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Abstract

Combinatorial group testing is a basic tool in conducting experiments of tests
which can be applied to computational molecular biology. For example, in screening
clone library the goal is to determine which clones in the clone library hybridize with
a given probe in an efficient fashion. A clone is said to be positive if it hybridizes
with the probe, and negative otherwise. In practical applications, besides positive and
negative clones, there is a third category of clones called inhibitors whose effect is to
neutralize positive clones. Therefore, we shall have models of group testing with or
without inhibitors. Also, in applications, we may face the situation that the property
of being positive or negative is defined on subsets of items instead of on individual
items. Such a model is known as a complex model. The study of complex models
does have a significant impact in‘recent.years.

Group testing algorithms can'be generally divided into two types, sequential and
nonadaptive. A sequential algotithm:conductsithe tests one by one and the outcomes
of all previous tests can be used to set-up-the later test. A nonadaptive algorithm
specifies all tests in advance so that they can be conducted simultaneously; thus
forbidding using the information of previous tests to design later ones. Sequential
algorithms require fewer number of tests in general, because extra information helps
for more efficient test designs. Nonadaptive algorithms permit to conduct all tests
simultaneously, thus saving time for testing. In most applications to molecular biol-
ogy, an experiment can be time-consuming. Therefore, it is much preferable to have a
nonadaptive algorithm where all tests are specified in advance; thus can be conducted
simultaneously.

In this thesis, we first introduce a few types of matrices such as separable or

disjunct matrices and then a connection between separability and disjunctness will



be provided in Chapter 3. Chapter 4 reviews various models in molecular biology
by focusing on the angle of decoding. Chapter 5 studies the complex model, and
provides two methods to construct generalized disjunct matrices. Chapter 6 focuses
on group testing with inhibitors. In particular, we study a generalized problem that
is to also identify the inhibitors besides the positive clones. Finally, in Chapter 7 we

have made some contributions in threshold group testing.

vi
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Chapter 1

Introduction

1.1 The History of Group Testing

Group testing has been around for sixty years. The date may trace back to an
event, World War II, in 1942 or early 1943. The origin of group testing is usually
credited to a single person, Robert Dorfman [16]. It started as an idea to screen
large number of blood tests for: syphilis economically. When such needs subsided,
group testing stayed dormant:for many years until it was revived with needs for
new industrial use. Sobel and ‘Groll [47];two Bell Laboratories scientists, gave the
phrase “group testing” new meaning by introducing many industrial applications for
future study in their 74-page paper. Dorfman, as well as Sobel and Groll, studied
group testing under the probabilistic models. Namely, a probability model is used
to describe the distribution of defectives, and the goal is to minimize the expected
number of tests required to identify the set of defectives.

Li [37] started to consider combinatorial group testing where the presumed knowl-
edge on the set of defectives is that it must be a member, called a sample, of a
given family called a sample space. For instance, the sample space could consist of
all d-subsets of the n items when the presumed knowledge is that there are exactly

d defectives among the n items. We will refer to this space as the S(d,n) space



while the S(d, n) space specifies that d is an upper bound of defectives. In the classic
combinatorial group testing problem, a deterministic model is used and the goal is
usually to minimize the number of tests required under a worst-case scenario.

Since Li, combinatorial group testing has been studied alongside with the prob-
abilistic group testing. Later, group testing is of interest in chemical and biological
testing, DNA mapping, and also in several computer science applications. Many as-
pects of group testing have been studied in depth, such as experiment designs, coding
theory, multiple access communication, among others. Here we refer to the book by
Du and Hwang [17] for an overview of the vast literature. Many further developments
can also be found in their new book Pooling Designs and Nonadaptive Group Testing

— Important Tools for DNA Sequencing [18].

1.2 Goals

First of all, we give a brief:description of the basic model of combinatorial group
testing. Consider a set N of nsitems consisting-of at most d positive (used to be
called defective) items with the others being negative (used to be called good) items.
Typically d is much smaller than n. A group test, sometimes called a pool, can be
applied to an arbitrary subset S of items with two possible outcomes; a negative
outcome indicates all items in S are negative, while a positive outcome indicates
otherwise, i.e., there exists at least one positive item in S, not knowing which or how
many. Let P denote the set of all positive items. The problem is to identify all items
in P.

Group testing algorithms can be roughly divided into two types, sequential and
nonadaptive. A sequential algorithm conducts the tests one by one and the outcomes

of all previous tests can be used to set up the later test. A nonadaptive algorithm



specifies all tests in advance so that all tests can be conducted simultaneously; thus
forbidding using the information of previous tests to design later tests. Sequential
algorithms require fewer number of tests in general, because extra information help
for more efficient test designs. Nonadaptive algorithms permit to conduct all tests
simultaneously, thus saving time for testing.

Typically, the main concern of group testing is to minimize the number of tests
required to identify all positive items. Therefore, sequential algorithms have domi-
nated the literature. But in the applications to molecular biology, it is another thing;
while minimizing the number of tests is still important, two other goals emerge.

In the applications to molecular biology, an experiment corresponding to a group
test could take several hours or even several days. Thus, it is impractical to perform
the experiments sequentially and great importance is attached to nonadaptive group
testing algorithms, also called pooling designs in the molecular biology literature, in
which all experiments are performed simultaneously. Sometimes for a given set of
parameters a pooling design cannot. be found orit-consumes too many tests, then one
has to seek for 2-stage or k-stage designs for small k. Note that pooling designs lead
to an attached decoding problem: How many computations are needed to identify the
positive items from the outcomes of all tests? In general, there is a trade-off between
the time complexity for decoding and the number of tests needed.

Another feature of biological experiments is that errors in the outcomes cannot
be ignored. With experimental errors, test outcomes may consist of false negative
outcomes and false positive outcomes. The former means that a test yields a negative
outcome when a pool contains at least one positive clone. Likewise, the latter means
that a test yields a positive outcome when a pool contains no positive clones. In

practice, the decoding issue becomes even more difficult due to experimental errors.



So the second goal is to control the experimental errors, which has rarely been studied
in the classical group testing literature, so that even though errors occur the positive
items can still be identified. Thus for each model we will consider its error-tolerant

version.

1.3 Applications to Molecular Biology

Recent advances in molecular biology, especially the success of the Human Genome
Project, have made the study of gene functions more popular. The study of gene
functions requires a high quality DNA library, which is a collection of the copies of
DNA segments, called clones. In screening a clone library, the goal is to determine
which clones in the clone library hybridize with a given probe in an efficient fashion.
A clone is said to be positive if it hybridizes'swith the probe, and negative otherwise.

In some applications, besidespositive and niegative clones, there is a third category
of clones called inhibitors whose effect is-to neutralize positive clones. That means
the presence of an inhibitor in<a pool dictates.a negative outcome, regardless of
the presence of positive clones in the pool. An example of inhibitors is an enzyme
inhibitor, which is a molecule that binds to the active site of an enzyme during the
reaction process and then prevents the success of this process. The inhibitor model
was first introduced by Farach et al. [27], and studied further in [5, 6, 9, 32]. The usual
concern in literature is to identify all positive clones. Another interesting problem
here is to also identify the inhibitors, besides the positive ones.

Suppose the items are molecules. Then a biological function in some other appli-
cations may depend on the presence of a subset of molecules, called a complex, i.e.,
the property of being positive or negative is defined on subsets of molecules, instead

of on individual molecules. Such a model is usually referred to as the complex model,



first introduced by Torney [51]. The problem is described as follows. Consider a set
N of n molecules and an unknown family P = {P,;} of subsets of N where the joint
appearance of all molecules in such a subset causes a certain given biological phe-
nomenon defined as a positive outcome. A set of molecules which is a candidate of a
member of P is called a complex while members of P are called positive complexes.
The goal is to identify P from a given set of complexes. Treating each molecule as
a vertex and a complex as an edge, the complex model can be easily fitted into the
framework of graph testing, learning the hidden subgraph P in a given graph. The
complex model is also related to other problems such as superimposed codes and

secure key distribution, among others [1, 10, 43, 20, 51].
1.4 Nonadaptive Group Testing

A nonadaptive group testing algorithm-can:be represented by an incidence matrix
M = [m;;] where rows are labelled by pools, columns by items, and m,;; = 1 if and
only if item j is in pool 7. For conveniénce, we treat a column C; as the characteristic
vector of subset {i : m;; = 1}, i.e., the set'of row indices where C; has 1-entries. Then
we can talk about the union US and the intersection NS of a set S of columns.

In the classic group testing problem, three types of binary matrices have been the

major tools in understanding and constructing a pooling design.

Definition 1.4.1. A matrix is d-separable if UD # UD’ for any two distinct d-sets

D, D’ of columns, i.e., no two unions of d columns are same.

Definition 1.4.2. A matrix is d-separable if UD # UD’ for any two distinct sets
D, D" of columns with |D|,|D’| < d, i.e., no two unions of at most d columns are

salme.

Definition 1.4.3. A matrix is d-disjunct if for any d + 1 columns Cy, Cy, -+, Cy,



d
Co z | Ja,
i=1
i.e., no column is contained in the union of any other d columns.

These matrices have been studied elsewhere under other names. The d-separable
matrix was first studied by Erdés and Moser [25] for d = 2. Frankl and Firedi 28]
called a d-separable matrix a union-free hypergraph by treating rows as vertices and
columns as edges of a hypergraph (then the boolean sum of columns becomes the
union of edges). The d-separable matrix was first studied by Kautz and Singleton
[35] as a special kind of code named UD, (uniquely decipherable code of order d).
The d-disjunct matrix was also first studied by them under the name of ZF D, (zero-
false-drop code of order d).

These properties are now explained in tetms of pooling designs. Consider the
sample space S(d,n) where exact d positive items are present. The d-separability
property implies that each sample in the sample Space S(d,n) induces a different
outcome vector. By matching the.outcome vector with the samples in S(d,n), the
d positive items can be identified. Moreover, the d-separability is also a necessary
condition for a matrix M to be able to identify the d positive items. Similarly, the
d-separability implies that samples in S (E, n), where at most d positive items are
present, are distinguishable. Although the d-separability (d-separability) property is
able to identify up-to-d (d) positive items respectively, the actual decoding algorithm
can be messy. Thus, one can trade off a stronger requirement with an easier decoding.
The d-disjunctness property offers such a trade-off. In a d-disjunct matrix, a negative
item must appear in a negative pool, thus can be certainly identified as negative.
Consequently, one does not have to build and look up a table mapping outcomes

to samples in S(d,n) or S(d,n). In fact, the d-disjunctness property substantially



reduces the time complexity of decoding from O(tn?) down to O(tn), where ¢ is the

number of pools needed.

1.5 An Outline of the Thesis

As introduced, three types of binary matrices have been found to be major tools
in understanding and constructing pooling designs: d-disjunct, d-separable and d-
separable. While there exists a simple decoding for d-disjunct matrices, only brute-
force methods are known for the other two. In addition, the implications from the
first two matrices to the last one are well documented. Chapter 3 gives an implication
of the other direction for the first time. Moreover, we identify structures in the later
two matrices which lead to significant improvements for decoding complexity.

This thesis will focus on applieations tosmolecular biology. Several biological
models will be discussed. So far, there have been a number of related surveys in this
area [2, 23, 17, 45]. To our best knowledge, however, none of which takes a look at
group testing through the anglésof decoding algorithm, namely, how P is identified
from the outcomes of the pooling designs. Chapter 4 reviews several common models
in molecular biology by focusing on decoding, namely, giving a comparative study
of how the problem is solved in each of these models. From this angle, we see the
simplicity and integrity of the pooling design theory in the sense that all models share
the same basic structure in their decoding algorithms. We also see how the differences
in the models are reflected in the modifications of the basic structure.

Chapter 5 studies the complex model. We propose two explicit methods to con-
struct generalized disjunct matrices, which correspond to the pooling designs geared
to the complex model. We also give a lower bound for the number of tests required

by a combinatorial argument.



Chapter 6 studies the inhibitor model. We first strengthen the necessary condition
by De Bonis and Vaccaro, and give a pooling design which is comparable to the best
known results in the number of tests required, but improving significantly in decoding
complexity. Furthermore, we study a generalized problem that is to also identify the
inhibitors, besides the positive items.

Chapter 7 presents a natural generalization of group testing, called threshold group
testing, which is first proposed by Damaschke [15]. In the threshold group testing,
a group test gives a positive (negative) answer if the pool contains at least u (at
most [) positive items, and an arbitrary answer if the number of positive items is
between these fixed threshold [ and u, [ < u. Obviously, the classical group testing is
a special case, [ = 0 and u = 1, of this model. In this chapter, we first give a pooling
design which improves a main result’in Damaschke’s paper [15] on the number of
tests needed. Furthermore, we study a synthetic model in which the inhibitor model

and the threshold model are combined together.



Chapter 2

Preliminaries

2.1 Group Testing

In this section, we adopt some notations and definitions of properties of matrices
discussed in the rest of this thesis.

Consider an incidence matrix M =i iwhere rows are labelled by pools, columns
by items, and m;; = 1 if and only jif item j is im*pool ¢. For convenience, we treat
a column C; as the characteristic vector of subset {i : m;; = 1}, i.e., the set of row
indices where C; has 1-entries. < Thenswe“can say.a column is contained in another,
i.e., for two columns C' = (vy,vq,- - Joy)rand C' = (vi,vh,--- ,v;), we say C' C C" if
and only if v; <] for all 1 <14 <t. We say a row R; intersects a column C if and
only if m;; = 1.

For any two columns C' and C’, we denote C' U C’" as the union of C' and (',
which is nothing but the boolean sum. Similarly, C'N C” denotes the intersection of
C and C'. Likewise, for a set X of columns, denote UX as the union and NX as the
intersection of all columns in X.

A pool with a negative/positive outcome is called a negative/positive pool. For
a set P of positive items, denote V' as the outcome vector, i.e., V = UP in case

of error-free. Sometimes, we use + (or —) as a superscript to denote a positive (or



negative) column, i.e., a column representing a positive (or negative) item.

For a column C, define t} (C) = |C'\ V| and ¢} (C) = |C N V], i.e., the number
of negative (positive) pools in which column C' appears, respectively. For a subset X
of columns, define ¢t} (X) = [(NX) \ V] and ¢/ (X) = |(NX) N V], i.e., the number of

negative (positive) pools in which all columns in X appear, respectively.
Definition 2.1.1. A matrix is (d; z)-disjunct if for any d+ 1 columns Cy, Cy, - - - , Cy,

> z.

d
Co\ |G
=1

That means for any d + 1 columns Cy, C1,--- ,Cy, there exist at least z rows in
which Cy has 1-entries and the other d columns have 0O-entries. When z = 1, (d; 2)-

disjunctness is equivalent to d-disjunctness.

Definition 2.1.2. A matrix is (d;¢)- disjunctif for.any d+c columns C,Cy, - - -, Cyye,

d+c

UCZUC

1=c+1

The interpretation is that no union of ¢ columns is contained in the union of any
other d columns. Note that (d, 1)-disjunctness is equivalent to d-disjunctness, and

also (d, ¢)-disjunctness implies (d, t)-disjunctness for ¢ > c.

