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摘    要 
 

在計算分子生物學裡，群試理論(Group Testing)是實驗設計的一

種基本工具。例如，用來有效率地找出哪些克隆(clone)含有一個特定

的因子。克隆如果含有這個特定因子則稱它為正的克隆；反之，稱為

負的克隆。最傳統的群試模型就是每次都可以選擇任意的一些克隆去

作實驗，實驗的反應若為陽性代表這群克隆裡面有至少一個是正的；

若為陰性則代表這些克隆都是負的。目標就是找出所有正的克隆。而

我們將藉由群試設計來減少實驗的次數以及節省所需的時間。 

在應用上，除了正和負的克隆之外，還有一種稱為抑制酶

(inhibitor)的克隆，它的功能就是會抑制正克隆的反應，導致實驗的結

果呈現陰性。此外，在某些應用上，實驗的陽性反應僅僅只會發生在
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某些特定的克隆同時出現時，而這種會發生陽性反應的克隆集合被稱

為正的複合物。我們的目標就是要找出所有的正複合物，而這樣的模

型則被稱之為複合物模型(complex model)。 

群試的演算法大致上可以分為兩類：逐步演算法 (sequential 

algorithm)以及非調整型演算法(nonadaptive algorithm)。逐步演算法指

的是實驗是一個接著一個進行的；也就是說可以利用之前的實驗結果

來安排下一個實驗。而非調整型演算法指的是所有的實驗必須事先安

排好，不能參考其他的實驗結果來作調整。因此，在理論上是可以視

為所有實驗可以同時進行的同步演算法。在分子生物的應用裡，大多

數的實驗都是很費時的，一個實驗快則幾個小時可以完成，慢則需要

好幾天，甚至是幾個星期。因此，可以同步進行的非調整型演算法是

比較能夠被接受且常用的方法。 

在這篇論文裡，我們主要的工作就是去設計非調整型演算法，來

解決生物應用所衍生出來的一些模型。首先，我們把非調整型演算法

表示成矩陣的樣子，並且定義一些矩陣的性質。在第三章，我們討論

了基本群試模型的矩陣性質間的關係。第四章，我們從解碼的角度出

發，去探索目前分子生物學所衍生出來的群試模型之間的異同。第五

章主要是討論複合物模型。值得一提的是，在這裡我們提出了兩種對

應到非調整型演算法的矩陣的建構方法，而這種矩陣也適用於後面的
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章節。第六章的焦點是放在有抑制酶存在的群試模型。特別的是，除

了找出所有正的克隆之外，我們還去探討如何找出所有的抑制酶，在

這篇論文裡提出了第一個非調整型的演算法來達到這個目標。最後，

在第七章我們研究的是傳統群試模型的推廣，稱為門檻群試 

(threshold group testing)。 
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Abstract

Combinatorial group testing is a basic tool in conducting experiments of tests

which can be applied to computational molecular biology. For example, in screening

clone library the goal is to determine which clones in the clone library hybridize with

a given probe in an efficient fashion. A clone is said to be positive if it hybridizes

with the probe, and negative otherwise. In practical applications, besides positive and

negative clones, there is a third category of clones called inhibitors whose effect is to

neutralize positive clones. Therefore, we shall have models of group testing with or

without inhibitors. Also, in applications, we may face the situation that the property

of being positive or negative is defined on subsets of items instead of on individual

items. Such a model is known as a complex model. The study of complex models

does have a significant impact in recent years.

Group testing algorithms can be generally divided into two types, sequential and

nonadaptive. A sequential algorithm conducts the tests one by one and the outcomes

of all previous tests can be used to set up the later test. A nonadaptive algorithm

specifies all tests in advance so that they can be conducted simultaneously; thus

forbidding using the information of previous tests to design later ones. Sequential

algorithms require fewer number of tests in general, because extra information helps

for more efficient test designs. Nonadaptive algorithms permit to conduct all tests

simultaneously, thus saving time for testing. In most applications to molecular biol-

ogy, an experiment can be time-consuming. Therefore, it is much preferable to have a

nonadaptive algorithm where all tests are specified in advance; thus can be conducted

simultaneously.

In this thesis, we first introduce a few types of matrices such as separable or

disjunct matrices and then a connection between separability and disjunctness will

v



be provided in Chapter 3. Chapter 4 reviews various models in molecular biology

by focusing on the angle of decoding. Chapter 5 studies the complex model, and

provides two methods to construct generalized disjunct matrices. Chapter 6 focuses

on group testing with inhibitors. In particular, we study a generalized problem that

is to also identify the inhibitors besides the positive clones. Finally, in Chapter 7 we

have made some contributions in threshold group testing.
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Chapter 1

Introduction

1.1 The History of Group Testing

Group testing has been around for sixty years. The date may trace back to an

event, World War II, in 1942 or early 1943. The origin of group testing is usually

credited to a single person, Robert Dorfman [16]. It started as an idea to screen

large number of blood tests for syphilis economically. When such needs subsided,

group testing stayed dormant for many years until it was revived with needs for

new industrial use. Sobel and Groll [47], two Bell Laboratories scientists, gave the

phrase “group testing” new meaning by introducing many industrial applications for

future study in their 74-page paper. Dorfman, as well as Sobel and Groll, studied

group testing under the probabilistic models. Namely, a probability model is used

to describe the distribution of defectives, and the goal is to minimize the expected

number of tests required to identify the set of defectives.

Li [37] started to consider combinatorial group testing where the presumed knowl-

edge on the set of defectives is that it must be a member, called a sample, of a

given family called a sample space. For instance, the sample space could consist of

all d-subsets of the n items when the presumed knowledge is that there are exactly

d defectives among the n items. We will refer to this space as the S(d, n) space
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while the S(d, n) space specifies that d is an upper bound of defectives. In the classic

combinatorial group testing problem, a deterministic model is used and the goal is

usually to minimize the number of tests required under a worst-case scenario.

Since Li, combinatorial group testing has been studied alongside with the prob-

abilistic group testing. Later, group testing is of interest in chemical and biological

testing, DNA mapping, and also in several computer science applications. Many as-

pects of group testing have been studied in depth, such as experiment designs, coding

theory, multiple access communication, among others. Here we refer to the book by

Du and Hwang [17] for an overview of the vast literature. Many further developments

can also be found in their new book Pooling Designs and Nonadaptive Group Testing

— Important Tools for DNA Sequencing [18].

1.2 Goals

First of all, we give a brief description of the basic model of combinatorial group

testing. Consider a set N of n items consisting of at most d positive (used to be

called defective) items with the others being negative (used to be called good) items.

Typically d is much smaller than n. A group test, sometimes called a pool, can be

applied to an arbitrary subset S of items with two possible outcomes; a negative

outcome indicates all items in S are negative, while a positive outcome indicates

otherwise, i.e., there exists at least one positive item in S, not knowing which or how

many. Let P denote the set of all positive items. The problem is to identify all items

in P .

Group testing algorithms can be roughly divided into two types, sequential and

nonadaptive. A sequential algorithm conducts the tests one by one and the outcomes

of all previous tests can be used to set up the later test. A nonadaptive algorithm

2



specifies all tests in advance so that all tests can be conducted simultaneously; thus

forbidding using the information of previous tests to design later tests. Sequential

algorithms require fewer number of tests in general, because extra information help

for more efficient test designs. Nonadaptive algorithms permit to conduct all tests

simultaneously, thus saving time for testing.

Typically, the main concern of group testing is to minimize the number of tests

required to identify all positive items. Therefore, sequential algorithms have domi-

nated the literature. But in the applications to molecular biology, it is another thing;

while minimizing the number of tests is still important, two other goals emerge.

In the applications to molecular biology, an experiment corresponding to a group

test could take several hours or even several days. Thus, it is impractical to perform

the experiments sequentially and great importance is attached to nonadaptive group

testing algorithms, also called pooling designs in the molecular biology literature, in

which all experiments are performed simultaneously. Sometimes for a given set of

parameters a pooling design cannot be found or it consumes too many tests, then one

has to seek for 2-stage or k-stage designs for small k. Note that pooling designs lead

to an attached decoding problem: How many computations are needed to identify the

positive items from the outcomes of all tests? In general, there is a trade-off between

the time complexity for decoding and the number of tests needed.

Another feature of biological experiments is that errors in the outcomes cannot

be ignored. With experimental errors, test outcomes may consist of false negative

outcomes and false positive outcomes. The former means that a test yields a negative

outcome when a pool contains at least one positive clone. Likewise, the latter means

that a test yields a positive outcome when a pool contains no positive clones. In

practice, the decoding issue becomes even more difficult due to experimental errors.

3



So the second goal is to control the experimental errors, which has rarely been studied

in the classical group testing literature, so that even though errors occur the positive

items can still be identified. Thus for each model we will consider its error-tolerant

version.

1.3 Applications to Molecular Biology

Recent advances in molecular biology, especially the success of the Human Genome

Project, have made the study of gene functions more popular. The study of gene

functions requires a high quality DNA library, which is a collection of the copies of

DNA segments, called clones. In screening a clone library, the goal is to determine

which clones in the clone library hybridize with a given probe in an efficient fashion.

A clone is said to be positive if it hybridizes with the probe, and negative otherwise.

In some applications, beside positive and negative clones, there is a third category

of clones called inhibitors whose effect is to neutralize positive clones. That means

the presence of an inhibitor in a pool dictates a negative outcome, regardless of

the presence of positive clones in the pool. An example of inhibitors is an enzyme

inhibitor, which is a molecule that binds to the active site of an enzyme during the

reaction process and then prevents the success of this process. The inhibitor model

was first introduced by Farach et al. [27], and studied further in [5, 6, 9, 32]. The usual

concern in literature is to identify all positive clones. Another interesting problem

here is to also identify the inhibitors, besides the positive ones.

Suppose the items are molecules. Then a biological function in some other appli-

cations may depend on the presence of a subset of molecules, called a complex, i.e.,

the property of being positive or negative is defined on subsets of molecules, instead

of on individual molecules. Such a model is usually referred to as the complex model,

4



first introduced by Torney [51]. The problem is described as follows. Consider a set

N of n molecules and an unknown family P = {Pi} of subsets of N where the joint

appearance of all molecules in such a subset causes a certain given biological phe-

nomenon defined as a positive outcome. A set of molecules which is a candidate of a

member of P is called a complex while members of P are called positive complexes.

The goal is to identify P from a given set of complexes. Treating each molecule as

a vertex and a complex as an edge, the complex model can be easily fitted into the

framework of graph testing, learning the hidden subgraph P in a given graph. The

complex model is also related to other problems such as superimposed codes and

secure key distribution, among others [1, 10, 43, 20, 51].

1.4 Nonadaptive Group Testing

A nonadaptive group testing algorithm can be represented by an incidence matrix

M = [mij] where rows are labelled by pools, columns by items, and mij = 1 if and

only if item j is in pool i. For convenience, we treat a column Cj as the characteristic

vector of subset {i : mij = 1}, i.e., the set of row indices where Cj has 1-entries. Then

we can talk about the union ∪S and the intersection ∩S of a set S of columns.

In the classic group testing problem, three types of binary matrices have been the

major tools in understanding and constructing a pooling design.

Definition 1.4.1. A matrix is d-separable if ∪D 6= ∪D′ for any two distinct d-sets

D,D′ of columns, i.e., no two unions of d columns are same.

Definition 1.4.2. A matrix is d-separable if ∪D 6= ∪D′ for any two distinct sets

D,D′ of columns with |D|, |D′| ≤ d, i.e., no two unions of at most d columns are

same.

Definition 1.4.3. A matrix is d-disjunct if for any d + 1 columns C0, C1, · · · , Cd,

5



C0 6⊆
d⋃

i=1

Ci,

i.e., no column is contained in the union of any other d columns.

These matrices have been studied elsewhere under other names. The d-separable

matrix was first studied by Erdős and Moser [25] for d = 2. Frankl and Fűredi [28]

called a d-separable matrix a union-free hypergraph by treating rows as vertices and

columns as edges of a hypergraph (then the boolean sum of columns becomes the

union of edges). The d-separable matrix was first studied by Kautz and Singleton

[35] as a special kind of code named UDd (uniquely decipherable code of order d).

The d-disjunct matrix was also first studied by them under the name of ZFDd (zero-

false-drop code of order d).

These properties are now explained in terms of pooling designs. Consider the

sample space S(d, n) where exact d positive items are present. The d-separability

property implies that each sample in the sample space S(d, n) induces a different

outcome vector. By matching the outcome vector with the samples in S(d, n), the

d positive items can be identified. Moreover, the d-separability is also a necessary

condition for a matrix M to be able to identify the d positive items. Similarly, the

d-separability implies that samples in S(d, n), where at most d positive items are

present, are distinguishable. Although the d-separability (d-separability) property is

able to identify up-to-d (d) positive items respectively, the actual decoding algorithm

can be messy. Thus, one can trade off a stronger requirement with an easier decoding.

The d-disjunctness property offers such a trade-off. In a d-disjunct matrix, a negative

item must appear in a negative pool, thus can be certainly identified as negative.

Consequently, one does not have to build and look up a table mapping outcomes

to samples in S(d, n) or S(d, n). In fact, the d-disjunctness property substantially
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reduces the time complexity of decoding from O(tnd) down to O(tn), where t is the

number of pools needed.

1.5 An Outline of the Thesis

As introduced, three types of binary matrices have been found to be major tools

in understanding and constructing pooling designs: d-disjunct, d-separable and d-

separable. While there exists a simple decoding for d-disjunct matrices, only brute-

force methods are known for the other two. In addition, the implications from the

first two matrices to the last one are well documented. Chapter 3 gives an implication

of the other direction for the first time. Moreover, we identify structures in the later

two matrices which lead to significant improvements for decoding complexity.

This thesis will focus on applications to molecular biology. Several biological

models will be discussed. So far, there have been a number of related surveys in this

area [2, 23, 17, 45]. To our best knowledge, however, none of which takes a look at

group testing through the angle of decoding algorithm, namely, how P is identified

from the outcomes of the pooling designs. Chapter 4 reviews several common models

in molecular biology by focusing on decoding, namely, giving a comparative study

of how the problem is solved in each of these models. From this angle, we see the

simplicity and integrity of the pooling design theory in the sense that all models share

the same basic structure in their decoding algorithms. We also see how the differences

in the models are reflected in the modifications of the basic structure.

Chapter 5 studies the complex model. We propose two explicit methods to con-

struct generalized disjunct matrices, which correspond to the pooling designs geared

to the complex model. We also give a lower bound for the number of tests required

by a combinatorial argument.
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Chapter 6 studies the inhibitor model. We first strengthen the necessary condition

by De Bonis and Vaccaro, and give a pooling design which is comparable to the best

known results in the number of tests required, but improving significantly in decoding

complexity. Furthermore, we study a generalized problem that is to also identify the

inhibitors, besides the positive items.

Chapter 7 presents a natural generalization of group testing, called threshold group

testing, which is first proposed by Damaschke [15]. In the threshold group testing,

a group test gives a positive (negative) answer if the pool contains at least u (at

most l) positive items, and an arbitrary answer if the number of positive items is

between these fixed threshold l and u, l < u. Obviously, the classical group testing is

a special case, l = 0 and u = 1, of this model. In this chapter, we first give a pooling

design which improves a main result in Damaschke’s paper [15] on the number of

tests needed. Furthermore, we study a synthetic model in which the inhibitor model

and the threshold model are combined together.
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Chapter 2

Preliminaries

2.1 Group Testing

In this section, we adopt some notations and definitions of properties of matrices

discussed in the rest of this thesis.

Consider an incidence matrix M = [mij] where rows are labelled by pools, columns

by items, and mij = 1 if and only if item j is in pool i. For convenience, we treat

a column Cj as the characteristic vector of subset {i : mij = 1}, i.e., the set of row

indices where Cj has 1-entries. Then we can say a column is contained in another,

i.e., for two columns C = (v1, v2, · · · , vt) and C ′ = (v′1, v
′
2, · · · , v′t), we say C ⊆ C ′ if

and only if vi ≤ v′i for all 1 ≤ i ≤ t. We say a row Ri intersects a column Cj if and

only if mij = 1.

