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摘   要 

 

本論文的目的分成兩個部分。第一部份是研究耦合混沌系統在網格中

的全域同步化。第二部份是理論地描述微波變換是如何影響所對應系

統的同步化。基於矩陣測度的概念，我們獲得在網絡上全域同步化的

穩定性。我們的結果可利用在十分廣義的拓樸連結上。更進一步地，

藉由檢驗單一系統的向量場結構，我們就可以決定此系統是否有全域

的同步化。不僅如此，我們也獲得對於所有系統全域同步化的耦合強

度的精確下界。同步化耦合強度的下界是與耦合矩陣的第二大固有值

λ2的絕對值倒數成正比的關係。然而，對於特有的拓樸連結就像是

擴散地耦合矩陣，當節點的個數增加時，λ2對零點越靠近。總結的

來說，為了實現同步化，較大的耦合強度是被要求的。在[48]，魏…

等人提出由微波轉換修改拓樸連接。做了這樣的處理後，λ2=λ2(α)

變成隨著微波常數α而變。他們還發現一個臨界的微波常數αc可以

被選擇使得λ2(αc)遠離零點，而不需要關心節點的個數。這重要地

減少了臨界耦合強度的大小。當耦合矩陣是擴散耦合且具有週期與諾

曼的邊界條件時，這種現象將被分析地證實。 
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Abstract 

 

The purpose of this thesis is two-fold. First, global synchronization in 
lattices of coupled chaotic systems is studied. Second, how wavelet 
transforms affect the synchronization of the corresponding systems is 
theoretically addressed. Based on the concept of matrix measures, global 
stability of synchronization in networks is obtained. Our results apply to 
quite general connectivity topology. Moreover, by merely checking the 
structure of the vector field of the single oscillator, we shall be able to 
determine if the system is globally synchronized. In addition, a rigorous 
lower bound on the coupling strength for global synchronization of all 
oscillators is also obtained. The lower bound on the coupling strength for 
synchronization is proportional to the inverse of the magnitude of the second 
largest eigenvalue λ2 of the coupling matrix. However, for a typical 
connectivity topology such as the diffusively coupled matrix, λ2 moves 
closer to the origin, as the number of nodes increases. Consequently, a larger 
coupling strength is required to realize synchronization. In [48], Wei et al, 
proposed a wavelet transform to alter the connectivity topology. In doing so, 
λ2=λ2 (α) becomes a quantity depending on wavelet parameter α. It is found 
there that a critical wavelet parameter αc can be chosen to move λ2 (αc) away 
from the origin regardless the number of nodes. This in turn greatly reduces 
the size of the critical coupling strength. Such phenomena are analytically 
verified when the coupling matrix is diffusively coupled with periodic and 
Neumann boundary conditions. 
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Chapter 1

Coupled Systems in Lattices

1.1 Introduction and Formulation

Coupled chaotic systems are typically synthesized from simpler, low-dimensional sys-

tems to form new and more complex systems. This is often done with the intent of

realistically modeling spatially extended systems, with the brief that dominant features

of the underlying constituents will be retained. From an applications point of view this

building up approach can also be used to create a novel system whose behavior is more

flexible or richer than that of the constituents, but whose analysis and/or control re-

mains tractable. These and other motivations have led to numerous studies of coupled

systems in a wide range of disciplines. Synchronization has long been of interest in

systems of identical or nearly identical coupled subsystems. The phenomenon of syn-

chronization of coupled chaotic systems has recently become a topic of great interest,

and is the focus of the present work. Systems that display this behavior are temporally

chaotic, but spatially ordered or coherent. Here the coherence is of particular type-the

dynamics is the same or nearly so for long periods of time for all coupled subsystems or

large regions of them. The basic synchronization problem can be framed with the ques-

tions, ”Will my system ever synchronize and, if so, under what conditions?” During the

last few decades the study of networks of dynamical systems has attracted increasing

attention [16-18,21-22,24,28-29,30-33,35-36,38-39,41-42,45-46,50-54]. The purpose to

connect dynamical systems in networks is to get them to solve problems cooperatively.

For instance, such networks are needed for information processing in the brain [17].
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A particularly interesting form of dynamical behavior occurs in networks of coupled

systems or oscillators when all of the subsystems behave in the same fashion; that is,

they all do the same thing at the same time. Such behavior of a network simulates

a continuous system that has a uniform movement, models neurons that synchronize,

and coupled synchronized lasers and electronic circuit systems. The motion of the

systems is described as follows. Let there be m nodes (oscillators). Assume xi is the

n-dimensional vector of dynamical variables of the ith node. Let the isolated (un-

coupling) dynamics be ẋi = f(xi, t) for each node. We assume that xi has a chaotic

dynamics in the sense that its largest Lyapunov exponent is positive. Let h : Rn → Rn

be an arbitrary function describing the coupling within the components of each node.

The connectivity topology, indicating the coupling rules between nodes, is denoted by

the coupling matrix G = (gij). Then the equation of the motion reads

dxi

dt
= f(xi, t) + d

m∑

j=1

gijh(xj), i = 1, 2, ..., m, (1.1)

where d is a coupling strength. The m − 1 constraints x1 = x2 = · · · = xm define the

synchronization manifold M. The sum
m∑

j=1

gij = 0 is required for the invariance of this

synchronization manifold M. We further assume that 0 is a simple eigenvalue of G.

Let F(x, t) = (f(x1, t), f(x2, t), . . . , f(xm, t))T , H(x) = (h(x1),h(x2), . . . ,h(xm))T , and

x =




x1
...

xm




,

xi =




xi,1
...

xi,n




.

(1.2)

Then (1.1) can be written as the vector form

dx

dt
= F(x, t) + d(G ⊗ In)H(x), (1.3)

where ⊗ is the Kronecker product(see e.g.,[15]), and In is the n × n identity matrix.

The simplest mode of the coordinated motion between dynamical systems is their
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complete synchronization when all cells of the network acquire identical dynamical

behavior. Consequently, one asks questions such as: What are the conditions for the

stability of the synchronous state, especially with respect to coupling strengths and

coupling configurations of the network? Typically, in networks of continuous time

oscillators, the synchronous state becomes stable when the coupling strength between

the oscillators exceeds a critical value. In this context, a central problem is to find the

bounds for the coupling strengths so that the stability of synchronization is guaranteed.

It is well-known (see e.g., [4,48,49]) that the lower bound for the coupling strength for

synchronization is proportional to the inverse of the magnitude of the second largest

eigenvalue λ2 of the coupling matrix. However, for a typical connectivity topology

such as the diffusively coupled matrix, λ2 moves closer to the origin, as the number

of nodes increases. Consequently, a larger coupling strength is required to realize

synchronization. As a result, controlling chaos is apparently of great interest and

importance [20,34,37,39,48-49]. It is found in [48] that the modification of a tiny

fraction of wavelet subspaces of a coupling matrix could lead to a dramatic change in

the properties of chaotic synchronization. Specifically, in doing so, λ2 = λ2(α) becomes

a quantity depending on wavelet parameter α. It is found there that a critical wavelet

parameter αc can be chosen to move λ2(αc) away from the origin regardless the number

of nodes. This in turn greatly reduces the size of the critical coupling strength.

To be self-contained, we briefly describe such wavelet transform. Let

A =




A11 · · · A1n
...

. . .
...

An1 · · · Ann




n×n,

(1.4a)

be a matrix with the dimension of each block matrix Akl being 2i × 2i. By an i-scale

wavelet operator W [14,48], the matrix A is transformed into W (A) of the form

W (A) =




Ã11 · · · Ã1n
...

. . .
...

Ãn1 · · · Ãnn




n×n,

(1.4b)
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where each entry of Ãkl is the average of entries of Akl, 1 ≤ k, l ≤ n.

For a given matrix, the above wavelet transform allows a perfect reconstruction (in-

verse wavelet transform), by which there is nothing to gain: A = W−1(W (A)). In [48],

a simple operator Ok is introduced to attain a desirable coupling matrix. That is,

C = W−1(Ok(W (A))) = A + (k − 1)W (A) =: A + αW (A), (1.4c)

where Ok be the multiplication of a scalar factor α on each block matrix Ãkl. After

such reconstruction, the critical strength dc is again, determined in term of the second

largest eigenvalue of C. A numerical simulation of a coupled system of 512 Lorenz

oscillators in [48] shows that with h = I3 and G being diffusively coupled with periodic

boundary conditions, the critical coupling strength dc decreases linearly with respect

to the increase of α up to a critical value αc. The smallest dc is about 6, which is about

103 times smaller than the original critical coupling strength, indicating the efficiency

of the proposed approach.

To understand how such wavelet transform affects the critical coupling strength, we

consider G to be diffusively coupled with mix boundary conditions. Let such mix

boundary conditions be parameterized by a parameter β. Such reconstructed coupling

matrix Aβ + αW (Aβ) is to be denoted by G = G(α, β). Let l = m
2i ∈ N, where i is a

fixed positive integer. Here G(α, β) is an l × l block matrix of the following form.

G(α, β) =




G1(α, β) G2(α, 1) 0 · · · 0 GT
2 (α, β)

GT
2 (α, 1) G1(α, 1) G2(α, 1) · · · 0 0

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 0 · · · GT
2 (α, 1) G1(α, 1) G2(α, 1)

G2(α, β) 0 · · · 0 GT
2 (α, 1) ÎG1(α, β)Î




l×l.

(1.5a)

Here
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G1(α, β) =




−1 − β 1 0 · · · · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 1 −2 1
0 · · · · · · 0 1 −2




2j×2j

− α(1 + β)

22j
eeT

=: A1(β, 2j) − α(1 + β)

22j
eeT , (1.5b)

where e = (1, 1, ..., 1)T , j is a positive integer, α > 0 is a (wavelet) scalar factor and

β ∈ R represents a mixed boundary constant. Moreover,

G2(α, β) =




0 0 · · · 0
...

...
0 0
β 0 · · · 0




2j×2j

+
αβ

22j
eeT

=: A2(β, 2j) +
αβ

22j
eeT , (1.5c)

Î =




0 0 · · · · · · 0 1
0 0 · · · 0 1 0
... · · · ...
... · · · ...
0 1 0 · · · 0 0
1 0 · · · · · · 0 0




.

(1.5d)

The dimension of G(α, β) is l2j × l2j. From here on, we shall call l and j the block and

the wavelet dimensions of G(α, β), respectively. G(α, β) is a block circulant matrix (see

e.g., [15]) only if β = 1. It is well-known, see e.g., Theorem 5.6.4 of [15], that for each

α the eigenvalues of G(α, 1) consists of eigenvalues of a certain linear combinations of

its block matrices. Such results are called the reduced eigenvalue problem for G(α, 1).

5



1.2 Description of the Results

The first results in the thesis are to give another approach to study global synchro-

nization of coupled chaotic systems (1.3). Part of the results in this direction is based

on the paper in [27]. Our coupling rules are allowed to be asymmetric and/or some

competitive (gij < 0, i 6= j) couplings between cells xi and xj as long as the coupled

system is bounded dissipative. In addition, the partial-state coupling in our approach is

allowed to have the form satisfying (3.31). Moreover, by merely checking the structure

of the vector field of the single oscillator, we shall be able to determine if the system is

globally synchronized. We also obtain a rigorous lower bound on the coupling strength

for the global synchronization of all oscillators with coupling configuration satisfying

(3.20a), and (3.20b). Finally, the concept of matrix measures is introduced to obtain

such global results. The second part of the thesis is to prove analytically that the

improvement by wavelet transform as described in section 1.1 is indeed true. Some

new phenomena are also discovered via our analysis. The results in this part are re-

organized from papers in [25,26]. In the following, we give a detailed description of

the results. To understand the effectiveness of wavelet transform, it amounts to study-

ing the eigencurve problem for a class of ”perturbed” block circulant matrices. That is,

G(α, β)b = λ(α, β)b. (1.6)

We prove that for m being a multiple of 4, then

λ2(α, 1) =

{
λ+

1 (α, 1), 0 ≤ α ≤ 1
sin2 π

l

,

λ+
l
2

(α, 1) = −2, α ≥ 1
sin2 π

l

.