Definition 2.1.3. A matrix is (d, r|-disjunct if for any d+r columns Cy,Cy, - - - , Cyyp,

d+r

ﬂCZUC

1=r+1

That means for any d + r columns there exists a row where each of the r designated

columns has a 1-entry and each of the other d columns has a 0-entry.

Definition 2.1.4. A matrix is (d, r; z]-disjunctif for any d+r columns Cy, Csy, - -+, Cyr,
d+r
> z.
i=r+1

10



That means for any d + r columns there exist z rows where each of the r designated

columns has 1-entries and each of the other d columns has 0-entries.

Notice that (d,r; 1]-disjunctness is equivalent to (d, r|-disjunctness, and (d, 1; z]-
disjunctness is equivalent to (d; z)-disjunctness. All previous definitions of disjunct-
ness properties are special cases of the (d, r; z]-disjunctness property except the (d, c)-
disjunctness property.

We present a few easy preliminary lemmas that will be used later.
Lemma 2.1.5. M = [myj] is a (d,7; 2]-disjunct matriz if and only if M = [my;] is a
(r, d; z]-disjunct matriz, where T;; = 1 — my;.
Proof. The proof follows by the fact that a (d, r; z]-disjunct matrix can be obtained

from an (r, d; z]-disjunct matrix by interchanging all the 1’s and 0’s. ]

Lemma 2.1.6. Let M be a (d, o z|-disjunet matriz, and M* be obtained from M by
deleting a column and all the rows intersecting this-column. Then M is (d —1,7;2]-
disjunct.

Proof. Let Oy, be the column deleted frém M. Suppose to the contrary that M! is

not (d— 1, r; z]-disjunct. Then in M?! there exist d+r —1 columns C;, Co, - -+, Cyyp_1,

r d+r—1
such that mCi \ U C;| < z. It is easy to see that tracing back to M,
i=1 i=r+1
r d+r
ﬂCz\ U Cl < Zz,
i=1 i=r+1
violating the (d, r; z]-disjunctness. Hence, M" is (d — 1, r; z]-disjunct. [

Lemma 2.1.7. Let M be a (d,r;z]-disjunct matriz, and M° be obtained from M
by deleting a column and all the rows not intersecting this column. Then MY is

(d,r — 1; z]-disjunct.

Proof. The proof follows by a similar argument to that of Lemma 2.1.6. ]

11
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Figure 2.1: M is (d,r; z]-disjunct implies M is (d — 1, r; z]-disjunct and M° is (d,r —
1; z]-disjunct.

2.2 Hypergraphs

Given a finite set X, a hypergraph H = (X, F) is a family F = {Ey, Ea, - -+ , B, }
of subsets of X. The elements of X are called vertices, and the subsets E;’s are the
edges of the hypergraph H.

The rank r(H) of H is max|Bj|. A hypergrapl satisfying max |E;| = min |E;] is
said to be uniform. A hypergraph issaid tao be a rank-r graph if each edge contains
at most r vertices, and a hypergraphis-an r-graph if each edge contains exactly r
vertices.

For u € X, define the degree dy(u) of u to be the number of edges containing u.
The maximum degree of H will be denoted by A(H) = max dy(v). A hypergraph H
in which all vertices have same degree is said to be regular, i.e., dy(u) = dy(v) for all
u,v € X.

A vertex cover of H is a vertex subset intersecting all edges E;’s. Further, a z-
cover of H is a subset C' C X such that |C'[) E;| > z for all i. Let 7.(H) denote the
minimum size among all z-covers of H.

For z = 1, Lovész [39] prove that
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L 221. n(H) < ———=(1+1InA).
emma 71(H) minper |E| (1+1InA)

2.3 Codes

First, we give a brief description of finite fields. The order of a finite field is the
number of elements in it. It is well-known that n must be a prime power. Every finite
field F' of order n is denoted by GF'(n).

A code consists of a set of vectors, called codewords. The length of a codeword
u = (ug,ug, - ,u) is t. The size of a code is the number of codewords in it. A code

of length ¢ and size n can be represented by a matrix of size t X n.

Definition 2.3.1. A binary ¢ x n matrix M = [my;] is called a superimposed (d,r)-
code if for any two sets 2", % of columns such that | 2| = d, |#| = r and Z N% = 0,

there exists a row 4 for which
mi; =1 for all j € %, m;; =0 for all j € 2.

The Hamming distance betweén two vectors u and v is defined as the number of

positions in which they differ.

Definition 2.3.2. The Maximum Distance Separable Code (MDS-code) with param-
eters (q,k,t) is a g-ary code of size n = ¢, length ¢ and the Hamming distance

t—k+1.

For any integer £ > 2 and a prime power ¢ > k — 1 there exists an MDS-code with
parameters (q, k,q+ 1), which is a Reed-Solomon code [40]. Note that finite fields of

order ¢ play the key role of constructing Reed-Solomon codes.
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Chapter 3

Separable Matrices

As mentioned in Chapter 1, three types of binary matrices have become the major

tools in constructing a pooling design:
1. M is d-separable if no two unions of d columns are same.
2. M is d-separable if no two umions of at most d columns are same.
3. M is d-disjunct if no column is contained in the union of any other d columns.

Let n denote the number of ‘tolumns in the given matrix. It is easily seen from
definitions that d-separability (c_i—separability, d-disjunctness) implies k-separability
(E—separability, k-disjunctness) for 1 < k < d < n, respectively. Kautz and Singleton

[35] proved the following relations.
d + l-separability = d-disjunctness = d-separability = d-separability

In particular, d-disjunctness = d-separability with the option of dropping an arbitrary
row. Note that the relations between the three types of matrices miss a link from
d-separability to k-disjunctness or k-separability for some k < d. In the following

section, we (Chen and Hwang [13]) give such a link for the first time.
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3.1 From 2d-Separability to d-Disjunctness

Notice that US denote the union (or the boolean sum) of a set S of columns.

Chen and Hwang [13] show the following equivalence.

Lemma 3.1.1. Let M be a d-separable matriz. Then M is k + 1-separable, 1 < k <

d— 1, if and only if M is k-disjunct.

Proof. Sufficiency.

Suppose to the contrary that there exist two distinct sets S and S’ of columns in M,
|S| < k+1,|5 < k+1, such that US = US’. By the d-separability property of M,
we may assume |S| < |S’| < k + 1. Then there exists a column C' € S"\ S. Since
US = US’, we obtain C' C B(S), which violates the k-disjunctness property of M.
Necessity.

Suppose M is not k-disjunct, 1.e., 'there ‘exist a 'eolumn C and a set S of k other
columns such that C' C US. Then US =S  where S’ = SU{C} and |5],|5’| < k+1.

Hence M is not k + 1-separable. [

According to Lemma 3.1.1, we give a construction showing how to convert a

separable matrix to a disjunct matrix by adding tests and reducing d.

Theorem 3.1.2. Let M be 2d-separable. Then there exists a d-disjunct matriz ob-

tained by adding at most one row to M.

Proof. If M is d-disjunct, then we are done. Suppose it is not. Then there exist a
column C and a set S of d other columns such that C' C US. Add a row R which has a
l-entry at C' and a 0-entry at each column of S to break up the containment C' C US
in M. Of course, there may exist C’ and S, also with d columns, such that C’ C US’

in M. Then we break it up by using R in the same fashion. However, what we need
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to show is that this procedure of setting the entries in R is not self-conflicting, i.e.,
there does not exist a column C' such that C' C US, yet on the other hand C' € 5’
while US" O " # C (since then C' must have a l-entry from C' C US and a 0-entry
from US" D ).

Suppose to the contrary that there exist C,C’, S and S’ as described above with

|S| < d, |S"| <din M. Define

So={C'}USUY,
S1= S \{C},
Sy = Sy \ {C"}.

Then

ISl ="s<2d+ 1,
|Sl|:5‘—1§2d,

The fact |S;| = s — 1 follows from € € Sp,since C' € S’. Note that S; # Sy, but
they have the same cardinality which is at most 2d. We now show US; = US5, thus
violating the assumption of 2d-separability (which implies (s — 1)-separability).
Since the only column in S; but not in Sy is C’, whose 1-entries are covered by S’
which is in S5, we have US; C USs.
On the other hand, the only column in S, but not in S is C, whose 1-entries are

covered by S which is in S;. Hence USy; C US]. [ |

Theorem 3.1.3. Let M be 2d-separable. Then there exists a d + 1-separable matrixz

obtained by adding at most one row to M.
Proof. Theorem 3.1.3 follows from Theorem 3.1.2 and Lemma 3.1.1. (]
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3.2 New Bounds

Let t(n,d) denote the minimum number of tests for a d-disjunct matrix with n
items, and let ¢,(n,d) and t,(n,d) denote the counterparts for d-separable and d-

separable matrices, respectively. It is well known [17] that
1. t(n,d) = Q(d*logn/logd);
2. t(n,d) = O(d*logn).

Since the d-disjunctness is stronger than d or d-separability, the upper bound of
t(n,d) remains an upper bound of t,(n,d) and t,(n,d), respectively. However, the
lower bound is not preserved. Previously, there was no good argument for lower

bounds of ¢,(n,d) and t,(n,d) except
t.(n,d) = Q(dlogn)

n
from the simple-minded argument that'the number of distinct d-subsets, ( d) , cannot
exceed the number of distinct outcomes, 2¢..Theorem 3.1.3 shows immediately that

ty(n,d), ts(n,d) and t(n,d) have the same lower bound in the order of magnitude.
Theorem 3.2.1. t,(n,d) > t,(n,d) = Q(d*logn/logd).

In a sequential group-testing algorithm, the tests are done sequentially which
means we can use outcomes from previous tests to determine what to test next. Let
t'(n,d) or t(n,d) denote the minimum number of tests required to identify at most
d or exact d positive columns among n columns, respectively. Hwang, Song and Du

[33] proved

Theorem 3.2.2. t'(n,d) — t'(n,d) < 1.
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It is easy to see that t,(n,1) —t,(n,1) < 1. Setting d = 1 in Theorem 3.1.3, Chen

and Hwang [13] prove the following result.
Theorem 3.2.3. t,(n,2) — ty(n,2) < 1.

Note that, for d > 2, the difference between ¢,(n, d) and t,(n, d) remains unknown.

3.3 Bounding the Number of Items Appearing Only
in Positive Pools

As introduced in Chapter 1, a d-separable matrix or a d-separable matrix has
no simple decoding. The only known decoding is the brute-force method [52] by
computing the output vectors of all candidate sets of positive items (this can be
done in advance) and check which matches the actual outcome vector. Notice that
items appearing in a negative pool are mot: positive; thus they are not considered in
a candidate set. In this section; we will bound the number of columns not appearing
in any negative pool to reduce the numberoficandidate sets.

Let M be a txn d-separable (or d-separable or d-disjunct) matrix, P = {Py,--- , Py}
the set of positive items, and V' the outcome vector corresponding to {P,--- , P;},
ie, V = 'LC_lJlPZ-. Let Ty and 77 denote the sets of negative pools and positive pools,
respectivel;, with |Ty| = to and |T1| = t; where tg +t; = t. Let M;(My) be the
t1 X ny(tg X ng) submatrix of M such that the rows are T1(7) and the columns are
those which have no 1-entries in Ty(7}), respectively. Note that given a matrix M,

our aim is to bound n;.

Chen, Li and Hwang [14] observed the following relations between M and M.

Lemma 3.3.1. If M is d-separable (or d-separable or d-disjunct), then M is d-

separable (or d-separable or d-disjunct), respectively.

18



Proof. Since a column in M; preserves all the l-entries in M, M; inherits the

property of M. [

An immediate consequence of Lemma 3.3.1 is that bounds of n for a d-separable
(or d-separable or d-disjunct) matrix can be used to bound ng and n;. For a d-disjunct
matrix, Fiiredi [29] proved n < d-2%/?° by a combinatorial argument. D'yachkov and
Rykov [22] gave the asymptotic bound n < d - 22/% (1 + o(1)).

Bounds of ny for d-separable and d-separable matrices can be obtained through
their relation with d-disjunct matrices. Kautz and Singleton [35] proved that a d-

separable matrix is a (d — 1)-disjunct matrix. Thus

Theorem 3.3.2. Suppose M is d-separable. Then ny < (d — 1) - 2*1/@=1°  Also

ny < (d—1)-220/@=D*(1 4 0(1)) asymptotically.

From Theorem 3.1.2, we have proved|that.a d-separable matrix can be converted

to a |d/2]-disjunct matrix by adding a row. Thus we obtain

Theorem 3.3.3. Suppose M is d-separable. Then ny < |d/2] - 240 +D/14/21° = Also

ny < |d/2] - 220921 (1 4 0(1)) asymptotically.

Ironically, the case that M being d-disjunct does not have any analogous result.
This is because that a much stronger result is well known. Suppose the actual number
of positive clones is p < d. Then ny; = p [35].

Chen, Li and Hwang [14] observed that M; actually satisfies an additional con-
straint that there exists a set D of d columns in M; such that the union of D intersects
all rows in M (any set of d columns containing all positive clones will do). We make
use of this constraint to derive a new bound for the d-separable case.

Let N; denote the set of columns in M; and let D = {Dy,---,D4}. Define

J#i
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We prove the following results.
Lemma 3.3.4. CND; #C'ND; forallC, C"€ Ny\ D and 1 <i <d.

Proof. Suppose to the contrary that there exist C, C' and 7 such that
CnNDf=C"nND;.
Since the union of D intersects all rows in My,

J#i J#i

Thus we have CU (|JD,) = C"U(JD;), violating the assumption of d-separability.s
JF JF

Theorem 3.3.5. For a d-separable matriz M, ny < d+ 21/4) — 1.
Proof. Clearly,
i AL
b 1 & -

Without loss of generality, assume. D; achieves’ the minimum. By Lemma 3.3.4,
all columns in N; \ D have distinct intersections with D}, hence there are at most
2IDi1 < 2lh/d) of them. But we have to subtract one since the intersection number
cannot be | D}|. For otherwise, the union of that column with | J D, equals D, violating

J#i
the assumption of d-separability . ]

Compare the two bounds in Theorem 3.3.3 and Theorem 3.3.5, the bound in

Theorem 3.3.5 is better for d < 16, which is usually the case in biological applications.

Theorem 3.3.6. For a d-separable matriz M,

ni
<d42W/d 2 yfp=d.
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Proof. Since M is d-separable, hence (d — 1)-disjunct, the only columns in M, are
the positive items if p < d — 1.
If p = d, then C'N D can be neither D} nor @ (leading to C' U (U D;) = UD;).

JF#i J#i
Hence 2 is subtracted from 2Lf1/4 (]

3.4 Concluding Remarks

In this chapter, we provide a link from d-separability to k-disjunctness or k-
separability, but not as strong as we expect, i.e., k is not large enough. Therefore
the value of our link is not in its practicality in constructing efficient k-disjunct or k-
separable matrices from known d-separable matrices, but rather in calling awareness
to the existence of such a link, so that further research can improve on it.

