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Spatial Complexity in Some Class of
Cellular Neural Networks

Student:Chih-Hung Chang Advisor:Song-Sun Lin

Department of Applied Mathematics
National Chiao Tung University

Abstract

This dissertation consists two parts. The first part investigates the complexity of the global
set of output patterns for one-dimensional multi-layer cellular neural networks with input; the
second part focus on the dense entropy of two-dimensional inhomogeneous cellular neural net-
works with/without input. For the first part, applying labeling to the output space produces a
sofic shift space. Two invariants, namely spatial’entropy and dynamical zeta function, can be
exactly computed by studying the:induced sofic_shift- space. This study gives sofic shift a real-
ization through a realistic model. Furthermore, a new. phenomenon, the broken of symmetry
of entropy, is discovered in multi-layer cellular:neural networks with input. The second part
is strongly related to the learning problem-(or inverse problem); the necessary and sufficient
conditions for the admissibility“of local patterns-must be characterized. The entropy function
is dense in [0, log 2] with respect t6 the parameéter space and the radius of the interacting cells,
indicating that, in some sense, such system exhibits*a wide range of phenomena.
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1 Introduction

This dissertation includes two investigations. First we study the spatial com-
plexity in multi-layer cellular neural networks, and what comes next is the
elucidation of the dense property of topological entropy in inhomogeneous

cellular neural networks.

The cellular neural network (CNN) proposed by Chua and Yang is a large
aggregate of analogue circuits [12; 13]. The system presents itself as an array
of identical cells which are all locally coupled. Many such systems have been
studied as models for spatial pattern formation in biology [16; 17; 18; 26; 27],

chemistry [19], physics [10], image processing and pattern recognition [11].

The complexity of the set of global patterns for one- or two-dimensional

cellular neural networks has been Wldely dlscussed [3; 5; 6; 7; 8; 22; 24; 38].

However, this study is the ﬁrst to exp]d)ﬁe ﬁhe complex1ty for one-dimensional

multi-layer CNN. The two- dlmensmnal SOﬁC and two dimensional multi-layer

CNN are discussed in other ° papers

A one-dimensional multi—layef.GNNisystem with input is realized as the

following form,

dx(n) (n) (n
dt ST ey Y ol 4 2, (1)
k|<d Ik|<d

for some d € N,1 <n <N € N,i € Z, where

ul(.") = ygn_l) for 2 <n <N, ul(-l) =u;, x;(0) = xzov (2)
and
1
y= (@) = (e +1]~ e - 1) Q
is the output function. For 1 < n < N, parameter A = (a(”j, - ,aﬁl")) is

called the feedback template; B = (b(_nlg, e ,bgln)) is called the controlling



template, and z(™ is the threshold. The quantity :EZ(-n)

denotes the state
of a cell C; in the n-th layer. The stationary solutions & = (:il(n)) of (1)
are essential for understanding the system, and their outputs gZ(") =f @En))
are called patterns. A mosaic solution (EE")) satisfies |:i£n)| > 1 for all i,n.
Hence the investigation of stationary solution of N-layer CNN is to study a

N-coupled map lattice.

Z“ yz+k+zb 2+k+z(1)

|k|<d |k|<d
)
Za yz+k+zbk yz+k+z()
kf<d kf<d (4)

Z ak yz+k + Z bk yz+k 2.

Ik|<d Ik|<d

One-layer CNN with 1nput i3 ﬁrst conmdered Let

P2 ={(A,B z) AB G M1>< 2d+1;(R)7Z € R}, (5)

where n = 4d + 1. The parameter spa,ce ’P’H'2 canﬂbe partitioned into finite
sub-regions, such that each reglon has the same ‘mosaic patterns. Once the
region of the parameters space is chosen,- -the basic set of admissible local
patterns B C {+, —}%3*2 is then determined. The ordering matrix of all
local patterns in {+, —}Z3X2 is defined. For a given basic set B, the transition
matrix T(B) is then obtained, and a shift space is induced. For simplicity,
considering the case d = 1, i.e., each cell can only interact with their nearest
neighbors. In one-dimensional one-layer CNN without input, every partition
is associated with a unique set of admissible patterns B = Bsyx; and the

transition matrix T = T(Bzx1) [24]. Let

Y = {(vi)iez| Yi—1Yiyit1 € B for all i € Z}, (6)

then Y is a shift of finite type (SOFT). The number of global admissible

patterns with length n and the number of periodic patterns with period m



can then be formulated from the transition matrix T. However, this can
not be done when the basic set of admissible local patterns B = B3yo is
derived from the one-layer CNN with input. More precisely, each pattern
that is produced from the system is a coupled pattern gig;%?g , where y1y2y3
denotes the output pattern, and wujusug denotes the input pattern. For
simplicity, rewriting the coupled pattern as yi1y2ys © ujusus. The output
space is defined as

v (- y_1yoy1---) € {—l—,—}Z : there exists (- u_juguy -+ ) € {+, _}Z
U pr—

such that (---y_1yoy1 -+ ¢+ u_qupuy ---) € X(B)

(7)
where $(B) C {+, —}2x2 is a subshift space generated by B C {+, —}%3x2,
Analytical results indicate that Y7 is not a SOFT, but a sofic shift (Theorem
2.13). Under this situation, the formula Of spatial entropy (entropy) h(B)
(Theorem 2.17) and dynamical, zeta functlon (zeta function) (,(t) (Theorem
2.24) can be computed. Therefore, .ﬁhle..dynannc_s of the mosaic solutions

of multi-layer CNN are understood. Cdi'l\}ersély, :Ethe sofic shift is realized
- | 3

through a realistic model. = ‘

The analysis gets more com[-)licatéd N —iayer CNN, N > 2. However,
once recognizing the elaborate content of one-layer CNN with input, all
results for one-layer CNN with input can be extended to general case with
analogous method. We like to emphasize that each layer induces a sofic
shift and the N-layer coupled system induces the convolution of N-many
independent sofic shifts. Hence, Section 2 studies one-layer CNN with and
without input and emphases the difference. Without input, the dynamical
system is subshift of finite type and then sofic when input appears. Section

3 consists those general results introduced in Section 2.

The dynamics of multi-layer CNN with input produce a phenomenon

that is never seen in one-layer CNN without input. The entropy of the



one-layer CNN without input has a symmetry about the parameters. More
precisely, consider the one-dimensional CNN,

d:l?i o
dt

—x; + qyi—1 + ay; + aryiv1 + 2, (8)

and select one of the partitions of parameter space {(a;,a,) : aj,a, € R} =
R2. The parameters a and z thus have 25 subregions, each with the same

entropy. Furthermore,
h(B([m,n])) = h(B([n,m])), for 0 < m,n < 4. (9)

The details as in [24]. However, when considering multi-layer CNN with
input, not only the entropy and zeta function are varied, but the symmetry
of the entropy is broken even for the simplest case one-layer CNN with input.
Hence, input adding for a CNN system is the main mechanism that breaks
the symmetry of entropy.

Since the spatial entropy ; and dynarniucal zeta functlon can be formulated
in a theoretical procedure, 1618 comprehexlmble to ask how complicated such
system can be. In other wm:ds, h(bw,:[lna:n_;_Lphe_n:(;)hlena can be observed in

the system?

From the viewpoint of application aspect, most media in natural systems,
including physical, biological and electronic systems, are spatially inhomo-
geneous [21; 33; 37; 25; 20; 14]. This motivates the study of inhomogeneous

cellular networks (ICNN). A two-dimensional ICNN system is of the form,

—zij+z+ > apif(Tivkj1)

d k||l <d
i
d;j - + > braigkj4i,  4,J =0 mod m; (10)
k||l <d
—xi5+ 2 +aoof(wij), otherwise.

for some m € N, 4,7 € Z. Restated, the difference between CNN and ICNN
is that the templates and threshold at each cell C;; are spatially invariant
for CNN but variant for ICNN.



It is well-known that an important class of applications is steady-state
solutions, including mosaic solutions and defect solutions [11; 22; 24]. In
recent years, the complexity of steady-state solutions has been extensively
studied, and much attention has been paid to the complexity of the set of
global patterns, with particular reference to entropy [I; 4; 2; 5; 6; 9; 10;
22; 23; 245 28; 29; 30; 32]. To study how rich phenomena a the ICNN can
achieve, it is equivalent to ask the following question.

Question 1.1. For CNN with/without input, if the radius of the interacting
cells d is treated as a parameter, is {h(A4, B,z,d)}/{h(A,z,d)} dense in
[0,log 2]?

Multifractal analysis is introduced to a specified dynamical system when
one of its invariant is essentially the same as an interval (See [34] for more
detail), this motivates us to considét suich question. However, since the
well-known fact that the entropy Of]—siubshlft 'Sf..ﬁnite type take a family
of specific values, called Pefr(lin numblelr [ISZ], the 'cllense assumption cannot
be removed. The main diﬂ:"l_culty ig_‘EMthe _qluestion is related to the
fact that the admissible loca-lz--pgtt"éi:ﬁsl that aref-_.r;.roduced by CNN are very
limited [22; 24]. Restated, there uexiété u Q {1, —1}%nxn such that U #
B(A,z,d)/B(A,B,z,d) for all chosen values of the parameters A, B, z,d,
where n = 2d + 1.

For example, consider the one-dimensional CNN without input, and the
length of interaction d = 1. Figure 1 is the bifurcation diagram that relates
admissible local patterns to the parameters A = (a,a,a,) and z; readers
may reference [22; 24] for more details. First, choosing (a;, a,), yields a total
of eight partitions, as shown in Fig. 1. Second, the (a — 1, z) plane has 25
regions such that the admissible local patterns will be uniquely determined

once the region is chosen. For instance, if the parameters A, z are in region
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Figure 1: The bifurcation'diagram of 1-D CNN

[3,4] of partition IV, the ad_lin_i'ssible :k!)';;:all_' p_d—tterﬁé__ are

B={-0+ -0 g Ot OfF, — © —,— © +}.

That is, “3” indicates that the fhfég patterns With “+” in the center should
be chosen from the bottom, and “4” indicates that all four patterns with “—”
in the center can be chosen in IV. Thus, Figs. 1 and 2 show all admissible

local patterns of 1-D CNN with d = 1.

However, let & C {1, —1}73x1 be the set of patterns which are listed as
follows.

U={-&—--d+,+0—,-0—, -0 +,+O0 -}

Notably, U consists of patterns that are selected from different partitions for
a; and a,. More precisely, the patterns with “+” in the center are located in
partition V such that the parameters a; and a, must satisfy the conditions

)

a; < 0 and a, > 0. Moreover, the patterns with “—” in the center are selected



Figure 2: The pa'rtit.:iéirn of a —,é_r;léne of 1-D CNN
from partition I, in which the assoc1ated parameters ay, a, must then satisfy
aj,ar > 0. Accordingly, the.re does n’ot—exrt A; % such that B(A,z) = U.
Thus, some values of entropy cannot be attalned for all choices of 3 x 1 basic

sets for d = 1.