Let m = 2l be an even number which is not multiple of 4. We show that λ2(α, 1) =

λ+

[ l
2
]
(α, 1) for α sufficiently large, where [ l

2
] = the largest positive integer that is less

than or equal to n
2
. Moreover, we prove that for such m that λ2(α, 1) < −2, whenever

α > 1
sin2 π

l

. With those results above, we get considerable more information than those

obtained in [43]. Among other, such result suggests that if the number m of oscillators

be even but not a multiple of 4, then the wavelet method works even better. Specifically,

it is better in the sense that the corresponding second largest eigenvalue λ2(α, 1) is

6



further away from 0, and, hence, gives even smaller critical length. Our second main

results of this part are the following. First, the reduced eigenvalue problem for G(α, 0)

is completely solved. Some partial results for the reduced eigenvalue problem of G(α, β)

are also obtained. Second, we are then able to understand behavior of λ2(α, 0) and

λ2(α, 1) for any j and l ∈ N.

1.3 Related Work

General approaches to local synchronization of chaotic systems have been proposed,

including the master stability function (MSF)- based criteria [3,35-36,38-39,42], orig-

inated by Pecora and Carroll [39], and recently the matrix measure approach in [12].

The former computes the Lyapunov exponent of the variational equations, while the

latter uses the concept of matrix measures to give criteria on the variation equations.

Moreover, local synchronization in a complex network of asymmetrically coupled units

was also obtained [11,24] via MSF-based criteria.

Global synchronization of chaotic systems was also intensively studied. The methods

include Lyapunov function- based criteria with symmetrical connections [4,6-9,41,50-

53] or asymmetrical connections [5,50], and the partial contraction approach [45]. For

Lyapunov-based criteria, the partial-state coupling matrix, determining which vari-

ables couple the oscillators, is assumed to have the form satisfying (3.20c). While the

partial contraction approach needs to verify the contraction of the system, depending

on the state variables and time t, which is not a small task. In developing the theory

of global synchronization of chaotic systems, one needs to assume the bounded dissi-

pation of the coupled system, that is, all solutions of the coupled system are, in some

sense, eventually bounded. Such assumption plays the role of an a priori estimate.

However, in obtaining the theory of local synchronization, one dose not need to know

the bounded dissipation of the coupled system. Thus, not surprisingly, the criteria in

getting local synchronization are composed of a term that describes how chaotic the

uncoupled system is and a term that depends on how the configuration of the networks

is formed. Some of their work are to be discussed in more details in Chapters 2 and

7



3. The first analytical work to understand the wavelet transform was done by Shieh,

Wei, Wang and Lai et al. [43]. We summary their main results in the following.

Theorem 1.3.1. Let N ×N , N = 8k, k ∈ N , be the dimension of the matrix G(α, 1).

Let the dimension of each block matrix in G(α, 1) is 2i × 2i. Then the following asser-

tions hold.

(i) ρi := 2 cos π
2i − 2 is an eigenvalue of G(α, 1).

(ii) The second eigenvalue λ2(α, 1) of G(α, 1) is decreasing in α. Moreover, λ2(α, 1) =

ρi whenever α ≥ −2iρi

4 sin2 2iπ
N

.

Note that G(α, 1) is a block circulant matrix (see e.g., [15]). A classical result of a block

circulant matrix states that its eigenvalues exactly consist of those of a certain linear

combinations of its block matrices. (see e.g., Thm 5.6.4 of [15]). The proof of Theorem

1.3.1 was then reduced to working on the eigenvalues of those linear combinations of

block matrices of G(α, 1).

8



Chapter 2

Review of Local Synchronization

and Global Synchronization

In this chapter, we shall review some of known results for local synchronization and

global synchronization in networks of coupled chaotic systems. The local theory in-

cludes the master stability function (MSF), originated by Pecora and Carroll [39], and

the matrix measures approach by chen [12]. The theory of global synchronization under

review includes Lyapunov function approaches by Belykh [4] and Wu and Chua [53],

respectively, and partial contraction approach by W. Wang, and J-J. E. Slotine[45].

2.1 Master Stability Function

In this section, we introduce the master stability function to show the stability con-

dition of local synchronization of coupled system (2.15), which is developed by L. M.

Pecora and T. L. Corroll [39]. In determining the stability of the synchronous state,

various criteria are possible. The weakest is that the maximum Lyapunov exponent

or Floquet exponent be negative. In this respect, we get the variational equation of

coupled system (1.3) by letting ξi be the variations on the ith node and the collection

of variations is ξ = (ξ1, ξ2, . . . , ξm)T . Then,

dξ

dt
= [DF(t) + d(G ⊗ In)DH(t)]ξ, (2.1)
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where DF, DH are the Jacobian matrices of F and H, respectively. Equation (2.1) is

used to calculate Floquet or Lyapunov exponents. We really want to consider only vari-

ations ξ which are transverse to the synchronization manifold M and G is a diagonal

matrix. Moreover, the Jacobian matrix DF and DH are the same for each block, since

they are evaluated on the synchronized state. If we rearrange the block diagonalized

variational equation in equation (2.1), this leaves us with each block having the form

dξk

dt
= [Df(t) + dλkDh(t)]ξk, (2.2)

where λk is an eigenvalue of G, k = 1, 2, . . . , m. Note that we order the eigenvalues

of G with decreasing order λ1 = 0 > λ2 ≥ · · · ≥ λm. For k = 1, we have the vari-

ational equation for the synchronization manifold M (λ1 = 0), so we have succeeded

in separating that from the other, transverse directions. All other k’s correspond to

transverse eigenvectors.

Thus, for each k, the form of each block in equation (2.2) is the same with only the

scalar multiplier dλk differing for each. Thus, one can reformulate the above equation

as follows,

dζ

dt
= [Df(t) + (α + iβ)Dh(t)]ζ, (2.3)

that is the master stability equation (MSE). This equation depends on the two pa-

rameters α and β, and the corresponding largest Floquet or Lyapunov exponent, which

is also a function of α and β, represents the master stability function (MSF). We now

give a property of the MSF as follows.

Theorem 2.1.1. If the function h in (1.1) is equal to the identity function, that is

DH = I, then the Lyapunov exponents Li(α, β) of the master stability equation (2.3)

are

Li(α, β) = Li(0, 0) + α, 1 ≤ i ≤ n. (2.4)
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The behavior of the largest Lyapunov exponent with respect to (α+ iβ) fully accounts

for linear stability of the synchronization manifold. Namely, the synchronized state

(associated with λ1 = 0), is stable if all the remaining blocks (associated with λi,

i = 2, · · · , m) have negative Lyapunov exponents. Moreover, if we suppose that the

Lyapunov exponents of (2.3) are in the decreasing order

L1(α, β) ≥ L2(α, β) ≥ · · · ≥ Ln(α, β) for α, β ∈ R. (2.5)

Then, the stability condition can be given by

L1(α, β) = L1(0, 0) + dλ2 =: Lmax + dλ2 < 0, (2.6)

As a consequence, the second largest eigenvalue λ2 is dominant in controlling the stabil-

ity of chaotic synchronization and the critical coupling strength dc can be determined

in terms of λ2,

dc =
Lmax

−λ2
. (2.7)

2.2 Matrix Measure Criteria

In this section, another criteria for (local) synchronization is provided by M. Y. Chen

[12], which is based on the matrix measure and the Lyapunov converse theorem, an-

alytically. Numerically, one of the local synchronization criteria by computing the

Lyapunov exponent of the MSF have been introduced. Moreover, the matrix theory

can also be used to analyze the stability conditions for the synchronized chaos.

First, we introduce the concept of matrix measure [44]. The matrix measure of matrix

A = (aij) ∈ Rn×n is

µ.(A) = lim
ǫ→0+

‖In + ǫA‖ − 1

ǫ
(2.8)

where ‖ · ‖ is the matrix norm, and In is the identity matrix.

When matrix norms ‖A‖1 = maxj

∑n
i=1 |aij|, ‖A‖2 = [λmax(A

T A)]1/2, and ‖A‖∞ =
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maxi

∑n
j=1 |aij|, we can, respectively, obtain the matrix measures

µ1(A) = max
j

{ajj +

n∑

i=1,i6=j

|aij |} (2.9)

µ2(A) =
1

2
λmax(A

T + A) (2.10)

µ∞(A) = max
i

{aii +
n∑

j=1,j 6=i

|aij|} (2.11)

where λmax(·) denotes the maximum eigenvalue. Let Ω = {1, 2,∞} denote the set of

the above matrix measures. If θ ∈ Ω, µθ(·) is one of the matrix measures µ1(·), µ2(·),
and µ∞(·).
Now, we present a lemma on the manifold M.

Lemma 2.2.1. If the n-dimensional linear time-varying systems in (2.2)

dξk

dt
= [Df(t) + dλkDh(t)]ξk, 2 ≤ k ≤ m

are exponentially stable about its zero solution, then the manifold M is exponentially

stable for coupled system (1.3).

To assure the zero solution 0 of system (2.2) is the exponentially stable, the matrix

measure of the matrix is imposed. In the following two Theorems, we assume that

Dh(t) is of the following two cases.

1) Dh(t) is a symmetric positive semidefinite matrix when θ = 2.

2) Dh(t) satisfies (Dh(t))ii ≥
∑n

j=1,j 6=i |(Dh(t))ij| for 1 ≤ i ≤ n when θ ∈ Ω\{2}.
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Theorem 2.2.2. If there exists a matrix measure µθ(·) such that

∫ ∞

t0

µθ(Df(t) + dλ2Dh(t)) dt = −∞, (2.12)

then the manifold M can be exponentially stable.

Theorem 2.2.3. If there exists a diagonal matrix P > 0, a matrix measure µθ(·), and

a constant d̄ < 0 such that

∫ ∞

t0

µθ

(
(Df(t) + d̄Dh(t))TP + P(Df(t) + d̄Dh(t))

)
dt = −∞, (2.13)

then the manifold M can be exponentially stable provided that dλ2 ≤ d̄.

From the above analysis, the criteria given in (2.12)-(2.13) require that Dh(t) must

be either a symmetric positive semidefinite matrix or a matrix satisfying (Dh(t))ii ≥
∑n

j=1,j 6=i |(Dh(t))ij | for 1 ≤ i ≤ n. In the following Theorem, it can be omitted these

two conditions for Dh(t).

Theorem 2.2.4. The stability of the manifold M can be transformed into the master

stability equation (2.3), and the stability condition is defined as
∫ ∞

t0

µθ(Df(t) + σDh(t)) dt = −∞. (2.14)

The ”synchronization region” S 6= ∅ is the set of the parameter σ satisfying (2.14).

The manifold M is exponentially stable only if dλi ∈ S for all 2 ≤ i ≤ n.

Based on the concept of matrix measure, this brief provides some simple synchroniza-

tion criteria of complex dynamical networks. If the coupling matrix and the largest

nonzero eigenvalue of the coupling matrix satisfy certain conditions, the stability of

the synchronization manifold can be ensured.

2.3 Definitions of Global Synchronization

We assume the system of ordinary differential equations under consideration has a

unique solution for all time and for each initial condition. We write x(t,x0, t0) for
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the unique solution at time t where x0 is the initial condition at time t0. This will

sometimes be simplified as x(t). Let Bk(α) be the ball in Rk with center at 0 and

radius α. We define the system to be synchronized if the trajectories of all the cells

approach each other. We define the system to be self-synchronized if the components

xi,k of each subsystem xi approach each other. Various notions of synchronization and

self-synchronization are given in the following.

Definition 2.3.1. (see e.g., Definition 1 of [53]) Let a ball Bn(α) be given. Sys-

tem (1.3) is uniformly (resp., self-) synchronized if for each ǫ > 0, there exists a

δ(ǫ) > 0 such that if ‖xi(t0) − xj(t0)‖ ≤ δ(ǫ) (resp., |xi,k(t0) − xj,k(t0)| ≤ δ(ǫ)), and

xi(t0) and xj(t0) ∈ Bn(α) for all i, j (resp., i, j, k), then ‖xi(t) − xj(t)‖ ≤ ǫ (resp.,

|xi,k(t) − xj,k(t)| ≤ ǫ) for all t ≥ t0 and for all i, j (resp., i, j, k).

