
國立交通大學

應用數學系

博士論文

細胞神經網絡的空間複雜度

Spatial Complexity in Some Class of

Cellular Neural Networks

研究生: 張志鴻

指導教授: 林松山教授

中 華 民 國 九 十 七 年 六 月



細胞神經網絡的空間複雜度

Spatial Complexity in Some Class of

Cellular Neural Networks

研究生: 張志鴻 Student:Chih-Hung Chang

指導教授: 林松山 Advisor:Song-Sun Lin

國 立 交 通 大 學

應 用 數 學 系

博 士 論 文

A Thesis
Submitted to Department of Applied Mathematics

College of Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in

Applied Mathematics

June 2008

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 七 年 六 月



Dedicated to the Memory of Grandpa,

1923 - 2008



細胞神經網絡的空間複雜度

研究生: 張志鴻 指導教授: 林松山教授

國 立 交 通 大 學

應 用 數 學 系

摘要

本文旨在研究一維的多層細胞神經網絡所產生的花樣其空間複雜度以及二維非

均勻空間細胞神經網路其拓樸熵的稠密性。 在多層細胞神經網絡部分, 如果我們在

輸出空間給予適當的符號, 輸出空間會等價於一個 sofic 移動空間。我們給出兩個

物理上的不變量, 拓樸熵和動態 ζ-函數的公式。 這同時給了抽象的 sofic 移動空間

一個實際上可以應用的例子。 除此之外, 我們發現了當考慮多層細胞神經網絡時,

拓樸熵的對稱性會被破壞掉。 這也再一次證明多層細胞神經網絡和單層細胞神經

網絡是兩個性質極端不同的系統。更進一步地, 當我們考慮非均勻空間的細胞神經

網絡系統, 其拓樸熵會稠密的分佈在 [0, log 2] 這個封閉區間之中。 換句話說, 非

均勻空間的細胞神經網絡系統有著極為豐富的物理現象蘊含在裡面。
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Spatial Complexity in Some Class of

Cellular Neural Networks

Student:Chih-Hung Chang Advisor:Song-Sun Lin

Department of Applied Mathematics
National Chiao Tung University

Abstract

This dissertation consists two parts. The first part investigates the complexity of the global
set of output patterns for one-dimensional multi-layer cellular neural networks with input; the
second part focus on the dense entropy of two-dimensional inhomogeneous cellular neural net-
works with/without input. For the first part, applying labeling to the output space produces a
sofic shift space. Two invariants, namely spatial entropy and dynamical zeta function, can be
exactly computed by studying the induced sofic shift space. This study gives sofic shift a real-
ization through a realistic model. Furthermore, a new phenomenon, the broken of symmetry
of entropy, is discovered in multi-layer cellular neural networks with input. The second part
is strongly related to the learning problem (or inverse problem); the necessary and sufficient
conditions for the admissibility of local patterns must be characterized. The entropy function
is dense in [0, log 2] with respect to the parameter space and the radius of the interacting cells,
indicating that, in some sense, such system exhibits a wide range of phenomena.
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1 Introduction

This dissertation includes two investigations. First we study the spatial com-

plexity in multi-layer cellular neural networks, and what comes next is the

elucidation of the dense property of topological entropy in inhomogeneous

cellular neural networks.

The cellular neural network (CNN) proposed by Chua and Yang is a large

aggregate of analogue circuits [12; 13]. The system presents itself as an array

of identical cells which are all locally coupled. Many such systems have been

studied as models for spatial pattern formation in biology [16; 17; 18; 26; 27],

chemistry [19], physics [10], image processing and pattern recognition [11].

The complexity of the set of global patterns for one- or two-dimensional

cellular neural networks has been widely discussed [3; 5; 6; 7; 8; 22; 24; 38].

However, this study is the first to explore the complexity for one-dimensional

multi-layer CNN. The two-dimensional sofic and two-dimensional multi-layer

CNN are discussed in other papers.

A one-dimensional multi-layer CNN system with input is realized as the

following form,

dx
(n)
i

dt
= −x

(n)
i +

∑

|k|≤d

a
(n)
k y

(n)
i+k +

∑

|k|≤d

b
(n)
k u

(n)
i+k + z(n), (1)

for some d ∈ N, 1 ≤ n ≤ N ∈ N, i ∈ Z, where

u
(n)
i = y

(n−1)
i for 2 ≤ n ≤ N, u

(1)
i = ui, xi(0) = x0

i , (2)

and

y = f(x) =
1

2
(|x+ 1| − |x− 1|) (3)

is the output function. For 1 ≤ n ≤ N , parameter A(n) = (a
(n)
−d , · · · , a

(n)
d ) is

called the feedback template; B(n) = (b
(n)
−d , · · · , b

(n)
d ) is called the controlling
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template, and z(n) is the threshold. The quantity x
(n)
i denotes the state

of a cell Ci in the n-th layer. The stationary solutions x̄ = (x̄
(n)
i ) of (1)

are essential for understanding the system, and their outputs ȳ
(n)
i = f(x̄

(n)
i )

are called patterns. A mosaic solution (x̄
(n)
i ) satisfies |x̄

(n)
i | > 1 for all i, n.

Hence the investigation of stationary solution of N -layer CNN is to study a

N -coupled map lattice.




x
(1)
i =

∑

|k|≤d

a
(1)
k y

(1)
i+k +

∑

|k|≤d

b
(1)
k u

(1)
i+k + z(1),

x
(2)
i =

∑

|k|≤d

a
(2)
k y

(2)
i+k +

∑

|k|≤d

b
(2)
k y

(1)
i+k + z(2),

...

x
(N)
i =

∑

|k|≤d

a
(N)
k y

(N)
i+k +

∑

|k|≤d

b
(N)
k y

(N−1)
i+k + z(N).

(4)

One-layer CNN with input is first considered. Let

Pn+2 = {(A,B, z) : A,B ∈ M1×(2d+1)(R), z ∈ R}, (5)

where n = 4d+ 1. The parameter space Pn+2 can be partitioned into finite

sub-regions, such that each region has the same mosaic patterns. Once the

region of the parameters space is chosen, the basic set of admissible local

patterns B ⊆ {+,−}Z3×2 is then determined. The ordering matrix of all

local patterns in {+,−}Z3×2 is defined. For a given basic set B, the transition

matrix T(B) is then obtained, and a shift space is induced. For simplicity,

considering the case d = 1, i.e., each cell can only interact with their nearest

neighbors. In one-dimensional one-layer CNN without input, every partition

is associated with a unique set of admissible patterns B = B3×1 and the

transition matrix T = T(B3×1) [24]. Let

Y = {(yi)i∈Z| yi−1yiyi+1 ∈ B for all i ∈ Z}, (6)

then Y is a shift of finite type (SOFT). The number of global admissible

patterns with length n and the number of periodic patterns with period m

2



can then be formulated from the transition matrix T. However, this can

not be done when the basic set of admissible local patterns B = B3×2 is

derived from the one-layer CNN with input. More precisely, each pattern

that is produced from the system is a coupled pattern y1y2y3
u1u2u3

, where y1y2y3

denotes the output pattern, and u1u2u3 denotes the input pattern. For

simplicity, rewriting the coupled pattern as y1y2y3 ⋄ u1u2u3. The output

space is defined as

YU =





(· · · y−1y0y1 · · · ) ∈ {+,−}Z : there exists (· · · u−1u0u1 · · · ) ∈ {+,−}Z

such that (· · · y−1y0y1 · · · ⋄ · · · u−1u0u1 · · · ) ∈ Σ(B)




,

(7)

where Σ(B) ⊆ {+,−}Z∞×2 is a subshift space generated by B ⊆ {+,−}Z3×2 .

Analytical results indicate that YU is not a SOFT, but a sofic shift (Theorem

2.13). Under this situation, the formula of spatial entropy (entropy) h(B)

(Theorem 2.17) and dynamical zeta function (zeta function) ζσ(t) (Theorem

2.24) can be computed. Therefore, the dynamics of the mosaic solutions

of multi-layer CNN are understood. Conversely, the sofic shift is realized

through a realistic model.

The analysis gets more complicated in N -layer CNN, N ≥ 2. However,

once recognizing the elaborate content of one-layer CNN with input, all

results for one-layer CNN with input can be extended to general case with

analogous method. We like to emphasize that each layer induces a sofic

shift and the N -layer coupled system induces the convolution of N -many

independent sofic shifts. Hence, Section 2 studies one-layer CNN with and

without input and emphases the difference. Without input, the dynamical

system is subshift of finite type and then sofic when input appears. Section

3 consists those general results introduced in Section 2.

The dynamics of multi-layer CNN with input produce a phenomenon

that is never seen in one-layer CNN without input. The entropy of the

3



one-layer CNN without input has a symmetry about the parameters. More

precisely, consider the one-dimensional CNN,

dxi

dt
= −xi + alyi−1 + ayi + aryi+1 + z, (8)

and select one of the partitions of parameter space {(al, ar) : al, ar ∈ R} =

R2. The parameters a and z thus have 25 subregions, each with the same

entropy. Furthermore,

h(B([m,n])) = h(B([n,m])), for 0 ≤ m,n ≤ 4. (9)

The details as in [24]. However, when considering multi-layer CNN with

input, not only the entropy and zeta function are varied, but the symmetry

of the entropy is broken even for the simplest case one-layer CNN with input.

Hence, input adding for a CNN system is the main mechanism that breaks

the symmetry of entropy.

Since the spatial entropy and dynamical zeta function can be formulated

in a theoretical procedure, it is comprehensible to ask how complicated such

system can be. In other words, how many phenomena can be observed in

the system?

From the viewpoint of application aspect, most media in natural systems,

including physical, biological and electronic systems, are spatially inhomo-

geneous [21; 33; 37; 25; 20; 14]. This motivates the study of inhomogeneous

cellular networks (ICNN). A two-dimensional ICNN system is of the form,

dxi,j

dt
=





−xi,j + z +
∑

|k|,|l|≤d

ak,lf(xi+k,j+l)

+
∑

|k|,|l|≤d

bk,lui+k,j+l, i, j ≡ 0 mod m;

−xi,j + z′ + a0,0f(xi,j), otherwise.

(10)

for some m ∈ N, i, j ∈ Z. Restated, the difference between CNN and ICNN

is that the templates and threshold at each cell Ci,j are spatially invariant

for CNN but variant for ICNN.
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It is well-known that an important class of applications is steady-state

solutions, including mosaic solutions and defect solutions [11; 22; 24]. In

recent years, the complexity of steady-state solutions has been extensively

studied, and much attention has been paid to the complexity of the set of

global patterns, with particular reference to entropy [1; 4; 2; 5; 6; 9; 10;

22; 23; 24; 28; 29; 30; 32]. To study how rich phenomena a the ICNN can

achieve, it is equivalent to ask the following question.

Question 1.1. For CNN with/without input, if the radius of the interacting

cells d is treated as a parameter, is {h(A,B, z, d)}/{h(A, z, d)} dense in

[0, log 2]?

Multifractal analysis is introduced to a specified dynamical system when

one of its invariant is essentially the same as an interval (See [34] for more

detail), this motivates us to consider such question. However, since the

well-known fact that the entropy of subshift of finite type take a family

of specific values, called Perron number [32], the dense assumption cannot

be removed. The main difficulty in solving the question is related to the

fact that the admissible local patterns that are produced by CNN are very

limited [22; 24]. Restated, there exists U ⊆ {1,−1}Zn×n such that U 6=

B(A, z, d)/B(A,B, z, d) for all chosen values of the parameters A,B, z, d,

where n = 2d+ 1.

For example, consider the one-dimensional CNN without input, and the

length of interaction d = 1. Figure 1 is the bifurcation diagram that relates

admissible local patterns to the parameters A = (al, a, ar) and z; readers

may reference [22; 24] for more details. First, choosing (al, ar), yields a total

of eight partitions, as shown in Fig. 1. Second, the (a − 1, z) plane has 25

regions such that the admissible local patterns will be uniquely determined

once the region is chosen. For instance, if the parameters A, z are in region

5
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Figure 1: The bifurcation diagram of 1-D CNN

[3, 4] of partition IV, the admissible local patterns are

B = {− ⊕ +,−⊕−,+ ⊕ +,+ ⊖−,+ ⊖ +,−⊖−,−⊖ +}.