Establishing such a link leads to two prineipal consequences. The obvious one is
in constructing k-disjunct or k=separable matrices from known d-separable matrices,
even though it seems not so efficient. The less obvious one is as described in section
3.2, an improvement of the lower.bound for the number of rows in the d-separable
matrices. This implies that the three types of matrices share the same lower bound
in the order of magnitude.

As mentioned in Chapter 1, d-disjunct matrices have a simple decoding algorithm,
namely, a column is positive if and only if it does not appear in a negative row. On
the other hand, d-separable matrices or d-separable matrices need fewer tests but
have no simple decoding. The only known decoding was the brute-force method [52]
by computing the output vectors of all candidate sets of positive items and checking
which matches the actual outcome vector. Let S and S denote the sizes of the

candidate sets for d-separable and d-separable, respectively. Then essentially,
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d
n — n
S = (d) andS=Z<j).
7=0
We show that n can be replaced by the bounds of n; in Theorem 3.3.3 or 3.3.5 for S,

and by the bounds in Theorem 3.3.2 or 3.3.6 for S for large savings.
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Chapter 4

An Overview through Decoding
Algorithms

This Chapter gives an overview of several models discussed in the group testing
literature. Its coverage includes the error-tolerance model, the inhibitor model and
the complex model. It is worth pointing.out that the angle we use to cut through
these models is the decoding algorithmiziFrem this angle, we see the simplicity and
integrity of the pooling designt theory in the sensé that all models share the same
basic structure in their decoding algorithms.. We also see how the differences in the
models are reflected in the modifications of the basic structure. Note that the content
of this chapter was taken from Chen and Hwang [12].

Suppose V is the outcome vector. Review that, for a column C, ¥ (C') = |C'\ V|
and tY (C') = [C NV|, i.e., the number of negative (positive) pools in which column

C' appears, respectively.

4.1 Various Models of Group Testing

4.1.1 The Basic Model

In the classic group testing problem, we consider a set N of n items consisting of

at most d positive items with the others being negative items. Recall that a matrix
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is said to be d-disjunct if for any d 4+ 1 columns Cy, C1, -, Cy,

> 1.

d
Co\ |G
=1

ITEM SELECTION(N,V, D, e)

1 for each item C € N

2 compute t (C)

3 if ) (C) <e

4 then D — DU {C}
) return D

Remark. The ITEM SELECTION(N,V, D, e) algorithm is a common decoding
tool to help determine which individual item is what we need via the function ¢} (C).
This algorithm returns the setsD consisting of all items that appear in at most e
negative pools under the outcome wector V-. In this chapter all decoding algorithms,
except that of complex models;-have the TTEM ' SELECTION algorithm as a sub-
algorithm in common, but the parameters'should be geared to the need of each

individual model.

d-BASIC ALGORITHM

0 use a d-disjunct matrix

1 V'« the outcome vector

2 D~

3 ITEM SELECTION(N,V, D,0)

Theorem 4.1.1. The d-BASIC ALGORITHM can identify the up-to-d positive

items.
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Proof. For a positive item C*, obviously, ¢} (C*) = 0. Assume there are at most d
positive items. Consider a negative item C'~, by the d-disjunctness property, there is
a row intersecting C~ but none of P; thus ¢}/ (C~) > 1. Therefore we can separate

all positive items from negative ones by using this algorithm. ]

4.1.2 The Error-Tolerant Model

In this subsection, the problem is to identify the up-to-d items in P with at most
e erroneous outcomes.

Review that a matrix is said to be (d; z)-disjunct if for any d+1 columns Cy, C1, - - -, Cy,

> z.

d
Co\ |G
=1

That means there exist at least z rows inteach of which Cy has a l-entry and every

C;, 1 <1i<d, has a O-entry.

(dye)-E ALGORITHM

0 use a (d;2e + 1)-disjunct matrix
1 V'« the outcome vector

2 D <0

3 ITEM SELECTION(N,V, D, e)

Theorem 4.1.2. The (d,e)-E ALGORITHM can identify the up-to-d positive

items with at most e errors.

Proof. Assume the number of errors is at most e. For each negative item C~, by
the (d; 2e + 1)-disjunctness property, there exist at least 2e + 1 rows intersecting C~

but none of P. Therefore the pools corresponding to these rows must have negative
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outcomes. Even for the worst case that e outcomes are erroneous, C~ still appears in
at least e+ 1 negative pools, i.e., t} (C7) > e+1. On the other hand, the outcomes of
the pools containing a positive item C* should be positive except for the occurrence of
errors. Hence t§ (C") < e. Thus, we can determine, via the function ¢} (C'), whether

C is positive or not. [

4.2 Group Testing with Inhibitors

4.2.1 The Error-Tolerant Inhibitor (EI) Model

Denote I as the set of all inhibitors. In the EI-model, an additional assumption
we make is |I| < h. Notice that the presence of an inhibitor in a pool dictates a

negative outcome, regardless of the presence of positive items in the pool.

(d, hye)-ELALGORITHM

0 use a (d + h; 2e ++1)-disjunct matrix
1 V'« the outcome vector

2 D10

3 O—10

4 for every item C' € N

5 compute t} (C)

6 ifty(C)<e

7 then O — O U {C}

8 for all h-subsets S C O

9 V —Vu(s)

10 ITEM SELECTION(N \ O,V,D,e)
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Remark. D’yachkov et al. [21] first gave a nonadaptive algorithm for the inhibitor
model without erroneous outcomes. The basic idea is to restore all positive outcomes
neutralized by inhibitors and their method exhaustively searches all (Z) ,h < h, I-
subsets of the n items. Hwang and Liu [32] gave a more efficient decoding algorithm
with error-tolerance that can substantially reduces the number of searching operations
down to <|i|) , where O is a set containing all inhibitors but no positives. Computing
ty (C) and t} (C) for each item C as a prior operation, they partition the n items
into four sets so that all inhibitors are separated from all positives. Here we give
a simplified version. The idea of this algorithm is to first collect all inhibitors into

the set O, and then identify a column C' as positive if there exists one S for which

ty(C) < e under the outcome vector V adjusted by S.

Theorem 4.2.1. The (d, h,e)-ELALGORITHM can identify all positive items

under the (d, h, e)-EI model.

Proof. To prove that (d, h, e)-El ALGORITHM works for the (d, h, e)-EI model,
what we need to show first is that @ eentains all inhibitors but no positives. Observe
that an item which appears in at most e positive pools cannot be positive due to the
(d+ h; 2e+ 1)-disjunctness property. Further, even for the worst case that e outcomes
are erroneous, every inhibitor appears in at most e positive pools. Hence the set O
contains all inhibitors but no positives.

Consider a negative item C~ € N \ O and a set P of at most d positive items.
For each h-subset S C O, by the (d + h;2e + 1)-disjunctness property, there exists
a (d + h)-set R of columns containing all positive items and S such that there are
at least 2e + 1 rows each intersecting C~ but none of R. The outcomes of the pools
corresponding to these rows should be negative except for the occurrence of errors.

Therefore, we can conclude that ¢} (C~) > (2¢ + 1) — e = e + 1. Hence no negative
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item is selected into D.

Consider an h-subset S C O containing all up-to-h inhibitors with the others
being negative items. For a positive item C™ € N\ O, C" appears only in the pools
in the new outcome vector V' adjusted by S. For the worst case that e outcomes are
erroneous, C'" still appears in at most e negative pools, i.e., t} (CT) < e. Hence every
positive item will be selected into D.

From the above discussion, the output of the (d, h,e)-EI ALGORITHM is the

set of all positive items. [

4.2.2 The General Error-Tolerant Inhibitor (GEI) Model

In the simplest inhibitor model, the model discussed in Section 4.2.1, the mere
existence of a single inhibitor dictatesithéoutcome to be negative regardless of the
presence of positive items. Thisnotionthas been extended to the k-inhibitor model [7]
which requires the existence of k inhibitors to dictate a negative outcome. We could
make even more complicate assumption that-each.set of k£ inhibitors cancel the effect
of a set of g positive items, but practically, accurate information of k£ and ¢ is usually
not available. Thus in the general inhibitor model, we only assume the existence of
some kind of cancelling effect between the inhibitors and the positive items, but no
further quantifiable information. Surprisingly, a decoding algorithm exists even under
such ambiguity.

A result by Chang, Chang and Hwang [9] implies that a (d+h; 2e+1)-disjunct ma-
trix identifies all positive items under the (d, h, ¢)-GEI model as well as the (d, h, ¢)-EI
model. The main idea is similar to that in the (d, h, e)-EI model, that is, restoring all
possible positive outcomes neutralized by inhibitors. Unfortunately, the same method

on separating all inhibitors from all positives in advance does not work in this model.
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So, instead of searching all h-sets in O, we have to search all h-sets in .

(d, h, e)-GEI ALGORITHM

0 use a (d + h;2e + 1)-disjunct matrix

1 V'« the outcome vector

2 D10

3 for all h-subsets S C N

4 V —VUu(s)

5 ITEM SELECTION(N \ S,V, D, e)

Theorem 4.2.2. The (d,h,e)-GEI ALGORITHM can identify all positive items

under the (d, h,e)-GEI model.

Proof. The proof is similar to-that of Theorem 4.2.1. Note that a positive item C' is

identified when S, C' ¢ S, is a'set centaining all inliibitors. ]

4.3 Group Testing on Complexes

The pooling design we have discussed so far has a set of positive items each
inducing a positive effect. In some applications the property of being positive or
negative is defined on subsets of items, instead of on individual items. Such a model
is usually referred to as the complex model, first introduced by Torney [51].

In the complex model, we consider a set N of n items and an unknown family
P = {P;} of subsets of N where the joint appearance of all items in such a subset
causes a certain given biological phenomenon defined as a positive outcome. A set
of items which is a candidate of a member of P is called a complex while members

of P are called positive complexes. The problem is to identify P from a given set of
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complexes through a few experiments. An experiment can be applied to an arbitrary
subset S C N with two possible outcomes; a negative outcome implies S does not
contain any P; € P, and a positive outcome implies otherwise.

Of particular note in the complex model is the basic assumption that no two
complexes X and X’ satisfy X’ C X. The reason is as follows. Observe that in
case that a complex X contains a positive complex X as a proper subset, then X ™
appears in all pools where X appears. Therefore X can only appear in positive pools
no matter it is positive or negative, i.e., X cannot be identified. Since we do not
know which complexes are positive, we make the more sweeping assumption of no
containment between any pair of complexes to cover all possible cases.

Let H denote the given set of complexes, then H can be viewed as a hypergraph
with items as vertices and complexes.as edges. A ccordingly, the group testing problem
on complexes is related to the graph testing problem on searching a hidden subgraph
P in a given graph H, which-consists of the set of positive edges. Also, a graph
testing algorithm can be represented“by an incidence matrix M = [m;;] where rows
are labelled by pools, columns by vertices, and m;; = 1 if and only if vertex j is in
pool 4.

Recall that NS is the characteristic vector of the set of pools in which every item in
S appears. Suppose H is a rank-r graph (each edge consists of at most r vertices) and
our only knowledge of P is |P| < d. A binary matrix is said to be (H; : d)-disjunct if

for any d 4 1 edges eg, €1, -, €q,

d
MNeg Q U(ﬂel)
i=1
It is easy to see that an (Hy : d)-disjunct matrix can identify P since every edge not

in P appears in a test not covering any hidden edge, thus the outcome is negative

and the edge is identified.
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A binary matrix is said to be (d, r]-disjunct (different from (d, r)-disjunct), first

studied by Mitchell and Piper [44], if for any d 4 r columns Cy,Cy, -+, Cyir,

r d+r
ﬂCi\ U C;| > 1.
i=1 i=r+1

That means for any d+1r columns there exists a row in which each of the r designated
columns has an 1-entry and each of the other d columns has a 0-entry. Such a property
was further studied in [11, 36, 49, 50|, sometimes under the name of generalized cover-
free families or generalized superimposed codes with application to the secure key
distribution problem.

Chen, Du and Hwang [10] established a connection between the complex model

and the secure key distribution problem, and showed the relation that
(d, r]-disjunctness =#(H#:d)sdisjunctness for all H.

Establishing such a connection-leads to'the consequence that the (d, r]-disjunct ma-

trices can be used to solve the-complex‘model problem.
4.3.1 The Error-Tolerant:Complex (EC) Model

In the EC model, we consider the problem on the complex model with at most e
erroneous outcomes. Review that for a subset X of items, t} (X) = | N X \ V| and
t/(X) = |(NX)NV], i.e., the number of negative (positive) pools in which every item
in X appears, respectively.

Stinson and Wei [49] first gave an error-tolerant version of a (d, r]-disjunct matrix.

A binary matrix is said to be (d, r; z]-disjunct if for any d+r columns C4, Cy, - - - , Cyyp,
r d+r
i=1 i=r+1
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COMPLEX SELECTION(H,V, D,e)

1 for each complex X € H

2 compute t} (X)

3 if 1y (X) <e

4 then D — DU {X}
5 return D

(d,r,e)-EC ALGORITHM

0 use a (d,r;2e + 1]-disjunct matrix

1 V'« the outcome vector

2 D10

3 COMPLEX SELECTION(H,V, D;e)

Theorem 4.3.1. The (d,r,e)=EC ALGORITHM can identify all positive com-

plezes under the (d,r,e)-EC model.

Proof. 1t is easy to see that even for the worst case that e outcomes are erroneous,
a positive complex X T appears in at most e negative pools, i.e., t} (XT) <e.
Consider a set P of positive complexes and a negative complex X~. By the
(d,r;2e 4+ 1]-disjunctness property, there exist an r-set R containing X~ and a d-set
T, TN R = (), intersecting each positive complex such that there are at least 2e + 1
rows each containing R but none of T. The pools corresponding to these rows must
test negative since they do not contain any positive complex. Even for the worst case
that e outcomes are erroneous, X~ still appears in at least e 4+ 1 negative pools, i.e.,
ty(X~) > e. Therefore, one can separate all positive complexes from negative ones

by using this algorithm. [
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4.3.2 The Error-Tolerant Inhibitor Complex (EIC) Model

In this subsection, we will introduce a synthetic model on complexes with the pres-
ence of inhibitors and erroneous outcomes. Chang et al. [9] are the first to consider
such an environment allowing the coexistence of inhibitors and complexes. We use
the parameters (d, h,r, e) to denote the assumption that among the complexes which
are subsets of n molecules, there are at most d positive complexes each consisting of
at most r items, and there are at most h inhibitors and at most e erroneous outcomes.

Consider the simplest inhibitor model ((d, h, r, ¢)-EIC model). The mere existence
of a single inhibitor dictates the outcome to be negative, regardless of the presence of
positive complexes. The first decoding algorithm we provide here is similar to that

in Section 4.2.1 except replacing items by complexes.