Definition 2.3.2. (see e.g., Definition 2 of [53]) Let a ball Bn(α) be given. System

(1.3) is uniformly asymptotically (resp., self-) synchronized if the followings hold:

i. It is uniformly synchronized.

ii. There exists a δ > 0 such that for all ǫ > 0 there exists a tǫ ≥ 0 such that if

‖xi(t0) − xj(t0)‖ ≤ δ ( resp., |xi,k(t0) − xj,k(t0)| ≤ δ ), and xi(t0) and xj(t0) ∈
Bn(α) for all i, j ( resp., i, j, k ) and t ≥ t0 + tǫ, then ‖xi(t)− xj(t)‖ ≤ ǫ. (resp.,

|xi,k(t) − xj,k(t)| ≤ ǫ) for all i, j (resp., i, j, k).

Definition 2.3.3. Let a ball Bn(α) be given. System (1.3) is globally (resp., self-)

synchronized if for all ǫ > 0, there exists a tǫ ≥ 0 such that ‖xi(t) − xj(t)‖ ≤ ǫ (resp.,

|xi,k(t) − xj,k(t)| ≤ ǫ) for all i, j (resp., i, j, k), all xi(t0) and xj(t0) ∈ Bn(α), and all

t ≥ t0 + tǫ.

Proposition 2.3.4. If a system is globally (resp., self-) synchronized, then it is uni-

formly asymptotically (resp., self-) synchronized.

Proof. If a system is as assumed, then given ǫ > 0, there exists a t′ such that for all

i, j and all xi(t0) and xj(t0) ∈ Bn(α), we have ‖xi(t) − xj(t)‖ ≤ ǫ for t ≥ t′. Letting

t0 = t′ and δ = ǫ, we see immediately that the corresponding system is uniformly
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synchronized. Obviously, the assumption in Definition 2.3.2.-(ii) can be fulfilled by

choosing any δ > 0. The other assertion in the proposition can be similarly proved.

2.4 Lyapunov Function Approach

2.4.1 Belykh

In the last few years, many researchers try to give criteria for the global (or local)

synchronization of coupled chaotic systems. Most of their methods based either on the

eigenvalues of the coupling configuration matrix G or on the Lyapunov exponent of

the coupled systems. In order to avoid calculating eigenvalues or Lyapunov exponent

to determine global synchronization, the connection graph based stability method is

developed by Belykh et al (2004) [4]. This method combines the Lyapunov function

approach with graph theoretical reasoning, and elucidates the relation between syn-

chronization and the form of the connected graph (the coupling configuration matrix

G). The method can be applied to give a rigorous bound for the coupling strength

including in the global, star, diffusive, 2K-nearest neighbor coupling cases, etc. More-

over, the time-varying coupling configuration matrix G(t) is also discussed.

In equation (1.3), let H : R
mn → R

mn be defined by H(x) = (Im ⊗ D)x, and

G = (gij(t))m×m is a time-varying, symmetric matrix with vanishing row-sums, non-

negative off-diagonal elements. Then, we have the following equation,

dx

dt
=




f(x1, t)
...

f(xm, t)


 + d(G ⊗ In)(Im ⊗ D)x =: F(x, t) + d(G ⊗D)x, (2.15a)

where D = diag(1, · · · , 1, 0, · · ·0) is a diagonal matrix with k elements equal to 1, ⊗
denotes the Kronecker product, and

f(xi, t) =




f1(xi, t)
...

fn(xi, t)




.

(2.15b)

.
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Remark 2.4.1. (i)For all time t, we denoted that the number of the nonzero elements

of the off-diagonal elements of G is 2p. (ii) The matrix G is meaningful in the graph

theory. It refers to the connected graph with m vertices and p edges, and if the edge

from vertex i to vertex j exists, then gj,i(t) = gi,j(t) > 0, 1 ≤ i, j ≤ m, for all time t.

Before starting the study of the transversal stability of the synchronization manifold

M, we need also one additional assumption on the eventually dissipativeness of coupled

system (2.15). Assume that the individual system dxi

dt
= f(xi, t) is eventually dissipa-

tive, i.e. there exists a compact set B which attracts all trajectories of the system from

the outside. Therefore, there are no trajectories which go to infinity.

Now, we introduce the notation for the differences Xij = xj − xi, we obtain the differ-

ence equation system as follows,

Ẋij =

[∫ 1

0

Df(βxj + (1 − β)xi) dβ

]
Xij + d

m∑

l=1

{gjlDXjl − gilDXil}, (2.16)

for all i, j = 1, . . . , m. To study the stability of difference equation system (2.16), we

introduce the auxiliary system by adding an uncharted matrix A,

Ẋij =

[∫ 1

0

Df(βxj + (1 − β)xi) dβ −A

]
Xij, i, j = 1, . . . , m, (2.17)

where A = diag(a1, · · · , ak, 0, · · · , 0) is a matrix with ai ≥ 0 for 1 ≤ i ≤ k. Moreover,

we assume that there exist Lyapunov functions of the form,

Vij = XT
ijHXij, i, j = 1, · · · , n. (2.18)

where the vector variables Xij = {X(1)
ij , · · · ,X

(k)
ij }, H = diag(h1, . . . , hk,H1) with h1 >

0, · · · , hk > 0 and the matrix H1 is positive definite. Furthermore, their derivatives of

Lyapunov functions in (2.18) with respect to auxiliary system (2.17) are required to

be negative,

V̇ij = XT
ijH

[∫ 1

0

Df(βxj + (1 − β)xi) dβ − A

]
Xij < 0,Xij 6= 0, i, j = 1, · · · , n.

(2.19)

Hence, we can study global stability of the synchronization manifold M by the following

main Theorem.
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Theorem 2.4.2. Under the assumption on the eventual dissipativeness of the individ-

ual oscillator system dxi

dt
= f(xi, t) and assumption (2.19), the synchronization mani-

fold M of coupled system (2.15) is global asymptotically stable if the following inequality

holds

d

p∑

l=1

gil,jl
X

(d)2

il,jl
>

ad

m

m−1∑

i=1

m∑

j>i

X
(d)2

i,j , d = 1, · · · , k (2.20)

where the index (il, jl) is the pair of satisfying gil,jl
> 0.

Theorem 2.4.2. indeed gives sufficient conditions for the global synchronization. How-

ever, these inequalities in (2.20) are not easily to be applied. To get rid of it and find

a rigorous bound of gil,jl
, the following theorem is given.

Theorem 2.4.3. Under the assumption of Theorem 2.4.2, the synchronization mani-

fold M of coupled system (2.15) is global asymptotically stable if

dgil,jl
>

al

m
bil,jl

(m, p) for l = 1, · · · , p and for all time t. (2.21)

where bil,jl
(m, p) =

∑
m1>m2; il,jl∈Pm1m2

z(Pm1m2) is the sum of the lengths of all chosen

paths Pm1m2 which pass through the edge from vertex il to vertex jl.

Several coupling configuration could be given a general rigorous bound of the coupling

strength via above two theorems. In the following, some examples are listed.

Example 1. Suppose the coupled system satisfies the sufficient conditions in the The-

orem 2.4.2. Let

1. (Global coupling) G has all off-diagonal element nonzero. Then the global syn-

chronization reaches provided dgi,j > a
m

for all i 6= j.

2. (Star coupling) G =




−g g12 g13 · · · g1m

g12 −g12 0 · · · 0
g13 0 −g13 · · · 0
...

...
...

. . .
...

g1m 0 0 · · · −g1m




, where g =
∑m

i=2 g1i.

Then the global synchronization reaches provided dg1i > a
2m − 3

m
for all i =
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2, . . . , m.

3. (Diffusive coupling)

G =




−(g12 + g1m) g12 0 0 g1m

g12 −(g12 + g23) g23 0 0

0 g23
. . .

. . . 0

0 0
. . .

. . . gm−1,m

g1m 0 0 gm−1,m −(g1m + gm−1,m)




.

Then the

global synchronization reaches provided

dgi,j >





a
(

m2

24
− 1

24

)
for odd m

a
(

m2

24
+ 1

12

)
for even m

,

for all i, j.

4. (2K-nearest neighbor coupling) G has its off-diagonal elements of the form

dgi,j >

{
g for 1 ≤ |j − i| mod m ≤ K
0 otherwise

.

Then the global synchronization reaches provided

g >
a

m

( m

2K

)3
(

1 +
65

4

K

m

)

.

2.4.2 Wu and Chua

In this section, we introduce the Lyapunov’s direct method to prove uniformly asymp-

totical synchronization of coupled system (2.15), which is developed by C. W. Wu, and

L. O. Chua [53]. A typical results states that coupled system (2.15) will synchronize if

the nonzero eigenvalues of the coupling matrix have real parts that are negative enough.

Moreover, sufficient conditions for synchronization for several coupling configurations

will be considered.

It will mainly use Lyapunov’s direct method to prove uniform asymptotical synchro-

nization of the coupled system in (2.15). We use d(x) to denote a nonnegative real-

valued function that measures the distance between the various nodes. We also define

the following class of matrices:
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• M1(k) are matrices M (not necessarily square) with entries in Fk such that each

row of M contains zeros and exactly one αIk and one −αIk for some nonzero α.

• M2(k) are matrices M in M1(k) such that for any pair of indices i and j there exist

indices i1, i2, · · · , il with i1 = i and il = j such that for all 1 ≦< l, M(p, iq) 6= 0

and M(p, iq+1) 6= 0 for some p.

In particular, we define d(x) to have the following form:

d(x) = ‖Mx‖2 = xTMTMx,M ∈ M2(n) (2.22)

where M is an m × m matrix in M2(n) (but considered as an nm × nm real-valued

matrix).

Because of the assumptions on M, the crucial property of d(x) is that d(x) → 0 if and

only if ‖xi − xj‖ → 0 for all i and j. One possible choice for d(x) is

d(x) =

m−1∑

i=1

‖xi − xi+1‖2 (2.23)

which corresponds to

M =




I −I 0 · · · 0

0 I −I
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 I −I


 (2.24)

Definition 2.4.4. A function α : R → R is said to belong to class K if

1) α(·) is continuous and nondecreasing,

2) α(0) = 0,

3) α(p) > 0 whenever p > 0.

We assume that all Lyapunov functions we consider are continuous. For a Lyapunov

Function V (t,x), the generalized (Dini) derivative along the trajectories of the system

dx
dt

= f(x, t) is defined as

D+V (t,x) = lim sup
h→0+

1

h
[V (t + h,x + hf(x, t)) − V (t,x)] (2.25)
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Theorem 2.4.5. Suppose that D is an open set such that if Xi(t0) ∈ Bα∗ for all i,

then x(t,x(t0), t0) ∈ D for all t ≥ t0. Suppose that a Lyapunov function V (t,x), locally

Lipschitzian in x, exists on R × D such that for all t ≥ t0 and x ∈ D,

a(d(x)) ≤ V (t,x) ≤ b(d(x))

where a(·) and b(·) are functions in class K. Suppose that there exists µ > 0 such that

for all t ≥ t0 and d(x) ≥ µ,

D+V (t,x) ≤ −c

for some constant c > 0 where D+V (t,x) is the generalized derivative of V along the

trajectories of the coupled system in (2.15). If there exists δ > 0 such that a(δ) > b(µ),

then for each X(t0) ∈ Bα∗ there exists t1 ≥ t0 such that for all t ≥ t1,

d(x(t,x(t0), t0)) ≤ δ

. Furthermore, if d(x(t0)) ≤ µ, then

d(x(t,x(t0), t0)) ≤ δ

for all t ≥ t0.

