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Student: Chin-Lung L1 Advisor: Jonq Juang
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Abstract

The purpose of this thesis is two-fold. First, global synchronization in
lattices of coupled chaotic systems is studied. Second, how wavelet
transforms affect the synchromization of .the corresponding systems is
theoretically addressed. Baséd on the concept of matrix measures, global
stability of synchronization: in networks is obtained. Our results apply to
quite general connectivity topology-—Moreover, by merely checking the
structure of the vector field of the single oscillator, we shall be able to
determine if the system is globally ‘synchronized. In addition, a rigorous
lower bound on the coupling strength for global synchronization of all
oscillators is also obtained. The lower bound on the coupling strength for
synchronization is proportional to the inverse of the magnitude of the second
largest eigenvalue A, of the coupling matrix. However, for a typical
connectivity topology such as the diffusively coupled matrix, A, moves
closer to the origin, as the number of nodes increases. Consequently, a larger
coupling strength is required to realize synchronization. In [48], Wei et al,
proposed a wavelet transform to alter the connectivity topology. In doing so,
M=\, (o) becomes a quantity depending on wavelet parameter a. It is found
there that a critical wavelet parameter o, can be chosen to move A, (o) away
from the origin regardless the number of nodes. This in turn greatly reduces
the size of the critical coupling strength. Such phenomena are analytically
verified when the coupling matrix is diffusively coupled with periodic and

Neumann boundary conditions.
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Chapter 1

Coupled Systems in Lattices

1.1 Introduction and Formulation

Coupled chaotic systems are typically synthesized from simpler, low-dimensional sys-
tems to form new and more complex systems. This is often done with the intent of
realistically modeling spatially extended systems, with the brief that dominant features
of the underlying constituents will be retained. From an applications point of view this
building up approach can also be used to create a novel system whose behavior is more
flexible or richer than that of the constituents, but whose analysis and/or control re-
mains tractable. These and other motivations have led to numerous studies of coupled
systems in a wide range of disciplines. Synchronization has long been of interest in
systems of identical or nearly identical coupled subsystems. The phenomenon of syn-
chronization of coupled chaotic systems has recently become a topic of great interest,
and is the focus of the present work. Systems that display this behavior are temporally
chaotic, but spatially ordered or coherent. Here the coherence is of particular type-the
dynamics is the same or nearly so for long periods of time for all coupled subsystems or
large regions of them. The basic synchronization problem can be framed with the ques-
tions, ” Will my system ever synchronize and, if so, under what conditions?” During the
last few decades the study of networks of dynamical systems has attracted increasing
attention [16-18,21-22,24,28-29,30-33,35-36,38-39,41-42,45-46,50-54]. The purpose to
connect dynamical systems in networks is to get them to solve problems cooperatively.

For instance, such networks are needed for information processing in the brain [17].



A particularly interesting form of dynamical behavior occurs in networks of coupled
systems or oscillators when all of the subsystems behave in the same fashion; that is,
they all do the same thing at the same time. Such behavior of a network simulates
a continuous system that has a uniform movement, models neurons that synchronize,
and coupled synchronized lasers and electronic circuit systems. The motion of the
systems is described as follows. Let there be m nodes (oscillators). Assume x; is the
n-dimensional vector of dynamical variables of the ith node. Let the isolated (un-
coupling) dynamics be %x; = f(x;,t) for each node. We assume that x; has a chaotic
dynamics in the sense that its largest Lyapunov exponent is positive. Let h : R" — R"
be an arbitrary function describing the coupling within the components of each node.
The connectivity topology, indicating the coupling rules between nodes, is denoted by

the coupling matrix G = (g;;). Then the equation of the motion reads

dXZ‘ - .
dt:f@hﬂ+dg;mM&%Z:LZmﬂm (1.1)
where d is a coupling strength. The m — 1 constraints x; = x5 = - - - = X,,, define the
synchronization manifold 9. The sum Z gi; = 0 is required for the invariance of this
j=1

synchronization manifold 9t. We further assume that 0 is a simple eigenvalue of G.
Let F(x,t) = (f(x1,t), f(x2,t),...,f(xm, )T, H(x) = (h(x;),h(x2), ..., h(x,,))?, and

X1 Ti1

X = : X; = : (1.2)

Xm Lin

Then (1.1) can be written as the vector form

dx_

o =F(x 1) +d(G@L)H(x), (1.3)

where ® is the Kronecker product(see e.g.,[15]), and I,, is the n x n identity matrix.

The simplest mode of the coordinated motion between dynamical systems is their



complete synchronization when all cells of the network acquire identical dynamical
behavior. Consequently, one asks questions such as: What are the conditions for the
stability of the synchronous state, especially with respect to coupling strengths and
coupling configurations of the network? Typically, in networks of continuous time
oscillators, the synchronous state becomes stable when the coupling strength between
the oscillators exceeds a critical value. In this context, a central problem is to find the
bounds for the coupling strengths so that the stability of synchronization is guaranteed.
It is well-known (see e.g., [4,48,49]) that the lower bound for the coupling strength for
synchronization is proportional to the inverse of the magnitude of the second largest
eigenvalue Ay of the coupling matrix. However, for a typical connectivity topology
such as the diffusively coupled matrix, s moves closer to the origin, as the number
of nodes increases. Consequently, a larger coupling strength is required to realize
synchronization. As a result, controlling chaos is apparently of great interest and
importance [20,34,37,39,48-49]. It is found in [48] that the modification of a tiny
fraction of wavelet subspaces of a coupling matrix could lead to a dramatic change in
the properties of chaotic synchronization. Specifically, in doing so, Ay = A2(a) becomes
a quantity depending on wavelet parameter «.. It is found there that a critical wavelet
parameter a. can be chosen to move \s(a,) away from the origin regardless the number
of nodes. This in turn greatly reduces the size of the critical coupling strength.

To be self-contained, we briefly describe such wavelet transform. Let
A= e (1.4a)

be a matrix with the dimension of each block matrix Ay being 2¢ x 2!, By an i-scale

wavelet operator W [14,48], the matrix A is transformed into W (A) of the form

gll gln
WA= + -~ (1.4Db)

Anl e Ann

nxn,



where each entry of A}Cl is the average of entries of Ay, 1 < k,l <n.
For a given matrix, the above wavelet transform allows a perfect reconstruction (in-
verse wavelet transform), by which there is nothing to gain: A = W=1{(W(A)). In [48],

a simple operator Oy is introduced to attain a desirable coupling matrix. That is,

C =W YO (W(A) = A+ (k— )YIW(A) = A+ aW(A), (1.4c)

where Oy be the multiplication of a scalar factor a on each block matrix /Z{kl- After
such reconstruction, the critical strength d,. is again, determined in term of the second
largest eigenvalue of C'. A numerical simulation of a coupled system of 512 Lorenz
oscillators in [48] shows that with h = I3 and G being diffusively coupled with periodic
boundary conditions, the critical coupling strength d. decreases linearly with respect
to the increase of o up to a critical value a,.. The smallest d, is about 6, which is about
103 times smaller than the original critical coupling strength, indicating the efficiency
of the proposed approach.

To understand how such wavelet transform affects the critical coupling strength, we
consider G to be diffusively coupled with mix boundary conditions. Let such mix
boundary conditions be parameterized by a parameter 3. Such reconstructed coupling
matrix Ag + aWW(Ap) is to be denoted by G = G(a, 3). Let | = 7 € N, where i is a

fixed positive integer. Here G(«, [3) is an [ x [ block matrix of the following form.

Gl(aaﬁ) G2(aa1) 0 0 Gg(aa/@)
Gl (a,1) Gi(a,1) Gy(a,1) e 0 0
Gla.B) = | | |
0 0 Gl(a,1) Gi(a,1) AG2(04, 1) )
Go(a, B) 0 0 Gj(a, 1) IGi(a,B)1 Ix1.
(1.5a)
Here



1 -2 1 o --- 0
0 1 -2 1 - 0 ol + 3
Gi(a, B) = : . - %%T
0 0 1 -2 1
0 0 1 =2/
=: A(3,27) — Weecp, (1.5b)

where e = (1,1,...,1)T, j is a positive integer, a > 0 is a (wavelet) scalar factor and

0 € R represents a mixed boundary constant. Moreover,

0 0 - 0
: : o
Gao(a, B) = 0 0 + ﬁfeeT
ﬁ 0 27 %27
. af
=: As(5,2) + ﬁeeT, (1.5¢)
00 - 01
00 0 10
- (1.5d)
01 0 00
10 00

The dimension of G(«, 3) is 127 X [27. From here on, we shall call [ and j the block and
the wavelet dimensions of G(«, (3), respectively. G(a, (3) is a block circulant matrix (see
e.g., [15]) only if = 1. It is well-known, see e.g., Theorem 5.6.4 of [15], that for each
a the eigenvalues of G(q, 1) consists of eigenvalues of a certain linear combinations of

its block matrices. Such results are called the reduced eigenvalue problem for G(a, 1).

b}



1.2 Description of the Results

The first results in the thesis are to give another approach to study global synchro-
nization of coupled chaotic systems (1.3). Part of the results in this direction is based
on the paper in [27]. Our coupling rules are allowed to be asymmetric and/or some
competitive (g;; < 0, @ # j) couplings between cells x; and x; as long as the coupled
system is bounded dissipative. In addition, the partial-state coupling in our approach is
allowed to have the form satisfying (3.31). Moreover, by merely checking the structure
of the vector field of the single oscillator, we shall be able to determine if the system is
globally synchronized. We also obtain a rigorous lower bound on the coupling strength
for the global synchronization of all oscillators with coupling configuration satisfying
(3.20a), and (3.20b). Finally, the concept of matrix measures is introduced to obtain
such global results. The second part of the thesis is to prove analytically that the
improvement by wavelet transform as described in section 1.1 is indeed true. Some
new phenomena are also discovered via our analysis. The results in this part are re-
organized from papers in [25,26]. In the following, we give a detailed description of
the results. To understand the effectiveness of wavelet transform, it amounts to study-

ing the eigencurve problem for a class of ”perturbed” block circulant matrices. That is,

G(a, )b = A(a, B)b. (1.6)

We prove that for m being a multiple of 4, then
)\T(O&,l), 0§a§5'12£7
[

2 [}
Let m = 2l be an even number which is not multiple of 4. We show that As(a, 1) =

)\Fz}(a, 1) for a sufficiently large, where [%] = the largest positive integer that is less
2

than or equal to 5. Moreover, we prove that for such m that (v, 1) < —2, whenever
o > Sm;u With those results above, we get considerable more information than those
obtainedl in [43]. Among other, such result suggests that if the number m of oscillators
be even but not a multiple of 4, then the wavelet method works even better. Specifically,

it is better in the sense that the corresponding second largest eigenvalue Ao(cv, 1) is

6



further away from 0, and, hence, gives even smaller critical length. Our second main
results of this part are the following. First, the reduced eigenvalue problem for G(a, 0)
is completely solved. Some partial results for the reduced eigenvalue problem of G(«, [3)
are also obtained. Second, we are then able to understand behavior of Ag(c,0) and

Ao(a, 1) for any j and [ € N.

1.3 Related Work

General approaches to local synchronization of chaotic systems have been proposed,
including the master stability function (MSF)- based criteria [3,35-36,38-39,42], orig-
inated by Pecora and Carroll [39], and recently the matrix measure approach in [12].
The former computes the Lyapunov exponent of the variational equations, while the
latter uses the concept of matrix measures to give criteria on the variation equations.
Moreover, local synchronization in a complex network of asymmetrically coupled units
was also obtained [11,24] via MSF-based criteria.

Global synchronization of chaotic systems was also intensively studied. The methods
include Lyapunov function- based criteria with symmetrical connections [4,6-9,41,50-
53] or asymmetrical connections [5,50], and the partial contraction approach [45]. For
Lyapunov-based criteria, the partial-state coupling matrix, determining which vari-
ables couple the oscillators, is assumed to have the form satisfying (3.20c). While the
partial contraction approach needs to verify the contraction of the system, depending
on the state variables and time ¢, which is not a small task. In developing the theory
of global synchronization of chaotic systems, one needs to assume the bounded dissi-
pation of the coupled system, that is, all solutions of the coupled system are, in some
sense, eventually bounded. Such assumption plays the role of an a priori estimate.
However, in obtaining the theory of local synchronization, one dose not need to know
the bounded dissipation of the coupled system. Thus, not surprisingly, the criteria in
getting local synchronization are composed of a term that describes how chaotic the
uncoupled system is and a term that depends on how the configuration of the networks

is formed. Some of their work are to be discussed in more details in Chapters 2 and



3. The first analytical work to understand the wavelet transform was done by Shieh,

Wei, Wang and Lai et al. [43]. We summary their main results in the following.

Theorem 1.3.1. Let N X N, N =8k, k € N, be the dimension of the matriz G(a, 1).
Let the dimension of each block matriz in G(a, 1) is 2 x 2¢. Then the following asser-
tions hold.

(i) pi := 2cos 3 — 2 is an eigenvalue of G(a, 1).

(i) The second eigenvalue As(a, 1) of G(a, 1) is decreasing in «. Moreover, As(a, 1) =
—2'p;

in2 %m’

pi whenever a >
4 sin ~

Note that G(«;, 1) is a block circulant matrix (see e.g., [15]). A classical result of a block
circulant matrix states that its eigenvalues exactly consist of those of a certain linear
combinations of its block matrices. (see e.g., Thm 5.6.4 of [15]). The proof of Theorem
1.3.1 was then reduced to working on the eigenvalues of those linear combinations of

block matrices of G(a, 1).



Chapter 2

Review of Local Synchronization
and Global Synchronization

In this chapter, we shall review some of known results for local synchronization and
global synchronization in networks of coupled chaotic systems. The local theory in-
cludes the master stability function (MSF), originated by Pecora and Carroll [39], and
the matrix measures approach by chen [12]. The theory of global synchronization under
review includes Lyapunov function approaches by Belykh [4] and Wu and Chua [53],
respectively, and partial contraction approach by W. Wang, and J-J. E. Slotine[45].

2.1 Master Stability Function

In this section, we introduce the master stability function to show the stability con-
dition of local synchronization of coupled system (2.15), which is developed by L. M.
Pecora and T. L. Corroll [39]. In determining the stability of the synchronous state,
various criteria are possible. The weakest is that the maximum Lyapunov exponent
or Floquet exponent be negative. In this respect, we get the variational equation of
coupled system (1.3) by letting &; be the variations on the ith node and the collection
of variations is € = (&1, &, ..., &,)T. Then,
dg

= = [DF(t) +d(G ® L) DH(1)J¢ (2.1)



where DF, DH are the Jacobian matrices of F and H, respectively. Equation (2.1) is
used to calculate Floquet or Lyapunov exponents. We really want to consider only vari-
ations £ which are transverse to the synchronization manifold 9t and G is a diagonal
matrix. Moreover, the Jacobian matrix DF and DH are the same for each block, since
they are evaluated on the synchronized state. If we rearrange the block diagonalized

variational equation in equation (2.1), this leaves us with each block having the form

d
% — [DEf(t) + d\.Dh(t)]&;. (2.2)
where )y is an eigenvalue of G, k = 1,2,..., m. Note that we order the eigenvalues

of G with decreasing order Ay =0 > Ay > --- > \,,. For k = 1, we have the vari-
ational equation for the synchronization manifold 9t (A; = 0), so we have succeeded
in separating that from the other, transverse directions. All other k’s correspond to
transverse eigenvectors.

Thus, for each k, the form of each block in equation (2.2) is the same with only the
scalar multiplier d\; differing for each. Thus, one can reformulate the above equation
as follows,

¢

= = [DE() + (a + i3) Dh()]c (2:3)

that is the master stability equation (MSE). This equation depends on the two pa-
rameters o and 3, and the corresponding largest Floquet or Lyapunov exponent, which
is also a function of o and 3, represents the master stability function (MSSF). We now

give a property of the MSF as follows.

Theorem 2.1.1. [f the function h in (1.1) is equal to the identity function, that is
DH = I, then the Lyapunov exponents L;(«, ) of the master stability equation (2.3)

are

10



The behavior of the largest Lyapunov exponent with respect to («a+ i) fully accounts
for linear stability of the synchronization manifold. Namely, the synchronized state
(associated with A\; = 0), is stable if all the remaining blocks (associated with A;,
i = 2,---,m) have negative Lyapunov exponents. Moreover, if we suppose that the

Lyapunov exponents of (2.3) are in the decreasing order
Li(a,B) > La(a, 8) > -+ - > Ly(a, ) for a, B €R. (2.5)
Then, the stability condition can be given by
Li(o, B) = L1(0,0) + dAg =t Lypas + dXy <0, (2.6)

As a consequence, the second largest eigenvalue )5 is dominant in controlling the stabil-
ity of chaotic synchronization and the critical coupling strength d. can be determined

in terms of Ag,
Lma:(:

= _)\2 .

de (2.7)

2.2 Matrix Measure Criteria

In this section, another criteria for (local) synchronization is provided by M. Y. Chen
[12], which is based on the matrix measure and the Lyapunov converse theorem, an-
alytically. Numerically, one of the local synchronization criteria by computing the
Lyapunov exponent of the MSF have been introduced. Moreover, the matrix theory
can also be used to analyze the stability conditions for the synchronized chaos.

