p, h) are simply two independent vectors

characterizing the distribution of the nodes labelled by 0 (will be referred to as the 0-nodes)

as seen by the equations:

`a − nb ≡ 0 (mod N)

−pa + hb ≡ 0 (mod N).
(3.2)
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Note that (`,−n) is a vector in the fourth quadrant, and (−p, h) one in the second. But

there are other choices of two independent vectors.

4 Cheng-Hwang’s algorithm

Cheng and Hwang [5] gave an algorithm (CH-ALGO in short) to solve for (`, h, p, n) for

DL(N ; a, b). The algorithm works regardless whether the L-shape is regular or not and the

obtained (`, h, p, n) satisfy the basic congruence equations in (3.2). For completeness, we give

a brief review of this algorithm (note that the weight of each link in the given double-loop

network is assumed to be 1).

CHENG-HWANG-ALGORITHM.

Input: DL(N ; a, b).

Output: (`, h, p, n) of the L-shape of DL(N ; a, b).

Let d, d′, N ′, a′ and b′ be defined as in (2.1).

Let s0 be the integer with

a′s0 + b′ ≡ 0 (mod N ′), 0 ≤ s0 < N ′.

Let s−1 = N ′ and define qi, si, recursively (by the Euclidean algorithm) as follows:

s−1 = q1s0 + s1, 0 ≤ s1 < s0

s0 = q2s1 + s2, 0 ≤ s2 < s1

s1 = q3s2 + s3, 0 ≤ s3 < s2

· · ·
sk−2 = qksk−1 + sk, 0 ≤ sk < sk−1

sk−1 = qk+1sk, 0 = sk+1 < sk.

(4.3)

Define integers Ui by U−1 = 0, U0 = 1, and

Ui+1 = qi+1Ui + Ui−1, i = 0, 1, · · · , k. (4.4)

By induction,

siUi+1 + si+1Ui = N ′, i = 0, 1, · · · , k. (4.5)

8



Regard s−1/U−1 = ∞ > x for real number x. Since {si}k+1
i=−1 and {Ui}k+1

i=−1 are strictly

decreasing and increasing, respectively, we have

0 =
sk+1

Uk+1

<
sk

Uk

< · · · < s0

U0

<
s−1

U−1

= ∞.

Let u be the largest odd integer such that d < su

Uu
. Define

v =

⌈
su − dUu

su+1 + dUu+1

⌉
− 1.

Let

`′ = su − vsu+1, h′ = Uu + (v + 1)Uu+1, p′ = su − (v + 1)su+1, n′ = Uu + vUu+1.

Then

(`, h, p, n) = (`′, dh′, p′, dn′).

End-of-CHENG-HWANG-ALGORITHM.

Now we characterize the (`, h, p, n) obtained by CH-ALGO when DL(N ; a, b) has a de-

generate L-shape. By Theorem 5, it suffices to consider the case that a|N . Since a|N ,

CH-ALGO derives

d = a, d′ = gcd(N, b), N ′ = N/d = N/a, a′ = 1, b′ = b mod N ′, s−1 = N ′.

So we have

Lemma 8 si ≡ (−1)iUis0 (mod N ′) for 1 ≤ i ≤ k + 1.

Proof. By (4.3) and (4.4), s1 = s−1−q1s0 = N ′−U1s0, s2 = s0−q2s1 = s0−q2(N
′−U1s0) =

−q2N
′+(1+q2U1)s0 = −q2N

′+U2s0. Thus s1 ≡ (−1)1U1s0 (mod N ′) and s2 ≡ (−1)2U2s0

(mod N ′). We prove the general case by induction on i. Assume this lemma holds for i ≤ t.

By (4.3), st+1 = st−1 − qt+1st. By (4.4), Ut+1 = Ut−1 + qt+1Ut. Thus by induction,

st+1 ≡ (−1)t−1Ut−1s0 − qt+1(−1)tUts0 (mod N ′).

Since (−1)t−1Ut−1s0 − qt+1(−1)tUts0 = (−1)t+1(Ut−1 + qt+1Ut)s0 = (−1)t+1Ut+1s0, we have

st+1 ≡ (−1)t+1Ut+1s0 (mod N ′). Hence the lemma.