Theorem 2.4.6. Suppose that D is an open set such that if xi(t0) ∈ Bα∗ for all i, then

x(t,x(t0), t0) ∈ D for all t ≥ t0. Suppose that a Lyapunov function V (t,x), locally

Lipschitzian in x, exists on R × D such that for all t ≥ t0, x ∈ D,

a(d(x)) ≤ V (t,x) ≤ b(d(x))

where a(·) and b(·) are in class K, and for all t ≥ t0,

D+V (t,x) ≤ −c(d(x))

for some function c(·) in class K where D+V (t,x) is the generalized derivative of V

along the trajectories of the coupled system in (2.15). Then the coupled system in (2.15)

is uniformly asymptotically synchronized with respect to α∗.
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2.5 Partial Contraction Approach

In this section, we shall describe the partial contraction approach for studying global

synchronization of coupled chaotic systems. This approach was given by [45]. method

to analyze networks of coupled identical nonlinear oscillators, and study applications

to synchronization. Specifically, we use nonlinear partial contraction theory to derive

exact and global results on synchronization. The method can be applied to coupled

networks of various structures and arbitrary size. For oscillators with positive-definite

diffusion coupling, it can be shown that synchronization always occur globally for

strong enough coupling strengths, and an explicit upper bound on the corresponding

threshold can be computed through eigenvalue analysis.

Basically, a nonlinear time-varying dynamic system will be called contracting if initial

conditions or temporary disturbances are forgotten exponentially fast, i.e., if trajec-

tories of the perturbed system return to their nominal behavior with an exponential

convergence rate. The concept of partial contraction allows one to extend the applica-

tions of contraction analysis to include convergence to behaviors or to specific properties

(such as equality of state components, or convergence to a manifold) rather than tra-

jectories. We briefly summarize the basic definitions and main results of Contraction

Theory here. Consider a nonlinear system

dx

dt
= f(x, t)

where x ∈ R
n is the state vector and f is an n× 1 vector function. Assuming f(x, t) is

continuously differentiable, we have

d

dt
(δxT δx) = 2δxT δ

dx

dt
= 2δxT ∂f

∂x
δx ≤ 2λmaxδx

T δx (2.26)

where δx is a virtual displacement between two neighboring solution trajectories, and

λmax(x, t) is the largest eigenvalue of the symmetric part of the Jacobian J = ∂f
∂x

. Hence,

if λmax(x, t) is uniformly strictly negative, any infinitesimal length ‖δx‖ converges

exponentially to zero. By path integration at fixed time, this implies in turn that all

solutions of system (2.26) converge exponentially to a single trajectory, independently
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of the initial conditions. Note that differential analysis yields global results.

We now introduce the concept of partial contraction, which forms the basis of the

contraction analysis. It derives from the very simple but very general result which

follows.

Theorem 2.5.1. Consider a nonlinear system of the form

ẋ = f(x,x, t)

and assume that the auxiliary system

ẏ = f(y,x, t)

is contracting with respect to y. If a particular solution of the auxiliary y-system

verifies a smooth specific property, then all trajectories of the original x-system verify

this property exponentially. The original system is said to be partially contracting.

Let us now move to networked systems under a very general coupling structure. Con-

sider a coupled system containing m identical nodes

dxi

dt
= f(xi, t) +

∑

j∈Ni

Kji(xj − xi), i = 1, · · · , m, (2.27)

where Ni denotes the set of indices of the active links of elements i. It is equivalent to

dxi

dt
= f(xi, t) +

∑

j∈Ni

Kji(xj − xi) − K0

m∑

j=1

xj + K0

m∑

j=1

xj , i = 1, · · · , m, (2.28)

where K0 is chosen to be a constant symmetric positive definite matrix (we will discuss

its function later). Again, construct an auxiliary system

dyi

dt
= f(yi, t) +

∑

j∈Ni

Kji(yj − yi) − K0

m∑

j=1

yj + K0

m∑

j=1

xj , i = 1, · · · , m, (2.29)

that has a particular solution y1 = · · · = ym = y∞ with

dy∞
dt

= f(y∞, t) − mK0y∞ + K0

m∑

j=1

xj, i = 1, · · · , m, (2.30)

According to Theorem 2.5.1, if the auxiliary system in (2.29) is contracting, then all

system trajectories will verify the independent property x1 = · · · = xm exponentially.
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Theorem 2.5.2. Regardless of initial conditions, all the elements within a generally

coupled system in (2.27) will reach synchrony or group agreement exponentially if

1) the network is connected,

2) λmax(Jis) is upper bounded,

3) the couplings are strong enough.

where Jis =
(

∂f
∂y

(y, t)
)

s
, and Fs = 1

2
(F + FT ).
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Chapter 3

Global Synchronization via Matrix

Measures Approach

This chapter contains the main results of the first part of the thesis. In particular,

we use matrix measures approach to study global synchronization of coupled chaotic

systems. Our coupling rules are allowed to be asymmetric and/or some competitive

(gij < 0, i 6= j) couplings between cells xi and xj as long as the coupled system is

bounded dissipative. In addition, the partial-state coupling in our approach is allowed

to have the form satisfying (3.14). Moreover, by merely checking the structure of the

vector field of the single oscillator, we shall be able to determine if the system is globally

synchronized. We also obtain a rigorous lower bound on the coupling strength for the

global synchronization of all oscillators with coupling configuration satisfying (3.3a),

and (3.3b). Part of the results in this direction is bases on the paper [27]. To conclude

this section, we define the global synchronization as in the following.

Definition 3.0.3. (i) System (2.15) is said to be globally synchronized if for any given

initial values x0 there exists a d = dx0 such that system (2.15) is synchronized for the

initial conditions x0. Here dx0 is a constant depending on x0. (ii) System (2.15) is

said to be uniformly, globally synchronized if there exists a d = d1 such that system

(2.15) is synchronized for all initial values x0.
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3.1 Preliminaries

Chaotic synchronization is a fundamental phenomenon in physical systems with dissi-

pation. In this section, we introduce the concept of the bounded dissipation to coupled

system (2.15). Then, we use this concept of the matrix measure theory to achieve

the behavior of global synchronization in coupled system (2.15). Hence, we give the

definition of bounded dissipation as follows.

Definition 3.1.1. (i) A system of n ordinary differential equations is called bounded

dissipative provided that for any r > 0 and for any initial conditions x0 in Bn(r), there

exists a time t∗ ≥ t0 and αr such that ‖x(t)‖ ≤ αr for all t ≥ t∗. (ii) If, in addition,

αr is independent of r, then the system is said to be uniformly bounded dissipative with

respect to αr.

To prove global synchronization of coupled chaotic systems, one needs to assume

bounded dissipation of the system, which plays the role of an a priori estimate. Without

such an a priori estimate, as in the case of Rössler system, the global synchronization

is much more difficult to obtain. Only local synchronization was reported numerically

in literature (see e.g., [4]). We remark that in certain cases of the Rössler system, the

trajectory of each oscillator grows unbounded yet approaches each other (see e.g., [4]).

An interesting question in this direction is how bounded dissipation of the coupled

system is related to the uncoupled dynamics and its connectivity topology. Not much

general theorems have been provided so far. In the case that G is diffusively coupled

with periodic boundary conditions or zero-flux and D satisfies (3.3c), it was shown in

[5] that bounded dissipation of the single oscillator implies that of the coupled chaotic

oscillators. Moreover, the absorbing domain of the coupled system is a topological

product of the absorbing domain of each individual system. Moreover, it often requires

to construct an approximate Lyapunov function to prove the bounded dissipation of

the system. The following proposition gives the type of Lyapunov functions that would

ensure the bounded dissipation of the system.

Proposition 3.1.2. Let a system of n ordinary differential equations be given. Let V

be a continuous real-valued function V : Rn → R+ so that V is strictly decreasing along
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the solution of the system on Rn − Γ, where Γ is homeomorphic to an open ball in Rn.

Suppose

lim
‖x‖→∞

V (x) = ∞. (3.1)

Then the system is bounded dissipative.

Proof. For any x0 ∈ Rn, we first prove that x(t) must enter Γ at a certain time.

Otherwise, the values of V at the points of the ω-limit set of x(t) must be the same,

a contradiction. The contradiction comes from the facts that the ω-limit set is closed

and invariant and V is strictly decreasing along the solution trajectory, which stays in

Rn − Γ. We then find a ball Bn(r) so that Bn(r) ⊃ Γ. Let k1 = maxx∈B̄n(r) V (x), and

Bn(αr) be a ball satisfying V (x) > k2 whenever x ∈ Rn−Bn(αr), where k2 > k1. Then

we conclude that if x0 ∈ Bn(r), x(t) stays in Bn(αr) for all time t. We just complete

the proof of the proposition.

In our derivation of synchronization of system(3.1), we need the concept of matrix

measure. For the completeness and ease of references, we also recall the following

definition of the matrix measure and its properties (see e.g., [44]).

Theorem 3.1.3. (see e.g., 3.5.32 of [44]) Consider the differential equation ẋ(t) =

A(t)x(t) + v(t), t ≥ 0, where x(t) ∈ Rn
, A(t) ∈ Rn×n

, and A(t),v(t) are piecewise-

continuous. Let ‖ · ‖i be a norm on Rn, and ‖ · ‖i, µi denote, respectively, the corre-

sponding induced norm and matrix measure on Rn×n. Then whenever t ≥ t0 ≥ 0, we

have

‖x(t0)‖ exp

{∫ t

t0

−µi(−A(s))ds

}
−
∫ t

t0

exp

{∫ t

s

−µi(−A(τ))dτ

}
‖v(s)‖ds ≤ ‖x(t)‖

≤ ‖x(t0)‖ exp

{∫ t

t0

µi(A(s))ds

}
+

∫ t

t0

exp

{∫ t

s

µi(A(τ))dτ

}
‖v(s)‖ds. (3.2)
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3.2 Global synchronization results

Our main result in the first part of the thesis is contained in this section. We begin

with imposing conditions on coupling matrices G and D. We assume that the coupling

matrix G satisfies the following:

(i) λ = 0 is a simple eigenvalue of G and e = [1, 1, . . . , 1]T1×m is

its corresponding eigenvector. (3.3a)

(ii) All nonzero eigenvalues of G have negative real part. (3.3b)

We further assume that the matrix D is, without loss of generality, of the form

D =

(
Ik 0

0 0

)

n×n.

(3.3c)

The index k, 1 ≤ k ≤ n, means that the first k components of the subsystem are

coupled. If k 6= n, then the system is said to be partial-state coupled. Otherwise, it is

said to be full-state coupled.

From time to time, we will refer system (3.1) as coupled system (D,G,F(x, t)).

To study the synchronization of such system, we permute the state variables in the

following way:

x̃i =




x1,i
...

xm,i




,

and x̃ =




x̃1
...

x̃n




.

(3.4)

Then (3.1) can be written as

˙̃x =




f̃1(x̃, t)
...

f̃n(x̃, t)


+ d(D ⊗G)x̃ =: F̃(x̃, t) + d(D ⊗ G)x̃, (3.5a)

where
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f̃i(x̃, t) =




fi(x1, t)
...

fi(xm, t)




.

(3.5b)

Note that such reformulation is certainly not new (see e.g., [29, 53]). From here on, we

will treat ˜ as a function that takes x into x̃ or xi into x̃i. A transformation of coordi-

nates of x̃ is then to be applied to (3.4) so as to decompose the synchronous manifold.

The problem of synchronization of (2.15), and hence (3.5) is then equivalent to proving

the asymptotical stability of reduced system (see (3.8)). To study the synchronization

of (2.15), we first make a coordinate change to decompose the synchronous subspace.

Let A be an m × m matrix of the form

A =




1 −1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1
1 · · · · · · 1 1




m×m

=:

(
C

eT

)

,

(3.6a)

where e is given as in (3.3a). It is then easy to see that CCT is invertible and that

A−1 =
(
CT (CCT )−1| e

m

)

.
(3.6b)

Setting

E = In ⊗ A, (3.6c)

we see that
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E(D⊗ G)E−1 = (In ⊗A)(D ⊗ G)(In ⊗ A−1)

= D ⊗ AGA−1 = D ⊗
(

CGCT (CCT )−1 0

∗ 0

)

=: D ⊗
(

Ḡ 0

∗ 0

)

.