First, we introduce the concept of matrix measure [44]. The matrix measure of matrix

A= (aij) e R™" is

I, + €Al -1

p.(A) = lim w (2.8)
e—0t €

where || - || is the matrix norm, and [, is the identity matrix.

When matrix norms ||Al; = max; >0, |ag], Al = [Amax(ATA)Y2, and |4l =

11



max; Y, |aij|, we can, respectively, obtain the matrix measures

p1(A) = max{a;; + Y layl} (2.9)
! i=1,ij
1
p2(A) = iAmax(AT + A) (2.10)
proo(A) = max{ay + > layly (2.11)
j=Liti

where A4 (+) denotes the maximum eigenvalue. Let Q = {1,2,00} denote the set of

the above matrix measures. If 6 € Q, uy(+) is one of the matrix measures 1 (-), pa(-),

and fioo(+).

Now, we present a lemma on the manifold 9.

Lemma 2.2.1. If the n-dimensional linear time-varying systems in (2.2)

% — [DE(t) + d\DR(H]E,  2<k<m

are exponentially stable about its zero solution, then the manifold 9N is exponentially

stable for coupled system (1.3).

To assure the zero solution 0 of system (2.2) is the exponentially stable, the matrix
measure of the matrix is imposed. In the following two Theorems, we assume that

Dh(t) is of the following two cases.

1) Dh(t) is a symmetric positive semidefinite matrix when 6 = 2.

2) Dh(t) satisfies (Dh(t))i > >0, ;. |(Dh(t))y] for 1 <4 <n when 6 € Q\{2}.

12



Theorem 2.2.2. If there exists a matriz measure pg(-) such that

/muﬂDﬁw+d&DMOﬁﬁ:—u% (2.12)

to
then the manifold 9 can be exponentially stable.
Theorem 2.2.3. If there exists a diagonal matriz P > 0, a matriz measure pg(-), and

a constant d < 0 such that

/OO to ((DE(t) + dDh(t))"P + P(Df(t) + dDh(t))) dt = —c0, (2.13)

to

then the manifold M can be exponentially stable provided that dhs < d.

From the above analysis, the criteria given in (2.12)-(2.13) require that Dh(t) must

be either a symmetric positive semidefinite matrix or a matrix satisfying (Dh(t)); >

> i1z |(Dh(t))i| for 1 <i < n. In the following Theorem, it can be omitted these

two conditions for Dh(t).

Theorem 2.2.4. The stability of the manifold M can be transformed into the master

stability equation (2.3), and the stability condition is defined as
/‘uﬂDﬂﬂ+0DMOﬁﬁ:—&x (2.14)

to
The "synchronization region” S # () is the set of the parameter o satisfying (2.14).
The manifold M is exponentially stable only if d\; € S for all 2 < i < n.

Based on the concept of matrix measure, this brief provides some simple synchroniza-
tion criteria of complex dynamical networks. If the coupling matrix and the largest
nonzero eigenvalue of the coupling matrix satisfy certain conditions, the stability of

the synchronization manifold can be ensured.

2.3 Definitions of Global Synchronization

We assume the system of ordinary differential equations under consideration has a

unique solution for all time and for each initial condition. We write x(t,xq, %) for

13



the unique solution at time ¢ where xq is the initial condition at time t,. This will
sometimes be simplified as x(t). Let Bj(a) be the ball in R*¥ with center at 0 and
radius a. We define the system to be synchronized if the trajectories of all the cells
approach each other. We define the system to be self-synchronized if the components
x; 1, of each subsystem x; approach each other. Various notions of synchronization and

self-synchronization are given in the following.

Definition 2.3.1. (see e.g., Definition 1 of [53]) Let a ball B,(«) be given. Sys-
tem (1.3) is uniformly (resp., self-) synchronized if for each € > 0, there exists a
d(e) > 0 such that if ||x;(to) — x;(to)|| < 6(€) (resp., |xixk(to) — xjk(to)] < d(€)), and
x;(to) and x;(to) € Bn(a) for all i,j (resp., i,j, k), then ||x;(t) — x;(t)|| < € (resp.,
|z () — 2 1(t)| <€) for allt >ty and for all i,j (resp., i,j, k).

Definition 2.3.2. (see e.g., Definition 2 of [53]) Let a ball B,(«) be given. System
(1.3) is uniformly asymptotically (resp., self-) synchronized if the followings hold:

i. It is uniformly synchronized.

1. There exists a 6 > 0 such that for all € > O there exists a t. > 0 such that if
|1xi(to) — x;(to)|| < 6 ( resp., |xin(to) — xjk(to)] < 6 ), and x;(ty) and x;(to) €
B, («) for alli,j (resp., i,j,k ) andt > to+t., then ||x;(t) —x;(t)|| <e. (resp.,
|z () — 2 ()| <€) foralli,j (resp., i,j,k).

Definition 2.3.3. Let a ball B,(«) be given. System (1.3) is globally (resp., self-)
synchronized if for all € > 0, there exists a te > 0 such that ||x;(t) — x;(t)|| < € (resp.,
|23k (t) — x6(t)| <€) for all i,j (resp., i,7,k), all x,(to) and x;(ty) € Bn(c), and all
t>to +t,.

Proposition 2.3.4. If a system is globally (resp., self-) synchronized, then it is uni-
formly asymptotically (resp., self-) synchronized.

Proof. If a system is as assumed, then given € > 0, there exists a ¢’ such that for all
i,7 and all x;(t9) and x;(to) € By(a), we have ||x;(t) — x,(t)|| < € for t > t'. Letting

to = t' and § = €, we see immediately that the corresponding system is uniformly
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synchronized. Obviously, the assumption in Definition 2.3.2.-(ii) can be fulfilled by

choosing any ¢ > 0. The other assertion in the proposition can be similarly proved. [

2.4 Lyapunov Function Approach

2.4.1 Belykh

In the last few years, many researchers try to give criteria for the global (or local)
synchronization of coupled chaotic systems. Most of their methods based either on the
eigenvalues of the coupling configuration matrix G or on the Lyapunov exponent of
the coupled systems. In order to avoid calculating eigenvalues or Lyapunov exponent
to determine global synchronization, the connection graph based stability method is
developed by Belykh et al (2004) [4]. This method combines the Lyapunov function
approach with graph theoretical reasoning, and elucidates the relation between syn-
chronization and the form of the connected graph (the coupling configuration matrix
G). The method can be applied to give a rigorous bound for the coupling strength
including in the global, star, diffusive, 2K -nearest neighbor coupling cases, etc. More-
over, the time-varying coupling configuration matrix G(t) is also discussed.

In equation (1.3), let H : R™ — R™ be defined by H(x) = (I,, ® D)x, and
G = (ij(t))mxm is a time-varying, symmetric matrix with vanishing row-sums, non-

negative off-diagonal elements. Then, we have the following equation,

f(xl> t)
d
d—’t‘ = : +d(G®L)1, ®D)x = F(x,{) + d(G®D)x,  (2.15a)
f(xm, 1)
where D = diag(1,---,1,0,---0) is a diagonal matrix with k elements equal to 1, ®

denotes the Kronecker product, and

Ji(xi, 1)
f(x;,t) = : (2.15b)

Fu(xi, 1)
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Remark 2.4.1. (i)For all time t, we denoted that the number of the nonzero elements
of the off-diagonal elements of G is 2p. (ii) The matriz G is meaningful in the graph
theory. It refers to the connected graph with m vertices and p edges, and if the edge
from vertex i to vertex j exists, then g;;(t) = ¢;;(t) >0, 1 <i,j < m, for all time t.

Before starting the study of the transversal stability of the synchronization manifold

M, we need also one additional assumption on the eventually dissipativeness of coupled

dxi
dt

system (2.15). Assume that the individual system <% = f(x;,t) is eventually dissipa-
tive, i.e. there exists a compact set B which attracts all trajectories of the system from
the outside. Therefore, there are no trajectories which go to infinity.

Now, we introduce the notation for the differences X;; = x; — x;, we obtain the differ-

ence equation system as follows,
1 m
X, = { / Df(6x, + (1 — B)x) dﬁ} X +dY {gDX; — gaDXy}, (2.16)
0 =1

for all 4,7 = 1,...,m. To study the stability of difference equation system (2.16), we

introduce the auxiliary system by adding an uncharted matrix A,

1
Xij = M DE(Bx; + (1 — B)x;) dﬁ—A} X 5 =1,...,m, (2.17)

where A = diag(ay, - ,ax,0,---,0) is a matrix with a; > 0 for 1 <14 < k. Moreover,

we assume that there exist Lyapunov functions of the form,
Vi, =XIHX;;,  ij=1--,n (2.18)

where the vector variables X;; = {X{, -, XV}, H = diag(hi, ..., hy, Hy) with by >
0,---,hg > 0 and the matrix H; is positive definite. Furthermore, their derivatives of
Lyapunov functions in (2.18) with respect to auxiliary system (2.17) are required to

be negative,

1
0
(2.19)
Hence, we can study global stability of the synchronization manifold 9 by the following

main Theorem.
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Theorem 2.4.2. Under the assumption on the eventual dissipativeness of the individ-
ual oscillator system 2% = f(x;,t) and assumption (2.19), the synchronization mani-
fold M of coupled system (2.15) is global asymptotically stable if the following inequality

holds

P m—1 m
d)2 Qq d)2
dzgil,jzxz(z,)jl = E Z ZXEJ) ) d= 1, s ,]{3 (2.20)
=1 i=1 j>i

where the index (i, 5;) is the pair of satisfying g;, ;, > 0.

Theorem 2.4.2. indeed gives sufficient conditions for the global synchronization. How-
ever, these inequalities in (2.20) are not easily to be applied. To get rid of it and find

a rigorous bound of g;, ;,, the following theorem is given.

Theorem 2.4.3. Under the assumption of Theorem 2.4.2, the synchronization mani-

fold M of coupled system (2.15) is global asymptotically stable if
g, j, > %b,-hjl(m,p) forl=1,--- pand for all timet. (2.21)

where b;, j,(m,p) = Zm1>mz;n7jler1m2 2(Ppymy) 18 the sum of the lengths of all chosen

paths Py, m, which pass through the edge from vertex i, to vertex j;.

Several coupling configuration could be given a general rigorous bound of the coupling

strength via above two theorems. In the following, some examples are listed.

Example 1. Suppose the coupled system satisfies the sufficient conditions in the The-
orem 2.4.2. Let

1. (Global coupling) G has all off-diagonal element nonzero. Then the global syn-

chronization reaches provided dg; ; > = for all i # j.

-9 912 g13 " Gim
g2 —gi2 0 .- 0

2. (Star coupling) G = g3 0 —gqiz - 0 ., where g = >, gu;.
gim 0 0 0 —01m

Then the global synchronization reaches provided dg; > a for all i =
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3. (Diffusive coupling)

—(g12 + 91m) 912 0 0 Jim
g12 —(g12 + 923) 923 0 0
G = 0 923 0 Then the
0 0 e B Im—1,m
9im 0 0 gm—l,m _(glm + gm—l,m)

global synchronization reaches provided

m? 1
a o 2 fOT odd m
dgl,_] > 2
a2+ L) for evenm

24 12

)

for alli,j.

4. (2K -nearest neighbor coupling) G has its off-diagonal elements of the form

N g for1<|j—i] modm <K
495 > { 0 otherwise

Then the global synchronization reaches provided

a /m\3 65 K
9> (5%) (”za).
2.4.2 Wu and Chua

In this section, we introduce the Lyapunov’s direct method to prove uniformly asymp-
totical synchronization of coupled system (2.15), which is developed by C. W. Wu, and
L. O. Chua [53]. A typical results states that coupled system (2.15) will synchronize if
the nonzero eigenvalues of the coupling matrix have real parts that are negative enough.
Moreover, sufficient conditions for synchronization for several coupling configurations
will be considered.

It will mainly use Lyapunov’s direct method to prove uniform asymptotical synchro-
nization of the coupled system in (2.15). We use d(x) to denote a nonnegative real-
valued function that measures the distance between the various nodes. We also define

the following class of matrices:
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e M, (k) are matrices M (not necessarily square) with entries in Fj, such that each

row of M contains zeros and exactly one aly and one —al,, for some nonzero a.

e My (k) are matrices M in M; (k) such that for any pair of indices ¢ and j there exist
indices i1, 49, -+ ,4 with 4y =7 and 4; = j such that for all 1 =< I, M(p,i,) # 0
and M(p, iz41) # 0 for some p.

In particular, we define d(x) to have the following form:
d(x) = |[Mx|]* = x™™M*™Mx, M € My(n) (2.22)

where M is an m x m matrix in Msy(n) (but considered as an nm X nm real-valued
matrix).
Because of the assumptions on M, the crucial property of d(x) is that d(x) — 0 if and

only if ||x; — x;|| — 0 for all ¢ and j. One possible choice for d(x) is

m—1
d(x) = |Ixi = x| (2.23)
i=1
which corresponds to
r -1 o --- 0
M = 9 b=t (2.24)
VOO
o --- 0 I -I

Definition 2.4.4. A function o : R — R is said to belong to class K if

1) «(-) is continuous and nondecreasing,

3) a(p) > 0 whenever p > 0.

We assume that all Lyapunov functions we consider are continuous. For a Lyapunov
Function V (¢, x), the generalized (Dini) derivative along the trajectories of the system

Cé_’; = f(x,t) is defined as

D*V(t, %) = lim sup %[V(t + x4+ hE(x ) — V() (2.25)

h—0t
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Theorem 2.4.5. Suppose that D is an open set such that if X;(ty) € Ba for all i,
then x(t,x(to), to) € D for allt > to. Suppose that a Lyapunov function V (t,x), locally
Lipschitzian in x, exists on R x D such that for allt >ty and x € D,

a(d(x)) < V(t,x) < bd(x))

where a(-) and b(+) are functions in class K. Suppose that there ezists p > 0 such that
for allt >ty and d(x) > p,
DYV (t,x) < —c

for some constant ¢ > 0 where DYV (t,x) is the generalized derivative of V' along the
trajectories of the coupled system in (2.15). If there exists 0 > 0 such that a(d) > b(u),
then for each X(tg) € Ba~ there exists t1 > to such that for all t > ty,

d(x(t,x(to), %)) <6
. Furthermore, if d(x(to)) < u, then

d(x(t,x(to), to)) < 6
for all t > t,.

Theorem 2.4.6. Suppose that D is an open set such that if x;(to) € Bax for all i, then
x(t,x(tog),to) € D for all t > tg. Suppose that a Lyapunov function V (t,x), locally
Lipschitzian in x, exists on R X D such that for allt > ty, x € D,

a(d(x)) < V(t,x) < b(d(x))
where a(-) and b(-) are in class K, and for all t > t,
DV (t,x) < —c(d(x))

for some function c(-) in class K where DTV (t,x) is the generalized derivative of V
along the trajectories of the coupled system in (2.15). Then the coupled system in (2.15)

s uniformly asymptotically synchronized with respect to o.
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2.5 Partial Contraction Approach

In this section, we shall describe the partial contraction approach for studying global
synchronization of coupled chaotic systems. This approach was given by [45]. method
to analyze networks of coupled identical nonlinear oscillators, and study applications
to synchronization. Specifically, we use nonlinear partial contraction theory to derive
exact and global results on synchronization. The method can be applied to coupled
networks of various structures and arbitrary size. For oscillators with positive-definite
diffusion coupling, it can be shown that synchronization always occur globally for
strong enough coupling strengths, and an explicit upper bound on the corresponding
threshold can be computed through eigenvalue analysis.

Basically, a nonlinear time-varying dynamic system will be called contracting if initial
conditions or temporary disturbances are forgotten exponentially fast, i.e., if trajec-
tories of the perturbed system return to their nominal behavior with an exponential
convergence rate. The concept of partial contraction allows one to extend the applica-
tions of contraction analysis to include convergence to behaviors or to specific properties
(such as equality of state components, or convergence to a manifold) rather than tra-
jectories. We briefly summarize the basic definitions and main results of Contraction
Theory here. Consider a nonlinear system

Cfl_j = f(x,1)
where x € R” is the state vector and f is an n x 1 vector function. Assuming f(x,t) is

continuously differentiable, we have

%(&(Téx) = 25XT50;—}; = 25ng—i5X < 2\ naw0x” 6X (2.26)

where 0x is a virtual displacement between two neighboring solution trajectories, and
Amaz (X, 1) is the largest eigenvalue of the symmetric part of the Jacobian J = g—i. Hence,
if Apaz(X,t) is uniformly strictly negative, any infinitesimal length |[|dx|| converges
exponentially to zero. By path integration at fixed time, this implies in turn that all

solutions of system (2.26) converge exponentially to a single trajectory, independently
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of the initial conditions. Note that differential analysis yields global results.
We now introduce the concept of partial contraction, which forms the basis of the
contraction analysis. It derives from the very simple but very general result which

follows.