For any two columns C and C ′, we denote C ∪ C ′ as the union of C and C ′,

which is nothing but the boolean sum. Similarly, C ∩ C ′ denotes the intersection of

C and C ′. Likewise, for a set X of columns, denote ∪X as the union and ∩X as the

intersection of all columns in X.

A pool with a negative/positive outcome is called a negative/positive pool. For

a set P of positive items, denote V as the outcome vector, i.e., V = ∪P in case

of error-free. Sometimes, we use + (or −) as a superscript to denote a positive (or
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negative) column, i.e., a column representing a positive (or negative) item.

For a column C, define tV0 (C) ≡ |C \ V | and tV1 (C) ≡ |C ∩ V |, i.e., the number

of negative (positive) pools in which column C appears, respectively. For a subset X

of columns, define tV0 (X) ≡ |(∩X) \ V | and tV1 (X) ≡ |(∩X) ∩ V |, i.e., the number of

negative (positive) pools in which all columns in X appear, respectively.

Definition 2.1.1. A matrix is (d; z)-disjunct if for any d+1 columns C0, C1, · · · , Cd,
∣∣∣∣∣C0 \

d⋃
i=1

Ci

∣∣∣∣∣ ≥ z.

That means for any d + 1 columns C0, C1, · · · , Cd, there exist at least z rows in

which C0 has 1-entries and the other d columns have 0-entries. When z = 1, (d; z)-

disjunctness is equivalent to d-disjunctness.

Definition 2.1.2. A matrix is (d, c)-disjunct if for any d+c columns C1, C2, · · · , Cd+c,

c⋃
i=1

Ci 6⊆
d+c⋃

i=c+1

Ci.

The interpretation is that no union of c columns is contained in the union of any

other d columns. Note that (d, 1)-disjunctness is equivalent to d-disjunctness, and

also (d, c)-disjunctness implies (d, t)-disjunctness for t > c.

Definition 2.1.3. A matrix is (d, r]-disjunct if for any d+r columns C1, C2, · · · , Cd+r,

r⋂
i=1

Ci 6⊆
d+r⋃

i=r+1

Ci.

That means for any d + r columns there exists a row where each of the r designated

columns has a 1-entry and each of the other d columns has a 0-entry.

Definition 2.1.4. A matrix is (d, r; z]-disjunct if for any d+r columns C1, C2, · · · , Cd+r,
∣∣∣∣∣

r⋂
i=1

Ci \
d+r⋃

i=r+1

Ci

∣∣∣∣∣ ≥ z.
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That means for any d + r columns there exist z rows where each of the r designated

columns has 1-entries and each of the other d columns has 0-entries.

Notice that (d, r; 1]-disjunctness is equivalent to (d, r]-disjunctness, and (d, 1; z]-

disjunctness is equivalent to (d; z)-disjunctness. All previous definitions of disjunct-

ness properties are special cases of the (d, r; z]-disjunctness property except the (d, c)-

disjunctness property.

We present a few easy preliminary lemmas that will be used later.

Lemma 2.1.5. M = [mij] is a (d, r; z]-disjunct matrix if and only if M = [mij] is a

(r, d; z]-disjunct matrix, where mij = 1−mij.

Proof. The proof follows by the fact that a (d, r; z]-disjunct matrix can be obtained

from an (r, d; z]-disjunct matrix by interchanging all the 1’s and 0’s.

Lemma 2.1.6. Let M be a (d, r; z]-disjunct matrix, and M1 be obtained from M by

deleting a column and all the rows intersecting this column. Then M1 is (d− 1, r; z]-

disjunct.

Proof. Let Cd+r be the column deleted from M . Suppose to the contrary that M1 is

not (d−1, r; z]-disjunct. Then in M1 there exist d+r−1 columns C1, C2, · · · , Cd+r−1,

such that

∣∣∣∣∣
r⋂

i=1

Ci \
d+r−1⋃
i=r+1

Ci

∣∣∣∣∣ < z. It is easy to see that tracing back to M ,

∣∣∣∣∣
r⋂

i=1

Ci \
d+r⋃

i=r+1

Ci

∣∣∣∣∣ < z,

violating the (d, r; z]-disjunctness. Hence, M1 is (d− 1, r; z]-disjunct.

Lemma 2.1.7. Let M be a (d, r; z]-disjunct matrix, and M0 be obtained from M

by deleting a column and all the rows not intersecting this column. Then M0 is

(d, r − 1; z]-disjunct.

Proof. The proof follows by a similar argument to that of Lemma 2.1.6.
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M0

Figure 2.1: M is (d, r; z]-disjunct implies M1 is (d− 1, r; z]-disjunct and M0 is (d, r−
1; z]-disjunct.

2.2 Hypergraphs

Given a finite set X, a hypergraph H = (X,F) is a family F = {E1, E2, · · · , Em}

of subsets of X. The elements of X are called vertices, and the subsets Ei’s are the

edges of the hypergraph H.

The rank r(H) of H is max |Ej|. A hypergraph satisfying max |Ej| = min |Ei| is

said to be uniform. A hypergraph is said to be a rank-r graph if each edge contains

at most r vertices, and a hypergraph is an r-graph if each edge contains exactly r

vertices.

For u ∈ X, define the degree dH(u) of u to be the number of edges containing u.

The maximum degree of H will be denoted by ∆(H) = max
v∈X

dH(v). A hypergraph H

in which all vertices have same degree is said to be regular, i.e., dH(u) = dH(v) for all

u, v ∈ X.

A vertex cover of H is a vertex subset intersecting all edges Ei’s. Further, a z-

cover of H is a subset C ⊆ X such that |C ⋂
Ei| ≥ z for all i. Let τz(H) denote the

minimum size among all z-covers of H.

For z = 1, Lovász [39] prove that
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Lemma 2.2.1. τ1(H) <
|X|

minE∈F |E|(1 + ln ∆).

2.3 Codes

First, we give a brief description of finite fields. The order of a finite field is the

number of elements in it. It is well-known that n must be a prime power. Every finite

field F of order n is denoted by GF (n).

A code consists of a set of vectors, called codewords. The length of a codeword

u = (u1, u2, · · · , ut) is t. The size of a code is the number of codewords in it. A code

of length t and size n can be represented by a matrix of size t× n.

Definition 2.3.1. A binary t × n matrix M = [mij] is called a superimposed (d, r)-

code if for any two sets X ,Y of columns such that |X | = d, |Y | = r and X ∩Y = ∅,

there exists a row i for which

mij = 1 for all j ∈ Y , mij = 0 for all j ∈ X .

The Hamming distance between two vectors u and v is defined as the number of

positions in which they differ.

Definition 2.3.2. The Maximum Distance Separable Code (MDS-code) with param-

eters (q, k, t) is a q-ary code of size n = qk, length t and the Hamming distance

t− k + 1.

For any integer k ≥ 2 and a prime power q ≥ k−1 there exists an MDS-code with

parameters (q, k, q + 1), which is a Reed-Solomon code [40]. Note that finite fields of

order q play the key role of constructing Reed-Solomon codes.
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Chapter 3

Separable Matrices

As mentioned in Chapter 1, three types of binary matrices have become the major

tools in constructing a pooling design:

1. M is d-separable if no two unions of d columns are same.

2. M is d-separable if no two unions of at most d columns are same.

3. M is d-disjunct if no column is contained in the union of any other d columns.

Let n denote the number of columns in the given matrix. It is easily seen from

definitions that d-separability (d-separability, d-disjunctness) implies k-separability

(k-separability, k-disjunctness) for 1 ≤ k < d < n, respectively. Kautz and Singleton

[35] proved the following relations.

d + 1-separability ⇒ d-disjunctness ⇒ d-separability ⇒ d-separability

In particular, d-disjunctness⇒ d-separability with the option of dropping an arbitrary

row. Note that the relations between the three types of matrices miss a link from

d-separability to k-disjunctness or k-separability for some k < d. In the following

section, we (Chen and Hwang [13]) give such a link for the first time.
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3.1 From 2d-Separability to d-Disjunctness

Notice that ∪S denote the union (or the boolean sum) of a set S of columns.

Chen and Hwang [13] show the following equivalence.

Lemma 3.1.1. Let M be a d-separable matrix. Then M is k + 1-separable, 1 ≤ k ≤

d− 1, if and only if M is k-disjunct.

Proof. Sufficiency.

Suppose to the contrary that there exist two distinct sets S and S ′ of columns in M ,

|S| ≤ k + 1, |S ′| ≤ k + 1, such that ∪S = ∪S ′. By the d-separability property of M ,

we may assume |S| < |S ′| ≤ k + 1. Then there exists a column C ∈ S ′ \ S. Since

∪S = ∪S ′, we obtain C ⊆ B(S), which violates the k-disjunctness property of M .

Necessity.

Suppose M is not k-disjunct, i.e., there exist a column C and a set S of k other

columns such that C ⊆ ∪S. Then ∪S = ∪S ′ where S ′ = S∪{C} and |S|, |S ′| ≤ k+1.

Hence M is not k + 1-separable.

According to Lemma 3.1.1, we give a construction showing how to convert a

separable matrix to a disjunct matrix by adding tests and reducing d.

Theorem 3.1.2. Let M be 2d-separable. Then there exists a d-disjunct matrix ob-

tained by adding at most one row to M .

Proof. If M is d-disjunct, then we are done. Suppose it is not. Then there exist a

column C and a set S of d other columns such that C ⊆ ∪S. Add a row R which has a

1-entry at C and a 0-entry at each column of S to break up the containment C ⊆ ∪S

in M . Of course, there may exist C ′ and S ′, also with d columns, such that C ′ ⊆ ∪S ′

in M . Then we break it up by using R in the same fashion. However, what we need
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to show is that this procedure of setting the entries in R is not self-conflicting, i.e.,

there does not exist a column C such that C ⊆ ∪S, yet on the other hand C ∈ S ′

while ∪S ′ ⊇ C ′ 6= C (since then C must have a 1-entry from C ⊆ ∪S and a 0-entry

from ∪S ′ ⊇ C ′).

Suppose to the contrary that there exist C, C ′, S and S ′ as described above with

|S| ≤ d, |S ′| ≤ d in M . Define

S0 = {C ′} ∪ S ∪ S ′,

S1 = S0 \ {C},

S2 = S0 \ {C ′}.

Then

|S0| ≡ s ≤ 2d + 1,

|S1| = s− 1 ≤ 2d,

|S2| = s− 1 ≤ 2d.

The fact |S1| = s − 1 follows from C ∈ S0, since C ∈ S ′. Note that S1 6= S2, but

they have the same cardinality which is at most 2d. We now show ∪S1 = ∪S2, thus

violating the assumption of 2d-separability (which implies (s− 1)-separability).

Since the only column in S1 but not in S2 is C ′, whose 1-entries are covered by S ′

which is in S2, we have ∪S1 ⊆ ∪S2.

On the other hand, the only column in S2 but not in S1 is C, whose 1-entries are

covered by S which is in S1. Hence ∪S2 ⊆ ∪S1.

Theorem 3.1.3. Let M be 2d-separable. Then there exists a d + 1-separable matrix

obtained by adding at most one row to M .

Proof. Theorem 3.1.3 follows from Theorem 3.1.2 and Lemma 3.1.1.
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3.2 New Bounds

Let t(n, d) denote the minimum number of tests for a d-disjunct matrix with n

items, and let ts(n, d) and ts(n, d) denote the counterparts for d-separable and d-

separable matrices, respectively. It is well known [17] that

1. t(n, d) = Ω(d2 log n/ log d);

2. t(n, d) = O(d2 log n).

Since the d-disjunctness is stronger than d or d-separability, the upper bound of

t(n, d) remains an upper bound of ts(n, d) and ts(n, d), respectively. However, the

lower bound is not preserved. Previously, there was no good argument for lower

bounds of ts(n, d) and ts(n, d) except

ts(n, d) = Ω(d log n)

from the simple-minded argument that the number of distinct d-subsets,

(
n

d

)
, cannot

exceed the number of distinct outcomes, 2t. Theorem 3.1.3 shows immediately that

ts(n, d), ts(n, d) and t(n, d) have the same lower bound in the order of magnitude.

Theorem 3.2.1. ts(n, d) ≥ ts(n, d) = Ω(d2 log n/ log d).

In a sequential group-testing algorithm, the tests are done sequentially which

means we can use outcomes from previous tests to determine what to test next. Let

t′(n, d) or t′(n, d) denote the minimum number of tests required to identify at most

d or exact d positive columns among n columns, respectively. Hwang, Song and Du

[33] proved

Theorem 3.2.2. t′(n, d)− t′(n, d) ≤ 1.
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It is easy to see that ts(n, 1)− ts(n, 1) ≤ 1. Setting d = 1 in Theorem 3.1.3, Chen

and Hwang [13] prove the following result.

Theorem 3.2.3. ts(n, 2)− ts(n, 2) ≤ 1.

Note that, for d > 2, the difference between ts(n, d) and ts(n, d) remains unknown.

3.3 Bounding the Number of Items Appearing Only

in Positive Pools

As introduced in Chapter 1, a d-separable matrix or a d-separable matrix has

no simple decoding. The only known decoding is the brute-force method [52] by

computing the output vectors of all candidate sets of positive items (this can be

done in advance) and check which matches the actual outcome vector. Notice that

items appearing in a negative pool are not positive; thus they are not considered in

a candidate set. In this section, we will bound the number of columns not appearing

in any negative pool to reduce the number of candidate sets.

Let M be a t×n d-separable (or d-separable or d-disjunct) matrix, P = {P1, · · · , Pd}

the set of positive items, and V the outcome vector corresponding to {P1, · · · , Pd},

i.e., V =
d⋃

i=1

Pi. Let T0 and T1 denote the sets of negative pools and positive pools,

respectively, with |T0| = t0 and |T1| = t1 where t0 + t1 = t. Let M1(M0) be the

t1 × n1(t0 × n0) submatrix of M such that the rows are T1(T0) and the columns are

those which have no 1-entries in T0(T1), respectively. Note that given a matrix M ,

our aim is to bound n1.

Chen, Li and Hwang [14] observed the following relations between M and M1.

Lemma 3.3.1. If M is d-separable (or d-separable or d-disjunct), then M1 is d-

separable (or d-separable or d-disjunct), respectively.
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Proof. Since a column in M1 preserves all the 1-entries in M , M1 inherits the

property of M .

An immediate consequence of Lemma 3.3.1 is that bounds of n for a d-separable

(or d-separable or d-disjunct) matrix can be used to bound n0 and n1. For a d-disjunct

matrix, Füredi [29] proved n ≤ d ·24t/d2
by a combinatorial argument. D′yachkov and

Rykov [22] gave the asymptotic bound n ≤ d · 22t/d2
(1 + o(1)).

Bounds of n1 for d-separable and d-separable matrices can be obtained through

their relation with d-disjunct matrices. Kautz and Singleton [35] proved that a d-

separable matrix is a (d− 1)-disjunct matrix. Thus

Theorem 3.3.2. Suppose M is d-separable. Then n1 ≤ (d − 1) · 24t1/(d−1)2. Also

n1 ≤ (d− 1) · 22t1/(d−1)2(1 + o(1)) asymptotically.

From Theorem 3.1.2, we have proved that a d-separable matrix can be converted

to a bd/2c-disjunct matrix by adding a row. Thus we obtain

Theorem 3.3.3. Suppose M is d-separable. Then n1 ≤ bd/2c · 24(t1+1)/bd/2c2. Also

n1 ≤ bd/2c · 22(t1+1)/bd/2c2(1 + o(1)) asymptotically.

Ironically, the case that M being d-disjunct does not have any analogous result.

This is because that a much stronger result is well known. Suppose the actual number

of positive clones is p ≤ d. Then n1 = p [35].

Chen, Li and Hwang [14] observed that M1 actually satisfies an additional con-

straint that there exists a set D of d columns in M1 such that the union of D intersects

all rows in M1(any set of d columns containing all positive clones will do). We make

use of this constraint to derive a new bound for the d-separable case.

Let N1 denote the set of columns in M1 and let D = {D1, · · · , Dd}. Define

D∗
i = Di \

⋃
j 6=i

Dj for 1 ≤ i ≤ d.
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We prove the following results.

Lemma 3.3.4. C ∩D∗
i 6= C ′ ∩D∗

i for all C, C ′ ∈ N1 \D and 1 ≤ i ≤ d.

Proof. Suppose to the contrary that there exist C, C ′ and i such that

C ∩D∗
i = C ′ ∩D∗

i .