In a work on dense entropy, Quas and Trow [36] showed that every sub-
shift of finite type (SFT) X with positive entropy has proper SFT X’ which
is a subsystem of X whose entropy is strictly less than the entropy of X,
but whose entropy is arbitrarily close to that of X. However, they cannot
be guaranteed to be mixing [35]. Recently, Desai [15] proved that for any
Z%-SFT R of positive entropy, the SFT subsystems achieve dense entropy
in [0, h(R)]. Thus, if R is treated as a full shift, then the SFT is dense in
[0,10g | A|], where A denotes the symbols of R, and this result can be gen-
eralized to sofic systems. Restated, given a Z¢ sofic shift T, the sofic shift



subsystems achieve dense entropy in [0, A(T)]. However, a difficulty similar
to that associated with CNN arises in solving the problem of ICNN. The
difficulty is to guarantee that the patterns that would achieve the desired
entropy can be produced by an ICNN system with/without input. This in-
vestigation proposes a necessary and sufficient condition for the admissibility
of local patterns of ICNN, and demonstrates that suitable local patterns can
be found that achieve the given ¢ € [0,log 2] (according to Theorem 6.11 for
ICNN without input and Theorem 7.3 for the case with input). Finding
these patterns solves the dense entropy problem for ICNN. About the same

question to classical CNN, we have the following conjecture.

Conjecture. For any € > 0 and A € [0, log 2], there exists template A and
threshold z such that |h(B(A,2)) — | < e.

This dissertation is organlzed as ﬁ)’llpv;fs Sectlon 2 describes the com-
plexity of the global set of output patterns for oqe—layer CNN with input.
The entropy and zeta function can Bmly computed through the in-
duced sofic shift space. Section 3 extends allﬂr.esults in Section 2 to N-layer
CNN, where N > 2. Section 4 list; the cliétail of the partition in Example
2.5. Section 5 introduces the two-dimensional ICNN model and preliminar-
ies that constitute the background for two-dimensional CNN and extends to
two-dimensional ICNN. Section 6 then presents a general theory that yields
details about how ICNN relates to a shift of finite type. The solution to the
dense entropy problem is also addressed. Section 7 extends the results in

Section 6 to ICNN with input.



2  One-layer Cellular Neural Networks with Input

The complexity of the global set of output patterns for one-layer CNN with

input is investigated in this section.

2.1 Ordering Matrix and Transition Matrix

In this section, the parameter space P"*2 as in (5) will be partitioned into
finite sub-regions, such that each region has the same mosaic patterns. Once
the region of the parameters space is chosen, the basic set of admissible local
patterns B C {+, —}ZSX? is then determined. Then, the ordering matrix of
all local patterns in {+, —}%#3x2 will be defined. For a given basic set B, the
transition matrix T(B) will be obtained.

2.1.1 Partition of Parameter Space - =

} _ V :

This subsection explores thé"_rel?tiohshiﬁ-';betW:(;en the parameters of tem-

plates and the admissible local 'Ohtput pattéfﬁs. The differential equation
of CNN with input is of the form

dl’i

o= it D aryisk+ Y bouipe + 2, (1)
|k|<d l¢|<d
where A = [—agq, -+ ,a, -+ ,aq],B = [~bg, -+ ,b, - ,bg] are the feedback

1
and controlling templates, respectively, y = f(z) = §(|JE + 1| — |z —1]) is

the output function, z is the threshold, and a = ag, b = by.

The quantity x; represents the state of the cell at ¢. The stationary

solution Z = (Z;) of (1) satisfies

T = Z agYi+k + Z bty + 2.
|k|<d l¢]<d



The output § = (y;) is called output pattern. A mosaic solution Z satisfies
|Z;] > 1 and its corresponding pattern 7 is called a mosaic output pattern.
Consider the mosaic solution Z, the necessary and sufficient conditions for
state “4+7 at cell Cj, i.e., T; > 1, is

a—1+4+2z>—( Z apYivk + Z byt ). (2)

0<|k|<d l¢]<d

Similarly, the necessary and sufficient conditions for state “—" at cell Cj,
Le., z; < —1, s

a—1—-2> Z arYitk + Z botiye. (3)

0<|k|<d 0|<d

For simplicity, denoting #; by y; and rewriting the output patterns y_4---y - -

coupled with input u_g---u---ug as

Y—d 4 y . -1}"0_,;_(], (4)
u_d..u'l'_;d
] - |H ] R Y -
Where Y =Y_q-"Y- - Yd, U__‘.':‘U—d . u‘ud Le{’:

B o =
P )

“;vﬁﬁ.;,-,éndfbi] =1,1<i<n},

V" ={veR" v = (giyvaist

where n = 4d + 1, (2) and (3) caniBelrewritten in a compact form by

introducing the following notation.

Denote a« = (a_g,- -+ ya_1,a1, -+ ,aq), B = (b_g,-++ ,b,- -+ ,bg). Then,
a can be used to represent A’, the surrounding template of A without center,
and 3 can be used to represent the template B. The basic set of admissible

local patterns with “+” state in the center is defined as
B(+,A,B,z)={voweV":a—1+2>—(a-v+ [ -w)}, (5)

where - is the inner product in Euclidean space. Similarly, the basic set of

9

admissible local patterns with “—” state in the center is defined as

B(—, AB,z)={vow €eV":a—1-2>a v+ w} (6)

10

*Yd



Furthermore, the admissible local patterns induced by (A, B, z) can be de-
noted by
B(A,B,z) = (B(+,A,B,z),B(—,A,B, z)). (7)

Let
P2 = {(A,B,2)| A,B € Mix@a41)(R), 2z € R}, (8)

where M, s(R) means a r x s real matrix. P2 can be partitioned so that
each subregion generates the same mosaic patterns, when the controlling
template B = 0 is proved in [22]. The general results for B # 0 can be

obtained similarly, so the detailed proof is omitted for simplicity.

Theorem 2.1. There exists positive integer K(n) and an unique collection

of open subsets {Pk}ff:l of P2 satisfying

Pk. - s |

(@) P2 = O Y =

k

1=

(ii) P, NP, =@ for all k #L. ey e
(iii) B(A,B,z) = B(ﬁ,é,?)"iz:f aﬁd-f(‘)nly'if:(A,B;fz), (E,E,Z) € P, for some

Here P is the closure of P in P2,

2.1.2 Ordering Matrix

This subsection defines the ordering matrix X = X3.o of all possible local
patterns in {4+, —}#3x2. First, the notation of the pattern with size 3 x 1 is

considered.

Let

app = ——,ap1 = —+,a10 = +—,a11 = ++, (9)

11
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Figure 3: The ordering matrix of all local patterns in Zszxo
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defining

Qiyip Ay = =T S iy #£ 1/2 (10)

If a; 4,04, # &, then denoting it by a;, a;,a;, and it is a pattern with size

3 x 1. Define

X1 X2 X3 Xui Tij1l  Tij12  Tij13 Tijil4
Xo1 Xoo Xoz3 Xy Tij21 Tij22 T3 Tiji24
X = R Xij = (11)
X31 X3 X33 Xz Tij:31 Tij:32  Tij;33  Tij:34
| Xa1 X Xuz Xug ] | Tijial Tijia2 Tijaz Tijad ]

gy oy Aot
for 1 <i,j <4 as Figure 3. ;5,5 means the pattern ""2"72"3 where
a8182a5253

p— 1 ) — 1
7"1:|:22 :|7 7"222.—1—27‘17 Té:|:j2 :|7 7‘3:].—1_27"5,

~1 -1
31:|:k—:|7 82:k_1_281,). 8/2: [l—:|7 3321_1_28/27
: (12)

and [-] is the Gauss function. x s : '_ ' ;
- . - : b '-|I

If aryryayypy = & or aSI;Qasr 33:-— &, then x,] g = <. Furthermore, if
Tij.k # 9, then it is denoted by the pattern ag a?s“z g:i in {+, —}%3x2, Hence,
the self-similar property appear in X as in Figure 3, i.e., the upper pattern
of X;; is the same as the lower pattern of xy,;, for 1 <4, j,k,1 < 4. Once
the basic set of admissible local patterns B C {+, —}%3x2 is given, defining

Ynx2(B) the collection of all patterns with size n x 2 generated by B as

Spxo(B) = YV1Y2 - Un ¢ {4 —VEnx2 . Yi1¥ilitl € Bfor all 2 <i<mn —1
UTUQ - * * Up, Ui —1 U UG4+1
(13)

For simplicity, rewriting 3152 T %/Ln as Y142+ Yn OULUD * - * Uy, Where y;, u; €
Wz - U,

To measure the complexity of the global set of output patterns, the

following subshift space in {+, —}# is considered. Defining the output space

13



YU = YU(B) by

- (---y_1yoy1 - -- ) € {+, =}~ : there exists (---u_jugus ---) € {+, —}*
U pr—

such that (---y_1yoy1 -+ o u_quouy ---) € X(B)
(14)

where X(B) C {4, —}#=x2 is a subshift space generated by B C {+, —}%3x2,

2.1.3 Transition Matrix

This subsection derives the transition matrix for a given basic set B. The

transition matrix T is defined as

where Tj; = (tijr1) € Maxa(R) @I_l_fi" LRLETE g
1, if o €T &

§ FN ¢ ()
0, if Zggier € b, A2 Bor 250 = 2,

Lijikl =

where ;. = @rir2Oryrs satigﬁesl (12) ‘Once T(B) is constructed, it is then

Usyso0s s ’

rewritten as T(B) = (tpg) € Mix 16 (RYFWhere
tpg = tijiel, for p=4(i—1)+k,q=4( - 1)+ 1L (17)
If templates A, B and threshold z are given, then the basic set B(A, B, z)

is obtained from Theorem 2.1. Moreover, the transition matrix T is imme-

diately derived from (16) and (17).

If a set of input patterns U = {ujuguz} C {+, —}?3x1 is assigned, then

the basic set of admissible local patterns is denoted by

B((A,B,z);U) = {g;g;ﬁ% € B(A, B, z) : ujugus € L{}. (18)
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The transition matrix for ¢/ is defined by U = (u;;) € Myxa(R), where

1, if uquous €U
;s 1u2u3 (19)
0, otherwise.
If T denotes the transition matrix of B((A, B, z);U), then the following

theorem is obtained. Before the theorem is stated, two products of matrices

are defined as follows.