Theorem 2.5.1. Consider a nonlinear system of the form
x = f(x,x,1)

and assume that the auxiliary system
y =f(y,x,1)

18 contracting with respect to y. If a particular solution of the auziliary y-system
verifies a smooth specific property, then all trajectories of the original x-system verify

this property exponentially. The original system is said to be partially contracting.

Let us now move to networked systems under a very general coupling structure. Con-
sider a coupled system containing m identical nodes

dXZ'
dt

= f(XZ‘, t) + Z Kji(xj - Xi), 1= 1, e, M, (227)
JEN:

where N; denotes the set of indices of the active links of elements ¢. It is equivalent to

dx; m m .
i :f(Xi’t)_'_jeZN,_Kji(Xj —Xi) —Koj;Xj—i‘Koj;Xj, 1= 1, , M, (228)

where Kj is chosen to be a constant symmetric positive definite matrix (we will discuss

its function later). Again, construct an auxiliary system

dyz m m -
pr f(yi, t) + Z K(y; —y:) — KOZyj + KOZXj, i=1,---,m, (2.29)
JEN; j=1 j=1
that has a particular solution y; = --- =y,, = Yo With
dy—oozf(y t) —mKoy. + K Zm:x- i=1,---,m (2.30)
dt 00 0 co sz1 79 ) ’ ) .

According to Theorem 2.5.1, if the auxiliary system in (2.29) is contracting, then all

system trajectories will verify the independent property x; = - - - = x,,, exponentially.
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Theorem 2.5.2. Regardless of initial conditions, all the elements within a generally

coupled system in (2.27) will reach synchrony or group agreement exponentially if
1) the network is connected,
2) Amaz(Jis) s upper bounded,
3) the couplings are strong enough.

where J;s = (%(y,t))s, and Fy = 3(F + FT).
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Chapter 3

Global Synchronization via Matrix
Measures Approach

This chapter contains the main results of the first part of the thesis. In particular,
we use matrix measures approach to study global synchronization of coupled chaotic
systems. Our coupling rules are allowed to be asymmetric and/or some competitive
(gij < 0,4 # j) couplings between cells x; and x; as long as the coupled system is
bounded dissipative. In addition, the partial-state coupling in our approach is allowed
to have the form satisfying (3.14). Moreover, by merely checking the structure of the
vector field of the single oscillator, we shall be able to determine if the system is globally
synchronized. We also obtain a rigorous lower bound on the coupling strength for the
global synchronization of all oscillators with coupling configuration satisfying (3.3a),
and (3.3b). Part of the results in this direction is bases on the paper [27]. To conclude

this section, we define the global synchronization as in the following.

Definition 3.0.3. (i) System (2.15) is said to be globally synchronized if for any given
initial values Xo there ezists a d = dyx, such that system (2.15) is synchronized for the
initial conditions xo. Here dy, is a constant depending on xq. (ii) System (2.15) is
said to be uniformly, globally synchronized if there exists a d = dy such that system

(2.15) is synchronized for all initial values xg.
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3.1 Preliminaries

Chaotic synchronization is a fundamental phenomenon in physical systems with dissi-
pation. In this section, we introduce the concept of the bounded dissipation to coupled
system (2.15). Then, we use this concept of the matrix measure theory to achieve
the behavior of global synchronization in coupled system (2.15). Hence, we give the

definition of bounded dissipation as follows.

Definition 3.1.1. (i) A system of n ordinary differential equations is called bounded
dissipative provided that for any r > 0 and for any initial conditions xq in B,(r), there
exists a time t* >ty and o, such that ||x(t)|| < «, for all t > t*. (ii) If, in addition,
a,. 1s independent of r, then the system is said to be uniformly bounded dissipative with

respect to «..

To prove global synchronization of coupled chaotic systems, one needs to assume
bounded dissipation of the system, which plays the role of an a priori estimate. Without
such an a priori estimate, as in the case of Rossler system, the global synchronization
is much more difficult to obtain. Only local synchronization was reported numerically
in literature (see e.g., [4]). We remark that in certain cases of the Rdssler system, the
trajectory of each oscillator grows unbounded yet approaches each other (see e.g., [4]).
An interesting question in this direction is how bounded dissipation of the coupled
system is related to the uncoupled dynamics and its connectivity topology. Not much
general theorems have been provided so far. In the case that G is diffusively coupled
with periodic boundary conditions or zero-flux and D satisfies (3.3¢), it was shown in
[5] that bounded dissipation of the single oscillator implies that of the coupled chaotic
oscillators. Moreover, the absorbing domain of the coupled system is a topological
product of the absorbing domain of each individual system. Moreover, it often requires
to construct an approximate Lyapunov function to prove the bounded dissipation of
the system. The following proposition gives the type of Lyapunov functions that would

ensure the bounded dissipation of the system.

Proposition 3.1.2. Let a system of n ordinary differential equations be given. Let V'

be a continuous real-valued function V : R™ — R™ so that V is strictly decreasing along
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the solution of the system on R™ — I, where I" is homeomorphic to an open ball in R™.

Suppose

lim V(x) = oo. (3.1)

lIx[[—=00

Then the system is bounded dissipative.

Proof. For any x, € R", we first prove that x(¢) must enter I' at a certain time.
Otherwise, the values of V' at the points of the w-limit set of x(¢) must be the same,
a contradiction. The contradiction comes from the facts that the w-limit set is closed
and invariant and V' is strictly decreasing along the solution trajectory, which stays in
R™ —T'. We then find a ball B,(r) so that B,(r) D I'. Let k; = max,¢p, () V(x), and
B, (a;) be a ball satisfying V' (x) > ks whenever x € R" — B,,(«,.), where ky > k;. Then
we conclude that if xo € B,(r), x(t) stays in B, (a,) for all time t. We just complete
the proof of the proposition. O

In our derivation of synchronization of system(3.1), we need the concept of matrix
measure. For the completeness and ease of references, we also recall the following

definition of the matrix measure and its properties (see e.g., [44]).

Theorem 3.1.3. (see e.g., 3.5.32 of [44]) Consider the differential equation x(t) =
A(t)x(t) +v(t), t > 0, where x(t) € R* A(t) € R™" and A(t),v(t) are piecewise-
continuous. Let || - ||; be a norm on R"™, and || - ||;, pi denote, respectively, the corre-
sponding induced norm and matriz measure on R"*™. Then whenever t > ty > 0, we

have

Ixtlexn { [ t (A )ds - / a{ [ t (A V) ds < [x(0)]

to

< (i)l exp { / t (A s b+ / exp [ t (A | Iv(s)lds. (32
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3.2 (Global synchronization results

Our main result in the first part of the thesis is contained in this section. We begin
with imposing conditions on coupling matrices G and D. We assume that the coupling

matrix G satisfies the following:

(i) A =0 is a simple eigenvalue of G and e = [1,1,...,1]1,, is
its corresponding eigenvector. (3.3a)
(ii) All nonzero eigenvalues of G have negative real part. (3.3b)

We further assume that the matrix D is, without loss of generality, of the form

(1,0

The index k, 1 < k < n, means that the first £ components of the subsystem are
coupled. If k # n, then the system is said to be partial-state coupled. Otherwise, it is
said to be full-state coupled.

From time to time, we will refer system (3.1) as coupled system (D, G,F(x,t)).

To study the synchronization of such system, we permute the state variables in the

following way:

X1, X1
X; = : and x = : (3.4)
xm,i in
Then (3.1) can be written as
fi(%,1)
X = : +d(D ® G)x =: F(x,t) + d(D ® G)x, (3.5a)
£, (%, 1)

where
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fi (Xl ) t)
fi(x,t) = : (3.5b)
fi(Xm, t)

Note that such reformulation is certainly not new (see e.g., [29, 53]). From here on, we
will treat ~ as a function that takes x into X or x; into x; A transformation of coordi-
nates of x is then to be applied to (3.4) so as to decompose the synchronous manifold.
The problem of synchronization of (2.15), and hence (3.5) is then equivalent to proving
the asymptotical stability of reduced system (see (3.8)). To study the synchronization
of (2.15), we first make a coordinate change to decompose the synchronous subspace.

Let A be an m X m matrix of the form

1 -1 0 0
0
C
A= 0 = (eT) (36&)
0 0 1 -
1 1 1

where e is given as in (3.3a). It is then easy to see that CCT is invertible and that

A= <CT(CCT)‘1\ %) (3.6b)

Setting
E=I,0A, (3.6¢)

we see that
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EDGE'=(1,A)DeG)(I,oA™)
CGCT(CCT)~! 0 )
* 0

=:D®<? 8) (3.6)

:D@AGA‘1:D®(

We remark, via (3.6d), that o(G) — {0} = o(G), where o(A) is the spectrum of matrix
A. Multiplying E to the both side of equation (3.5a), we get

y = Ex =EF(x,t) + dE(D® G)E"'y
= . G 0),.
=EF(E'y,t) +d(D® < . 0 ) )y (3.7)
1 T1,i — T2
Let y = : Then y; = : Setting y; = < myi ) and
S’ Tm—1,i — Tmyi ijl Ljsi
" Zj:l Lii
yi
y = : we have that the dynamics of y is satisfied by the following equation
Yn
y=dD®G)y+F(y.t). (38)

Here F is obtained from EF(E~'y,t) accordingly.

The task of obtaining the global synchronization of system (2.15) is now reduced to
showing that the origin is globally and asymptotically stable with respect to system
(3.8). To this end, the space y is broken into two parts y., the coupled space, and y,,

the uncoupled space.

y = ( z; ) and F(y,t) = ( ;CL((? ?) ) respectively. (3.9)
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Y1 Yi+1
Here y. = : and y, = : . The dynamics on the coupled space with

Yk Yn

respect to the lineaf part is under the influence of G, which is asymptotically stable.
The dynamics of the nonlinear part on coupled space can then be controlled by choosing
large coupling strength. In short, this part of the dynamics is easy to contain. In fact,
the larger k, the number of state variables being coupled, gives the better chance of the
synchronization of the coupled system. On the other hand, the uncoupled space has no
stable matrix G to play with. Thus, its corresponding vector field F,(¥,t) must have
a certain structure to make the trajectory stay closer to the origin as time progresses.
As we shall explain latter.

Now, assume that F.(y,t) satisfies a dual-Lipschitz condition with a dual-Lipschitz

constant b;. That is,

IEe(y. Ol < bally | (3.10a)

whenever y in the ball By, ),(«), and for all time ¢. Since the estimate in the right-
hand side of (3.10a) depends on the whole space y, condition (3.10a) is a mild assump-
tion provided that coupled system is bounded dissipative. Write F,(y,t) as

Fu(y.1) =UQ@)yu + (Fu(y,t) — U(t)yu)
= U(t)y, + Ru(y.1). (3.10b)

Assume that U(%) is a block diagonal matrix of the form U(t) = diag(U;(t), -+, Uy(t))
l

where Uj(t), j = 1,..., [, are matrices of size (m—1)k; x (m—1)k; . Here Z k; =n—k,

j=1
and k; € N. We assume further that the followings hold.
(i) The matrix measures j;(U;(t)) are less than —y for all ¢ and all j,
where v > 0. (3.10¢)
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R’Ul (Y7 t)

(i) Let Ry(¥,t) = : Then R,;(y,t), 7 = 1,...,1, satisfy a strong
Rul(yat) ]
dual-Lipschitz condition with a strong dual-Lipschitz constant by. Specifically, let
yul
Vu = : , written in accordance with the block structure of U(¢). Then we
Yul

assume that

Ve
_ yul
R (7, )] < ba | : | (3.10d)
Yuj—1

whenever y in the ball B(,,—1), (), and for all j =1,...,1 and all time ¢.

Specifically, we break the vector field F, into (time dependent) linear part U(t)y,
and nonlinear part R,(y,t). We will further break U(t) into certain block diagonal
form if necessary. Note that the form (3.10b) can always be achieved. Since the
remainder term R still depends on the whole space y. To take control of the dynamics
on the linear part, we assume that the matrix measure of each diagonal block Uj,(t)
is negative. As to contain corresponding dynamics on the nonlinear part, we assume
that the (3.10d) holds. Note that though the nonlinear terms R,,;(¥,t) could possibly
depend on the whole space, their norm estimate are required to depend only on the
coupled space and uncoupled subspaces with their indexes proceeding j. In this set up,
the nonlinear dynamics on uncoupled space can be iteratively controlled by choosing
large coupling strength. We also remark that if (3.10c) and (3.10d) are satisfied for [,
the number of diagonal blocks, being one, then we do not need to further break U(t).
Such further breaking is needed only if (3.10c) and (3.10d) are not satisfied. The proof

in the following theorem gives exactly how the above strategy can be realized.

Theorem 3.2.1. Let G and D be given as in (3.3). Assume that F satisfies (3.10a-
d), and system (3.8) is uniformly bounded dissipative with respect to «. Let Ay =
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max{\;|\; € Re(o(Q))}. If

1
b by )\ ?
d> (1+(—2)2) —d, (3.11)

-\ +e 0

where € > 0 and ¢ is some constant depending on G and €, then lim y(t) = 0.

t—o00

Proof. Since system (3.8) is uniformly bounded dissipative with respect to «, without
loss of generality, we may assume that ||y (¢)|| < « for all time ¢ > ¢, Using (3.10b),

we write (3.8) as
< ;u ) - ( d(Ik? < U(Zt) ) < ;u ) + < f]iu((};,?) ) (3.122)

Applying the variation of constant formula to (3.12a) on y., we get

t
(OIS (1) 4 [ MO (3(5) ).

to

y.(t) =€

Let A\; = max{ \j|\; € Re(o(G) —{0}) }. Then

| 4@EG) | < ot (3.12b)

for v = A\ + € and some constant c¢. Here 0 < ¢ < —\;. Thus,

t
I3 < el 5. ao)] + by | e 5 s) s

to

< celtto)dv o 4 ach —: celt=to)dv g 4 Lo
d |v| d
Let 0 > 1, we see that
_ o
[y < 5005, (3.13a)
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whenever ¢ > ¢y, for some t,; > 0. We then apply Theorem 3.1.3 on y,; and the

resulting inequality is

[Yur (O] < [[¥ur (o) exp {/ ,ui(Ul(S))dS}

to,1

: / eso { [ (010 | IR0

It then follows from (3.10c-d) and (3.13a) that

o ab ab -
IFulll £ e+ b < Gl = gad, (3130

whenever ¢ > ¢, ; for some t;; > 1. Inductively, we get

«

L
) ¥

;0T G =201, (3.13c)

whenever ¢t > t;1(> t;_11). Letting ¢;; = ¢; and summing up (3.13a), (3.13b) and
(3.13c), we get

l L

_ _ _ a b 2 ch

50l = || S IOl + 50 < 5 (1+(22) 2o = na,
j=1

v

1
whenever ¢ > t; Choosing d > (1 + (%2)2> ® ehisltl e see that the contraction factor

vl
h is strictly less than 1, and ||y (¢)|| contracts as time progresses. To complete the proof

of the theorem, we note that 6 > 1 can be made arbitrary close to 1. Consequently, if
)

d > (1 + (%2)2) < then h can still be made to be less than 1. O

Iz
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Remark 3.2.2. (i) In case that G is symmetric, then ¢ and € can be chosen to be one
and zero, respectively. (ii) by and by could possibly depend on «. (iii) If system (3.8)
is only bounded dissipative, then the estimate in (3.11) is still valid. However, in this

case, by and by depend not only on o but also on Xg.

Corollary 3.2.3. Suppose F and G are given as in Theorem 3.2.1. Let

D= ( DSXk 8 ) where Re( (D)) > 0. (3.14a)

Assume, in addition, that either o(G) or (D) has no complex eigenvalue.

Then assertions in Theorem 3.2.1 still hold true, except d. needs to be replaced by

Cbl bg 2 %
b = o min{Re(o(D))} (1“?)) | (3.14b)

Proof. Assumption on D is to ensure that (3.29b) is still valid. Other parts of the

proof are similar to those in Theorem 3.2.1 and are thus omitted. O

We next turn our attention to finding conditions on the nonlinearities f;(u,t), i =
1,...,n, u € R", so that assumptions (3.10a-d) are satisfied. To this end, we need the

following notations. Let X; and X be given as in (3.4). Define
T [%4]
xi]” = : and [X]” = : (3.15)

Tm—1,i [5(”]_

We then break F as given in (3.5a) into two parts so that the breaking is in consistent

with y in (3.9). Specifically, we shall write

F(%,¢) = < ]_E((i ?) ) (3.16)

We are now in the position to state the following propositions.
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Proposition 3.2.4. Suppose that f;(x,t),i = 1,2,...,k satisfy a Lipschitz condition
in B,(5) with a Lipschitz constant by. That is

i t) = F )] < vl =12k, (3.17)

for allu, v in B,(5) and all time t. Then (3.10a) holds true.