That is, “3” indicates that the three patterns with “+” in the center should

be chosen from the bottom, and “4” indicates that all four patterns with “−”

in the center can be chosen in IV. Thus, Figs. 1 and 2 show all admissible

local patterns of 1-D CNN with d = 1.

However, let U ⊆ {1,−1}Z3×1 be the set of patterns which are listed as

follows.

U = {− ⊕−,−⊕ +,+ ⊕−,−⊖−,−⊖ +,+ ⊖−}.

Notably, U consists of patterns that are selected from different partitions for

al and ar. More precisely, the patterns with “+” in the center are located in

partition V such that the parameters al and ar must satisfy the conditions

al < 0 and ar > 0. Moreover, the patterns with “−” in the center are selected
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Figure 2: The partition of a− z plane of 1-D CNN

from partition I, in which the associated parameters al, ar must then satisfy

al, ar > 0. Accordingly, there does not exist A, z such that B(A, z) = U .

Thus, some values of entropy cannot be attained for all choices of 3×1 basic

sets for d = 1.

In a work on dense entropy, Quas and Trow [36] showed that every sub-

shift of finite type (SFT) X with positive entropy has proper SFT X′ which

is a subsystem of X whose entropy is strictly less than the entropy of X,

but whose entropy is arbitrarily close to that of X. However, they cannot

be guaranteed to be mixing [35]. Recently, Desai [15] proved that for any

Zd-SFT R of positive entropy, the SFT subsystems achieve dense entropy

in [0, h(R)]. Thus, if R is treated as a full shift, then the SFT is dense in

[0, log |A|], where A denotes the symbols of R, and this result can be gen-

eralized to sofic systems. Restated, given a Zd sofic shift T, the sofic shift
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subsystems achieve dense entropy in [0, h(T)]. However, a difficulty similar

to that associated with CNN arises in solving the problem of ICNN. The

difficulty is to guarantee that the patterns that would achieve the desired

entropy can be produced by an ICNN system with/without input. This in-

vestigation proposes a necessary and sufficient condition for the admissibility

of local patterns of ICNN, and demonstrates that suitable local patterns can

be found that achieve the given t ∈ [0, log 2] (according to Theorem 6.11 for

ICNN without input and Theorem 7.3 for the case with input). Finding

these patterns solves the dense entropy problem for ICNN. About the same

question to classical CNN, we have the following conjecture.

Conjecture. For any ǫ > 0 and λ ∈ [0, log 2], there exists template A and

threshold z such that |h(B(A, z)) − λ| < ǫ.

This dissertation is organized as follows. Section 2 describes the com-

plexity of the global set of output patterns for one-layer CNN with input.

The entropy and zeta function can be exactly computed through the in-

duced sofic shift space. Section 3 extends all results in Section 2 to N -layer

CNN, where N ≥ 2. Section 4 lists the detail of the partition in Example

2.5. Section 5 introduces the two-dimensional ICNN model and preliminar-

ies that constitute the background for two-dimensional CNN and extends to

two-dimensional ICNN. Section 6 then presents a general theory that yields

details about how ICNN relates to a shift of finite type. The solution to the

dense entropy problem is also addressed. Section 7 extends the results in

Section 6 to ICNN with input.
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2 One-layer Cellular Neural Networks with Input

The complexity of the global set of output patterns for one-layer CNN with

input is investigated in this section.

2.1 Ordering Matrix and Transition Matrix

In this section, the parameter space Pn+2 as in (5) will be partitioned into

finite sub-regions, such that each region has the same mosaic patterns. Once

the region of the parameters space is chosen, the basic set of admissible local

patterns B ⊆ {+,−}Z3×2 is then determined. Then, the ordering matrix of

all local patterns in {+,−}Z3×2 will be defined. For a given basic set B, the

transition matrix T(B) will be obtained.

2.1.1 Partition of Parameter Space

This subsection explores the relationship between the parameters of tem-

plates and the admissible local output patterns. The differential equation

of CNN with input is of the form

dxi

dt
= −xi +

∑

|k|≤d

akyi+k +
∑

|ℓ|≤d

bℓui+ℓ + z, (1)

where A = [−ad, · · · , a, · · · , ad], B = [−bd, · · · , b, · · · , bd] are the feedback

and controlling templates, respectively, y = f(x) =
1

2
(|x + 1| − |x − 1|) is

the output function, z is the threshold, and a ≡ a0, b ≡ b0.

The quantity xi represents the state of the cell at i. The stationary

solution x̄ = (x̄i) of (1) satisfies

x̄i =
∑

|k|≤d

akȳi+k +
∑

|ℓ|≤d

bℓui+ℓ + z.
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The output ȳ = (ȳi) is called output pattern. A mosaic solution x̄ satisfies

|x̄i| > 1 and its corresponding pattern ȳ is called a mosaic output pattern.

Consider the mosaic solution x̄, the necessary and sufficient conditions for

state “+” at cell Ci, i.e., x̄i > 1, is

a− 1 + z > −(
∑

0<|k|≤d

akȳi+k +
∑

|ℓ|≤d

bℓui+ℓ). (2)

Similarly, the necessary and sufficient conditions for state “−” at cell Ci,

i.e., x̄i < −1, is

a− 1 − z >
∑

0<|k|≤d

akȳi+k +
∑

|ℓ|≤d

bℓui+ℓ. (3)

For simplicity, denoting ȳi by yi and rewriting the output patterns y−d · · · y · · · yd

coupled with input u−d · · · u · · · ud as

y−d · · · y · · · yd

u−d · · · u · · · ud

= Y ⋄ U, (4)

where Y = y−d · · · y · · · yd, U = u−d · · · u · · · ud. Let

V n = {v ∈ Rn : v = (v1, v2, · · · , vn), and |vi| = 1, 1 ≤ i ≤ n},

where n = 4d + 1, (2) and (3) can be rewritten in a compact form by

introducing the following notation.

Denote α = (a−d, · · · , a−1, a1, · · · , ad), β = (b−d, · · · , b, · · · , bd). Then,

α can be used to represent A′, the surrounding template of A without center,

and β can be used to represent the template B. The basic set of admissible

local patterns with “+” state in the center is defined as

B(+, A,B, z) = {v ⋄ w ∈ V n : a− 1 + z > −(α · v + β · w)}, (5)

where · is the inner product in Euclidean space. Similarly, the basic set of

admissible local patterns with “−” state in the center is defined as

B(−, A,B, z) = {v′ ⋄ w′ ∈ V n : a− 1 − z > α · v + β · w}. (6)
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Furthermore, the admissible local patterns induced by (A,B, z) can be de-

noted by

B(A,B, z) = (B(+, A,B, z),B(−, A,B, z)). (7)

Let

Pn+2 = {(A,B, z)| A,B ∈ M1×(2d+1)(R), z ∈ R}, (8)

where Mr×s(R) means a r× s real matrix. Pn+2 can be partitioned so that

each subregion generates the same mosaic patterns, when the controlling

template B ≡ 0 is proved in [22]. The general results for B 6= 0 can be

obtained similarly, so the detailed proof is omitted for simplicity.

Theorem 2.1. There exists positive integer K(n) and an unique collection

of open subsets {Pk}
K
k=1 of Pn+2 satisfying

(i) Pn+2 =
K
∪

k=1
P k.

(ii) Pk ∩ Pℓ = ∅ for all k 6= ℓ.

(iii) B(A,B, z) = B(Ã, B̃, z̃) if and only if (A,B, z), (Ã, B̃, z̃) ∈ Pk for some

k.

Here P is the closure of P in Pn+2.

2.1.2 Ordering Matrix

This subsection defines the ordering matrix X = X3×2 of all possible local

patterns in {+,−}Z3×2 . First, the notation of the pattern with size 3 × 1 is

considered.

Let

a00 = −−, a01 = −+, a10 = +−, a11 = ++, (9)
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Figure 3: The ordering matrix of all local patterns in Z3×2
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defining

ai1i2ai′2i3 = ∅ ⇔ i2 6= i′2. (10)

If ai1i2ai′2i3 6= ∅, then denoting it by ai1ai2ai3 and it is a pattern with size

3 × 1. Define

X =




X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44



, Xij =




xij;11 xij;12 xij;13 xij;14

xij;21 xij;22 xij;23 xij;24

xij;31 xij;32 xij;33 xij;34

xij;41 xij;42 xij;43 xij;44




(11)

for 1 ≤ i, j ≤ 4 as Figure 3. xij;kl means the pattern
ar1r2ar′2r3

as1s2as′2s3

, where

r1 =

[
i− 1

2

]
, r2 = i− 1 − 2r1, r′2 =

[
j − 1

2

]
, r3 = j − 1 − 2r′2,

s1 =

[
k − 1

2

]
, s2 = k − 1 − 2s1, s′2 =

[
l − 1

2

]
, s3 = l − 1 − 2s′2,

(12)

and [·] is the Gauss function.

If ar1r2ar′2r3
= ∅ or as1s2as′2s3

= ∅, then xij;kl = ∅. Furthermore, if

xij;kl 6= ∅, then it is denoted by the pattern ar1ar2ar3

as1as2as3

in {+,−}Z3×2 . Hence,

the self-similar property appear in X as in Figure 3, i.e., the upper pattern

of Xij is the same as the lower pattern of xkl;ij, for 1 ≤ i, j, k, l ≤ 4. Once

the basic set of admissible local patterns B ⊆ {+,−}Z3×2 is given, defining

Σn×2(B) the collection of all patterns with size n× 2 generated by B as

Σn×2(B) =

{
y1y2 · · · yn
u1u2 · · · un

∈ {+,−}Zn×2 : yi−1yiyi+1
ui−1uiui+1

∈ B for all 2 ≤ i ≤ n− 1

}
.

(13)

For simplicity, rewriting y1y2 · · · yn
u1u2 · · · un

as y1y2 · · · yn⋄u1u2 · · · un, where yi, ui ∈

{+,−}, 1 ≤ i ≤ n.

To measure the complexity of the global set of output patterns, the

following subshift space in {+,−}Z is considered. Defining the output space
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YU ≡ YU (B) by

YU =





(· · · y−1y0y1 · · · ) ∈ {+,−}Z : there exists (· · · u−1u0u1 · · · ) ∈ {+,−}Z

such that (· · · y−1y0y1 · · · ⋄ · · · u−1u0u1 · · · ) ∈ Σ(B)




,

(14)

where Σ(B) ⊆ {+,−}Z∞×2 is a subshift space generated by B ⊆ {+,−}Z3×2 .

2.1.3 Transition Matrix

This subsection derives the transition matrix for a given basic set B. The

transition matrix T is defined as

T(B) = (Tij), 1 ≤ i, j ≤ 4, (15)

where Tij = (tij;kl) ∈ M4×4(R) and

tij;kl =





1, if xij;kl ∈ B;

0, if xij;kl ∈ {+,−}Z3×2 \ B or xij;kl = ∅,
(16)

where xij;kl =
ar1r2ar′2r3

as1s2as′2s3

satisfies (12). Once T(B) is constructed, it is then

rewritten as T(B) = (tpq) ∈ M16×16(R), where

tpq = tij;kl, for p = 4(i − 1) + k, q = 4(j − 1) + l. (17)

If templates A,B and threshold z are given, then the basic set B(A,B, z)

is obtained from Theorem 2.1. Moreover, the transition matrix T is imme-

diately derived from (16) and (17).

If a set of input patterns U ≡ {u1u2u3} ⊆ {+,−}Z3×1 is assigned, then

the basic set of admissible local patterns is denoted by

B((A,B, z);U) =

{
y1y2y3
u1u2u3

∈ B(A,B, z) : u1u2u3 ∈ U

}
. (18)
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The transition matrix for U is defined by U = (uij) ∈ M4×4(R), where

uij =





1, if u1u2u3 ∈ U

0, otherwise.
(19)

If T̂ denotes the transition matrix of B((A,B, z);U), then the following

theorem is obtained. Before the theorem is stated, two products of matrices

are defined as follows.