Definition 2.2. For any two matrices M = (m;j) € Mpxi(R), N =
(nivjr) € Myxe(R), the Kronecker product (tensor product) M @ N of M
and N is defined by

M N = (m,]N) S Mkzxkg(R). (20)

Next, for any P = (pi;), Q = (¢i5) € M, xr(R), the Hadamard product PoQ
of P and Q is defined by : bt

Po Q= (szQz;) G'err(R) (21)

]

Theorem 2.3. If (A, B, z) 'ew}d U are given, then
T(B((4, B, 2):)) = BBA,B, 2)) o (Es 2 V), (22)

where o and ® is the Hadamard product and Kronecker product in Definition
2.2, respectively, Ey = (e;5) € Muaxa(R) with e;; =1 for all 4,7, is the full

matriz.

Proof. Let the transition matrix T = (f,q) € Migx16(R), rewriting £,, =

tij.k1, Where

1 1
i = [I’T}H, j=p—A(i—1), k:[qT}Jrl,

and [ = ¢ — 4(j — 1). By (16) and (18), t,, = fij;kl = tij.5 - Uk is obtained.

This completes the proof. O
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2.1.4 Patterns Generation

This subsection introduces the patterns generation problem induced by
(A, B,z). Some results of patterns generation problem induced by (A, z)
must be recalled before stating the main theory [32]. The basic set of ad-
missible local patterns B(A, z) = B is then determined once (A, z) is given.

The shift space generated by B, denoted by X(B), is given by
X(B) ={y = (Wi)iez € {+, —}Z D Yio1YiYie1 € B for all i € Z}. (23)

The shift space X(B) is thus a subshift of finite type for all B = B(A, z). Let
Y, (B) denote the set of n-blocks (i.e., the pattern with size n x 1) in X(B),
and T',,(B) denote the number of the set of n-blocks. The theorem follows
below [32].

Theorem 2.4. If B = B(A,z) .‘iaé'fg-iven, Tlissthe transition matriz induced

by B, then T',(B) = |T"2| fér al n?éT:N,ﬁ‘_.é_3,jwhere T = > |til for
8 =LA I - 1<i,j<k
all T = (t;;) € Myxn(R).

W =
| - a

Considering (A, B, z) With"‘B_’ 7& 0, let B(A,ij?,z) = B denote the basic
set of admissible local patterns, Z;(YU) denote the set of n-blocks in Yy,

ie.,

y= ()i € {+ =15 13w = (w)iy € {+, -}
En(YU) - 3
such that you € X,,(B)

(24)
and I',,(Yy) denote the number of n-blocks of output patterns generated by
B. Theorem 2.4 is invalid in general for deriving the precise value of I, (Yy/)
for n € N. An example is given below. The Appendix explains the theorem

in detail.

Example 2.5. Let A = [a;,a,a,], B = [b,b,b,] satisfy the following condi-

tions.
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(i) a; > b >a. >b>b,>0.
(i) a;+b>a, + b+ byya; + b > b+ b.
(iii) by +b>a; > ar +b+b,.

(iv) ar+b>b + by, by > ar +byryar > b+ by

The positions of E;-" and Ej_ on the (a—1, z) plane are determined exactly as
in the Appendix. Given region R = [23, 18], i.e., R is bounded by (3, ¢4,, (15
and ¢1, and the set of input patterns is given by U = {—+—, —++,+—+}.
Thus, Figure 4 illustrates the basic set of admissible local patterns B =

B((A, B, z);U).

—o- —o S —  —O+
- — Esf +i Bt -
—o+ S EERE N o -
—B+ = OEHARE N e — 0+
to+ o oerdE g
IR AR <Ry -
+o— e’ —o4 -—o+
SB+ - @Ee 1B B4

Figure 4: The basic set of patterns for some templates A, B, z and input U

According to Theorem 2.3, the transition matrix of B((A, B, z);U) is

Ty Tia 0 0
L 0 0 0 Ty
T =T(B((A,B,2);U)) = | _ ,

57, 0 0 0

0 0 T Tu

17



where

0O 0 0O 0O 0 0 O 0
~ ~ ~ ~ 0 0 1 1 ~ 0 0 1 1 ~ 0
Tinw=To="Ti3 =Ty = , 131 = oy =

01 0O 0 0 0 O 0

0O 0 0 O 0O 0 0 O 0

From the transition matrix, the output patterns {—++, ++—, +——} exist.
By the concept of subshift of finite type, the output pattern — + 4+ — — is
admissible. However, there exists no ujusususus € X5(U) such that — +
+ — — o ujugugugus € 35(B). This finding shows that the inner structure
needs to be considered. More precisely, since f24f43f31 = 0, no input could

possibly produce the output pattern — 4+ 4+ — —.

So far, this work has shown that I',,(Yy) # |’f‘"‘2| in general, since
different input patterns might hayeiflié same output pattern. To overcome
this difficulty, the next Subsectioh int‘r‘uggiucesn the' concept of sofic shift in the

symbolic dynamical system =5 L

| :-7(

2.2 Definition and Backg"r_dund of Soﬁﬂc Shifts

This subsection recalls some definitions and main results of sofic shifts. Lind

and Marcus has described sofic shifts in detail [32].

Definition 2.6. A labeled graph G = (G, L) consists of an underlying graph
G with edge set £, and the labeling L : € — A assigns to each edge a label
from the finite alphabet A. A sofic shift is defined by X = Xg for some
labeled graph G.

Definition 2.7. A labeled graph G = (G, L) is right-resolving if, for each
vertexr of I of G, the edges starting from I carry different labels. In other
words, G 1is right-resolving if, for each I, the restriction of L to & is one-

to-one, where & consists of those edges starting from I.

18
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The following theorem shows that every sofic shift has a right-resolving
presentation. The method for finding an explicit right-resolving presentation

is called the subset construction method.

Subset Construction Method

Let X be a sofic shift over the alphabet A having a presentation G = (G, £)
so that X = Xg. If G is not right-resolving, then a new labeled graph

H = (H, L) is constructed as follows.

The vertices I of H are the nonempty subsets of the vertex set V(G) of
G.If I €e V(H) and a € A, let J denote the set of terminal vertices of edges
in GG starting at some vertices in I and labeled a, i.e., J is the set of vertices

reachable from I using the edges labélédui, There are two cases.

1. If J = @, do nothing. = : = ! -

r A | ; b jil
2. J#2,JeV(H) aﬁ-.(;,l‘drays/._;fm edgeiin M- from I to J labeled a.
Carrying this out for each I € V(H) and each a € A produces the labeled
graph H. Then, each vertex I in H has at most one edge with a given label

starting at I. This implies that H is right-resolving.

Theorem 2.8. Let G = (G, L) be a labeled graph which is not right-resolving,
H = (H,L'") be a right-resolving labeled graph constructed under the subset
construction method. Then Xg = Xy, i.e., G and H presents the same shift

space.
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2.3 Entropy and Zeta Function

This subsection investigates the entropy and zeta function for the global set

of output patterns using the concepts of sofic shifts.

2.3.1 Sofic Shift

This subsection shows that the output space of one-layer CNN with input
is a sofic shift. For a given basic set B, the transition matrix T is defined as

(15), (16) and (17). Let the alphabet S = {s;;}1<; j<4, where
Sij = aT’17’2arér37 (25)

is defined in (9), and

aTka+1

— 1 ohLRALEsS — 1
7“1:[22 }, rg =1 —1—2m3 7',2:{}7], rs=j—1—2r5. (26)

By (10), sij = @ if ry # rt. The syrﬂﬂ'_oilib t;_fansi-t-i'gn matrix is defined as

S = (sijTij) 154 <4 = Sistizhi) € Migx16(R), (27)

where st = @ if s = Qor ,-fz‘j;kl = 05 _-Rewriting S = (8pq), where

Spg = Sijtij:p for
p=4G—1)+k, q=4{—-1)+1
Let Gt be the underlying graph induced by T with edge set
E={epg 1 tpg=1,1<p,q <16},

and the labeling £ : £ — S defined by L(ep,) = sij. Gs = (G, L) is thus a
labeled graph as in Figure 5. By (25), a word s;,;,8i,i; in S% can be defined
DY SiyiySiziz = QriroQrorsGrar,- Lhe edge shift with alphabet S is defined by

(++ Si_yigSigiy Siyig ) € SZ . there exists (- k_1koky )
Xgg =

such that t; ;. .kk;, 7 0 for all j € Z
(28)
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(111]

Figure 5: The labeled graph of CNN with input

The following theorem is thus obtained.

The relationship between output $ ace Yy amd induced sofic shift Xgg

Definition 2.10. Let A,U be alphabe X be a shift space over A,
By(X) denote the set of k-blocks that occur in points in X, ® : By, yni1(X) —
U be a block map. Then the map ¢ : X — U” defined by y = ¢(x) with

Yi = P(Timm - i1 BT 1 - Tign) = (I)(x[i—m,i+n])

18 called the sliding block code with memory m and anticipate n induced by

.

Let ¥3(Yy) be the set of 3-blocks in Yy as in (24). A block map ® :
¥3(Yy) — S is thus defined by

D(YiYit1¥i+2) = SU(ysyis )V (yir1yise): (29)
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where U (y;yi+1) = 1+ ©(yit1) + 2¢(yi) and ¢ is defined by ¢(+) = 1 and
¢(—) = 0. Then the map ¢ : Yy — S% defined by

@b( Y—-1Yoyr o ) = ( ©Si_q1ioSigi1 Sivio T ) (30)
with s;.4,,., = @(yikyik+1yik+2) is a sliding block code from Y to Xgg.

Definition 2.11. Let ¢ : X — Y be a sliding block code, then ¢ is a

conjugacy if ¢ is invertible. It is also called X is conjugate to Y.

Theorem 2.12 ([32]). If a sliding code is one-to-one and onto, then it is a

conjugacy.

The conjugacy between Yy and Xgg can be proved now.

Theorem 2.13. Given a basic set B, the transition matriz T and the output

space Yy are then obtained. Lei;gsz '(G;LI'Z,::ﬁ-.),"be the labeled graph induced

by B, then Yy is conjugate t0"Xdg un}drﬁr t'ﬁ,e _sli;ﬁ_ng block code ¢ defined in
o il N R

B - i | jll

Proof. 1t suffices to prove th'a‘s_'q_b,-;is onefth(_)n'é and onto. If there exist
x # y € Yy such that ¢(x) = ¢(y), without loss of generality, assuming that
there is a number n such that z,, # vy, and x; = y; for all ¢ < n. This means

that at state x,,_1 = y,_1 and x,_o = Yp_o,

U(zp_12n) = 14 @(xn-1) + 20(xn) # 1+ @(Yn-1) + 20(Yn) = ¥ (yn-1yn)-
Therefore,

P(Tn—2Tn—1Tn) = SU(ay_szn_1)W(@n_12n) 7 SU(yn_2yn-1)¥(yn_1yn) = P(Yn—2Yn—1Yn)-

This contradicts to ¢(x) = ¢(y). Thus, ¢ is one-to-one.