Af(%,1)
Proof. Note that EF(x,t) = : where A is given as in (3.23a), and so
Af,(x,1)
) fi(x1,t) = fi(x2,t)
[Af;(%,1)]” = : i=1,2,...,n. (3.18)

fi(xm—1> t) - fi(xma t)

Since

we conclude that (3.10a) holds. O

From the above proposition, we see that the nonlinearities on the corresponding coupled
space are only assumed to be Lipchitz. The following proposition is very useful in the
sense that by checking how each component f; of the nonlinearity f is formed, one

would then be able to conclude whether (3.10c-d) are satisfied.
Proposition 3.2.5. Let u = (uy,...,u,)" and v = (vi,...,v,)" be vectors in B,(%).

p
Let w, = Zki’ p =1,...,1, where kg = k, the dimension of coupled space, and
i=0

ki,...,k and 1 are given as in (8.10c). Write fu,  yi(W,t)—fu, (V. 1), i=1,... Kk,

as

35



pr71+i(u’ t) - pr71+i(va t)

kp
= Z Qupr+iwp14+5 (W Vo O) (Ui 4j = Vwyy4j) + Ty i1, v, ).
=1
(3.19a)

We further assume that the followings are true.

(Z) FOTp = ]-7"'>l; let Qu,v,p = (qu71+i,wp71+j(uavat))7 where 1 < Z,] < kp-
Then p1.(Vy) < —v for all p, u,v in B,(5) and all time t, where x = 1,2, 0.

(3.19b)

(it) Let v, = (ry, ,+1(u,v,0),... ,rwp(u,v,t))T. We have that

Uy — U1
[z, < 02 | : I

uu]p,1 - ,Uwp71

(3.19¢)

for all p, u,v in B,(5) and all time t.

Then (3.10c) and (3.10d) hold true for x = 1,2, cc.

Proof. Since r;(u, v,t) depend on whole space, f;(u,t) — f;(v,t) can always be written

as the form in (3.19a). Using (3.19a) and (3.18), we have that the matrices U,(¢) in

the linear part of F,(¥,t) take the form

m—1
U, (1) = Y Quyxuern(t) ® Dy, (3.20)
w=1

where x,, are given as in (1.2), and

1 i1=j=w .
(D“’)” { 0 otherwise, lsijs 1
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It then follows from (2.9-2.11), and (3.20) that u.(U,(t)) < —v for * = 1 or co. For

x = 2, we have that

m—1

U o{Qxixuss p(®) + (Quxsn(®) )

w=1

m—1
=0 {Z (wa,warlJ’(t) ® Dw + (wa7xw+1,p(t))T ® Dw> }

w=1

o (U,(t) + Ul(1)),

where o(A) is the spectrum of A. We remark that the first equality above can be
verified by the definition of eigenvalues due to the structure of U,(¢). It then follows
from (2.11) that po(U,(t)) < —y. The remainder of the proof is similar to that of
Proposition 3.2.4, and is thus omitted. O

Remark 3.2.6. The upshot of Proposition 3.2.5 is that by only checking the ”structure”
of the vector field f of the single oscillator, one should be able to determine if our
main result can be applied. To be precise, we begin with saving notations by setting
fasf = f(x,t) = (fi(x,1),..., fa(x,1))T. We then check the form of the difference
of "uncoupled” part of dynamics. That is, we write f;(u,t) — fi(v,t) in the form of
(8.19a) with i = k+ 1,...,n. If (3.19b, ¢) can be satisfied, then | = 1 gets the job
done. Otherwise, we further break the uncoupled states into a set of smaller pieces to

see if the resulting (3.19b, ¢) are satisfied.
We are now ready to state the main theorems of the paper.

Theorem 3.2.7. Assume that system (2.15) is (resp., uniformly) bounded dissipative.
Let the coupling matrices G and D satisfy (3.3) and the nonlinearities f;(x,t), i =
1,2,...,n, satisfy (3.17) and (3.19). Suppose d is greater than d., as given in (3.11).
Then system (2.15) is (resp., uniformly,) globally synchronized.
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Proof. The proof is direct consequences of Propositions 3.2.4 and 3.2.5, and Theorem

3.2.1. U

Remark 3.2.8. From here on, we will refer the assumptions in Theorem 3.2.7 as

synchronization hypotheses.

Theorem 3.2.9. The coupled system (D, G,F(x,t)), given as in Corollary 3.2.3, is
also (resp., uniformly,) globally synchronized provided that its coupled system is (resp.,
uniformly) bounded dissipative and that d is greater than d.. Here d. is given in (3.14b).

3.3 Applications

To see the effectiveness of our main results, we consider four examples in this section.
These are coupled Lorenz equations [4,29], coupled chaotic walk system [56], coupled

Duffing oscillators [54] and coupled Lorenz-like system.

3.3.1 Coupled Lorenz System

We shall begin with Lorenz equations. Let x = (1, 7o, 73)7,

f(x,t) = f(x) = (0(xy — 21), roy — 29 — 2123, —br3 + 2179)7

= (Ai(x), fo(x), f5(x)T.

Here 0 = 10, r = 28 and b = §. In the following cases (a), (b), (c) and (d), G denotes
100 000
the diffusive coupling with zero flux and D is, respectively, | 0 0 0 010
0 0O 0 00

000 0 00
0 00| and| 0 1 1 | Forthe first three cases, it was shown in [8] that such
0 01 0 01 '
coupled system (D, G, F(x)) have the topological product of an absorbing domain
b2 2
B={al+a5+(z3—1r—0)< % =: B}. (3.21)
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Hence, in each case, we will concentrate on the illustration of how our main results

may or may not be applied.

100

(a) Let D=D;=1| 0 0 0 | For the corresponding ”coupled” nonlinearity f;, we
0 00

get that

lfi(u) = fi(v)| = o|(ug — v2) — (u1 —v1)| < \/§a||u —v].

Hence, condition (3.10a) is satisfied. For the corresponding "uncoupled” nonlinearities

fo and f3, we see that

fg(u) — fg(V) = (—u2 — Ujusz + rul) — (—Ug — V1V3 + ’l“'Ul)

= [—(ug — v9) — uy(ug — v3)] + (r — v3)(ug — v1) (3.22a)

and

fg(u) — fg(V) = (U1U2 — bU3) — (’Ul’Ug — b’Ug)
= [u1(ug — va) — blug — v3)] + vo(us — v1). (3.22b)

Writing (3.22a,b) in the vector form, we get
Uit )= (oo 7 ) (i) (™)
= Quv.i(?) ( 42 ”z ) +ry. (3.22c)

Clearly, p12(Qupyv,1(t)) = max{—1,-b} = =1 <0, and |[r1|| < (0 ++/5) - [us — v1|, where

its estimate depends only on coupled space. Hence, conditions (3.19b,c) are satisfied.
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0 00
(by Let D =Dy = | 0 1 0 As in the case (a), the corresponding ”coupled”

0 00
nonlinearity f, is clearly Lipschitz on the absorbing domain. For the corresponding

"uncoupled” nonlinearities f; and f3, we get

fi(w) = fi(v) = [=o(ur — v1)] + o (uz — va),
fa(a) = f3(v) = [=b(uz — v3)] + ur(ug — va) + va(uy — v1).

If [ =1 is chosen, then (3.19c¢) is violated. For in the case, the norm estimate in the
right hand side of (3.19¢) can only depend on us — vo. Now, if we choose | = 2 and pick
the space of the first diagonal block being the one associated with the nonlinearity fi,
then Quv1 = (—0) and 71 = o(u2 —v2). Consequently, (3.19b) and (3.19¢) are satisfied
with p = 1. For p = 2, we have Quv2 = (—b) and ry = u;(ug — v2) +va(u; — v1), which
depends only on the coupled space and the preceding uncoupled space. Thus, r, can
also be satisfied with (3.19c¢).

000
000

(c) For illustration, we also consider D = D3 = In this case, the uncou-

pled nonlinearities of f; and f; both contain the t(()ern?s 1’12 and ;. The only feasible
choice to break the uncoupled space is not to do any breaking. That is, pick [ = 1.
Otherwise, (3.19¢) is isolated. For [ = 1, we have that Quv1 = . —_uo;)(t) _01

For such Quv,1, its matrix measure can not stay negative for all time. An indicated,

see e.g., [29], synchronization fails for this type of partial coupling.

0 00
(d) Let D = Dy = 011 To apply Theorem 3.2.9, we first note that for
001
0 00
D=Ds;=1| 0 1 0 | the corresponding coupled system (D5, G,F(x)) is indeed
001

globally synchronized, and hence, so is the system (D4, G,F(x)). Note that bounded
dissipation of the system (D4, G, F(x)) can be verified similarly as in [29].
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(e) The work that are most related to ours are those in [4,5]. While their estimates for
d. seems to be sharper than ours, which we shall illustrate in case (f), their connec-
tivity topology requires that off-diagonal entries be nonnegative. We only assume our

connectivity topology satisfies (3.3a,b). Consider for instant the following matrix:

-1 2 0 -1
-1 -1 0 2
G= 2 -1 -3 2
o 0 3 =3

Such G has some negative off-diagonal entries and satisfy (3.3a,b). In fact, the eigen-
values of G are 0, —1++/5i, and —6. Clearly, applying our results, we see immediately
that coupled systems (D;, G,F(x)), i = 1,2,4 are globally synchronized. Numerical
results (see Figure 3.1) indeed confirm synchronization of such connectivity topology.
We remark that by constructing the Lyapunov function as given in [29], one would
be able to show the bounded dissipation of the coupled system with this particular

connectivity topology.

x—different

10 20 30 40 50 60 70 80
time

y—different

0 20 40 60 80 100
time

z—different
o

—50 . . . .
0 20 40 60 80 100
time

Figure 3.1: The difference of each component of two coupled oscillators in case (e).
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(f) In this part, we shall compute the lower bound for the global synchronization for case
(a) by using our method, those obtained in [4] and MSF, respectively. To compute d.,
given in (3.11), we note that G = CGC?(CCT)~! = C(CTC)CT(CCT)~! = CCT.
Since G is symmetric, ¢ and ¢, given as in (3.12b), can be chosen to be 1, and 0,

respectively. Consequently,

_ V20+\/1+ B+ 20\ + o2

4sin®()

d, (3.32)
Here 4 sin*(Z) = |\|. Applying Theorem 3.2.9, we see that coupled system (D, G, F(x))
is uniformly, globally synchronized provided that the coupling strength d is greater
than d,. For n =4, d. ~ 1189. In [53], the bound d. for threshold of uniformly global

synchronization is

n? if n is even

n? —1) if nisodd

|l

Here a = % — 0. For n =4, d. ~ 1039, which is slightly better than d,.
Using the MSF-criteria, we numerically (see Figure 3.2) compute the maximum
Lyapunov exponent of the variational equations with respect to the parameter a. We

have in this example that if

oa=d\ < =T.778 (4.4)
then its maximum Lyapunov exponent is negative. Here \; = —4sin? % 1s the largest
nonzero eigenvalues of G. Hence if d > %78 ~ 13.3, then local synchronization of the

coupled system (D, G, F(x)) can be realized.

3.3.2 Coupled Chaotic Walks System

For the second example, we consider the subsystem (see e.g., [12]) of chaotic walks.

That is,

X1 :f(Xl) = (fl(X1>7”’7fn(X1>>? (324&)
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Figure 3.2: The vertical axis denotes the maximum Lyapunov exponent of the varia-
tional equations. While the horizontal axis represents oo = d\.

where

fi(xy) =sin(zy ) — bxy,, i =1,2,...,n, and

k= (i modn)+1 (3.24Db)

Note that in [56], it was demonstrated numerically that subsystems (3.24a) exhibits
hyperchaos. We next show that the coupled system (2.15) with the nonlinearities given
as in (3.24b) is bounded dissipative provided that G is a negative semidefinite matrix,

and D is given as in (3.3c). To this end, we introduce a Lyapunov function of the form

m n

Vi) =S 3

j=1 i=1

By taking the time derivative of V' along solutions of (2.15), one obtains
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AV N : k
at ) Z zji(sin(x;r) — bxj,) + dZ_:

7j=1 i=1

7j=1

m n
Suppose Z Z :B?Z > mncy, where ¢y > 0 satisfying

j=1 i=1

1
—bci + cp < —=(mn — 1),

2b

< Xj, GXj >

Then, we may assume, without loss of generality, that |z1 | > ¢o. Now,

bm,n = —b!L’il + |[L’171| +

1
< —%(mn —1)+

4D

(z S b |%.|) o, |x1,1|]
j=1 i=1

1
(mn—1) = —@(mn —-1) <0,

(3.25)

We have used (3.25) and the fact that max (—bz® + |z|) = 5 to justify the above

inequality. It then follows from Proposition 3.1.2 that the coupled chaotic walk is

bounded dissipative as claimed. Noting that the permutation symmetry of equation

(3.23), we only consider the case that the matrix D satisfying (3.3d) with & = 1.

Letting l =n — k =n — 1, we see that Quv, = —b, p=1,2,...,[. Thus, their matrix

measure f;(Quyv,p) = —b < 0. Moreover, the corresponding remaining terms r, satisfy

(3.19¢). Thus, system (2.15) is globally synchronized. In summary, we have our results

in the following.

Theorem 3.3.1. Let f(x) be given as in (3.23) and G be a symmetry matric satis-
fying (3.3a, 3.3b). Let D be a matrix satisfying (3.14a). Then the coupled system

(D, G,F(x)) is globally synchronized provided that d is chosen sufficiently large.
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Proof. To complete the proof of the theorem, it suffices to show that the coupled system
(2.15) is bounded dissipative. Writing the first & components of the coupled system,

we get
X1 —bxy + g1(x, 1)
: +dD®G)| : (3.26)

)~Ck —bf(k + gk (f(, t) Xk

Applying the variation of

where the components of g;(x,t) have the form of sin(x).

constant formula to (3.26), we see that

t
Zk(t) _ e(—bI+dD®G)tZk(O) _|_/ 6(_b1+dD®G)(t_S)G(X, s)ds
0

where G(x,t) = : Now,

t
Ize ()] < coe= 3|2 (0)] +cox/mk/ 59 g
0
< coe” 5|z (0)]| + o,

for some constant ¢y > 0 and o = 29 v/mk. Similarly, we have ||X;(t)| < coe™ 2| Zps (0)|+

aforalli=1,...,n— k. Hence,

~ _by~
X)) < ce™2[[%(0)]] + na

for some constant c¢. Thus, system (2.15) is bounded dissipative with respect to ((n +
U

Da, ((c+ 1)n+c)a).
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3.3.3 Coupled Duffing Oscillators

Another formulation not considered in [4,5] is Duffing oscillators. Specifically, the

individual system considered is defined by

i = —ax, — 25 + acoswt (3.27a)

iy = 21, (3.27b)

where o and a are positive constants. Letting x = (x1,22)7, we have

f(x,t) = (fi(x, 1), f2(x)) = (—ax; — 23 + acoswt, 1), (3.28a)

Assume the coupling matrices D and G are, respectively,

D(c) = < - ) (3.28b)

and
-2 e—r 0 - 0 e+r
e+r —2 e€e—1r . 0
Glery=| (3.28¢)
0 . —2¢ e—r
€E—r 0 0 e+r —2¢

where ¢ > 0 and r are scalar diffusive and gradient coupling parameters, respec-
tively. First, we prove the bounded dissipation of systems (3.27). Setting X3 =
(3,,..., 23, 5)", and g(t) = acos(wt) (1,---,1)". We see that (3.5) becomes

X| = —aX; — X5 + g(t) + deG (e, )%y + dG (e, 7)%y (3.29a)
P (3.29h)
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We consider the following scalar-valued function as the Lyapunov function of the cou-
pled system (D(c), G(e,r), F(x, 1))
4

m .
<)~C1,)~C1>+Z%2+C<)~Cg,)~(1 > (330)

i=1

U()Nil, 5(2) —

N —

Taking the time derivative of U along solutions of the coupled system (D(c), G(e, ), F(x, 1)),

we have
dU ~ 2 - 3 ~ ~ ~ <
% =<X1,X1 >+ ZE_I T o%4,1 +c<X1,X; > +c < Xo, X1 >

= (C—Oé) < 5(1,5(1 > —ca < )22,5(1 > —c< 5(2,5(% > 4+ < X3 —|—C)~C2,g(t) >
+d < %1, G(e,7)%; > +2de < %1, G(e,7)%y > +dc? < Xy, G(e, 7)Xy >

= (C—Oé) < X1,X1 > —ca < Xo,Xq > —C<)~C2,)~(g > + <)~(1+C)~C2,g(t) >

- d (%0, %) (( i CCQ )@G(E,r)) (2 )

<(c—a) <X,X > —ca < Xg, X > —c < Xp,X5 >+ < X + cXg, g(t) >

Note that the last inequality holds true since

(1 5)esen)+ (1 5)osen)

_ ( L ¢ ) ® (Gle,r) + Gle,r)"),

c C

and G(e,r) + G(e,7)T is a nonpositive definite matrix. On the other hand, since
~ 3 4 2 ~ |14
< Xg, Xy >= Z%z = (Z xi,2> 2 E||X2||2,
i=1 1=1
we have

au
dt

IA

~ ~ ~ C . ~ ~
(e = a)[%allz + callRal2[ %1 [l = —[1%sllz + vima(|[%i]l2 + ¢[%a]2)

=:u(||Xa||1, [[X2]|2).
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We are now in a position to show bounded dissipation of the coupled system (D(c), G(e, ), F(x,1)).