Definition 2.2. For any two matrices M = (mij) ∈ Mk×k(R), N =

(ni′j′) ∈ Mℓ×ℓ(R), the Kronecker product (tensor product) M ⊗ N of M

and N is defined by

M ⊗ N = (mijN) ∈ Mkℓ×kℓ(R). (20)

Next, for any P = (pij),Q = (qij) ∈ Mr×r(R), the Hadamard product P◦Q

of P and Q is defined by

P ◦ Q = (pijqij) ∈ Mr×r(R). (21)

Theorem 2.3. If (A,B, z) and U are given, then

T̂(B((A,B, z);U)) = T(B(A,B, z)) ◦ (E4 ⊗ U), (22)

where ◦ and ⊗ is the Hadamard product and Kronecker product in Definition

2.2, respectively, E4 = (eij) ∈ M4×4(R) with eij = 1 for all i, j, is the full

matrix.

Proof. Let the transition matrix T̂ = (t̂pq) ∈ M16×16(R), rewriting t̂pq =

t̂ij;kl, where

i =

[
p− 1

4

]
+ 1, j = p− 4(i− 1), k =

[
q − 1

4

]
+ 1,

and l = q − 4(j − 1). By (16) and (18), t̂pq = t̂ij;kl = tij;kl · ukl is obtained.

This completes the proof.
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2.1.4 Patterns Generation

This subsection introduces the patterns generation problem induced by

(A,B, z). Some results of patterns generation problem induced by (A, z)

must be recalled before stating the main theory [32]. The basic set of ad-

missible local patterns B(A, z) ≡ B is then determined once (A, z) is given.

The shift space generated by B, denoted by Σ(B), is given by

Σ(B) = {y = (yi)i∈Z ∈ {+,−}Z : yi−1yiyi+1 ∈ B for all i ∈ Z}. (23)

The shift space Σ(B) is thus a subshift of finite type for all B = B(A, z). Let

Σn(B) denote the set of n-blocks (i.e., the pattern with size n× 1) in Σ(B),

and Γn(B) denote the number of the set of n-blocks. The theorem follows

below [32].

Theorem 2.4. If B = B(A, z) is given, T is the transition matrix induced

by B, then Γn(B) = |Tn−2| for all n ∈ N, n ≥ 3, where |T| ≡
∑

1≤i,j≤k

|tij| for

all T = (tij) ∈ Mk×k(R).

Considering (A,B, z) with B 6= 0, let B(A,B, z) ≡ B denote the basic

set of admissible local patterns, Σn(YU ) denote the set of n-blocks in YU ,

i.e.,

Σn(YU ) =





y = (yi)
n
i=1 ∈ {+,−}Zn×1 : ∃ u = (ui)

n
i=1 ∈ {+,−}Zn×1

such that y ⋄ u ∈ Σn(B)




,

(24)

and Γn(YU ) denote the number of n-blocks of output patterns generated by

B. Theorem 2.4 is invalid in general for deriving the precise value of Γn(YU )

for n ∈ N. An example is given below. The Appendix explains the theorem

in detail.

Example 2.5. Let A = [al, a, ar], B = [bl, b, br] satisfy the following condi-

tions.
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(i) al > bl > ar > b > br > 0.

(ii) al + b > ar + bl + br, al + br > bl + b.

(iii) bl + b > al > ar + b+ br.

(iv) ar + b > bl + br, bl > ar + br, ar > b+ br.

The positions of ℓ+i and ℓ−j on the (a− 1, z) plane are determined exactly as

in the Appendix. Given region R = [23, 18], i.e., R is bounded by ℓ+23, ℓ
+
24, ℓ

−
18

and ℓ−19, and the set of input patterns is given by U = {−+−,−++,+−+}.

Thus, Figure 4 illustrates the basic set of admissible local patterns B =

B((A,B, z);U).
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Figure 4: The basic set of patterns for some templates A,B, z and input U

According to Theorem 2.3, the transition matrix of B((A,B, z);U) is

T̂ = T̂(B((A,B, z);U)) =




T̂11 T̂12 0 0

0 0 0 T̂24

T̂31 0 0 0

0 0 T̂43 T̂44



,
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where

T̂11 = T̂12 = T̂43 = T̂44 =




0 0 0 0

0 0 1 1

0 1 0 0

0 0 0 0



, T̂31 =




0 0 0 0

0 0 1 1

0 0 0 0

0 0 0 0



, T̂24 =




0 0 0 0

0 0 0 1

0 1 0 0

0 0 0 0



.

From the transition matrix, the output patterns {−++,++−,+−−} exist.

By the concept of subshift of finite type, the output pattern − + + − − is

admissible. However, there exists no u1u2u3u4u5 ∈ Σ5(U) such that − +

+ − − ⋄ u1u2u3u4u5 ∈ Σ5(B). This finding shows that the inner structure

needs to be considered. More precisely, since T̂24T̂43T̂31 = 0, no input could

possibly produce the output pattern − + + −−.

So far, this work has shown that Γn(YU ) 6= |T̂n−2| in general, since

different input patterns might have the same output pattern. To overcome

this difficulty, the next subsection introduces the concept of sofic shift in the

symbolic dynamical system.

2.2 Definition and Background of Sofic Shifts

This subsection recalls some definitions and main results of sofic shifts. Lind

and Marcus has described sofic shifts in detail [32].

Definition 2.6. A labeled graph G = (G,L) consists of an underlying graph

G with edge set E, and the labeling L : E → A assigns to each edge a label

from the finite alphabet A. A sofic shift is defined by X = XG for some

labeled graph G.

Definition 2.7. A labeled graph G = (G,L) is right-resolving if, for each

vertex of I of G, the edges starting from I carry different labels. In other

words, G is right-resolving if, for each I, the restriction of L to EI is one-

to-one, where EI consists of those edges starting from I.
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The following theorem shows that every sofic shift has a right-resolving

presentation. The method for finding an explicit right-resolving presentation

is called the subset construction method.

Subset Construction Method

Let X be a sofic shift over the alphabet A having a presentation G = (G,L)

so that X = XG . If G is not right-resolving, then a new labeled graph

H = (H,L′) is constructed as follows.

The vertices I of H are the nonempty subsets of the vertex set V(G) of

G. If I ∈ V(H) and a ∈ A, let J denote the set of terminal vertices of edges

in G starting at some vertices in I and labeled a, i.e., J is the set of vertices

reachable from I using the edges labeled a. There are two cases.

1. If J = ∅, do nothing.

2. If J 6= ∅, J ∈ V(H) and draw an edge in H from I to J labeled a.

Carrying this out for each I ∈ V(H) and each a ∈ A produces the labeled

graph H. Then, each vertex I in H has at most one edge with a given label

starting at I. This implies that H is right-resolving.

Theorem 2.8. Let G = (G,L) be a labeled graph which is not right-resolving,

H = (H,L′) be a right-resolving labeled graph constructed under the subset

construction method. Then XG = XH, i.e., G and H presents the same shift

space.
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2.3 Entropy and Zeta Function

This subsection investigates the entropy and zeta function for the global set

of output patterns using the concepts of sofic shifts.

2.3.1 Sofic Shift

This subsection shows that the output space of one-layer CNN with input

is a sofic shift. For a given basic set B, the transition matrix T is defined as

(15), (16) and (17). Let the alphabet S = {sij}1≤i,j≤4, where

sij = ar1r2ar′2r3
, (25)

arkrk+1
is defined in (9), and

r1 =

[
i− 1

2

]
, r2 = i− 1 − 2r1, r′2 =

[
j − 1

2

]
, r3 = j − 1 − 2r′2. (26)

By (10), sij = ∅ if r2 6= r′2. The symbolic transition matrix is defined as

S = (sijTij)1≤i,j≤4 = (sijtij;kl) ∈ M16×16(R), (27)

where sijtij;kl = ∅ if sij = ∅ or tij;kl = 0. Rewriting S = (s̃pq), where

s̃pq = sijtij;kl for

p = 4(i− 1) + k, q = 4(j − 1) + l.

Let GT be the underlying graph induced by T with edge set

E = {epq : tpq = 1, 1 ≤ p, q ≤ 16},

and the labeling L : E → S defined by L(epq) = sij . GS = (GT,L) is thus a

labeled graph as in Figure 5. By (25), a word si1i2si2i3 in SZ can be defined

by si1i2si2i3 = ar1r2ar2r3ar3r4 . The edge shift with alphabet S is defined by

XGS
=





(· · · si−1i0si0i1si1i2 · · · ) ∈ SZ : there exists (· · · k−1k0k1 · · · )

such that tij ij+1;kjkj+1
6= 0 for all j ∈ Z




.

(28)
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Figure 5: The labeled graph of CNN with input

The following theorem is thus obtained.

Theorem 2.9. X = XGS
is a sofic shift.

The relationship between output space YU and induced sofic shift XGS

is then investigated.

Definition 2.10. Let A,U be finite alphabets, X be a shift space over A,

Bk(X) denote the set of k-blocks that occur in points in X, Φ : Bm+n+1(X) →

U be a block map. Then the map φ : X → UZ defined by y = φ(x) with

yi = Φ(xi−m · · · xi−1xixi+1 · · · xi+n) = Φ(x[i−m,i+n])

is called the sliding block code with memory m and anticipate n induced by

Φ.

Let Σ3(YU ) be the set of 3-blocks in YU as in (24). A block map Φ :

Σ3(YU ) → S is thus defined by

Φ(yiyi+1yi+2) = sΨ(yiyi+1)Ψ(yi+1yi+2), (29)
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where Ψ(yiyi+1) = 1 + ϕ(yi+1) + 2ϕ(yi) and ϕ is defined by ϕ(+) = 1 and

ϕ(−) = 0. Then the map φ : YU → SZ defined by

φ(· · · y−1y0y1 · · · ) = (· · · si−1i0si0i1si1i2 · · · ) (30)

with sikik+1
= Φ(yikyik+1

yik+2
) is a sliding block code from YU to XGS

.

Definition 2.11. Let φ : X → Y be a sliding block code, then φ is a

conjugacy if φ is invertible. It is also called X is conjugate to Y.

Theorem 2.12 ([32]). If a sliding code is one-to-one and onto, then it is a

conjugacy.

The conjugacy between YU and XGS
can be proved now.

Theorem 2.13. Given a basic set B, the transition matrix T and the output

space YU are then obtained. Let GS = (GT,L) be the labeled graph induced

by B, then YU is conjugate to XGS
under the sliding block code φ defined in

(30).

Proof. It suffices to prove that φ is one-to-one and onto. If there exist

x 6= y ∈ YU such that φ(x) = φ(y), without loss of generality, assuming that

there is a number n such that xn 6= yn and xi = yi for all i < n. This means

that at state xn−1 = yn−1 and xn−2 = yn−2,

Ψ(xn−1xn) = 1 + ϕ(xn−1) + 2ϕ(xn) 6= 1 + ϕ(yn−1) + 2ϕ(yn) = Ψ(yn−1yn).

Therefore,

Φ(xn−2xn−1xn) = sΨ(xn−2xn−1)Ψ(xn−1xn) 6= sΨ(yn−2yn−1)Ψ(yn−1yn) = Φ(yn−2yn−1yn).

This contradicts to φ(x) = φ(y). Thus, φ is one-to-one.

For every s = (· · · si−1i0si0i1si1i2 · · · ) ∈ XGS
, by (28) there exists a

sequence (· · · k−1k0k1 · · · ) such that tijij+1;kjkj+1
6= 0 for all j ∈ Z. By
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(16), the related pattern · · · xi−1i0;k−1k0xi0i1;k0k1xi1i2;k1k2 · · · is admissible,

i.e., · · · ar−1ar0ar1 · · ·
· · · as−1as0as1 · · ·

is admissible. By the definition of output space (14),

the pattern · · · ar−1ar0ar1 · · · ∈ YU . Moreover, by the relation in (12),

ik = 1 + rk+1 + 2rk, and rk =





1, if ar0 = +;

0, if ar0 = −.