For every s = (-8 ,iySipi1Siria ) € Xgg, by (28) there exists a

sequence (---k_1koky---) such that tijijkikj 7 0 for all j € Z. By
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(16), the related pattern ---a;  io.k_1koTigir:koks Tirioikiks - -+ 15 admissible,
.. a?“,laT()aT’l ...
.. asila‘goasl e
the pattern - --a, ,ar,ar, --- € Y. Moreover, by the relation in (12),

Le., is admissible. By the definition of output space (14),

. 17 if Arg = +;
i =14 11 + 21, and 1 =
0, ifap, =—

Hence, there exists ---a, ,ap,ar, --- € Yy such that ¢(---a,_,ar,ar, -+ ) =

s. This shows that ¢ is onto, and the proof is completed. O

2.3.2 Entropy

Let ¥,(Yy) C {+, —}?»<1 denote the set of n-blocks in Yz as in (24). The

spatial entropy of Y is defined by

PSR
(YU) - nh_m ﬁ”—, (31)
where I',, (Yyr) is the cardlnal number of (% ) E:xample 2.5 demonstrates
that Theorem 2.4 is invalid in computmg—the—spatlal entropy of Y. However,
Theorem 2.13 shows that the output space YU is conjugate to the sofic shift
Xgg- The entropy of Yy can be computed by the following theorems show

in [32].

Theorem 2.14 ([32]). If two shift spaces X and Y are conjugate, then
h(X) = h(Y).
Theorem 2.15 ([32]). Let G = (G, L) be a labeled graph. If G is right-

resolving, then h(Xg) = h(Xgq).

Theorem 2.16. For Yy is given, Gg is the sofic shift induced by Yy . If Gs
is right-resolving, then h(Yy) = log p(T), where p(T) denotes the mazimal

etgenvalue of T.
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Proof. Since Yy is conjugate to Xgg, and Gg is right-resolving, by Theorem

2.14, Theorem 2.15, and Perron-Frobenius theorem,
h(Yu) = h(Xgg) = h(Xt) = log p(T). (32)

This completes the proof. O

In general, Gg induced by Y7 (B) might not be right-resolving. However,
a sofic shift H = (H, £’) which is right-resolving can be constructed and still
conjugate to Yy (B) via the subset construction method stated in Subsection

2.2. Thus Theorem 2.16 can be extended to the general case.

Theorem 2.17. For a given B C {—,+}%3x2 let Yy = Yy (B) be the shift
space induced by B. Then there exists a labeled graph representation H =

(H,L') such that

X0 = Iokgi). (33)

h(Ye) Sh

Proof. For the admissible lo'gal,ll pat‘Ee_r,né.'l'S; giyeh, le:l'r, T and the labeled graph

representation Gg defined as"i@bOVe,<-i:'Irf-'Q‘s;'-iS alri?éidy right-resolving, then it
is done. If not, using subset céﬁstfyctiorll_métﬁ:)d, there is a labeled graph
representation H such that Xgg = Xy and is right-resolving. Note that the
underlying graph and transition matrix of H, H and H, are also derived.
Moreover, by Theorem 2.8 and Theorem 2.13, Yy is conjugate to Xp. Thus,
by Theorem 2.16, h(Yy) = h(Xy) = log p(H). O

Example 2.18 (Continued). Let (A, B, z) be the same as in Example 2.5,

S = {511, 812, S24, S31, S43, Sa4 }, by (27), the symbolic transition matrix is

s1iTir  s12Th2 0 0
0 0 0 SouT
S 2T | (34)
831T31 0 0 0
0 0 543143 Sa4Ty4
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Then, the labeled graph representation of B, Gg = (GT, L), is not right-
resolving. For simplicity, denoting the vertex set of G by V = {1,2,--- ,16}.
Using the subset construction method to construct another labeled graph

H = (H, L) as Figure 6. Theorem 2.8 shows that Xg, = Xy.

SN

{2} < > {3, 4}—> {6} 4%16}
b d
{11,12} >, 8} /}10}
B f 5 .
\{14}:/f\{ \
c \*
7}

Figure 6: A right—resolvih'g labeled graph viét subset construction.

The transition matrix of<Xy, is Q}):cained as below.

00 1050 1

0000 00 0
10010000O0O0TO0DO
100100000000
000000O0DO0O0GO0T1O0
000000O0DO0TLO0O0O0

g | 000000001000 35)
001000000000
000000O0DO0O0GO0O0O
00000O0DO0T100O01
000000101000
000000O0DO0O0GO0O0O
000000101000
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Thus, h((A, B,z);U) =log A > 0, where \ = 1.324718 is the root of f(t) =
6 —2tt 42 — 1.

In the next subsection, the zeta function of Y;; will be discussed.

2.3.3 Zeta Function

Given a sofic shift Yy with shift map o, invariant values and invariant func-
tions of the shift space (Y, o) are interested. In the last subsection, the
entropy h(B) is studied. This subsection examines the zeta function (,(t)

with respect to the shift map o.

Let pn(o) = {y = (yi)iez € Yu|o"(y) = y} be the collection of all

periodic patterns of period n. The zeta function of o is defined as

G0 e STHAT, (39)
sl = =

i =1
00 n -

where exp(z) = Z — Is the elassicalrexpomential function.
i . -
If a shift space X is a shift of firlite ‘;yp'e, ‘then there is an edge shift X 4

conjugate to X. The following theorem computes the zeta function of any

shift of finite type.

Theorem 2.19 ([32]). Let A be a k x k nonnegative integer matriz, o4 the

associated shift map. Then

1

Coa(t) = det (I — iA)’ (37)

where I, is the k x k identity matriz. Thus the zeta function of a shift of

finite type is the reciprocal of a polynomial.

The following notations are needed to investigate the zeta function of

26



sofic shift. Let F' = {f1, fo, -, fm} be a finite set. A permutation 7 of F'is

given below as an impression (f,,-- -, fi,.), i.e., m(fe) = fi, for 1 < £ <m.

Definition 2.20. A permutation 7 is said to be even (odd, resp.) if the
number of interchanges (or transpositions) needed to generate the permuta-

tion is even (odd, resp.) Moreover, the sign of w is defined as

() 1, T 18 even; (38)
sgn(mw) =
—1, 7 is odd.

Let H = (H, L') be a labeled graph which is right-resolving with r many
vertices, assuming that V = {1,2,--- ,7}. Let Hg denote the symbolic
transition matrix of H and H the transition matrix of the underlying graph

H.

For 1 <k <r, constructing_.a,fl'abélea "graph Hj, with alphabet {+s;; :

sij € S} as follows. .- . ?ﬁ.‘; - .
1. The vertex set of Hj, istthe set VR of all-subsets of V having k elements,
ie, Vil = (})- Moreover, -th'é'-orderiﬁg Qi—l‘rthe states in each element

of V, is fixed. o

2. For each s;; € S, we denote s;;(/) the terminal state of s;; starts at
I. For Z=A{I, -, Ix:},J ={J1, -+, Jx} € Vg, there is an edge from
7 to J provided there exists s;; € S such that s;;(I1), - ,s;({}) are
well-defined and (s;;(11),-- ,si;(Ix)) is a permutation of J. More
than this, the edge is labeled as s;; (—s;;, reps.) if the permutation is
even (odd, resp.) Otherwise, there is no edge with label +s;; from 7
to J.

Definition 2.21. Let Hg, denote the symbolic transition matriz of Hy,, Hy,
be obtained from Hg, by setting all the symbols in S equal to 1. We call Hy,
the k-th signed subset matriz of H.
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Theorem 2.22 ([32]). Let H = (H,L') be a right-resolving labeled graph

with v many vertices, and Hy, be its k-th signed subset matrixz. Then

Con (1) Hdet (I —tH;,)V", (39)
k=1

where I is the identity matriz.

Theorem 2.23 ([32]). If two shift spaces X and Y are conjugate, then
Cox (t) = Coy (t)

Therefore, the zeta function of the sofic shift Xgg can be derived using

the following theorem.

Theorem 2.24. For a given B C {—,+}%3x2 let Yy = Yy (B) be the shift
space induced by B with shift map o. Then there exists a labeled graph

representation ‘H such that

/—\_
|_
ol
|
i
L
ko

H Ay R (40)
where Hy, is the k-th signed éabset__njqdfm;v-qf.vﬂ, and n is the cardinal number

of the underlying graph H.

Proof. Let Gg be the labeled graph representation of Y77, and Xgg be the
sofic shift induced by Gs with shift map ogg. By Theorem 2.13, Xgg is

conjugate to Yyr. Thus, we have

Co(t) = C"Gs (t) (41)

If Gg is right-resolving, then it is done by Theorem 2.22. Otherwise,
constructing a labeled graph H which is right-resolving and represents the
same shift space as Gg via subset construction method. This completes the

proof. O
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Example 2.25 (Continued). Continuing with Example 2.5 and Example
2.18, for the investigation of zeta function, all the k-th signed subset matrix

H. of H are needed to be constructed. Therefore, H; = H as in (35),

o O

(@) (@) o o (@) o o (@)
| |
—_ =

(@) [a) o o (@) o o (@)

H,

o o o o o
o o o o o

o o o o o o o

0
0
0
0

and H3 = Hy = --- = Hj3 = 0, the zero matrix. Hence, by Theorem 2.22,
Co(t) = (1+1)?
TN 1 =242 A — 67
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3 Multi-layer Cellular Neural Networks

In this section, all results in one-layer CNN with input will be extended to

multi-layer CNN.

3.1 Partition of Parameter Space

Asin (1), an N-layer CNN system with input is of the form,

dt + Z ak yz-i—k + Z b( H—k +Z( ™) (1)
|k|<d |k|<d

for some d € N,1 <n < N € N,i € Z, where

u =y " Vor2<n< N, uV =y, 2(0) =2, (2)

(2 (2

The feedback and controlling tefrﬁélateé of 'é':;i(:h layer are
A(n) = (a(n(37a(_72+17 e, (n)) a‘ﬂd B(n) ( b(ngg_l,_lv T 7b(n))7

where 1 < n < N. The parameter spa,ce—and ﬁhe admissible local pat-
terns of each layer can be represented by P(”) = {(A™ B™ (M) and
BM(AM BM () where 1 < n'< N Let A = (AD A oo AN,
B = (3(1)73(2)7... ,B(N)), 5= (2(1) PAC ,z(N)), pm — (7)(1)773(2)7... 77>(N))7
where m = N(2d 4+ 1) — 1, Y = y("cgy("cgﬂ yfl"), where 1 <n < N, and

U=u_qu_gq11--ug, then

Y(N)OY(N_l)O"'OY(l)OUZ
B(A,B,z) =

)

Y™ oy e B for 2<n< N, and YV o U € BY
(3)
where ¢ is defined in (4). The generalized partition theorem of N-layer CNN

then follows.