Proposition 3.3.2.

(i) If c satisfies the inequality

4o 4o

0<e<min{— s o=

(3.31)

Then there exists a constant ¢ so that % < 0 for [|%2||? + ||%=[|3 > co.

(i) If c =0, then the first assertion of the proposition still holds true.

Proof. Suppose ||Xz||2 > 1. Then

~ ~ ~ ~ ~ C - ~ ~
u(l%allz; [%ell2) < (¢ = a)l%alls + callZella[ %l = —[1%llz + Vima(|[%i[l2 + ¢[%2)

= a(]|X1 |2, |%2]2).

It then follows from (3.31) that the the level curve of u is a bounded closed curve.
We shall call such curve ellipse-like is an elliptic in the plane. Thus, there exists a
¢; so that % < 0 whenever [|Xo|? 4 |[%X2]|3 > ¢ and [|Xa|]2 > 1. Let ||Xaflz < 1 and
%217 + [|X2]|3 > co. Here ¢y is a constant to be determined. Then

ulI%1l2, [I%all2) < (e = @)% 5 + (ca + Vma)lRill2 + vmae = h([[%]2).

Since h(||x1||2) is a parabola-like curve which is open downward, there exists a c¢3 > 1
such that i(]|x;]|2) < 0 whenever ||x; |2 > c3. Thus, if ¢ > c3+1, then u(||X1 ||z, ||X2]l2) <
0 whenever [|X3|lz < 1 and ||X;]|3 + [|X2||3 > ¢2. Picking ¢y = max{c;, ca}, we have that

the assertion of the proposition holds true. O

Proposition 3.3.3. Assume (3.31) holds true. Then lim U(Xy,X2) = 0o, where r =
VI + %]

48



Proof. From (3.30), we have that

N e T .
U(Xl,Xg):§||X1||2+ZT’2+C<X2,X1>
1=1

. . - -
> Sl + IRl = cll%ell - 1%,

N | —

Let =b? > ¢?. Then suppose [|Xa|| > by, we have

_ - L. . = s . .
U%1,%2) Z 5|3 + %l = cl%llI%]l = A (%, %),

Since the level curve of hy(||X1]], ||X2||) is elliptic-like in the plane. Thus, for any given
M > 0, there exists a d; > 0 such that U(x;,X2) > M whenever ||x;]|? + ||x2]|* > d?
and ||Xa| > ;.

Let ||X2]] < by. Then

U(x1,%2) > %Hilﬂz = ch||xq [ = ha([Ixa [, [[%2l]),

since ho(||X1][, [[X2||) is a parabola-like curve which is open upward in the plane. Thus,
for any given M > 0, there exists a dy > 0 such that U(x;,%X3) > M whenever
1%1]]2 + || X2]|? > d3 and ||%3|| < by. Picking § = max{d;, ds}, we have that U(xy, X3) >
M for all ||x;]|*> + [|%2||* > §2. Thus, the assertion of the proposition holds true. [

Theorem 3.3.4. The coupled system (D(c), G(e,r), F(x,t)) is bounded dissipative if
condition (3.31) holds true.

Proof. The proof is direct consequences of Propositions 3.3.2 and 3.3.3. O

Note that
fo(u) = fo(v) = O(ug — v2) + (ug — 1) (3.32)
and so the matrix measure of the corresponding Qv 1 is zero. To apply our theorem,

we need to make the following coordinate change.
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Letting yo = @ and y; = qx1 + pxe, we see that (3.27a,b) becomes

o= <§ — o)y + pla — g)y2 — qus 4+ qacoswt =: fi(y) (3.33a)
. - 1 -
Y2 = 7y2 + 5y1 =: f(y), (3.33b)

and the corresponding coupled system (3.7) becomes

Vi=( =)+ pla— )52 - a9+ ()
+ d(qgec — p)G(e,r)ys + dG(e, 7)y1 (3.34a)

1.
y2 = —g}’2 + -y, (3.34Db)
p q

where y3 = (yi,,...,45,,)" and g(t) = acos(wt) (1,---,1)".. In the following, we
choose (p, q) to be (1,c— %) as ¢ > 0, and to be (=1, —2) as ¢ = 0, respectively. Then

in the case of ¢ > 0, (3.34) becomes

. N 1. 1. N
yi=dG(enyi+(c—a- )y +(a—ct )y - ys +8(t) + G(e, 1)y
= dG(Ev T)S’l + FC(S’> t)

Vo= — V2 + Yy
€—4

The purpose of the coordinate transformation is two-fold. First, to make the dynamics
of the linear part on the uncoupled space stable. In this case, the coefficient of y,
becomes negative when d > % Second, to make sure the parameters in the nonlinear
part of coupled space contain no bad influence of d, coupling strength. Otherwise, we
may not be able to control its corresponding dynamics by choosing d large.

It is then easy to check that assumptions for Theorem 3.2.1 are all satisfied.

4o
4+am?

Finally, we will show that if

>c¢>0,e>0andr € R, then coupled system
(D(c), G(e,r),F(x,t)) is bounded dissipative. Thus, we can summarize the results as

follows

Theorem 3.3.5. Let f, D(c) and G(e,r) be given as in (3.27a), (3.27b) and (3.27c),

respectively. Let 0 < ¢ < 4+Afm2' Then the coupled system (D(c), G(e,r), F(x,t)) is

globally synchronized provided that d is chosen sufficiently large.

50



Proof. It remains only to verify that G(e,r) satisfies assumptions (3.3a,b). Indeed
G(e,r) is a circulant matrix (see e.g., [15]), the eigenvalues A, of G(e,r) are
2k 2k

A= —2¢(1 —cos—) —i2rsin—, k=0,...,m— 1.
n n

U
Remark 3.3.6. (i) It was shown in [21] that there are positive constants dy and ¢y such
that, for d > dy, ¢ > ¢o, the system (D(c), G(e,0),F) given in (3.33) is synchronized.
Our results also work for the case that co =0 or G(e,r), r # 0. (i) It was also shown
in [1] that there are positive constants dy and cy such that for d > do, ¢ > co, the
system (D(c), G, F) is synchronized. Here —G is a positive definite matriz.

3.3.4 Coupled Lorenz-Like System

Finally, we also explore the example in [57]. Specifically, the individual system we

obtained that is related to the Lorenz system was given by

dx

d—tl =—o(r1 — x3) + x5,
dl’g " "
— = — X9 — X

dt pPT1 2 173,
dx

d—tg = 1129 — (3,

dx

d—t4 = — LL’i + Ts,

d

% = —x1 — T4 — 35, (3'35)

where o, (3 are positive constants, and p is a real number. Assume the coupling matri-

ces D and G are, respectively,

i 00 0 0
0 d 0 0 0

D=|0 04d 0 0 |, (3.36)
0 0 0 d O
0 0 0 0 ds



and

—1-8 1 0O --- 0 I6;
—2 ' 0
0 .o e
G(f) = S . (3.37)
0 L 22
g0 - 0 1 —1-§

where d; =0or 1,1 <i<5and 0 < g < 1. Specifically, G(f3) is diffusively coupled
with mixed boundary conditions. To prove that bounded dissipation of coupled Lorenz-
Like system (3.35), we first show that bounded dissipation of the individual system.
Let the scalar-valued function defined as follows,

1.12

Lz 12
207

1]+ oxs + oz — p)? + 7:5?1 +

Exg] (3.38)

U(fl,x2>$3>$4ax5) 7

Taking the time derivative of U along solutions of the individual system, we have

auv - 12 . . ) 12 12
o = 73:@1 + oxoiy + o(x3 — p)is + 7x4x4 + 7x5x5
12 12 12 96
= —7axf + T OT1T — oxy — ofx; + oBprs — 7:63 — 71’%
Note that 2* > 22 — 1 for all z € R. We have
d 12 12 12 96
d(j < —7U:Ef + —OT1Ty — oxy — ofzs + oBprs — 7:):2 7:)3%
3 3 16 3 P9
= —Zo(—n + =) — Co( 02’ — oB(zs — 5)
T VR 2
1) s, o
A e I
Let the set S be defined by
3 2 3 16 3 2
S ={(x1, 29,23, 24, —a—:c +—20)? + —o(——=1 — ——1)*
{(z1, 29, 3,24, 25) | (\/ﬁl\/ﬁ2> 7(\/ﬁ1\/ﬁ2>
12 96 2
—i—aﬂ(xg—g) —|—7Z+7x5<r 2 Uﬁp,a,6>0,andp€R}
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Immediately, we have the set S is an solid ellipse provided that r? > %f. Moreover,
S is a bounded dissipation region of the individual system with o, > 0, p € R.
Next, we prove that the bounded dissipation of the coupled Lorenz-like system. Setting
the scalar-valued function V' : R™ — R which is defined by

1.12
V(%) 5[7 < X1,X1 > +0 < X9, Xo >
- N . 12 . 12 _ .
+0 < (Xg —pe), (Xg — pe) > +7 < X4,Xy4 > —|—7 < X5, X5 >]
where € = (1,--- ,1)T, x and X;, 1 < < 5, are defined in (3.4). Then, taking the time

derivative of V' along solutions of the coupled Lorenz-like system of the form in (3.35)

and combining the scalar-valued function U, we have

dV(N)_12<~ d1>+ < diZ>
T STy <Xy
Lo < ( ) dX3 > 12 < dX4 > 12 < df(5 >
oS X pe dt T <X e T e

+ Z O'dj < Xj, G(ﬂ)X] > —ds < pé7 G(ﬂ)X:; >

Note that G(5)7é = 0, we have d3 < pé, G(f)x >3= 0, forall 1 < 3 < 1. Furthermore,

G() is also a semi-negative definite matrix, then the following inequality holds true,

dV (X
&) - (3.39)
Similarly, let the set S be defined by
< - 3 3 16 , 3 2
S={x=(x1, " ,Xm) - X1 + Xi2)? + —0(——=Xj1 — ——X;2)°
12 96 ’
+ 0B (xi3 — g) + — X+ = 7 x| < R?, where R? > mafp , 0, >0, and p € R}

Immediately, we have the set S is also an solid ellipse provided that R? > %W.

Moreover, S is a bounded dissipation region of the coupled Lorenz-like system with o,
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6>0,peR.
The coupling matrix D in the following is assumed to be diag([1,0,0,1,0]). In the case,
the “coupled” nonlinearities f; and f; are clearly Lipschitz on the absorbing domain,

and the differences of the “uncoupled” nonlinearities fo, f3, and f5 are

fo(u) = fa(v) = —(ug — v2) — ui(uz —v3) + (p — v3)(u1r — v1),
fs(u) = f3(v) = ui(ug — v2) — B(ug — v3) + va(ug — v1),
fs(a) = f5(v) = =8(us — vs) — (ur —v1) — (ug — v4).

Clearly, to apply the given main theorem directly to claim the synchronization reaches,
the best strategy to deal with “uncoupled ” nonlinearities is to split them into two parts,

one is fy and f3, and the other is f5. Then

. —1 —U1
Qu,v,l - < Uy _6 ) )
Qu,v,2 = 8.

In this way, the matrix measure of Quv 1 and Quy2 is max{—1,—3} and —8, respec-
tively. Thus, condition (3.19b) is satisfied. The remainder partsr; = ( va(ty — v1)
and ry = —(u; —v1) — (ug —v4) also satisfy condition (3.19¢). Thus, the coupled system
(D, G, F(x)) is uniformly globally synchronized provided the coupling strength d is large
enough.

Our theorems can be applied to quite many cases of the coupling matrix D, which can
be checked easily and similarly as above arguments. However, there exists some cases
that uniformly global synchronization can be seen from the simulation of computer, but

our theorems can not be applied directly. Here, we give a comparison with theoretical

and numerical results as follows.

o4

(p — vs)(u1r — v1)

)



Location Appli. Simul. || Location Appli. Simul.
T N T T1,T2 N T
) N T T1,T3 N T
ZT3 N F T1,T4 T T
Ty N F T, s N T
Ts N F T, T3 N T
Lo, Ty N T
To, Ty N T
T3,y N F
T3, T N F
T4, Ts N F
Location Appli. Simul. Location Appli.  Simul.
T1,T9, T3 N T T1,To,T3,T4 T T
T1,To, Ty T T I1,T9,x3,T5 N T
T1, T2, Ty N T T1,To, Ty, Ty T T
T1,T3, 2y T T T1,T3, Ty, Ts T T
T, 3, Ts N T To, T3, Ty, Ts T T
T1,Ty4,Ts T T L1,T9,T3,T4,Ts T T
Lo, T3,y N T
T, T3, Ts T T
To, T4, Ts T T
T3, T4, Ts N F
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Chapter 4

Wavelet Method for Chaotic
Control

The main results of the second part of the thesis are contained in this chapter. Con-
trolling chaos via wavelet transform was proposed by Wei, Zhan and Lai [48]. It was
reported there that by modifying a tiny fraction of the wavelet subspace of a coupling
matrix, the transverse stability of the synchronous manifold 9t of a coupled chaotic
system could be dramatically enhanced. Such phenomena are analytically verified
when the coupling matrix is diffusively coupled with periodic and Neumann boundary

conditions. The results in this part are reorganized from papers in [25,26].

4.1 Wavelet Method for the Diffusively Coupled
with Mix Boundary Conditions

Let

A= o (4.1a)

be a matrix with the dimension of each block matrix Ay being 2¢ x 2!, By an i-scale
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wavelet operator W [14,48], the matrix A is transformed into W (A) of the form
Ay o Ay,
WA= + -~ (4.1b)
Anl e Ann

nxn,

where each entry of gkl is the average of entries of Ay, 1 < k,l < n. That is, for any
matrix B of dimension 2 x 2!, the kl entry (B)y of B is defined to be

2t 921

(B)w = % > (B

I=1 k=1
Here « is a scaler factor.
For a given matrix, the above wavelet transform allows a perfect reconstruction (in-
verse wavelet transform), by which there is nothing to gain: A = W=1{(W(A)). In [48],

a simple operator Oy is introduced to attain a desirable coupling matrix. That is,

C =W OUW(A)) = A+ (k — 1)W(A) = A+ aW(A), (4.1¢)

where Oy be the multiplication of a scalar factor a on each block matrix zzlvkl. To verify
this phenomenon mathematically, we first consider the coupling matrix A = G(3), as
given in (3.37). Let [ = 57 € N, where i is a fixed positive integer. We then write A

into an [ x [ block matrix of the form.

Al(B) Ax(1) 0 . 0 AZ(B)
AT A1) A1) . .00
0 . . . .
A-—c)=| . L | (4.2a)
: 0
0 0 AZ(1) A1) As(1)
AQ(ﬁ) 0 0 Ag(l) Z1(6) Ixl,

where

o7



and

1
-2 1 0
0 1
L =2 2i %20,
1 0
(4.2b)
. 1
1 _1_6 2ix 21,
0
. (4.2¢)
0
60 . .0 i 9

Then the newly transformed coupling matrix G = G(a, (3) is an [ x [ block matrix of

the following form.

Here

Ixl.
(4.3a)
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1 -2 1 o --- 0
0 1 =2 1 - 0 a(l+
Gi(a, B) = : . - %%T
0 0 1 -2 1
0 0 1 =2/,
- 1
= Ay(B,27) — %eeﬁ (4.3b)

where e = (1,1,...,1)T, j is a positive integer, a > 0 is a (wavelet) scalar factor and

0 € R represents a mixed boundary constant. Moreover,

0 0 - 0
N : af p
Gg(a,ﬁ) = 0 0 + ﬁee
6 0 - 0
) j af
=: Ax(5,2) + 526 (4.3¢c)
00 - 01
00 0 10
= (4.3d)
01 0 00
10 00

The dimension of G(a, 3) is 127 x [27. From here on, we shall call [ and j the block
and the wavelet dimensions of G(a, ), respectively.
The matrix G(a, 3) carries a new relationship among the coupled oscillators, which

might not be as simple as the original matrix A.
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4.2 Perturbed Block Circulant Matrix and Their
Eigenvalue Problems

Of concern here is the eigencurve problem for a class of ”perturbed” block circulant

matrices.