Hence, there exists · · · ar−1ar0ar1 · · · ∈ YU such that φ(· · · ar−1ar0ar1 · · · ) =

s. This shows that φ is onto, and the proof is completed.

2.3.2 Entropy

Let Σn(YU ) ⊆ {+,−}Zn×1 denote the set of n-blocks in YU as in (24). The

spatial entropy of YU is defined by

h(YU ) = lim
n→∞

log Γn(YU )

n
, (31)

where Γn(YU ) is the cardinal number of Σn(YU ). Example 2.5 demonstrates

that Theorem 2.4 is invalid in computing the spatial entropy of YU . However,

Theorem 2.13 shows that the output space YU is conjugate to the sofic shift

XGS
. The entropy of YU can be computed by the following theorems show

in [32].

Theorem 2.14 ([32]). If two shift spaces X and Y are conjugate, then

h(X) = h(Y).

Theorem 2.15 ([32]). Let G = (G,L) be a labeled graph. If G is right-

resolving, then h(XG) = h(XG).

Theorem 2.16. For YU is given, GS is the sofic shift induced by YU . If GS

is right-resolving, then h(YU ) = log ρ(T), where ρ(T) denotes the maximal

eigenvalue of T.
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Proof. Since YU is conjugate to XGS
, and GS is right-resolving, by Theorem

2.14, Theorem 2.15, and Perron-Frobenius theorem,

h(YU ) = h(XGS
) = h(XT) = log ρ(T). (32)

This completes the proof.

In general, GS induced by YU (B) might not be right-resolving. However,

a sofic shift H = (H,L′) which is right-resolving can be constructed and still

conjugate to YU (B) via the subset construction method stated in Subsection

2.2. Thus Theorem 2.16 can be extended to the general case.

Theorem 2.17. For a given B ⊆ {−,+}Z3×2 , let YU ≡ YU(B) be the shift

space induced by B. Then there exists a labeled graph representation H =

(H,L′) such that

h(YU ) = h(XH) = log ρ(H). (33)

Proof. For the admissible local patterns B given, let T and the labeled graph

representation GS defined as above. If GS is already right-resolving, then it

is done. If not, using subset construction method, there is a labeled graph

representation H such that XGS
= XH and is right-resolving. Note that the

underlying graph and transition matrix of H, H and H, are also derived.

Moreover, by Theorem 2.8 and Theorem 2.13, YU is conjugate to XH. Thus,

by Theorem 2.16, h(YU ) = h(XH) = log ρ(H).

Example 2.18 (Continued). Let (A,B, z) be the same as in Example 2.5,

S = {s11, s12, s24, s31, s43, s44}, by (27), the symbolic transition matrix is

S =




s11T11 s12T12 0 0

0 0 0 s24T24

s31T31 0 0 0

0 0 s43T43 s44T44



. (34)
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Then, the labeled graph representation of B, GS = (GT,L), is not right-

resolving. For simplicity, denoting the vertex set ofGT by V = {1, 2, · · · , 16}.

Using the subset construction method to construct another labeled graph

H = (H,L′) as Figure 6. Theorem 2.8 shows that XGS
= XH.

{2}

{7, 8}

{14}

{11, 12}

{3, 4} {6} {16}

{3}
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{15}

{7}

{15, 16}
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b

b

b

c

c

c

d

e

ee

f

f

f

Figure 6: A right-resolving labeled graph via subset construction.

The transition matrix of XH is obtained as below.

H =




0 0 1 0 0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0




. (35)

25



Thus, h((A,B, z);U) = log λ > 0, where λ
.
= 1.324718 is the root of f(t) =

t6 − 2t4 + t2 − 1.

In the next subsection, the zeta function of YU will be discussed.

2.3.3 Zeta Function

Given a sofic shift YU with shift map σ, invariant values and invariant func-

tions of the shift space (YU , σ) are interested. In the last subsection, the

entropy h(B) is studied. This subsection examines the zeta function ζσ(t)

with respect to the shift map σ.

Let pn(σ) = {y = (yi)i∈Z ∈ YU |σ
n(y) = y} be the collection of all

periodic patterns of period n. The zeta function of σ is defined as

ζσ(t) = exp(
∞∑

n=1

pn(σ)

n
tn), (36)

where exp(x) =
∞∑

n=0

xn

n!
is the classical exponential function.

If a shift space X is a shift of finite type, then there is an edge shift XA

conjugate to X. The following theorem computes the zeta function of any

shift of finite type.

Theorem 2.19 ([32]). Let A be a k× k nonnegative integer matrix, σA the

associated shift map. Then

ζσA
(t) =

1

det(Ik − tA)
, (37)

where Ik is the k × k identity matrix. Thus the zeta function of a shift of

finite type is the reciprocal of a polynomial.

The following notations are needed to investigate the zeta function of
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sofic shift. Let F = {f1, f2, · · · , fm} be a finite set. A permutation π of F is

given below as an impression (fi1 , · · · , fim), i.e., π(fℓ) = fiℓ for 1 ≤ ℓ ≤ m.

Definition 2.20. A permutation π is said to be even (odd, resp.) if the

number of interchanges (or transpositions) needed to generate the permuta-

tion is even (odd, resp.) Moreover, the sign of π is defined as

sgn(π) =





1, π is even;

−1, π is odd.
(38)

Let H = (H,L′) be a labeled graph which is right-resolving with r many

vertices, assuming that V = {1, 2, · · · , r}. Let HS denote the symbolic

transition matrix of H and H the transition matrix of the underlying graph

H.

For 1 ≤ k ≤ r, constructing a labeled graph Hk with alphabet {±sij :

sij ∈ S} as follows.

1. The vertex set of Hk is the set Vk of all subsets of V having k elements,

i.e., |Vk| =
(
r
k

)
. Moreover, the ordering on the states in each element

of Vk is fixed.

2. For each sij ∈ S, we denote sij(I) the terminal state of sij starts at

I. For I = {I1, · · · , Ik},J = {J1, · · · , Jk} ∈ Vk, there is an edge from

I to J provided there exists sij ∈ S such that sij(I1), · · · , sij(Ik) are

well-defined and (sij(I1), · · · , sij(Ik)) is a permutation of J . More

than this, the edge is labeled as sij (−sij, reps.) if the permutation is

even (odd, resp.) Otherwise, there is no edge with label ±sij from I

to J .

Definition 2.21. Let HSk
denote the symbolic transition matrix of Hk, Hk

be obtained from HSk
by setting all the symbols in S equal to 1. We call Hk

the k-th signed subset matrix of H.
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Theorem 2.22 ([32]). Let H = (H,L′) be a right-resolving labeled graph

with r many vertices, and Hk be its k-th signed subset matrix. Then

ζσH
(t) =

r∏

k=1

det(I − tHk)
(−1)k

, (39)

where I is the identity matrix.

Theorem 2.23 ([32]). If two shift spaces X and Y are conjugate, then

ζσX
(t) = ζσY

(t).

Therefore, the zeta function of the sofic shift XGS
can be derived using

the following theorem.

Theorem 2.24. For a given B ⊆ {−,+}Z3×2 , let YU ≡ YU(B) be the shift

space induced by B with shift map σ. Then there exists a labeled graph

representation H such that

ζσ(t) =
n∏

k=1

det(I − tHk)
(−1)k

, (40)

where Hk is the k-th signed subset matrix of H, and n is the cardinal number

of the underlying graph H.

Proof. Let GS be the labeled graph representation of YU , and XGS
be the

sofic shift induced by GS with shift map σGS
. By Theorem 2.13, XGS

is

conjugate to YU . Thus, we have

ζσ(t) = ζσGS
(t). (41)

If GS is right-resolving, then it is done by Theorem 2.22. Otherwise,

constructing a labeled graph H which is right-resolving and represents the

same shift space as GS via subset construction method. This completes the

proof.

28



Example 2.25 (Continued). Continuing with Example 2.5 and Example

2.18, for the investigation of zeta function, all the k-th signed subset matrix

Hk of H are needed to be constructed. Therefore, H1 = H as in (35),

H2 =




0 −1 −1 0 0 0 0 0

0 −1 −1 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 −1

0 0 0 0 0 0 −1 −1

0 0 0 0 0 0 0 0




,

and H3 = H4 = · · · = H12 = 0, the zero matrix. Hence, by Theorem 2.22,

ζσ(t) =
(1 + t)2

1 − 2t2 + t4 − t6
.
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3 Multi-layer Cellular Neural Networks

In this section, all results in one-layer CNN with input will be extended to

multi-layer CNN.

3.1 Partition of Parameter Space

As in (1), an N -layer CNN system with input is of the form,

dx
(n)
i

dt
= −x

(n)
i +

∑

|k|≤d

a
(n)
k y

(n)
i+k +

∑

|k|≤d

b
(n)
k u

(n)
i+k + z(n), (1)

for some d ∈ N, 1 ≤ n ≤ N ∈ N, i ∈ Z, where

u
(n)
i = y

(n−1)
i for 2 ≤ n ≤ N, u

(1)
i = ui, xi(0) = x0

i . (2)

The feedback and controlling templates of each layer are

A(n) = (a
(n)
−d , a

(n)
−d+1, · · · , a

(n)
d ) and B(n) = (b

(n)
−d , b

(n)
−d+1, · · · , b

(n)
d ),

where 1 ≤ n ≤ N . The parameter space and the admissible local pat-

terns of each layer can be represented by P(n) = {(A(n), B(n), z(n))} and

B(n)(A(n), B(n), z(n)), where 1 ≤ n ≤ N . Let A = (A(1), A(2), · · · , A(N)),

B = (B(1), B(2), · · · , B(N)), z = (z(1), z(2), · · · , z(N)), Pm = (P(1),P(2), · · · ,P(N)),

where m = N(2d + 1) − 1, Y (n) = y
(n)
−d y

(n)
−d+1 · · · y

(n)
d , where 1 ≤ n ≤ N , and

U = u−du−d+1 · · · ud, then

B(A,B, z) =





Y (N) ⋄ Y (N−1) ⋄ · · · ⋄ Y (1) ⋄ U :

Y (n) ⋄ Y (n−1) ∈ B(n) for 2 ≤ n ≤ N, and Y (1) ⋄ U ∈ B(1)




,

(3)

where ⋄ is defined in (4). The generalized partition theorem of N -layer CNN

then follows.

Theorem 3.1. There exists K(m) ∈ N and unique collection of open subsets

{Pk}
K(m)
k=1 of Pm such that
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(i) Pm =

K(m)⋃

k=1

P̄k.

(ii) Pk

⋂
Pj = ∅ for k 6= j.

(iii) B(A,B, z) = B(Ã, B̃, z̃) ⇔ (A,B, z), (Ã, B̃, z̃) ∈ Pk for some k.

Proof. For simplicity, the case N = 2 is proved. The general case can be

done analogously, the details are omitted here.

By Theorem 2.1, there exist Ki ∈ N and an unique collection of open

subsets {P
(i)
k }Ki

k=1 of P(i) such that

(1) P4d+3
(i) =

Ki⋃

k=1

P
(i)
k .

(2) P
(i)
k

⋂
P

(i)
ℓ = ∅ for k 6= ℓ.