(3.6d)

We remark, via (3.6d), that σ(G)−{0} = σ(Ḡ), where σ(A) is the spectrum of matrix

A. Multiplying E to the both side of equation (3.5a), we get

˙̃y =: E ˙̃x = EF̃(x̃, t) + dE(D⊗ G)E−1ỹ

= EF̃(E−1ỹ, t) + d(D⊗
(

Ḡ 0

∗ 0

)
)ỹ. (3.7)

Let ỹ =




ỹ1
...

ỹn




.

Then ỹi =




x1,i − x2,i
...

xm−1,i − xm,i∑m
j=1 xj,i




.

Setting ỹi =

(
ȳi∑m

j=1 xj,i

)

,

and

ȳ =




ȳ1
...

ȳn




,

we have that the dynamics of ȳ is satisfied by the following equation

˙̄y = d(D ⊗ Ḡ)ȳ + F̄(ȳ, t). (3.8)

Here F̄ is obtained from EF̃(E−1ỹ, t) accordingly.

The task of obtaining the global synchronization of system (2.15) is now reduced to

showing that the origin is globally and asymptotically stable with respect to system

(3.8). To this end, the space ȳ is broken into two parts ȳc, the coupled space, and ȳu,

the uncoupled space.

ȳ =

(
ȳc

ȳu

)

,

and F̄(ȳ, t) =

(
F̄c(ȳ, t)
F̄u(ȳ, t)

)

,

respectively. (3.9)
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Here ȳc =




ȳ1
...
ȳk




,

and ȳu =




ȳk+1
...

ȳn


. The dynamics on the coupled space with

respect to the linear part is under the influence of Ḡ, which is asymptotically stable.

The dynamics of the nonlinear part on coupled space can then be controlled by choosing

large coupling strength. In short, this part of the dynamics is easy to contain. In fact,

the larger k, the number of state variables being coupled, gives the better chance of the

synchronization of the coupled system. On the other hand, the uncoupled space has no

stable matrix Ḡ to play with. Thus, its corresponding vector field F̄u(ȳ, t) must have

a certain structure to make the trajectory stay closer to the origin as time progresses.

As we shall explain latter.

Now, assume that F̄c(ȳ, t) satisfies a dual-Lipschitz condition with a dual-Lipschitz

constant b1. That is,

‖F̄c(ȳ, t)‖ ≤ b1‖ȳ‖ (3.10a)

whenever ȳ in the ball B(m−1)n(α), and for all time t. Since the estimate in the right-

hand side of (3.10a) depends on the whole space ȳ, condition (3.10a) is a mild assump-

tion provided that coupled system is bounded dissipative. Write F̄u(ȳ, t) as

F̄u(ȳ, t) = U(t)ȳu + (F̄u(ȳ, t) −U(t)ȳu)

=: U(t)ȳu + R̄u(ȳ, t). (3.10b)

Assume that U(t) is a block diagonal matrix of the form U(t) = diag(U1(t), · · · ,Ul(t))

where Uj(t), j = 1, . . . , l, are matrices of size (m−1)kj×(m−1)kj . Here

l∑

j=1

kj = n−k,

and kj ∈ N. We assume further that the followings hold.

(i) The matrix measures µi(Uj(t)) are less than −γ for all t and all j,

where γ > 0. (3.10c)
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(ii) Let R̄u(ȳ, t) =




Ru1(ȳ, t)
...

Rul(ȳ, t)




.

Then Ruj(ȳ, t), j = 1, . . . , l, satisfy a strong

dual-Lipschitz condition with a strong dual-Lipschitz constant b2. Specifically, let

ȳu =




ȳu1
...

ȳul


, written in accordance with the block structure of U(t). Then we

assume that

‖Ruj(ȳ, t)‖ ≤ b2 ‖




ȳc

ȳu1
...

ȳu j−1


 ‖ (3.10d)

whenever ȳ in the ball B(m−1)n(α), and for all j = 1, . . . , l and all time t.

Specifically, we break the vector field F̄u into (time dependent) linear part U(t)ȳu

and nonlinear part R̄u(ȳ, t). We will further break U(t) into certain block diagonal

form if necessary. Note that the form (3.10b) can always be achieved. Since the

remainder term R̄ still depends on the whole space ȳ. To take control of the dynamics

on the linear part, we assume that the matrix measure of each diagonal block Uj(t)

is negative. As to contain corresponding dynamics on the nonlinear part, we assume

that the (3.10d) holds. Note that though the nonlinear terms Ruj(ȳ, t) could possibly

depend on the whole space, their norm estimate are required to depend only on the

coupled space and uncoupled subspaces with their indexes proceeding j. In this set up,

the nonlinear dynamics on uncoupled space can be iteratively controlled by choosing

large coupling strength. We also remark that if (3.10c) and (3.10d) are satisfied for l,

the number of diagonal blocks, being one, then we do not need to further break U(t).

Such further breaking is needed only if (3.10c) and (3.10d) are not satisfied. The proof

in the following theorem gives exactly how the above strategy can be realized.

Theorem 3.2.1. Let G and D be given as in (3.3). Assume that F̄ satisfies (3.10a-

d), and system (3.8) is uniformly bounded dissipative with respect to α. Let λ1 =
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max{λj|λj ∈ Re(σ(Ḡ))}. If

d >
cb1

−λ1 + ǫ

(
1 + (

b2

γ
)2

) l
2

=: dc, (3.11)

where ǫ ≥ 0 and c is some constant depending on G and ǫ, then lim
t→∞

ȳ(t) = 0.

Proof. Since system (3.8) is uniformly bounded dissipative with respect to α, without

loss of generality, we may assume that ‖ȳ(t)‖ ≤ α for all time t ≥ t0. Using (3.10b),

we write (3.8) as

(
˙̄yc

˙̄yu

)
=

(
d(Ik ⊗ Ḡ) 0

0 U(t)

)(
ȳc

ȳu

)
+

(
F̄c(ȳ, t)
R̄u(ȳ, t)

)

.

(3.12a)

Applying the variation of constant formula to (3.12a) on ȳc, we get

ȳc(t) = e(t−t0)d(Ik⊗Ḡ)ȳc(t0) +

∫ t

t0

e(t−s)d(Ik⊗Ḡ)F̄c(ȳ(s), s)ds.

Let λ1 = max{ λj|λj ∈ Re( σ(G) − {0} ) }. Then

‖etd(Ik⊗Ḡ)‖ ≤ cetdν (3.12b)

for ν = λ1 + ǫ and some constant c. Here 0 < ǫ < −λ1. Thus,

‖ȳc(t)‖ ≤ ce(t−t0)dν‖ȳc(t0)‖ + cb1

∫ t

t0

ed(t−s)ν‖ȳ(s)‖ds

≤ ce(t−t0)dνα +
α

d

cb1

|ν| =: ce(t−t0)dνα +
α

d
c0.

Let δ > 1, we see that

‖ȳc(t)‖ ≤ α

d
c0δ, (3.13a)
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whenever t ≥ t0,1 for some t0,1 > 0. We then apply Theorem 3.1.3 on ȳu1 and the

resulting inequality is

‖ȳu1(t)‖ ≤ ‖ȳu1(t0,1)‖ exp

{∫ t

t0,1

µi(U1(s))ds

}

+

∫ t

t0,1

exp

{∫ t

s

µi(U1(τ))dτ

}
‖Ru1(ȳ(s), s)‖ds.

It then follows from (3.10c-d) and (3.13a) that

‖ȳu1(t)‖ ≤ αe−γ(t−t0,1) +
α

d

b2

γ
c0δ ≤ α

d

b2

γ
c0δ

2 =:
α

d
c1δ

2
, (3.13b)

whenever t ≥ t1,1 for some t1,1 ≥ t0,1. Inductively, we get

‖ȳuj(t)‖ ≤ α

d


b2

γ

√√√√
j−1∑

i=0

c2
i


 δj+1 =:

α

d
cjδ

j+1, j = 2, . . . , l, (3.13c)

whenever t ≥ tj,1(≥ tj−1,1). Letting tl,1 = t1 and summing up (3.13a), (3.13b) and

(3.13c), we get

‖ȳ(t)‖ =

√√√√
l∑

j=1

‖ȳuj(t)‖2 + ‖ȳc(t)‖2 ≤ α

d

(
1 + (

b2

γ
)2

) l
2 cb1

|ν| δ
l+1 =: hα,

whenever t ≥ t1. Choosing d >
(
1 + ( b2

γ
)2
) l

2 cb1
|ν| δ

l+1, we see that the contraction factor

h is strictly less than 1, and ‖ȳ(t)‖ contracts as time progresses. To complete the proof

of the theorem, we note that δ > 1 can be made arbitrary close to 1. Consequently, if

d >
(
1 + ( b2

γ
)2
) l

2 cb1
|ν| , then h can still be made to be less than 1.
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Remark 3.2.2. (i) In case that Ḡ is symmetric, then c and ǫ can be chosen to be one

and zero, respectively. (ii) b1 and b2 could possibly depend on α. (iii) If system (3.8)

is only bounded dissipative, then the estimate in (3.11) is still valid. However, in this

case, b1 and b2 depend not only on α but also on x0.

Corollary 3.2.3. Suppose F̄ and G are given as in Theorem 3.2.1. Let

D =

(
D̄k×k 0

0 0

)

n×n,

where Re( σ(D̄) ) > 0. (3.14a)

Assume, in addition, that either σ(G) or σ(D̄) has no complex eigenvalue.

Then assertions in Theorem 3.2.1 still hold true, except dc needs to be replaced by

dc =
c b1

|ν|min{Re( σ(D̄) )}

(
1 + (

b2

γ
)2

) l
2

.
(3.14b)

Proof. Assumption on D is to ensure that (3.29b) is still valid. Other parts of the

proof are similar to those in Theorem 3.2.1 and are thus omitted.

We next turn our attention to finding conditions on the nonlinearities fi(u, t), i =

1, . . . , n, u ∈ Rn, so that assumptions (3.10a-d) are satisfied. To this end, we need the

following notations. Let x̃i and x̃ be given as in (3.4). Define

[x̃i]
− =




x1,i
...

xm−1,i




,

and [x̃]− =




[x̃1]
−

...
[x̃n]−




.

(3.15)

We then break F̃ as given in (3.5a) into two parts so that the breaking is in consistent

with ȳ in (3.9). Specifically, we shall write

F̃(x̃, t) =

(
F̃c(x̃, t)

F̃u(x̃, t)

)

.

(3.16)

We are now in the position to state the following propositions.
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Proposition 3.2.4. Suppose that fi(x, t), i = 1, 2, . . . , k satisfy a Lipschitz condition

in Bn(α
2
) with a Lipschitz constant b1. That is

|fi(u, t) − fi(v, t)| ≤ b1

k
‖u− v‖, i = 1, 2, . . . , k, (3.17)

for all u, v in Bn(α
2
) and all time t. Then (3.10a) holds true.

Proof. Note that EF̃(x̃, t) =




Af̃1(x̃, t)
...

Af̃n(x̃, t)




,

where A is given as in (3.23a), and so

[Af̃i(x̃, t)]− =




fi(x1, t) − fi(x2, t)
...

fi(xm−1, t) − fi(xm, t)




,

i = 1, 2, . . . , n. (3.18)

Since

F̄c(ȳ, t) =




[Af̃1(x̃, t)]−

...

[Af̃k(x̃, t)]−




,

we conclude that (3.10a) holds.

From the above proposition, we see that the nonlinearities on the corresponding coupled

space are only assumed to be Lipchitz. The following proposition is very useful in the

sense that by checking how each component fi of the nonlinearity f is formed, one

would then be able to conclude whether (3.10c-d) are satisfied.

Proposition 3.2.5. Let u = (u1, . . . , un)
T and v = (v1, . . . , vn)T be vectors in Bn(α

2
).

Let wp =

p∑

i=0

ki, p = 1, . . . , l, where k0 = k, the dimension of coupled space, and

k1, . . . , kl and l are given as in (3.10c). Write fwp−1+i(u, t)−fwp−1+i(v, t), i = 1, . . . , kp,

as
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fwp−1+i(u, t) − fwp−1+i(v, t)

=

kp∑

j=1

qwp−1+i,wp−1+j(u,v, t)(uwp−1+j − vwp−1+j) + rwp−1+i(u,v, t).