G(a, 5)b = Aa, B)b. (4.4)

Here G(a, 3) is a block circulant matrix (see e.g., [15]) only if 5 = 1. It is well-known,
see e.g., Theorem 5.6.4 of [15], that for each « the eigenvalues of G(«, 1) consists of
eigenvalues of a certain linear combinations of its block matrices. Such results are
called the reduced eigenvalue problem for G(q, 1).

Writing the eigenvalue problem G(a,3)b = Ab, where b = (b, by, ....,b;)T and

b; € C?, in block component form, we get

G2 (a,1)b;_1 + Gi(a,1)b; + Gy(a, )b = Aby, 1< <. (4.5a)

Mixed boundary conditions would yield that

Gl(a, 1)bg+ G1(a, 1)by + Go(, 1)by = Aby = Gy (av, B)by + Ga (e, 1)by+ GL (e, B)by,

and

G (a, )by + Gi(a, 1)b; + Ga(a, 1)bys = Ab

= G2(Oé, ﬁ)bl + Gg(a7 1)bl—l + iGl(au 6)ibl7

or, equivalently,

Gg(% Dby = (Gi(a, 8) — Gi(a, 1))b; + Gg(aﬁ)bz
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0 0 -0 all—0 e af
- IR %%T]bl * P +ﬁ€€T]bz
00 0 0 - 00
= (1 - B8)G3 (e, 1)Ib; + BGa(a, 1)by, (4.5b)

and

Go(a, 1)byyr = IG(a, B)I — Gy (v, 1))by + Go(a, B)by

= (1—-3)GL(a, 1)Ib, + SGa(a, 1)by. (4.5¢)

To study the block difference equation (4.5), we set

where v € C? and § € C.
Substituting (4.6) into (4.5a), we have

[GT(a,1) + 0(G1(a, 1) — AI) + 6°Gy(a, 1)]v = 0. (4.7)

To have a nontrivial solution v satisfying (4.7), we need to have

det[GY (o, 1) + 5(Gi(a, 1) — M) + §°Gy(a, 1)] = 0. (4.8)
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Definition 4.2.1. Equation (4.8) is to be called the characteristic equation of the block
difference equation (4.5a). Let 0, = 0 (N) # 0 and vy = vi(X) # 0 be complex numbers
and vectors, respectively, satisfying (4.7). Here k = 1,2,....m and m < 2/. Assume
that there exists a A € C, such that b; = 2?:10k5z(A)vk(A), j=0,1,...,1+1, satisfy
equation (4.5b,c), where ¢, € C. If, in addition, b;, j = 1,2,...,1, are not all zero
vectors, then such Ox(X) is called a characteristic value of equation (4.5) or (4.4) with

respect to X and vi(X) its corresponding characteristic vector.

Remark 4.2.2. Clearly, for each a and 3, A in the Definition of 4.2.1 is an eigenvalue
of G(a, B).

Should no ambiguity arises, we will write GI (o, 1) = GI, G (a, 1) = Gy and Ga(a, 1) =
G,. Likewise, we will write Ay(3,27) = Ay(B3) and A;(3,27) = A;(B).

Proposition 4.2.3. Let p(\) = {6;(N) : §(N) is a root of equation (4.8)}, and let
p(A) = {ﬁ : 0;(A) is a root of equation (4.8)}. Then p(\) = p(N\). Let 6; and dy
be in p(N). We further assume that 6; and v; = (vi1, - - , v )" satisfy (4.7). Suppose
;- 0y = 1. Then 0 and vy = (Vjor,Vini_1,- -, Vio,0s1)" =: ¥ also satisfy (4.7).
Conversely, if 6; - 0, # 1, then v, # vj.

Proof. To proof p(A) = p()\), we see that

1 1
d6t[Gg + 5(G1 — )\I) + 52G2] = 52d6t[ﬁGg + S(Gl - )\I) + GQ]
1 1 1 1
= 52d6t[§Gg + E(Gl - )\I) + GQ]T = 52d6t[Gg + S(Gl - )\I) + EGQ]

Thus, if ¢ is a root of equation (4.8), then so is %. To see the last assertion of the

proposition, we write equation (4.7) with 6 = §; and v = v; in component form.
2J

> (G imvim + 6:(G)imVim + 67 (Go)imvim] = 0,1 =1,2,..., 2. (4.9)

m=1

Here G; = G; — Al. Now the right hand side of (4.9) becomes
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27

1 _
(5_16)2{2 [(GZ)I(2j+1—m)Ui(2j+1—m) + 5k(G1)1(2J+1—m)vi(2j+1—m)

m=1
+02 (G2 )12 +1—-m)Viezi +1-m) |}
{Z )(29 +1-0)mVi(2) +1—m) +5k(G )(29 +1—-1)mVi(2) +1—m)
+5k(Gg)@jﬂ_l)m)vi@jﬂ_m)]},l =1,2,...,%. (4.10)

We have used the fact that
(A>(2j+1—l)m = (AT)I(2J+1—m)7 (4-11)

where A = GI or G; or Gy to justify the equality in (4.10). However, (4.11) follows
from (4.4c) and (4.4d). Letting v(2i+1—m) = Vkm, We have that the pair (dy, vi) satisfies
(4.7). Suppose v, = v}, we see, similarly, that the pair ( , V) also satisfy (4.7). Thus

1 _
L=g.

O

Remark 4.2.4. FEquation (4.8) is a palindromic equation. That is for each X, § and
61 are both the roots of (4.8). However, eigenvalue problem discussed here is not a

palindromic eigenvalue problem [23].

Definition 4.2.5. We shall call v¥ and —v?*, the symmetric vector and antisymmetric
vector of v, respectively. A wvector v is symmetric (resp., antisymmetric) if v.= v*
(resp., v.=—v?®).

Theorem 4.2.6. Let 0, = eﬂTki, k is an integer and i = \/—1, then 6o, k=0,1,...,1-1

)

are characteristic values of equation (4.5) with 3 = 1. For each «, if A € C satisfies

det[GE 4 621, (G1 — M) 4 62,G4] = 0,

for some k € Z, 0 < k <1 —1, then X is an eigenvalue of G(a, 1).
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Proof. Let A be as assumed. Then there exists a v € C?, v # 0 such that

[GE 4 691 (G — M) + 62,G]v = 0.

Let b; = 0], v, 0 < j <1+ 1. Then such bls satisfy (4.5a), (4.5b), and (4.5c). We just

proved the assertion of the theorem. O

Corollary 4.2.7. Set

[y = Gy + 0y 1G3 + 6,.Go. (4.12)

Then the eigenvalues of G(a, 1), for each «, consists of eigenvalues of Ty, k = 0,2, 4, ..., 2(1—
-1

1). That is p(G(a,1)) = U p(Tax). Here p(A) = the spectrum of the matriz A.
k=0
Remark 4.2.8. G(«, 1) is a block circulant matriz. The assertion of Corollary 4.2.7

is not new (see e.g., Theorem 5.6.4 of [15]). Here we merely gave a different proof.

To study the eigenvalue of G(«, 0) for each «, we begin with considering the eigenvalues

and eigenvectors of GI + G; + Gy and G — G, + G,.

Proposition 4.2.9. Let T1(G) (resp., To(G)) be the set of linearly independent eigen-
vectors of the matriz C' that are symmetric (resp., antisymmetric). Then |T1(GL +
G1+Go)| = [1h(G] + G+ Ga)| = [TH(G] —G1+ Gy)| = [T5(G] — G +Gy)| =271
Here |A| denote the cardinality of the set A.

Proof. We will only illustrate the case for GI — G| + G4 =: G. We first observe that
IT1(G)] is less than or equal to 2771, So is |T5(G)|. We also remark the cardinality of
the set of all linearly independent eigenvectors of G is 27. If 0 < |T1(G)| < 2771, there
must exist an eigenvector v for which v # v*, v # —v® and v ¢ span{T1(G),T2(G)},
the span of the vectors in 77 (G) and 75(G). It then follows from Proposition 2.1 that
v+ v°, a symmetric vector, is in the span{T(G)}. Moreover, v—v° is in span{T>(G)}.
Hence v € span{T,(G), T>(G)}, a contradiction. Hence, |T1(G)| = 277!, Similarly, we
conclude that |T5(G)| = 2771, O
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Theorem 4.2.10. Let §, = eWTki, k is an integer, i = \/—1. For each «, if X € C

satisfies

det[GT 4 6,(G1 — M) + 62Gy] = 0,

for some k € Z, 1 < k <1 —1, then X is an eigenvalue of G(c,0). Let X\ be the
eigenvalue of GI +G1+ Gy (resp., —GT+G1—Gy) for which its associated eigenvector

v satisfies Iv = v (resp., Tv = —v), then X is also an eigenvalue of G(av,0).

Proof. For any 1 < k <1 —1, let d; be as assumed. Let \; and 4 be a number and a

nonzero vector, respectively, satisfying

[Gg + 5k(G1 — )\kI) + 52G2] Uy = 0. (413)

Using Proposition 4.2.3, we see that )\ satisfies

det[G3 + 6o 1 (G — M) + 05, Go] = 0. (4.14)

Let vy, be a nonzero vector satisfying [G2 + 0o _1(G — M) + 03, Golvy_x = 0.
Letting

b; = 0,vy + 610%_pVy—k, i = 0,1, ..., 1+1,
we conclude, via (4.13) and (4.14), that b; satisfy (4.5a) with A\ = ;. Moreover,

b, = 61wy + Ty, 4 = 894 + v = by.

We have used Proposition 4.2.3 to justify the second equality above. Similarly, b, =
Ib,. Tosee A = Ay, 1 < k <1 —1, is indeed an eigenvalue of G(a,0) for each a, it
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remains to show that b; # 0 for some i. Using Proposition 4.2.3, we have that there
exists an m, 1 < m < 27 such that vy, = Vi—k)(2i—mt+1) 7 0. We first show that
by # 0. Let m be the index for which vy, # 0. Suppose by = 0. Then

Vo + 0kV(21—k)ym = 0

and

V(2 —m+1) T OkV(21—k) (2 —m+1) = V(@—k)m + OkVkm = 0.
And 80, gy, = 020k, a contradiction. Let A and v be as assumed in the last assertion
of theorem. Letting b; = v (resp., b; = (—1)"v), we conclude that X is an eigenvalue

of G(a,0) with corresponding eigenvector (by, bs, - - - ,bl)T. Thus, A\ is an eigenvalue

of G(a,0) for each a. O

Corollary 4. 2 11 Let 6, = eﬂTki, k is an integer, i = /—1. Then, for each «,

p(C(a,0)) U (Ty) Up UpAS I')), where p°(A) (resp., pA¥(A)) the set of
k=

eigenvalues of A for which their corresponding eigenvectors are symmetric (resp., an-

tisymmetric).
We next consider the eigenvalues of G(a, 3).
Theorem 4.2.12. Let 6, = eWTki, k is an integer, 1 = \/—1. Then, for each «,

(1

]

N~

(F2k)UPS(F0), 1 is odd,
p(G(a, ) D
(Do) Up (Ty) Up (), 1 is even.

i CN‘N‘TT

\

Here [1] is the greatest integer that is less than or equal to L.

Proof. We illustrate only the case that [ is even. Assume that k is such that 1 < k <
L — 1. Let b; = 0%, o + 621,0%_o, Vo—ok, we see clearly that such b;, i = 0,1,1,1+ 1,

satisfy both Neumann and periodic boundary conditions, respectively. And so

by = (1 — B)bg + by = (1 — B)Iby + Fby,
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and
bis1 = (1 — B)byy + Bbyyy = (1 — B)Iby + Fby.

Here, 09, 1 < k < % — 1, are characteristic values of equation of (4.5). Thus, if

A € p(I'ar), then A is an eigenvalue of G(«, 3). The assertions for Iy and I',, can be

done similarly. O

Remark 4.2.13. If n is an even number, for each o and 3, half of the eigenvalues of
G(a, 8) are independent of the choice of 3. The other characteristic values of (4.5)
seem to depend on (3. It is of interest to find them.

4.3 The Chaotic Control for Periodic and Neumann
Boundary Conditions

We begin with considering the eigencurves of I', as given in (4.12). Clearly,

-2 1 0 - v ok
1 -2 1 0 - 0
. Q .1 .—2 .1 (,) _a(2—2cos ﬂTk)eeT
: T T T : m
0 0o 1 -2 1
Sk o 1 -2 )
=: Dy (k) — afk)ee’, (4.15)

where m = 27. We next find a unitary matrix to diagonalize D; (k).

Remark 4.3.1. Let (A(k),v(k)) be the eigenpair of Di(k). If e'v(k) = 0, then \(k)

is also an eigenvalue of T'y.

Proposition 4.3.2. Let

Hl,k:—+—,l:0,1,...,m—1, (416&)
nm



pulk) = (e, o gimo) T (4.16b)

and

P(]{j) = ( p\()/(%)’... 7pm—l(k) ) ) (416C)

(i) Then P(k) is a unitary matriz and P¥ (k)D,(k)P(k) = Diag(Ao - - Am_1.x), where

PH s the conjugate transpose of P, and

>\l,k :2cos917k—2,l:O,1,..,m— 1. (416d)

(ii) Moreover, for 0 < k < 2l, the eigenvalues of Dy(k) are distinct if and only if
k0,1 or2l.

Proof. Let b = (by, ..., b,,)T. Writing the eigenvalue problem D;(k)b = Ab in compo-

nent form, we get

bj—l - (2—|—)\)b]+b]+1 :0,] :2,3,...,7’)7,— ]_, (417&)
—(2 4 A)by + by + d2p—br, = 0, (4.17b)

Set b; = &7, where § satisfies the characteristic equation 1 — (2 + \)d + 6% =
of the system D;(k)b = Ab. Then the boundary conditions (4.17b) and (4.17c) are

reduced to
oM = 0. (4.18)

Thus, the solutions e, [ =0,1,...,m — 1, of (4.18) are the candidates for the charac-
teristic values of (4.17). Substituting e+ into (4.17a) and solving for A\, we see that
A = A\, are the candidates for the eigenvalues of D; (k). Clearly, (A, b) = (A x, p;(k))
satisfies Dy (k)b = Ab and b = p;(k) # 0. Thus, A = X\ are, indeed, the eigenvalues
of Dy(k). To complete the proof of the proposition, it suffices to show that P(k) is
unitary. To this end, we need to compute p (k) - p, (k). Clearly, pf (k) - p,(k) = m.
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Now, let [ # I’, we have that

m

le(k) : pl/(/{:) = Zeij(el»k—‘)u,k) _

j=1 j=1

_r(l—=rm)

- 2(1=1)
i T )

1—r

NE

where 1 = 52, Hence, P(k) is unitary. The last assertion of the proposition is

obvious. O

To prove the main results in this section, we also need the following proposition. Some

of assertions of the proposition are from Theorem 8.6.2 of [2].

Proposition 4.3.3. Suppose D = diag(dy,...,d,,) € R™™ and that the diagonal
entries satisfy dy > -+ > d,,. Let v # 0 and z = (21,...,2m)7 € R™.  Assume
that (\;(7), vi(7)) are the eigenpairs of D+ vzz" with M\ (y) > A7) > ... > A\u(v). (3)
Let A={k:1<k<mz =0}, A={1,....m} —A. Ifk € A, then dx = \. (i)
Assume o > 0. Then the following interlacing relations hold A\ (y) > di > Xo(y) >
dy > ... > A\u(y) > dy. Moreover, the strict inequality holds for these indexes i € A°.
(i11) Let i € A°, \i(7y) are strictly increasing in v and ah—>nolo () = N for all i, where \;
are the roots of g(\) = Z 2

2
keAe kT

with \; € (d;, d;i—1). In case that 1 € A°, dy = o0o.

di, — A

Proof. The proof of interlacing relations in (i) and the assertion in (i) can be found in
Theorem 8.6.2 of [2]. We only prove the remaining assertions of the proposition. Re-
arranging z so that z7 = (0,0, ..., 0, z;,, ..., 2;,) =: (0,...,0,2"), where i; < iy < ... < i
and i; € A°, j = 1,...,k. The diagonal matrix D is rearranged accordingly. Let
D = diag(Dy, Dy), where Dy = diag(d,,,...,d;, ). Following Theorem 8.6.2 of [2], we
see that \;(y) are the roots of the scalar equation f,()), where
k 2
J

Fr(Ai; (7)) =1+ VZ cQ—Zi)\Z(fy) = 0. (4.19)

Differentiate the equation above with respect to v, we get
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ij + 2] 2 =0
]Z:; dlj )\23 (7) (7; (dlj )\Zk (7))2) d’y
Thus,
d\;. 1 & z
d](fy) == Z J - >0
Y 7?4 (diy = Ai (7))

Clearly, for each i;, the limit of \;;(v) as v — oo exists, say A;,. Since, for d;; < A <
dij—17

Taking the limit as & — oo on both side of the equation above, we get

z

2o

j=1 "4 J

2
b= 4.20
N (4.20)

as desired. 0
We are now in the position to state the following theorems.