(3) B(i)(A(i), B(i), z(i)) = B(i)(Ã(i), B̃(i), z̃(i)) if and only if

(A(i), B(i), z(i)), (Ã(i), B̃(i), z̃(i)) ∈ P
(i)
k for some k,

where i = 1, 2. Let K ′ = K1 · K2, define P ′
k = (P

(1)
k1
, P

(2)
k2

), where k =

(k1 − 1)K2 + k2, 1 ≤ k1 ≤ K1, 1 ≤ k2 ≤ K2. Let

P1 = P ′
i , where i = min{k| there exists Y (2)⋄Y (1) ∈ B(2) and Y (1)⋄U ∈ B(1)},

(4)

and

Pℓ = P ′
i , where i = min

k>kℓ−1

{k| there exists Y (2)⋄Y (1) ∈ B(2) and Y (1)⋄U ∈ B(1)},

(5)

for ℓ ≥ 2 and kj ∈ N such that P ′
kj

= Pj. Then there exists an positive

integer K ≤ K ′ such that {Pk}
K
k=1 satisfies (i), (ii), (iii), then the proof is

completed.
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3.2 Ordering Matrix

The ordering matrix X3×N of all possible local patterns in {+,−}Z3×N is

defined recursively as

X3×N =




X11 X12 ∅ ∅

∅ ∅ X23 X24

X31 X32 ∅ ∅

∅ ∅ X43 X44



, (6)

where

Xi1j1 =




Xi1j1;11 Xi1j1;12 ∅ ∅

∅ ∅ Xi1j1;23 Xi1j1;24

Xi1j1;31 Xi1j1;32 ∅ ∅

∅ ∅ Xi1j1;43 Xi1j1;44



, (7)

Xi1j1;i2j2;··· ;ikjk
=




Xi1j1;i2j2;··· ;ikjk;11 Xi1j1;i2j2;··· ;ikjk;12 ∅ ∅

∅ ∅ Xi1j1;i2j2;··· ;ikjk;23 Xi1j1;i2j2;··· ;ikjk;24

Xi1j1;i2j2;··· ;ikjk;31 Xi1j1;i2j2;··· ;ikjk;32 ∅ ∅

∅ ∅ Xi1j1;i2j2;··· ;ikjk;43 Xi1j1;i2j2;··· ;ikjk;44




,

(8)

for 1 ≤ k ≤ N − 2, and

Xi1j1;i2j2;··· ;iN−1jN−1
=




xi1j1;··· ;iN−1jN−1;11 xi1j1;··· ;iN−1jN−1;12 ∅ ∅

∅ ∅ xi1j1;··· ;iN−1jN−1;23 xi1j1;··· ;iN−1jN−1;24

xi1j1;··· ;iN−1jN−1;31 xi1j1;··· ;iN−1jN−1;32 ∅ ∅

∅ ∅ xi1j1;··· ;iN−1jN−1;43 xi1j1;··· ;iN−1jN−1;44




,

(9)

where 1 ≤ ik, jk ≤ 4, and 1 ≤ k ≤ N . The construction contains a self-

similarity property in X3×N . As in Subsection 2.1.2, xi1j1;i2j2;··· ;iN−1jN−1;iN jN
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means the pattern

(ar11r12ar′12r13
) ⋄ (ar21r22ar′22r23

) ⋄ · · · ⋄ (arN1rN2
ar′

N2rN3
)

in {+,−}Z3×N , where ark1rk2
ar′

k2rk3
is defined in (10), and

rk1 =

[
ik − 1

2

]
, rk2 = ik−1−2rk1, r′k2 =

[
jk − 1

2

]
, rk3 = jk−1−2r′k2.

The pattern is ∅ if ark1rk2
ar′

k2rk3
= ∅ for some 1 ≤ k ≤ N . Otherwise, it is

denoted by the pattern

(ar11ar12ar13) ⋄ (ar21ar22ar23) ⋄ · · · ⋄ (arN1
arN2

arN3
)

in {+,−}Z3×∞ .

As long as the basic set of the admissible local patterns B ⊆ {+,−}Z3×(N+1)

is given, Σm(B) denotes the collection of all m-blocks generated by B. The

subshift space of {+,−}Z is then defined by

YU =





Y (N) = (y
(N)
i )i∈Z : there exist U, Y (1), Y (2), · · · , Y (N−1)

such that Y (N) ⋄ Y (N−1) ⋄ · · · ⋄ Y (1) ⋄ U ∈ Σ(B)




, (10)

where Σ(B) ⊆ {+,−}Z∞×(N+1) is generated by B ⊆ {+,−}Z3×(N+1) .

3.3 Transition Matrix

The basic set of admissible local patterns B = B(A,B, z) can be determined

from the N -layer CNN parameters (A,B, z). Denote by Tn the transition

matrix induced by B(n) ⊆ {+,−}Z3×2 , where B(n) is the basic set of admis-

sible local patterns in the n-th layer, and 1 ≤ n ≤ N . Let T̂N = T(B;U) be

the transition matrix induced by B with the set of input patterns U . The

following theorem is then obtained.

Theorem 3.2.

T̂N = (TN ⊗ E4N−1) ◦ (E4 ⊗ TN−1) ∈ M4n+1×4n+1(R), (11)
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where

Tn = (Tn ⊗ E4n−1) ◦ (E4 ⊗ Tn−1) ∈ M4n+1×4n+1(R), for 2 ≤ n ≤ N − 1,

(12)

and

T1 = T1 ◦ (E4 ⊗ U) ∈ M16×16(R), (13)

U is the transition matrix of U . Hence T1 is the transition matrix given in

Theorem 2.3.

In particular, if N = 2,

T̂2 = (T2 ⊗ E4) ◦ (E4 ⊗ (T1 ◦ (E4 ⊗ U))). (14)

Proof. For simplicity, the case N = 2 is proved. For N ≥ 2, it can be done

by mathematical induction, thus is omitted.

Denoting T̂2 = (T̂i1j1)1≤i1,j1≤4 and T2 = (Ti1j1)1≤i1,j1≤4, where T̂i1j1 ∈

M16×16(R) and Ti1j1 ∈ M4×4(R) for 1 ≤ i1, j1 ≤ 4. The case i1 = j1 = 1 is

proved, the others can be treated analogously.

Denoting T̂11 = (T̂11;i2j2)1≤i2,j2≤4, where T̂11;i2j2 = (t̂11;i2j2;i3j3)1≤i3,j3≤4 ∈

M4×4(R), for fixed 1 ≤ i2, j2 ≤ 4, and T11 = (t11;i2j2)1≤i2,j2≤4 ∈ M4×4(R).

Since the output patterns of the first layer will be treated as the input pat-

terns of the second layer, let U2 be the output patterns of the first layer

coupled with input U . By Theorem 2.3, the transition matrix of U2 is

T1 = T1 ◦ (E4 ⊗ U) ∈ M16×16(R). (15)

Denoting

T1 = (T i2j2)1≤i2,j2≤4, T i2j2 = (ti2j2;i3j3)1≤i3,j3≤4 ∈ M4×4(R). (16)

Then

t̂11;i2j2;i3j3 = 1 ⇔ t11;i2j2 = 1 and t̄i2j2;i3j3 = 1, (17)
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for 1 ≤ i2, j2, i3, j3 ≤ 4. That is,

T̂11 = (T11 ⊗ E4) ◦ (T1 ◦ (E4 ⊗ U)). (18)

The proof is completed.

3.4 Entropy and Zeta Function

This subsection introduces the formula for calculating entropy and zeta func-

tion of N -layer CNN. Let S(n) = {s
(n)
ij }1≤i,j≤4 be the alphabets, and let

Sn and S be the symbolic transition matrices of Tn over S(n) and T̂N for

1 ≤ n ≤ N . By Theorem 2.9, XGSn
is a sofic shift induced by B(n), where

GSn is the labeled graph representation of the n-th layer. Furthermore, YU

is the output space induced by the N -layer CNN as defined in (10). The

following theorem can be obtained by the same method in Theorem 2.13, so

the details are omitted.

Theorem 3.3. YU is conjugate to XGS
.

The definition of convolution is given below.

Definition 3.4. Let X,Y be two shift spaces with graph representation

GX = (VX, EX), GY = (VY, EY), resp., then the convolution of X,Y, de-

noted by X∗Y, is the shift space with underlying graph GX∗Y = (VX∗Y, EX∗Y),

where

VX∗Y = {f(x) ∈ EY| x ∈ VX} (19)

for some f : VX → EY.

The convolution theorem for an N -many sofic shift is then obtained.

Theorem 3.5. Let XGS
be the sofic shift induced by B, then

XGS
= XGSN

∗ · · · ∗ XGS2
∗ XGS1

(20)
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is the convolution of XGS1
, · · · ,XGSN

,

ŜN = (SN ⊗ E4N−1) ◦ (E4 ⊗ SN−1), (21)

where

Sn = (Sn ⊗ E4n−1) ◦ (E4 ⊗ Sn−1) ∈ M4n+1×4n+1(R), for 2 ≤ n ≤ N − 1,

(22)

and

S1 = S1 ◦ (E4 ⊗ U) ∈ M16(R). (23)

Proof. This can be done using the same method used in the proof of Theorem

3.2, the details are omitted.

Thus, the theorems for entropy and zeta function can be found via the

same methods as described in the last section.

Theorem 3.6. For a given B ⊆ {+,−}Z3×(N+1) , let YU ≡ YU(B) be the

shift space induced by B. Then there exists a labeled graph representation

H = (H,L′) such that

h(YU ) = h(XH) = log ρ(H), (24)

and

ζσ(t) =

r∏

k=1

det(I − tHk)
(−1)k

, (25)

where Hk is the k-th signed subset matrix of H, and r is the cardinal number

of the underlying graph H.

An example for 2-layer CNN is illustrated here.

Example 3.7. Consider (A,B, z) with A(1) = A(2) ≡ Ā, B(1) = B(2) ≡ B̄,

z(1) = z(2) ≡ z̄, and Ā, B̄ and z̄ satisfy the same condition described in

Example 2.5. Moreover, the set of input patterns is given by U = {− +
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−,− + +,+ − +}. Then B(1) = B(A(1), B(1), z(1);U) is consisting of the

following patterns.
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Denote U2 the output patterns of B(1), i.e.,

U2 = {− − −,−− +,+ −−,+ + +,+ + −,− + +}.

Then B(2) = B(A(2), B(2), z(2);U2) is consisting of the following patterns.
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The transition matrix T̂ = T((A,B, z);U) is then

T̂ =




T̂11 T̂12 0 0

0 0 T̂23 T̂24

T̂31 0 0 0

0 0 T̂43 T̂44



, (26)

where

T̂11 = T̂43 = T̂44 =




T1 T1 0 0

0 0 0 T3

T2 0 0 0

0 0 T1 T1



, T̂12 =




T1 T1 0 0

0 0 0 T3

T2 0 0 0

0 0 0 0



,

T̂23 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 T1 T1



, T̂24 =




0 0 0 0

0 0 0 T3

T2 0 0 0

0 0 T1 T1



, T̂31 =




T1 T1 0 0

0 0 0 T3

0 0 0 0

0 0 0 0



,

and

T1 =




0 0 0 0

0 0 1 1

0 1 0 0

0 0 0 0



, T2 =




0 0 0 0

0 0 1 1

0 0 0 0

0 0 0 0



, T3 =




0 0 0 0

0 0 0 1

0 1 0 0

0 0 0 0



.

Let S = {s11, s12, s23, s24, s31, s43, s44}, the symbolic transition matrix is

S =




s11T̂11 s12T̂12 0 0

0 0 s23T̂23 s24T̂24

s31T̂31 0 0 0

0 0 s43T̂43 s44T̂44



, (27)

which is not right-resolving. Using subset construction method, the spatial

entropy then can be found, h((A,B, z);U) = log λ, where λ
.
= 1.49676 is

a root of f(t) = t8 − 2t6 + t4 − 3t2 − 1. Moreover, the zeta function is

ζσ(t) =
(1 + t+ t3)(1 + t− t3)

1 − 2t2 + t4 − 3t6 − t8
.
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3.5 The Broken of Symmetry

The basic set of admissible local patterns B can be determined from (A,B, z).

The entropy of each partition is symmetrical in one-dimensional CNN with-

out input, i.e., where B ≡ 0 [24]. For example, if (A, z) is picked such that

al > ar > 0, then parameters a and z have 25 regions. Clearly,

h(B([m,n])) = h(B([n,m])), for 1 ≤ m,n ≤ 4. (28)

The symmetry is broken for the one-layer CNN with input, as shown

below with an example.

Consider

dxi

dt
= −xi + alyi−1 + ayi + aryi+1 + blui−1 + bui + brui+1 + z, (29)

where bl = 0, then the symmetry of entropy is broken, as revealed in Figure

7.