Since the union of D intersects all rows in M1,

C \D∗
i ⊆

⋃
j 6=i

Dj and C ′ \D∗
i ⊆

⋃
j 6=i

Dj.

Thus we have C ∪ (
⋃
j 6=i

Dj) = C ′ ∪ (
⋃
j 6=i

Dj), violating the assumption of d-separability.

Theorem 3.3.5. For a d-separable matrix M , n1 ≤ d + 2bt1/dc − 1.

Proof. Clearly,

min
1≤j≤d

|D∗
j | ≤ bt1/dc.

Without loss of generality, assume D∗
i achieves the minimum. By Lemma 3.3.4,

all columns in N1 \ D have distinct intersections with D∗
i , hence there are at most

2|D
∗
i | ≤ 2bt1/dc of them. But we have to subtract one since the intersection number

cannot be |D∗
i |. For otherwise, the union of that column with

⋃
j 6=i

Dj equals D, violating

the assumption of d-separability .

Compare the two bounds in Theorem 3.3.3 and Theorem 3.3.5, the bound in

Theorem 3.3.5 is better for d ≤ 16, which is usually the case in biological applications.

Theorem 3.3.6. For a d-separable matrix M ,

n1





= p if p ≤ d− 1,

≤ d + 2bt1/dc − 2 if p = d.
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Proof. Since M1 is d-separable, hence (d− 1)-disjunct, the only columns in M1 are

the positive items if p ≤ d− 1.

If p = d, then C ∩D∗
i can be neither D∗

i nor ∅ (leading to C ∪ (
⋃
j 6=i

Dj) =
⋃
j 6=i

Dj).

Hence 2 is subtracted from 2bt1/dc.

3.4 Concluding Remarks

In this chapter, we provide a link from d-separability to k-disjunctness or k-

separability, but not as strong as we expect, i.e., k is not large enough. Therefore

the value of our link is not in its practicality in constructing efficient k-disjunct or k-

separable matrices from known d-separable matrices, but rather in calling awareness

to the existence of such a link, so that further research can improve on it.

Establishing such a link leads to two principal consequences. The obvious one is

in constructing k-disjunct or k-separable matrices from known d-separable matrices,

even though it seems not so efficient. The less obvious one is as described in section

3.2, an improvement of the lower bound for the number of rows in the d-separable

matrices. This implies that the three types of matrices share the same lower bound

in the order of magnitude.

As mentioned in Chapter 1, d-disjunct matrices have a simple decoding algorithm,

namely, a column is positive if and only if it does not appear in a negative row. On

the other hand, d-separable matrices or d-separable matrices need fewer tests but

have no simple decoding. The only known decoding was the brute-force method [52]

by computing the output vectors of all candidate sets of positive items and checking

which matches the actual outcome vector. Let S and S denote the sizes of the

candidate sets for d-separable and d-separable, respectively. Then essentially,
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S =

(
n

d

)
and S =

d∑
j=0

(
n

j

)
.

We show that n can be replaced by the bounds of n1 in Theorem 3.3.3 or 3.3.5 for S,

and by the bounds in Theorem 3.3.2 or 3.3.6 for S for large savings.
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Chapter 4

An Overview through Decoding
Algorithms

This Chapter gives an overview of several models discussed in the group testing

literature. Its coverage includes the error-tolerance model, the inhibitor model and

the complex model. It is worth pointing out that the angle we use to cut through

these models is the decoding algorithm. From this angle, we see the simplicity and

integrity of the pooling design theory in the sense that all models share the same

basic structure in their decoding algorithms. We also see how the differences in the

models are reflected in the modifications of the basic structure. Note that the content

of this chapter was taken from Chen and Hwang [12].

Suppose V is the outcome vector. Review that, for a column C, tV0 (C) = |C \ V |

and tV1 (C) = |C ∩ V |, i.e., the number of negative (positive) pools in which column

C appears, respectively.

4.1 Various Models of Group Testing

4.1.1 The Basic Model

In the classic group testing problem, we consider a set N of n items consisting of

at most d positive items with the others being negative items. Recall that a matrix
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is said to be d-disjunct if for any d + 1 columns C0, C1, · · · , Cd,∣∣∣∣∣C0 \
d⋃

i=1

Ci

∣∣∣∣∣ ≥ 1.

ITEM SELECTION(N, V,D, e)

1 for each item C ∈ N

2 compute tV0 (C)

3 if tV0 (C) ≤ e

4 then D ← D ∪ {C}

5 return D

Remark. The ITEM SELECTION(N, V,D, e) algorithm is a common decoding

tool to help determine which individual item is what we need via the function tV0 (C).

This algorithm returns the set D consisting of all items that appear in at most e

negative pools under the outcome vector V . In this chapter all decoding algorithms,

except that of complex models, have the ITEM SELECTION algorithm as a sub-

algorithm in common, but the parameters should be geared to the need of each

individual model.

d-BASIC ALGORITHM

0 use a d-disjunct matrix

1 V ← the outcome vector

2 D ← ∅

3 ITEM SELECTION(N, V,D, 0)

Theorem 4.1.1. The d-BASIC ALGORITHM can identify the up-to-d positive

items.
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Proof. For a positive item C+, obviously, tV0 (C+) = 0. Assume there are at most d

positive items. Consider a negative item C−, by the d-disjunctness property, there is

a row intersecting C− but none of P ; thus tV0 (C−) ≥ 1. Therefore we can separate

all positive items from negative ones by using this algorithm.

4.1.2 The Error-Tolerant Model

In this subsection, the problem is to identify the up-to-d items in P with at most

e erroneous outcomes.

Review that a matrix is said to be (d; z)-disjunct if for any d+1 columns C0, C1, · · · , Cd,

∣∣∣∣∣C0 \
d⋃

i=1

Ci

∣∣∣∣∣ ≥ z.

That means there exist at least z rows in each of which C0 has a 1-entry and every

Ci, 1 ≤ i ≤ d, has a 0-entry.

(d, e)-E ALGORITHM

0 use a (d; 2e + 1)-disjunct matrix

1 V ← the outcome vector

2 D ← ∅

3 ITEM SELECTION(N, V,D, e)

Theorem 4.1.2. The (d, e)-E ALGORITHM can identify the up-to-d positive

items with at most e errors.

Proof. Assume the number of errors is at most e. For each negative item C−, by

the (d; 2e + 1)-disjunctness property, there exist at least 2e + 1 rows intersecting C−

but none of P . Therefore the pools corresponding to these rows must have negative
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outcomes. Even for the worst case that e outcomes are erroneous, C− still appears in

at least e+1 negative pools, i.e., tV0 (C−) ≥ e+1. On the other hand, the outcomes of

the pools containing a positive item C+ should be positive except for the occurrence of

errors. Hence tV0 (C+) ≤ e. Thus, we can determine, via the function tV0 (C), whether

C is positive or not.

4.2 Group Testing with Inhibitors

4.2.1 The Error-Tolerant Inhibitor (EI) Model

Denote I as the set of all inhibitors. In the EI-model, an additional assumption

we make is |I| ≤ h. Notice that the presence of an inhibitor in a pool dictates a

negative outcome, regardless of the presence of positive items in the pool.

(d, h, e)-EI ALGORITHM

0 use a (d + h; 2e + 1)-disjunct matrix

1 V ← the outcome vector

2 D ← ∅

3 O ← ∅

4 for every item C ∈ N

5 compute tV1 (C)

6 if tV1 (C) ≤ e

7 then O ← O ∪ {C}

8 for all h-subsets S ⊆ O

9 V ← V ∪ (∪S)

10 ITEM SELECTION(N \O, V,D, e)
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Remark. D’yachkov et al. [21] first gave a nonadaptive algorithm for the inhibitor

model without erroneous outcomes. The basic idea is to restore all positive outcomes

neutralized by inhibitors and their method exhaustively searches all

(
n

h′

)
, h′ ≤ h, h′-

subsets of the n items. Hwang and Liu [32] gave a more efficient decoding algorithm

with error-tolerance that can substantially reduces the number of searching operations

down to

(|O|
h

)
, where O is a set containing all inhibitors but no positives. Computing

tV0 (C) and tV1 (C) for each item C as a prior operation, they partition the n items

into four sets so that all inhibitors are separated from all positives. Here we give

a simplified version. The idea of this algorithm is to first collect all inhibitors into

the set O, and then identify a column C as positive if there exists one S for which

tV0 (C) ≤ e under the outcome vector V adjusted by S.

Theorem 4.2.1. The (d, h, e)-EI ALGORITHM can identify all positive items

under the (d, h, e)-EI model.

Proof. To prove that (d, h, e)-EI ALGORITHM works for the (d, h, e)-EI model,

what we need to show first is that O contains all inhibitors but no positives. Observe

that an item which appears in at most e positive pools cannot be positive due to the

(d+h; 2e+1)-disjunctness property. Further, even for the worst case that e outcomes

are erroneous, every inhibitor appears in at most e positive pools. Hence the set O

contains all inhibitors but no positives.

Consider a negative item C− ∈ N \ O and a set P of at most d positive items.

For each h-subset S ⊆ O, by the (d + h; 2e + 1)-disjunctness property, there exists

a (d + h)-set R of columns containing all positive items and S such that there are

at least 2e + 1 rows each intersecting C− but none of R. The outcomes of the pools

corresponding to these rows should be negative except for the occurrence of errors.

Therefore, we can conclude that tV0 (C−) ≥ (2e + 1) − e = e + 1. Hence no negative
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item is selected into D.

Consider an h-subset S ⊆ O containing all up-to-h inhibitors with the others

being negative items. For a positive item C+ ∈ N \O, C+ appears only in the pools

in the new outcome vector V adjusted by S. For the worst case that e outcomes are

erroneous, C+ still appears in at most e negative pools, i.e., tV0 (C+) ≤ e. Hence every

positive item will be selected into D.

From the above discussion, the output of the (d, h, e)-EI ALGORITHM is the

set of all positive items.

4.2.2 The General Error-Tolerant Inhibitor (GEI) Model

In the simplest inhibitor model, the model discussed in Section 4.2.1, the mere

existence of a single inhibitor dictates the outcome to be negative regardless of the

presence of positive items. This notion has been extended to the k-inhibitor model [7]

which requires the existence of k inhibitors to dictate a negative outcome. We could

make even more complicate assumption that each set of k inhibitors cancel the effect

of a set of g positive items, but practically, accurate information of k and g is usually

not available. Thus in the general inhibitor model, we only assume the existence of

some kind of cancelling effect between the inhibitors and the positive items, but no

further quantifiable information. Surprisingly, a decoding algorithm exists even under

such ambiguity.

A result by Chang, Chang and Hwang [9] implies that a (d+h; 2e+1)-disjunct ma-

trix identifies all positive items under the (d, h, e)-GEI model as well as the (d, h, e)-EI

model. The main idea is similar to that in the (d, h, e)-EI model, that is, restoring all

possible positive outcomes neutralized by inhibitors. Unfortunately, the same method

on separating all inhibitors from all positives in advance does not work in this model.

28



So, instead of searching all h-sets in O, we have to search all h-sets in N .

(d, h, e)-GEI ALGORITHM

0 use a (d + h; 2e + 1)-disjunct matrix

1 V ← the outcome vector

2 D ← ∅

3 for all h-subsets S ⊂ N

4 V ← V ∪ (∪S)

5 ITEM SELECTION(N \ S, V, D, e)

Theorem 4.2.2. The (d, h, e)-GEI ALGORITHM can identify all positive items

under the (d, h, e)-GEI model.

Proof. The proof is similar to that of Theorem 4.2.1. Note that a positive item C is

identified when S, C 6∈ S, is a set containing all inhibitors.

4.3 Group Testing on Complexes

The pooling design we have discussed so far has a set of positive items each

inducing a positive effect. In some applications the property of being positive or

negative is defined on subsets of items, instead of on individual items. Such a model

is usually referred to as the complex model, first introduced by Torney [51].

In the complex model, we consider a set N of n items and an unknown family

P = {Pi} of subsets of N where the joint appearance of all items in such a subset

causes a certain given biological phenomenon defined as a positive outcome. A set

of items which is a candidate of a member of P is called a complex while members

of P are called positive complexes. The problem is to identify P from a given set of
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complexes through a few experiments. An experiment can be applied to an arbitrary

subset S ⊆ N with two possible outcomes; a negative outcome implies S does not

contain any Pi ∈ P , and a positive outcome implies otherwise.

Of particular note in the complex model is the basic assumption that no two

complexes X and X ′ satisfy X ′ ⊆ X. The reason is as follows. Observe that in

case that a complex X contains a positive complex X+ as a proper subset, then X+

appears in all pools where X appears. Therefore X can only appear in positive pools

no matter it is positive or negative, i.e., X cannot be identified. Since we do not

know which complexes are positive, we make the more sweeping assumption of no

containment between any pair of complexes to cover all possible cases.

Let H denote the given set of complexes, then H can be viewed as a hypergraph

with items as vertices and complexes as edges. Accordingly, the group testing problem

on complexes is related to the graph testing problem on searching a hidden subgraph

P in a given graph H, which consists of the set of positive edges. Also, a graph

testing algorithm can be represented by an incidence matrix M = [mij] where rows

are labelled by pools, columns by vertices, and mij = 1 if and only if vertex j is in

pool i.

Recall that ∩S is the characteristic vector of the set of pools in which every item in

S appears. Suppose H is a rank-r graph (each edge consists of at most r vertices) and

our only knowledge of P is |P | ≤ d. A binary matrix is said to be (Hr : d)-disjunct if

for any d + 1 edges e0, e1, · · · , ed,

∩e0 6⊆
d⋃

i=1

(∩ei).

It is easy to see that an (Hr : d)-disjunct matrix can identify P since every edge not

in P appears in a test not covering any hidden edge, thus the outcome is negative

and the edge is identified.
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A binary matrix is said to be (d, r]-disjunct (different from (d, r)-disjunct), first

studied by Mitchell and Piper [44], if for any d + r columns C1, C2, · · · , Cd+r,
∣∣∣∣∣

r⋂
i=1

Ci \
d+r⋃

i=r+1

Ci

∣∣∣∣∣ ≥ 1.

That means for any d+r columns there exists a row in which each of the r designated

columns has an 1-entry and each of the other d columns has a 0-entry. Such a property

was further studied in [11, 36, 49, 50], sometimes under the name of generalized cover-

free families or generalized superimposed codes with application to the secure key

distribution problem.

Chen, Du and Hwang [10] established a connection between the complex model

and the secure key distribution problem, and showed the relation that

(d, r]-disjunctness ⇒ (Hr : d)-disjunctness for all Hr.

Establishing such a connection leads to the consequence that the (d, r]-disjunct ma-

trices can be used to solve the complex model problem.

4.3.1 The Error-Tolerant Complex (EC) Model

In the EC model, we consider the problem on the complex model with at most e

erroneous outcomes. Review that for a subset X of items, tV0 (X) ≡ | ∩ X \ V | and

tV1 (X) ≡ |(∩X)∩V |, i.e., the number of negative (positive) pools in which every item

in X appears, respectively.

Stinson and Wei [49] first gave an error-tolerant version of a (d, r]-disjunct matrix.

A binary matrix is said to be (d, r; z]-disjunct if for any d+r columns C1, C2, · · · , Cd+r,
∣∣∣∣∣

r⋂
i=1

Ci \
d+r⋃

i=r+1

Ci

∣∣∣∣∣ ≥ z.
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COMPLEX SELECTION(H, V, D, e)

1 for each complex X ∈ H

2 compute tV0 (X)

3 if tV0 (X) ≤ e

4 then D ← D ∪ {X}

5 return D

(d, r, e)-EC ALGORITHM

0 use a (d, r; 2e + 1]-disjunct matrix

1 V ← the outcome vector

2 D ← ∅

3 COMPLEX SELECTION(H, V, D, e)

Theorem 4.3.1. The (d, r, e)-EC ALGORITHM can identify all positive com-

plexes under the (d, r, e)-EC model.

Proof. It is easy to see that even for the worst case that e outcomes are erroneous,

a positive complex X+ appears in at most e negative pools, i.e., tV0 (X+) ≤ e.