Theorem 4.3.4. let | and m = 27 be given positive integers. For each k, k =
1,2,---,l =1, and «, we denote by N\ x(a), I = 0,1,---,27 — 1, the eigenvalues of
L. Fork=1,2,---,1—1, welet (Mg, wr), L =0,1,---,2 — 1, be the eigenpairs of
Dy (k), as defined in (4.15). Then the following hold true.

(i) \ix() is strictly decreasing in o, | =0,1,-++,22 — 1 and k =1,2,--- ;1 — 1.

(ii) There exist N}, such that ah_)nolo Auk(a) = Ay, Moreover, gi(Af),) = 0, where

1

gk(>\) = ; ()\l—l,k>(>\l—1,k + )\) (421)
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Proof. The first assertion of the theorem follows from proposition 4.3.3-(iii). Let k& be

as assumed. Set, for [ =0,1,....m — 1,

m e—Gl,k(l _ e_imel'k) B e—Gl,k(l _ 6—’”6%)

Zl+1 frd plI{(]{j)e e Z €ij9l’k = 1 — e—QL,k; — 1 — e_el,k
j=1
Then
~ 2 —2cosmbyy, 2coskT —
— L n 0. 4.22
21112141 2 2cos Oy N # ( )

Let P(k) be as given in (4.16¢). Then

—PH(k) Ty Pk) = Diag(—Aok - —Am_1x) + a(k) PE(k)e(PH (K)e).

Note that if k is as assumed, it follows from Proposition 4.3.1-(ii) that A, | =
0,...,m — 1, are distinct. Thus, we are in the position to apply Proposition 4.3.3.

Specifically, by noting A° = ¢, we see that Aj, satisfies g(A) = 0, where

m

1
9N = Z (N—1k) N1k +A)

=1

We have used (4.16d), (4.20) and (4.22) to find g(A). O
We next give an upper bound for Ag,, k=1,2,---,n—1.
Theorem 4.3.5. The following inequalities hold true.

Aok <Xy, k=12 11 (4.23)

Proof. To complete the proof of (4.23), it suffices to show that gi(—Xo;) < 0. Now,

- 1
gr(=Xoy) = E —- —e
[2003(2(lm1) + ATy — 2] [2005(% + k1) — 2cosZ]



=:h(m, k) = h(27,1, k). (4.24)

We shall prove that h(27,1,k) < 0 by the induction on j. For j = 1, h(2,l,k) =
1 1
cos?(

3 W <0, k=1,2,---,1—1. Assume h(27,1,k) < 0. Here, [ € N and
kry
k=1,2,---,1—1. We first note that

220 4+i—-D)m  kr Y\ 20— )7 km
cos il + 511 | = —Cos +

2j+1 27+1]
= —cos0;_1 i1, 1=1,2,---,2. (4.25)
Moreover, upon using (4.25), we get that
1
(costi1 k41 — 1)(cos0;1 k1 — cosboy 1)
1
_l_
(00392j+i—1,k,j+1 — 1)(00892]’4_7;_1,]@7]'4-1 - COSHO,l,j-i-l)
B 1
(costi1 k41 — 1)(cos0i1 k01 — cosboy 1)
1
(co80;_1 1 j+1 + 1)(cosOi_1p j11 + cosboyji1)
B 2008292'_1,/&73'4-1 + 2005607l7j+1
(€0820;_1 j j+1 — 1)(cos?0;_1 ., j41 — c05*00 1 j+1)
8(008292‘_1,/&73'4-1 + COSGO,IJ-H)
(c0520; 11511 — 1)(cos20;_1 5 j4+1 — 05200 511)
2(cos®0;_1 . j+1 + cosbo j+1) (4.26)
(cosbi_1; — 1)(costi_1k; — cosbo;) |
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We are now in a position to compute h(2/71 [ k). Using (4.26), we get that

2J+1

Rt 1 k) = 24(

=1

1

cosbi-1kj+1 — 1) (o801 5,541 — cosboj+1)

27
_ Z 2(c08%01-1 1 j11 + cosBo 1 j+1)
=1 (00891_17k’j — 1)(0059i—1,k,j — COSH()JJ)

S 8(0082907k’j+1 + 008907l7j+1)h(2j, l, ]{7) (427)

We have used the facts that cos®0g . ;11 > c08%0; 1k 11, ¢ = 2,---,27, and that the
first term (i=1) of the summation in (4.27) is negative while all the others are positive
to justify the inequality in (4.27). Tt then follows from (4.27) that k(2771 1, k) < 0. We
just complete the proof of the theorem. O

Theorem 4.3.6. Let | and j be the block and wavelet dimensions of G(a, 1), respec-
tively. Assume | and j are any positive integers. Let \y(«) be the second eigencurve of
G(a,1). Then the following hold.

(i) A2(@) is a monincreasing function of a.

(i) If | is an even number, then Ay(c) = Ao, whenever a > a* for some a* > 0.

(111) If 1 is an odd number, then As(a) < Ao, whenever o > @ for some @ > 0.

Proof. We first remark that in the case of § = 1, the set of the indexes k's in (4.15)
is {0,2,4,...,2(l — 1)} := I. Suppose [ is an even number. Then [ € I;. Thus,
o =—1, 0oy = =, and py(l) = (ei%,ei%, e ,e”)T. Applying Proposition 4.3.2, we
see that py(l) — p§(l), an antisymmetric vector, is also an eigenvector of D;(l). And
so e'(py(l) — p3(1)) = 0. It then follows from Remark 4.3.1 that \g; is an eigenvalue
of Iy = Dy(I) — p(l)ee™ for all . The first and second assertions of the theorem now

follow from Theorems 4.3.4 and 4.3.5. Let [ be an odd number. Then §; - §; # 1 for
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any ¢ € I,. Thus, if the pair (§;, v;) satisfy (4.7), then v; # —vf. Otherwise, the pair
(0, v; — (—v;)°) = (0;, v; + v}) also satisfy (4.7). This is a contradiction to the last
assertion in Proposition 4.2.3. Thus, v - ¢ # 0 for any i € I,,. We then conclude,
via Proposition 4.3.3-(iii) and Theorem 4.3.5, that the last assertion of the theorem
holds. O

Remark 4.3.7. (i)Let the number of uncoupled (chaotic) oscillators be N = 127. If is
an odd number, then the wavelet method for controlling the coupling chaotic oscillators
work even better in the sense that the critical coupling strength € can be made even
smaller. (i1)For | being a multiple of 4 and j € N, the assertions in Theorem 3.3 was

first proved in [6] by a different method.

Theorem 4.3.8. Let | and j be the block and wavelet dimensions of G(«,0), respec-
tively. Assume | and j are any positive integers. Let \o(ar) be the second eigencurve of

G(«,0). Then for any l, there exists a a such that Ao(a) = Ao, whenever a > a.

Remark 4.3.9. For |l € N and j = 1, the explicit formulas for the eigenvalues of
G(a, 0) was obtained in [4]. Such results are possible due to the fact that the dimension
of the matrices in (4.8) is 2 X 2.

4.4 Numerical Illustrations for Periodic and Neu-
mann Boundary Conditions

To illustrate how such wavelet transform affects the critical coupling strength, we

consider G to be diffusively coupled with Periodic and Neumann Boundary Conditions.

4.4.1 Periodic Boundary Conditions

In this section, we consider the nearest neighbor coupling with periodic boundary con-
ditions. The resulting coupling matrix G(1) is given as in (3.37). Let the dimension of
Ay(1), Ay(1) and A;(1) be 2 x 2. Then

A1) = ( B ) _ A1), As(1) = ( v ) , (4.282)
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s =

l

Then G;(1) = A;(1) + A;(1), i=1, 2, G1(1) = A, (1) + A;(1). Thus,

Gi(1) = ( ‘%%(glfao)‘) _%%(?410‘0)() ) — G(1), Ga(1) = ( i(ﬁa) % ) . (4.280)

We begin with identifying some trivial eigenvalues of G(a, 1).

Proposition 4.4.1. For each «, 0 and -4 are eigenvalues of G(«, 1). If, in addition,

é(> 1) is a positive integer, then -2 is also an eigenvalue of G(a, 1) for any «.

Proof. Let G(a,1) + 41 = (cy,Ca, ..., Cy), Where ¢;, 1 < ¢ < m, are column vectors.

Then Z(—l)jHCj = 0. Thus -4 is an eigenvalue of G(a,1) for each @ > 0. Let

J=1

G(a,1)+2I = (cy1, g, ..., Cpp). If m = 2[(> 4) is a multiple of four, then Z(S(j)cj =0,

j=1
where
5(j) = 1 1f g =4k or 4k + 1 for some k,
A .| if j=4k+2or 4k + 3 for some k.
Thus, -2 is an eigenvalue of G(«, 1) for each a with such V. O
Writing the corresponding eigenvalue problem G(a, 1)b = Ab, where
b = (by, by, - ,b;)T and b; € C?, in block component form, we have
G2 (1)b;_; + Gi(1)b; + Go(1)b;y; = Ab;, 1< i <. (4.29a)

Periodic boundary conditions would yield that

G3 (1)bg + G1(1)b; + Gy(1)by = Ab; = G (1)b; + Gy(1)by + G2 (1)b,

and
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Gl (1)bi_y + G1(1)b; + Go(1)bs; = Ab, = Go(1)by + GI (1)b;_; + G1(1)by,
or, equivalently,
bo = bl, b1 = bl+1. (429b,C)

To study the block difference equation (4.29), we first seek to find the solution b; of

the form.

m:y(i). (4.30)

Substituting (4.30) into (4.29a), we get

(GT(1) + 6(G1 (1) = AT) + 62Go(1)] < ’ ) 0. (4.31)
To have a nontrivial solution < i ) to equation (4.31), we need to have
det[GT (1) + 8(G1(1) — M) + §2°G4(1)] = 0, (4.32a)
or, equivalently,

b+ (4a+4+2a0)6° — (84+10a+ 16 A+4aA+4)\*) 6% + (4da+4+2a\)0+a = 0. (4.32b)

Equation (4.32b) is to be called the characteristic equation of the block difference
equation(4.29a). To study the property of equation (4.32b), we need the following

proposition.
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Proposition 4.4.2. Let Dy, Dy and D3 be 2 x 2 matrices. Suppose Dy = DI and
Dy = DY Let z1, zo, x3 and x4 be roots of det[Dy + xDy + 22 D3] = 0, where x € C.

Then we may renumber the subscripts if necessary so that

T1T9 = 1= T3ly. (433&)

If, in addition, diagonal elements of Dy and Ds, respectively, are both equal, then

Yiy2 = 1 = ysya. (4.33b)

1 , o
Here < v ), i=1, 2, 8, 4, are vectors satisfying

[Dy + x; Dy + 27 D3] ( ; ) =0. (4.33c)

Proof. If Dy, Dy and D3 are as assumed, then

det[Dy + 2Dy + 2% D3| = az* + ba® + ca®* + br + a (4.34)

for some constants a # 0, b, and c. Letting y = x + %, then (4.34) can be writ-
ten as ay? + By + v, where o, § and v depend on the constants a, b, and c¢. Thus
det[Dy + Dy + 22 D3] = 0 is equivalent to 2 — Aix + 1 = 0, where M. are the roots

a1y? + biy + ¢ = 0. Consequently, z170 = 1 = x37,.

Letting Dy = ( a b ) = DI and D, = az by ), we write (4.33c) in component
c1 by ay
form.
(a1 + ylbl) + (CLQ + ylb2)xz + (CL1 + yicl)x? = O,Z = 1, 2, 3, 4, (435&)
(c1 + yiar) + (by + yias)z; + (by + yiar)x; = 0,4 =1,2,3,4, (4.35h)
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For i =1, (4.35a) is equal to

1 1
(a1 +y1b1) + (az + y1b2)x_ + (a1 + ylcl)p =0
2 2

or

(a1 + y1c1) + (a2 + yiba)xe + (a1 + ylbl)fcg =0

or

1 1 1
(Cl + —al) + (bg + —CLQ)LUQ + (bl + —al)xg = 0. (435C)
U hn hn

Using equations (4.35¢), (4.35b) with ¢ = 2, and the uniqueness of y;, i = 1,2,3,4,
we conclude that y,yo = 1. Similarly, ysys = 1. We just complete the proof of the

proposition. ]

We are now in a position to further study equation (4.32). We assume, momentar-
ily, that equation (4.32) has four distinct roots d1, d, 93 and d4. The general solutions

to (4.29a) can then be written as

i1 T i1 i1
bizcl(sl(yl)+0252(V2)4—0353(”3)4—0454(]/4). (436)

Here v;, i = 1,2, 3,4, are some constants depending on d;.

Applying (4.36) to boundary conditions (4.29b,c), we get

cl(5i—1)(yll ) +CQ(55—1)(V12 ) +e3(0h — 1) ( ,,13)

+c4(5g-1)( L ):0 (4.37a)

Vg
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and

101(0] — 1) ( 1/11 ) + a9 — 1) ( ,/12 ) + c303(05 — 1) ( 1/13 )

+c454(5g—1)( L ) ~ 0. (4.37h)

Vg

Writing (4.37) in matrix form, we have

1 1 1 1 e
%41 V9 V3 Vy . I I L - s _
101 10y V303 V404 e

Now if, diag(6} — 1,8, — 1,84 — 1,84 — 1) is singular, then equation (4.36) has nontrivial
solutions ¢; , i=1,2,3,4. Note that diag(d} — 1,0, — 1,6, — 1,6, — 1) is singular if and
only if 9;, i=1,2,3,4, satisfy

o =1 (4.39)

and (4.32b). To solve system of equations (4.39) and (4.32b), we first note that

S =€¢"1T",0<m<n—1, (4.40)

are roots of equation (4.39). Substituting (4.40) into (4.32b), we get that the imaginary

part of the resulting equation is

4 6 4 2
[—4 sin ?]V + [2arsin mr_ (4da 4 16) sin T 4 9asin mﬂ])\
8 6 4 2
+[asin o4 4(1+ «) sin T (8 + 10c) sin i 4(1+ ) sin m7r] =0. (4.41)
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Before we proceed to compute the real part of the resulting equation, we need the

following lemma.

Lemma 4.4.3. Let a, b, and c be any complex number, then
cos 20(sin 40 + a sin 30 + bsin 20 + a sin 0)

= sin 26(cos 46 + a cos 30 + bcos 260 + acosf + 1). (4.42)

Since the proof of the lemma is straighforward, we will skip it.
Using (4.41) and (4. 42) we see immediately that the real part of (4.32b) with § = "1
is a constant multlple 4m of its imaginary part. We next show that (4.41) is indeed

the characteristic equatlon of the matrix G(a, 1).

Theorem 4.4.4. : Let mxm, m = 2k, k € N, be the dimension of the matriz G(a, 1).
Let dimension of each block matriz in G(a, 1) be 2 x 2. Then the eigenvalues N (a, 1)
of C(a, 1) are of the following form.

1 2 1 2
)\i(a,l):§(acos nlm —a—4)i—§[(acos 77;7? —a—4)?
2
+ 4(a cos? lw+2(a+1)cos nlm—Q—Boz)]%
= Ao, 1) £ An(a,1),m=0,1,....,1 — 1. (4.43)

Proof. Solving (4.41), we get (4.43). Using Proposition 4.4.2, we see that if § = 1
or -1 is a root of equation (4.32b), then the multiplicity of 6 = 1 or -1 is both two.
Thus, we have only proved the following. (i)If é is not a positive integer, then for
each o, AE(a,1), m = 1,2,...,1 — 1, are eigenvalues of G(a,1). (ii)If L is a positive
integer, then for each a, A\ (o, 1), m = 1,2, ,é — 1,% +1,...,1 — 1, are eigenvalues
of G(a, 1). To complete the proof of the theorem, it remains to show that for each a,
Ag (o, 1)(= 0, —4) are eigenvalues of G(a, 1) for each a and that if, additionally, £ > 1

is a positive integer, then for each a, AT(a, 1)(= —2, —2 — 2a) are also eigenvalues of
2
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G(a, 1). Using Proposition 4.4.1, we only need to show that —2 — 2a = (A7 (o, 1)) is
2

an eigenvalue of G(a, 1) for fixed . To this end, we see that
trace of G(a, 1) = —l(a +4). (4.44)

Let m = 2] > 4 be a multiple of four, then

A7 (1) + > X () + AT (0 1) =2 - (1—2)(a+4) — 4 (4.45)

j=Lj#s

Using (4.44) and (4.45), we have that the remaining eigenvalue of G(a, 1) for each « is
—2 — 2a, which is equal to A} (a, 1). We thus complete the proof of the theorem. [
2

Proposition 4.4.5. For all o > 0, we have that \p(c,1) > 0, An(a,1) < 0 and
M (1) <0.