(3.19a)

We further assume that the followings are true.

(i) For p = 1, . . . , l, let Qu,v,p = (qwp−1+i,wp−1+j(u,v, t)), where 1 ≤ i, j ≤ kp.

Then µ∗(Vp) < −γ for all p, u,v in Bn(α
2
) and all time t, where ∗ = 1, 2,∞.

(3.19b)

(ii) Let rp =
(
rwp−1+1(u,v, t), . . . , rwp

(u,v, t)
)T

. We have that

‖rp‖ ≤ b2 ‖




u1 − v1
...

uwp−1 − vwp−1


 ‖ (3.19c)

for all p, u,v in Bn(α
2
) and all time t.

Then (3.10c) and (3.10d) hold true for ∗ = 1, 2,∞.

Proof. Since ri(u,v, t) depend on whole space, fi(u, t)− fi(v, t) can always be written

as the form in (3.19a). Using (3.19a) and (3.18), we have that the matrices Up(t) in

the linear part of F̄u(ȳ, t) take the form

Up(t) =

m−1∑

w=1

Qxw,xw+1,p(t) ⊗ Dw, (3.20)

where xw are given as in (1.2), and

(Dw)ij =

{
1 i = j = w,

0 otherwise,
1 ≤ i, j ≤ m − 1.
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It then follows from (2.9-2.11), and (3.20) that µ∗(Up(t)) < −γ for ∗ = 1 or ∞. For

∗ = 2, we have that

m−1⋃

w=1

σ{Qxw,xw+1,p(t) +
(
Qxw,xw+1,p(t)

)T}

= σ

{
m−1∑

w=1

(
Qxw,xw+1,p(t) ⊗ Dw +

(
Qxw,xw+1,p(t)

)T ⊗Dw

)}

= σ
(
Up(t) + UT

p (t)
)
,

where σ(A) is the spectrum of A. We remark that the first equality above can be

verified by the definition of eigenvalues due to the structure of Up(t). It then follows

from (2.11) that µ2(Up(t)) < −γ. The remainder of the proof is similar to that of

Proposition 3.2.4, and is thus omitted.

Remark 3.2.6. The upshot of Proposition 3.2.5 is that by only checking the ”structure”

of the vector field f of the single oscillator, one should be able to determine if our

main result can be applied. To be precise, we begin with saving notations by setting

f as f = f(x, t) = (f1(x, t), . . . , fn(x, t))T . We then check the form of the difference

of ”uncoupled” part of dynamics. That is, we write fi(u, t) − fi(v, t) in the form of

(3.19a) with i = k + 1, . . . , n. If (3.19b, c) can be satisfied, then l = 1 gets the job

done. Otherwise, we further break the uncoupled states into a set of smaller pieces to

see if the resulting (3.19b, c) are satisfied.

We are now ready to state the main theorems of the paper.

Theorem 3.2.7. Assume that system (2.15) is (resp., uniformly) bounded dissipative.

Let the coupling matrices G and D satisfy (3.3) and the nonlinearities fi(x, t), i =

1, 2, . . . , n, satisfy (3.17) and (3.19). Suppose d is greater than dc, as given in (3.11).

Then system (2.15) is (resp., uniformly,) globally synchronized.
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Proof. The proof is direct consequences of Propositions 3.2.4 and 3.2.5, and Theorem

3.2.1.

Remark 3.2.8. From here on, we will refer the assumptions in Theorem 3.2.7 as

synchronization hypotheses.

Theorem 3.2.9. The coupled system (D,G,F(x, t)), given as in Corollary 3.2.3, is

also (resp., uniformly,) globally synchronized provided that its coupled system is (resp.,

uniformly) bounded dissipative and that d is greater than dc. Here dc is given in (3.14b).

3.3 Applications

To see the effectiveness of our main results, we consider four examples in this section.

These are coupled Lorenz equations [4,29], coupled chaotic walk system [56], coupled

Duffing oscillators [54] and coupled Lorenz-like system.

3.3.1 Coupled Lorenz System

We shall begin with Lorenz equations. Let x = (x1, x2, x3)
T ,

f(x, t) = f(x) = (σ(x2 − x1), rx1 − x2 − x1x3, −bx3 + x1x2)
T

=: (f1(x), f2(x), f3(x))T
.

Here σ = 10, r = 28 and b = 8
3
. In the following cases (a), (b), (c) and (d), G denotes

the diffusive coupling with zero flux and D is, respectively,




1 0 0
0 0 0
0 0 0




,




0 0 0
0 1 0
0 0 0




,


0 0 0
0 0 0
0 0 1




,

and




0 0 0
0 1 1
0 0 1




.

For the first three cases, it was shown in [8] that such

coupled system (D,G,F(x)) have the topological product of an absorbing domain

B = {x2
1 + x2

2 + (x3 − r − σ)2 <
b2(r + σ)2

4(b − 1)
=: β}. (3.21)
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Hence, in each case, we will concentrate on the illustration of how our main results

may or may not be applied.

(a) Let D = D1 =




1 0 0
0 0 0
0 0 0





.

For the corresponding ”coupled” nonlinearity f1, we

get that

|f1(u) − f1(v)| = σ|(u2 − v2) − (u1 − v1)| ≤
√

2σ‖u− v‖.

Hence, condition (3.10a) is satisfied. For the corresponding ”uncoupled” nonlinearities

f2 and f3, we see that

f2(u) − f2(v) = (−u2 − u1u3 + ru1) − (−v2 − v1v3 + rv1)

= [−(u2 − v2) − u1(u3 − v3)] + (r − v3)(u1 − v1) (3.22a)

and

f3(u) − f3(v) = (u1u2 − bu3) − (v1v2 − bv3)

= [u1(u2 − v2) − b(u3 − v3)] + v2(u1 − v1). (3.22b)

Writing (3.22a,b) in the vector form, we get

(
f2(u) − sf2(v)
f3(u) − f3(v)

)
=

(
−1 −u1(t)

u1(t) −b

)(
u2 − v2

u3 − v3

)
+

(
(r − v3)(u1 − v1)

v2(u1 − v1)

)

=: Qu,v,1(t)

(
u2 − v2

u3 − v3

)
+ r1. (3.22c)

Clearly, µ2(Qu,v,1(t)) = max{−1,−b} = −1 < 0, and ‖r1‖ ≤ (σ+
√

β) · |u1−v1|, where

its estimate depends only on coupled space. Hence, conditions (3.19b,c) are satisfied.
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(b) Let D = D2 =




0 0 0
0 1 0
0 0 0





.

As in the case (a), the corresponding ”coupled”

nonlinearity f2 is clearly Lipschitz on the absorbing domain. For the corresponding

”uncoupled” nonlinearities f1 and f3, we get

f1(u) − f1(v) = [−σ(u1 − v1)] + σ(u2 − v2),

f3(u) − f3(v) = [−b(u3 − v3)] + u1(u2 − v2) + v2(u1 − v1).

If l = 1 is chosen, then (3.19c) is violated. For in the case, the norm estimate in the

right hand side of (3.19c) can only depend on u2−v2. Now, if we choose l = 2 and pick

the space of the first diagonal block being the one associated with the nonlinearity f1,

then Qu,v,1 = (−σ) and r1 = σ(u2−v2). Consequently, (3.19b) and (3.19c) are satisfied

with p = 1. For p = 2, we have Qu,v,2 = (−b) and r2 = u1(u2− v2)+ v2(u1− v1), which

depends only on the coupled space and the preceding uncoupled space. Thus, r2 can

also be satisfied with (3.19c).

(c) For illustration, we also consider D = D3 =




0 0 0
0 0 0
0 0 1




.

In this case, the uncou-

pled nonlinearities of f1 and f2 both contain the terms x2 and x1. The only feasible

choice to break the uncoupled space is not to do any breaking. That is, pick l = 1.

Otherwise, (3.19c) is isolated. For l = 1, we have that Qu,v,1 =

(
−σ σ

r − u3(t) −1

)
.

For such Qu,v,1, its matrix measure can not stay negative for all time. An indicated,

see e.g., [29], synchronization fails for this type of partial coupling.

(d) Let D = D4 =




0 0 0
0 1 1
0 0 1





.

To apply Theorem 3.2.9, we first note that for

D = D5 =




0 0 0
0 1 0
0 0 1




,

the corresponding coupled system (D5,G,F(x)) is indeed

globally synchronized, and hence, so is the system (D4,G,F(x)). Note that bounded

dissipation of the system (D4,G,F(x)) can be verified similarly as in [29].
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(e) The work that are most related to ours are those in [4,5]. While their estimates for

dc seems to be sharper than ours, which we shall illustrate in case (f), their connec-

tivity topology requires that off-diagonal entries be nonnegative. We only assume our

connectivity topology satisfies (3.3a,b). Consider for instant the following matrix:

G =




−1 2 0 −1
−1 −1 0 2
2 −1 −3 2
0 0 3 −3




Such G has some negative off-diagonal entries and satisfy (3.3a,b). In fact, the eigen-

values of G are 0, −1±
√

5i, and −6. Clearly, applying our results, we see immediately

that coupled systems (Di,G,F(x)), i = 1, 2, 4 are globally synchronized. Numerical

results (see Figure 3.1) indeed confirm synchronization of such connectivity topology.

We remark that by constructing the Lyapunov function as given in [29], one would

be able to show the bounded dissipation of the coupled system with this particular

connectivity topology.
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Figure 3.1: The difference of each component of two coupled oscillators in case (e).
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(f) In this part, we shall compute the lower bound for the global synchronization for case

(a) by using our method, those obtained in [4] and MSF, respectively. To compute dc,

given in (3.11), we note that Ḡ = CGCT (CCT )−1 = C(CTC)CT (CCT )−1 = CCT .

Since Ḡ is symmetric, c and ǫ, given as in (3.12b), can be chosen to be 1, and 0,

respectively. Consequently,

dc =

√
2σ
√

1 + β + 2σ
√

β + σ2

4 sin2( π
2n

)
.

(3.32)

Here 4 sin2( π
2n

) = |λ1|. Applying Theorem 3.2.9, we see that coupled system (D,G,F(x))

is uniformly, globally synchronized provided that the coupling strength d is greater

than dc. For n = 4, dc ≈ 1189. In [53], the bound d̄c for threshold of uniformly global

synchronization is

d̄c =

{
a
8
n2 if n is even

a
8
(n2 − 1) if n is odd

.

Here a = b(b+1)(r+σ)2

16(b−1)
− σ. For n = 4, d̄c ≈ 1039, which is slightly better than dc.

Using the MSF-criteria, we numerically (see Figure 3.2) compute the maximum

Lyapunov exponent of the variational equations with respect to the parameter α. We

have in this example that if

α = dλ1 < −7.778, (4.4)

then its maximum Lyapunov exponent is negative. Here λ1 = −4 sin2 π
8

is the largest

nonzero eigenvalues of G. Hence if d > −7.778
λ1

≈ 13.3, then local synchronization of the

coupled system (D,G,F(x)) can be realized.

3.3.2 Coupled Chaotic Walks System

For the second example, we consider the subsystem (see e.g., [12]) of chaotic walks.

That is,

ẋ1 = f(x1) = (f1(x1), . . . , fn(x1))
T
, (3.24a)
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Figure 3.2: The vertical axis denotes the maximum Lyapunov exponent of the varia-
tional equations. While the horizontal axis represents α = dλ.

where

fi(x1) = sin(x1,k) − bx1,i, i = 1, 2, . . . , n, and

k = (i mod n) + 1. (3.24b)

Note that in [56], it was demonstrated numerically that subsystems (3.24a) exhibits

hyperchaos. We next show that the coupled system (2.15) with the nonlinearities given

as in (3.24b) is bounded dissipative provided that G is a negative semidefinite matrix,

and D is given as in (3.3c). To this end, we introduce a Lyapunov function of the form

V (x) =
m∑

j=1

n∑

i=1

x2
j,i

2 .

By taking the time derivative of V along solutions of (2.15), one obtains
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dV

dt
=

m∑

j=1

n∑

i=1

xj,i(sin(xj,k) − bxj,i) + d
k∑

j=1

< xj,Gxj >

≤
m∑

j=1

n∑

i=1

−bx2
j,i + |xj,i| =: bm,n.

