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Abstract

Let I" denote a distance-regular graph with ()-polynomial property. Assume the diam-
eter D of I' is at least 3 and the intersection numbers a; = 0 and ay # 0. We show the

following (i)-(iii) are equivalent.
(i) I' is @-polynomial and contains no parallelograms of length 3.
(ii) I' is Q-polynomial and contains no parallelograms of any length i for 3 < i < D.
(iii) I has classical parameters (D, b, i, ) for some real constants b, a, 3 with b < —1.

When (i)-(iii) hold, we show that, {3 "has 3“bounded property. Using this property we
prove that the intersection number epli§ either & or 2, and if ¢; = 1 then (b, o, 5) =

(=2,-2,((=2)"* = 1)/3).
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Chapter 1

Introduction

Distance-regular graphs were introduced by Biggs as a combinatorial generalization of
distance-transitive graphs in 1970. They became a popular topic after that Desarte
studied P-polynomial schemes [5], which are exactly the distance-regular graphs, mo-
tivated by problems of coding theory in his thesis. After that, Leonard proved that the
dual eigenvalues of a ()-polynomial distance-regular graph satisfy a recurrence relation
and derived explicit formulae of thelintersection numbers [12]. With these formulae
it sheds light on the classification of @-polynemial distance-regular graphs, as also
stated in the book of Eiichi Bannai and Tatsuro-lto on Algebraic Combinatorics I :
Association Schemes [1].

Brouwer, Cohen, and Neumaier found. that the intersection numbers of most known
families of distance-regular graphs could be described in terms of four parameters
(D,b,cr, B) [3, p. ix, p193]. They invented the term classical to describe such graphs.
The class of distance-regular graphs which have classical parameters is a special case
of distance-regular graphs with the @-polynomial property [3, Corollary 8.4.2]. Note
that the converse is not true, since an ordinary n-gon has the ()-polynomial property,
but does not have classical parameters [3, Table 6.6]. Many authors proved the con-
verse under various additional assumptions. Let I' denote a distance-regular graph
with diameter D > 3 (See Chapter 2 for formal definitions.). Indeed assume I" is Q-
polynomial. Then Brouwer, Cohen, Neumaier in [3, Theorem 8.5.1] show that if T" is
a near polygon, with the intersection number a; # 0, then I' has classical parameters.
Weng generalizes this result with a weaker assumption, without kites of length 2 or 3 in

', to replace the near polygon assumption [23, Lemma 2.4]. For the complement case



a; = 0, Weng shows that I' has classical parameters if (i) I' contains no parallelograms
of length 3 and no parallelograms of length 4; (ii) I has the intersection number as # 0;
and (iii) I has diameter d > 4 [25, Theorem 2.11]. We improve the above result by
showing Theorem 3.2.1 in chapter 3.

Many authors study distance-regular graph I' with a; = 0 and other additional
assumptions. For example, Miklavi¢c assumes I' is ()-polynomial and shows I' is 1-
homogeneous [13]; Koolen and Moulton assume I' has degree 8, 9 or 10 and show that
there are finitely many such graphs [11]; Jurisi¢, Koolen and Miklavi¢ assume I' has
an eigenvalue with multiplicity equal to the valency, as # 0, and the diameter d > 4

to show ay = 0 and I is 1-homogeneous [10].

In this thesis we aim at distance-regular graphs which have classical parameters
(D, b, «, 3) and intersection numbers a; = 0 and as # 0. Since b < —1 [14], our work is
a part of the classification of classical distance-regular graphs of negative type [27]. It
worths to mention that all classical distanée-tegular graphs with b = 1 are classified by
Y. Egawa, A. Neumaier and P. Terwilligér independently (See [3, p195] for details). Let
I be a distance-regular graph which has ¢lassical‘parameters (D, b, a, 3) and a; = 0,
az # 0, and D > 3. It was previously knowm that I' has 2-bounded property [26, 19].
By applying this to a strongly regular subgraph of I', we find an upper bound of ¢, in
terms of an expression of b in chapter 4. After that we prove the 3-bounded property

of I in chapter 5. Finally we use the 3-bounded property to conclude that c; =1 or 2.
The following preprints and papers are included in this thesis:

1. Y. Pan, M. Lu, and C. Weng, Triangle-free distance-regular graphs, J. Algebr.
Comb., 27(2008), 23-34.

2. Y. Pan and C. Weng, 3-bounded Property in a Triangle-free Distance-regular
Graph, European Journal of Combinatorics, 29(2008), 1634-1642.

3. Y. Pan and C. Weng, A note on triangle-free distance-regular graphs with as # 0,

preprint (2007), submitted to Journal of Combinatorial Theory, Series B.

This thesis is organized as follows.



In Chapter 2 we introduce definitions, terminologies and some results concerning
distance-regular graphs and block designs.

In Chapter 3 we discuss a combinatorial property of distance-regular graphs which
have classical parameters.

In Chapter 4 we work on distance-regular graphs with classical parameters and use
the multiplicity technique to find an upper bound of cs.

In Chapter 5 we prove the 3-bounded property of the distance-regular graphs.

In Chapter 6 we use the 3-bounded property and Fisher’s inequality to show the
upper bound ¢ < 2 of ¢o. This upper bound rules out almost all the graphs of our target

in the classification. Also we find that if co = 1, then (b, o, 5) = (=2, -2, (72)13%)



Chapter 2

Preliminaries

In this chapter we review some definitions, basic concepts and some previous results
concerning distance-regular graphs and block designs. See Bannai and Ito [1] or Ter-
williger [20] for more background information of distance-regular graphs and van Lint

and Wilson [22] for block designs.

Let I'=(X, R) denote a finite undirected; connected graph without loops or multiple
edges with vertex set X, edge set R, distance function 0, and diameter D:=max{ d(x,y) |
z,y € X}. By a pentagon, we mean'a-b5=tuple @y 232415 consisting of vertices of T’
such that 0(z;, z;41) = 1 for 1 < "<4;0(@ws, r1) = 1 and no other edges between two

distinct vertices.

For a vertex € X and an integer 0 < i < D, set I';(z) :={z € X | d(z,z) = i}.
The wvalency k(x) of a vertex x € X is the cardinality of I';(z). The graph I is called
regular (with valency k) if each vertex in X has valency k.

An incidence structure is a triple (P,8,1), where P and B are two sets and I C
P x%B. The elements of P and B are called points and blocks respectively. If (p, B)€ I,
then we say point p and block B are incident.

A t-(v, k, \) design is an incidence structure (P, B, ), where |P| = v, satisfying the

following conditions:
e For each block B € ‘B, there are exactly s points incident with B.

e For two distinct blocks B and B’, there exists a point p incident with B, but p



is not incident with B’.

e For any set T of ¢ points, there are exactly A\ blocks incident with all points of 7.

It is easy to prove that the number of blocks incident with any fixed point p of
P is the same [22, Theorem 19.3] and is called the replication number of the design.

Actually the number is /\(1’:11)/(];:11)

2.1 Distance-regular Graphs

A graph I = (X, R) is said to be distance-regular whenever for all integers 0 < h, i, j <

D, and all vertices z,y € X with d(x,y) = h, the number

pij = [Ti(z) N T;(y)|

is independent of x,y. The constants p?j are known as the intersection numbers of I.
Let I'=(X, R) be a distance-regular grapht,For two vertices xz,y € X with d(z,y) =

1, set

Blw,y)  ="T(x) 0T (y),

Clry) = T@nTia(y),

Note that

|B(z,y)| = pii-}—la

Cle, )l = pria,

[Alz,y)l = pis
are independent of x, y.