Consider a set P of positive complexes and a negative complex X−. By the

(d, r; 2e + 1]-disjunctness property, there exist an r-set R containing X− and a d-set

T , T ∩ R = ∅, intersecting each positive complex such that there are at least 2e + 1

rows each containing R but none of T . The pools corresponding to these rows must

test negative since they do not contain any positive complex. Even for the worst case

that e outcomes are erroneous, X− still appears in at least e + 1 negative pools, i.e.,

tV0 (X−) > e. Therefore, one can separate all positive complexes from negative ones

by using this algorithm.
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4.3.2 The Error-Tolerant Inhibitor Complex (EIC) Model

In this subsection, we will introduce a synthetic model on complexes with the pres-

ence of inhibitors and erroneous outcomes. Chang et al. [9] are the first to consider

such an environment allowing the coexistence of inhibitors and complexes. We use

the parameters (d, h, r, e) to denote the assumption that among the complexes which

are subsets of n molecules, there are at most d positive complexes each consisting of

at most r items, and there are at most h inhibitors and at most e erroneous outcomes.

Consider the simplest inhibitor model ((d, h, r, e)-EIC model). The mere existence

of a single inhibitor dictates the outcome to be negative, regardless of the presence of

positive complexes. The first decoding algorithm we provide here is similar to that

in Section 4.2.1 except replacing items by complexes.

(d, h, r, e)-EIC ALGORITHM I

0 use a (d + h, r; 2e + 1]-disjunct matrix

1 V ← the outcome vector

2 D ← ∅

3 O ← ∅

4 for every complex X ∈ H

5 compute tV1 (X)

6 if tV1 (X) ≤ e

7 then O ← O ∪ {X}

8 for all h-subsets S ⊆ O

9 V ← V ∪
( ⋃

X∈S

(∩X)

)

10 COMPLEX SELECTION(H \O, V,D, e)
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Theorem 4.3.2. The (d, h, r, e)-EIC ALGORITHM I can identify all positive

complexes under the (d, h, r, e)-EIC model.

Proof. Similar to the proof of Theorem 4.2.1 except replacing items by complexes.

Notice that O is a set of complexes, thus |O| can be much larger than n. Therefore,

the for loop in the line 8 requires to go through

(|O|
h

)
times, which could be a very

large number. We now provide an alternative algorithm that only needs to go through(
n

h

)
times in the worst case.

(d, h, r, e)-EIC ALGORITHM II

0 use a (d + h, r; 2e + 1]-disjunct matrix

1 V ← the outcome vector

2 D ← ∅

3 for all h-subsets S ⊆ N

4 V ← V ∪ (∪S)

5 COMPLEX SELECTION(H \ S, V,D, e)

Theorem 4.3.3. The (d, h, r, e)-EIC ALGORITHM II can identify all positive

complexes under the (d, h, r, e)-EIC model.

Proof. The proof is similar to that of Theorem 4.3.2 except that the restoring

operation runs through all h-subsets S ⊆ N .

4.3.3 The General Error-Tolerant Inhibitor Complex (GEIC)
Model

Consider the (d, h, r, e)-GEIC model which only assumes the existence of some

kind of cancelling effect between the inhibitors and the positive complexes, but no

further quantifiable information.
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Theorem 4.3.4. The (d, h, r, e)-EIC ALGORITHM II identifies all positive com-

plexes under the (d, h, r, e)-GEIC model as well.

Proof. Note that the proof of Theorem 4.3.2 does not depend on quantifiable infor-

mation about the cancelling effect. With a slight modification of the proof of Theorem

4.3.2, we can conclude that the (d, h, r, e)-EIC ALGORITHM II also identifies all

positive complexes under the (d, h, r, e)-GEIC model.
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Chapter 5

Group Testing on Complexes

For convenience of investigation, we start with a review. In the complex model,

we consider a set N of n items and an unknown family P = {Pi} of subsets of N

where each such subset is a cause of a certain given biological phenomenon. A set

of items which is a candidate of a member of P is called a complex while members

of P are called positive complexes. The problem is to identify P from a given set of

complexes. An experiment can be applied to an arbitrary subset S ⊆ N with two

possible outcomes; a negative outcome implies S does not contain any Pi ∈ P , and a

positive outcome implies otherwise.

Of particular note in the complex model is the basic assumption that no two

complexes X and X ′ satisfy X ′ ⊆ X. The reason is as follows. Observe that in case

that a complex X contains a positive complex X+ as a proper subset, X+ appears

in those pools where X also appears. Therefore X can only appear in positive pools

no matter it is positive or negative, i.e., X cannot be identified. Since we do not

know which complexes are positive, we make the more sweeping assumption of no

containment between any pair of complexes to cover all possible cases.

The classic group testing problem has been extended to graph testing (see Chapter

10 of [17] for reference) where a hypergraph H(V, E) is given. The problem is to

identify a hidden subgraph P with a small number of graph tests. A graph test can be
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applied to an arbitrary subset S ⊆ V with two possible outcomes; a negative outcome

implies that all edges in the subgraph HS induced by S are not in P , while a positive

outcome implies otherwise, i.e., HS contains at least one edge in P , not knowing

which or how many. We could have different graph testing problems according as

prior knowledge of P ; the usual assumption is P has at most d edges, but it can also

be P is a matching [1, 4] or a hamiltonian circuit [30]. It is easily seen that the classic

group testing problem is a special case of the graph testing problem where H is a

1-graph, i.e., each edge is a vertex.

Let H denote the given set of complexes, then H can be viewed as a hypergraph

with items as vertices and complexes as edges. Accordingly, the group testing problem

on complexes is related to the graph testing problem on searching a hidden subgraph

P in a given graph H.

Establishing such a relation leads to two consequences. The obvious one is all

results on graph testing are now available to solve the complex model problem. The

less obvious one is a change of emphasis in graph testing research due to the influence

of the complex model application. An experiment in the complex model can be time-

consuming. Hence it is much preferable to have a nonadaptive algorithm where all

subsets for testing are specified at once (and hence can be tested at once theoretically),

or at least by a k-round algorithm for some small k. The literature on nonadaptive

or k-round algorithms can be found in [1, 30, 31, 19, 38].

In the secure key distribution problem, n persons want to communicate securely

in groups of r persons. For this purpose, one takes a number of keys which are

distributed within the n persons. When a group of r persons decide to communicate

with each other, they take all the keys which are owned by all of them to generate

a common key for the whole group. The security requirement is no other d persons
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can generate the same key by using the union of all keys they owned.

D’yachkov, Villenkin, Macula and Torney [20] proposed the binary superimposed

(d, r)-code which satisfies the property that for any d+r codewords C1, C2, · · · , Cd+r,

there exists an alphabet which is in every code C1, C2, · · · , Cr, but none of Cr+1, Cr+2,

· · · , Cd+r. This code was further studied in [49, 50, 24, 36].

By treating each key as an alphabet, and the set of keys owned by a person as a

codeword, a secure key distribution design is a binary superimposed (d, r)-code.

So far, the connections are quite obvious between the graph testing and the group

testing on complexes, and between the superimposed code and the key distribution

problem. However, the connection between the former pair of problems and the later

pair of problems is not obvious. In fact, even for an inter-pair problem, where the

connection is easy, the literature on the two problems are mostly independent. In

the following section we will prove an equivalence relation between the two pairs of

problems under certain conditions.

5.1 The Equivalence

We first adopt the notation of the graph testing model. Suppose P is the set of

hidden edges. Then the outcome set (the indices of rows of positive outcomes) is

simply
⋃

ei∈P

(∩ei).

Recall that a hypergraph is said to be a rank-r graph if each edge contains at most

r vertices, and a hypergraph is an r-graph if each edge contains exactly r vertices.

Suppose H is an r-graph and our only knowledge of P is |P | ≤ d. We define three

properties of M relating to its ability to solve this graph testing problem:
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(Hr : d)-separability. For any two distinct d-sets D, D′ of edges,

(5.1)
⋃

ei∈D

(∩ei) 6=
⋃

ei∈D′
(∩ei).

(Hr : d)-separability. For any two distinct sets D, D′ of edges with |D|, |D′| ≤ d,

(5.2)
⋃

ei∈D

(∩ei) 6=
⋃

ei∈D′
(∩ei).

(Hr : d)-disjunctness. For any d + 1 edges e0, e1, · · · , ed,

(5.3) ∩e0 6⊆
d⋃

i=1

(∩ei).

Clearly, an (Hr : d)-separable matrix identifies P if |P | = d is known. An (Hr : d)-

separable matrix and an (Hr : d)-disjunct matrix can be used to identify P if |P | ≤ d

is known, while the latter has an easy decoding algorithm since every edge not in P

appears in a test not covering any hidden edge, thus the outcome is negative and the

edge is identified. Note that when all edges not in P are so identified, the remaining

edges are the hidden edges. Thus, (Hr : d)-disjunctness implies (Hr : d)-separability

implies (Hr : d)-separability.

When H is a rank-r graph, we assume that no two edges e and e′ satisfy e ⊆

e′. Similarly we can define (Hr : d)-separable, (Hr : d)-separable and (Hr : d)-

disjunct matrices respectively, where edges in the definitions are disjoint because of

the assumption. When H is the complete r-graph or a complete rank-r graph, then

the subscript H will be changed to K. Note that a complete rank-r graph is a maximal

graph satisfying the condition that no edge is contained in another edge.

On the other hand, the incidence matrix of a binary superimposed (d, r)-code has

the property which we denote by (d, r]-disjunctness (different from (d, r)-disjunctness).

Namely, for any d + r columns C1, C2, · · · , Cd+r,

(5.4)
r⋂

i=1

Ci 6⊆
d+r⋃

i=r+1

Ci.
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Note that condition (5.4) looks different from any one of (5.1), (5.2), (5.3). The

only result in the literature making a connection between the two types of results is

the following (given in [20]):

Lemma 5.1.1. (d, r]-disjunctness ⇒ (Kr : d)-separability ⇒ (d − 1, r]-disjunctness

and (d, (r − 1)]-disjunctness.

We will give a proof of the first implication since we believe that the original proof

has a slip.

Suppose M is not (Kr : d)-separable, i.e., there exist two sets of edges D and

D′ with |D| ≤ d and |D′| ≤ d such that
⋃

ei∈D

(∩ei) =
⋃

ei∈D′
(∩ei). By our assumption,

neither D nor D′ contains two edges one containing the other. Thus there must exist

an edge e in D ∪ D′ such that e does not contain any edge from the other set. For

otherwise, we would have e′′ ⊆ e′ ⊆ e where e and e′′ are in the same set. Without

loss of generality, assume e ∈ D. Since e 6⊇ ei for every ei ∈ D′, we can choose

Ci ∈ ei \ e. Define S = {Ci : 1 ≤ i ≤ |D′|}. Then S is a set of at most d columns

disjoint from e.

Suppose to the contrary that M is (d, r]-disjunct. Then there exists a row with

1-entries in every column of e and 0-entries in every column of S. Thus this row

covers e but none of ei ∈ D′. Hence
⋃

ei∈D

(∩ei) 6=
⋃

ei∈D′
(∩ei), a contradiction to our

previous assumption.

The slip was made by choosing e ∈ D ∪D′ which is not contained in any edge of

the other set. Then ei \ e can be empty and Ci cannot be chosen.

We now prove the crucial relation between the two types of results.

Theorem 5.1.2. (d, r]-disjunctness ⇔ (Kr : d)-disjunctness.

Proof. Suppose M is not (d, r]-disjunct. Then there exist d+r columns C1, C2, · · · ,
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Cd+r such that

r⋂
i=1

Ci ⊆
d+r⋃

i=r+1

Ci.

Let e0 = {C1, C2, · · · , Cr} and ei = {C2, C3, · · · , Cr, Cr+i}, 1 ≤ i ≤ d. Then

∩e0 = ∩{C2, C3, · · · , Cr} ∩ C1

⊆ ∩{C2, C3, · · · , Cr} ∩
(

d+r⋃
i=r+1

Ci

)

=
d⋃

i=1

(∩ei).

Hence M is not (Kr : d)-disjunct.

Conversely, suppose M is (d, r]-disjunct. Let e, e1, · · · , ed denote d + 1 arbitrary

edges where no ei, 1 ≤ i ≤ d, is contained in e. Set Cr+i ∈ ei \ e, 1 ≤ i ≤ d, where

ei ∈ D. Then M contains a row which covers e, but intersects none of Cr+i, 1 ≤ i ≤ d,

i.e., covers none of ei ∈ D. Hence M is (Kr : d)-disjunct.

Corollary 5.1.3. (d, r]-disjunctness ⇒ (Hr : d)-disjunctness for all Hr.

Proof. Note that the converse proof in Theorem 5.1.2 does not depend on the ranks

of the edges.

The implication offers us an idea to relax the prior knowledge concerning the given

set H of complexes. The problem is how to identify all positive complexes when the

structure of H is unknown. Now, we want to prove that a (d, r]-disjunct matrix can

be used to identify all positives even if the structure of the set of complexes is not

specified.

Theorem 5.1.4. A (d, r]-disjunct matrix can identify the up-to-d positives without

knowing H.
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Proof. Consider a set P = {P1, P2, · · · } consisting of at most d positive complexes

and an r′-subset R of columns which contains no Pi, r′ ≤ r. By the (d, r]-disjunctness

property, there exists a row containing R but none of Pi’s. Accordingly, the pool

corresponding to this row has a negative outcome, i.e., tV0 (R) ≥ 1. After eliminating

those subsets, the remaining subsets are those either being a positive complex or

containing a positive complex as a proper subset. Thus, we can identify a remaining

subset as a positive complex when it contains none of others. Therefore, all positive

complexes are identified.

Here we propose an algorithm based on the proof of Theorem 5.1.4.

(d, r)-GENERAL COMPLEX ALGORITHM

0 use a (d, r]-disjunct matrix M

1 V ← the outcome vector

2 D ← ∅

3 Tr ← the set of all r′-subsets, r′ ≤ r, in N

4 while Tr 6= ∅

5 choose a subset X ∈ Tr and compute tV0 (X)

6 if tV0 (X) = 0 and X 6⊃ X ′ for all X ′ ∈ D

7 remove all supersets of X from Tr and D

8 D ← D ∪ {X}

9 else Tr ← Tr −X

10 return D
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5.2 Two Constructions of (d, r; z]-Disjunct Matri-

ces

Recently, the (d, r; z]-disjunct matrices have been found useful in other models

such as inhibitor model and threshold model. Details will be explained in Chapter

6 and Chapter 7. In this section, we will propose two methods to construct the

(d, r; z]-disjunct matrices. The first one is proposed by Chen, Du and Hwang [10]

by modifying a construction by Du, Hwang, Wu, Liu and Znati [19]. The latter is

proposed by Chen, Fu and Hwang [11].

5.2.1 Converted from q-Ary Matrices

Du et al. [19] gave a construction of the (Hr : d)-disjunct matrices by first

constructing a q-ary matrix Q and then converting it to a binary matrix M . Let

fj(e) denote the set of q-ary entries in row j collected from the columns associated

with the edge e ∈ E. Then Q has the property that for any d+1 edges e0, e1, · · · , ed,

there exists a row j in which none of the fj(ei), 1 ≤ i ≤ d, is contained in fj(e0).

For row j in Q, let cj = |{fj(e) : e ∈ E}|. Then cj ≤ min

{
|E|,

r

Σ
i=1

(
q

i

)}
. Their

conversion is to replace row j in Q by cj rows, each of which labeled by the set

{(j, f)} where f is a distinct element in the set {fj(e) : e ∈ E}. For row {(j, f)} in

the converted matrix M , every column in e with fj(e) = f (there can be more than

one such edge e) has a 1-entry and all other columns have a 0-entry. They proved that

such a matrix M converted from a q-ary matrix Q is (Hr : d)-disjunct. They also gave

a construction of Q = [qij] with drm + 1 rows and qm+1 columns each representing a

degree-m polynomial pv(x) in GF (q), where v ∈ V and q is a prime power ≥ drm+1,

and the value in the cell qij is defined by pj(i). Assuming |E| ≥
r

Σ
i=1

(
q

i

)
, the number

of tests in the converted matrix M is
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drm+1

Σ
j=1

cj ≤ (drm + 1) ·
r

Σ
i=1

(
q

i

)
≤ (drm + 1) ·

(
q + r − 1

r

)
.