Suppose

m∑

j=1

n∑

i=1

x2
j,i ≥ mnc2

0, where c0 > 0 satisfying

−bc2
0 + c0 < − 1

2b
(mn − 1). (3.25)

Then, we may assume, without loss of generality, that |x1,1| ≥ c0. Now,

bm,n = −bx2
1,1 + |x1,1| +

[(
m∑

j=1

n∑

i=1

−bx2
j,i + |xj,i|

)
+ bx2

1,1 − |x1,1|
]

< − 1

2b
(mn − 1) +

1

4b
(mn − 1) = − 1

4b
(mn − 1) < 0.

We have used (3.25) and the fact that max (−bx2 + |x|) = 1
4b

to justify the above

inequality. It then follows from Proposition 3.1.2 that the coupled chaotic walk is

bounded dissipative as claimed. Noting that the permutation symmetry of equation

(3.23), we only consider the case that the matrix D satisfying (3.3d) with k = 1.

Letting l = n − k = n − 1, we see that Qu,v,p = −b, p = 1, 2, . . . , l. Thus, their matrix

measure µi(Qu,v,p) = −b < 0. Moreover, the corresponding remaining terms rp satisfy

(3.19c). Thus, system (2.15) is globally synchronized. In summary, we have our results

in the following.

Theorem 3.3.1. Let f(x) be given as in (3.23) and G be a symmetry matrix satis-

fying (3.3a, 3.3b). Let D be a matrix satisfying (3.14a). Then the coupled system

(D,G,F(x)) is globally synchronized provided that d is chosen sufficiently large.
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Proof. To complete the proof of the theorem, it suffices to show that the coupled system

(2.15) is bounded dissipative. Writing the first k components of the coupled system,

we get

żk :=

˙


x̃1
...
x̃k


=




−bx̃1 + g̃1(x̃, t)
...

−bx̃k + g̃k(x̃, t)


+ d(D̄ ⊗ G)




x̃1
...
x̃k




,

(3.26)

where the components of g̃i(x̃, t) have the form of sin(∗). Applying the variation of

constant formula to (3.26), we see that

zk(t) = e(−bI+dD̄⊗G)tzk(0) +

∫ t

0

e(−bI+dD̄⊗G)(t−s)Ḡ(x, s)ds,

where Ḡ(x, t) =




g̃1(x̃, t)
...

g̃k(x̃, t)




.

Now,

‖zk(t)‖ ≤ c0e
− b

2
t‖zk(0)‖ + c0

√
mk

∫ t

0

e−
b
2
(t−s)ds

≤ c0e
− b

2
t‖zk(0)‖ + α,

for some constant c0 > 0 and α = 2 c0
b

√
mk. Similarly, we have ‖x̃k+i(t)‖ ≤ c0e

− b
2
t‖x̃k+i(0)‖+

α for all i = 1, . . . , n − k. Hence,

‖x̃(t)‖ ≤ ce−
b
2
t‖x̃(0)‖ + nα

for some constant c. Thus, system (2.15) is bounded dissipative with respect to ((n +

1)α, ((c + 1)n + c)α).
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3.3.3 Coupled Duffing Oscillators

Another formulation not considered in [4,5] is Duffing oscillators. Specifically, the

individual system considered is defined by

ẋ1 = −αx1 − x3
2 + a cos wt (3.27a)

ẋ2 = x1, (3.27b)

where α and a are positive constants. Letting x = (x1, x2)
T , we have

f(x, t) = (f1(x, t), f2(x)) = (−αx1 − x3
2 + a cos wt, x1). (3.28a)

Assume the coupling matrices D and G are, respectively,

D(c) =

(
1 c
0 0

)
(3.28b)

and

G(ǫ, r) =




−2ǫ ǫ − r 0 · · · 0 ǫ + r

ǫ + r −2ǫ ǫ − r
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . −2ǫ ǫ − r
ǫ − r 0 · · · 0 ǫ + r −2ǫ




,

(3.28c)

where ǫ > 0 and r are scalar diffusive and gradient coupling parameters, respec-

tively. First, we prove the bounded dissipation of systems (3.27). Setting x̃3
2 =

(x3
1,2, . . . , x

3
m,2)

T , and g(t) = a cos(wt) (1, · · · , 1)T
. We see that (3.5) becomes

˙̃x1 = −αx̃1 − x̃3
2 + g(t) + dcG(ǫ, r)x̃2 + dG(ǫ, r)x̃1 (3.29a)

˙̃x2 = x̃1. (3.29b)
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We consider the following scalar-valued function as the Lyapunov function of the cou-

pled system (D(c),G(ǫ, r),F(x, t))

U(x̃1, x̃2) =
1

2
< x̃1, x̃1 > +

m∑

i=1

x4
i,2

4
+ c < x̃2, x̃1 >, (3.30)

Taking the time derivative of U along solutions of the coupled system (D(c),G(ǫ, r),F(x, t)),

we have

dU

dt
=< x̃1, ˙̃x1 > +

m∑

i=1

x3
i,2xi,1 + c < x̃1, x̃1 > +c < x̃2, ˙̃x1 >

= (c − α) < x̃1, x̃1 > −cα < x̃2, x̃1 > −c < x̃2, x̃
3
2 > + < x̃1 + cx̃2, g(t) >

+ d < x̃1,G(ǫ, r)x̃1 > +2dc < x̃1,G(ǫ, r)x̃2 > +dc2 < x̃2,G(ǫ, r)x̃2 >

= (c − α) < x̃1, x̃1 > −cα < x̃2, x̃1 > −c < x̃2, x̃
3
2 > + < x̃1 + cx̃2, g(t) >

+ d (x̃1, x̃2)

((
1 c
c c2

)
⊗G(ǫ, r)

)(
x̃1

x̃2

)

≤ (c − α) < x̃1, x̃1 > −cα < x̃2, x̃1 > −c < x̃2, x̃
3
2 > + < x̃1 + cx̃2, g(t) >

Note that the last inequality holds true since

((
1 c
c c2

)
⊗G(ǫ, r)

)
+

((
1 c
c c2

)
⊗ G(ǫ, r)

)T

=

(
1 c
c c2

)
⊗ (G(ǫ, r) + G(ǫ, r)T ),

and G(ǫ, r) + G(ǫ, r)T is a nonpositive definite matrix. On the other hand, since

< x̃2, x̃
3
2 >=

m∑

i=1

x4
2,i ≥

1

m

(
m∑

i=1

x2
i,2

)2

≥ 1

m
‖x̃2‖4

2,

we have

dU

dt
≤ (c − α)‖x̃1‖2

2 + cα‖x̃2‖2‖x̃1‖2 −
c

m
‖x̃2‖4

2 +
√

ma(‖x̃1‖2 + c‖x̃2‖2)

=: u(‖x̃2‖1, ‖x̃2‖2).
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We are now in a position to show bounded dissipation of the coupled system (D(c),G(ǫ, r),F(x, t)).

Proposition 3.3.2.

(i) If c satisfies the inequality

0 < c < min{ 4α

4 + α2m
, α} =

4α

4 + α2m .
(3.31)

Then there exists a constant c0 so that dU
dt

< 0 for ‖x̃2‖2
1 + ‖x̃2‖2

2 ≥ c0.

(ii) If c = 0, then the first assertion of the proposition still holds true.

Proof. Suppose ‖x̃2‖2 ≥ 1. Then

u(‖x̃1‖2, ‖x̃2‖2) ≤ (c − α)‖x̃1‖2
2 + cα‖x̃2‖2‖x̃1‖2 −

c

m
‖x̃2‖2

2 +
√

ma(‖x̃1‖2 + c‖x̃2‖2)

=: ū(‖x̃1‖2, ‖x̃2‖2).

It then follows from (3.31) that the the level curve of ū is a bounded closed curve.

We shall call such curve ellipse-like is an elliptic in the plane. Thus, there exists a

c1 so that dU
dt

< 0 whenever ‖x̃2‖2
1 + ‖x̃2‖2

2 ≥ c1 and ‖x̃2‖2 ≥ 1. Let ‖x̃2‖2 < 1 and

‖x̃2‖2
1 + ‖x̃2‖2

2 ≥ c2. Here c2 is a constant to be determined. Then

u(‖x̃1‖2, ‖x̃2‖2) ≤ (c − α)‖x̃1‖2
2 + (cα +

√
ma)‖x̃1‖2 +

√
mac =: h(‖x̃1‖2).

Since h(‖x̃1‖2) is a parabola-like curve which is open downward, there exists a c3 > 1

such that h(‖x̃1‖2) < 0 whenever ‖x̃1‖2 ≥ c3. Thus, if c2 ≥ c2
3+1, then u(‖x̃1‖2, ‖x̃2‖2) <

0 whenever ‖x̃2‖2 < 1 and ‖x̃1‖2
2 + ‖x̃2‖2

2 ≥ c2. Picking c0 = max{c1, c2}, we have that

the assertion of the proposition holds true.

Proposition 3.3.3. Assume (3.31) holds true. Then lim
r→∞

U(x̃1, x̃2) = ∞, where r =
√

‖x̃1‖2 + ‖x̃2‖2.
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Proof. From (3.30), we have that

U(x̃1, x̃2) =
1

2
‖x̃1‖2 +

m∑

i=1

x4
i,2

4
+ c < x̃2, x̃1 >

≥ 1

2
‖x̃1‖2 +

1

4m
‖x̃2‖4 − c‖x̃2‖ · ‖x̃1‖,

Let 1
4m

b2
1 > c2. Then suppose ‖x̃2‖ > b1, we have

U(x̃1, x̃2) ≥
1

2
‖x̃1‖2 + c2‖x̃2‖2 − c‖x̃2‖‖x̃1‖ =: h1(‖x̃1‖, ‖x̃2‖).

Since the level curve of h1(‖x̃1‖, ‖x̃2‖) is elliptic-like in the plane. Thus, for any given

M > 0, there exists a d1 > 0 such that U(x̃1, x̃2) > M whenever ‖x̃1‖2 + ‖x̃2‖2 ≥ d2
1

and ‖x̃2‖ > b1.

Let ‖x̃2‖ ≤ b1. Then

U(x̃1, x̃2) ≥
1

2
‖x̃1‖2 − cb1‖x̃1‖ =: h2(‖x̃1‖, ‖x̃2‖),

since h2(‖x̃1‖, ‖x̃2‖) is a parabola-like curve which is open upward in the plane. Thus,

for any given M > 0, there exists a d2 > 0 such that U(x̃1, x̃2) > M whenever

‖x̃1‖2 + ‖x̃2‖2 ≥ d2
2 and ‖x̃2‖ ≤ b1. Picking δ = max{d1, d2}, we have that U(x̃1, x̃2) >

M for all ‖x̃1‖2 + ‖x̃2‖2 ≥ δ2. Thus, the assertion of the proposition holds true.

Theorem 3.3.4. The coupled system (D(c),G(ǫ, r),F(x, t)) is bounded dissipative if

condition (3.31) holds true.

Proof. The proof is direct consequences of Propositions 3.3.2 and 3.3.3.

Note that

f2(u) − f2(v) = 0(u2 − v2) + (u1 − v1) (3.32)

and so the matrix measure of the corresponding Qu,v,1 is zero. To apply our theorem,

we need to make the following coordinate change.
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Letting y2 = x2 and y1 = qx1 + px2, we see that (3.27a,b) becomes

ẏ1 = (
p

q
− α)y1 + p(α − p

q
)y2 − qy3

2 + qa cos wt =: f̄1(y) (3.33a)

ẏ2 =
−p

q
y2 +

1

q
y1 =: f̄2(y), (3.33b)

and the corresponding coupled system (3.7) becomes

˙̃y1 = (
p

q
− α)ỹ1 + p(α − p

q
)ỹ2 − qỹ3

2 + g(t)

+ d(qc − p)G(ǫ, r)ỹ2 + dG(ǫ, r)ỹ1 (3.34a)

˙̃y2 = −q

p
ỹ2 +

1

q
ỹ1, (3.34b)

where ỹ3
2 = (y3

1,2, . . . , y
3
m,2)

T and g(t) = a cos(wt) (1, · · · , 1)T
.. In the following, we

choose (p, q) to be (1, c − 1
d
) as c > 0, and to be (−1,−1

d
) as c = 0, respectively. Then

in the case of c > 0, (3.34) becomes

˙̃y1 = dG(ǫ, r)ỹ1 + (c − α − 1

d
)ỹ1 + (α − c +

1

d
)ỹ2 − ỹ3

2 + g(t) + G(ǫ, r)ỹ2

=: dG(ǫ, r)ỹ1 + F̃c(ỹ, t)

˙̃y2 = − 1

c − 1
d

ỹ2 + ỹ1.