(d, h, r:¢)-EICPALGORITHM I

0 use a (d + h,r;2es 1]-disjunct matrix
1 V'« the outcome vector

2 D19

3 O—10

4 for every complex X € H

5 compute t} (X)

6 ifty(X) <e

7 then O — OU{X}

8 for all h-subsets S C O

9 VHVU(UUWO

10 COMPLE))?%ELECTION(H \O,V,D,e)
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Theorem 4.3.2. The (d,h,r,e)-EIC ALGORITHM 1 can identify all positive

complezes under the (d, h,r,e)-EIC model.
Proof. Similar to the proof of Theorem 4.2.1 except replacing items by complexes.n

Notice that O is a set of complexes, thus |O| can be much larger than n. Therefore,

O
the for loop in the line 8 requires to go through (| h |) times, which could be a very
large number. We now provide an alternative algorithm that only needs to go through

n . .
( h> times in the worst case.

(d, h, 7, e)-EIC ALGORITHM II

0 use a (d + h,r;2e 4 1]-disjunct matrix

1 V'« the outcome vector

2 D~

3 for all h-subsets S &€ N

4 V —VUu(us)

5 COMPLEX SELECTION (/" S,V, D, e)

Theorem 4.3.3. The (d, h,r,e)-EIC ALGORITHM II can identify all positive

complexes under the (d, h,r,e)-EIC model.

Proof. The proof is similar to that of Theorem 4.3.2 except that the restoring

operation runs through all hA-subsets S C N. ]

4.3.3 The General Error-Tolerant Inhibitor Complex (GEIC)
Model

Consider the (d, h,r,e)-GEIC model which only assumes the existence of some
kind of cancelling effect between the inhibitors and the positive complexes, but no

further quantifiable information.
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Theorem 4.3.4. The (d, h,r,e)-EIC ALGORITHM II identifies all positive com-

plexes under the (d, h,r,e)-GEIC model as well.

Proof. Note that the proof of Theorem 4.3.2 does not depend on quantifiable infor-
mation about the cancelling effect. With a slight modification of the proof of Theorem
4.3.2, we can conclude that the (d, h,r, e)-EIC ALGORITHM II also identifies all

positive complexes under the (d, h, r, ¢)-GEIC model. ]
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Chapter 5

Group Testing on Complexes

For convenience of investigation, we start with a review. In the complex model,
we consider a set N of n items and an unknown family P = {F;} of subsets of N
where each such subset is a cause of a certain given biological phenomenon. A set
of items which is a candidate of a member of P is called a complex while members
of P are called positive complexes. The.probleniis to identify P from a given set of
complexes. An experiment cail he appliedto an arbitrary subset S C N with two
possible outcomes; a negative outcomenmplies S does not contain any P; € P, and a
positive outcome implies otherwise.

Of particular note in the complex model is the basic assumption that no two
complexes X and X’ satisfy X’ C X. The reason is as follows. Observe that in case
that a complex X contains a positive complex X as a proper subset, X appears
in those pools where X also appears. Therefore X can only appear in positive pools
no matter it is positive or negative, i.e., X cannot be identified. Since we do not
know which complexes are positive, we make the more sweeping assumption of no
containment between any pair of complexes to cover all possible cases.

The classic group testing problem has been extended to graph testing (see Chapter
10 of [17] for reference) where a hypergraph H(V, E) is given. The problem is to

identify a hidden subgraph P with a small number of graph tests. A graph test can be
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applied to an arbitrary subset S C V with two possible outcomes; a negative outcome
implies that all edges in the subgraph Hg induced by S are not in P, while a positive
outcome implies otherwise, i.e., Hg contains at least one edge in P, not knowing
which or how many. We could have different graph testing problems according as
prior knowledge of P; the usual assumption is P has at most d edges, but it can also
be P is a matching [1, 4] or a hamiltonian circuit [30]. It is easily seen that the classic
group testing problem is a special case of the graph testing problem where H is a
1-graph, i.e., each edge is a vertex.

Let H denote the given set of complexes, then H can be viewed as a hypergraph
with items as vertices and complexes as edges. Accordingly, the group testing problem
on complexes is related to the graph testing problem on searching a hidden subgraph
P in a given graph H.

Establishing such a relation leads ol two consequences. The obvious one is all
results on graph testing are now availablé to solve the complex model problem. The
less obvious one is a change of emphasis in graph testing research due to the influence
of the complex model application. An experiment in the complex model can be time-
consuming. Hence it is much preferable to have a nonadaptive algorithm where all
subsets for testing are specified at once (and hence can be tested at once theoretically),
or at least by a k-round algorithm for some small k. The literature on nonadaptive
or k-round algorithms can be found in [1, 30, 31, 19, 38].

In the secure key distribution problem, n persons want to communicate securely
in groups of r persons. For this purpose, one takes a number of keys which are
distributed within the n persons. When a group of r persons decide to communicate
with each other, they take all the keys which are owned by all of them to generate

a common key for the whole group. The security requirement is no other d persons
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can generate the same key by using the union of all keys they owned.

D’yachkov, Villenkin, Macula and Torney [20] proposed the binary superimposed
(d, r)-code which satisfies the property that for any d+r codewords Cy,Cy, - - -, Cyip,
there exists an alphabet which is in every code C1, Cs, - - - , C,., but none of .1, C, o,
-+« Cqyr. This code was further studied in [49, 50, 24, 36].

By treating each key as an alphabet, and the set of keys owned by a person as a
codeword, a secure key distribution design is a binary superimposed (d, r)-code.

So far, the connections are quite obvious between the graph testing and the group
testing on complexes, and between the superimposed code and the key distribution
problem. However, the connection between the former pair of problems and the later
pair of problems is not obvious. In fact, even for an inter-pair problem, where the
connection is easy, the literature on!the two problems are mostly independent. In
the following section we will prove lan 'equivalence:relation between the two pairs of

problems under certain conditions.

5.1 The Equivalence

We first adopt the notation of the graph testing model. Suppose P is the set of

hidden edges. Then the outcome set (the indices of rows of positive outcomes) is

simply U (Ne;).
e;EP
Recall that a hypergraph is said to be a rank-r graph if each edge contains at most
r vertices, and a hypergraph is an r-graph if each edge contains exactly r vertices.

Suppose H is an r-graph and our only knowledge of P is |P| < d. We define three

properties of M relating to its ability to solve this graph testing problem:

38



(H, : d)-separability. For any two distinct d-sets D, D’ of edges,

(5.1) U (nes) # | (Nes).

e, €D e; €D’

(H, : d)-separability. For any two distinct sets D, D’ of edges with |D|, |D’| < d,

(52) U (ne:) # | (Ne).

e, €D e, €D’

(H, : d)-disjunctness. For any d + 1 edges eg, €1, -+ , €4,

(5.3) Ney € U(ﬂei).

Clearly, an (H, : d)-separable matrix identifies P if | P| = d is known. An (H, : d)-
separable matrix and an (H, : d)-disjunct matrix can be used to identify P if |P| <d
is known, while the latter has an easy decoding algorithm since every edge not in P
appears in a test not covering any hidden edge, thus the outcome is negative and the
edge is identified. Note that when all edges not in’.P are so identified, the remaining
edges are the hidden edges. Thus, (H, : d)=disjunctness implies (H, : d)-separability
implies (H, : d)-separability.

When H is a rank-r graph, we assume that no two edges e and e’ satisfy e C

, —

¢/. Similarly we can define (Hr : d)-separable, (Hy : d)-separable and (Hy : d)-
disjunct matrices respectively, where edges in the definitions are disjoint because of
the assumption. When H is the complete r-graph or a complete rank-r graph, then
the subscript H will be changed to K. Note that a complete rank-r graph is a maximal
graph satisfying the condition that no edge is contained in another edge.

On the other hand, the incidence matrix of a binary superimposed (d, )-code has
the property which we denote by (d, r]-disjunctness (different from (d, r)-disjunctness).

Namely, for any d + r columns Cy,Cs, -+, Cyip,

r d+r
(5.4) ez U e
i=1 i=r+1
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Note that condition (5.4) looks different from any one of (5.1), (5.2), (5.3). The
only result in the literature making a connection between the two types of results is

the following (given in [20]):

Lemma 5.1.1. (d,r]-disjunctness = (K5 : d)-separability = (d — 1,7]-disjunctness

and (d, (r — 1)]-disjunctness.

We will give a proof of the first implication since we believe that the original proof
has a slip.

Suppose M is not (K7 : c_i)—separable, i.e., there exist two sets of edges D and
D" with |D| < d and |D'| < d such that U (Ne;) = U (Ne;). By our assumption,

e;€D e; €D’
neither D nor D’ contains two edges one containing the other. Thus there must exist
an edge e in D U D’ such that e doesynoti contain any edge from the other set. For
otherwise, we would have e’ C ¢’ G e;where e and ¢’ are in the same set. Without
loss of generality, assume e & D. Since e 2 e; for every ¢; € D', we can choose
C; € e; \ e. Define S = {C; : < »< |D}}- Theh S is a set of at most d columns
disjoint from e.

Suppose to the contrary that M is (d,r|-disjunct. Then there exists a row with
l-entries in every column of e and 0-entries in every column of S. Thus this row
covers e but none of e; € D’. Hence U (Ne;) # U (Ne;), a contradiction to our

_ _ ei€D €D’
previous assumption.
The slip was made by choosing e € D U D" which is not contained in any edge of

the other set. Then e; \ e can be empty and C; cannot be chosen.

We now prove the crucial relation between the two types of results.
Theorem 5.1.2. (d,r]-disjunctness < (K, : d)-disjunctness.

Proof. Suppose M is not (d, r]-disjunct. Then there exist d+r columns Cy,Cy, - - - |
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Cy44r such that

T d+r
cic U .
i=1 i=r+1

Let €y = {01,02, cet 707”} and €; = {Cg, Cg, te ,CT,CT_H‘}, 1 S 1 S d. Then

Nep = ﬂ{6127 037 U 707"} N C(1

d+r
g ﬂ{CQ,C?,,"' 707“}m ( U OZ)

i=r+1
d

= U(ﬂei).
i=1
Hence M is not (K, : d)-disjunct.
Conversely, suppose M is (d,r]-disjunct. Let e, eq,--- ,eq4 denote d 4 1 arbitrary
edges where no e;, 1 < i < d, is contained in e. Set C,,; € ¢; \ e,1 < i < d, where

e; € D. Then M contains a row which covers.e, but intersects none of C,;, 1 <1 < d,

i.e., covers none of ¢; € D. Hence M is (K. d)-disjunct. [

Corollary 5.1.3. (d,r|-disjunctness = (Hr : d)-disjunctness for all Hy.

Proof. Note that the converse proof in Theorem 5.1.2 does not depend on the ranks

of the edges. ]

The implication offers us an idea to relax the prior knowledge concerning the given
set H of complexes. The problem is how to identify all positive complexes when the
structure of H is unknown. Now, we want to prove that a (d, r]-disjunct matrix can
be used to identify all positives even if the structure of the set of complexes is not

specified.

Theorem 5.1.4. A (d,r]-disjunct matriz can identify the up-to-d positives without

knowing H .
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Proof. Consider a set P = {P,, P,,---} consisting of at most d positive complexes
and an r’-subset R of columns which contains no P;, v’ < r. By the (d, r]-disjunctness
property, there exists a row containing R but none of P;’s. Accordingly, the pool
corresponding to this row has a negative outcome, i.e., t} (R) > 1. After eliminating
those subsets, the remaining subsets are those either being a positive complex or
containing a positive complex as a proper subset. Thus, we can identify a remaining
subset as a positive complex when it contains none of others. Therefore, all positive

complexes are identified. [

Here we propose an algorithm based on the proof of Theorem 5.1.4.

(d,7)-GENERAL COMPLEX ALGORITHM

0 use a (d, r|-disjunct ndatrix M

1 V'« the outcome vector

2 D10

3 T, < the set of all r'=subsets, r’ <#,in N

4 while T, # ()

5 choose a subset X € T, and compute t§ (X)
6 if 4y (X) =0and X 2 X' for all X' € D

7 remove all supersets of X from 7, and D
8 D — DU{X}

9 else T, — T, — X

10 return D
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5.2 Two Constructions of (d,r;z]-Disjunct Matri-
ces

Recently, the (d,r; z]-disjunct matrices have been found useful in other models
such as inhibitor model and threshold model. Details will be explained in Chapter
6 and Chapter 7. In this section, we will propose two methods to construct the
(d, r; z]-disjunct matrices. The first one is proposed by Chen, Du and Hwang [10]
by modifying a construction by Du, Hwang, Wu, Liu and Znati [19]. The latter is

proposed by Chen, Fu and Hwang [11].
5.2.1 Converted from ¢-Ary Matrices

Du et al. [19] gave a construction of the (Hy : d)-disjunct matrices by first
constructing a g-ary matrix () andsthen eonverting it to a binary matrix M. Let
fi(e) denote the set of g-ary entries inl row j collected from the columns associated
with the edge e € E. Then () has the property that:for any d + 1 edges eg, e, -+ , eq,
there exists a row j in which dene of the f;(e;);1 < i < d, is contained in f;(eo).
For row j in @, let ¢; = |[{f;j(e) :e € E}|. Then ¢; < mm{\E\,él(j)} Their
conversion is to replace row j in @ by c¢; rows, each of which labeled by the set
{(J, f)} where f is a distinct element in the set {f;(e) : e € E}. For row {(j, f)} in
the converted matrix M, every column in e with f;(e) = f (there can be more than
one such edge e) has a 1-entry and all other columns have a 0-entry. They proved that
such a matrix M converted from a g-ary matrix @) is (H7 : d)-disjunct. They also gave

a construction of @ = [g;;] with drm + 1 rows and ¢"**

columns each representing a

degree-m polynomial p,(z) in GF(q), where v € V and ¢ is a prime power > drm+1,

and the value in the cell g;; is defined by p;(7). Assuming |E| > '21 (q)) the number
=1\ 1

of tests in the converted matrix M is
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drm+1 r —1
El cjg(drm+1)~,Z(Q)g(drm+1)~(q+r >

Jj= =1\ 1 r
Chen, Du and Hwang [10] proposed a better conversion. Let ¢, = [{p,(z) : v € V'}|
for each row x in @, then ¢, < ¢. For row z in ), our conversion is to replace each
element in the set {p,(x) : v € V} by a distinct column of a ¢ x ¢, (d,r]-disjunct
matrix. Suppose z is the row in which none of the f,(e;) is contained in f,(eo). Let
C; € e; \ eg such that f,(C;) & f.(ep) for 1 <i < d. Then after the conversion there

exists at least a row x; in M, converted from the row z in @), in which all columns in

d

eo have l-entries while each C; has 0-entries, 1 < ¢ < d. Hence Ney € U(ﬂei). Since
i=1

the choice of ey, eq,- -+ €4 is arbitrary, the converted matrix M is (Hr : d)-disjunct.

Let t(n,d : Hy) denote the minimum number of rows required for a (Hr : d)-
disjunct matrix with n columns. Similarly, we define ¢(n, d, ] as the minimum number
of rows required for a (d,r]-disjunct matrix. with n columns. Existing results on
t(q,d,r] (see [50] for an example)ishow that’it is less than (q * :: B 1) in general or

at least asymptotically. Thus, we have
Theorem 5.2.1. t(¢™*',d : Hy) < (drm'+1) - t(q,d, r].