Chen, Du and Hwang [10] proposed a better conversion. Let c′x = |{pv(x) : v ∈ V }|

for each row x in Q, then c′x ≤ q. For row x in Q, our conversion is to replace each

element in the set {pv(x) : v ∈ V } by a distinct column of a t′ × c′x (d, r]-disjunct

matrix. Suppose x is the row in which none of the fx(ei) is contained in fx(e0). Let

Ci ∈ ei \ e0 such that fx(Ci) 6∈ fx(e0) for 1 ≤ i ≤ d. Then after the conversion there

exists at least a row xj in M , converted from the row x in Q, in which all columns in

e0 have 1-entries while each Ci has 0-entries, 1 ≤ i ≤ d. Hence ∩e0 6⊆
d⋃

i=1

(∩ei). Since

the choice of e1, e2, · · · , ed is arbitrary, the converted matrix M is (Hr : d)-disjunct.

Let t(n, d : Hr) denote the minimum number of rows required for a (Hr : d)-

disjunct matrix with n columns. Similarly, we define t(n, d, r] as the minimum number

of rows required for a (d, r]-disjunct matrix with n columns. Existing results on

t(q, d, r] (see [50] for an example) show that it is less than

(
q + r − 1

r

)
in general or

at least asymptotically. Thus, we have

Theorem 5.2.1. t(qm+1, d : Hr) ≤ (drm + 1) · t(q, d, r].

When H is the complete r-graph, M is (Kr : d)-disjunct. By Theorem 5.1.2, M

is also (d, r]-disjunct. Then we have

Corollary 5.2.2. t(qm+1, d, r] ≤ (drm + 1) · t(q, d, r].

Corollary 5.2.2 is the same result [20] as given by D’yachkov, Vilenkin, Macula

and Torney on the construction of (d, r]-disjunct matrices using the MDS-code. The

incidence matrix of the MDS-code with parameters (q, k, t) is a q-ary matrix of size

t × qk and the Hamming distance of any pair of columns is d = t − k + 1. Lemma

5.2.3 arises from the definition of the MDS-code.
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Lemma 5.2.3. (Sagalovich [46]). If qk ≥ d + r and t ≥ dr(k − 1) + 1, then

any MDS-code with parameters (q, k, t) has the property that for any d + r columns

C1, C2, · · · , Cd+r, there exists a row where the set of entries over C1, C2, · · · , Cr and

the set of entries over Cr+1, · · · , Cd+r are disjoint.

D’yachkov et al. used the Reed-Solomon q-ary code, which is also an MDS-code,

to get a (drm + 1) × qm+1 q-ary matrix with the property that described in Lemma

5.2.3. Then they also use a t′× q (d, r]-disjunct matrix to transform the q-ary matrix

to binary one. The requirement of this q-ary matrix is seemingly different from that

given by Du et al., though the latter also corresponds to an MDS-code. Chen, Du and

Hwang [10] proved that the requirements of the two q-ary matrices are equivalent.

Let e0, e1, · · · , ed be any d + 1 complexes. Set {C1, C2, · · · , Cr} = e0 and Cr+i ∈

ei \ e0, 1 ≤ i ≤ d. If the Reed-Solomon q-ary code property holds, i.e., there exists

a row x such that the set of entries over C1, C2, · · · , Cr and the set of entries over

Cr+1, · · · , Cd+r are disjoint, then in the row x none of fx(ei) is contained in fx(e0),

1 ≤ i ≤ d.

Conversely, let C1, C2, · · · , Cd+r be any d + r columns. Set e0 = {C1, C2, · · · , Cr}

and ei = {C2, · · · , Cr, Cr+i}, 1 ≤ i ≤ d. If there exists a row x in which none of

fx(ei) is contained in fx(e0), then in the row x the set of entries over C1, C2, · · · , Cr

and the set of entries over Cr+1, · · · , Cd+r are disjoint.

An Extension to Error-Tolerant Version

Stinson and Wei [49] first gave an error-tolerant version of the (d, r]-disjunct matri-

ces. Recall that a matrix is (d, r; z]-disjunct if for any d+r columns C1, C2, · · · , Cd+r,
∣∣∣∣∣

r⋂
i=1

Ci \
d+r⋃

i=r+1

Ci

∣∣∣∣∣ ≥ z,
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i.e., there exist at least z rows in which each of the r designated columns has a 1-entry

and each of the other d columns has a 0-entry. For a (d, r; 2e + 1]-disjunct matrix, if

the number of errors is less than e, then we can identify the up-to-d positive complexes

consisting of at most r items. It is because that each negative complex appears in

at least (2e + 1) − e = e + 1 negative pools, while each positive complex in at most

e negative pools (due to errors). Therefore we can separate the negative complexes

from the positive ones.

Still, using a (d, r; 2e + 1]-disjunct matrix, we can identify all positive complexes

as well even if the composition of given complexes is not specified. The decoding

algorithm is similar to GENERAL COMPLEX ALGORITHM except replacing

tV0 (X) = 0 by tV0 (X) ≤ e.

(d, r, e)-GENERAL COMPLEX ALGORITHM

0 use a (d, r; 2e + 1]-disjunct matrix M

1 V ← the outcome vector

2 D ← ∅

3 Tr ← the set of all r′-subsets, r′ ≤ r, in N

4 while Tr 6= ∅

5 choose a subset X ∈ Tr and compute tV0 (X)

6 if tV0 (X) ≤ e and X 6⊃ X ′ for all X ′ ∈ D

7 remove all supersets of X from Tr and D

8 D ← D ∪ {X}

9 else Tr ← Tr −X

10 return D

46



In general, it is not easy to construct a matrix with error-tolerance. A trivial,

but not efficient, construction to obtain error-tolerance is by taking copies of each

row of the original matrix. Chen, Du and Hwang [10] extended the substitution-type

construction mentioned above to the error-tolerant version. Let Qz be constructed

similar to Q except there are drm + z rows for z ≥ 1. Surprisingly, by replacing Q

with Qz and a (d, r]-disjunct matrix with a (d, r; z′]-disjunct matrix respectively in

the substitution-type construction, we obtain a (d, r; zz′]-disjunct matrix, which can

correct up to

⌊
(zz′ − 1)

2

⌋
errors.

Lemma 5.2.4. For any d + 1 edges e0, e1, · · · , ed, there exists a set R of at least

z rows in Qz such that for each j ∈ R none of fj(ei) is contained in fj(e0), where

1 ≤ i ≤ d.

Proof. By the construction of Qz, each column is represented by a degree-m poly-

nomial in GF (q), and all of which are distinct. Hence any two columns have common

entries in at most m rows.

Suppose to the contrary that there exist at most z−1 rows satisfying the condition.

Then by the pigeonhole principle there exists an edge ex ∈ {e1, e2, · · · , ed} such that

there exists a set N of at least rm + 1 rows satisfying fj(ex) ⊆ fj(e0) for each j ∈ N .

Using the pigeonhole principle again, there exist two columns, one in ex and the other

in e0 \ ex, with common entries in at least m + 1 rows, a contradiction.

By applying the substitution-type construction to Qz, we obtain

Theorem 5.2.5. By replacing each q-ary symbol in Qz with a distinct column of a

t′ × q (d, r; z′]-disjunct matrix, there exists a (drm + z) · t′ × qm+1 (d, r; zz′]-disjunct

matrix M .
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Proof. It suffices to prove that M is (d, r; zz′]-disjunct. Take a pair of disjoint d-set

and r-set of columns, we want to show that there exist zz′ rows with 1-entries in the

designated r columns and 0-entries in the designated d columns.

After transformation, each row satisfying above condition can generate z′ rows

each of which has a 1-entry in the designated r columns and a 0-entry in the designated

d columns. By Lemma 5.2.4, there exist z rows whose entries in the d columns are all

different from the entries in the r columns. Hence there exist zz′ rows with a 1-entry

in each of the r columns and a 0-entry in each of the d columns.

Denote t(n, d, r; z] as the minimum number of rows required for a (d, r; z]-disjunct

matrix with n columns.

Corollary 5.2.6. t(qm+1, d, r; zz′] ≤ min{(drm+z)·t(q, d, r; z′], (drm+z′)·t(q, d, r; z]}

Proof. The proof follows from Theorem 5.2.5 immediately.

5.2.2 Translating into a Vertex Cover Problem

Given a finite set X, a hypergraph H = (X,F) is a family F = {E1, E2, · · · , Em}

of subsets of X. The elements of X are called vertices, and the sets Ei’s are the

edges of the hypergraph H. A hypergraph with |Ei| = |Ej| for all i 6= j is said to

be uniform. For u ∈ X, define the degree dH(u) of u to be the number of edges

containing u. A hypergraph H in which all vertices have the same degree is said to

be regular, i.e., dH(u) = dH(v) for all u, v ∈ X. A z-cover of H is a subset C ⊆ X

such that |C∩Ei| ≥ z for all i. Let τz(H) denote the minimum size among all z-covers

of H. It is easy to see that

(5.5) τz(H) ≤ zτ1(H).

By a greedy strategy, i.e., choosing vertices sequentially in X such that each
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chosen vertex intersects the maximum number of edges which are not covered yet, a

fundamental result by Lovász [39] implies that

(5.6) τ1(H) <
|X|

minE∈F |E|(1 + ln ∆),

where ∆ = max
u∈X

dH(u).

Chen, Fu and Hwang [11] show that (d, r; z]-disjunct matrices can be obtained

from z-covers of properly defined hypergraphs, and then (5.6) provides a desired

upper bound of t(n, d, r; z].

Let Xw be the set of all binary vector x = (x1, x2, · · · , xn) of length n contain-

ing w 1’s. For any two disjoint subsets D, R of [n] with |D| = d and |R| = r,

where [n] denotes the set {1, 2, · · · , n}, define the set of binary vectors ED,R = {x =

(x1, x2, · · · , xn) ∈ Xw : xi = 1 for i ∈ R and xj = 0 for j ∈ D}. Then, for r ≤ w ≤

n− d, define the hypergraph H = (Xw,F), where F = {ED,R : |D| = d, |R| = r, and

D ∩R = ∅}.

It is easy to see that a (d, r; z]-disjunct matrix with n columns can be obtained

from a z-cover of H = (Xw,F) by treating x1, x2, · · · , xn as columns and each vertex

in the z-cover as a row, i.e., the jth column has a 1-entry in that row if xj = 1 in that

vertex. The reason is that for any d + r designated columns induced by two disjoint

sets D and R with |D| = d and |R| = r, there exist at least z rows intersecting the

edge ED,R, meaning each of these rows has 1-entries in every column in R and 0-

entries in every column in D. Thus, Chen, Fu and Hwang [11] obtained the following

theorem.

Theorem 5.2.7. For any positive integers d, r, w, z and n, with r ≤ w ≤ n−d, there

exists a t× n (d, r; z]-disjunct matrix with

t <
z
(

n
r

)(
n−r

d

)
(

w
r

)(
n−w

d

)
[
1 + ln

(
w

r

)(
n− w

d

)]
.
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Proof. By the construction of H = (Xw,F), H is uniform and regular; hence

|X|
minE∈F |E| =

|F|
∆

. Moreover, we have |F| =
(

n

r

)(
n− r

d

)
and ∆ =

(
w

r

)(
n− w

d

)
.

The theorem follows directly from (5.5) and (5.6).

From Theorem 5.2.7, all we need to do is to minimize the function by properly

choosing w to obtain a better bound. For convenience, denote k = d+ r. If we ignore

the fact that w must be an integer, then w = nr/k, satisfying w/r = (n−w)/d, seems

to be a good choice to maximize

(
w

r

)(
n− w

d

)
(somewhat verified by our limited

computations).

Theorem 5.2.8. For any positive integers d, r, z and n with d + r ≤ n,

t(n, d, r; z] < z(k/r)r(k/d)d[1 + k(1 + ln(n/k + 1))].

Proof. For given positive integers d, r, z and n, setting w = n′r/k where n′ ≥ n is

the least integer such that n′r/k is an integer, we have

z
(

n′
r

)(
n′−r

d

)
(

w
r

)(
n−w

d

) ≤ zn′ · (n′ − 1) · · · (n′ − k + 1)

[(n′r/k) · · · (n′r/k − r + 1)][(n′d/k) · · · (n′d/k − d + 1)]

≤ z(k/r)r(k/d)d.

Moreover, using the inequality

(
a

b

)
≤ (ea/b)b, where e ≈ 2.7182 is the base of the

natural logarithm, one concludes

(
n′r/k

r

)(
n′ − n′r/k

d

)
≤ ek(n′/k)k.

From the above inequalities and Theorem 5.2.7, we have

t(n′, d, r; z] <
z
(

n′
r

)(
n′−r

d

)
(

w
r

)(
n′−w

d

)
[
1 + ln

(
w

r

)(
n′ − w

d

)]

< z(k/r)r(k/d)d[1 + k(1 + ln(n′/k))].
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Note that n′ < n+k because of the choice of n′. For any given positive integers d, r, z

and n, we have

t(n, d, r; z] ≤ t(n′, d, r; z]

< z(k/r)r(k/d)d[1 + k(1 + ln(n′/k))]

= z(k/r)r(k/d)d[1 + k(1 + ln(n/k + 1))].

5.3 A Combinatorial Lower Bound

A complex X is called an isolated complex if there exists a row covering only X.

As it is not an efficient test, it is customary to assume that there are no isolated

complexes in a (d, r]-disjunct matrix, i.e., each row has strictly more than r 1’s.

Let M be a (d, r]-disjunct matrix and let M ′ be obtained from M by interchanging

all the 1’s and 0’s. D’yachkov, Vilenkin, Macula and Torney [20] proved that M ′ is

(r, d]-disjunct. In other words, if M is an optimal (d, r]-disjunct matrix, then M ′ is

an optimal (r, d]-disjunct matrix. Hence we strengthen the assumption of no isolated

complex to that each row has strictly more than r 1’s and d 0’s in a (d, r]-disjunct

matrix. This assumption is made throughout the rest of this subsection.

Let t∗(n, d, r] be the minimum number of rows over all (d, r]-disjunct matrices

of n columns under the assumption mentioned above. Chen, Du and Hwang [10]

defined a secondary parameter wk, the minimum cardinality of ∩X over all k-sets X

of columns, and use a lower bound of it to bound t∗(n, d, r].

Theorem 5.3.1. Let wk be the minimum cardinality of ∩X over all k-sets X of

columns. For a (d, r]-disjunct matrix with no isolated complex, we have

wi − wi+1 ≥ d for i = 1, 2, · · · , r.
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Proof. Let M be a (d, r]-disjunct matrix. Given k ≤ r, consider a column C0 and

a set C = {C1, C2, · · · , Ck} of k columns such that

∣∣∣∣∣
k⋂

i=1

Ci

∣∣∣∣∣ = wk. Let C ′ = C ∪ {C0}.

Suppose

∣∣∣∣∣
k⋂

i=0

Ci

∣∣∣∣∣ = w.

Since k ≤ r, we can choose a set S consisting of other r − k columns. Let

S1 = S ∪ C and S2 = S ∪ C ′ \ {C1}. Then |S1| = |S2| = r. Hence S1 and S2 are

distinct complexes in M . Since ∩C ′ ⊆ ∩C, whatever in ∩C ′ but not in ∩(S ∪ C ′) is

not in ∩(S ∪C) neither. So, |∩S1 \ ∩S2| ≤ |∩S1 \ ∩(S ∪ C ′)| = wk −w ≤ wk −wk+1.

If wk − w ≤ d − 1, then there exist d − 1 other complexes X1, X2, · · · , Xd−1 such

that ∩S1 ⊆
(

d−1⋃
i=1

(∩Xi)

)
∪ (∩S2) (since M has no isolated complexes), violating the

(Kr : d)-disjunctness property which is equivalent to (d, r]-disjunctness property.

Corollary 5.3.2. For a (d, r]-disjunct matrix with no isolated complex, we have

wi ≥ d(r − i + 1) + 1 for i = 1, 2, · · · , r.

Proof. By Theorem 5.3.1, wi−wr = (wi−wi+1)+(wi+1−wi+2)+· · ·+(wr−1−wr) ≥

d(r− i), for i ≤ r. Since each complex is not an isolated complex, wr ≥ d + 1. Thus,

wi ≥ d(r − i + 1) + 1.

Note that w1 is the minimum weight over all columns.