Proof. Obviously, A, (c,1) < 0. Now, letting ¢ = cos 27”7”, we have that

A (e, D)) = (=122 + 482 — Do+ 8(1 + t)
(t—Da+20t+1))>+4(1—-1*) >0

for any a > 0. Thus S\m(a, 1) > 0. To prove the last assertion of the proposition, we

note, via (4.43), that

2 2
0 > 4(a cos® $ +2(a + 1) cos mr

—2—3a) =:l.

Thus,

0.

=
IA

AL (o, 1) = 20 (e, 1) £ (402 (a, 1) + 1)

We just complete the proof of the proposition. O
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Proposition 4.4.6. If% is not a positive integer, then the eigencurves A (o, 1), m =
1,2,...,1 — 1, are strictly decreasing in o € (0,00). If é(> 1) is a positive integer,
then A\E(a,1), m=1,2, ..., é -1, % +1,...,1—1, and A;(a, 1) are strictly decreasing in
a € (0,00).

2mm

Proof. Letting t = cos =7, we write (4.43) as

1
(o 1) = Z{a(t = 1) =4+ [(t = 1% + 48 — Do+ 8(1+1)]2}
1
::i{a@-n-4i(ug%}zxxf@@. (4.46)
Then
dXE(a, 1 t—1 2(t+1
da Via
A direct computation would yield that
to > ((t = Da+2(t+1))%
Thus, dk’sz’l) < 0. The equality holds only if t=1 or t= -1 for A} . O

Proposition 4.4.7. (i) In the a — X plane, N (a, 1) intersect with A = =2+ k at ay,

where

2(1+1t) — k2
1—t) A +t+k)

Qpp = (4.47)

(ii) For —1 <t <1, lim \f(a,1) = —(t + 3).

a—00

Proof. Solving equation —2 + k = A (, 1), we easily get that ay, are as asserted.

Rewriting A\ (a, 1) as
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—2a(t—-1)(t+3)+4(1—-1)
alt—1)—4—/t, ’

A (o, 1) =

we see that lim A/ (a,1) = —(t +3) for =1 <t < 1. O

a—00

Theorem 4.4.8. Let m be any positive even integer. The dimension of each block
matriz in G(a, 1) is 2 x 2. Then (i) Suppose m is a multiple of four and m > 4. For
each o > 0, let A\y(cr, 1) be the second largest eigenvalue of G(a,1). Then Ay(a, 1) =
M (o, 1), for 0 < a < sin12§ =: ay; and (o, 1) = )\‘%F(oz, 1) = =2 for all a € [y, 00).
See Figure 4.1.

(ii) Suppose m is not a multiple of four. Then there exists a &, such that Ao(c,1) =
)x[t}(a) for all a > a.. Here [L] = the largest positive integer that is less than or equal
2

to é Moreover, Aa(a, 1) < —2 whenever a > ay. See Figure 4.2.

Proof. For oy, to be positive, we must have

2(1+1) > k% (4.48)
Now,
(1—t)?(1+t+ k)2% =2t +1)% — k% + 4k — 2tk*
> (1 +t)k* — kK + 4k — 2tk?
= k(K> + (t— 1)k —4)
= —k(k —t)(k —to),
where t4 = I/ I07 V126+(1_t)2. Note that we have used (4.48) to justify the above inequal-

dOét,k
dt

ity. Moreover t_ < 0 and ¢, > 2. Thus, > 0 whenever A = =2+ k, 0 < k < 2,
and A = A\ (a, 1) have the intersections intersect at the positive a;;. Upon using
Proposition 4.4.6, we conclude that for 0 < m < [ — 1, the portion of the graphs of
At (a, 1) lying above the line A = —2 do not intersect each other. Thus, \y(c, 1) is as

asserted.
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By Proposition 4.4.7-(ii), we have that

2
lim At (a,1) = —(cos 77;7?

+3) =A% = A

Then A2, 0 < m <[ — 1, have a maximum at m = [L]. Thus, there exists a . such

that \y(a, 1) = A[t}
2
Proposition 4.4.7-(i) and Proposition 4.4.1. O

(ar, 1) for all & > @,.. The last assertion of the theorem follows from

Remark 4.4.9. (i) Since A\ (a, 1) is increasing in t and \° is decreasing in t. The
eigencurves At (o, 1), 0 <m < [é], must be crossing each other.

(ii) The first columnin Table 4.1 contains the values of A\t (1,1), m=0,1,...,5, while
the second column contains the eigenvalues of G(1,1) obtained by using Mathematica.
As indicated, the G(1,1) and G(5,1) obtained by both methods are identical. The
values £ (3,1), m=0,1,...,8, in the first and third columns of Table 4.2 are computed
by Maple, while those in the second and forth columns are computed by Matlab. Some
discrepancies between the values in the respective columns occur due to the round-off
errors.

(iii) Figure 4.1 illustrates the graph of A\t (a, 1), m=0,1,...,5, with |=6. The dotted part
of the curve is Ao(a, 1). Figure 4.2 gives the same information with [=9.

(iv) We conclude, via the last assertion of Theorem 4.4.8, that the wavelet approach
works even better when m is an even number but not a multiple of four. Indeed, in

such case, it synchronizes faster when « is chosen to be the critical value ..
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1=6

+ eigenvalues n eigenvalues
Al ) of G(1,1) An(5,1) of G(5,1)
A (1,1) =0 0 Ad(5,1) =0 0
Af(lvl):_%“—i\/ﬁ —%—l—i\/ﬁ )‘f(5’1):_1743+% 13 _1743+i\/ﬁ
AL =T+ VI3 | —H+ VI3 A1) =—F + VI8 [ -F + V18I
M(1,1) = =2 —2 M (5,1) = =2 2
AL 1) =0+ VI3 |~ + VI3[ A5, 1) = —F + V18T [ T + 1VI8I
AL =+ 3V13 | -1+ 3VI3 ] A5, 1):_§+1\/* "I I3
X (1,1) = —4 —4 X (5,1) = —4 4
N - —I- /3T | I 1/5 [ G- -B-1/i5 | —B-1/i3
LD = UV [ U V18 [ % (5,0 = —2 — 1vIs1 | —% — Lysl
X (1,1) = —4 —4 X5 (5,1) = —12 12
AN (L) =T L A3 I L A3\ (5,1) = -2 — 1/i81 | -2 — 1/181
As(L1)=—4 — 1f UL ()= 2Lz | B I/
Table 4.1
(44
00 25450 7.5 10.0 125
0.0 ||||I||||I||||I||||I||||I|A(al)
-2.0 Ay(a1)
-2.57 (e, 1)=A (1)
] Ale,1)=A(e,1)
A -5.0
7.5-
-10.5-

Figure 4.1
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1=9

eigenvalues eigenvalues
Am(3:1) of G(3.1) Am(10,1) of G(10.1)
A (3,1) = 0 A\ (10,1) =0 0
A (3,1) =~ —0.7967 | -0.7967 | A (10,1) = —2.2938 | -2.2930
Ay (3,1)~ —2.2524 | -22525 | A;(10,1)~ —3.0135 | -3.0140
A\; (3,1)~ —22975 | -22974 | A;(10,1) ~ —2.4465 | -2.4466
A (3, 1)~ —2.0399 | -2.0399 | A\;(10,1) ~ —2.0535 | -2.0542
A (3,1)~ —2.0399 | -2.0399 | \7(10,1) ~ —2.0535 | -2.0542
e (3,1) ~ —2.2975 | -2.2974 | M\J(10,1) ~ —2.4465 | -2.4466
A (3,1)~ —22524 | -22525 | A7(10,1)~ —3.0135 | -3.0140
Mg (3,1)~ —0.7967 | -0.7967 | A (10,1) ~ —2.2938 | -2.2930
A (3, 1)=—4 -4 N, (10,1) = —4 -4
A (3, 1)~ —39051 | -3.9052 | A\ (10,1) =~ —4.0458 | -4.0465
A\, (3,1) = —4.2268 | -4.2265 | X\, (10,1) = —9.2505 | -9.2495
A\; (3,1)~ —6.2025 | -6.2026 | A\;(10,1) ~ —16.5534 | -16.5534
A (3, 1)~ —7.7791 | -7.7792 | A\, (10,1) =~ —21.3427 | -21.3427
s (3, 1) = —7.7791 | 77792 | A\ (10,1) = —21.3427 | -21.3427
X (3,1) = —6.2025 | -6.2026 | \;(10,1) ~ —16.5534 | -16.5534
A (3,1)~ —4.2268 | -4.2265 | X\, (10,1) ~ —9.2505 | -9.2495
Mg (3,1)~ —3.9051 | -3.9052 | Ag(10,1)~ —4.0458 | -4.0465
Table 4.2
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4.4.2 Neumann Boundary Conditions

In this section, we consider the nearest neighbor coupling with Neumann boundary
conditions. The resulting coupling matrix G is then G(0), given as in (3.37).
With ¢ = 1, we have

Al(O):(_ll _12>,211(0>=(_12 _11)7142(1):((1) 8)



and i :a< é :g ) (4.49)

Q
=
S~—
Il
N
= l
A~
*'f =
+
Lo
S~—
I =
=~
o T
+
o &
S~—
N——
)
Do
—~
=
Il
VRS
IS
o
g
S~—
Q]2
N——

As in the case of periodic boundary conditions, the eigenvalue problem G(a,0)b = Ab,

where b = (by, by, ..., b)), b; € C?, can be formed as block difference equation

G (D)b;_1 + Gi(1)b; + Go(1)byy = Ab;, 1 < i < L. (4.51)

With Neumann boundary conditions, by and b;;; must satisfy the following equations
G1(0)b; + Gy(1)by = Ab; = GI(1)by + G1(1)b; 4+ Gy (1)b, (4.52a)
and

G2 (1)bi_y + G1(0)b; = Ab; = GI (1)b;_; + G1(1)b; + G3(1)by4y (4.52b)

Solving (4.52a) and (4.52b), respectively, we get
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bo = (GI(1))(G1(0) — Gy (1)) = ( ol ) by (4.53a)
and

biat = Ga(1) (G (0) — Gy (1))by = < v ) b. (4.53b)

We then see that the characteristic equation of the block difference equation (4.51) is

det[G2 (1) + 0(G1(1) — M) + §°Gy] = 0. (3.6a)

Here ¢ is such that b; = §° i ), where v is a constant depending on §. Expanding

the determinant in (4.54a), we get

adt + 2200+ 24+ Xa)d® — 2(4 + 5o + 2(a + 4) A + 22762

+2(2a0+ 2+ Aa)d +a = 0. (4.54b)

We assume, momentarily, that equation (4.54b) has four distinct roots &y, do, d3 and

d4. The general solutions to (4.51) can then be written as

4
by =Y ¢ ( Vlj ) . (4.55)
j=1

Substituting (4.55) into boundary conditions (4.53), we get

511/1 -1 621/2 -1 631/3 -1 541/4 -1 C1
01 — 11 0o — 1 03 — 13 04 — 14 2 | _. pc=o0
5%((51V1 — 1) (5%((52V2 — 1) (5%(53V3 — 1) 551(541/4 — 1) C3 o -
5%((51 — Vl) (5%(52 — Vg) 55(53 — I/3) 551((54 — 1/4) Cy
(4.56)
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where ¢ = (¢, ¢o, c3,¢4)T. We are now in a position to simplify detD.

511/1 —1 1-— (51V1 (53V3 -1 1-— 531/3
01— vy — 01 03 — 3 vz — 03
55(511/1 — 1) (Sé(l — 511/1) (%(531/3 — 1) 551(1 - 531/3)
(55 (51 - V1> 55(V1 - 51) 55((53 - 1/3) (551(1/3 - (53)

detD = ((52V2) (54V4)

0 1— 511/1 0 1-— 537/3

_ I slnsl sl 0 vy — 0 0 V3 — 03
N (52V2><54V4)<51 52)(63 64) 617/1 —1 5%(1 — 511/1) 531/3 —1 5i(1 — 531/3)
51 — U 55(V1 - (51> 53 — U3 551(V3 - 53)

= (0212) (0av4) (8} — 05) (0% — 0})

{16101 = 1)(v5 = 03) + (01 — 1) (0303 — 1))] L =0 1—0dsv3

v — 0 V3 — 03

}.

Therefore, detD being equal to zero amounts to 62! =1 for i = 1,2, 3, 4.
To get the characteristic equation of G(a,0), we need to solve 6 = 1 and equation

(4.54b). This leads to the following theorem.

Theorem 4.4.10. Let m be any positive even integer. The dimension of each block

matriz in G(a,0) is 2 x 2. Let A\x(a,0) be defined as follows.

1
ME (o, 0) :i(a cos —mlﬂ —a—4)
1
+ 5[(@005# —a —4)* + 4(a cos? ? +2(a + 1) cos _ml7r —-2-— 3a)]%.

(4.57)

Then AE(a,0), m =1,2,...,0 — 1, \{ (,0) = 0 and N\ (a,0) = —2 are eigenvalues of
G(a,0) for each o > 0.

Proof. Substituting § = 7, 0 < m < [ — 1, into (4.54b), we get (4.57). Clearly, if
6 # 1 or -1, or equivalently, cos 2% # 1 or -1, then A\ (a,0), m = 1,2,..,1 — 1, are

eigencurves of G(a, 0). Since 0 = \J (,0) is an eigenvalue of G(«, 0) for all o, we only
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need to show that \;"(a, 0) is, indeed, the eigenvalue of G(a, 0) for each a.. To this end,
-1

we see that trace(G(a, 0)) = —(1—2)(a+4)—6—a. However, \{ («, O)+Z A (a,0) =

J=1

—(l = 1)(a+4) =: k. Thus, trace(G(a,0)) — k = =2 = X\ (a,0). We just complete
the proof of the theorem. O

Remark 4.4.11. (i) Letting t = cos 2%, \:(a,0) = A\ (@, 0) and treating t as a real
parameter, we see that for fired a > 0, the eigenvalues of G with periodic boundary
conditions and Neumann boundary conditions, respectively, lie on the curve )\ti(oz,O)
m t — X\ plane.

(ii) Note that \E(a,0) = \5_, (,0).

Theorem 4.4.12. : For each «, let A\(«,0) be the second largest eigenvalue of G(a,0).
Then A, 0) = AT (,0), for 0 < a < —5= =: a1; and M, 0) = N\ (o, 0) = —2 for all
21

sin?

a € [ay,00).

We skip the proof of theorem due to its similarity with that of Theorem 4.4.8-(ii).

1=3
4 eigenvalues i eigenvalues
An(2,0) of G(2,0) An(5,0) of G(5,0)
Ag(2,0)=0 0 Mg (5,0) =0 0

A (2,0) = =3+ 17

—2 4+ VT

A (5,0) = -2 4+ 1/13

13 1
e E

A3 (2,0) = —L + 17

—I4+ VT

Ay (5,0) = —2 + 1/181

—2 + 1V/181

A (2,0) = —2 -2 A5 (5,0) = —2 )
M(2,0)==3—oVT| =5 —3vVT [ N (500 =% —3v13 | -2 —1V13
A (2,0) =5 —3VT| —5—5vVT [ X4 (5,0)=-F — ;VI8T | -F — 1VI8I

Table 4.3
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(44
0.0 25 50 7.5 10.0 12.5

0_0_||||I||||I||||I||||I||||I|A;(a,0)
-2.01 A ®)
] A7 (a,0)
A -5.0
-7.5] A(e0)
-10.54
A, («,0)
Figure 4.3

Remark 4.4.13. Table 4.3 and Figure 4.3 illustrate, again, the accuracy of our theo-

rems.
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Chapter 5

Concluding Chapter

We conclude this chapter by mentioning some possible future work.
(i) It is of great interest to extend our method to study the real world topology.

(ii) It is certainly worthwhile to study how bounded dissipation of the coupled system

is related to the uncoupled dynamics and its connectivity topology.

(iii) It is interesting to study (global) synchronization of coupled system which lacks

bounded dissipation such as the Rossler system.
(iv) It is desirable to solve the reduced problem of G(a, 3), 0 < § < 1.

(v) It is also of considerable interest to study the wavelet transform on coupled map

lattices.
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