When H is the complete r-graph, M is (K, : d)-disjunct. By Theorem 5.1.2, M

is also (d, r]-disjunct. Then we have
Corollary 5.2.2. t(¢™"! d,r] < (drm + 1) - t(q,d,r].

Corollary 5.2.2 is the same result [20] as given by D’yachkov, Vilenkin, Macula
and Torney on the construction of (d, r]-disjunct matrices using the MDS-code. The
incidence matrix of the MDS-code with parameters (g, k,t) is a g-ary matrix of size
t x ¢* and the Hamming distance of any pair of columns is d = t — k + 1. Lemma

5.2.3 arises from the definition of the MDS-code.
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Lemma 5.2.3. (Sagalovich [46]). If ¢ > d+r and t > dr(k — 1) + 1, then
any MDS-code with parameters (q, k,t) has the property that for any d + r columns
C1,Cs, -+, Cyyy, there exists a row where the set of entries over Cy,Cy,--- ,C,. and

the set of entries over Cryq,--- ,Cqy, are disjoint.

D’yachkov et al. used the Reed-Solomon ¢-ary code, which is also an MDS-code,
to get a (drm + 1) x ¢™™! g-ary matrix with the property that described in Lemma
5.2.3. Then they also use a t' x ¢ (d, r|-disjunct matrix to transform the g-ary matrix
to binary one. The requirement of this g-ary matrix is seemingly different from that
given by Du et al., though the latter also corresponds to an MDS-code. Chen, Du and
Hwang [10] proved that the requirements of the two g-ary matrices are equivalent.

Let e, e1,- -+ ,eq be any d + 1 complexes. Set {C1,Cy, -+ ,C.} = e and C,y; €

ei \ eg, 1 <i < d. If the Reed-Sglomon g-ary ¢ede property holds, i.e., there exists

a row x such that the set of entries over Ci,Cs,:=- ,C, and the set of entries over
Cry1, -+, Cqyyr are disjoint, then inthe row z none of f,(e;) is contained in f,(ep),
1< <d.

Conversely, let C1,Cy, -+ ,Cyy, be any d + 7 columns. Set eg = {Cy,Cy, -+ ,C,}

and e; = {Cy, -+ ,C,,Cry;}, 1 < i < d. If there exists a row z in which none of
fz(€;) is contained in f,(ep), then in the row = the set of entries over Cy,Cy, -+, C,
and the set of entries over C,.,1,--- ,Cyy, are disjoint.

An Extension to Error-Tolerant Version

Stinson and Wei [49] first gave an error-tolerant version of the (d, r]-disjunct matri-

ces. Recall that a matrix is (d, r; z]-disjunct if for any d+r columns Cy,Cy, - - -, Cyyp,
r d+r
ﬂcz'\ U Ci| = =z,
i=1 i=r+1
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i.e., there exist at least z rows in which each of the r designated columns has a 1-entry
and each of the other d columns has a 0-entry. For a (d, r;2e + 1]-disjunct matrix, if
the number of errors is less than e, then we can identify the up-to-d positive complexes
consisting of at most r items. It is because that each negative complex appears in
at least (2e + 1) — e = e + 1 negative pools, while each positive complex in at most
e negative pools (due to errors). Therefore we can separate the negative complexes
from the positive ones.

Still, using a (d, r; 2e 4+ 1]-disjunct matrix, we can identify all positive complexes
as well even if the composition of given complexes is not specified. The decoding
algorithm is similar to GENERAL COMPLEX ALGORITHM except replacing

ty (X) =0 by 5 (X) <e.

(d,r,e)-GENERAL COMPLEX ALGORITHM

0 use a (d, r;2e + 1]-disjunct matrix M

1 V'« the outcome vegtor

2 D10

3 T, < the set of all r’-subsets, r’ < r, in N

4 while T, # ()

5 choose a subset X € T, and compute t§ (X)
6 if ) (X)<eand X » X' forall X’ € D

7 remove all supersets of X from 7, and D
8 D — DU{X}

9 else T, — T, — X

10 return D
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In general, it is not easy to construct a matrix with error-tolerance. A trivial,
but not efficient, construction to obtain error-tolerance is by taking copies of each
row of the original matrix. Chen, Du and Hwang [10] extended the substitution-type
construction mentioned above to the error-tolerant version. Let (), be constructed
similar to ) except there are drm + z rows for z > 1. Surprisingly, by replacing @)
with @, and a (d, r]-disjunct matrix with a (d,r; z/]-disjunct matrix respectively in
the substitution-type construction, we obtain a (d, r; zz']-disjunct matrix, which can

(z2/ = 1)
correct up to s €ITors.

Lemma 5.2.4. For any d + 1 edges eg,eq1,--- ,eq, there exists a set R of at least
z rows in @, such that for each j € R none of f;(e;) is contained in f;(ey), where

1< <d.

Proof. By the construction of @), each! column is represented by a degree-m poly-
nomial in GF(q), and all of which“are distin¢t. Hence any two columns have common
entries in at most m rows.

Suppose to the contrary that there'exist at most z—1 rows satisfying the condition.
Then by the pigeonhole principle there exists an edge e, € {e1,es, -+ , €4} such that
there exists a set IV of at least 7m + 1 rows satisfying f;(e;) C f;(eo) for each j € N.
Using the pigeonhole principle again, there exist two columns, one in e, and the other

in eg \ e;, with common entries in at least m + 1 rows, a contradiction. [

By applying the substitution-type construction to ()., we obtain

Theorem 5.2.5. By replacing each g-ary symbol in @), with a distinct column of a

m-+1

t' x q (d,r; 2'|-disjunct matriz, there exists a (drm + z) -t X q (d,r; z2']-disjunct

matrix M.
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Proof. It suffices to prove that M is (d, r; zz']-disjunct. Take a pair of disjoint d-set
and r-set of columns, we want to show that there exist zz’ rows with 1-entries in the
designated r columns and O-entries in the designated d columns.

After transformation, each row satisfying above condition can generate z’ rows
each of which has a 1-entry in the designated r columns and a O-entry in the designated
d columns. By Lemma 5.2.4, there exist z rows whose entries in the d columns are all
different from the entries in the r columns. Hence there exist zz’ rows with a 1-entry

in each of the r columns and a 0-entry in each of the d columns. ]

Denote t(n,d, r; z] as the minimum number of rows required for a (d, r; z]-disjunct

matrix with n columns.
Corollary 5.2.6. t(¢™ ", d, r; 22/] < min{(drm+2)t(q,d,r; 2], (drm+2')t(q,d,r; 2]}

Proof. The proof follows from Theorem 5.2:5 immediately. ]

5.2.2 Translating into a Vertex Cover Problem

Given a finite set X, a hypergraph H=((X, F) is a family F = {Ey, Ea, -+, B, }
of subsets of X. The elements of X are called vertices, and the sets E;’s are the
edges of the hypergraph H. A hypergraph with |E;| = |E;| for all i # j is said to
be uniform. For u € X, define the degree dy(u) of u to be the number of edges
containing u. A hypergraph H in which all vertices have the same degree is said to
be regular, i.e., dy(u) = dy(v) for all u,v € X. A z-cover of H is a subset C' C X
such that |CNE;| > z for all i. Let 7,(H) denote the minimum size among all z-covers

of H. It is easy to see that
(5.5) 7.(H) < zm(H).

By a greedy strategy, i.e., choosing vertices sequentially in X such that each

48



chosen vertex intersects the maximum number of edges which are not covered yet, a

fundamental result by Lovéasz [39] implies that

(5.6) n(H) < |L|(1 +1InA),

minger |E|
where A = max dp(u).

Chen, Fu and Hwang [11] show that (d,r;z]-disjunct matrices can be obtained
from z-covers of properly defined hypergraphs, and then (5.6) provides a desired
upper bound of ¢(n,d,r; z].

Let X, be the set of all binary vector x = (z1, s, -+ ,x,) of length n contain-
ing w 1’s. For any two disjoint subsets D, R of [n| with |D| = d and |R| = r,
where [n] denotes the set {1,2,--- ,n}, define the set of binary vectors Ep p = {x =
(x1,29,-++ ,@y) € Xyt w; =1fori € R and z; =0 for j € D}. Then, for r < w <
n — d, define the hypergraph H = (X,,, F)swhere. 7 = {Ep r : |D| =d, |R| = r, and
DN R =0}.

It is easy to see that a (d, % z]-diSjunct-matrix with n columns can be obtained
from a z-cover of H = (X, F) by tréating @i, s, - - - ,x, as columns and each vertex
in the z-cover as a row, i.e., the jth column has a 1-entry in that row if ; = 1 in that
vertex. The reason is that for any d + r designated columns induced by two disjoint
sets D and R with |D| = d and |R| = r, there exist at least z rows intersecting the
edge Ep r, meaning each of these rows has l-entries in every column in R and 0-

entries in every column in D. Thus, Chen, Fu and Hwang [11] obtained the following

theorem.

Theorem 5.2.7. For any positive integers d,r,w, z and n, withr < w < n—d, there

exists a t X n (d,r; z]-disjunct matriz with
p< 20 {1 o (“’) (” - “’)} .
(2" r)\ d
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Proof. By the construction of H = (X,,F), H is uniform and regular; hence

X _ —
—minLe]‘? 7 = % Moreover, we have |F| = (7:) (n J 7’) and A = (1:) (n J w)'

The theorem follows directly from (5.5) and (5.6). ]

From Theorem 5.2.7, all we need to do is to minimize the function by properly
choosing w to obtain a better bound. For convenience, denote k = d+r. If we ignore
the fact that w must be an integer, then w = nr/k, satisfying w/r = (n—w)/d, seems
to be a good choice to maximize (f) (n ; w) (somewhat verified by our limited

computations).
Theorem 5.2.8. For any positive integers d,r,z and n with d+r < n,
t(n,d,r; 2] < z(k/r)"(k/d)*[1 + k(1 +In(n/k + 1))].

Proof. For given positive integérs d, r, z and h, setting w = n'r/k where n’ > n is

the least integer such that n'r /& isan integer, we have
() (") stltnb=l) 45 (W — K+ 1)
() (") = e /k)-- At [k — r A0 (wd/k) - (wd]k —d + 1)
< 2(k/r) (k/d)".

Moreover, using the inequality (Z) < (ea/b)’, where e ~ 2.7182 is the base of the

natural logarithm, one concludes

() < v

From the above inequalities and Theorem 5.2.7, we have

e < G [em(7) (7))
< 2(k/r) (k/d)[L + k(1 + In(n'/K))).
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Note that n’ < n+ k because of the choice of n’. For any given positive integers d, r, z

and n, we have

t(n,d,r;z] < t(n',d,r; 2]
< z(k/r)"(k/d)*[1 4+ k(1 + In(n'/k))]

= 2(k/r)" (k/d)[1 + k(1 + In(n/k + 1))].

5.3 A Combinatorial Lower Bound

A complex X is called an isolated complex if there exists a row covering only X.
As it is not an efficient test, it is customary to assume that there are no isolated
complexes in a (d, r]-disjunct matrixji.e., eac¢h,row has strictly more than r 1’s.

Let M be a (d, r]-disjunct matrix andlet M. beobtained from M by interchanging
all the 1’s and 0’s. D’yachkovy Vilenkin, Macula and Torney [20] proved that M’ is
(r,d]-disjunct. In other words, if. M is an optimal (d, r]-disjunct matrix, then M’ is
an optimal (r, d]-disjunct matrix. Hence we strengthen the assumption of no isolated
complex to that each row has strictly more than r 1’s and d 0’s in a (d, r]-disjunct
matrix. This assumption is made throughout the rest of this subsection.

Let t*(n,d,r] be the minimum number of rows over all (d,r]-disjunct matrices
of n columns under the assumption mentioned above. Chen, Du and Hwang [10]
defined a secondary parameter wy, the minimum cardinality of NX over all k-sets X

of columns, and use a lower bound of it to bound t*(n, d, r]|.

Theorem 5.3.1. Let w; be the minimum cardinality of NX over all k-sets X of

columns. For a (d,r|-disjunct matriz with no isolated complex, we have

w; — Wip1 >d forv=1,2,---r.
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Proof. Let M be a (d,r]-disjunct matrix. Given k < r, consider a column C and
k

e

=1

aset C' = {C1,Cy, -+ ,Ck} of k columns such that

k
(G
i=0

Since £ < r, we can choose a set S consisting of other » — k£ columns. Let

= Wg. Let Cl =CU {C()}

Suppose =w.

S =SUC and Sy = SUC"\ {C1}. Then |Si| = |S2| = r. Hence S; and Sy are
distinct complexes in M. Since NC" C NC, whatever in NC’ but not in N(S U C") is
not in N(S'UC) neither. So, |NS; \ NSy < |NS1\NSUCH| = wy — w < wy, — wyy1.
If w, —w < d— 1, then there exist d — 1 other complexes Xi, Xo, -+, X4_1 such
that NS; C (U(ﬂXﬁ) U (NSy) (since M has no isolated complexes), violating the

i=1
(K, : d)-disjunctness property which is equivalent to (d, r|-disjunctness property. =

Corollary 5.3.2. For a (d,r|-disjunet matrig with no isolated complex, we have
w; > d(r=i 1)+ Lfori=1,2,--- r.

Proof. By Theorem 5.3.1, w;=w, "= (wy=w; 1)+ (w1 —wig2)+- -+ (wp—1 —w,) >
d(r — 1), for i <r. Since each complex’isinot an isolated complex, w, > d + 1. Thus,

w; >d(r—i+1)+ 1. ]

Note that w; is the minimum weight over all columns.

Corollary 5.3.3. A (d, r]|-disjunct matriz with no isolated complex has column weight

at least dr + 1.
Without loss of generality, assume d > r. Then, we obtain

Theorem 5.3.4. t*(n,d,r] > =(d+r—1)(d—r+2) + g(r —1)dr—5)+d+r.

N =3

Proof. To prove the theorem, we delete one column and all the intersecting rows

from M step by step. Let M be a (d, r]-disjunct matrix and let M! be obtained from
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M by deleting a column and all the intersecting rows. By Lemma 2.1.6, M! is a
(d — 1, r]-disjunct matrix.

Continue this process till an (r — 1,r|-disjunct matrix is obtained. To have a
better bound, we transform the current matrix to an (r, (r — 1)]-disjunct matrix by
interchanging all the 1’s and 0’s in the former one, and then keep this process going
till a (1, 1]-disjunct matrix is obtained. By Corollary 5.3.3 we can count the number
of rows deleted from M. Then we obtain a lower bound of t*(n,d, r|, that is,
(dr+1D)+((d=Dr+D)++((r—Dr+1)+((r=1*+1)+((r=2)(r—-1)+1)+

(P4 1) = Sd T D(d =+ 2) 4 L= DA —5) +d 4 '

,
2
Theorem 5.3.4 gives a lower bound by a combinatorial argument which only de-

pends on parameters d and r. For r = 1, this bound is reduced to the famous

d+2
Bassalygo ( ; ) bound (see [17} for reference).