For convenience, set ¢; :=p},_; for 1 <i< D, a;:=p}, for 0<i<D, b :==pi,,
for 0 <i<D—1,k :=p? for 0<i< D, andset bp :=0, ¢y := 0, k := by. Note that

k is the valency of I'. It follows immediately from the definition of p?j that b; # 0 for

0<i<D-—1andc¢; #0for 1 <i<D. Moreover

k=a;+b+c¢ for 0<i<D, (2.1.1)



and

o deben i <i<p, (2.1.2)

cl DEREY CT,
A strongly regular graph is a distance-regular graph with diameter 2. We quote a

couple of Lemmas about strongly regular graphs which will be used in Chapter 4 and

Chapter 6.

Lemma 2.1.1. [22, Theorem 21.1] Suppose Q is a strongly regqular graph with inter-
section numbers a;, b;,c;, where 0 < i < 2. Let v = |Q| and k = by. Suppose that
r > s are the eigenvalues other than k. Let f and g be the multiplicities of r and s

respectively. Then

__11}_ (v—1)(co —ay) — 2k
f= 2( 1+ \/(02—a1)2+4(l€—02)) (2.1.3)
and

are nonnegative integers.

Proof. Let A be the adjacency matrix of €2, J be-the v by v all-one matrix, and j be
the v by 1 all-one vector. We have AJ=*kJ, Aj = kj, and A% = kI + a1 A + co(J —
I — A) by direct computation. Note'thati k is an eigenvalue of A with eigenvector j
whose multiplicity is one since {2 is connected. Suppose that x is an eigenvalue with

eigenvector orthogonal to j. Then
22+ (cg —a)x + (g — k) = 0. (2.1.5)

Equation (2.1.5) has two solutions

T,s:%(al—@j:\/(a1—02)2+4(k‘—02) ). (2.1.6)

Since f and ¢ are multiplicities of r and s respectively, we have the following two

equations.

l+f+g=v (2.1.7)

and

0=tr(A) =k+ fr+gs. (2.1.8)

6



Solving (2.1.7) and (2.1.8) for f, g by (2.1.6), we have (2.1.3) and (2.1.4). It is obvious

that f and g are nonnegative integers. O]

Lemma 2.1.2. [2, p. 276, Theorem 19] Let Q) be a strongly reqular graph with valency
bo="k,a; =0, and co =1. Then k € {2,3,7,57}. O

Proof. Note that ¢; = 1and by = k—a;—c; = k—1. Then v := |Q| = 1+k;+ky = 1+k2.

Substituting v, ¢; and a; into (2.1.3) we have

1 k2 — 2k
=—(KB+ ==
f=50F T V=

Equation (2.1.9) implies k? — 2k = 0 or 4k — 3 = s? for some integer s since f is a

(2.1.9)

nonnegative integer. If k& — 2k = 0 then k = 2. Suppose 4k — 3 = 52, then

2
L (2.1.10)
4
Substituting (2.1.10) into (2.1.9)+yields
s° + s H6s® — 25+ (9 —32f)s = 15. (2.1.11)

Hence s is a factor of 15. Thé:result follows from substituting s into k and deleting

the case k£ = 1. O

Example 2.1.3. The Petersen graph shown in Figure 2.1 is a strongly regular graph

with intersection numbers a1 =0, ao =2, ¢c1 =co =1, bg =3, by = 2.

Figure 2.1: Petersen graph.

Example 2.1.4. [3, p. 285](Hermitian forms graph Hery(D)) Let U denote a finite

vector space of dimension D over the field GF(4). Let H denote the D?-dimensional

7



vector space over GF'(2) consisting of the Hermitian forms on U. Thus f € H if and
only if f(u,v) is linear in v, and f(v,u) = f(u,v) for all u,v € U. Pick f € H. We
define

rk(f) = dim(U \ Rad(f)),

where

Rad(f) ={ueU| f(u,v) =0 for all v € U}.

Set X = H, and zy € R if and only if rk(x —y) =1 for all z,y € X. Then I' = (X, R)

is a distance-regular graph with diameter D and intersection numbers

¢ = (1<i<D), (2.1.12)

b = ———  (0<i<D). (2.1.13)

By (2.1.1), (2.1.12) and (2.1.13) we have

22i—1 —1 i2i—1 -1
I 3) (1<i< D). (2.1.14)

Note that a; = 0 and ay = 3. It ‘'was shown in [9] that I" is the unique distance-

regular graph with intersection numbers satisfying (2.1.12) and (2.1.13).

Example 2.1.5. [3, p. 372](Gewirtz graph) Suppose (P,%B,1) is a 3-(22,6,1) design,
where I = {(p,B) | p € P,B € B, and p € B}. Fix an element p of P. Let
X={Be®B|p¢gB}and R = {B1By | B;,B, € X and By N By = 0}. Then
I' = (X,R) is a distance-regular graph which is known as Gewirtz graph. It is a
strongly regular graph with intersection numbers a; = 0, ays = 8, ¢4 = 1, ¢o = 2,
bo = 10, and b; = 9. It was shown in [6] and [7] that I" is the unique strongly regular

graph with intersection numbers satisfying by = 10, by =9, ¢; = 1, and ¢y = 2.

Example 2.1.6. [3, Theorem 11.4.2](Witt graph Ma3) Suppose (P,B,1) is a 5-(24, 8, 1)
design where I = {(p,B) | p € P, B € B, and p € B}. Fix a point o € P, and let B’ be
the collection of 506 blocks in B missing 0. Then (P \ {c},B’) is a 4-(23,8,4) design.
Let X =% and R = {B1By | BN By = ) for distinct By, By € X}. Then I' = (X, R)
is a distance-regular graph which is known as Witt graph Mss. It has diameter D = 3

and intersection numbers a; =0, a3 =2,a3 =6, c1 =co=1,¢c3=9, by = 15, by = 14

8



and by = 12. It was shown in [3, Theorem 11.4.2] that I' is the unique distance-regular
graph of diameter 3 with intersection numbers satisfying by = 15, by = 14, by = 12,

c1=cy=1,and c3 =09.
Throughout this chapter we assume I'=(X, R) is a distance-regular graph.

Definition 2.1.7. Pick an integer 2 < ¢ < D. By a parallelogram of length ¢ in ', we

mean a 4-tuple zyzw of vertices of X such that
Oz,y) = 0(z,w) =1, O(z,z) =1,

For a parallelogram of length i, see Figure 2.2.

Figure 2.2: "Asparallelogram of length i.

2.2 D-bounded Distance-regular Graphs

Assume I' = (X, R) is distance-regular with diameter D > 3. Recall that a sequence

x, y, z of vertices of I' is geodetic whenever
Az, y) + Iy, 2) = 0(x, 2).
Definition 2.2.1. A sequence z, y, z of vertices of I' is weak-geodetic whenever
O(x,y) + 9y, 2) < I(x,2) + 1.

Definition 2.2.2. A subset Q2 C X is weak-geodetically closed if for any weak-geodetic
sequence x, y, z of ',

r,2€ Q= yel



Weak-geodetically closed subgraphs are called strongly closed subgraphs in [18]. We
refer the readers to [17, 4, 9, 19, 26, 8] for information on weak-geodetically closed
subgraphs.

We make one more definition which will be used later.