Table 1: Some maximal eigenvalues produced in one-layer CNN with input.

maximal eigenvalue characteristic polynomial

λ1 = 2 t− 2

λ2
.
= 1.9479 t5 − 2t4 + t3 − 2t2 + t− 1

λ3
.
= 1.8832 t4 − 2t3 + t2 − 2t+ 1

λ4
.
= 1.8393 t3 − t2 − t+ 1

λ5
.
= 1.7549 t3 − 2t2 + t− 1

λ6
.
= 1.7417 t8 − 2t7 + t6 − t5 + t4 − 2t3 + t2 − 1

λ7
.
= 1.6992 t5 − 2t4 + t3 − 2t+ 1

λ8 = g
.
= 1.618 t2 − t− 1

λ9
.
= 1.5618 t6 − 2t5 + t4 − t2 + t− 1

λ10
.
= 1.5289 t5 − 2t4 + t3 − 1
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Figure 7: The effect of input patterns. The parameters al, ar, b, br are consid-

ered as follows. (i) al > ar > b > br > 0, (ii) al < b+br, (iii) al +br < ar +b.

Subfigure (a) lists regions that produce positive entropy. Those regions with

positive entropy are symmetric, i.e., h([m,n]) = h([n,m]). However, such

property would be destroyed when input patterns are given. Subfigure (b)

lists the same regions as in (a) but the input patterns U = {−−,−+,+−}

are considered. It is seen that the symmetry is no longer hold. Herein,

ki = log λi for 1 ≤ i ≤ 10 are listed in Table 1.
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4 Study of an Example

This section introduces in detail the relationship between the admissible

local patterns and the partition of parameter space in Example 2.5. A one-

dimensional CNN with input is of the form,

dxi

dt
= −xi + alyi−1 + ayi + aryi+1 + blui−1 + bui + brui+1 + z, (30)

where A = [al, a, ar], B = [bl, b, br] represent the feedback and controlling

templates, respectively; y = f(x) =
1

2
(|x+1|−|x−1|) is the output function,

and z is the threshold.

Consider that al, ar, bl, b, br satisfies the inequality in Example 2.5, i.e.,

the partition for the parameter space {(al, ar, bl, b, br)} is chosen. For a given

mosaic solution x̄, the state at cell Ci is +, i.e., x̄i > 1, if and only if

a− 1 + z > −(alyi−1 + aryi+1 + bui + brui+1). (31)

Similarly, the state at cell Ci is −, i.e., x̄i < −1, if and only if

a− 1 − z > alyi−1 + aryi+1 + bui + brui+1. (32)

Let α = (al, ar), β = (bl, b, br), V
n = {v = (vi) ∈ Rn : |vi| = 1 for all 1 ≤

i ≤ n}, the basic set of admissible local patterns with “+” state in the center

is defined as

B(+, A,B, z) = {v ⋄ w : a− 1 + z > −(α · v + β · w)}, (33)

where v ∈ V 2 and w ∈ V 3. Similarly, the basic set of admissible local

patterns with “−” state in the center is defined as

B(−, A,B, z) = {v′ ⋄ w′ : a− 1 − z > α · v′ + β · w′}. (34)

Furthermore, the basic set of admissible local patterns derived from (A,B, z)

is denoted by

B(A,B, z) = (B(+, A,B, z),B(−, A,B, z)). (35)
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Let ℓ+i , ℓ
−
j denote the linear maps

a− 1 + z = c+i and a− 1 − z = c−j

for some c+i , c
−
j , 1 ≤ i, j ≤ 32, respectively. By the condition (i) ∼ (iv) in

Example 2.5, the following relation can be obtained.

c−1 < c−2 < · · · < c−16 < 0 < c−17 < c−18 < · · · < c−32, (36)

and c−k = −c+33−k, 1 ≤ k ≤ 32, where

c−1 = −al − ar − bl − b− br, c−17 = al − ar − bl + b− br,

c−2 = −al − ar − bl − b+ br, c−18 = al − ar − bl + b+ br,

c−3 = −al − ar − bl + b− br, c−19 = al + ar − bl − b− br,

c−4 = −al − ar − bl + b+ br, c−20 = −al + ar + bl + b− br,

c−5 = −al + ar − bl − b− br, c−21 = al + ar − bl − b+ br,

c−6 = −al + ar − bl − b+ br, c−22 = −al + ar + bl + b+ br,

c−7 = −al − ar + bl − b− br, c−23 = al − ar + bl − b− br,

c−8 = −al − ar + bl − b+ br, c−24 = al − ar + bl − b+ br,

c−9 = −al + ar − bl + b− br, c−25 = al + ar − bl + b− br,

c−10 = −al + ar − bl + b+ br, c−26 = al + ar − bl + b+ br,

c−11 = al − ar − bl − b− br, c−27 = al − ar + bl + b− br,

c−12 = −al − ar + bl + b− br, c−28 = al − ar + bl + b+ br,

c−13 = al − ar − bl − b+ br, c−29 = al + ar + bl − b− br,

c−14 = −al − ar + bl + b+ br, c−30 = al + ar + bl − b+ br,

c−15 = −al + ar + bl − b− br, c−31 = al + ar + bl + b− br,

c−16 = −al + ar + bl − b+ br, c−32 = al + ar + bl + b+ br.

Figure 8 depicts a bifurcation diagram of the (a−1, z) parameter space. The

basic set of admissible local patterns is then determined once the parameters

a and z are chosen, i.e., some specified region in the bifurcation diagram is

selected. More precisely, if a region [m,n] in the bifurcation diagram has

been chosen, then for y⋄u ∈ B(+, A,B, z), the admissible local pattern with
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Figure 8: The (a− 1, z) bifurcation diagram.
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Figure 9: The order of the appearance of the patterns with state “+” in the

center.

state “+” in the center, y ⋄ u satisfies the following inequalities.

a− 1 + z > −(α · y + β · u), (37)

c+m < a− 1 + z < c+m+1. (38)

Similarly, for y′ ⋄u′ ∈ B(−, A,B, z), y′ ⋄u′ satisfies the following inequalities.

a− 1 − z > α · y′ + β · u′, (39)

c−n < a− 1 − z < c−n+1. (40)

In other words, m patterns have the center state “ + ”, and n patterns have

the center state “ − ”. The chosen partition uniquely determines the order

of those patterns. Figure 9 lists the order of the patterns with “+” in the

center. Figure 10 lists the order of the patterns with “−” in the center.
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1 : −
−

⊖
⊟

−
−

2 : −
−

⊖
⊟

−
+

3 : −
−

⊖
⊞

−
−

4 : −
−

⊖
⊞

−
+

5 : −
−

⊖
⊟

+
−

6 : −
−

⊖
⊟

+
+

7 : −
+

⊖
⊟

−
−

8 : −
+

⊖
⊟

−
+

9 : −
−

⊖
⊞

+
−

10 : −
−

⊖
⊞

+
+

11 : +
−

⊖
⊟

−
−

12 : −
+

⊖
⊞

−
−

13 : +
−

⊖
⊟

−
+

14 : −
+

⊖
⊞

−
+

15 : −
+

⊖
⊟

+
−

16 : −
+

⊖
⊟

+
+

17 : +
−

⊖
⊞

−
−

18 : +
−

⊖
⊞

−
+

19 : +
−

⊖
⊟

+
−

20 : −
+

⊖
⊞

+
−

21 : +
−

⊖
⊟

+
+

22 : −
+

⊖
⊞

+
+

23 : +
+

⊖
⊟

−
−

24 : +
+

⊖
⊟

−
+

25 : +
−

⊖
⊞

+
−

26 : +
−

⊖
⊞

+
+

27 : +
+

⊖
⊞

−
−

28 : +
+

⊖
⊞

−
+

29 : +
+

⊖
⊟

+
−

30 : +
+

⊖
⊟

+
+

31 : +
+

⊖
⊞

+
−

32 : +
+

⊖
⊞

+
+

Figure 10: The order of the appearance of the patterns with state “−” in

the center.
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5 Inhomogeneous Cellular Neural Networks

From now on, a two-dimensional ICNN is investigated. Recall that a two-

dimensional (2-D) CNN is of the form,

dxi,j

dt
= −xi,j + z +

∑

|k|,|l|≤d

ak,lf(xi+k,j+l) +
∑

|k|,|l|≤d

bk,lui+k,j+l, (41)

where (i, j) ∈ Z2, d ∈ N, f(x) is a piecewise-linear output function, defined

by

y = f(x) =
1

2
(|x+ 1| − |x− 1|).

A = [ak,l] =




a−d,d · · · ad,d

...
. . .

...

a−d,−d · · · ad,−d


 and B = [bk,l] =




b−d,d · · · bd,d

...
. . .

...

b−d,−d · · · bd,−d




represent the feedback template and the controlling template, respectively;

z denotes the biased term or threshold. The quantities xi,j denote the

state at cell Ci,j, and yi,j denote the output at Ci,j. Stationary solutions

x̄ = (x̄i,j) are essential to understand CNN, and their outputs are called

patterns. Here we concern a specified class of output patterns called mosaic

patterns. The connection between CNN with/without input and shift spaces

is investigated.

The ICNN system is of the form,

dxi,j

dt
=





−xi,j + z +
∑

|k|,|l|≤d

ak,lf(xi+k,j+l)

+
∑

|k|,|l|≤d

bk,lui+k,j+l, i, j ≡ 0 mod m;

−xi,j + z′ + a0,0f(xi,j), otherwise.

(42)

for some m ∈ N, i, j ∈ Z. Restated, the difference between CNN and ICNN

is that the templates and threshold at each cell Ci,j are spatially invariant

for CNN but variant for ICNN.
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5.1 Separation property

Several notions for the formulation of the main results in Secs. 6 and 7 are

presented in this subsection. Since the states Ci,j with i = k1m, j = k2m for

k1, k2 ∈ Z are crucial for the study of the mosaic solutions of ICNN, these

cells are the main focus in the rest of this investigation.

Definition 5.1. Let x̄ = (x̄i,j) be the stationary solution of system (42). x̄

is called a mosaic solution if |x̄i,j | > 1 for all i, j ∈ Z, and is called a interior

solution if |x̄i,j| < 1 for all i, j ∈ Z. A defect solution x̄ satisfies |x̄i,j | > 1

for some (i, j) ∈ D and |x̄k,ℓ| < 1 for some (k, ℓ) /∈ D, where D ( Z2 and

D 6= ∅.

First, considering the system (42) without input, that is, the template

B ≡ 0. For each given mosaic solution x̄, the output pattern at cell Ci,j is

+, i.e., x̄i,j > 1, if and only if

∑

|k|,|l|≤d
(k,l)6=(0,0)

ak,lȳi+k,j+l + a+ z − 1 > 0, (43)

where a0,0 ≡ a. Similarly, the output pattern at cell Ci,j is −, i.e., x̄i,j < −1,

if and only if
∑

|k|,|l|≤d
(k,l)6=(0,0)

ak,lȳi+k,j+l − a+ z + 1 < 0. (44)

(43) and (44) can be rewritten in a much more compact form by introducing

the following notations.

Denote by n = 4d2 + 4d. Let Xn be the n-dimensional lattice points,

i.e.,

Xn = {v = (vi) ∈ Rn : |vi| = 1 for 1 ≤ i ≤ n}. (45)

Then, for a given pair of template A and threshold z, the basic set of ad-
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missible local patterns with “+” state in the center is defined by

B(+, A, z, d) = {v ∈ Xn : α · v + a+ z − 1 > 0},

where “·” is the inner product, α = (a1, a2, · · · , an), v = (v1, v2, · · · , vn) are

obtained from



a4d2+2d · · · a2d2+d+1 · · · a1

...
... · · · ai,j · · ·

...
...

an · · · a2d2+3d · · · a2d+1




=




ai−d,j+d · · · ai,j+d · · · ai+d,j+d

...
... · · · ai,j · · ·

...
...

ai−d,j−d · · · ai,j−d · · · ai+d,j−d




and



v4d2+2d · · · v2d2+d+1 · · · v1
...

... · · · vi,j · · ·
...