9



Theorem 9 If DL(N ; a, b) satisfies

(C1), then CH-ALGO derives an L-shape of shape (S2) with (`, h, p, n) = (N ′, d, i, 0);

(C2), then CH-ALGO derives an L-shape of shape

(S1) with (`, h, p, n) = (d′, j +
⌈

d′−j
N
d′

⌉
N
d′ , d

′, j + (
⌈

d′−j
N
d′

⌉
− 1)N

d′ ) if j < N
2d′ ;

(S3) with (`, h, p, n) = (d′, N
d′ , 0, j) if j ≥ N

2d′ ;

(C3), then CH-ALGO derives an L-shape of shape

(S1) with (`, h, p, n) = (d′,
⌈

d′
d

⌉
d, d′, (

⌈
d′
d

⌉− 1)d) if d < d′;

(S5) with (`, h, p, n) = (d′, d, d′, 0) if d > d′.

Proof. First suppose DL(N ; a, b) satisfies (C1). Then there exists 1 ≤ i ≤ min {d,N ′−1}
such that db ≡ ia (mod N). Since a = d, we have b ≡ i (mod N ′). Since b′ = b

(mod N ′) and 1 ≤ i ≤ N ′ − 1, it follows that

b′ = i.

Since a′s0 + b′ = s0 + b′ ≡ 0 (mod N ′) and 0 ≤ s0 < N ′,

s0 = N ′ − b′.

By (4.4), U1 = q1. By (4.3), s−1 = q1s0 + s1 and q1 ≥ 1. So

s1

U1

=
s1

q1

=
s−1

q1

− s0 = N ′(
1

q1

− 1) + b′ ≤ b′ = i ≤ d.

Therefore u = −1. Since b′ = i ≤ d, we have N ′ ≤ (N ′ − b′) + d; therefore
⌈

N ′
(N ′−b′)+d

⌉
= 1.

Thus v =
⌈

s−1−dU−1

s0+dU0

⌉
− 1 =

⌈
N ′

(N ′−b′)+d

⌉
− 1 = 0. Hence m = s0 = N ′ − b′ > 0, n =

d(U−1 + vU0) = 0, p = s−1 − (v + 1)s0 = b′ = i > 0, q = dU0 = d > 0. Thus the L-shape is

of shape (S2) and

(`, h, p, n) = (N ′, d, i, 0).

Now suppose DL(N ; a, b) satisfies (C2). Then DL(N ; a, b) does not satisfy (C3). Hence

N > dd′. Assume that

N = dd′N ′′.
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Then N ′′ > 1. By Theorem 2, there exists 1 ≤ j ≤ min {d′ − 1, N/d′ − 1} such that

d′a ≡ jb (mod N). Since d = a, we have d′d ≡ jb (mod N). Since gcd(N, b) = d′ and

N = dd′N ′′, it follows that d|j. Let j = dj′. Then d′d ≡ dj′b (mod dN ′), which implies

d′ ≡ j′b (mod N ′). Thus

d′ ≡ j′b′ (mod N ′).

Since gcd(N ′, b′) = gcd(N ′, b) = gcd(N, b) and gcd(N, b) = d′,

gcd(N ′, b′) = d′.

Since a′s0 + b′ = s0 + b′ ≡ 0 (mod N ′) and 0 ≤ s0 < N ′,

s0 = N ′ − b′.

Since sk = gcd(s−1, s0) = gcd(N ′, N ′ − b′) = gcd(N ′, b′),

sk = d′.

By (4.5), skUk+1 + sk+1Uk = N ′. Since sk = d′ and sk+1 = 0, it follows that d′Uk+1 = d′N ′′.

Thus

Uk+1 = N ′′.

By Lemma 8, sk ≡ (−1)kUks0 ≡ (−1)kUk(N
′ − b′) ≡ (−1)k+1Ukb

′ (mod N ′). Since k is

either odd or even, there are two cases:

Case 1. k is odd.

Then sk ≡ Ukb
′ (mod N ′). Since sk = d′ ≡ j′b′ (mod N ′), we have Ukb

′ ≡ j′b′ (mod N ′).

Thus

(Uk − j′)b′ ≡ 0 (mod N ′).

Since Uk < Uk+1 and Uk+1 = N ′′, we therefore have Uk < N ′′. Since j < N/d′, we then have

j′ < N ′′. Since (Uk − j′)b′ ≡ 0 (mod N ′), gcd(N ′, b′) = d′, Uk < N ′′ and j′ < N ′′, it follows

that

Uk = j′.

11



Then sk

Uk
= d′

j′ > d. Hence u = k. Since dUk = dj′ = j and dUk+1 = dN ′′ = N
d′ ,

v + 1 =

⌈
sk − dUk

sk+1 + dUk+1

⌉
=

⌈
d′ − j

N
d′

⌉
.