Theorem 3.1. There exists K(m) € N and unique collection of open subsets

{Pk}K(m of P™ such that

30



1) sz = U Pk

(i) Py P =2 for k# j

(iii) B(A, B,z) = B(A,B,%) < (A, B, 2), (A, B,2) € Py for some k.

Proof. For simplicity, the case N = 2 is proved. The general case can be

done analogously, the details are omitted here.

By Theorem 2.1, there exist K; € N and an unique collection of open

subsets {P }K; of P such that

(1) P4d+3 U P(Z

2) PONPY = o for k£ 0. 33

(3) BO(AD, B -(0)) — B z>(A B BM 1fand only if

(A® B, Z)) (AI(’),—BL’—)-;Z-(—Z))EP,; for some £k,
where i = 1,2, Let K/ = K .K;; define P = (P{", P?), where k =
(k1 — 1)Ko+ ko, 1 <k <Kj,1<ky<Kj. Let

Py = P!, where i = min{k| there exists Y DoY) € BZ) and YWl € BWY,
(4)

and

P, = P!, where i = knf}ﬂin {k| there exists Y DoY) ¢ B?) and YWoU € BWY,
>Re—1
(5)

for £ > 2 and k; € N such that P,éj = P;. Then there exists an positive
integer K < K’ such that {P,} | satisfies (i), (ii), (iii), then the proof is

completed. O
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3.2 Ordering Matrix

The ordering matrix X3, of all possible local patterns in {+, —}2sx¥ ig

defined recursively as

X111 Xio %) (%)

g @ X3 Xy
X3xn = ; (6)
X311 X322 @ O

(%) (%) Xys Xy

where -~ .
Xivisn Xigjiiz @ Z
O g Xz Xigi .
111 ) ( )
Xijizr Xigji;32 % %
9 g Xiji43 Xi1j1;44_

Xirjusiogo; - sinjn =

= e %)

= - 7 =
g £ Xivg cingah i3 Xirjrsinga; sinju;24

Xivjusiogorsinini3l  Xi1jiiogofuti ¥ Z
i ) g TR L singias - i gxi43 Xiljl;izjz;“';ikjk;44_
(8)
for1<k <N -2, and
Xi1j1§i2]'2§"'§iN—1jN71 =
Tiyjiisin—1in—1;11 Tigjisesiv_1n—1;12 g g
%} ) Tiggrysin_1in—1;23  Tirjiyjin_1iN—1;24
Tiyjiisin—1in—1331  Tirjisesiv_1n—1;32 g g
i g Z Tigjissin_1in-1343  Tirgassin_1in-1;44 ]

9)
where 1 < ig, 7 < 4, and 1 < k < N. The construction contains a self-

similarity property in X3y . Asin Subsection 2.1.2, ;, i, iojo:- sin_1jn_15inin
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means the pattern

(aT11T12 ar’lzrlg) © (aT21T22 a?“ézT’zg) AR (aTNlTNz ar’§\,27’N3)

in {+, —}23xN_ where @y, 0, is defined in (10), and

;cgrk?)
Jk—1
2

i — 1 . /
rE1 = [ } s Tk2 = ip—1=2rp, T = [

5 ] . Tky = Jjr—1—2r,.

The pattern is & if ar,,ry, a7 r,; = @ for some 1 <k < N. Otherwise, it is

denoted by the pattern

(arnamz a?“13) < (armarzz a?“za) Y (aT’N1 Aryg aTN3)

in {_i_, _}ZSXoo_

As long as the basic set of the admissible local patterns B C {+, —}Z?’X (N+1)
is given, %, (B) denotes the collection of all m-blocks generated by B. The
subshift space of {+, —}Z is then défined By, _

Y(N) = (ny))ZEZ :': ther,e, e}F-iggt.lU?Y(l)?Y(Z)v o 7Y(N_1)
YU = all H : - s (10)
such that Y& SYIELEE Sy Mo U € 1(B)

P

where £(B) C {+, —}Zex v+ s penerated by BC {+, —}Zox(v+n),

3.3 Transition Matrix

The basic set of admissible local patterns B = B(A, B, z) can be determined
from the N-layer CNN parameters (A, B, z). Denote by T,, the transition
matrix induced by B™ C {+, —}%23x2_ where B is the basic set of admis-
sible local patterns in the n-th layer, and 1 <n < N. Let ’T‘N = T(B;U) be
the transition matrix induced by B with the set of input patterns U. The

following theorem is then obtained.

Theorem 3.2.
'/I\‘N = (TN (024 E4N71) o (E4 ®TN_1) S M4n+1><4n+1 (R), (11)
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where

Tn =(T,® E4n71) o (E4 ®Tn_1) € Myn+iygnt1(R), for2<n <N -1,
(12)
and

Ti =T 0(E;®U) € Migxi6(R), (13)

U is the transition matriz of U. Hence T is the transition matriz given in

Theorem 2.3.

In particular, if N =2,

Ty = (T2 ® E1) o (E4 ® (T} o (B ® U))). (14)

Proof. For simplicity, the case N = 2 is proved. For N > 2, it can be done
by mathematical induction, thus is omitted,

Denoting T = (Ti1j1)1§2'1.,j'1§4 afnﬁ_i T :: '(Tiijg)léh,jﬁ% where ﬁljl €
Misxi6(R) and T;, 5, € M4¥4‘I(R) f'orv1_1;<_':;i1,j1' 4 4% The case i1 = j1 = 1 is
proved, the others can be treatedz;nﬂm ,.“,-frl

Denoting 711 = (fll;igjz)lgig,-—jéga;-Wﬁefe Titsiage = (Bitsingasiags)1<is o<t €
Myxa(R), for fixed 1 < g, jo < 4, and T11 = (t11;i055)1<in,jo<a € Maxa(R).
Since the output patterns of the first layer will be treated as the input pat-

terns of the second layer, let Us be the output patterns of the first layer

coupled with input 4. By Theorem 2.3, the transition matrix of U is
Tl =Tio (E4 &® U) c M16><16(R). (15)

Denoting

T1 = (Tiyjo)1<injo<as  Tinjo = (Binjaiizgs)1<is ja<a € Maxa(R).  (16)

Then

fll;izjz;iw'a =1 t115i,5, = 1 and Zizjz;i3j3 =1, (17)
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for 1 < iQ,jQ,’ig,jg < 4. That iS,
Ty = (T @ Ey) o (T} o (B4 @ U)). (18)

The proof is completed. 0

3.4 Entropy and Zeta Function

This subsection introduces the formula for calculating entropy and zeta func-
tion of N-layer CNN. Let S = {sl(-;.z)}lgi,jg be the alphabets, and let
S, and S be the symbolic transition matrices of T, over S and T n for
1 <n < N. By Theorem 2.9, Xgg is a sofic shift induced by B where
Gs,, is the labeled graph representation of the n-th layer. Furthermore, Yy
is the output space induced by the N-layer CNN as defined in (10). The
following theorem can be obtai'r}edfl-).y. the..s:éme_ method in Theorem 2.13, so

the details are omitted. R Geley

Theorem 3.3. Yy is conjugate to Xge i -
=] | " i

The definition of convolutiof is.given below.

Definition 3.4. Let X, Y be two shift spaces with graph representation
Gx = (Vx,&x), Gy = (Vy,Ey), resp., then the convolution of X,Y, de-
noted by X«Y , is the shift space with underlying graph Gx.y = (Vx«v, EXxY),

where
Vx.«y = {f(a:) S gy‘ HARS Vx} (19)

for some f:Vx — Ey.

The convolution theorem for an N-many sofic shift is then obtained.

Theorem 3.5. Let Xgg be the sofic shift induced by B, then
ng = XQSN Kook ng2 * )(gs1 (20)
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is the convolution of Xgg - s Xgg s
Sy = (SN ® Eyn-1) 0 (B4 ®Sn1), (21)
where

gn = (Sn X E4n71) o (E4 ®§n_1) € Myn+iygnt1(R), for2<n<N -1,
(22)
and

§1 =S;0 (E4 & U) S MlG(R). (23)

Proof. This can be done using the same method used in the proof of Theorem

3.2, the details are omitted. O

Thus, the theorems for entropy and zeta function can be found via the

same methods as described in the last §ect_ibn..

] - |H | B N ._
Theorem 3.6. For a given B7C {+,_r.—._Z}JZ3><({V+1)j: let Yy = Yy(B) be the
shift space induced by B. j‘.’_li'en ﬁie}té'_._@;i_s_isﬁa lqé'eled graph representation
H = (H,L) such that ' -

h(Yi) = h(Xre) = log p(EL). (24)

and .
Co(t) = T det(r — 1) D", (25)
k=1

where Hy, is the k-th signed subset matriz of H, and r is the cardinal number

of the underlying graph H .

An example for 2-layer CNN is illustrated here.
Example 3.7. Consider (A, B, z) with A1) = A®) = A B = B® = B,
21 = 23 = z and A, B and Z satisfy the same condition described in

Example 2.5. Moreover, the set of input patterns is given by U = {— +
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BAW, BM >(M:14) is consisting of the

+ +,+ — +}. Then BY =

-, =

following patterns.

++
(S]]
++

Denote Us the output patterns of B, ie.,

Upy={——— ——++——+++++——++}

Then B®

B(A® B® »2).14) is consisting of the following patterns.

+o-
— B+
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The transition matrix T = T((A, B, z); ) is then

~

Tyy T, 0 0
0 0 Ty Tou

T3 O 0 0
0 0 Ty Tu
where
T T7 0 0 T 17 0 0
~ ~ ~ 0O 0 0 13 ~ 0 0 0 13
T =Ty3 =Ty = , 12 = )
T 0 0 0 > 0 0 0
0O 0 Ty Ty 0O 0 0 O
0O 0 0 O 0O 0 0 O T T3y 0 0
N 00 0 O ~ 0 0 0 T3y ~ 0 0 0 T3y
To3 = , Tog = , Tg1 =
00 0 O vrTQ 0.0 0 0O 0 0 O
0 0 T7 Ty 0 0 Ti .Tl_ 0O 0 O
and . :E :7.'( .;I
0000\ = (006700 000 0
001 1| wuloeoT 14 0001
le y L2 = ‘7-‘7T3:
01 0 0 0107040 01 0 0
0 0 0 O 00 0 O 00 0 0

Let S = {s11, S12, $23, S24, S31, S43, S44 }, the symbolic transition matrix is

siTi s19T1o 0 0
0 0 93T 594 T
S _ ! 23T23  S24 T2y 7 (27)
831T31 0 0 0
0 0 843'i‘43 844T44

which is not right-resolving. Using subset construction method, the spatial
entropy then can be found, h((A, B, z);U) = log A\, where A = 1.49676 is

a root of f(t) = t8 —2t5 +t* — 3t2 — 1. Moreover, the zeta function is
C(t) = 1+t+3)1+t—13)
T 122 44— 316 — 18
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3.5 The Broken of Symmetry

The basic set of admissible local patterns B can be determined from (A4, B, z).
The entropy of each partition is symmetrical in one-dimensional CNN with-
out input, i.e., where B = 0 [24]. For example, if (A, z) is picked such that

a; > a, > 0, then parameters a and z have 25 regions. Clearly,

h(B([m,n])) = h(B([n,m])), for 1 <m,n < 4. (28)

The symmetry is broken for the one-layer CNN with input, as shown

below with an example.