Corollary 5.3.3. A (d, r]-disjunct matrix with no isolated complex has column weight

at least dr + 1.

Without loss of generality, assume d ≥ r. Then, we obtain

Theorem 5.3.4. t∗(n, d, r] ≥ r

2
(d + r − 1)(d− r + 2) +

r

6
(r − 1)(4r − 5) + d + r.

Proof. To prove the theorem, we delete one column and all the intersecting rows

from M step by step. Let M be a (d, r]-disjunct matrix and let M1 be obtained from
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M by deleting a column and all the intersecting rows. By Lemma 2.1.6, M1 is a

(d− 1, r]-disjunct matrix.

Continue this process till an (r − 1, r]-disjunct matrix is obtained. To have a

better bound, we transform the current matrix to an (r, (r − 1)]-disjunct matrix by

interchanging all the 1’s and 0’s in the former one, and then keep this process going

till a (1, 1]-disjunct matrix is obtained. By Corollary 5.3.3 we can count the number

of rows deleted from M . Then we obtain a lower bound of t∗(n, d, r], that is,

(dr + 1) + ((d− 1)r + 1) + · · ·+ ((r− 1)r + 1) + ((r− 1)2 + 1) + ((r− 2)(r− 1) + 1) +

· · ·+ (12 + 1) =
r

2
(d + r − 1)(d− r + 2) +

r

6
(r − 1)(4r − 5) + d + r.

Theorem 5.3.4 gives a lower bound by a combinatorial argument which only de-

pends on parameters d and r. For r = 1, this bound is reduced to the famous

Bassalygo

(
d + 2

2

)
bound (see [17] for reference).

5.4 Remarks

The first section of this chapter discussed the relations among four problems:

graph testing, group testing on complexes, superimposed codes and secure key dis-

tribution. Chen, Du and Hwang [10] proved a surprising equivalence relation among

these four problems. Establishing such a relation leads to the consequence that the

(d, r; z]-disjunct matrices are available to solve the complex model problem.

In the second section, we are interested in constructing the (d, r; z]-disjunct ma-

trices and providing an upper bound of t(n, d, r; z]. The idea of the first construction,

by Chen, Du and Hwang [10], is that first construct a q-ary matrix and then convert

it to a binary one. Such an idea can also be found in a number of relevant papers,

for instance, in [19, 20, 49]. The method provides a recursive construction scheme to

generate the (d, r; z]-disjunct matrices. In case of z = 1, for example,
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1. t(16, 2, 2] = t(42, 2, 2] ≤ t(4, 2, 2] · (4 · 1 + 1) ≤ 6 · 5 = 30;

2. t(256, 2, 2] = t(162, 2, 2] ≤ t(16, 2, 2] · (4 · 1 + 1) ≤ 30 · 5 = 150;

3. t(216, 2, 2] = t(2562, 2, 2] ≤ t(256, 2, 2] · (4 · 1 + 1) ≤ 150 · 5 = 750.

Stinson and Wei [49] provided two asymptotic upper bounds for t(n, d, r; z] by using

two other structures, one bound is O

(
z

(
d + r

r

)
(dr)log∗ n log n

)
, where the function

log∗ is defined recursively by log∗(1) = 1 and log∗ n = log∗(dlog ne) + 1 if n > 1,

and the other is O

(
z

(
d + r

r

)
log n

)
. However, we believe that there is a flaw in the

latter one. They showed that for any positive integers d, r, z and n, there exists a

t× n (d, r; z]-disjunct matrix with t = O

(
z

(
d + r

r

)
log n

)
, by using a construction

of perfect hash families, which was described in [53]. However, the asymptotic result

in [53] cited by Stinson and Wei should not be O(log n), but O(C log n), where C

depends on d and r actually. In addition, the same flaw can also be found in the

construction of (d, 1; 1]-disjunct matrices in [53]. Notice that the authors also claimed

that there exists another explicit construction of t×n (d, 1; 1]-disjunct matrices with

t = O(d4 log n).

The second construction, by Chen, Fu and Hwang [11], is obtained by translating

the problem into a hypergraph problem. Engel [24] first observed the equivalence be-

tween a (d, r; 1]-disjunct matrix and a cover of a properly defined hypergraph. Stinson

and Wei [49] generalized the equivalence to (d, r; z]-disjunct matrices for general z,

but used the equivalence only to derive a lower bound

t(n, d, r; z] ≥ 0.7c
(d + r)

(
d+r

r

)

log
(

d+r
r

) log n +
c(z − 1)

2

(
d + r

r

)

when n is sufficient large, where c is a constant.

The hypergraph we construct is similar to that of Stinson and Wei except that we

take a weight-l binary vector as a vertex if and only if l = w, while Stinson and Wei
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relaxed the condition l = w to r ≤ l ≤ n− d. The fixed weight leads to fixed degree

in the hypergraph, which allows us to use the Lovász lemma (5.6) on minimum cover

to derive an upper bound

t(n, d, r; z] < z(k/r)r(k/d)d[1 + k(1 + ln(n/k + 1))],

where k = d + r. Our result provides a nontrivial and non-asymptotic bound of

t(n, d, r; z]. Note that the two upper bounds proposed by Stinson and Wei [49] are

asymptotic.
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Chapter 6

Group Testing with Inhibitors

In some applications, an item can be positive, negative or anti-positive in the

sense that the presence of anti-positives cancels the effect of positives. They are

called inhibitors in the literature.

In the simplest inhibitor model, first proposed by Farach et al. [27], the presence

of an inhibitor in a pool dictates a negative outcome, regardless of the presence of

positive items in the pool. This notion has been extended to the k-inhibitor model [7]

which requires the existence of k inhibitors to dictate a negative outcome. In addition,

we could make even more complicate assumption that each set of k inhibitors cancel

the effect of a set of g positive items. In practice, accurate information of k and g

is usually not available. Thus in the general inhibitor model, we only assume the

existence of some kind of cancelling effect between the inhibitors and the positive

items, but no further quantifiable information.

Consider a set N of n items consisting of at most d positives and at most h in-

hibitors with the others being negatives. Let P denote the set of all positive items and

I the set of all inhibitors. The usual concern in the inhibitor model is to identify the

set P . Another interesting problem one can consider is to also identify the inhibitor

set I. This chapter will focus on the two aspects of concerns.
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6.1 Identify Positives Only

In this section, the problem we consider is to identify the positives. For the prob-

lem, we first propose a necessary and sufficient condition, and show that it strengthens

the necessary condition by De Bonis and Vaccaro [6]. Then a new algorithm that can

substantially reduce the time complexity of decoding is presented. We show that

there is an algorithm with decoding complexity O(tn) for the inhibitor model and

also for the general inhibitor model, where t = O(e(d + h)2 log n) is the number of

tests needed. Note that our result in the number of tests required improves Hwang

and Liu’s result [32] slightly, but has a great improvement in decoding complexity.

6.1.1 A Necessary and Sufficient Condition

In this subsection, consider the problem on the (d, h)-inhibitor model where er-

roneous outcomes are not allowed. Recall that a matrix is said to be (d, c)-disjunct

if no union of c columns is contained in the union of d other columns. Obviously,

(d, 1)-disjunctness is equivalent to d-disjunctness, and a (d, i)-disjunct matrix is also

a (d, j)-disjunct matrix if i ≤ j. De Bonis and Vaccaro [6] gave the following result

for the nonadaptive case.

Theorem 6.1.1. The (h, d)-disjunctness is a necessary condition for identifying P

on the (d, h)-inhibitor model.

Recall that ∪X denote the union of a set X of columns. For a set X of columns,

define Φh(X) = {(∪X) \ (∪Y ): Y is a set of at most h columns with X ∩ Y = ∅}.

Definition 6.1.2. A matrix is said to be (d \ h)-separable if for any two distinct sets

X, X ′ of at most d columns,

Φh(X) ∩ Φh(X
′) = ∅.
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Theorem 6.1.3. The (d \ h)-separability is a necessary and sufficient condition for

identifying P on the (d, h)-inhibitor model.

Proof. The (d \ h)-separability implies that each set of up-to-d columns induces a

disjoint set of outcomes. By matching the sets of positive tests with the samples of

positives, the up-to-d positives can be identified.

On the other hand, suppose there are two distinct sets X, X ′ of at most d columns,

such that

Φh(X) ∩ Φh(X
′) 6= ∅,

i.e., there exist Y and Y ′ such that (∪X) \ (∪Y ) = (∪X ′) \ (∪Y ′). Consider the

situations that X is the positive set and Y the inhibitor set, and that X ′ is the

positive set and Y ′ the inhibitor set. Clearly, they have the same outcomes. Hence,

one cannot distinguish whether X or X ′ is the positive set.

Theorem 6.1.4. (d \ h)-separability ⇒ (d + h− 1)-disjunctness.

Proof. Suppose there are d + h columns C1, · · · , Cd+h such that C1 is contained in
d+h⋃
i=2

Ci. Let X = {Ci : 1 ≤ i ≤ d}, X ′ = X \ {C1} and Y = {Ci : d + 1 ≤ i ≤ d + h}.

Then (∪X) \ (∪Y ) = (∪X ′) \ (∪Y ′), a contradiction to the (d \ h)-separability.

Corollary 6.1.5. For any nonadaptive algorithms, the (d + h− 1)-disjunctness is a

necessary condition for identifying P on the (d, h)-inhibitor model.

By definition, it is easily seen that Corollary 6.1.5 strengthens Theorem 6.1.1.

6.1.2 An Extension to Error-Tolerant Version

This subsection focuses on the (d, h, e)-inhibitor model where at most e erroneous

outcomes are allowed. Let X and Y be two binary vectors of the same length, and

d(X,Y ) denote the Hamming distance between X and Y .
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Definition 6.1.6. A matrix is said to be (d \ h; z)-separable if for any two distinct

sets X, X ′ of at most d columns,

d(S, T ) ≥ z for all S ∈ Φh(X) and T ∈ Φh(X
′).

Theorem 6.1.7. The (d\h; 2e+1)-separability is a necessary and sufficient condition

for identifying P on the (d, h, e)-inhibitor model.

Proof. Necessity. Suppose to the contrary. Then there exist two distinct sets

X,X ′ of at most d columns and two sets Y, Y ′ of at most h columns with X ∩ Y =

X ′ ∩ Y ′ = ∅ such that ((∪X) \ (∪Y )) \ ((∪X ′) \ (∪Y ′)) ≤ 2e. Therefore, we can

always exploit at most e errors to change the results of some of the 2e rows such

that ((∪X) \ (∪Y )) \ E10 = ((∪X ′) \ (∪Y ′)) ∪ E01 for some sets E10 and E01 with

|E10|, |E01| ≤ e. Consider the two situations that X is the positive set, Y the inhibitor

set and E10 the erroneous pools changing positive to negative, and that X ′ is the

positive set, Y the inhibitor set and E01 the erroneous pools changing negative to

positive. Then it is easily seen that they have same outcomes. Therefore, we cannot

determine whether X or X ′ is the set of positives.

Sufficiency. The (d \ h; 2e + 1)-separability implies that each set of up-to-d

columns induces a disjoint set of vectors and the Hamming distance of each pair of

vectors is at least 2e + 1. Therefore, every outcome vector V matches to a unique

set X of positives satisfying d(V, T ) ≤ e for some T ∈ Φh(X). Hence, the up-to-d

positives can be identified.

Theorem 6.1.8. The (d + h − 1; 2e + 1)-disjunctness is a necessary condition for

identifying P on the (d, h, e)-inhibitor model.

Proof. Suppose the incidence matrix is not (d + h− 1; 2e + 1)-disjunct, then there

exist d + h columns C1, · · · , Cd+h such that

∣∣∣∣∣C1 \
d+h⋃
i=2

Ci

∣∣∣∣∣ ≤ 2e. Let X = {Ci : 1 ≤
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i ≤ d}, X ′ = X \ {C1} and Y = {Ci : d + 1 ≤ i ≤ d + h}. Then ((∪X) \ (∪Y )) \

((∪X ′) \ (∪Y ′)) ≤ 2e, violating the (d\h; 2e+1)-separability. By Theorem 6.1.7, the

proof is complete.

6.1.3 A Faster Algorithm

D’yachkov et al. [21] first gave a nonadaptive algorithm for the inhibitor model

without erroneous outcomes by using a (d + h)-disjunct matrix. The basic idea is to

restore all positive outcomes neutralized by inhibitors. Hwang and Liu [32] gave a

more efficient decoding algorithm with error-tolerance that reduces the total decoding

complexity down to O

(
t(n− |T |)

(|T |
h

))
, where T is a set containing all inhibitors

but no positives and t is the number of tests needed. In this subsection, we propose

a new algorithm that can substantially reduces the total decoding complexity down

to O(tn) with an extra condition.

Definition 6.1.9. A binary matrix is (h; y)-inclusive if for any h+1 columns C0, · · · , Ch,

∣∣∣∣∣C0

⋂ (
h⋃

i=1

Ci

)∣∣∣∣∣ ≤ y.

Theorem 6.1.10. A matrix which is (d; z)-disjunct and also (h; y)-inclusive with

z − e > y + e is (d + h; 2e + 1)-disjunct.

Proof. For any d + h + 1 columns C0, C1, · · · , Cd+h, we have





∣∣∣∣∣C0

⋂ (
h⋃

i=1

Ci

)∣∣∣∣∣ ≤ y,

∣∣∣∣C0 \
d+h+1⋃
i=h+1

Ci

∣∣∣∣ ≥ z.

From the above two equations, we conclude that
∣∣∣∣∣C0 \

d+h⋃
i=1

Ci

∣∣∣∣∣ ≥ z − y > 2e.
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Hence, the theorem follows directly from the definition of (d+h; 2e+1)-disjunctness.

Corollary 6.1.11. A (d; z)-disjunct and (h; y)-inclusive matrix with z − e > y + e

can identify all positives on the (d, h, e)-inhibitor model.

Proof. The proof follows by Theorem 6.1.10 immediately.

We now propose a faster decoding algorithm by using a (d; z)-disjunct and (h; y)-

inclusive matrix with z − e > y + e.

FIND-P ALGORITHM

0 use a (d; z)-disjunct and (h; y)-inclusive matrix with z − e > y + e

1 V ← the outcome vector

2 P ← ∅

3 for each item C ∈ N

4 compute tV0 (C)

5 if tV0 (C) ≤ y + e

6 then P ← P ∪ {C}

7 return P

Theorem 6.1.12. FIND-P ALGORITHM can identify all positives on the (d, h, e)-

inhibitor model.

Proof. Consider a positive item C+ and a set I of at most h inhibitors. By the

(h; y)-inclusiveness property, there are at most y rows each intersecting C+ and some

of I. Therefore, C+ appears in at most y negative pools beside erroneous pools. Even

for the worst case that e pools are erroneous, C+ appears in at most y + e negative

pools, i.e., tV0 (C+) ≤ y + e.
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On the other hand, consider a non-positive item C and a set P of at most d

positives. By the (d; z)-disjunctness property, there are at least z rows each inter-

secting C but none of P . The outcomes of the pools corresponding to these rows

should be negative except for the occurrence of errors. Therefore, we conclude that

tV0 (C) ≥ z − e, which implies tV0 (C) > y + e.

From the above discussion, FIND-P ALGORITHM can determine, through

the function tV0 (C), whether an item C is positive or not.

Then, we estimate the time complexity required for the decoding algorithm. It

is easily seen that the decoding algorithm is to compute all tV0 (C) for every item C.

Moreover, the cost of each single computation takes O(t) time where t is the number

of tests needed. Hence, we conclude that the total cost of the decoding complexity is

O(tn).

An Extension to the General Inhibitor Model

Consider the (d, h, e)-general inhibitor model where we only assume the existence

of some kind of cancelling effect between the inhibitors and the positive items, but no

further quantitative information. Surprisingly, FIND-P ALGORITHM also works

even under such ambiguity.

Theorem 6.1.13. A (d; z)-disjunct and (h; y)-inclusive matrix with z − e > y + e

identifies all positives on the (d, h, e)-general inhibitor model.