Thus m = sk+1 = 0, n = d(j′ + vN ′′) = j + vN
d′ > 0, p = sk − (v + 1)sk+1 = d′ > 0, q =

dUk+1 = N
d′ > 0. So the L-shape is of shape (S1) and

(`, h, p, n) = (d′, j +

⌈
d′ − j

N
d′

⌉
N

d′
, d′, j + (

⌈
d′ − j

N
d′

⌉
− 1)

N

d′
).

Since k is odd and {Ui}k+1
i=−1 are strictly increasing, we clearly have Uk−1 ≥ 1. Since qk+1 ≥ 2,

by (4.4),

j = dj′ = dUk = d
(Uk+1 − Uk−1)

qk+1

< d
Uk+1

2
= d

N ′′

2
=

N

2d′
.

Case 2. k is even.

Then sk ≡ −Ukb
′ (mod N ′). Since sk = d′ ≡ j′b′ (mod N ′), we have −Ukb

′ ≡ j′b′

(mod N ′). Thus

(Uk + j′)b′ ≡ 0 (mod N ′).

Since Uk < Uk+1 and Uk+1 = N ′′, we therefore have Uk < N ′′. Since j < N/d′, we then have

j′ < N ′′. Since (Uk + j′)b′ ≡ 0 (mod N ′), gcd(N ′, b′) = d′, Uk < N ′′ and j′ < N ′′, it follows

that

Uk = N ′′ − j′.

By (4.3), (4.4) and by the fact that qk+1 ≥ 2 and d′ > j,

sk−1 − dUk−1 = qk+1sk − d(Uk+1 − qk+1Uk)

= qk+1d
′ − d(N ′′ − qk+1(N

′′ − j′))

= qk+1(d
′ +

N

d′
− j)− N

d′
> 0.

In other words, sk−1

Uk−1
> d. Hence u = k − 1. Since dUk = d(N ′′ − j′) = N

d′ − j,

v + 1 =

⌈
sk−1 − dUk−1

sk + dUk

⌉
=

⌈
qk+1(d

′ + N
d′ − j)− N

d′

d′ + N
d′ − j

⌉
=

⌈
qk+1 −

N
d′

d′ + N
d′ − j

⌉
= qk+1.
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Thus m = sk = d′ > 0, n = d(Uk−1 + (qk+1 − 1)Uk) = d(Uk+1 − Uk) = d(N ′′ − (N ′′ − j′)) =

j > 0, p = sk−1 − qk+1sk = sk+1 = 0, q = dUk = N
d′ − j > 0. So the L-shape is of shape (S3)

and

(`, h, p, n) = (d′,
N

d′
, 0, j).

Note that since Uk−1 ≥ 0 and qk+1 ≥ 2,

j = dj′ = d(N ′′ − Uk) =
N

d′
− d

(Uk+1 − Uk−1)

qk+1

≥ N

d′
− d

N ′′

2
≥ N

d′
− N

2d′
=

N

2d′
.

Note that when k is even, we have j ≥ N
2d′ . This implies that if j < N

2d′ , then k is odd, which

means Case 1 occurs. Therefore CH-ALGO derives an L-shape of shape (S1) if j < N
2d′ and

an L-shape of shape (S3) if j ≥ N
2d′ .

Finally, suppose DL(N ; a, b) satisfies (C3). By Theorem 2, N = dd′; thus N ′ = d′. Since

db ≡ 0 (mod N), we have b ≡ 0 (mod N ′). Since b′ = b mod N ′, it follows that b′ = 0.

Therefore s0 = 0 and

s0

U0

=
0

1
< d.

Hence u = −1 and v =
⌈

N ′
d

⌉− 1 =
⌈

d′
d

⌉− 1. Since d 6= d′, there are two cases:

Case 1. d < d′.

Then v > 0. So m = s0 = 0, n = d(U−1 + vU0) = dv > 0, p = s−1 − s0 = d′ > 0, q = dU0 =

d > 0. Thus the L-shape is of shape (S1) with

(`, h, p, n) = (d′,
⌈

d′

d

⌉
d, d′, (

⌈
d′

d

⌉
− 1)d).

Case 2. d > d′.

Then v = 0. So m = s0 = 0, n = d(U−1 + vU0) = 0, p = s−1 − s0 = N ′ − 0 = d′ > 0, q =

dU0 = d > 0. Thus the L-shape is of shape (S5) with

(`, h, p, n) = (d′, d, d′, 0).
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5 Chen-Hwang’s rule

Chen and Hwang [3] gave a set of rules (CH-RULE in short) to determine the parameters

`, h, p, n for a degenerate L-shape. Their rules always set ` to the width and h to the height

of the degenerate L-shape. We now briefly describe their rules.