Definition 2.2.3. Let €2 be a subset of X, and pick any vertex x € €2. 2 is said to be

weak-geodetically closed with respect to x, whenever for all z € €2 and for all y € X,
x,y, z are weak-geodetic =— 1y € (. (2.2.1)

Note that €2 is weak-geodetically closed with respect to a vertex z € €1 if and only
if
C(z,z) CQ and A(z,z) CQ for all z € Q

[26, Lemma 2.3|. Also  is weak-geodetically closed if and only if for any vertex z € €,
Q) is weak-geodetically closed with:respeet to.x. The following theorems will be used

later in this thesis.

Theorem 2.2.4. [26, Theorem 4.0]-Let T be a distance-reqular graph with diameter
D > 3. LetQ be a reqular subgraph:of T with valency v and set d := min{i | v < ¢;+a;}.

Then the following (i), (i) are equivalent.
(i) € is weak-geodetically closed with respect to at least one verter x € €.
(11) € is weak-geodetically closed with diameter d.

In this case v = cq + agq.
Suppose (i) and (i) hold. Then ) is distance-regular, with diameter d, and inter-

section numbers

a(Q) = a(D), (2.2.2)

a;(2) = (D) (2.2.3)

for 0 <1 <d.

10



Lemma 2.2.5. ([19, Lemma 2.6]) Let T be a distance-regular graph with diameter 2,
and let © be a vertex of I'. Suppose ay # 0. Then the subgraph induced on I's(x) is

connected of diameter at most 3. U

Definition 2.2.6. I is said to be i-bounded whenever for all x,y € X with d(z,y) < 1,

there is a regular weak-geodetically closed subgraph of diameter d(z, y) containing x, y.

The properties of D-bounded distance-regular graphs were studied in [24], and these
properties were used in the classification of classical distance-regular graphs of negative

type [27].

Theorem 2.2.7. (/26, Proposition 6.7],[19, Theorem 1.1]) Let T" be a distance-reqular
graph with diameter D > 3. Suppose a1 = 0, as # 0 and I' contains no parallelograms

of length 3. Then T" is 2-bounded. O

Theorem 2.2.8. (/26, Lemma 6.9},[19; Letnma 4.1]) Let T' be a distance-reqular graph
with diameter D > 3. Suppose a1 = Qa5 # 0 and-l" contains no parallelograms of any
length. Let x be a vertex of I' J.and let €2 be a weak-geodetically closed subgraph of T’

with diameter 2. Suppose there exists an integer i and a vertex uw € QN T_1(x), and

suppose QN Tipi(x) # 0. Then for all t € Q, we have (x,t) =i — 1+ 9(u,t). O

Theorem 2.2.9. ([24, Corollary 2.2]) Let I' = (X, R) denote a distance-regular graph
with diameter D. Suppose that I' is D-bounded. For two distinct vertices z,y € X,
there exists a unique reqular weak-geodetically closed subgraph A(z,y) containing x and

y with diameter O(z,y). Furthermore, A(x,y) is a distance-reqular graph. O

Let I' = (X, R) denote a distance-regular graph with diameter D. Suppose that I'
is D-bounded. For two distinct vertices z,y € X, we use A(x,y) to denote the unique

weak-geodetically closed subgraph containing x and y with diameter d(x, y).

11



Theorem 2.2.10. ([24, Lemma 2.6]) Let T denote a distance-regular graph with di-

ameter D. Suppose that I is D-bounded. Then

Proof. For 0 < i < D — 1, pick x,y with 0(x,y) =i+ 1. Then A(z,y) is a distance-
regular graph with diameter i+ 1 by Theorem 2.2.9. Note that b;(A(x,y)) = b; —b; 11 #

0. The result follows immediately. m

2.3 (@-polynomial Property

Let I' = (X, R) denote a distance-regular graph with diameter D > 3. Let R denote
the real number field. Let Matx(R) denote the algebra of all the matrices over R with
the rows and columns indexed by the elements of X. For 0 < i < D let A; denote the

matrix in Maty (R), defined by.the rule

1, if d(x y)="1;
(Aj)uy = (z.9) for z,y € X.

0, 1f O(z,y) #4
We call A; the distance matrices of I'. "We have

Ay =1, (2.3.1)
Ag+Ai+--+Ap=J  (J=all I's matrix), (2.3.2)
Al =A; for0<i<D (A’ means the transpose of A;), (2.3.3)
AA; = ZD:pZ-Ah for 0<14,j <D, (2.3.4)
AAy = Z(;l for 0<4i,j<D. (2.3.5)

Let M denote the subspace of Matx (R) spanned by Ag, A1,...,Ap. Then M is a

commutative subalgebra of Matx(R), and is known as the Bose-Mesner algebra of T

12



By [3, p. 59, 64], M has a second basis Ey, E1, ..., Ep such that

Ey = |X|7'J, (2.3.6)
El=F; for 0<i<D. (2.3.9)
The Ey, E1, ..., Ep are known as the primitive idempotents of I', and Ej is known as

the trivial idempotent. Let E denote any primitive idempotent of I'. Then we have

D
E=[X[") 04 (2.3.10)
i=0
for some 65,07, ...,0} € R, called the dual eigenvalues associated with E.

Set V' = R (column vectors), and view the coordinates of V as being indexed by
X. Then the Bose-Mesner algebra Mraets.on V' by left multiplication. We call V' the

standard module of T'. For eachiwvertexi@re X, set

#=(0,0,:.,0.1,0,.,0), (2.3.11)
where the 1 is in coordinate x. AlSo, let (,)-denote the dot product

(u,v) = u'v for u,v € V. (2.3.12)

Then referring to the primitive idempotent F in (2.3.10), we compute from (2.3.9)-
(2.3.12) that for z, y € X,
(B, E9) = |X|7'0r, (2.3.13)

where i = 0(z,y).
Let o denote the entry-wise multiplication in Matyx(R). Then
AloA]:(SZ]Al for OSZ,] SD,
so M is closed under o. Thus there exists qu €R for 0 <14,j5,k < D such that
D
EioE;j=|X[™") ¢fE, for 0<i,j<D.
k=0

13



' is said to be Q-polynomial with respect to the given ordering Fy, F1,..., Ep of
the primitive idempotents, if for all integers 0 < h,i,57 < D, qu = 0 (resp. qzhj # 0)
whenever one of h,i,j is greater than (resp. equal to) the sum of the other two. Let
E denote any primitive idempotent of I'.  Then I' is said to be @-polynomial with
respect to E whenever there exists an ordering Fy, F1 = FE,..., Ep of the primitive
idempotents of I'; with respect to which I' is @-polynomial. If I" is @-polynomial with

respect to F, then the associated dual eigenvalues are distinct [20, p. 384].

The following theorem about the ()-polynomial property will be used in this thesis.

Theorem 2.3.1. [21, Theorem 3.3] Let I' be Q-polynomial with respect to a primitive
idempotent E, and let 05, . ..,0}, denote the corresponding dual eigenvalues. Then the

following (i), (ii) hold.

(1) For all integers 1 < h <D, 0.< 4, 7.< D and for all x,y € X such that

d(z,y) = h,
9*
> Ea-NYCEE— p” "L (Ei — EY). (2.3.14)
zeX zeX 6 9
I(z,z)=1 Ol =
o(y,2)=j O(y,2) =i
(ii) For an integer 3 < i < D,
05— 01 =0(0;_5—07) (2.3.15)
for an appropriate o € R\ {0}. O

2.4 Classical Parameters

A distance-regular graph I' is said to have classical parameters (D, b, a, 3) whenever

the intersection numbers of I' satisfy

H(HO‘[ZTD .forogz‘gD, (2.4.1)
o= (][ Eel]) wrozesn e

14
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where

m =1 +b+ b+ b (2.4.3)

Suppose I' has classical parameters (D, b, «,3). Combining (2.4.1)-(2.4.3) with

(2.1.1), we have

O (G RE))
_ m(a1+a(1—m—[“11])) for 0<i<D.  (24.4)

Example 2.4.1. Petersen graph shown in Figure 2.1 is a distance-regular graph which
has classical parameters (D, b, o, 3) with D =2, b = —2, « = —2 and § = —3, which

satisfies a; =0, ag #0 and 1 = ¢, < b(b+ 1) = 2.