Proof. Notice that the proof of Theorem 6.1.12 does not depend on quantifiable

information about the cancelling effect.
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6.1.4 A Construction

One way to construct such a matrix with the property mentioned in Theorem

6.1.12 is to have each column having weight at least w, and each pair of columns

contain at most λ elements in common. Let M be such a matrix. Then any h

columns intersect a new column at no more than hλ rows, and there are at least

w − dλ rows that a column does not be covered by a set of d other columns. By

requiring w − dλ− e > hλ + e, which implies w > (d + h)λ + 2e, we have that M is

(d; z)-disjunct and (h; y)-inclusive with z − e > y + e where z = w − dλ and y = hλ.

Thus, we have the following result.

Theorem 6.1.14. Let M be a matrix such that every column has weight at least w,

and every pair of two columns intersects at no more than λ rows. If w > (d+h)λ+2e,

then M is a (d; z)-disjunct and (h; y)-inclusive with z − e > y + e where z = w − dλ

and y = hλ.

It is worth pointing out that Hwang and Sós’s construction of disjunct matrices

[34] satisfies the above conditions and provides us a way to construct the desired

matrix. So we can exploit their construction to analyze and estimate the number of

tests needed. Given integers t and k, they construct a t × n matrix with w = 4kl

and λ = 4l − 1, where n ≥ (2/3)3t/16k2

and l = dt/16k2e. Accordingly, we obtain the

following result.

Theorem 6.1.15. Given integers d, h, e and t, there exists a t × n (d; z)-disjunct

and (h; y)-inclusive matrix with z − e > y + e such that n ≥ (2/3)3t/16k2

, where

k > ((4l − 1)(d + h) + 2e)/4l.

By setting k = d + h + 2e, we have the following results.
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Theorem 6.1.16. There exists a t×n (d; z)-disjunct and (h; y)-inclusive matrix with

z − e > y + e such that t ≤ 16(d + h + 2e)2 log(3n/2)/ log 3.

Corollary 6.1.17. There exists a t × n (d; z)-disjunct and (h; y)-inclusive matrix

with z − e > y + e such that t = O((d + h + e)2 log n).

By Corollary 6.1.17, there exists a t′×n (d; z′)-disjunct and (h; y′)-inclusive matrix

M ′ with z′ > y′ such that t′ = O((d + h)2 log n). Let M be a t × n matrix obtained

by taking 2e+1 copies of M ′, where t = (2e+1) · t′. It is easy to see that (2e+1)z′−

(2e + 1)y′ > 2e + 1. Hence, M is t×n (d; z)-disjunct and (h; y)-inclusive matrix with

z − e > y + e such that t = O(e(d + h)2 log n).

Theorem 6.1.18. There exists a t×n (d; z)-disjunct and (h; y)-inclusive matrix with

z − e > y + e such that t = O(e(d + h)2 log n).

6.2 Identify All Positives and Inhibitors

The problem we consider in this section is to identify not only the positives, but

also the inhibitors. Although a number of studies have been made on group testing

with inhibitors, little is known on this problem especially for the nonadaptive case.

In order to identify the inhibitors, we make an additional assumption that among

the given n items there exists at least one positive item; for otherwise all outcomes

would be negative. Hence, one could not distinguish negative items from inhibitors.

6.2.1 A Necessary and Sufficient Condition

Definition 6.2.1. A matrix is said to be (d\h; z)∗-separable (different from (d\h; z)-

separable) if for any two pairs of disjoint sets (X, Y ) and (X ′, Y ′), where |X|, |X ′| ≤ d

and |Y |, |Y ′| ≤ h,

d((∪X) \ (∪Y ), (∪X ′) \ (∪Y ′)) ≥ z.
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Theorem 6.2.2. The (d\h; 2e+1)∗-separability is a necessary and sufficient condition

for identifying P and also I on the (d, h, e)-inhibitor model.

Proof. Similar to the proof of Theorem 6.1.7.

Theorem 6.2.3. The (d + h − 1; 2e + 1)-disjunctness is a necessary condition for

identifying P and also I on the (d, h, e)-inhibitor model.

Proof. Obviously, a matrix which is (d \ h; 2e + 1)∗-separable is also (d \ h; 2e + 1)-

separable, which implies (d + h− 1; 2e + 1)-disjunct.

6.2.2 Explicit Algorithms

Theorem 6.2.2 provides a necessary and sufficient condition for identifying P and

also I, but essentially neither existence nor explicit construction is known so far, to

our best knowledge. Therefore, we turn to seek for a stronger tool which implies

the property mentioned in Theorem 6.2.2. In this subsection we provide explicit

algorithms by using a tool which is well studied in the complex model.

Recall that a binary matrix is said to be (d, r; z]-disjunct if for any d + r columns

C1, C2, · · · , Cd+r, ∣∣∣∣∣
r⋂

i=1

Ci \
d+r⋃

i=r+1

Ci

∣∣∣∣∣ ≥ z.

Theorem 6.2.4. An (h, 2; 2e + 1]-disjunct matrix can identify the up-to-h inhibitors

with at most e errors.

Proof. Consider a positive item C+ and an h-subset I which contains all inhibitors.

By the (h, 2; 2e + 1]-disjunctness property, there exist at least 2e + 1 rows each inter-

secting C+ but none of I. The pools corresponding to these rows should be positive

except erroneous pools. Even for the worst case that e pools are erroneous, C+ still

appears in at least e + 1 positive pools, i.e., tV1 (C+) ≥ e + 1.
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Consider a negative item C−, a positive item C+ and an h-subset I which contains

all inhibitors. By the (h, 2; 2e + 1]-disjunctness property, there exist at least 2e + 1

rows each intersecting C− and C+, but none of I. A similar argument implies that

tV1 (C−) ≥ e + 1.

On the other hand, even for the worst case that e outcomes are erroneous, tV1 (C) ≤

e for every inhibitor C. Therefore, we can separate all inhibitors from the others.

Theorem 6.2.4 provides a two-stage algorithm to identify all the positives and

inhibitors.

TWO-STAGE ALGORITHM

Stage 1: Use an (h, 2; 2e+1]-disjunct matrix to identify and eliminate all inhibitors.

Stage 2: Use a (d; 2e + 1)-disjunct matrix to identify all positives.

The two-stage algorithm also provides us a one-stage approach to identify P and

also I. It is quite nature to consider the construction of a matrix which is (h, 2; 2e +

1]-disjunct and also (d; 2e + 1)-disjunct after deleting any h columns and all rows

intersecting these columns. Then the pooling design corresponding to such a matrix

can be used to identify all positives and inhibitors in a similar way to the two-stage

algorithm. By definition, it is easily seen that a (d + h, 2; 2e + 1]-disjunct matrix is

(h, 2; 2e+1]-disjunct. Moreover, it preserves the (d; 2e+1)-disjunctness property after

deleting any h columns and all rows intersecting these columns. For otherwise, there

exists a column C and a (d+h)-set R of columns such that there are at most 2e rows

intersecting C but none of R, violating the (d + h, 2; 2e + 1]-disjunctness property.

Accordingly, we have the following result.
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Theorem 6.2.5. A (d + h, 2; 2e + 1]-disjunct matrix can identify all positives and

inhibitors under the (d, h, e)-inhibitor model.

Proof. The (d + h, 2; 2e + 1]-disjunctness property, which implies (h, 2; 2e + 1]-

disjunct, can identify all inhibitors according to Theorem 6.2.4. Eliminate the up-to-h

columns which represent the inhibitors and all rows intersecting these columns. Then

the resulting matrix remains to be (d; 2e + 1)-disjunct due to the (d + h, 2; 2e + 1]-

disjunctness property. Therefore, one can identify the up-to-d positives.

The corresponding decoding algorithm is presented as follows.

FIND-PI ALGORITHM

0 use a (d + h, 2; 2e + 1]-disjunct matrix

1 V ← the outcome vector

2 P ← ∅

3 I ← ∅

4 for each item C ∈ N

5 compute tV1 (C)

6 if tV1 (C) ≤ e

7 then I ← I ∪ {C}

8 V ← V ∪ (∪I)

9 for each item C ∈ N \ I

10 compute tV0 (C)

11 if tV0 (C) ≤ e

12 then P ← P ∪ {C}

13 return P and I
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Next, we estimate the time complexity required for this decoding algorithm. It is

easy to see that the total cost of the decoding complexity is also O(tn) where t is the

number of tests required.

6.2.3 An Extension to the k-Inhibitor Model

Consider the k-inhibitor model, k ≤ h, which requires the existence of k inhibitors

to dictate a negative outcome.

Theorem 6.2.6. An (h−k +1, k +1; 2e+1]-disjunct matrix can identify the up-to-h

inhibitors with at most e errors under the k-inhibitor model.

Proof. Consider a positive item C, a k-subset Y not a subset of the inhibitor-set

and an (h− k + 1)-subset Z which contains either all inhibitors not in Y or h− k + 1

inhibitors. By the (h− k + 1, k + 1; 2e + 1]-disjunctness property, there exist at least

2e+1 rows each intersecting C and all of Y , but none of Z. The pools corresponding

to these rows should be positive except erroneous pools. Even for the worst case that

e pools are erroneous, the k-subset Y still appears in at least e + 1 positive pools,

i.e., tV1 (Y ) ≥ e + 1. On the other hand, tV1 (X) ≤ e for every k-subset X consisting of

inhibitors.

Let O = {C ∈ X : tV1 (X) ≤ e for each k-subset X}. From above discussion, we

can conclude that O is the set of all inhibitors.

Similarly, there is a two-stage algorithm for the k-inhibitor model by replacing an

(h, 2; 2e + 1]-disjunct matrix with an (h− k + 1, k + 1; 2e + 1]-disjunct matrix in the

first stage.
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TWO-STAGE k-INHIBITOR ALGORITHM

Stage 1: Use an (h− k + 1, k + 1; 2e + 1]-disjunct matrix to eliminate all inhibitors.

Stage 2: Use a (d; 2e + 1)-disjunct matrix to identify all positives.

A one-stage algorithm can also be obtained by a similar argument.

Theorem 6.2.7. A (d+h, k +1; 2e+1]-disjunct matrix can identify all positives and

inhibitors under the k-inhibitor model.

Proof. It follows by the fact that a (d + h, k + 1; 2e + 1]-disjunct matrix M is

(h − k + 1, k + 1; 2e + 1]-disjunct, and the matrix obtained from M by deleting any

h columns and all rows intersecting these columns is (d, k + 1; 2e + 1]-disjunct.

FIND-PI k-INHIBITOR ALGORITHM

0 use a (d + h, k + 1; 2e + 1]-disjunct matrix

1 V ← the outcome vector

2 P ← ∅

3 I ← ∅

4 for each k-subset X ⊆ N

5 compute tV1 (X)

6 if tV1 (X) ≤ e

7 then I ← I ∪ {C} for all C ∈ X

8 V ← V ∪ (∪I)

9 for each item C ∈ N \ I

10 compute tV0 (C)

11 if tV0 (C) ≤ e
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12 then P ← P ∪ {C}

13 return P and I

This decoding algorithm is similar to FIND-PI ALGORITHM except replac-

ing item with k-subset in line 4. An analogous argument shows that the decoding

complexity of this algorithm is O

((
n

k

)
kt

)
in the worst case, since each operation

of computing tV1 (X) takes O(kt) time where t is the number of tests needed.

6.3 Concluding Remarks

Farach et al. [27] first introduced the simplest inhibitor model and gave a random-

ized algorithm to identify all positives in O((d+h) log n) tests. De Bonis and Vaccaro

[6] gave a deterministic algorithm in O((h2+d) log n) tests. Further, De Bonis, Gasie-

niec and Vaccaro [5] provided a deterministic 4-stage algorithm in O((d + h) log n)

tests that attains the same asymptotic complexity of the randomized algorithm pre-

sented in [27]. However, those algorithms are sequential; specifically, tests cannot be

performed in parallel. D’yachkov et al. [21] first gave a nonadaptive algorithm by

using a (d+h)-disjunct matrix with decoding complexity O

(
Σ

h′≤h

(
t(n− h′)

(
n

h′

)))
.

Further, Hwang and Liu [32] first gave an error-tolerant nonadaptive algorithm by

using a (d+h+2e)-disjunct matrix and reduced the total decoding complexity down

to O

(
t(n− |T |)

(|T |
h

))
, where T is a set containing all inhibitors but no positives.

Notice that the best known results for a (d + h + 2e)-disjunct matrix with n columns

show that at most O((d + h + e)2 log n) tests are used in Hwang and Liu’s algorithm.

In this chapter, we first gave a necessary and sufficient condition for any nonadap-

tive algorithm identifying all positives that improves the necessary condition by De

Bonis and Vaccaro [6]. Further, we improved Hwang and Liu’s result [32] by provid-
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ing an error-tolerant nonadaptive algorithm for identifying all positives with fewer

tests O(e(d + h)2 log n) and optimal decoding complexity O(tn). Notice that our al-

gorithm has a significant improvement in decoding complexity and actually works for

the general inhibitor model where no further quantitative information of cancelling

effect.

In recent years, a great deal of effort has been made on the inhibitor model, es-

pecially for identifying all positives. What seems to be lacking, however, is to also

identify inhibitors, besides positives. Farach et al. [27] first studied the problem and

provided a method which performs at most twice as many tests as any algorithm for

identifying positives only. De Bonis, Gasieniec and Vaccaro [5] gave a deterministic

4-stage algorithm in O((d + h) log n) tests that attains the optimal bound. However,

both methods for identifying all positives and inhibitors are sequential. It remains

an open question whether there exists a nonadaptive algorithm for identifying all

positives and also inhibitors. In this chapter, we answered the open problem by

proving the existence of a nonadaptive algorithm. More precisely, we showed that a

(d + h, 2; 2e + 1]-disjunct matrix can be used to identify all positives and inhibitors

under the (d, h, e)-inhibitor model. Note that the decoding complexity of our algo-

rithm achieves the optimal bound O(tn). Furthermore, we extended to the k-inhibitor

model where existences of k inhibitors dictate a negative outcome. We showed that

a (d + h, k + 1; 2e + 1]-disjunct matrix, with decoding complexity O

((
n

k

)
kt

)
, can

identify up-to-d positives and up-to-h inhibitors under the k-inhibitor model with at

most e errors.
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Chapter 7

Threshold Group Testing

In this chapter we discuss a generalization of group testing which is a novel model

first proposed by Damaschke [15]. The problem is described as follows. Consider a set

N of n items consisting of a number of positive items with the other being negative

items. Let l and u be nonnegative integers with l < u, called the lower and upper

threshold, respectively. A group test for a subset S of items is positive if S contains

at least u positives, and negative if at most l positives are present. If the number of

positives in S is between l and u, the outcome can give an arbitrary answer. Denote

P the set of positive items. Suppose our only prior knowledge is that u ≤ |P | ≤ d.

The goal is still to identify all items in P .

Let g ≡ u − l − 1 denote the gap between the thresholds. The gap g = 0 if and

only if a sharp threshold separates the positive and negative outcomes, so that all

answers are determined. Clearly, the classic group testing problem is a special case

that g = 0 with l = 0, u = 1.

In [15], Damaschke considered only sequential strategies, i.e., the outcomes of all

previous pools can be used to set up the next tests. While Damaschke’s coverage

was predominantly for the sequential strategies, some of his results also hold for the

nonadaptive case. For general case that g is not specified, Damaschke proved that one

can identify a set P ′ with |P ′ \P | ≤ g and |P \P ′| ≤ g by simply testing all u-subsets.
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In addition, he proposed an algorithm with O

(
ug+1

(u− 1)!(g + 1)!
dung+1

)
operations

to compute a set P ′ with the properties mentioned above. It is worth mentioning

that he also showed that the number of misclassifications which is bounded by the

gap g is in a sense the best possible result. That means one cannot identify P exactly

in the general case.

In Section 7.1, we first extend the threshold group testing to the error-tolerant

case, and provide an efficient pooling design. Mainly, we prove that a (d− l, u; 2e+1]-

disjunct matrix can be used to identify a set P ′ as described above with at most e

erroneous outcomes. Note that for the case e = 0 our result requires many fewer tests

than that of Damaschke. For the case without gap, g = 0, we provide an efficient

decoding algorithm to identify P with complexity O

(
ut

(
n

u

))
, where t is the number

of tests needed. Section 7.3 introduces a synthetic model on the threshold group

testing with the presence of inhibitors and erroneous outcomes. Here we consider

only the case without gap, where one can identify all positives exactly.