CHEN-HWANG-RULE.

(i) Suppose hb 6≡ `a ≡ 0 (mod N). Let the zero immediately above the L-shape occurs at

column j. Then

p = `− j, n = 0.

(ii) Suppose `a 6≡ hb ≡ 0 (mod N). Let the zero immediately to the right of the L-shape

occurs at row i. Then

p = 0, n = h− i.

(iii) Suppose `a ≡ hb ≡ 0 (mod N). If h > `, follow rule (i); otherwise, follow rule (ii).

End-of-CHEN-HWANG-RULE.

The `, h, p, n chosen by CH-RULE satisfy the basic congruence equations in (3.2). Fig. 3

illustrates these rules.

0 3 6 9 12

7 10 13 1 4

14 2 5 8 11

0

0

(`, h, p, n) = (5, 3, 2, 0)

(a) rule (i)

0 4 8 12 1

5 9 13 2 6

10 14 3 7 11 0

0

(`, h, p, n) = (5, 3, 0, 1)

(b) rule (ii)

0 3 6 9 12 0

5 8 11 14 2

10 13 1 4 7

0

(`, h, p, n) = (5, 3, 0, 3)

(c) rule (iii)

Figure 3: The (`, h, p, n) determined by CH-RULE.

W now characterize the (`, h, p, n) obtained by CH-RULE when DL(N ; a, b) has a de-

generate L-shape.
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Theorem 10 If DL(N ; a, b) satisfies

(C1), then CH-RULE derives an L-shape of shape (S2) with (`, h, p, n) = (N ′, d, i, 0);

(C2), then CH-RULE derives an L-shape of shape (S3) with (`, h, p, n) = (d′, N
d′ , 0, j);

(C3), then CH-RULE derives an L-shape of shape

(S6) with (`, h, p, n) = (d′, d, 0, d) if d < d′;

(S5) with (`, h, p, n) = (d′, d, d′, 0) if d > d′.

Proof. First, suppose DL(N ; a, b) satisfies (C1). Then there exists 1 ≤ i ≤ min{d,N ′−1}
such that db ≡ ia (mod N). By Theorem 2, ` = N ′, h = d; also, (C1)⇒ (1). So hb 6≡ `a ≡ 0

(mod N). Let the zero immediately above the L-shape occurs at column j. Since `a ≡ 0

(mod N), j = ` − i. So CH-RULE follows rule (i) and sets p = ` − j = i, n = 0. Then

m = `− p = j > 0, n = 0, p = i > 0, q = h− n = h > 0; the L-shape is of shape (S2).

Next, suppose DL(N ; a, b) satisfies (C2). Then there exists 1 ≤ j ≤ min{d′, N
d′ − 1}

such that d′a ≡ jb (mod N). By Theorem 2, ` = d′ and h = N/d′; also, (C2) ⇒ (2). So

`a 6≡ hb ≡ 0 (mod N). Let the zero immediately to the right of L-shape occurs at row i.

we have i = h − j. So CH-RULE follows rule (ii) and sets p = 0, n = h − i = j. Then

m = ` − p = ` > 0, n = j > 0, p = 0, q = h − n = N/d′ − j > 0; the L-shape is of shape

(S3).

Finally, suppose DL(N ; a, b) satisfies (C3). By Theorem 2, (C3) ⇒ (3). So `a ≡ hb ≡ 0

(mod N). Let the zero immediately above the L-shape occurs at column j and to the right

of L-shape occurs at row i. Then i = j = 0. Suppose d < d′. Then h < `. So CH-

RULE follows rule (ii) and sets p = 0, n = h − i = h = d. Thus m = ` − p = ` >

0, n = d > 0, p = 0, q = h − n = 0; the L-shape is of shape (S6). Suppose d > d′.

Then h > `. So CH-RULE follows rule (i) and sets p = ` − j = ` = d′, n = 0. Then

m = `− p = 0, n = 0, p = d′ > 0, q = h− n = d > 0; the L-shape is of shape (S5).
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6 The relations between CH-ALGO and CH-RULE

Both CH-ALGO and CH-RULE determine the four parameters `, h, p, n for a degenerate L-

shape. Unfortunately, the solution of (`, h, p, n) using CH-RULE [3] does not always coincide

with the values given by the CH-ALGO. For the example in Fig. 3 (b), the solution of the

CH-RULE is

(`, h, p, n) = (5, 3, 0, 1)

and the solution of the CH-ALGO is

(`, h, p, n) = (5, 7, 5, 4)

(see Fig. 4). In this section, we will explain the relations between the two sets of solutions.