Example 2.4.2. [9] Hermitian forms graph. Hers(D) is a distance-regular graph with
classical parameters (D, b, «, #) with b = =2, a'= —3 and § = —((—2)D + 1), which

satisfies a; = 0, ag # 0 and coi= b(Q'F 1) =2.

Example 2.4.3. [22, p. 237] Gewirtz-graph is a distance-regular graph which has
classical parameters (D, b, a, ) with D = 2, b = =3, o = —2, # = —5, which satisfies

a; =0,as #0and 2 =cy, < b(b+ 1) =6.

Example 2.4.4. [3, Table 6.1] Witt graph Mag is a distance-regular graph which has
classical parameters (D,b,«, ) with D = 3, b = —2, a = —2, § = 5, which satisfies
a;=0,a #0and 1 =co < b(b+1) =2.

We list the parameters of the above examples in the following table for summary.

name D b o 1] a; Qo Co

Petersen graph 2 =2 =2 -3

0
Hermitian forms graph Hero(D) D -2 -3 —((-2)P+1) 0 3 2
Gewirtz graph 2 -3 -2 -5 0

0

Witt graph M23 3 -2 =2 )




The following theorem characterizes the distance-regular graphs with classical pa-

rameters in an algebraic way.

Theorem 2.4.5. ([21, Theorem 4.2]) Let I' denote a distance-regular graph with di-

ameter D > 3. Choose b € R\ {0, —1}. Then the following (i)-(ii) are equivalent.

(1) T is Q-polynomial with associated dual eigenvalues 05,65, ..., 0%, satisfying
0r — 05 = (07 — 6) m b't for 1<i<D. (2.4.5)
(ii) T has classical parameters (D,b, «, 3) for some real constants «, [3. O

2.5 Block Designs

In this section we introduce some results of block designs which will be used in the

proof of Theorem 6.2.1.

Lemma 2.5.1. Let (P,B,1)sbe a 2-(v, &, A).design. Suppose |B| = b and r is the

replication number. Then bk = vr.

Proof. Counting in two ways the number of pairs (z, B) € I, where x € P and B € B,

the equality follows immediately. O
The following famous theorem is known as Fisher’s inequality.

Theorem 2.5.2. [22, Theorem 19.6] For a 2-(v,k, \) design with b blocks and v > k

we have b > v. O

Proof. Let r denote the replication number and N denote the v x b incidence matrix
of the design. Then
NN' = (r — M1 + \J, (2.5.1)

where J is the v X v all-one matrix. Note that J has eigenvalues v and 0 with multi-
plicities 1 and v — 1 respectively. Hence the eigenvalues of NN* are A\v + (r — \) and

r — A with multiplicities 1 and v — 1 respectively. This implies
det(NN') = (Av+7r—A)(r — A", (2.5.2)
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where det(NN?) denotes the determinant of NN*. Observe that
AMv—1)
= — > A\ 2.5.3
r=— (2.5.3)
By (2.5.2) and (2.5.3), NN is invertible and has rank v. Note that
rank(NN*) < rank(N) < min{v,b}.
The assertion of the theorem follows immediately. O

Corollary 2.5.3. For a 2-(v,k,\) design with replication number r we have r > k.

Proof. This is immediate from Lemma 2.5.1 and Theorem 2.5.2. [
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Chapter 3

A Combinatorial Characterization
of Distance-regular Graphs with

Classical Parameters

The following theorem was shdwn in {25, Theorem 2.11].

Theorem 3.0.4. [25, Theorem 2.11}-Let I'.= (Xi R) denote a distance-reqular graph
with diameter D > 4 and intérsection numbers a; = 0, as # 0. Suppose I' is Q-
polynomial and contains no parallelograms of length 3 and no parallelograms of length

4. Then T' has classical parameters (D,b, «, ) with b < —1.

In this chapter we show the same result holds for the case D = 3. Theorem 3.2.1

is the main result of this chapter.

3.1 Counting 4-vertex Configurations

To prove Theorem 3.2.1, our main theorem in this chapter, we need a couple of lemmas.
The first lemma is essentially given in [13, Theorem 5.2(i)], a proof is given here for

completeness.

Lemma 3.1.1. [13, Theorem 5.2(i)] Let T' denote a Q-polynomial distance-reqular

graph with diameter D > 3 and intersection number a; = 0. Fix an integer v for

18



2 <1< D and three vertices x, y, z such that

Then the quantity

si(z,y,2z) =Tz (z) N L1 (y) NT(2)] (3.1.1)
1s equal to
05 —0r )05 —07)— (67 — 0 )07 —6F
ai71< 0 z—l)( *2 :) (*1 z*—l)( 1 7,). (312)
(05 — 0;_1)(0;_, — 6;)
In particular (3.1.1) is independent of the choice of the vertices z, vy, z.
Proof. Let s;(x,vy, z) denote the expression in (3.1.1) and set
li(z,y,2) = [Ti(x) NTia(y) N T (2)].
Observe
Si<$)y7 Z)-I—&(x,y,z) = Gj—1- (313)
By (2.3.14) we have
> Ed = Y B g H(EQ—EQ) (3.1.4)
SR | .
weX weX
A(y,w)=i—1 Ny, w)=1
(z,w)=1 A(z,W)=i—1

Taking the inner product of (3.1.4) with Z using (2.3.13) and the assumption a; = 0,

we obtain
* * * 8:;—1 - HT * *
si(x,y, 2)00_y + li(x,y,2)07 —a;—105 = ai_le*—e*(ﬁl —67). (3.1.5)
0~ Vi
Solving s;(x,y, z) by using (3.1.3) and (3.1.5), we get (3.1.2). O

By Lemma 3.1.1, s;(z,vy, 2) is a constant for any vertices z,y, z with d(x,y) = 1,
dy,z)=1—1, 0(x,z) =1i. Let s; denote the expression in (3.1.1). Note that s; = 0 if

and only if I' contains no parallelograms of length 7.

Lemma 3.1.2. Let I' denote a distance-reqular graph which has classical parameters

(D, b,a, 3). Suppose intersection numbers a; = 0 and ag # 0. Then o <0 and b < —1.
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Proof. Since a; = 0 and ay # 0, from (2.4.3) and (2.4.4) we have
—alb+1)?=ay — (b+1)a; = ay > 0. (3.1.6)

Hence

a < 0. (3.1.7)

By direct computation from (2.4.1), we get

(ca—=b) (b +b+1) =c3 > 0. (3.1.8)
Since
b +b+1>0,
(3.1.8) implies
¢y > b. (3.1.9)

Using (2.4.1) and (3.1.9), we get
a(l Fb)'=¢=b=1>0. (3.1.10)

Hence b < —1 by (3.1.7) and b# +1. O

3.2 Combinatorial Characterization

The following theorem characterizes the distance-regular graphs with classical parame-

ters and a; = 0, as # 0 in a combinatorial way.

Theorem 3.2.1. Let I' denote a distance-reqular graph with diameter D > 3 and

intersection numbers ay = 0, ag # 0. Then the following (i)-(iii) are equivalent.
(1) T is Q-polynomial and contains no parallelograms of length 3.
(i1) T is Q-polynomial and contains no parallelograms of any length i for 3 <i < D.