...

vn · · · v2d2+3d · · · v2d+1




=




yi−d,j+d · · · yi,j+d · · · yi+d,j+d

...
... · · · yi,j · · ·

...
...

yi−d,j−d · · · yi,j−d · · · yi+d,j−d




,

respectively. In other words, α represents the surrounding template of A

without center, and v indicates the output patterns at cell Ci,j whose center

is omitted. Similarly, the basic set of admissible local patterns with “−” in

the center is defined by

B(−, A, z, d) = {v ∈ Xn : α · v − a+ z + 1 < 0}.

An investigation of the basic sets of admissible local patterns B(+, A, z, d)

and B(−, A, z, d) are essential for the understanding of the global mosaic pat-

terns on Z2 that are generated by the given (A, z). Some definitions and

theorems should be stated first.

Definition 5.2. Given U ⊂ Xn, U is called separable if there is a hyperplane

H in Rn such that U and Uc can be separated by H, where Uc = Xn \ U .
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Hsu et al. [22] investigate how the admissible local mosaic patterns

B(∗, A, z, d) relate to the parameters A, z and d in CNN systems, where

∗ ∈ {+,−}.

Theorem 5.3 ([22]). There exists (A, z) and d such that U = B(∗, A, z, d)

for some ∗ ∈ {+,−} if and only if U is separable.

Moreover, the classical theory of convex set [31] give the necessary and

sufficient condition when U ⊆ Xn is separable.

Theorem 5.4 (Linear Separating Theorem). U and Uc can be separated by

a hyperplane in Rn if and only if

conv(U) ∩ conv(Uc) = ∅, (46)

where conv(K) is the convex hull of K in Rn.

Let z = (z, z′) denote the thresholds, and let B(A, z)/B(A,B, z) denote

the basic set of admissible local patterns of ICNN without/with input for

the given templates. The result in Theorem 5.3 still holds for ICNN systems.

Theorem 5.5. There exists (A, z) and d such that U = B(∗, A, z, d) for

some ∗ ∈ {+,−} if and only if U ⊆ Xn is separable.

Proof. It suffices to show that B(+, A, z, d) = U for some (A, z) and d if and

only if U is separable. The proof for ∗ = − is essentially the same, thus is

omitted.

First, considering the output pattern at Ci,j, where (i, j) 6= (k1m,k2m)

for some k1, k2 ∈ Z. The output pattern is + if and only if a+ z′ − 1 > 0,

and is − if and only if a − z′ − 1 > 0. Let a > 1 and z′ = 1
2(a − 1). The

output pattern at Ci,j can be arbitrary in such a case. It remains to show
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that U can be realized on Ci,j for some appropriate choice of (A, z), where

i, j ≡ 0 mod m.

Let S = {U ⊆ Xn| U satisfies (46)}. For each U ∈ S, denoting by

A+(U) = {(α, p)| α · v + p > 0 for all v ∈ U}, (47)

A−(U) = {(α, q)| α · v + q < 0 for all v ∈ Uc}. (48)

Then A+(U) ∩ A−(U) 6= ∅ if and only if U satisfies (46). In this case, the

boundary ∂A+(U) of A+(U) consists of (A,B, z) such that α·v+a+z−1 = 0,

where p = a+ z − 1.

Defining

B̂(+, α, p) = {v : α · v + p > 0}, (49)

then B̂(+, α, p) = U for all (α, p) ∈ A+(U). For each U ∈ S so that there

exists (α, p) ∈ A+(U), considering

z =
p

2
− k, a = 1 +

p

2
+ k, (50)

where k is chosen so that p
2 + k > 0. Then B(+, A, z, d) = B̂(+, α, p) = U ,

and vice verse. This completes the proof.

Next, considering system (42) with input. Given a mosaic solution x̄,

the output pattern at cell Cij is + if and only if

∑

|k|,|l|≤d
(k,l)6=(0,0)

ak,lȳi+k,j+l +
∑

|k|,|l|≤d

bk,lūi+k,j+l + a+ z − 1 > 0. (51)

Similarly, the output pattern at cell Cij is − if and only if

∑

|k|,|l|≤d
(k,l)6=(0,0)

ak,lȳi+k,j+l +
∑

|k|,|l|≤d

bk,lūi+k,j+l − a+ z + 1 < 0. (52)
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It is seen from the above discussion that the basic set of admissible local

patterns with “+” in the center is defined by

B(+, A,B, z, d) = {(v,w) ∈ Xn ×Xn+1 : α · v + β · w + a+ z − 1 > 0},

and the basic set of admissible local patterns with “−” in the center is

defined by

B(−, A,B, z, d) = {(v,w) ∈ Xn ×Xn+1 : α · v + β · w − a+ z + 1 < 0}.

Herein, β = (b1, b2, · · · , bn+1) and w = (w1, w2, · · · , wn+1) are obtained from



b4d2+2d+1 · · · b2d2+d+1 · · · b1
...

... · · · b2d2+2d+1 · · ·
...

...

bn+1 · · · b2d2+3d+1 · · · b2d+1




=




bi−d,j+d · · · bi,j+d · · · bi+d,j+d

...
... · · · bi,j · · ·

...
...

bi−d,j−d · · · bi,j−d · · · bi+d,j−d




and



w4d2+2d+1 · · · w2d2+d+1 · · · w1

...
... · · · w2d2+2d+1 · · ·

...
...

wn+1 · · · w2d2+3d+1 · · · w2d+1




=




ui−d,j+d · · · ui,j+d · · · ui+d,j+d

...
... · · · ui,j · · ·

...
...

ui−d,j−d · · · ui,j−d · · · ui+d,j−d




,

respectively. Namely, β represents the template B and w indicates the input

patterns at cell Ci,j.

Theorem 2.1 generalized Theorem 5.3 to a common case that the con-

trolling template B is considered and can be restated as follows.

Theorem 5.6. There exists (A,B, z) and d such that U = B(∗, A,B, z, d)

for some ∗ ∈ {+,−} if and only if U is separable.

Theorem 5.6 can also be applied for ICNN with input.
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Theorem 5.7. There exists (A,B, z) and d such that U = B(∗, A,B, z, d)

for some ∗ ∈ {+,−} if and only if U is separable.

Proof. This can be accomplished via analogous method as in the proof of

Theorem 5.5, thus is omitted.
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6 Inhomogeneous Cellular Neural Networks with-

out Input

The dense entropy property for the ICNN without input is studied in this

section. Subsection 6.1 develops the fundamental theory and gives it an

application for ICNN in Subsec. 6.2.

6.1 Two-dimensional subshift of finite type

This subsection investigates the preliminaries that are necessary for the un-

derstanding of dense entropy property of ICNN without input.

Definition 6.1. Let X ⊆ {1,−1}Z
2

be a 2-dimensional shift space with

finite alphabet A(X) = {1,−1}.

(1) If x ∈ X and S ⊆ Z2, the restriction of x to S is denoted by πS(x).

(2) Let Λ(n) = {(p, q) : p, q ∈ Z, 0 ≤ p, q ≤ n−1}. An n-block is πc+Λ(n)(x)

for some c ∈ Z2, x ∈ X. The set of n-blocks is denoted by Bn(X).

(3) A configuration on S ⊆ Z2 is a map E : S → A(X). For x ∈ X, E

occurs in x if πc+S(x) = E for some c ∈ Z2.

(4) For each c ∈ Z2, the shift map σc : X → X is defined by πd(σc(x)) =

πc+d(x) for all d ∈ Z2. Moreover, the iteration of σc is denoted by

σℓ
c = σc ◦ σ

ℓ−1
c for all ℓ ∈ N.

Denote πΛ(n)(x) by πn(x) for simplicity.

Definition 6.2. Given U ⊆ {1,−1}Zn×n , s ∈ N, s < n, the shift space
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Xs(U) ⊆ {1,−1}Z
2

is defined by

Xs(U) = {x ∈ {1,−1}Z
2

: πn(σℓ
(i,j)(x)) ∈ U for all ℓ ∈ Z, i, j ∈ {0, n − s}}.

(53)

Moreover, the r-copy of U , Ur ⊆ {1,−1}Zk×k , where k = rn − (r − 1)s, is

defined by

Ur = {v ∈ {1,−1}Zk×k : ∃ x ∈ Xs(U) such that πk(x) = v}. (54)

Remark 6.3. In other words, Ur is consisting of those patterns combined by

r2-many patterns in U with s-many rows/columns overlapped. For example,

consider U ⊆ {1,−1}Z4×4 and s = 1. U2 consists of those patterns with size

7 × 7 such that each pattern v ∈ U2 is a combination of four patterns in U

with one-row/column overlapped. As being seen in Fig. 11, the last column

on the right hand side in pattern 1 can be overlapped with the first column

on the left hand side in pattern 2 if and only if these two 1 × 4 patterns

are exactly the same. The same applies to the top row in pattern 1 and the

bottom row in pattern 3.

Next, the effect of the parameter s is studied. In general, the range of

s is less than n and greater than one. After constructing Ur from a given

U , the lemma below studies the relationship between the subshifts of finite

type Xs(U) and Xs(U
r). In addition, it reduces the complexity caused by

s.

Lemma 6.4. Given U ⊆ {1,−1}Zn×n and r ∈ N, then Xs(U) = Xs(U
r).

Proof. Since Ur is constructed from U such that each pattern in Ur consists

of r2-many patterns in U with s-many columns/rows overlapped, it is seen

that Xs(U
r) ⊆ Xs(U). This remains to show that Xs(U) ⊆ Xs(U

r).

If x ∈ Xs(U), then πn(σℓ
(i,j)(x)) ∈ U for all ℓ ∈ Z, where i, j ∈ {0, n− s}.

Definition 6.2 shows that πk(x) ∈ Ur, where k = rn − (r − 1)s − 1. Let
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1
1

2
2

3
3

4
4Overlapping

Overlapping

4 × 4 pattern
7 × 7 pattern

(a)

(b)

Figure 11: The construction of Ur for a given U and r ∈ N. Take U ⊆

{1,−1}Z4×4 , r = 2 and s = 1 as an example. First picking four patterns in

U , say P1, P2, P3, P4. If the patterns in the first row of P1 are differ from

the patterns in the last row of P3, then nothing happens. Otherwise, P1 and

P3 are combined with one-row overlapped. Repeating this process, a new

pattern with size 7 × 7 is thus derived.
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y = σ(i,j)(x) for some i, j ∈ {0, n − s}. Then πk(y) ∈ Ur via the same

argument. It can be easily check that πk(σ
ℓ
(i,j)(x)) ∈ U for all ℓ ∈ Z by

mathematical induction, where i, j ∈ {0, n− s}. Therefore, x ∈ Xs(U
r) and

this completes the proof.

Without loss of generality, assuming that s ≤ [n2 ], where [·] is the Gauss

function. The case where s > [n2 ] is discussed in Remark 6.8.

It is seen so far that a subshift of finite type is generated once U and s

are given. The method that embeds a chosen set of admissible local patterns

in an ICNN system is introduced.

If U ⊆ {1,−1}Zn×n is given and n is even, then an extension of U , denoted

by V ⊂ {1,−1}Z(n+1)×(n+1) , is constructed as follows. v = (v(i,j)) ∈ V if and

only if

(i) v(i,j) = −1 if i = n
2 + 1 or j = n

2 + 1.

(ii) v< n
2
+1> = u for some u ∈ U , where v<p;q> ∈ {1,−1}Zn×n is obtained

from v by deleting row p and column q, and denoted by v<p> if p = q.

Similarly, if n is odd, constructing V ⊂ {1,−1}Z(n+2)×(n+2) by v = (v(i,j)) ∈ V

if and only if

(i) v(i,j) = −1 if either i or j ∈ {n+1
2 , n+3

2 }.

(ii) v′
< n−1

2
>

= u for some u ∈ U , where v′<p;q> ∈ {1,−1}Zn×n is obtained

from v<p;q> by deleting row p and column q, and denoted by v′<p> if

p = q.