0 4 8 12 1

5 9 13 2 6

10 14 3 7 11

0

0

` = 5

h = 7 p = 5

n = 4

Figure 4: An alternative representation of the L-shape in Fig. 3 (b).

From Theorem 9 and Theorem 10, we know that CH-ALGO will not derive an L-shape

of shape (S4) or (S6) or (S7) and CH-RULE will not derive an L-shape of shape (S1) or (S4)

or (S7). We now further explain the reason below. CH-ALGO will not derive an L-shape

of shape (S4) or (S6) because it always has q = h − n = dUu+1 > 0 (recall that {Ui}k+1
i=−1

is strictly increasing, U−1 = 0 and u ≥ −1). Also, CH-ALGO will not derive an L-shape

of shape (S7) since if n = d(Uu + vUu+1) = 0, then u = −1 and v = 0 and therefore

p = su− (v +1)su+1 = s−1− s0 > 0, a contradiction to the assumption that the L-shape is of

shape (S7). CH-RULE will not derive an L-shape of shape (S1) or (S4) since it always sets `

to the width and h to the height of the degenerate L-shape. Also CH-RULE will not derive
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an L-shape of shape (S7) since it always has n and p not both zero. We now summarize the

results of Theorem 9 and Theorem 10 in Table 1 and compare the degenerate shapes derived

by CH-ALGO and CH-RULE in Table 2.

The following three corollaries follow from Theorem 9 and Theorem 10.

Corollary 11 CH-ALGO and CH-RULE derive the same shape when DL(N ; a, b) satisfies

(C1), satisfies (C2) and j ≥ N
2d′ or satisfies (C3) and d > d′. CH-ALGO and CH-RULE

derive different shapes when DL(N ; a, b) satisfies (C2) and j < N
2d′ or satisfies (C3) and

d < d′.

Let (ˆ̀, ĥ, p̂, n̂) denote the solution of CH-ALGO and ( ˙̀, ḣ, ṗ, ṅ), the solution of CH-RULE.

Corollary 12 and Corollary 13 show that when the two sets of solutions are different, one

can be obtained from the other.

Corollary 12 If DL(N ; a, b) satisfies (C2) and j < N
2d′ , then

ˆ̀= p̂ = ˙̀, ĥ = ṅ +

⌈
˙̀− ṅ

ḣ

⌉
ḣ, n̂ = ṅ + (

⌈
˙̀− ṅ

ḣ

⌉
− 1)ḣ,

and

˙̀ = ˆ̀, ḣ = ĥ− n̂, ṗ = 0, ṅ = j.

Corollary 13 If DL(N ; a, b) satisfies (C3) and d < d′, then

ˆ̀= p̂ = ˙̀, ĥ =

⌈
˙̀

ḣ

⌉
ḣ, n̂ = (

⌈
˙̀

ḣ

⌉
− 1)ḣ,

and

˙̀ = ˆ̀, ḣ = ṅ = ĥ− n̂, ṗ = 0.
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Table 1: The shapes derived by CH-ALGO and CH-RULE.

shape S1 S2 S3 S4 S5 S6 S7

CH-ALGO v v v v

CH-RULE v v v v

Table 2: The comparison between CH-ALGO and CH-RULE.

condition C1
C2 C3

j < N
2d′ j ≥ N

2d′ d < d′ d > d′

CH-ALGO S2 S1 S3 S1 S5

CH-RULE S2 S3 S3 S6 S5

consistent yes no yes no yes
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7 Concluding remarks

Most of the results about the L-shapes of double-loop networks are given in terms of the

four parameters `, h, p, n. For example, the diameter of a double-loop network can be easily

computed from its L-shape by the equation max{` + h − p, ` + h − n} − 2. In [4], Chen,

Hwang and Liu transformed a mixed chordal ring network into a double-loop network and

derived an upper bound for the diameter of a mixed chordal ring network from the L-shape

of its corresponding double-loop network (see [4] for details). However, the parameters

`, h, p, n are not well defined in the degenerate case. In particular, both Cheng-Hwang [5]

and Chen-Hwang [3] determine the four parameters for a degenerate L-shape. Unfortunately,

the solutions given by the above two methods do not always coincide. In this paper, we have

explored the respective meanings and the relations between these two sets of solutions.
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