(11i) T has classical parameters (D, b, o, 3) for some real constants b, v, 5 with b < —1.
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Proof. (ii)=(i) This is clear.

(iii)=-(ii) Suppose I' has classical parameters. Then I" is Q-polynomial with asso-

ciated dual eigenvalues 65, 67, ..., 0}, satisfying
0r — 05 = (07 — 6) m b'™" for 1<i<D. (3.2.1)

We need to prove s; = 0 for 3 <i < D. To compute s; in (3.1.2), observe from (3.2.1)
that

0;_y —0; = (65— 0))b' " for1 <i<D. (3.2.2)

)

Summing (3.2.2) for consecutive 7, we find

OF —0:) = (0 — ) (b  + b2 4 b1, (3.2.3)
O; —0; )= —0) b +b 24+ b7, (3.2.4)
03 —601) = (0 —00) (b2 + b3 4o b7, (3.2.5)
(05 — 0r_ = (05 =00 " Fb " + -+ 27 (3.2.6)

for 3 < i < D. Evaluating (3.1.2) by using (3.2:2)-(3.2.6), we find s; = 0 for 3 <i < D.

(1)=(iii) Observe s3 = 0. Then by setting ¢+ = 3 in (3.1.2) and using the assumption

as # 0, we find
(6 — 05)(0 — 03) — (67 — 63)(67 — b5) = 0. (3.2.7)
Set
07 — 05
bi=_1—2 3.2.8
05 — 05 ( )
Then
0y —05)(b+1
05 = 05 + (6 Ob)( i ). (3.2.9)
Eliminating 65, 63 in (3.2.7) using (3.2.9) and (2.3.15), we have
_(A* _ p*\2 2 _
(07 — 6;5)°(cb* + ob+ 0 —b) _0 (3.2.10)

ob?
for an appropriate ¢ € R\ {0}. Since 07 # 6;,
ob* +ob+o—b=0,
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and hence
4 bP+b+1
=—

o (3.2.11)

By Theorem 2.4.5, to prove that I" has classical parameters, it suffices to prove that
0r — 05 = (07 — 6) m b'™t for 1<i<D. (3.2.12)

We prove (3.2.12) by induction on i. The case ¢ = 1 is trivial and the case i = 2 is

from (3.2.9). Now suppose ¢ > 3. Then (2.3.15) implies
0f =0 MO, — 07 )+ 07, for 3<i<D. (3.2.13)

Evaluating (3.2.13) using (3.2.11) and the induction hypothesis, we find that 67 — 6 is
as in (3.2.12). Therefore, I" has classical parameters (D, b, «, 3) for some scalars «, (3.

Note that b < —1 from Lemma 3.1.2. OJ
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Chapter 4

An Upper Bound of c,

In this chapter we assume that I' has classical parameters and intersection numbers

a1 = 0, as # 0 to obtain the following theorem.

Theorem 4.0.2. Let I' denote a distance-reqular graph with diameter D > 3 and
intersection numbers a; = 0, ags# 0. Suppose X has classical parameters (D,b, o, 3).

Then each of
b(b+1)2(b+2)(b— 2)(b— 1)b(b+ 1)
Co : 2 + 2b — C9

(4.0.1)
15 an integer. Moreover

¢y < b(b+1). (4.0.2)

Note that the bound in (4.0.2) will be improved to ¢ < 2 in Chapter 6.

4.1 Results from Simple Computations

Theorem 4.1.1. /26, Proposition 6.7, Theorem 4.6] Let ' = (X, R) denote a distance-
reqular graph with diameter D > 3. Assume that the intersection numbers a; = 0 and
as # 0. Suppose that I' contains no parallelograms of length 3. Then for each pair
of vertices v,w € X at distance O(v,w) = 2, there exists a weak-geodetically closed

subgraph €2 of diameter 2 in I' containing v, w. Furthermore Q) is strongly reqular with
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mtersection numbers

a;(Q) = a;(T), (4.1.1)
() = (D), (4.1.2)
bi(2) = ao(l") + co(T") — a;i(Q) — () (4.1.3)
for 0 <1< 2. O

Corollary 4.1.2. Let I' denote a distance-reqular graph which has classical parameters
(D,b,cr, 3), where D > 3. Assume I' has intersection numbers a; = 0 and ay # 0.
Then there exists a weak-geodetically closed subgraph ) of diameter 2. Furthermore the

intersection numbers of § satisfy

bo() = (140b)(1— ab), (4.1.4)

b1(Q2) = bll'—a=ad), (4.1.5)

() = [+ {1 +a), (4.1.6)

ax(Q) 2= —(140b)q, (4.1.7)
o (o) bar —2)(ba — 1 — a)

Q] = a5 o) : (4.1.8)

Proof. Observe b < —1 by Lemma 3.1.2 and I" contains no parallelograms of length 3 by
Theorem 3.2.1. Hence there exists a weak-geodetically closed subgraph (2 of diameter
2 by Theorem 2.2.7. By applying (2.4.1), (2.4.2) and (2.4.4) to (4.1.1)-(4.1.3), we have
(4.1.4)-(4.1.7) immediately. Observe that || = 1 + k() + k(2)01(2)/c2(2). (4.1.8)
follows from this and (4.1.4)-(4.1.6). O

Proposition 4.1.3. [26, Proposition 3.2] Let I denote a distance-regular graph with
diameter D > 3. Suppose there exists a weak-geodetically closed subgraph €1 of I' with

diameter 2. Then the intersection numbers of I' satisfy the following inequality
as Z CLQ(CQ — 1) + aj. (419)
U
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Corollary 4.1.4. Let I denote a distance-reqular graph which has classical parameters

(D,b,c, 3), where D > 3. Suppose the intersection numbers a; = 0 and ay # 0. Then
co < U +b+2. (4.1.10)

Proof. Applying a; = 0in (2.4.4), we have a3 = —a/(b*+b+1)(b+1)?. Then by applying

(4.1.9) using Lemma 3.1.2, (4.1.1), and (4.1.7), the result follows immediately. O

4.2 Multiplicity Technique

We will improve the upper bound of ¢, in (4.1.10). We need the following lemma.

Lemma 4.2.1. Let I' denote a distance-reqular graph which has classical parameters
(D,b,a, 3), where D > 3. Assume the intersection numbers a; = 0 and as # 0. Let
Q be a weak-geodetically closed subgraph .of diameter 2 in I'. Let r > s denote the

nontrivial eigenvalues of the strongly regular.graph 2. Then the following (i), (ii) hold:

(i) The multiplicity of r is

(ba ='1)(ba — L=a)(ba — 1 + )

/= (@=1)(a+1)

(4.2.1)

(1) The multiplicity of s is
—b(bar — 1) (bar — 2)
(a—1)(a+1)

g= (4.2.2)

Proof. Let v=|Q| and k be the valency of Q. Note that c3(2) = (1 + b)(1 + «) by
(2.4.1), k() = (1+b)(1 —ab) by (4.1.4), and v = (1 +b)(ba — 2)(bar — 1 — ) /(1 + @)
by (4.1.8). Now (4.2.1) and (4.2.2) follow from (2.1.3) and (2.1.4). O

Corollary 4.2.2. Let I' denote a distance-reqular graph which has classical parameters

(D,b,a, 3), where D > 3. Assume ' has intersection numbers a; = 0 and ay # 0. Then

b(b+1)%(b+2)

C2

(4.2.3)
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and
(b—2)(b—1)b(b+ 1)
2 + 2b — Co

(4.2.4)

are both integers.