More precisely, U is extended to V by adding a cross of “−1” to the center

of each u ∈ U . Under such extension, there is a one-to-one correspondence
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+

+

(a)

(b)

Figure 12: (a) Extend a 4×4 pattern to a 5×5 pattern by adding a cross of

pattern into the center of the original one. The pattern “+” is represented

by red and the pattern “−” is represented by white and blue, herein blue is

used to distinguish from the original pattern. (b) Extend a 5× 5 pattern to

a 7 × 7 pattern.

between U and V. Figure 12 gives two examples for the cases where n is

odd and n is even, respectively.

Remark 6.5. Notably, the size of V is odd no matter what the size of U is.

That is, V ⊆ {1,−1}Zℓ×ℓ for some ℓ = 2k + 1, k ∈ N.

For each U ⊆ {1,−1}Zn×n , there associates an unique V ⊆ {1,−1}Z(n+1)×(n+1)

under the construction above. The relationship between Xs(U) and Xs(V)

is investigated below. Before stating the lemma, a definition is given first.

Definition 6.6. Let X,Y be shift spaces with shift maps σX and σY, re-

spectively. Define φ : X → Y be a factor map from X to Y if φ is onto and

φ ◦ σX = σY ◦ φ. X is conjugate to Y, denoted by X ∼= Y, if φ is a factor

map and one-to-one.
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A key lemma then follows.

Lemma 6.7. Given U ⊆ {1,−1}Zn×n , constructing V as above, then Xs(U) ∼=

Xs(V).

Proof. Define ψ : V → U by ψ(v) = u, where

u =





v< n
2
+1>, n is even;

v′
< n−1

2
>
, n is odd.

(55)

For simplicity, assuming n is even. The case where n is odd can be done

similarly. It is easily seen that ψ(v) is bijective. Furthermore, defining

φ : Xs(V) → Xs(U) by φ(y)(ℓi,ℓj)+c = ψ(πn+1(y(ℓqi,ℓqj)))c, where i, j ∈

{0, n − s}, ℓ ∈ Z, q =
n− s+ 1

n− s
, c ∈ Λ(n) and y ∈ Xs(V). In such a case,

φ ◦ σXs(V) = σXs(U) ◦ φ and φ is a conjugacy since ψ is one-to-one and onto.

This completes the proof.

Remark 6.8. If s > [n2 ], let ℓ ∈ N satisfies

[
(ℓ− 1)(n − s) + s

2

]
< s ≤

[
ℓ(n− s) + s

2

]
. (56)

Then constructing V via the same method mentioned above so that there is

a one-to-one correspondence between V and U ℓ. Similar as above, Lemma

6.4 and Lemma 6.7 show that Xs(U) ∼= Xs(V).

6.2 Two-dimensional inhomogeneous cellular neural networks

without input

Subsection 6.1 shows that Xs(U) = Xs(U
r) and Xs(U) ∼= Xs(V), where

U ⊆ {1,−1}Zn×n is given, V ⊆ {1,−1}Z(n+1)×(n+1) is obtained from U and

r ∈ N. This subsection applies the theory developed in the last subsection

to ICNN without input. First, the preservation of the separation property

between U and V is given below.
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Lemma 6.9. Given U ⊆ {1,−1}Zn×n , then U is separable if and only if V

is separable.

Proof. For simplicity, the case where n is even is proved. It can be done

similarly when n is odd.

If U is separable, there is a linear functional g : {1,−1}Zn×n → R and

α ∈ R so that g(u) < α for all u ∈ U , and g(u) > α for all u ∈ Uc. Let

ρ = α− min{g(u) : u ∈ U}. Define ĝ : {1,−1}Z(n+1)×(n+1) → R by

ĝ(v) = g(u) + ρ
∑

i or j= n
2
+1

v(i,j), (57)

where u ∈ {1,−1}Zn×n is obtained from v by deleting row (n
2 +1) and column

(n
2 + 1). Then ĝ(v) < α− (2n + 1)ρ for v ∈ V and ĝ(v) > α− (2n + 1)ρ for

v ∈ Vc. Thus, V is separable.

Similarly, if V is separable, then so is U . This completes the proof.

Before stating the main theorem, the following theorem is essential for

the study of the mosaic solutions of ICNN.

Theorem 6.10. Given U ⊆ {1,−1}Zn×n , and s ∈ N. If U is separable, then

there exist m ∈ N and (A, z, d) for system (42) such that X(B(A, z, d)) ∼=

Xs(U), where B(A, z, d) is the admissible local patterns obtained from (42)

with parameters (A, z, d),

X(B(A, z, d)) =





x ∈ {1,−1}Z
2

: πκ(d)(σ
ℓ
(i,j)(x)) ∈ B(A, z, d)

for all ℓ ∈ Z, i, j ∈ {0,m}




, (58)

and κ(d) = {(p, q) : −d ≤ p, q ≤ d, p, q ∈ Z}.

Proof. Without loss of generality, assuming that n is even and s ≤ n
2 . Once

U is given, constructing V as above. Lemma 6.7 and Lemma 6.9 indicate
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that Xs(V) ∼= Xs(U) and V is separable. Consider d = n
2 , Theorem 5.5

shows that there exists (A, z, d) so that B(A, z, d) = V.

Let m = 2d− s+ 1. For each x ∈ X(B(A, z, d)), (58) implies

πκ(d)(xℓ(i,j)) ∈ B(A, z, d) for all ℓ ∈ Z, i, j ∈ {0, n − s+ 1}.

It is easily seen that X(B(A, z, d)) = Xs(V). Since Xs(U) ∼= Xs(V), the

proof is completed.

When (A, z, d) is given, the basic set of admissible local patterns B =

B(A, z, d) is immediately determined. Let Σp,q(X(B)) denote the set of

global patterns in X(B) with size p× q, and let Γp,q(X(B)) = |Σp,q(X(B))|.

The entropy of X(B) is defined by

h(X(B)) ≡ lim
p,q→∞

log Γp,q(X(B))

pq
.

The existence of the limit can be found in [10].

The first main theorem of this investigation, the dense entropy property

of ICNN without input, as follows.

Theorem 6.11. For t ∈ [0, log 2], ε > 0, there exist m ∈ N and (A, z, d)

such that |h(X(B(A, z, d))) − t| < ε.

Before proving the theorem, the following lemmas should be stated first.

Lemma 6.12. Let Sn,l ⊂ Xn be defined by

Sn,l = {x = (x1, · · · , xn) ∈ Xn : xk = −1 for all l + 1 ≤ k ≤ n}, (59)

1 ≤ l ≤ n− 1, and Sn,n = Xn. Then Sn,l is separable.

Proof. Define a linear functional g : Rn → R by

g(x) =
n∑

i=l+1

xi for all x = (xi)
n
i=1 ∈ Rn. (60)
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Let h(x) = g(x) + (n − l − 1). It can be easily checked that h(x) < 0 for

all x ∈ Sn,l and h(x) > 0 for all x ∈ Sc
n,l. That is, Sn,l and Sc

n,l can be

separated by the hyperplane

H = {x ∈ Rn : g(x) = l − n+ 1}. (61)

This completes the proof.

Theorem 6.13. Given l, d ∈ N and n = 4d2. There exists Ud,l ⊆ {1,−1}Z2d×2d

such that h(Xd(Ud,l)) = l
n

log 2 and Ud,l is separable, where 1 ≤ l ≤ n.

Proof. If d, l ∈ N is given, n = 4d2 and 1 ≤ l ≤ n. Define

T : {1,−1}Zn×1 → {1,−1}Z2d×2d

by

(Tν)i,j = ν2d(i−1)+j for all ν = (νk) ∈ {1,−1}Zn×1 . (62)

Let Sn,l be defined as in Lemma 6.12, and let Mn,l be defined as follows.

Mn,l ≡ {K ∈ {1,−1}Z2d×2d : ∃ ν ∈ Sn,l such that K = Tν}.

Furthermore, constructing Ud,l ⊆ {1,−1}Z4d×4d as follow. J ∈ Ud,l if π(i,j)+Λ(2d)(J) ∈

Mn,l for i, j ∈ {0, 2d}, where Λ(n) is defined as Def. 6.1.

Claim. Ud,l is separable.

Let g : Rn → R be defined as in (60) and g̃ = g ◦ T−1. For w ∈

{1,−1}Z4d×4d , rewriting w as w =
w1 w2

w3 w4

, where wi ∈ {1,−1}Z2d×2d for

all i. Define a linear functional τ : {1,−1}Z4d×4d → R by τ(w) = g̃(w1) +

g̃(w2)+ g̃(w3)+ g̃(w4) and τ̃(w) = τ(w)+4n−4l−1. The above constitution

confirms that τ̃(w) < 0 for all w ∈ Ud,l and τ̃(w) > 0 otherwise. That means

Ud,l is separable.

61



Moreover, there are 2l-many patterns for each block of x ∈ Xd(Ud,l) with

size 2d× 2d. Therefore,

h(Xd(Ud,l)) = lim
p,q→∞

log Γ2dp·2dq(Xd(Ud,l))

2dp · 2dq
= lim

p,q→∞

log(2l)pq

4d2pq
=

l

n
log 2.

This completes the proof.

Proof of Theorem 6.11. For t ∈ [0, log 2] and ε > 0, there exist d, l ∈ N such

that | l
n

log 2 − t| < ε, where n = 4d2. Theorem 6.13 indicates there is a

separable set Ud,l such that h(Xd(Ud,l)) = l
n

log 2. Lemma 6.7, Lemma 6.9

and Theorem 6.10 shows h(Xd(Ud,l)) = h(Xd(Vd,l)) and there exist m ∈ N

and (A, z, d) such that B(A, z, d) = Vd,l. The proof is then completed.
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7 Inhomogeneous Cellular Neural Networks with

Input

In this section, Theorem 6.11 is extended to the case where B is not identical

to zero.

Once the parameters (A,B, z, d) are given, the basic set of admissible

local patterns is determined and denoted by

B ≡ B(A,B, z, d) = {Y ◦ U} ⊆ {1,−1}Z(2d+1)×(2d+1)×2 ,

where Y,U ∈ {1,−1}Z(2d+1)×(2d+1) . The output pattern Y coupled with input

pattern U , denoted by Y ◦U , is a two-layer array. Defining the output space

generated by B(A,B, z, d) as follows.

X(B) =





y ∈ {1,−1}Z
2

: there exists u ∈ {1,−1}Z
2

such that

πκ(d)(σ
ℓ
(i,j)(y ◦ u)) ∈ B for all ℓ ∈ Z, i, j ∈ {0,m}




, (63)

where κ(d) is defined in Theorem 6.10 and

πκ(d)(σ(i,j)(y ◦ u)) ≡ πκ(d)(σ(i,j)(y)) ◦ πκ(d)(σ(i,j)(u)).

For d, l ∈ N, let Ud,l be the same as defined in the proof of Theorem 6.13.

Denote by

Vd,l = {Y ◦ U : Y,U ∈ Ud,l} ⊆ {1,−1}Z2d×2d×2 . (64)

Then the lemma follows.

Lemma 7.1. Vd,l is separable.

Proof. Let τ be the same as in the proof of Theorem 6.13. Define a linear

functional θ : {1,−1}Z4d×4d × {1,−1}Z4d×4d → R by θ(u, v) = τ(u) + τ(v)

and θ̃(u, v) = θ(u, v) + 8n+ 8l− 1. It is easily to check that θ̃(u ◦ v) < 0 for

all u ◦ v ∈ Vd,l and θ̃(u ◦ v) > 0 otherwise. This completes the proof.
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Furthermore, the entropy of the subshift space induced by Vd,l can be

computed via the same method as in the proof of Theorem 6.13, thus the

proof is omitted.

Theorem 7.2. h(Xd(Vd,l)) = l
n

log 2.

The dense entropy property of ICNN with input then follows.

Theorem 7.3. For t ∈ [0, log 2], ε > 0, there exist m ∈ N and (A,B, z, d)

such that |h(X(B(A,B, z, d))) − t| < ε.

The proof of Theorem 7.3 can be accomplished via the same discussion

in the proof of Theorem 6.11, hence is skipped.
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