7.1 Threshold Group Testing with Error-Tolerance

First, we extend the threshold group testing to the error-tolerant version where

at most e errors are allowed.

Theorem 7.1.1. A (d−l, u; 2e+1]-disjunct matrix can identify a set P ′ with |P ′\P | ≤

g and |P \ P ′| ≤ g.

Proof. Consider a u-subset X containing more than g items not in P , which implies

at most l positives, and a (d− l)-subset Y which contains either d− l positives not in

X or all positives. By the (d−l, u; 2e+1]-disjunctness property, there exist 2e+1 rows

each containing X but intersecting none of Y . The pools corresponding to these rows
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should be negative except erroneous pools. Even for the worst case that e pools are

erroneous, X still appears in at least e + 1 negative pools. Therefore, tV0 (X) ≥ e + 1.

Observe that every u-subset X+ ⊆ P should appear in positive pools except

erroneous pools. Hence, even for the worst case that e pools are erroneous, we have

tV0 (X+) ≤ e.

Construct a hypergraph Hu where a u-set X is an edge if and only if X appears

in at most e negative pools. Set P ′ to be a maximum clique of Hu. Note that P must

be a clique of Hu. Further, a clique cannot contain more than g vertices not in P , or

the u-subset containing any g of these vertices cannot be an edge, contradicting the

definition of a clique. From these two observations, the theorem follows immediately.

For e = 0, Theorem 7.1.1 offers a way to identify a set P ′ as described but requires

fewer tests than that of Damaschke, testing all

(
n

u

)
u-subsets.

7.2 The Case without Gap

For the special case without gap, g = 0, Theorem 7.1.1 implies that we can identify

the set P exactly. Then, we obtain the following corollary.

Corollary 7.2.1. For the case g = 0, a (d − u + 1, u; 2e + 1]-disjunct matrix can

identify the set P .

Proof. Note that a u-subset X appears in at most e negative pools if X ⊆ P , and

appears in at least e + 1 negative pools if X 6⊆ P .

Accordingly, we have the following algorithm geared to identify P .

THRESHOLD ALGORITHM

0 use a (d− u + 1, u; 2e + 1]-disjunct matrix

1 V ← the outcome vector
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2 P ← ∅

3 for each u-subset X ⊆ N

4 compute tV0 (X)

5 if tV0 (X) ≤ e

6 then P ← P ∪ {C} for all C ∈ X

7 return P

Obviously, the for loop is executed

(
n

u

)
times. Further, each operation for

computing tV0 (X) takes O(ut) time in the worst case. Therefore, the total decoding

complexity takes O

(
ut

(
n

u

))
time.

7.3 The Inhibitor Threshold Model without Gap

In this section we introduce the threshold group testing in the presence of in-

hibitors and errors. Here we consider only the case g = 0. Denote I as the set of all

inhibitors with |I| ≤ h.

Recall that in the simplest inhibitor problem the presence of an inhibitor in a

pool dictates a negative outcome, regardless of the presence of positive items in the

pool. Further, the k-inhibitor model requires the existence of k inhibitors to dictate

a negative outcome. It has been extended to the general model in which the exact

cancellation effect of inhibitors on positive items is not specified.

7.3.1 Identify Positives Only

The key point of our idea is to restore all positive outcomes neutralized by in-

hibitors. The method of this algorithm we proposed here is to collect all inhibitors

into the set O which contains no positives, and then identify a column C as positive
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if there exists one S and a u-subset X containing C for which tV0 (X) ≤ e under the

outcome vector V adjusted by S.

INHIBITOR THRESHOLD ALGORITHM

0 use a (d + h− u + 1, u; 2e + 1]-disjunct matrix

1 V ← the outcome vector

2 D ← ∅

3 O ← ∅

4 for every item C ∈ N

5 compute tV1 (C)

6 if tV1 (C) ≤ e

7 then O ← O ∪ {C}

8 for all h-subsets S ⊆ O

9 V ← V ∪ (∪S)

10 for each u-subset X ⊆ N \O

11 compute tV0 (X)

12 if tV0 (X) ≤ e

13 then D ← D ∪ {C} for all C ∈ X

14 return D

The for loop in line 8 causes the majority of operations of this algorithm. The

operations for computing tV0 (X) execute O

((|O|
h

)(
n− |O|

u

))
times in the worst

case. Therefore, the total time complexity is O

(
ut

(|O|
h

)(
n− |O|

u

))
where t is the

number of tests required.

To prove the correctness of this algorithm, what we need to show first is that O

contains all inhibitors but no positives.
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Lemma 7.3.1. O contains all inhibitors but no positives.

Proof. By definition, a (d+h−u+1, u; 2e+1]-disjunct matrix is also (h, 1; 2e+1]-

disjunct. Consider a positive item C+ and an h-subset X containing all inhibitors. By

the (h, 1; 2e+1]-disjunctness property, there exist at least 2e+1 rows each intersecting

C+ but none of X. The pools corresponding to these rows should be positive except

erroneous pools. Even for the worst case that e pools are erroneous, C+ still appears

in at least e + 1 positive pools, i.e., tV1 (C+) ≥ e + 1. Therefore, we can conclude that

an item which appears in at most e positive pools cannot be positive.

On the other hand, even for the worst case that e pools are erroneous, every

inhibitor appears in at most e positive pools. Hence the set O contains all inhibitors

but no positives.

Theorem 7.3.2. The INHIBITOR THRESHOLD ALGORITHM can identify

P with at most h inhibitors and at most e errors.

Proof. From Lemma 7.3.1, we conclude that P ⊆ N \ O. Consider a u-subset

X ⊆ N \ O not a subset of P , a (d − u + 1)-subset Y ⊆ N \ O which contains

either all positives not in X or d− u + 1 positives. For each h-subset S ⊆ O, by the

(d + h− u + 1, u; 2e + 1]-disjunctness property, there exists a (d + h− u + 1)-set R of

columns containing Y and S such that there are at least 2e + 1 rows each containing

X but intersecting none of R. The outcomes of the pools corresponding to these rows

should be negative except for the occurrence of errors. Therefore, we can conclude

that tV0 (X) ≥ (2e + 1)− e = e + 1. Hence no negative item is selected into D.

Consider an h-subset S ⊆ O containing all up-to-h inhibitors with the others

being negative items. For a u-subset X+ ⊆ P , X+ appears only in the pools in the

new outcome vector V adjusted by the set S. For the worst case that e outcomes are
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erroneous, X+ appears in at most e negative pools, i.e., tV0 (X+) ≤ e. Hence every

positive item will be selected into D.

From the above discussion, the output of this algorithm is the set P .

An Extension to the General Inhibitor Model

Consider the general inhibitor model where we only assume the existence of some

kind of cancelling effect between the inhibitors and the positive items, but no further

quantifiable information. Even under such ambiguity, a (d + h − u + 1, u; 2e + 1]-

disjunct matrix still works as well. Unfortunately, the same method on separating all

inhibitors from all positives in advance does not work in this model. So, instead of

searching all h-sets in O, we have to search all h-sets in N .

GENERAL INHIBITOR THRESHOLD ALGORITHM

0 use a (d + h− u + 1, u; 2e + 1]-disjunct matrix

1 V ← the outcome vector

2 D ← ∅

3 for all h-subsets S ⊆ N

4 V ← V ∪ (∪S)

5 for each u-subset X ⊆ N \ S

6 compute tV0 (X)

7 if tV0 (X) ≤ e

8 then D ← D ∪ {C} for all C ∈ X

Theorem 7.3.3. The GENERAL INHIBITOR THRESHOLD ALGORITHM

can identify P with at most h inhibitors and at most e errors under the general in-

hibitor model.

78



Proof. The proof is similar to the proof of Theorem 7.3.2 except that the restoring

operation runs through all h-subsets S ⊆ N .

Similarly, we conclude that the total time complexity is O

(
ut

(
n

h

)(
n− u

u

))

where t is the number of tests required.

7.3.2 Identify All Positives and Inhibitors

In this subsection, the problem we are concerned is not only to identify all posi-

tives, but also to identify all inhibitors. In order to identify the inhibitors, we need

to make an additional assumption that among the given n items there exist at least

u positives. For otherwise, all outcomes would be negative. Hence, one could not

separate the inhibitors from the negatives.

Theorem 7.3.4. An (h, u + 1; 2e + 1]-disjunct matrix can identify the up-to-h in-

hibitors with at most e errors.

Proof. Consider a u-subset X of positive items and an h-subset I which contains

all inhibitors. By the (h, u+1; 2e+1]-disjunctness property, there exist at least 2e+1

rows each containing C+ but not intersecting I. The pools corresponding to these

rows should be positive except erroneous pools. Even for the worst case that e pools

are erroneous, X still appears in at least e + 1 positive pools, i.e., tV1 (C+) ≥ e + 1 for

every positive item C+ ∈ X.

Consider a negative item C−, a u-subset X of positive items and an h-subset I

which contains all inhibitors. By the (h, u + 1; 2e + 1]-disjunctness property, there

exist at least 2e+1 rows each containing C− and X but not intersecting I. A similar

argument shows that tV1 (C−) ≥ e + 1.

On the other hand, even for the worst case that e outcomes are erroneous, tV1 (C) ≤

e for every inhibitor C. Therefore, all the inhibitors can be identified.
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Theorem 7.3.4 provides a two-stage algorithm to identify all positives and also

inhibitors.

TWO-STAGE ALGORITHM

Stage 1: Use an (h, u + 1; 2e + 1]-disjunct matrix to identify and eliminate all in-

hibitors.

Stage 2: Use a (d− u + 1, u; 2e + 1]-disjunct matrix to identify all positives.

The two-stage algorithm also provides us a one-stage approach to solve the prob-

lem. It is quite nature to think of a matrix which is (h, u+1; 2e+1]-disjunct and also

preserves the (d− u + 1, u; 2e + 1]-disjunctness property after deleting any h columns

and all rows intersecting these columns. Then the pooling design corresponding to

such a matrix can be used to identify all positives and inhibitors. By definition, it is

easily seen that a (d + h− u + 1, u + 1; 2e + 1]-disjunct matrix satisfies the property

mentioned above.

Theorem 7.3.5. A (d + h − u + 1, u + 1; 2e + 1]-disjunct matrix can identify all

positives and inhibitors with at most e errors.

Proof. The (d + h − u + 1, u + 1; 2e + 1]-disjunctness property, which implies the

(h, u + 1; 2e + 1]-disjunctness, can be used to identify all inhibitors according to

Theorem 7.3.4. Eliminate the up-to-h columns which represent the inhibitors and all

rows intersecting these columns. Then, the resulting matrix remains to be (d − u +

1, u; 2e + 1]-disjunct due to the (d + h − u + 1, u + 1; 2e + 1]-disjunctness property.

Therefore, the positives can be identified by Theorem 7.3.2.

The following decoding algorithm is based on Theorem 7.3.5.
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THRESHOLD FIND-PI ALGORITHM

0 use a (d + h− u + 1, u + 1; 2e + 1]-disjunct matrix

1 V ← the outcome vector

2 P ← ∅

3 I ← ∅

4 for each item C ∈ N

5 compute tV1 (C)

6 if tV1 (C) ≤ e

7 then I ← I ∪ {C}

8 V ← V ∪ (∪I)

9 for each u-subset X ⊆ N \ I

10 compute tV0 (X)

11 if tV0 (X) ≤ e

12 then P ← P ∪ {C} for all C ∈ X

13 return P and I

Our concern now is to estimate the time complexity required for this decoding

algorithm. It is easy to see that the operations for computing tV0 (X) execute

(
n

u

)

times in the worst case. Hence, the total decoding complexity is O

(
ut

(
n

u

))
where

t is the number of tests required.

An Extension to the k-Inhibitor Model

Consider the k-inhibitor model which requires the existence of k inhibitors to

dictate a negative outcome. Still, we need to assume that there exist at least k

inhibitors among the given n items.

81



Theorem 7.3.6. An (h−k +1, u+k; 2e+1]-disjunct matrix can identify the up-to-h

inhibitors with at most e errors under the k-inhibitor model.

Proof. Consider a u-subset X of positive items, a k-subset Y not a subset of the

inhibitor-set I and an (h− k + 1)-subset Z which contains either all inhibitors not in

Y or h−k +1 inhibitors. By the (h−k +1, u+k; 2e+1]-disjunctness property, there

exist at least 2e + 1 rows each containing X and Y but intersecting none of Z. The

pools corresponding to these rows should be positive except erroneous pools. Even

for the worst case that e pools are erroneous, the k-subset Y still appears in at least

e + 1 positive pools, i.e., tV1 (Y ) ≥ e + 1.

On the other hand, tV1 (X) ≤ e for every k-subset X consisting of inhibitors. Let

O = {C ∈ X : tV1 (X) ≤ e for each k-subset X}. Then, it is easy to see that O is the

set of all inhibitors.

Similarly, there is a two-stage algorithm for the k-inhibitor model by replacing an

(h, u + 1; 2e + 1]-disjunct matrix with an (h− k + 1, u + k; 2e + 1]-disjunct matrix in

the first stage.

k-INHIBITOR TWO-STAGE ALGORITHM

Stage 1: Use an (h− k + 1, u + k; 2e + 1]-disjunct matrix to identify and eliminate

all inhibitors.

Stage 2: Use a (d− u + 1, u; 2e + 1]-disjunct matrix to identify all positives.

A one-stage algorithm can also be obtained by a similar argument.

Theorem 7.3.7. A (d + h − u + 1, u + k; 2e + 1]-disjunct matrix can identify all

positives and inhibitors with at most e errors under the k-inhibitor model.
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Proof. The proof is similar to that of Theorem 7.3.5.

We also propose a decoding algorithm based on Theorem 7.3.7 in the following.

k-INHIBITOR THRESHOLD FIND-PI ALGORITHM

0 use a (d + h− u + 1, u + k; 2e + 1]-disjunct matrix

1 V ← the outcome vector

2 P ← ∅

3 I ← ∅

4 for each k-subset X ⊆ N

5 compute tV1 (X)

6 if tV1 (X) ≤ e

7 then I ← I ∪ {C} for all C ∈ X

8 V ← V ∪ (∪I)

9 for each u-subset X ⊆ N \ I

10 compute tV0 (X)

11 if tV0 (X) ≤ e

12 then P ← P ∪ {C} for all C ∈ X

13 return P and I

Similarly, it is easy to see that the operations for computing tV1 (X) executed

(
n

k

)

times, and for computing tV0 (X) executed

(
n

u

)
in the worst case. Hence, the total

decoding complexity is O

(
pt

(
n

p

))
where p = max{u, k} and t is the number of tests

required.
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7.4 Concluding Remarks

Damaschke [15] is the first to consider the threshold group testing, while his

coverage was predominantly for the sequential strategies. He proved that a set P ′

with |P ′ \ P | ≤ g and |P \ P ′| ≤ g can be identified in

(
n

u

)
tests, and proposed an

algorithm with O

(
ug+1

(u− 1)!(g + 1)!
dung+1

)
operations to compute a set P ′. In this

chapter, we extended the threshold group testing to the error-tolerant version where

at most e errors are allowed. We showed that a (d− l, u; 2e + 1]-disjunct matrix can

identify a set P ′ as described above with at most e errors. Note that for the case

e = 0 our result substantially reduces the number of tests needed. The following table

shows some numerical results.

d = 2, u = 2 and l = 0
Damaschke Chen, Fu and Hwang

Testing all u-subsets Using a (d− l, u; 2e + 1]-disjunct matrix
n = 24 120 30
n = 28 32640 150
n = 216 2, 147, 450, 880 750

Besides the error-tolerant threshold model, we also studied a synthetic model

where the presence of inhibitors and errors are allowed. Notice that the problem we

consider here is only the case without gap, u = l + 1, in which one can identify all

positives exactly. We showed that a (d+h−u+1, u; 2e+1]-disjunct matrix can identify

up-to-d positives with the presence of up-to-h inhibitors and up-to-e errors under the

threshold model without gap; the decoding complexity is O

(
ut

(
n

u

))
where t is the

number of tests required. Further, we studied the problem that is to identify all

inhibitors, besides positives. We proved that a (d + h− u + 1, u + 1; 2e + 1]-disjunct

matrix can identify all positives and also inhibitors under the error-tolerant threshold

model without gap in O

(
ut

(
n

u

))
decoding complexity.
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