Consider

d:Ei
dt

= —x; + aqyi—1 +ay; + eri+1'+'bzu¢71 + bu; + bruiyg + 2, (29)

where b = 0, then the symmetry [of égp“?c?t"(;)py.-is b_ﬂ)ken, as revealed in Figure
7‘ iy - 4 5

Table 1: Some maximal eige‘r_l'\-faluenzts_b}p@i'gggd in ofle—layer CNN with input.

maximal eigenvalue I characteristic polynomial

A =2 t—2

Ao = 1.9479 5ot 13 2 1

A3 = 1.8832 th—23 412 -2t +1

g = 1.8393 B3 —t2—t+1

A5 = 1.7549 3 —22 4+t —1

e = 1.7417 88— 27T 5 Pt — 23 42— 1
A7 = 1.6992 -2t 413 -2t 4+ 1
g = g = 1.618 2 —t—1

g = 1.5618 A

Ao = 1.5289 -2t 3 -1
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Figure 7: The effect of input patterns. The parameters a;, a,., b, b, are consid-
ered as follows. (i) a; > a, >b> b, >0, (ii) a; < b+, (iii) a;+b, < a, +b.
Subfigure (a) lists regions that produce positive entropy. Those regions with
positive entropy are symmetric, i.e., h([m,n]) = h([n,m]). However, such
property would be destroyed when input patterns are given. Subfigure (b)
lists the same regions as in (a) but ¢@ input patterns Y = {——, —+,+—}
are considered. It is seen that the symmetry is no longer hold. Herein,

k; =log A\; for 1 <4 < 10 are listed in Table 1.



4 Study of an Example

This section introduces in detail the relationship between the admissible
local patterns and the partition of parameter space in Example 2.5. A one-
dimensional CNN with input is of the form,

da;i
dt

= —x; + qyi—1 + ay; + aryip1 + bui—1 4 bu; + bruir + z, (30)

where A = [a;,a,a,],B = [b,b,b,] represent the feedback and controlling
1

templates, respectively; y = f(x) = §(|ZE+1| —|z—1]) is the output function,

and z is the threshold.

Consider that ag, a,, b, b, b, satisfies the inequality in Example 2.5, i.e.,
the partition for the parameter space {(a;, a,, by, b, b, )} is chosen. For a given

mosaic solution 7, the state at cell C; is +, i.e., z; > 1, if and only if

a—1+2z> —(.a':lé/é_l ﬁf‘iryiﬂ-*@i + bpuis). (31)

g Bt e
Similarly, the state at cell (3 isi=, i.e., #;{< =1, if and only if
P | | ~

@ — 1=z > s 3 A G bl + by (32)

Let o = (ay,a,), B = (b,b,b,), Vs {71)--# (vl) ER™: |yl =1foralll<
i < n}, the basic set of admissible local patterns with “4” state in the center

is defined as
B(+,A,B,2) ={vow:a—1+2>—(a- v+ -w)} (33)

where v € V2 and w € V3. Similarly, the basic set of admissible local

patterns with “—” state in the center is defined as
B(— AB,z)={vow:a—1-z>a v +3-w'}. (34)

Furthermore, the basic set of admissible local patterns derived from (A, B, z)

is denoted by
B(A7B7Z) - (B(+7A7B7Z)7B(_7A7B7Z))‘ (35)
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Let Ef,ﬁj_ denote the linear maps

a—1+z:cjanda—1—z:cj_

for some ¢, ¢, 1 < 4,5 < 32, respectively. By the condition (i) ~ (iv) in

i’j’

Example 2.5, the following relation can be obtained.

f <cy << <0<cr <y <<, (36)
and ¢, = —cgg_k,l < k < 32, where
¢, =—a—ar —b—b—b,, c;=a—a—b+b—0b,

¢ == —ar —b—b+b, cg=a—a —b+b+tb,
3 =—ap—a,—b+b—>b, cyg=a+a —b—b—b,
¢y =—ar—a,—b+b+b, c=—a;+a,+b+b—b,
GG =—a+a—b—b=b, cy=a+a—b-b+b,
o=t ar b - b, oy =gt o+ bt b+ b
¢; = —ap—ar +b —b 5 brgz;!?%?ig .z_'iag ”—."q_r +b —b—b,,
g =~ —artb ‘b“‘ by, 054: ar — a:rr + b — b+ by,
G = —ar-+ ar — b D G Ao, — b+ b~ b
C1o = —ar+ar — b +-f)"%-.b¢,‘_,(;2_6,,= m'-_’f_ ay — by + b+ by,
i=a—a —b—b—b, cp=a—a+b+b-b,
Clo=—a—ar+b +b—0by, cyg=a;—a,+b +b+by,
cg=a—a,—b—b+b, c=a+a +b—b—0b,

Cly=—a—ar +b +b+b., cyy=a;+a+b —b+b,

o~

s =—ai+a.+b —b—>b.,, c5;=a+a+b+b—b,
Clg=—a+ar+b —b+b., c35=a+a+b+b+0.

Figure 8 depicts a bifurcation diagram of the (a—1, z) parameter space. The
basic set of admissible local patterns is then determined once the parameters
a and z are chosen, i.e., some specified region in the bifurcation diagram is
selected. More precisely, if a region [m,n| in the bifurcation diagram has

been chosen, then for you € B(+, A, B, z), the admissible local pattern with
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Figure 8: The (a — 1, z) bifurcation diagram.
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l:+406+ 2:40+ 3:+d+ 4:+P+
+ 8+ + B — + B8+ + 8-
5:+@— 6:+®— T:+P+ 8:4+d+
+ B+ + B — — B4 — B -
9: 4+ — 10: 46— 11l:—6+ 12: 46+
+ B8+ + B8 — + B+ — B84+
13: -+ M4:+0+ 15:+@— 16: 4+ —
+ B - ~-B- - —H—
17: -+ 18:—d+ 19:—p— 20:+P —
+ B8+ + B8 — + B+ — B8+
21— - 22:+®d— 23:—D®+ 24:—D+
N - —_B- — B4+ —®B—
25:—Ph— 26:—Pp— 27:—P+ 28: — P+
+ B8+ + B8 — — B+ —B8 -
29:—-d—- 30:——- 31:—— 32:— —
— B+ — 8- - B+ - B-

Figure 9: The order of the appearance of the patterns with state “+” in the
center.
state “+” in the center, y ¢ q‘fﬁéﬁsﬁgs}ﬁhg following inequalities.

i —Ei= ] W

=]

a-1+25 lacy 5w, (37)
h e ATy (38)

Similarly, for y'ou’ € B(—, A, B, z),_y" ou satisfies the following inequalities.

a—1—z>a-y +p6-u, (39)

e, <a—1-2z<c, ;. (40)

In other words, m patterns have the center state “+ 7, and n patterns have

13

the center state “ — 7. The chosen partition uniquely determines the order
of those patterns. Figure 9 lists the order of the patterns with “+” in the

center. Figure 10 lists the order of the patterns with “—” in the center.
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Figure 10: The order of the appearance of the patterns with state “—” in

the center.



5 Inhomogeneous Cellular Neural Networks

From now on, a two-dimensional ICNN is investigated. Recall that a two-

dimensional (2-D) CNN is of the form,

dx. .
d;’] =-zijtzt > apif(@iskga) + > bratliokge  (41)
k]|l <d |kl |l <d

where (i,7) € Z?, d € N, f(x) is a piecewise-linear output function, defined

y=F(x) = 5w +1] = o - 1))

a-qd - Gdd b_ga -+ bga
A=lag| = : : and B = [by] =

A_g—d *'* Gd_d b_g—a -+ bg—d
represent the feedback template ana the '('z'c')i'ltrolling template, respectively;
z denotes the biased term or thresl}old The quantities x; ; denote the
state at cell C;;, and y; ; denote the ou_tput at G’Z j- Stationary solutions
z = (Z;;) are essential to ﬁnderstan:dﬁNlL and their outputs are called
patterns. Here we concern a spec1ﬁed class of ouﬁput patterns called mosaic
patterns. The connection between CNN with / without input and shift spaces

is investigated.

The ICNN system is of the form,

—xij+ 2+ Y i f(Tivk,jt1)

d |k, |1]<d
oy
d:;] - + > briUirk i 1,7 =0 mod m; (42)
|k, |1]<d
—Tij+ 2+ ao,0f (i), otherwise.

for some m € N, 7,7 € Z. Restated, the difference between CNN and ICNN
is that the templates and threshold at each cell C;; are spatially invariant

for CNN but variant for ICNN.
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5.1 Separation property

Several notions for the formulation of the main results in Secs. 6 and 7 are
presented in this subsection. Since the states C; ; with i = kym, j = kam for
ki,ko € Z are crucial for the study of the mosaic solutions of ICNN, these

cells are the main focus in the rest of this investigation.

Definition 5.1. Let T = (Z; ;) be the stationary solution of system (42). T
is called a mosaic solution if |z; ;| > 1 for alli,j € Z, and is called a interior
solution if |Z; j| < 1 for alli,j € Z. A defect solution Z satisfies |z; ;| > 1
for some (i,j) € D and |Zy| < 1 for some (k,¢) ¢ D, where D C Z* and
D+ @.

First, considering the system (42) without input, that is, the template
B = 0. For each given mosaic,.séiﬁtiop::i, the output pattern at cell C; ; is

+, i.e., ;; > 1, if and only i E !_ﬂ 5 R

> @E,zﬂi+k,jwﬁz +1>0, (43)
R N maa?
(k,1)2(0,0)

where ag g = a. Similarly, the output i)att'é:fn at cell C; j is —, i.e., T; ; < —1,
if and only if
Z a1 Yitkjr—a+2z+1<0. (44)

|k|,|l|<d
(k.1)#(0,0)

(43) and (44) can be rewritten in a much more compact form by introducing

the following notations.

Denote by n = 4d? + 4d. Let X" be the n-dimensional lattice points,
ie.,

X" ={v=(v;) e R":|v;] =1for 1 <i<n}. (45)

Then, for a given pair of template A and threshold z, the basic set of ad-
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missible local patterns with “+” state in the center is defined by

B(+,A,z,d) ={veX":a-v+a+2z—1>0}

[

where is the inner product, o = (a1, a2, -+ ,a,),v = (v1,v2, -+ ,vy,) are

obtained from

respectively. In other words-','.'ﬁ_og .réﬁfeséﬁtgvtvh(_e-._,srurrounding template of A
without center, and v indicates the eutpfutr pét-terns at cell C; ; whose center

is omitted. Similarly, the basic set of admissible local patterns with “—” in

the center is defined by

B(— Az, d)={veX":a-v—a+z+1<0}.