Proof. Let f and g be as (4.2.1) and (4.2.2). Set p=a(1 +b) = ¢ca — 1 — b being an
integer. Then both

20450 +40° + 0" b(b+1)*(b+2)

+g—(1=30%=bp+b*p— b
f+g—( p+bp—10) T o

and

20— =200 + 0" (b—2)(b—1)b(b+1)
—1-b+p co—2—2b

f—g— (1 =30 —bp+b*p+b*) =
are integers since f, g, b and p are integers. O

Proposition 4.2.3. Let I' denote a distance-reqular graph which has classical parame-
ters (D,b,a, 3), where D > 3. Assume I' has intersection numbers a; = 0 and as # 0.

Then co < b(b+1).
Proof. Recall ¢y < b? + b + 2 by (4.1.10). Eirst, suppose
et - (4.2.5)

Then the integral condition (4.2.3) becomes

—4b

I A
R Ty

(4.2.6)

Since 0 < —4b < b*> + b+ 2 for b < —5, we have —4 < b < —2. For b = —4 or —3,
expression (4.2.6) is not an integer. The remaining case b=—2 implies & = —5 by
(4.1.6), v =28 by (4.1.8) and g = 6 by (4.2.2). This contradicts to v < Sg(g + 3) [22,

Theorem 21.4]. Hence ¢y # b? + b + 2. Next suppose c; = b*> + b+ 1. Then (4.2.4)

becomes
1
b +b+1+ . 4.2.7
+o+1+ P _b_1 ( )
It fails to be an integer since b < —1. [
Proof of Theorem 4.0.2:
The results come from Corollary 4.2.2 and Proposition 4.2.3. U
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Chapter 5

3-bounded Property

Let I' denote a distance-regular graph which has classical parameters (D, b, o, ) and
D > 3. Assume the intersection numbers a; = 0 and as # 0. Note that I' contains no
parallelograms of any length by Theorem 3.2.1. We have known that I" is 2-bounded.

We shall prove that I' is 3-bounded in this chapter.

5.1 Weak-geodetically Closed with respect to a Ver-
tex

First we give a definition.
Definition 5.1.1. For any vertex x € X and any subset C' C X, define
[z, C] := {v € X | there exists z € C, such that d(z,v) + d(v, z) = d(x, 2)}.
Throughout this section, fix two vertices z,y € X with d(x,y) = 3. Set
C:={zel's(x) | B(z,y) = B(z,2)}

and

A = [z,C]. (5.1.1)
We shall prove A is a regular weak-geodetically closed subgraph of diameter 3. Note
that the diameter of A is at least 3. If D = 3 then C' = I's(x) and A =T is clearly a
regular weak-geodetically closed graph. Thereafter we assume D > 4. By referring to

Theorem 2.2.4, we shall prove A is weak-geodetically closed with respect to x, and the

subgraph induced on A is regular with valency as + c3.
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Lemma 5.1.2. For adjacent vertices z,z € I';(x), where i < D, we have B(x,z) =

B(z, 7).

Proof. By symmetry, it suffices to show B(z,z) C B(z,2’). Suppose contradictory
there exists w € B(xz,z) \ B(x,z'). Then 0(w,z2’) # i+ 1. Note that d(w,z’) <
O(w,z)+0(x,2") = 14+iand d(w, 2') > d(w, z) —I(z, 2") = i. This implies (w, 2’) =i

and wzz'z forms a parallelogram of length i + 1, a contradiction. O]

It is known that I' is 2-bound by Theorem 2.2.7. For two vertices z,s in I' with
d(z,s) =2, let Q(z, s) denote the regular weak-geodetically closed subgraph containing

z, s of diameter 2.

Lemma 5.1.3. Suppose stuzw is a pentagon in I, where s,u € I's(x) and z € ['y(x).

Pick v € B(x,u). Then d(v,s) # 2.

Proof. Suppose contradictory (v, s) =2 .Noté J(z,s) # 1, since a; = 0. Note that
z,w, s, t,u € Qz,8). Then s=€:fd(z, s) MNF2(v) and u € Q(z,s) N Ty(v) # 0. Hence
d(v,z) = d(v,s) + (s, z) = 24 2 =4 by Theorem 2.2.8. A contradiction occurs since
J(v,xz) =1 and J(x, 2) = 2. O

Lemma 5.1.4. Suppose stuzw is a pentagon in I, where s,u € I's(x) and z € I'y(x).

Then B(z,s) = B(z,u).

Proof. Since |B(z,s)| = |B(z,u)| = bs, it suffices to show B(x,u) C B(z,s).
By Lemma 5.1.3,

B(x,u) C T's(s) UTy(s).

Suppose
|B(z,u) N Ts(s)] = m,
|B(z,u) NTy(s)] = n.
Then
m+n = b, (5.1.2)
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By Theorem 2.3.1,

i S D,
> Er- ) Er’:bgeg_eg(Ex—Eu). (5.1.3)

réB(z,u) r'€B(u,z)
Observe B(u,z) C I's(s), otherwise Q(u, s) N B(u, z) # () and this leads to d(z,s) =4
by Theorem 2.2.8, which contradicts to d(x, s) = 3. Taking the inner product of s with

both side of (5.1.3) and evaluating the result using (2.3.13), we have

0: — 0
MmO + b — by = by (63 — 03). (5.1.4)
06 — 03

Solve (5.1.2) and (5.1.4) to obtain

(65— 03) (05 — 03)
(05— 03) (05 — 03)

(5.1.5)

n = 03

Simplifying (5.1.5) using (2.4.5), we have n = b3 and then m = 0 by (5.1.2). This

implies B(x,u) C B(z,s) as required. O

Lemma 5.1.5. Let z,u € A. Suppose stuziy is a pentagon in I', where z,w € T'y(x)

and u € T's(x). Then w € A.

Proof. Observe Q(z,s) NT1(x) = 0 and Q(z, s) AT'4(x) = O by Theorem 2.2.8. Hence
s,t € I'y(x) UT'3(z). Observe s'€ I's(x), otherwise w, s € Q(x, z), and this implies u €
Q(z, z), a contradiction to that the diameter of Q(z, z) is 2. Hence B(z,s) = B(x,u)

by Lemma 5.1.4. Then s € C' and w € A by construction. O

Lemma 5.1.6. The subgraph A is weak-geodetically closed with respect to x.

Proof. Clearly C(z,2) C A for any z € A. It suffices to show A(z,z) C A for any
z € A. Suppose z € A. We discuss case by case in the following. The case d(z,z) =1
is trivial since a; = 0. For the case 0(x, z) = 3, we have B(z,y) = B(x,z) = B(z,w)
for any w € A(z,z) by definition of A and Lemma 5.1.2. This implies A(z,z) C A by
the construction of A. For the remaining case d(z, z) = 2, fix w € A(z, z) and we shall
prove w € A. There exists u € C such that z € C(u,z). Observe that O(w,u) = 2
since a3 = 0. Choose s € A(w,u) and t € C(u,s). Then stuzw is a pentagon in I

The result comes immediately from Lemma 5.1.5. [
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5.2 3-bounded Property

Theorem 5.2.1. Let I' denote a distance-reqular graph which has classical parameters
(D,b,a,3) and D > 3. Assume the intersection numbers a; = 0 and as # 0. Then T’

18 3-bounded.

Proof. By Theorem 2.2.4 and Lemma 5.1.6, it suffices to show that A defined in (5.1.1)
is regular with valency az+cs. Clearly from the construction and Lemma 5.1.6, [T’y (z)N
A| = ag+cs for any z € C. First we show |I'y(z)NA| = az+c3. Note that y € ANT3(x)

by construction of A. For any z € C(x,y) U A(z,y),
d(r,2) +0(2,y) < d(z,y) + 1.