5.4 Remarks

The first section of this chapter discussed the relations among four problems:
graph testing, group testing on complexes, superimposed codes and secure key dis-
tribution. Chen, Du and Hwang [10] proved a surprising equivalence relation among
these four problems. Establishing such a relation leads to the consequence that the
(d, r; z]-disjunct matrices are available to solve the complex model problem.

In the second section, we are interested in constructing the (d, r; z]-disjunct ma-
trices and providing an upper bound of t(n, d, r; z]. The idea of the first construction,
by Chen, Du and Hwang [10], is that first construct a ¢g-ary matrix and then convert
it to a binary one. Such an idea can also be found in a number of relevant papers,
for instance, in [19, 20, 49]. The method provides a recursive construction scheme to

generate the (d, r; z]-disjunct matrices. In case of z = 1, for example,
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1. £(16,2,2] = £(42,2,2] < ¢(4,2,2] - (4-1+1) < 6- 5 = 30;
2. 1(256,2,2] = £(16%,2,2] < t(16,2,2] - (4-1+1) < 305 = 150;
3. £(216,2,2] = (2562, 2,2] < £(256,2,2] - (4-141) < 150 - 5 = 750.

Stinson and Wei [49] provided two asymptotic upper bounds for ¢(n, d, r; z] by using

d+r

two other structures, one bound is O (2(
r

) (dr)*°& " log n), where the function
log™ is defined recursively by log*(1) = 1 and log"n = log*([logn]) + 1 if n > 1,
and the other is O <z (d j: r) log n) . However, we believe that there is a flaw in the
latter one. They showed that for any positive integers d,r, 2z and n, there exists a
t x n (d,r; z]-disjunct matrix with ¢t = O (z <d 1— r) log n), by using a construction
of perfect hash families, which was described in [53]. However, the asymptotic result
in [53] cited by Stinson and Wei shotld not:be O(logn), but O(C'logn), where C
depends on d and r actually. In addition, the same flaw can also be found in the
construction of (d, 1; 1]-disjunct matricesin [53]. Netice that the authors also claimed
that there exists another explicit: gonstruction of £ x n (d, 1; 1]-disjunct matrices with
t = O(d*logn).

The second construction, by Chen, Fu and Hwang [11], is obtained by translating
the problem into a hypergraph problem. Engel [24] first observed the equivalence be-
tween a (d, r; 1]-disjunct matrix and a cover of a properly defined hypergraph. Stinson

and Wei [49] generalized the equivalence to (d,r; z]-disjunct matrices for general z,

but used the equivalence only to derive a lower bound

d +7r d+r -1 d

t(”v d,r; Z] > 070% logn + C(Z ) ( + 7“)
log (") 2 r

when n is sufficient large, where ¢ is a constant.

The hypergraph we construct is similar to that of Stinson and Wei except that we

take a weight-/ binary vector as a vertex if and only if [ = w, while Stinson and Wei
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relaxed the condition [ = w to r <[ < n — d. The fixed weight leads to fixed degree
in the hypergraph, which allows us to use the Lovdsz lemma (5.6) on minimum cover

to derive an upper bound
t(n,d,r; 2] < z(k/r)"(k/d)*[1 + k(1 + In(n/k + 1))],

where £k = d + r. Our result provides a nontrivial and non-asymptotic bound of
t(n,d,r; z]. Note that the two upper bounds proposed by Stinson and Wei [49] are

asymptotic.
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Chapter 6

Group Testing with Inhibitors

In some applications, an item can be positive, negative or anti-positive in the
sense that the presence of anti-positives cancels the effect of positives. They are
called inhibitors in the literature.

In the simplest inhibitor model, first proposed by Farach et al. [27], the presence
of an inhibitor in a pool dictates a negative.outeome, regardless of the presence of
positive items in the pool. Thisnotion has béeen extended to the k-inhibitor model [7]
which requires the existence of K inhibiters-todictate a negative outcome. In addition,
we could make even more complicaterassumption that each set of k inhibitors cancel
the effect of a set of g positive items. In practice, accurate information of k£ and g
is usually not available. Thus in the general inhibitor model, we only assume the
existence of some kind of cancelling effect between the inhibitors and the positive
items, but no further quantifiable information.

Consider a set N of n items consisting of at most d positives and at most h in-
hibitors with the others being negatives. Let P denote the set of all positive items and
I the set of all inhibitors. The usual concern in the inhibitor model is to identify the
set P. Another interesting problem one can consider is to also identify the inhibitor

set 1. This chapter will focus on the two aspects of concerns.
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6.1 Identify Positives Only

In this section, the problem we consider is to identify the positives. For the prob-
lem, we first propose a necessary and sufficient condition, and show that it strengthens
the necessary condition by De Bonis and Vaccaro [6]. Then a new algorithm that can
substantially reduce the time complexity of decoding is presented. We show that
there is an algorithm with decoding complexity O(tn) for the inhibitor model and
also for the general inhibitor model, where ¢ = O(e(d + h)?logn) is the number of
tests needed. Note that our result in the number of tests required improves Hwang

and Liu’s result [32] slightly, but has a great improvement in decoding complexity.
6.1.1 A Necessary and Sufficient Condition

In this subsection, consider the‘problem on the (d, h)-inhibitor model where er-
roneous outcomes are not allowed. 'Recall:that, a matrix is said to be (d, ¢)-disjunct
if no union of ¢ columns is contained in the union of d other columns. Obviously,
(d, 1)-disjunctness is equivalent to;d-disjunctness; and a (d, i)-disjunct matrix is also
a (d, j)-disjunct matrix if ¢« < j. De Bonis and Vaccaro [6] gave the following result

for the nonadaptive case.

Theorem 6.1.1. The (h,d)-disjunctness is a necessary condition for identifying P

on the (d, h)-inhibitor model.

Recall that UX denote the union of a set X of columns. For a set X of columns,

define @,(X) = {(UX) \ (UY): Y is a set of at most h columns with X NY = 0}.

Definition 6.1.2. A matrix is said to be (d\ h)-separable if for any two distinct sets

X, X’ of at most d columns,
O, (X)NPL(X") =0.
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Theorem 6.1.3. The (d \ h)-separability is a necessary and sufficient condition for

identifying P on the (d, h)-inhibitor model.

Proof. The (d\ h)-separability implies that each set of up-to-d columns induces a
disjoint set of outcomes. By matching the sets of positive tests with the samples of
positives, the up-to-d positives can be identified.

On the other hand, suppose there are two distinct sets X, X’ of at most d columns,
such that

D, (X) N @y (X") # 0,

i.e., there exist Y and Y’ such that (UX) \ (UY) = (UX’) \ (UY’). Consider the
situations that X is the positive set and Y the inhibitor set, and that X’ is the
positive set and Y’ the inhibitor set. Clearly, they have the same outcomes. Hence,

one cannot distinguish whether X or X’ is the positive set. ]

Theorem 6.1.4. (d\ h)-sepatability = (d+ h — 1)-disjunctness.

Proof. Suppose there are d + b columns C', <+ , Cyyp such that C] is contained in

d+h
=2

Then (UX) \ (UY) = (UX’) \ (UY”), a contradiction to the (d \ h)-separability. ]
Corollary 6.1.5. For any nonadaptive algorithms, the (d + h — 1)-disjunctness is a
necessary condition for identifying P on the (d, h)-inhibitor model.

By definition, it is easily seen that Corollary 6.1.5 strengthens Theorem 6.1.1.
6.1.2 An Extension to Error-Tolerant Version

This subsection focuses on the (d, h, €)-inhibitor model where at most e erroneous
outcomes are allowed. Let X and Y be two binary vectors of the same length, and

d(X,Y) denote the Hamming distance between X and Y.
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Definition 6.1.6. A matrix is said to be (d \ h; z)-separable if for any two distinct

sets X, X’ of at most d columns,
d(S,T) > z for all S € &,(X) and T' € ¢, (X).

Theorem 6.1.7. The (d\ h;2e+1)-separability is a necessary and sufficient condition

for identifying P on the (d, h,e)-inhibitor model.

Proof. Necessity. Suppose to the contrary. Then there exist two distinct sets
X, X’ of at most d columns and two sets Y, Y’ of at most h columns with X NY =
X'NY’ = 0 such that (UX)\ (UY)) \ ((UX")\ (UY")) < 2e. Therefore, we can
always exploit at most e errors to change the results of some of the 2e rows such
that (UX) \ (UY))\ E1p = (UX') \ (UY")) U Ey for some sets Ejg and Fy; with
|Evol, | Eo1] < e. Consider the two situations that X is the positive set, Y the inhibitor
set and Fjg the erroneous pools changingpositive to negative, and that X’ is the
positive set, Y the inhibitor set ‘and Ey; the erromeous pools changing negative to
positive. Then it is easily seen that they have same outcomes. Therefore, we cannot
determine whether X or X' is the ‘set of positives.

Sufficiency. The (d \ h;2e + 1)-separability implies that each set of up-to-d
columns induces a disjoint set of vectors and the Hamming distance of each pair of
vectors is at least 2e + 1. Therefore, every outcome vector V' matches to a unique
set X of positives satisfying d(V,T) < e for some T € ®,(X). Hence, the up-to-d

positives can be identified. [

Theorem 6.1.8. The (d + h — 1;2e + 1)-disjunctness is a necessary condition for

identifying P on the (d, h, e)-inhibitor model.

Proof. Suppose the incidence matrix is not (d + h — 1;2e + 1)-disjunct, then there
d+h

i\ G

=2

exist d + h columns C,--- ,Cyyp such that < 2. Let X ={C;: 1<
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i <d}, X'=X\{Ci} and Y = {C; : d+1 < i < d+ h}. Then ((UX)\ (UY))\
(UX") \ (UY")) < 2e, violating the (d\ h; 2e + 1)-separability. By Theorem 6.1.7, the

proof is complete. ]

6.1.3 A Faster Algorithm

D’yachkov et al. [21] first gave a nonadaptive algorithm for the inhibitor model
without erroneous outcomes by using a (d + h)-disjunct matrix. The basic idea is to
restore all positive outcomes neutralized by inhibitors. Hwang and Liu [32] gave a

more efficient decoding algorithm with error-tolerance that reduces the total decoding
T
h

but no positives and ¢ is the number of tests needed. In this subsection, we propose

complexity down to O (t(n — |T|)( >), where T is a set containing all inhibitors

a new algorithm that can substantially veduces the total decoding complexity down

to O(tn) with an extra condition.

Definition 6.1.9. A binary matrix isi(h;¢)=inclusive if for any h+1 columns Cy, - - - , Cp,

i)

Theorem 6.1.10. A matriz which is (d; z)-disjunct and also (h;y)-inclusive with

<y.

z—e>y+eis(d+ h;2e+ 1)-disjunct.

Proof. For any d + h+ 1 columns Cy, Cy, - -+, Cyrp, we have

“n(u)

d+h+1

G\ U G

i=h+1

/

<y,

> z.

From the above two equations, we conclude that

d+h

Co\ | JCi

i=1

>z —y > 2e.
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Hence, the theorem follows directly from the definition of (d+ h; 2e+1)-disjunctness.n

Corollary 6.1.11. A (d; z)-disjunct and (h;y)-inclusive matriz with z —e > y + e

can identify all positives on the (d, h,e)-inhibitor model.

Proof. The proof follows by Theorem 6.1.10 immediately. [

We now propose a faster decoding algorithm by using a (d; z)-disjunct and (h;y)-

inclusive matrix with z —e > y + e.

FIND-P ALGORITHM

0 use a (d; z)-disjunct and (h; y)-inclusive matrix with z —e >y + e
1 V'« the outcome vector

2 P —1

3 for each item C' € N

4 compute ¢/ {C')

5 if 1} (C) <y Fe

6 then P «— P U{CY}

7 return P

Theorem 6.1.12. FIND-P ALGORITHM can identify all positives on the (d, h, e)-

inhibitor model.

Proof. Consider a positive item CT and a set I of at most h inhibitors. By the
(h; y)-inclusiveness property, there are at most y rows each intersecting C* and some
of I. Therefore, C* appears in at most y negative pools beside erroneous pools. Even
for the worst case that e pools are erroneous, C* appears in at most y + e negative

pools, i.e., t§ (CT) <y +e.
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On the other hand, consider a non-positive item C' and a set P of at most d
positives. By the (d; z)-disjunctness property, there are at least z rows each inter-
secting C' but none of P. The outcomes of the pools corresponding to these rows
should be negative except for the occurrence of errors. Therefore, we conclude that
ty(C) > z — e, which implies ¢} (C) >y + e.

From the above discussion, FIND-P ALGORITHM can determine, through

the function ¢} (C'), whether an item C is positive or not. ]

Then, we estimate the time complexity required for the decoding algorithm. It
is easily seen that the decoding algorithm is to compute all ¢} (C) for every item C.
Moreover, the cost of each single computation takes O(t) time where ¢ is the number

of tests needed. Hence, we conclude that the total cost of the decoding complexity is

O(tn).
An Extension to the General Inhibitor Medel

Consider the (d, h, e)-general inhibitor-model where we only assume the existence
of some kind of cancelling effect between the inhibitors and the positive items, but no
further quantitative information. Surprisingly, FIND-P ALGORITHM also works

even under such ambiguity.

Theorem 6.1.13. A (d; z)-disjunct and (h;y)-inclusive matriz with z —e > y + e

identifies all positives on the (d, h, e)-general inhibitor model.

Proof. Notice that the proof of Theorem 6.1.12 does not depend on quantifiable

information about the cancelling effect. ]
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6.1.4 A Construction

One way to construct such a matrix with the property mentioned in Theorem
6.1.12 is to have each column having weight at least w, and each pair of columns
contain at most A elements in common. Let M be such a matrix. Then any h
columns intersect a new column at no more than A\ rows, and there are at least
w — d\ rows that a column does not be covered by a set of d other columns. By
requiring w — d\ — e > h\ + e, which implies w > (d + h)\ + 2¢, we have that M is
(d; z)-disjunct and (h;y)-inclusive with z — e > y + e where z = w — dX and y = hA.

Thus, we have the following result.

Theorem 6.1.14. Let M be a matriz such that every column has weight at least w,
and every pair of two columns intersects,at no more than X\ rows. If w > (d+h)\+2e,
then M is a (d; z)-disjunct and (h; y)-inelusive with z — e > y + e where z = w — d\

and y = hA.

It is worth pointing out that'Hwang and Sés’s construction of disjunct matrices
[34] satisfies the above conditions and provides us a way to construct the desired
matrix. So we can exploit their construction to analyze and estimate the number of
tests needed. Given integers t and k, they construct a ¢t x n matrix with w = 4kl
and A = 41 — 1, where n > (2/3)3Y1%" and | = [t/16k*]. Accordingly, we obtain the

following result.

Theorem 6.1.15. Given integers d,h,e and t, there exists a t x n (d; z)-disjunct

3t/16k2

and (h;y)-inclusive matriz with z — e > y + e such that n > (2/3) , where

k> (41 — 1)(d + h) + 2¢) /4L.