An investigation of the basic sets of admissible local patterns B(+, A, z, d)
and B(—, A, z, d) are essential for the understanding of the global mosaic pat-
terns on Z? that are generated by the given (A, z). Some definitions and

theorems should be stated first.

Definition 5.2. GivenU C X™, U is called separable if there is a hyperplane
H in R™ such that U and U® can be separated by H, where U¢ = X" \ U.
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Hsu et al. [22] investigate how the admissible local mosaic patterns
B(x, A, z,d) relate to the parameters A,z and d in CNN systems, where
x e {+,—}.

Theorem 5.3 ([22]). There exists (A,z) and d such that U = B(x, A, z,d)

for some x € {4+, —} if and only if U is separable.

Moreover, the classical theory of convex set [31] give the necessary and

sufficient condition when &/ C X" is separable.

Theorem 5.4 (Linear Separating Theorem). U and U can be separated by
a hyperplane in R™ if and only if

conv(U) N conv(U®) = @, (46)

where conv(K) is the convex hu'l_l-.oflllC mR” .

- "'|-H'l'.-n'-_
Let z = (z,2') denote the thresholds, and lét B(A,z)/B(A, B,z) denote
the basic set of admissible i;pbal pattenns_oLICNN without/with input for
the given templates. The resﬁ'f‘é in .Tileor'en-l v5_3_.s-fill holds for ICNN systems.

Theorem 5.5. There exists (A,z) and d such that U = B(x, A, z,d) for
some * € {+,—} if and only if U C X" is separable.

Proof. Tt suffices to show that B(+, A, z,d) = U for some (A, z) and d if and
only if U is separable. The proof for x = — is essentially the same, thus is

omitted.

First, considering the output pattern at C; j, where (i, j) # (kim, kam)
for some kq,ky € Z. The output pattern is + if and only if a + 2’ — 1 > 0,
and is — if and only if a — 2’ —1 > 0. Let @ > 1 and 2’ = (a — 1). The

output pattern at C;; can be arbitrary in such a case. It remains to show

49



that U can be realized on C; ; for some appropriate choice of (A4, z), where

1,7 =0 mod m.
Let S = {U C X"| U satisfies (46)}. For each U € S, denoting by

AT U) = {(a,p)] «-v+p >0 for all v € U}, (47)

A~ (U) ={(,q)] a-v+¢q <0 for all v e U}. (48)

Then AT (U) N A (U) # @ if and only if U satisfies (46). In this case, the
boundary AT (U) of AT (U) consists of (A4, B, z) such that a-v+a+2—1 =0,

where p=a+ 2z — 1.

Defining
g(+,a,p):{v:a-v+p>0}, (49)

then B(+,a,p) = U for all (a,p) g AT(bl), For each U € S so that there

exists (o, p) € AT(U), consid@fi"ﬁg- N
=

==l Sl N

~k a= L + A8 k:g (50)

where k is chosen so that £ —l— k i 0 Then B(+ A z,d) = g(+,a,p) =U,

Z:.'

l\DI-'@f .‘ '1..

and vice verse. This completes the .proof Ak O

Next, considering system (42) with input. Given a mosaic solution Zz,

the output pattern at cell Cj; is + if and only if

> ket Y, briliigkgiitatz—1>0. (51)
k||l <d k||l <d
(k )£(0.0)

Similarly, the output pattern at cell C;; is — if and only if

S aniirrgei+ Y etk —a+2z+1<0. (52)
|kl,[l|<d k][l <d
(kD (0.0)
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It is seen from the above discussion that the basic set of admissible local

patterns with “4” in the center is defined by

and the basic set of admissible local patterns with “—

B(+,A,B,z,d) = {(v,w) e X" x X" :a. v+ p-w+a+z—1>0},

defined by

Herein, 8 = (b1, by, - - -

B(—, A, B,zd) ={(v,w) e X" x X" a0+ -w—a+2+1<0}.

bagz2d+1 - bogeaar1 - bi
baq2 42441
b1 r bagzgzarn o iadbadt
; -
and !.ﬂ i
Wy 2d+1 *°° W2 4d+ N Wi
Wod242d+1 AT
Wn+1 Tt Wog2y3d4+1 ctt W2d41

ybpt1) and w = (wy,wa, - - -

bi—dj+d

Abi—dj—d

: uir,'ldvj +d

8

Uj—d,j—d

b

in the center is

bi jtd
bi,j
bi j—a

Wi j+d

, Wn+1) are obtained from

bitd,j+d

bitd,j—d

Wi+d,j+d

Uit-d,j—d

respectively. Namely, § represents the template B and w indicates the input

patterns at cell C; ;.

Theorem 2.1 generalized Theorem 5.3 to a common case that the con-

trolling template B is considered and can be restated as follows.

Theorem 5.6. There exists (A, B,z) and d such that U = B(x, A, B, z,d)

for some x € {+,—} if and only if U is separable.

Theorem 5.6 can also be applied for ICNN with input.
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Theorem 5.7. There exists (A, B,z) and d such that U = B(x, A, B,z,d)
for some x € {+,—} if and only if U is separable.

Proof. This can be accomplished via analogous method as in the proof of

Theorem 5.5, thus is omitted. O
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6 Inhomogeneous Cellular Neural Networks with-

out Input

The dense entropy property for the ICNN without input is studied in this
section. Subsection 6.1 develops the fundamental theory and gives it an

application for ICNN in Subsec. 6.2.

6.1 Two-dimensional subshift of finite type

This subsection investigates the preliminaries that are necessary for the un-

derstanding of dense entropy property of ICNN without input.

Definition 6.1. Let X C {17_1}22 be a 2-dimensional shift space with
finite alphabet A(X) = {1, _1} 1 .

e B N

(1) Ifr € X and S C 72, tﬁé restriction:'(;fx:to S is denoted by wg(x).

|

(2) Let A(n) = {(p,q) : p,q G0 <pg<n- L¥. Ann-block is 7.y p(n)(2)
for some ¢ € 72, x € X. The set of_n-blécks is denoted by By (X).

(3) A configuration on S C Z* is a map E : S — A(X). Forx € X, E

occurs in © if Teys(x) = E for some ¢ € Z2.

(4) For each c € 72, the shift map o, : X — X is defined by m4(cc(x)) =

Tera(x) for all d € Z2. Moreover, the iteration of o, is denoted by

ol =0,00 " for all ¢ € N.

Denote () (z) by mp(z) for simplicity.

Definition 6.2. Given U C {1,—1}!nxn s € N,s < n, the shift space
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X, (U) C {1, —1Y2* is defined by

X,U) = {z € {1, -1} : 1 (00, ;) () €U for all £ € Z,i,j € {0,n — s}}.

(53)
Moreover, the r-copy of U, U™ C {1, —1}2kxk where k = rn — (r — 1)s, is
defined by

U™ ={ve {1, -1 2k . 3 1 € X (U) such that m(x) = v}. (54)

Remark 6.3. In other words, U" is consisting of those patterns combined by
r?-many patterns in & with s-many rows/columns overlapped. For example,
consider U C {1, —1}%4x4 and s = 1. U? consists of those patterns with size
7 x 7 such that each pattern v € U? is a combination of four patterns in U/
with one-row/column overlapped. As being seen in Fig. 11, the last column
on the right hand side in pattern 1 can be overlapped with the first column
on the left hand side in pattern, 2 if and only if these two 1 x 4 patterns
are exactly the same. The sam.e éppli}:sj t?l_‘.cihe_: top row in pattern 1 and the

bottom row in pattern 3. = e =
L L ’ ',_'. ' L fil

Next, the effect of the p;i'amétéf 5 1sstud1ed In general, the range of
s is less than n and greater thah-"(;ne. After -c.onstructing U" from a given
U, the lemma below studies the relationship between the subshifts of finite
type Xs(U) and X(U"). In addition, it reduces the complexity caused by

S.

Lemma 6.4. Given U C {1, —1}2xn and r € N, then X (U) = X, (U").

Proof. Since U" is constructed from U such that each pattern in U" consists
of r?-many patterns in ¢ with s-many columns/rows overlapped, it is seen

that X(U") € Xs(U). This remains to show that X(U) C X, (U").

If x € X5(U), then Wn(aéj)(x)) €U for all ¢ € Z, where i,j € {0,n— s}.

Definition 6.2 shows that m(z) € U", where k = rn — (r — 1)s — 1. Let
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1 A
[ G
Nl
_, |Overlapping EE—— YL
2
D
4
4x4
x 4 pattern 7 X 7 pattern
Overlapping

Figure 11: The construction of U" for a given U and r € N. Take U C
{1, —1}Z4X4, r =2 and s = 1 as an example. First picking four patterns in
U, say Py, Py, P3, Py. If the patterns in the first row of P; are differ from
the patterns in the last row of P, then nothing happens. Otherwise, P; and
P5 are combined with one-row overlapped. Repeating this process, a new

pattern with size 7 x 7 is thus derived.
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y = oy )(z) for some i,j € {0,n — s}. Then mx(y) € U" via the same
argument. It can be easily check that ﬂk(afij)(a;)) € U for all ¢ € Z by
mathematical induction, where 7,j € {0,n — s}. Therefore, z € X,(U") and

this completes the proof. O

Without loss of generality, assuming that s < [§], where [-] is the Gauss

function. The case where s > [§] is discussed in Remark 6.8.

It is seen so far that a subshift of finite type is generated once U and s
are given. The method that embeds a chosen set of admissible local patterns

in an ICNN system is introduced.

IfU C {1, —1}%nxn is given and n is even, then an extension of U, denoted
by V C {1, —1}2t+0x(n41) | is constructed as follows. v = (v(,5) € V if and

only if

|| ;

P |H .- b 1
(1) v(i7j):—11fz—2—|—10r‘7—%+1 F &=
= L.{'_. 7’|

(ii) v<zi1> = u for some u'ri-_e U, where '-1';<p;q>' £ {1,—1}2nxn is obtained

from v by deleting row p .zind"cqlumn q; and denoted by veps if p = gq.

Similarly, if 7 is odd, constructing V C {1, —1}20+2)x(n+2) by ¢ = (v ) €V

if and only if

(i) v( ) = —1 if either i or j € (ol oty

(i) v .1 = u for some u € U, where v, .. € {1, —1}Znxn is obtained
2
from v<p.,~ by deleting row p and column ¢, and denoted by U/<p> if

p=gq

More precisely, U is extended to V by adding a cross of “—1” to the center

of each u € U. Under such extension, there is a one-to-one correspondence
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Figure 12: (a) Extend a 4 x 4 pattern to a 5 x 5 pattern by adding a cross of

pattern into the center of the original one. The pattern “+” is represented

by red and the pattern “—” ;@resented g}?&“_‘whlte and blue, herein blue is
A

e | ‘u
used to distinguish from the P’i _,['" 1

a 7 x 7 pattern.