This implies z € A by Definition 2.2.3 and Lemma 5.1.6. Hence C(x,y)UA(z,y) C A.
Suppose B(z,y) N A # (). Choose t € B(z,y) N A. Then there exists ¢’ € I's(x) N A
such that t € C(z,y’). Note that B(z,y) = B(x,y’). This leads to a contradiction to
t € C(x,y'). Hence B(z,y) N A=10 and Ly (@) A A = C(x,y) U A(z,y). Then we have
IT'i(z) NA| = a3 + c3.

Since each vertex in A appears’ima sequence of vertices x = xg, 1, T9,r3 in A,

where 0(z,z;) = j and 0(x;_1, z;) =1 for 1<) < 3, it suffices to show
Ty (z) NA| = a3+ c3 (5.2.1)
for 1 <4 < 2. For each integer 0 <17 < 2, we show
Ca(za) \ Al < [Ta(@ia) \ A

by counting the number of pairs (s, z) for s € 'y (x;)\ A, z € I'1(x;41)\A and 9(s, z) = 2
in two ways. For a fixed z € I'y(z;41) \ A, we have d(z,2) = ¢ + 2 by Lemma 5.1.6,
so O(z;,2) = 2 and s € A(x;,z). Hence the number of such pairs (s, z) is at most
T (@i41) \ Alas.

On the other hand, we show this number is exactly |['1(z;) \ Alag. Fix an s €
Iy(x;) \ A. Observe d(z,s) = ¢ + 1 by Lemma 5.1.6. Observe 0(z;41,5) = 2 since
a; = 0. Pick any z € A(z;41,s). We shall prove z ¢ A. Suppose contradictory z € A

in the following arguments and choose any w € C(s, z).
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Case 1: 1 = 0.
Observe J(z,z) = 2, d(z,s) = 1 and Jd(z,w) = 2. This forces s € A by Lemma

5.1.6, a contradiction.

Case 2: 1 = 1.

Observe J(z, z) = 3, otherwise z € Q(z,z5) and this implies s € Q(x,z5) C A by
Lemma 2.2.5 and Lemma 5.1.6, a contradiction. This also implies s € A by Definition
2.2.3 and Lemma 5.1.6, a contradiction.

Case 3: 1 = 2.

Observe d(x, z) = 2 or 3. Suppose Jd(x, z) = 2. Then B(z,x3) = B(x,s) by Lemma
5.1.4 (with x5 = u, 5 = t). Hence s € A, a contradiction. So z € I's(z). Note
O(z,w) # 2,3, otherwise s € A by Lemma 5.1.4 and Lemma 5.1.6 respectively. Hence
O(z,w) = 4. Then by applying Q = Q(z9,w) in Theorem 2.2.8 we have d(z9,2) =1, a
contradiction to a; = 0.

From the above counting, weé have
D)\ Alag < [Tilziga) \ Afag (5.2.2)
for 0 <4 < 2. Eliminating ay from(5.2.2), we find
Ty (i) \ Al < [Fi(@ien) \ A, (5.2.3)

or equivalently

for 0 < i < 2. We have known previously |I'1(xg) NA| = |I'y(z3) N A| = a3+ ¢3. Hence

(5.2.1) follows from (5.2.4). O

Remark 5.2.2. The 3-bounded property is enough to obtain the main result of this

thesis. The 4-bounded property seems to be much harder to prove.
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Chapter 6

A Constant Bound of c,

Let I' = (X, R) be a distance-regular graph which has classical parameters (D, b, «, [3)
with D > 3. Assume the intersection numbers a; = 0 and ay # 0. We shall show that

ey <2, and if ¢y = 1 then (b, o, B) = (=2, =2, ((—2)P+1 —1)/3).

6.1 Preliminary Lemmas

Let I' = (X, R) be a distande-regular_graph with diameter D > 3 and intersection
numbers a;, ¢;, b; for 0 < i < D."Assume that I''is D-bounded. By Theorem 2.2.9, for
any x,y € X with d(x,y) = t, there exists a unique weak-geodetically closed subgraph
A(z,y) containing x,y of diameter ¢, and A(x,y) is a distance-regular graph with the

intersection numbers

a;(A(z,y)) = a, (6.1.1)
ci(Alz,y) = «, (6.1.2)
bi(Alz,y)) = b;—1b (6.1.3)

for 0 <4 <t by Theorem 2.2.4 and (2.1.1). In particular, A(x,y) is a clique of size

1+b0—b1:a1—|—2whent:1.

Lemma 6.1.1. /27, Lemma 4.10] Let " denote a distance-regular graph which has clas-

sical parameters (D,b,«, 3). Let A denote a regular weak-geodetically closed subgraph
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of I'. Then A is a distance-regular graph which has classical parameters (t,b,c,3),

where t denotes the diameter of A, and ' = + a([ﬂ —[iD. O

Proof. By Theorem 2.2.4, A is distance-regular with intersection numbers

f(8) = Ci:m.(”“[i]lb’_ |
a(d) = a = m (al”‘(l‘m_hl}))’

) =w=ie = ([1]=[]) (#==[]) - (1] - () (o= [1])
= ([ - L) (eald] =] L))

for 0 <4 <t. Hence A has classical parameters (¢, b, «, '), where ' = ﬁ—i—a[ﬂ —am.

and

O

Lemma 6.1.2. Let I' = (X, R).denote.a D-bounded distance-reqular graph with D > 3.
Let A be a weak-geodetically closed subgraph:of & with diameter s, where 0 < s < D—1.
Suppose x,y € A with O(x,y)= s. Then the-following (i)-(iii) hold.

(i) For any w € X, let M(w)'s=Hm—=Aw} | m C X is a clique of size a; + 2
bo

containing w}. Then M(w) is a partition of T'1(w) with |M(w)| = 1
a1

(i1) If z € B(y,x), then A(x,z) D A and A(zx, z) has diameter s + 1.

(113) If A is a weak-geodetically closed subgraph of ' with diameter s+ 1 and contains
A, then A = A(z, z) for some z € B(y, ).

Proof. Note that A = A(x,y) by Theorem 2.2.9.

(i) The 1-bounded property implies each edge is contained in a clique of size a; + 2.
Since there are by edges in I' containing a fixed vertex w, we have (i).

(ii) Note that A(x,z) N A is a weak-geodetically closed subgraph of I" and y €
A(x,z) N A since y € C(z,2z). This implies the diameter of A(z,z) N A is s and we
have A(z,z) N A = A by Theorem 2.2.9. Hence A(z,z) 2 A. The diameter of A(z, 2)

is s + 1 since O(x, z) = s + 1.
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(iii) Suppose that A is a weak-geodetically closed subgraph of I' with diameter s+ 1
and contains A. Note that 2,y € A. Choose z € A and z € B(y,x). Then A = A(z, 2)
by (ii). O

Lemma 6.1.3. Let I' denote a D-bounded distance-reqular graph with D > 3. Let A,
A be two weak-geodetically closed subgraphs of I with diameter s, s + 3 respectively
and A C N, where 0 < s < D — 3. Let P and B be the sets of weak-geodetically
closed subgraphs of A" which contain A, with diameter s+ 1 and s+ 2 respectively. Let
I={(p,B) |peP,BeB, and p C B}. Then (P,B,1) is a 2-(v,k,1) design, where

T bs - bs+3
bs - bs—0—17
P bs - bs+2
bs - bs+17
and the replication number
= bs+1 il bs+3
bs+1 - bs+2

Proof. Let x,y € A with 0(z,) = s. Counting in two ways the number of pairs (¢, (2),
where ¢ C A’ is a clique of sizé a; +2 containing y with ¢ € A, and Q € P with ¢ C Q.