By setting k = d + h + 2e, we have the following results.
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Theorem 6.1.16. There exists a t xn (d; z)-disjunct and (h; y)-inclusive matriz with

z—e>y+e such that t < 16(d + h + 2¢)*log(3n/2)/ log 3.

Corollary 6.1.17. There exists a t X n (d; z)-disjunct and (h;y)-inclusive matrix

with z — e >y + e such that t = O((d + h + €)*logn).

By Corollary 6.1.17, there exists a t' xn (d; z’)-disjunct and (h; y’)-inclusive matrix
M’ with 2’ >y such that ¢ = O((d + h)?logn). Let M be a t x n matrix obtained
by taking 2e + 1 copies of M’ where t = (2e+1)-t'. It is easy to see that (2e 4 1)z’ —
(2¢ + 1)y’ > 2e+ 1. Hence, M is t x n (d; z)-disjunct and (h;y)-inclusive matrix with

z —e >y + e such that t = O(e(d + h)?logn).

Theorem 6.1.18. There exists a t xn (d; z)-disjunct and (h; y)-inclusive matriz with

z—e>y+e such that t = O(e(d + h)?logmn).
6.2 Identify All Positives and Inhibitors

The problem we consider irr.this: séction 1s to'identify not only the positives, but
also the inhibitors. Although a number of studies have been made on group testing
with inhibitors, little is known on this problem especially for the nonadaptive case.

In order to identify the inhibitors, we make an additional assumption that among
the given n items there exists at least one positive item; for otherwise all outcomes

would be negative. Hence, one could not distinguish negative items from inhibitors.

6.2.1 A Necessary and Sufficient Condition

Definition 6.2.1. A matrix is said to be (d\ h; z)*-separable (different from (d\ h; 2)-
separable) if for any two pairs of disjoint sets (X, Y") and (X’,Y”), where | X|, | X'| <d
and |Y],|Y’'| < h,

A(UX)\ (UY), (UX)\ (UY')) > =
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Theorem 6.2.2. The (d\h; 2e+1)*-separability is a necessary and sufficient condition

for identifying P and also I on the (d, h, e)-inhibitor model.

Proof. Similar to the proof of Theorem 6.1.7. [

Theorem 6.2.3. The (d + h — 1;2e + 1)-disjunctness is a necessary condition for

identifying P and also I on the (d, h,e)-inhibitor model.

Proof. Obviously, a matrix which is (d \ h; 2e + 1)*-separable is also (d\ h;2e 4 1)-

separable, which implies (d + h — 1; 2e + 1)-disjunct. ]

6.2.2 Explicit Algorithms

Theorem 6.2.2 provides a necessary and sufficient condition for identifying P and
also I, but essentially neither existenée norexplicit construction is known so far, to
our best knowledge. Therefore, we turn to seek for a stronger tool which implies
the property mentioned in Theorem 6.2.2. In this subsection we provide explicit
algorithms by using a tool which is well studied/in the complex model.

Recall that a binary matrix is said to'be (d, r; z]-disjunct if for any d 4 r columns

Cla 027 Ty, Cd+r7
r d+r
e\ U G| ==
i=1 i=r+1

Theorem 6.2.4. An (h,2;2e + 1]-disjunct matriz can identify the up-to-h inhibitors

with at most e errors.

Proof. Consider a positive item CT and an h-subset I which contains all inhibitors.
By the (h,2;2e + 1]-disjunctness property, there exist at least 2e + 1 rows each inter-
secting C" but none of I. The pools corresponding to these rows should be positive
except erroneous pools. Even for the worst case that e pools are erroneous, C* still

appears in at least e + 1 positive pools, i.e., t} (C*) > e+ 1.
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Consider a negative item C'~, a positive item Ct and an h-subset I which contains
all inhibitors. By the (h,2;2e + 1]-disjunctness property, there exist at least 2e + 1
rows each intersecting C~ and Ct, but none of I. A similar argument implies that
tY(CT) > e+1.

On the other hand, even for the worst case that e outcomes are erroneous, t} (C') <

e for every inhibitor C'. Therefore, we can separate all inhibitors from the others. u

Theorem 6.2.4 provides a two-stage algorithm to identify all the positives and

inhibitors.

TWO-STAGE ALGORITHM

Stage 1: Use an (h, 2;2e + 1]-disjunct matrix to identify and eliminate all inhibitors.

Stage 2: Use a (d; 2e + 1)-disjunet matrix to identify all positives.

The two-stage algorithm also provides us a one=stage approach to identify P and
also I. It is quite nature to consider. the construction of a matrix which is (h, 2; 2e +
1]-disjunct and also (d;2e + 1)-disjunct after deleting any h columns and all rows
intersecting these columns. Then the pooling design corresponding to such a matrix
can be used to identify all positives and inhibitors in a similar way to the two-stage
algorithm. By definition, it is easily seen that a (d + h,2;2e + 1]-disjunct matrix is
(h,2;2e+1]-disjunct. Moreover, it preserves the (d; 2e+1)-disjunctness property after
deleting any h columns and all rows intersecting these columns. For otherwise, there
exists a column C and a (d+ h)-set R of columns such that there are at most 2e rows
intersecting C' but none of R, violating the (d + h,2;2e + 1]-disjunctness property.

Accordingly, we have the following result.
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Theorem 6.2.5. A (d + h,2;2e + 1]-disjunct matriz can identify all positives and

inhibitors under the (d, h, e)-inhibitor model.

Proof. The (d + h,2;2e + 1]-disjunctness property, which implies (h,2;2e + 1]-
disjunct, can identify all inhibitors according to Theorem 6.2.4. Eliminate the up-to-h
columns which represent the inhibitors and all rows intersecting these columns. Then
the resulting matrix remains to be (d;2e + 1)-disjunct due to the (d + h,2;2e + 1]-

disjunctness property. Therefore, one can identify the up-to-d positives. [

The corresponding decoding algorithm is presented as follows.

FIND-PI ALGORITHM

0 use a (d + h,2;2e + 1]-disjunct matrix
1 V'« the outcome veetor

2 P10

3 I—10

4 for each item C' € N

5 compute t} (C)

6 ifty(C)<e

7 then I — JU{C}
8 V—Vu(l)

9 for ecach item C' € N\ [

10 compute t} (C)

11 if 1} (C) <e

12 then P — PU{C}
13 return P and [
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Next, we estimate the time complexity required for this decoding algorithm. It is
easy to see that the total cost of the decoding complexity is also O(tn) where t is the

number of tests required.
6.2.3 An Extension to the k-Inhibitor Model

Consider the k-inhibitor model, & < h, which requires the existence of k£ inhibitors

to dictate a negative outcome.

Theorem 6.2.6. An (h—k+1,k+ 1;2e+ 1]-disjunct matriz can identify the up-to-h

inhibitors with at most e errors under the k-inhibitor model.

Proof. Consider a positive item C', a k-subset Y not a subset of the inhibitor-set
and an (h — k + 1)-subset Z which contains either all inhibitors not in Y or h —k+1
inhibitors. By the (h — k + 1, k 4215 2e + 1]-disjunctness property, there exist at least
2e + 1 rows each intersecting Cand all of ¥ ,sbut.none of Z. The pools corresponding
to these rows should be positive except.erroneous pools. Even for the worst case that
e pools are erroneous, the k-subset ¥ still appéars in at least e 4+ 1 positive pools,
i.e., t)(Y) > e+ 1. On the other hand, ¢/ (X) < e for every k-subset X consisting of
inhibitors.

Let O = {C € X : tY(X) < e for each k-subset X}. From above discussion, we

can conclude that O is the set of all inhibitors. (]

Similarly, there is a two-stage algorithm for the k-inhibitor model by replacing an
(h,2;2e + 1]-disjunct matrix with an (h — k + 1,k + 1; 2e 4 1]-disjunct matrix in the

first stage.
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TWO-STAGE i-INHIBITOR ALGORITHM

Stage 1: Use an (h —k + 1,k + 1; 2e 4 1]-disjunct matrix to eliminate all inhibitors.

Stage 2: Use a (d;2e + 1)-disjunct matrix to identify all positives.

A one-stage algorithm can also be obtained by a similar argument.

Theorem 6.2.7. A (d+ h, k+ 1;2e+ 1]-disjunct matriz can identify all positives and

habitors under the k-inhibitor model.

Proof. It follows by the fact that a (d + h,k + 1;2e + 1]-disjunct matrix M is
(h—k+ 1,k + 1;2e + 1]-disjunct, and the matrix obtained from M by deleting any

h columns and all rows intersecting these columns is (d, k + 1;2e + 1]-disjunct. ]

FIND-PI - INHIBITOR ALGORITHM

0 use a (d + h, k + 152¢ 4 1]=disjunet matrix
1 V'« the outcome vector

2 P

3 I—79

4 for each k-subset X C N

5 compute ¢} (X)

6 ifty(X)<e

7 then /] — JU{C} forall C € X
8 V—Vu(l)

9 for cach item C' € N\ [

10 compute t} (C)

11 if t}(C) <e
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12 then P — PU{C}

13 return P and [

This decoding algorithm is similar to FIND-PI ALGORITHM except replac-
ing item with k-subset in line 4. An analogous argument shows that the decoding
complexity of this algorithm is O <(Z> kt) in the worst case, since each operation

of computing ¢} (X) takes O(kt) time where ¢ is the number of tests needed.

6.3 Concluding Remarks

Farach et al. [27] first introduced the simplest inhibitor model and gave a random-
ized algorithm to identify all positives in O((d+h)logn) tests. De Bonis and Vaccaro
6] gave a deterministic algorithm ins@((h?4d)logn) tests. Further, De Bonis, Gasie-
niec and Vaccaro [5] provided a deterministici4-stage algorithm in O((d + h)logn)
tests that attains the same asymptotic eomplexity of the randomized algorithm pre-
sented in [27]. However, those algorithms are sequential; specifically, tests cannot be
performed in parallel. D’yachkov et al. "[21] first gave a nonadaptive algorithm by
using a (d+ h)-disjunct matrix with decoding complexity O (héh (t(n — 1) (Z) ) ) .
Further, Hwang and Liu [32] first gave an error-tolerant nonadaptive algorithm by
using a (d+ h+ 2e)-disjunct matrix and reduced the total decoding complexity down
to O (t(n —|T) <|Z;|)>, where T is a set containing all inhibitors but no positives.
Notice that the best known results for a (d + h + 2e)-disjunct matrix with n columns
show that at most O((d+ h +e)?logn) tests are used in Hwang and Liu’s algorithm.

In this chapter, we first gave a necessary and sufficient condition for any nonadap-

tive algorithm identifying all positives that improves the necessary condition by De

Bonis and Vaccaro [6]. Further, we improved Hwang and Liu’s result [32] by provid-
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ing an error-tolerant nonadaptive algorithm for identifying all positives with fewer
tests O(e(d + h)?logn) and optimal decoding complexity O(tn). Notice that our al-
gorithm has a significant improvement in decoding complexity and actually works for
the general inhibitor model where no further quantitative information of cancelling
effect.

In recent years, a great deal of effort has been made on the inhibitor model, es-
pecially for identifying all positives. What seems to be lacking, however, is to also
identify inhibitors, besides positives. Farach et al. [27] first studied the problem and
provided a method which performs at most twice as many tests as any algorithm for
identifying positives only. De Bonis, Gasieniec and Vaccaro [5] gave a deterministic
4-stage algorithm in O((d + h)logn) tests that attains the optimal bound. However,
both methods for identifying all positives and, inhibitors are sequential. It remains
an open question whether there exists-a nonadaptive algorithm for identifying all
positives and also inhibitors. =In this chapter; we answered the open problem by
proving the existence of a nonadaptive algorithm: More precisely, we showed that a
(d + h,2;2e + 1]-disjunct matrix can be used to identify all positives and inhibitors
under the (d, h, e)-inhibitor model. Note that the decoding complexity of our algo-
rithm achieves the optimal bound O(¢n). Furthermore, we extended to the k-inhibitor
model where existences of k£ inhibitors dictate a negative outcome. We showed that
a (d+ h,k + 1;2e + 1]-disjunct matrix, with decoding complexity O <(Z) kt), can
identify up-to-d positives and up-to-h inhibitors under the k-inhibitor model with at

most e errors.
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Chapter 7

Threshold Group Testing

In this chapter we discuss a generalization of group testing which is a novel model
first proposed by Damaschke [15]. The problem is described as follows. Consider a set
N of n items consisting of a number of positive items with the other being negative
items. Let [ and u be nonnegative integers with [ < wu, called the lower and upper
threshold, respectively. A group.fest for.a.subset.S of items is positive if S contains
at least u positives, and negativelif at mostl positives are present. If the number of
positives in S is between [ and?u, the outcome can: give an arbitrary answer. Denote
P the set of positive items. Supposéeur.enly: prior knowledge is that v < |P| < d.
The goal is still to identify all items in P.

Let ¢ = u — [ — 1 denote the gap between the thresholds. The gap g = 0 if and
only if a sharp threshold separates the positive and negative outcomes, so that all
answers are determined. Clearly, the classic group testing problem is a special case
that g =0 with [ =0,u = 1.

In [15], Damaschke considered only sequential strategies, i.e., the outcomes of all
previous pools can be used to set up the next tests. While Damaschke’s coverage
was predominantly for the sequential strategies, some of his results also hold for the
nonadaptive case. For general case that g is not specified, Damaschke proved that one

can identify a set P’ with |P"\ P| < g and |P\ P’| < g by simply testing all u-subsets.
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(u—1(g+1
to compute a set P’ with the properties mentioned above. It is worth mentioning

In addition, he proposed an algorithm with O < )'d“ngﬂ) operations
that he also showed that the number of misclassifications which is bounded by the
gap ¢ is in a sense the best possible result. That means one cannot identify P exactly
in the general case.

In Section 7.1, we first extend the threshold group testing to the error-tolerant
case, and provide an efficient pooling design. Mainly, we prove that a (d—1,u; 2e+ 1]-
disjunct matrix can be used to identify a set P’ as described above with at most e
erroneous outcomes. Note that for the case e = 0 our result requires many fewer tests
than that of Damaschke. For the case without gap, ¢ = 0, we provide an efficient
decoding algorithm to identify P with complexity O (ut (Z)) , where ¢ is the number
of tests needed. Section 7.3 intrgduces a symthetic model on the threshold group
testing with the presence of inhibitors and ertoneous outcomes. Here we consider

only the case without gap, where one ¢an identify all positives exactly.

7.1 Threshold Group Testing with Error-Tolerance

First, we extend the threshold group testing to the error-tolerant version where

at most e errors are allowed.

Theorem 7.1.1. A (d—I,u; 2e+1]-disjunct matriz can identify a set P" with |P"\ P| <

g and |P\ P'| <g.