ﬂ._!;-.T:‘,!‘_"‘F |:|

g n. J =Tt 5 "I} -2
between U and V. Figure 15‘%} two exagpﬁés for the cases where n is
e B

* iy %
odd and n is even, respectively. ! T

Remark 6.5. Notably, the size of V is odd no matter what the size of U is.
That is, V C {1, —1}%Z¢x¢ for some ¢ = 2k + 1, k € N.

For each U C {1, —1}%nxn  there associates an unique V C {1, —1}Z¢+0x(n+1)
under the construction above. The relationship between X (/) and X4(V)

is investigated below. Before stating the lemma, a definition is given first.

Definition 6.6. Let X,Y be shift spaces with shift maps ox and oy, re-
spectively. Define ¢ : X — Y be a factor map from X to'Y if ¢ is onto and
¢poox = oy o¢. X is conjugate to Y, denoted by X =Y, if ¢ is a factor

map and one-to-one.



A key lemma then follows.

Lemma 6.7. GivenU C {1, —1}2nxn  constructing V as above, then X(U) =

Xs(V).

Proof. Define 1) : V — U by 1(v) = u, where

Vengls, N is even;
u= ? (55)

/ .
v neis n is odd.

For simplicity, assuming n is even. The case where n is odd can be done

similarly. It is easily seen that v (v) is bijective. Furthermore, defining

¢ Xs(V) — Xs(U) by é(¥)@iej)+e = Y(Tnt1(Yegigj)))e; Where i,j €
— 1

{0,n—s}h €L q= &, c € A(n) and y € X4(V). In such a case,
n—s

poox,(v) = 0x,u)°¢ and ¢ is a conjugacy since ¢ is one-to-one and onto.

This completes the proof. phARLER ., _ O
Remark 6.8. If s > [5], leti € N s;aEiisﬁes_-'i :

({=1(n=%) +5 i o
2 '-',- .;“n [=8=] 5 . 2

Then constructing V via the S-zifn"e method mbﬂﬁoned above so that there is
a one-to-one correspondence between V and U’. Similar as above, Lemma

6.4 and Lemma 6.7 show that X () = Xs(V).

6.2 Two-dimensional inhomogeneous cellular neural networks

without input

Subsection 6.1 shows that X (U) = X (U") and X (U) = X(V), where
U C {1,-1}%nxn is given, V C {1, —1}2m+0x@+1) is obtained from U and
r € N. This subsection applies the theory developed in the last subsection
to ICNN without input. First, the preservation of the separation property

between U and V is given below.
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Lemma 6.9. Given U C {1, —1}2nxn then U is separable if and only if V

1s separable.

Proof. For simplicity, the case where n is even is proved. It can be done

similarly when n is odd.

If U is separable, there is a linear functional g : {1, —1}Z"X" — R and
a € R so that g(u) < a for all uw € U, and g(u) > « for all u € U°. Let
p=a—min{g(u) : u € U}. Define §: {1, —1}2c+0x+1) — R by
g(v) = g(u) +p Z V(i,j)> (57)
ior j=1+1
where u € {1, —1}%nx» is obtained from v by deleting row (%+1) and column
(5 +1). Then g(v) < a— (2n+1)p for v € V and g(v) > a — (2n + 1)p for
v € V°. Thus, V is separable. _ a#L0000

Similarly, if V is separab_Ie,'then 56 iié'-L{:'-Thié'__completes the proof. [
: | ':- K i ;,Ii
Before stating the main theoren, the-followiiig theorem is essential for

the study of the mosaic soluti(;ﬁs BELCNNAE .

Theorem 6.10. GivenU C {1,—1}2nx» and s € N. IfU is separable, then
there exist m € N and (A, z,d) for system (42) such that X(B(A,z,d)) =
Xs(U), where B(A,z,d) is the admissible local patterns obtained from (42)

with parameters (A, z,d),

S {17 _1}Z2 : 7T.l-z(d)(O-aj)(x)) € B(A,Z,d)

X(B(Av z, d)) = ) (58)
foralll € Z,i,5 € {0,m}

and k(d) ={(p,q) : —d < p,q < d,p,q € Z}.

Proof. Without loss of generality, assuming that n is even and s < 5. Once

U is given, constructing V as above. Lemma 6.7 and Lemma 6.9 indicate
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that X(V) = X (U) and V is separable. Consider d = %, Theorem 5.5
shows that there exists (4,z,d) so that B(4,z,d) = V.

Let m = 2d — s+ 1. For each = € X(B(A,z,d)), (58) implies
To(d) (Te(i ) € B(A,2,d) for all £ € Z,i,j € {0,n — s+ 1}.

It is easily seen that X(B(A,z,d)) = Xs(V). Since X (U) = X (V), the

proof is completed. O

When (A, z,d) is given, the basic set of admissible local patterns B =
B(A,z,d) is immediately determined. Let X, ,(X(B)) denote the set of
global patterns in X (B) with size p x ¢, and let T' ((X(B)) = |3, 4(X(B))].
The entropy of X(B) is defined by

— i e i08Tpe(X(B))
X(B)) —"_p,};ﬁoo: g ’

The existence of the limit can be fouf}_dl m[l()] "

The first main theorem (:_)fl._this iLny_es-tigatioﬁ, th;e dense entropy property

of ICNN without input, as f51_lows-..<';: :

Theorem 6.11. Fort € [O,log-2],=5' %10, th-ere exist m € N and (A, z,d)
such that |h(X(B(A,z,d))) —t| <e.

Before proving the theorem, the following lemmas should be stated first.
Lemma 6.12. Let S,,; C X" be defined by
Spi={x= (1, ,xp) € X" rxp=—1 foralll+1<k<n}, (59)

1<li<n—1, and S,, = X". Then S, is separable.

Proof. Define a linear functional g : R” — R by

g(x) = Z x; forall v = (x;);, € R™ (60)
i=l+1
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Let h(x) = g(z) + (n — 1 — 1). Tt can be easily checked that h(z) < 0 for
all z € Sy, and h(z) > 0 for all z € Sfu. That is, Sy; and thl can be

separated by the hyperplane
H={zeR":g(x)=1—n+1}. (61)
This completes the proof. O

Theorem 6.13. Givenl,d € N andn = 4d*. There exists Uy, C {1, —1}F2dx2d
such that h(Xq(Uqy)) = %10g2 and Uq is separable, where 1 <1 <n.

Proof. If d,l € N is given, n = 4d? and 1 <[ < n. Define
T:{1, _1}an1 — {1, _1}Z2d><2d

by oA ..
(TV)ij = Vad(i—1)4s" for all = () € {1,—-1}%. (62)

Let Sy, be defined as in Lemma 612,'aHJndlet Mng be defined as follows.

} i

SELEIS), such that K = Tv}.

My, = {K € {1,—1 Y3

Furthermore, constructing Uy; C {1, ;1}2'45@1 as follow. J € Uq if 7(; jyya2a)(J) €

M, for i,j € {0,2d}, where A(n) is defined as Def. 6.1.

Claim. U is separable.

Let g : R® — R be defined as in (60) and § = go T~!. For w €

w1 w2

{1, —1}#aaxad | yewriting w as w = , where w; € {1, —1}%2dx2d for

w3 Wy
all i. Define a linear functional 7 : {1, —1}%4x4¢ — R by 7(w) = §(w;) +

G(w2)+g(wz) + g(ws) and 7(w) = 7(w)+4n—41—1. The above constitution
confirms that 7(w) < 0 for all w € Uy and 7(w) > 0 otherwise. That means

Ug, is separable.
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Moreover, there are 2!-many patterns for each block of z € Xq(Uq,;) with

size 2d x 2d. Therefore,

. log Tagp.adq(XaUay)) . log(2h)pe
h(Xq(U =1 i’ L =] ——— = —log2.
(XaUas)) p’qlgloo 2dp - 2dgq p,qlEloo 4d2pq n 0g
This completes the proof. O

Proof of Theorem 6.11. For t € [0,log 2] and € > 0, there exist d,l € N such
that |Llog2 — ¢| < &, where n = 4d?. Theorem 6.13 indicates there is a
separable set Uy, such that h(X;(Uq)) = %log 2. Lemma 6.7, Lemma 6.9
and Theorem 6.10 shows h(Xg(Uq;)) = h(X4(Va,)) and there exist m € N
and (A, z,d) such that B(A,z,d) = Vg,;. The proof is then completed. [

62



7 Inhomogeneous Cellular Neural Networks with

Input

In this section, Theorem 6.11 is extended to the case where B is not identical

to zero.

Once the parameters (A, B,z,d) are given, the basic set of admissible

local patterns is determined and denoted by
B=B(A B,z,d) = {Y oU} C {1, —1}f@dtx@dtx2

where Y, U € {1, —1}2@a+0xa+1) | The output pattern Y coupled with input
pattern U, denoted by Y oU, is a two-layer array. Defining the output space
generated by B(A, B, z,d) as follows.

) B )

y € {1,-1}% : therelexistsaie {1, —1}2" such that
() (0(; ) (ybm)) €BSorall.l €7, i, j € {0,m}

where r(d) is defined in Th(_e,()'.lrem Gloand .

!

T (@) (i) (4 © 0) Y@ Ol DYOT () (015 ().

For d,l € N, let U;; be the same as defined in the proof of Theorem 6.13.

Denote by
Vai ={Y oU:Y,U €Uy} C {1, —1}P2ax2axz, (64)
Then the lemma follows.

Lemma 7.1. Vg, is separable.

Proof. Let 7 be the same as in the proof of Theorem 6.13. Define a linear

functional 6 : {1, —1}Z4dx4d x {1 —1}P4ax1da — R by O(u,v) = 7(u) + 7(v)
and 0(u,v) = 0(u,v) + 8n + 81 — 1. Tt is easily to check that §(uov) < 0 for

all wowv € Vy; and 6(u o v) > 0 otherwise. This completes the proof. O
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Furthermore, the entropy of the subshift space induced by V;; can be
computed via the same method as in the proof of Theorem 6.13, thus the

proof is omitted.

Theorem 7.2. h(Xy(Vy;)) = Llog2.

The dense entropy property of ICNN with input then follows.

Theorem 7.3. Fort € [0,log2], e > 0, there exist m € N and (A, B,z,d)
such that |h(X(B(A, B,z,d))) —t| < e.

The proof of Theorem 7.3 can be accomplished via the same discussion

in the proof of Theorem 6.11, hence is skipped.
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