By Lemma 6.1.2,
bs(A)
((Zl + 1)

Simplifying (6.1.4) by (6.1.3) we have

bs(€2)
((11 + 1)‘

x1 = [P|x (6.1.4)

/ R
|P’ _ bs<A> _ bs_bs+3'
bs(£2) bs — bsi1

Fix A € %B. Using the same technique as above, there are

bs - bs+2
bs - strl

distinct elements of P incident with A. Note that the number is independent of choice
of A.

Fix any distinct ', Q)" € P. Pick z € B(y,z) N . Then ' = A(z, z) by Theorem
6.1.2. Pick w € Qf(x) — €. Note that w € B(x,z). Then A(w, z) € B containing

" and Q”. Suppose that A’ € B is another block incident with €' and Q”. Observe
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that @', Q" C A(w, z) N A" C A(w, z). This implies that the diameter of A(w, z) N A’
is s + 1. We have ' = A(w,z) N A" = Q" by Theorem 2.2.9, which contradicts to
£

bs-‘,—l - bs+3

The replication number r = can be computed by the same argument of

bs+1 - bs+2
counting of |P|. O

6.2 An Application of 3-bounded Property

Let ' = (X, R) be a distance-regular graph which has classical parameters (D, b, a, [3)
with D > 3. Suppose the intersection numbers a; = 0 and as # 0. Then a < 0 and

b < —1 by Lemma 3.1.2. Now we are ready to prove the main theorem of this chapter.

Theorem 6.2.1. Let I' denote a distance-regular graph which has classical parameters
(D,b,cr, 3) and D > 3. Assume thelinteisection numbers a; = 0 and ay # 0. Then

02§2.

Proof. 1t was shown in Theotem 5.2. 3 that I' is 3-bounded. Fix a vertex x € X and
a weak-geodetically closed subgraph”A containing z of diameter 3. By (6.1.1)-(6.1.3),
and Lemma 6.1.1 we find a;(A) = 0 and"A has classical parameters (3,b, a, 3') where

o4 :5—1—04([[1)} — [ﬂ) . Note that
g = 1+a—a(m) = 1—ab—ab’ (6.2.1)

by applying a;(A) = 0 to (2.4.4). Let P denote the set of all maximal cliques containing
x in A, and B be the set of all weak-geodetically closed subgraphs of diameter 2
containing x in A. Let I = {(p,B) | p € P,B € B, and p C B}. Then (P,8,]) is a

2-(v, k, 1) design by Lemma 6.1.3, where

_ (D) —b(A)
K = bo(d) (D) (1+b)(1— ab) (6.2.2)

and the replication number

B bi(A) b1 +b)(1—ab—ab® — )
O bi(A) = by(A) b(1 —ab— )

(6.2.3)
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by (2.4.2) and (6.2.1). Applying (6.2.2), (6.2.3), and Corollary 2.5.3 to the design, we

have
(1+m8:22:$’_® > (1+0b)(1 — ab). (6.2.4)
Note that
(1—ab—a)= bi(A) = ba(8) <0 (6.2.5)

b
since by (A) —bo(A) > 0 by Theorem 2.2.10 and b < —1. By (6.2.4), (6.2.5), and b < —1

we have

(1—ab—ab®>—a) > (1—ab)(l—ab—a). (6.2.6)
Simplifying (6.2.6) we have
ablab+a+b—1) <0. (6.2.7)
Observe that ab > 0 since « < 0 and b < —1. Then
abFa b1 <0. (6.2.8)
Note that ab+ a + b — 1 = co— 2 by (2.4.1) ‘and hence ¢, < 2. O
For the case co = 1, we have the following result.

Theorem 6.2.2. Let I' denote a distanee-reqular graph which has classical parameters
(D,b,a,3) and D > 3. Assume the intersection numbers a; = 0, as # 0 and c3 = 1.

Then (b,a, B) = (=2, =2, ((—=2)P* —1)/3).

Proof. Substituting a; = 0 and ¢, = 1 into (2.4.4), (2.4.1), and (2.4.3) we have

—b

bD+1 -1

Let 2 C A be two weak-geodetically closed subgraphs of I' with diameters 2 and
3 respectively. Note that Q is a strongly regular graph with a;(Q) = 0, c2(2) = 1 by

(6.1.1) and (6.1.2). Substituting this into (2.1.1) and (2.1.2) we have

Q] =1+ k1 () + ko (Q) = 1+ (bo(Q))>. (6.2.11)
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Hence we have

bo(Q) =2, 3, 7, 57 (6.2.12)

by Lemma 2.1.2. Note that
bo(Q) = by — by = 1+ b+ b* (6.2.13)
by (6.1.3), (2.1.13), (6.2.9), and (6.2.10). Solving (6.2.12) with (6.2.13) for integer

b < —1 we have b = —2, —3, or —8. By (2.1.2), (6.1.2), and (6.1.3) we have

ko) = Lo = ba)(br — ba)(br — b) (6.2.14)

C1C2C3

Evaluating (6.2.14) using (2.4.1)-(2.4.3), (6.2.9), and (6.2.10) we find

BB+ 1D +b+ D)3+ +20+1
ks(A) = ( ) 1_5 ). (6.2.15)

The number k3(A) is not an integer when b = —3 or —8. Hence b = —2 and a = —2,

B =((—2)PT —1)/3 by (6.2.9) and (6.2.10) respectively. O

Example 6.2.3. [9] Hermitian forms graphs Herg(D) are the distance-regular graphs
which have classical parameters(D, b, o, §) withb = —2, « = =3, and = —(—2)D—1,
which have a; =0, as # 0, and ¢ = (14 'a)(b+ 1) = 2. This is the only known class

of examples that satisfies the assumptions of Theorem 6.2.1 with ¢, = 2.

Example 6.2.4. [22, p. 237] Gewirtz graph is the distance-regular graph with inter-
section numbers a; = 0, a; = 8, and ¢, = 2, which has classical parameters (D, b, a, [3)
with D =2, b= -3, a = =2, and § = —5. It is still open if there exists a class of
distance-regular graphs which have classical parameters (D, —3, =2, (=1 — (=3)7)/2)
for D > 3.

Example 6.2.5. [3, Table 6.1] Witt graph My; is the distance-regular graph which
has classical parameters (D, b, «, 3) with D = 3, b = —2, « = —2, and § = 5, which
has a; = 0, as = 2, and ¢ = 1. This is the only known example that satisfies the

assumptions of Theorem 6.2.1 with c; = 1.
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For summary, we list the parameters in the following table.

name ar ay ¢ D b« 5
Petersen graph 0 2 1 2 -2 =2 -3
Witt graph Mss 0 2 1 3 -2 =2 )
77 0 2 1 D>4 —2 —2 (200
Hermitian forms graph Hery(D) 0 3 2 D -2 =3 —((-2)P+1)
Gewirtz graph 0 8 2 2 -3 -2 -5
77 0 8 2 D>3 -3 —2 =37

We close our thesis with two conjectures.

Conjecture 6.2.6. (With graph Mas does not grow.) There is no distance-reqular

(_2)D+1 _

1
graph which has classical parameters (D, —2,—2, ) with D > 4.

Conjecture 6.2.7. (Gewirtz graph'does not grow.) There is no distance-reqular graph

I'4(-3)"

which has classical parameters (D} =3,=2, = ) with D > 3.
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