Proof. Consider a u-subset X containing more than g items not in P, which implies
at most [ positives, and a (d — [)-subset Y which contains either d — [ positives not in
X or all positives. By the (d—1, u; 2e+1]-disjunctness property, there exist 2e+1 rows

each containing X but intersecting none of Y. The pools corresponding to these rows
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should be negative except erroneous pools. Even for the worst case that e pools are
erroneous, X still appears in at least e + 1 negative pools. Therefore, t§ (X) > e+ 1.

Observe that every wu-subset X+t C P should appear in positive pools except
erroneous pools. Hence, even for the worst case that e pools are erroneous, we have
ty(XT) <e.

Construct a hypergraph H, where a u-set X is an edge if and only if X appears
in at most e negative pools. Set P’ to be a maximum clique of H,. Note that P must
be a clique of H,. Further, a clique cannot contain more than g vertices not in P, or
the u-subset containing any g of these vertices cannot be an edge, contradicting the

definition of a clique. From these two observations, the theorem follows immediately.n

For e = 0, Theorem 7.1.1 offers a way to identify a set P’ as described but requires

fewer tests than that of Damaschke, testing all (n) u-subsets.
u

7.2 The Case without Gap

For the special case without gap; g = 0, Theorem 7.1.1 implies that we can identify

the set P exactly. Then, we obtain the following corollary.

Corollary 7.2.1. For the case g = 0, a (d — u + 1,u;2e + 1]-disjunct matriz can

identify the set P.

Proof. Note that a u-subset X appears in at most e negative pools if X C P, and

appears in at least e + 1 negative pools if X € P. [

Accordingly, we have the following algorithm geared to identify P.
THRESHOLD ALGORITHM

0 use a (d — u + 1, u; 2e + 1]-disjunct matrix

1 V « the outcome vector
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2 P10

3 for each u-subset X C N

4 compute t} (X)

5 if 1 (X) <e

6 then P« PU{C} forall C € X
7 return P

n
Obviously, the for loop is executed < ) times. Further, each operation for
u

computing ¢}/ (X) takes O(ut) time in the worst case. Therefore, the total decoding

complexity takes O (ut (n)) time.
u

7.3 The Inhibitor Threshold Model without Gap

In this section we introduce the threshold: gréup testing in the presence of in-
hibitors and errors. Here we consider only the case!g = 0. Denote I as the set of all
inhibitors with || < h.

Recall that in the simplest inhibitor problem the presence of an inhibitor in a
pool dictates a negative outcome, regardless of the presence of positive items in the
pool. Further, the k-inhibitor model requires the existence of k inhibitors to dictate
a negative outcome. It has been extended to the general model in which the exact

cancellation effect of inhibitors on positive items is not specified.
7.3.1 Identify Positives Only

The key point of our idea is to restore all positive outcomes neutralized by in-
hibitors. The method of this algorithm we proposed here is to collect all inhibitors

into the set O which contains no positives, and then identify a column C as positive
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if there exists one S and a u-subset X containing C for which ¢}/ (X) < e under the

outcome vector V' adjusted by S.

INHIBITOR THRESHOLD ALGORITHM

0 use a (d + h —u + 1,u; 2e + 1]-disjunct matrix
1 V'« the outcome vector

2 D0

3 O—10

4 for every item C' € N

5 compute t} (C)

6 if 1} (C) <e

7 then O — OU{C}

8 for all h-subsets S GO

9 V — VU (Us)

10 for each u-subset X" C N\ O

11 compute t (X)

12 if tV(X) <e

13 then D — DU{C} forall C € X
14 return D

The for loop in line 8 causes the majority of operations of this algorithm. The

@) - 10
operations for computing ¢} (X) execute O (<| h|) (n | |)> times in the worst
u

0] - 10
case. Therefore, the total time complexity is O (ut (| L |) (n | |)> where ¢ is the
u
number of tests required.

To prove the correctness of this algorithm, what we need to show first is that O

contains all inhibitors but no positives.
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Lemma 7.3.1. O contains all inhibitors but no positives.

Proof. By definition, a (d+h—u+ 1, u; 2e + 1]-disjunct matrix is also (h, 1;2e+1]-
disjunct. Consider a positive item C* and an h-subset X containing all inhibitors. By
the (h, 1; 2e+1]-disjunctness property, there exist at least 2e+ 1 rows each intersecting
C* but none of X. The pools corresponding to these rows should be positive except
erroneous pools. Even for the worst case that e pools are erroneous, C'* still appears
in at least e + 1 positive pools, i.e., t} (C*) > e+ 1. Therefore, we can conclude that
an item which appears in at most e positive pools cannot be positive.

On the other hand, even for the worst case that e pools are erroneous, every
inhibitor appears in at most e positive pools. Hence the set O contains all inhibitors

but no positives. ]

Theorem 7.3.2. The INHIBFTOR THRESHOLD ALGORITHM can identify

P with at most h inhibitors and at moste errors.

Proof. From Lemma 7.3.1, we‘conclude that P C N \ O. Consider a u-subset
X C N\ O not a subset of P, a (d —u + 1)-subset Y C N \ O which contains
either all positives not in X or d — u + 1 positives. For each h-subset S C O, by the
(d+ h —u+ 1,u;2e + 1]-disjunctness property, there exists a (d+h —u+ 1)-set R of
columns containing Y and S such that there are at least 2e 4+ 1 rows each containing
X but intersecting none of R. The outcomes of the pools corresponding to these rows
should be negative except for the occurrence of errors. Therefore, we can conclude
that ) (X) > (2¢ +1) — e = e + 1. Hence no negative item is selected into D.
Consider an h-subset S C O containing all up-to-h inhibitors with the others
being negative items. For a u-subset X* C P, X appears only in the pools in the

new outcome vector V' adjusted by the set S. For the worst case that e outcomes are
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erroneous, X T appears in at most e negative pools, i.e., t§ (XT) < e. Hence every
positive item will be selected into D.

From the above discussion, the output of this algorithm is the set P. ]

An Extension to the General Inhibitor Model

Consider the general inhibitor model where we only assume the existence of some
kind of cancelling effect between the inhibitors and the positive items, but no further
quantifiable information. Even under such ambiguity, a (d + h — u + 1,u;2e + 1]-
disjunct matrix still works as well. Unfortunately, the same method on separating all
inhibitors from all positives in advance does not work in this model. So, instead of

searching all h-sets in O, we have to search all h-sets in V.

GENERAL INHIBITOR THRESHOLD ALGORITHM

0 use a (d + h — u 41, u; 2e + 1]-disjunct matrix

1 V'« the outcome yector

2 D19

3 for all h-subsets S C N

4 V —VUu(us)

5 for each u-subset X C N\ S

6 compute t} (X)

7 if 1y (X) <e

8 then D — DU{C} for all C € X

Theorem 7.3.3. The GENERAL INHIBITOR THRESHOLD ALGORITHM
can identify P with at most h inhibitors and at most e errors under the general in-

hibitor model.

78



Proof. The proof is similar to the proof of Theorem 7.3.2 except that the restoring

operation runs through all hA-subsets S C N. ]

Similarly, we conclude that the total time complexity is O (Ut (n) (n N U))

where t is the number of tests required.
7.3.2 ldentify All Positives and Inhibitors

In this subsection, the problem we are concerned is not only to identify all posi-
tives, but also to identify all inhibitors. In order to identify the inhibitors, we need
to make an additional assumption that among the given n items there exist at least
u positives. For otherwise, all outcomes would be negative. Hence, one could not

separate the inhibitors from the negatives.

Theorem 7.3.4. An (h,u + 1;2eF 1]-disjunét_ matriz can identify the up-to-h in-

hibitors with at most e errors.

Proof. Consider a u-subset X of positiveritems and an h-subset [ which contains
all inhibitors. By the (h, u+ 1; 2e +1]rdisjunetnéss property, there exist at least 2e + 1
rows each containing C™ but not intersecting I. The pools corresponding to these
rows should be positive except erroneous pools. Even for the worst case that e pools
are erroneous, X still appears in at least e + 1 positive pools, i.e., t}(CT) > e+ 1 for
every positive item O € X.

Consider a negative item C~, a u-subset X of positive items and an h-subset [
which contains all inhibitors. By the (h,u + 1;2e + 1]-disjunctness property, there
exist at least 2e + 1 rows each containing C'~ and X but not intersecting I. A similar
argument shows that ¢; (C~) > e + 1.

On the other hand, even for the worst case that e outcomes are erroneous, t} (C') <

e for every inhibitor C'. Therefore, all the inhibitors can be identified. ]
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Theorem 7.3.4 provides a two-stage algorithm to identify all positives and also

inhibitors.

TWO-STAGE ALGORITHM

Stage 1: Use an (h,u + 1;2e + 1]-disjunct matrix to identify and eliminate all in-
hibitors.

Stage 2: Use a (d — u + 1, u; 2e 4+ 1]-disjunct matrix to identify all positives.

The two-stage algorithm also provides us a one-stage approach to solve the prob-
lem. It is quite nature to think of a matrix which is (h, u+ 1;2e + 1]-disjunct and also
preserves the (d —u+ 1, u; 2e 4 1]-disjunctness property after deleting any A columns
and all rows intersecting these coluhns. Then the pooling design corresponding to
such a matrix can be used to identify all positives-and inhibitors. By definition, it is
easily seen that a (d + h — u +1, v+ 1;2e + 1]-disjunct matrix satisfies the property

mentioned above.

Theorem 7.3.5. A (d+ h —u+ 1,u + 1;2e + 1]|-disjunct matriz can identify all

positives and inhibitors with at most e errors.

Proof. The (d+h —u+ 1,u+ 1;2e + 1]-disjunctness property, which implies the
(h,u + 1;2e + 1]-disjunctness, can be used to identify all inhibitors according to
Theorem 7.3.4. Eliminate the up-to-h columns which represent the inhibitors and all
rows intersecting these columns. Then, the resulting matrix remains to be (d — u +
1, u;2e + 1]-disjunct due to the (d + h — u + 1,u + 1;2e + 1]-disjunctness property.

Therefore, the positives can be identified by Theorem 7.3.2. [

The following decoding algorithm is based on Theorem 7.3.5.
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10

11

12

13

n
algorithm. It is easy to see that the operations for computing ¢} (X) execute ( )
U

n
times in the worst case. Hence, the total decoding complexity is O <ut< )) where
u

THRESHOLD FIND-PI ALGORITHM

use a (d+ h —u+ 1,u+ 1;2e + 1]-disjunct matrix
V'« the outcome vector
P
I—10
for each item C € N
compute t} (C)
ift}(C) <e
then I — I U{C}
V —VU(UI)
for each u-subset X C N\
compute t (X)
if ) (X) <e
then P« PUL{C}Hfor all C € X

return P and [

Our concern now is to estimate the time complexity required for this decoding

t is the number of tests required.

An Extension to the k-Inhibitor Model

dictate a negative outcome.

Consider the k-inhibitor model which requires the existence of £ inhibitors to

inhibitors among the given n items.
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Theorem 7.3.6. An (h—k-+1,u+k; 2e + 1]-disjunct matriz can identify the up-to-h

inhibitors with at most e errors under the k-inhibitor model.

Proof. Consider a u-subset X of positive items, a k-subset Y not a subset of the
inhibitor-set I and an (h — k + 1)-subset Z which contains either all inhibitors not in
Y or h—k+1 inhibitors. By the (h —k+ 1, u+ k; 2e 4 1]-disjunctness property, there
exist at least 2e + 1 rows each containing X and Y but intersecting none of Z. The
pools corresponding to these rows should be positive except erroneous pools. Even
for the worst case that e pools are erroneous, the k-subset Y still appears in at least
e + 1 positive pools, i.e., t/ (V) > e + 1.

On the other hand, ¢} (X) < e for every k-subset X consisting of inhibitors. Let
O ={C e X : t]/(X) < e for each k-subset X}. Then, it is easy to see that O is the

set of all inhibitors. (]

Similarly, there is a two-stage ‘algorithmy for the £-inhibitor model by replacing an
(h,u + 1;2e + 1]-disjunct matrix with-@ni(E=% +1, u + k; 2e + 1]-disjunct matrix in

the first stage.

E-INHIBITOR TWO-STAGE ALGORITHM

Stage 1: Use an (h — k + 1,u + k; 2e + 1]-disjunct matrix to identify and eliminate
all inhibitors.

Stage 2: Use a (d — u + 1, u; 2e 4 1]-disjunct matrix to identify all positives.

A one-stage algorithm can also be obtained by a similar argument.

Theorem 7.3.7. A (d+ h — u+ 1,u + k;2e + 1|-disjunct matriz can identify all

positives and inhibitors with at most e errors under the k-inhibitor model.
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Proof. The proof is similar to that of Theorem 7.3.5.

We also propose a decoding algorithm based on Theorem 7.3.7 in the following.

E-INHIBITOR THRESHOLD FIND-PI ALGORITHM

0 use a (d+h —u+ 1,u+ k;2e + 1]-disjunct matrix
1 V'« the outcome vector

2 P—1

3 I—19

4 for each k-subset X C N

5 compute #} (X)

6 if t}(X) <e

7 then [ — [U{C} forall C € X
8 V — VU

9 for each u-subset X C N \ /1

10 compute t} (X)

11 if 1) (X) <e

12 then P — PU{C} forall C € X
13 return P and [

n
Similarly, it is easy to see that the operations for computing ¢} (X) executed < k)
n
times, and for computing ¢} (X) executed ( ) in the worst case. Hence, the total
u

n
decoding complexity is O (pt( )) where p = max{u, k} and ¢ is the number of tests
p

required.
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7.4 Concluding Remarks

Damaschke [15] is the first to consider the threshold group testing, while his
coverage was predominantly for the sequential strategies. He proved that a set P’

n
with |[P"\ P| < g and |P \ P'| < g can be identified in ( ) tests, and proposed an
u
ug+1
(u—1)!(g+
chapter, we extended the threshold group testing to the error-tolerant version where

algorithm with O ( 1)'d"n9+1) operations to compute a set P’. In this
at most e errors are allowed. We showed that a (d — [, u; 2e + 1]-disjunct matrix can
identify a set P’ as described above with at most e errors. Note that for the case
e = 0 our result substantially reduces the number of tests needed. The following table

shows some numerical results.

d=2,u=2and [ =0
Damaschke Chen, Fu and Hwang
Testing all u-subsets | Usinga (d~ [, u; 2e + 1]-disjunct matrix
n =24 120 30
n=2% 32640 150
n =21 2,147,450, 880 750

Besides the error-tolerant threshold model,* we also studied a synthetic model
where the presence of inhibitors and errors are allowed. Notice that the problem we
consider here is only the case without gap, v = [ 4 1, in which one can identify all
positives exactly. We showed that a (d+h—u+1, u; 2e+1]-disjunct matrix can identify
up-to-d positives with the presence of up-to-h inhibitors and up-to-e errors under the
threshold model without gap; the decoding complexity is O (ut (Z)) where ¢ is the
number of tests required. Further, we studied the problem that is to identify all
inhibitors, besides positives. We proved that a (d +h — u + 1,u + 1; 2e + 1]-disjunct
matrix can identify all positives and also inhibitors under the error-tolerant threshold

model without gap in O <ut <n)) decoding complexity.
U
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