The purpose of the coordinate transformation is two-fold. First, to make the dynamics

of the linear part on the uncoupled space stable. In this case, the coefficient of ỹ2

becomes negative when d > 2
c
. Second, to make sure the parameters in the nonlinear

part of coupled space contain no bad influence of d, coupling strength. Otherwise, we

may not be able to control its corresponding dynamics by choosing d large.

It is then easy to check that assumptions for Theorem 3.2.1 are all satisfied.

Finally, we will show that if 4α
4+αm2 > c ≥ 0, ǫ > 0 and r ∈ R, then coupled system

(D(c),G(ǫ, r),F(x, t)) is bounded dissipative. Thus, we can summarize the results as

follows

Theorem 3.3.5. Let f , D(c) and G(ǫ, r) be given as in (3.27a), (3.27b) and (3.27c),

respectively. Let 0 ≤ c < 4α
4+αm2 . Then the coupled system (D(c),G(ǫ, r),F(x, t)) is

globally synchronized provided that d is chosen sufficiently large.
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Proof. It remains only to verify that G(ǫ, r) satisfies assumptions (3.3a,b). Indeed

G(ǫ, r) is a circulant matrix (see e.g., [15]), the eigenvalues λk of G(ǫ, r) are

λk = −2ǫ(1 − cos
2kπ

n
) − i 2r sin

2kπ

n
, k = 0, . . . , m − 1.

Remark 3.3.6. (i) It was shown in [21] that there are positive constants d0 and c0 such

that, for d ≥ d0, c ≥ c0, the system (D(c),G(ǫ, 0),F) given in (3.33) is synchronized.

Our results also work for the case that c0 = 0 or G(ǫ, r), r 6= 0. (ii) It was also shown

in [1] that there are positive constants d0 and c0 such that for d ≥ d0, c ≥ c0, the

system (D(c),G,F) is synchronized. Here −G is a positive definite matrix.

3.3.4 Coupled Lorenz-Like System

Finally, we also explore the example in [57]. Specifically, the individual system we

obtained that is related to the Lorenz system was given by

dx1

dt
= − σ(x1 − x2) + x5,

dx2

dt
= ρx1 − x2 − x1x3,

dx3

dt
= x1x2 − βx3,

dx4

dt
= − x3

4 + x5,

dx5

dt
= − x1 − x4 − 8x5, (3.35)

where σ, β are positive constants, and ρ is a real number. Assume the coupling matri-

ces D and G are, respectively,

D =




d1 0 0 0 0
0 d2 0 0 0
0 0 d3 0 0
0 0 0 d4 0
0 0 0 0 d5




, (3.36)
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and

G(β) =




−1 − β 1 0 · · · 0 β

1 −2 1
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . −2 1
β 0 · · · 0 1 −1 − β




,

(3.37)

where di = 0 or 1, 1 ≤ i ≤ 5 and 0 ≤ β ≤ 1. Specifically, G(β) is diffusively coupled

with mixed boundary conditions. To prove that bounded dissipation of coupled Lorenz-

Like system (3.35), we first show that bounded dissipation of the individual system.

Let the scalar-valued function defined as follows,

U(x1, x2, x3, x4, x5) =
1

2
[
12

7
x2

1 + σx2
2 + σ(x3 − ρ)2 +

12

7
x2

4 +
12

7
x2

5] (3.38)

Taking the time derivative of U along solutions of the individual system, we have

dU

dt
=

12

7
x1ẋ1 + σx2ẋ2 + σ(x3 − ρ)ẋ3 +

12

7
x4ẋ4 +

12

7
x5ẋ5

= −12

7
σx2

1 +
12

7
σx1x2 − σx2

2 − σβx2
3 + σβρx3 −

12

7
x4

4 −
96

7
x2

5

Note that x4 > x2 − 1 for all x ∈ R. We have

dU

dt
< −12

7
σx2

1 +
12

7
σx1x2 − σx2

2 − σβx2
3 + σβρx3 −

12

7
x2

4 −
96

7
x2

5

= −3

7
σ(

2√
13

x1 +
3√
13

x2)
2 − 16

7
σ(

3√
13

x1 −
2√
13

x2)
2 − σβ(x3 −

ρ

2
)2

− 12

7
x2

4 −
96

7
x2

5 +
σβρ2

4
.

Let the set S be defined by

S = {(x1, x2, x3, x4, x5) | 3

7
σ(

2√
13

x1 +
3√
13

x2)
2 +

16

7
σ(

3√
13

x1 −
2√
13

x2)
2

+ σβ(x3 −
ρ

2
)2 +

12

7
x2

4 +
96

7
x2

5 < r2, where r2 >
σβρ2

4
, σ, β > 0, and ρ ∈ R}
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Immediately, we have the set S is an solid ellipse provided that r2 > σβρ2

4
. Moreover,

S is a bounded dissipation region of the individual system with σ, β > 0, ρ ∈ R.

Next, we prove that the bounded dissipation of the coupled Lorenz-like system. Setting

the scalar-valued function V : Rnm → R which is defined by

V (x̃) =
1

2
[
12

7
< x̃1, x̃1 > +σ < x̃2, x̃2 >

+ σ < (x̃3 − ρẽ), (x̃3 − ρẽ) > +
12

7
< x̃4, x̃4 > +

12

7
< x̃5, x̃5 >]

where ẽ = (1, · · · , 1)T , x̃ and x̃i, 1 ≤ i ≤ 5, are defined in (3.4). Then, taking the time

derivative of V along solutions of the coupled Lorenz-like system of the form in (3.35)

and combining the scalar-valued function U , we have

dV

dt
(x̃) =

12

7
< x̃1,

d̃x1

dt
> +σ < x̃2,

dx̃2

dt
>

+ σ < (x̃3 − ρẽ),
dx̃3

dt
> +

12

7
< x̃4,

dx̃4

dt
> +

12

7
< x̃5,

dx̃5

dt
>

=
m∑

i=1

U(xi)

dt
+

∑

j={1,4,5}

12

7
dj < xj ,G(β)xj >

+
∑

j={2,3}
σdj < xj ,G(β)xj > −d3 < ρẽ,G(β)x3 >

Note that G(β)T ẽ = ~0, we have d3 < ρẽ,G(β)x >3= 0, for all 1 ≤ β ≤ 1. Furthermore,

G(β) is also a semi-negative definite matrix, then the following inequality holds true,

dV (x̃)

dt
≤

m∑

i=1

dU(xi)

dt
(3.39)

Similarly, let the set S̄ be defined by

S̄ = {x = (x1, · · · ,xm) |
m∑

i=1

[
3

7
σ(

2√
13

xi1 +
3√
13

xi2)
2 +

16

7
σ(

3√
13

xi1 −
2√
13

xi2)
2

+ σβ(xi3 −
ρ

2
)2 +

12

7
x2

i4 +
96

7
x2

i5] < R2, where R2 >
mσβρ2

4
, σ, β > 0, and ρ ∈ R}

Immediately, we have the set S̄ is also an solid ellipse provided that R2 > mσβρ2

4
.

Moreover, S̄ is a bounded dissipation region of the coupled Lorenz-like system with σ,
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β > 0, ρ ∈ R.

The coupling matrix D in the following is assumed to be diag([1, 0, 0, 1, 0]). In the case,

the “coupled” nonlinearities f1 and f4 are clearly Lipschitz on the absorbing domain,

and the differences of the “uncoupled” nonlinearities f2, f3, and f5 are

f2(u) − f2(v) = −(u2 − v2) − u1(u3 − v3) + (ρ − v3)(u1 − v1),

f3(u) − f3(v) = u1(u2 − v2) − β(u3 − v3) + v2(u1 − v1),

f5(u) − f5(v) = −8(u5 − v5) − (u1 − v1) − (u4 − v4).

Clearly, to apply the given main theorem directly to claim the synchronization reaches,

the best strategy to deal with “uncoupled ” nonlinearities is to split them into two parts,

one is f2 and f3, and the other is f5. Then

Qu,v,1 =

(
−1 −u1

u1 −β

)
,

Qu,v,2 = −8.

In this way, the matrix measure of Qu,v,1 and Qu,v,2 is max{−1,−β} and −8, respec-

tively. Thus, condition (3.19b) is satisfied. The remainder parts r1 =

(
(ρ − v3)(u1 − v1)

v2(u1 − v1)

)
,

and r2 = −(u1−v1)− (u4−v4) also satisfy condition (3.19c). Thus, the coupled system

(D,G,F(x)) is uniformly globally synchronized provided the coupling strength d is large

enough.

Our theorems can be applied to quite many cases of the coupling matrix D, which can

be checked easily and similarly as above arguments. However, there exists some cases

that uniformly global synchronization can be seen from the simulation of computer, but

our theorems can not be applied directly. Here, we give a comparison with theoretical

and numerical results as follows.
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Location Appli. Simul. Location Appli. Simul.
x1 N T x1, x2 N T
x2 N T x1, x3 N T
x3 N F x1, x4 T T
x4 N F x1, x5 N T
x5 N F x2, x3 N T

x2, x4 N T
x2, x5 N T
x3, x4 N F
x3, x5 N F
x4, x5 N F

Location Appli. Simul. Location Appli. Simul.
x1, x2, x3 N T x1, x2, x3, x4 T T
x1, x2, x4 T T x1, x2, x3, x5 N T
x1, x2, x5 N T x1, x2, x4, x5 T T
x1, x3, x4 T T x1, x3, x4, x5 T T
x1, x3, x5 N T x2, x3, x4, x5 T T
x1, x4, x5 T T x1, x2, x3, x4, x5 T T
x2, x3, x4 N T
x2, x3, x5 T T
x2, x4, x5 T T
x3, x4, x5 N F
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Chapter 4

Wavelet Method for Chaotic

Control

The main results of the second part of the thesis are contained in this chapter. Con-

trolling chaos via wavelet transform was proposed by Wei, Zhan and Lai [48]. It was

reported there that by modifying a tiny fraction of the wavelet subspace of a coupling

matrix, the transverse stability of the synchronous manifold M of a coupled chaotic

system could be dramatically enhanced. Such phenomena are analytically verified

when the coupling matrix is diffusively coupled with periodic and Neumann boundary

conditions. The results in this part are reorganized from papers in [25,26].

4.1 Wavelet Method for the Diffusively Coupled

with Mix Boundary Conditions

Let

A =




A11 · · · A1n
...

. . .
...

An1 · · · Ann




n×n,

(4.1a)

be a matrix with the dimension of each block matrix Akl being 2i × 2i. By an i-scale
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wavelet operator W [14,48], the matrix A is transformed into W (A) of the form

W (A) =




Ã11 · · · Ã1n
...

. . .
...

Ãn1 · · · Ãnn




n×n,

(4.1b)

where each entry of Ãkl is the average of entries of Akl, 1 ≤ k, l ≤ n. That is, for any

matrix B of dimension 2i × 2i, the kl entry (B̃)kl of B̃ is defined to be

(B̃)kl =
α

22i

2i∑

l=1

2i∑

k=1

(B)kl.

Here α is a scaler factor.

For a given matrix, the above wavelet transform allows a perfect reconstruction (in-

verse wavelet transform), by which there is nothing to gain: A = W−1(W (A)). In [48],

a simple operator Ok is introduced to attain a desirable coupling matrix. That is,

C = W−1(Ok(W (A))) = A + (k − 1)W (A) =: A + αW (A), (4.1c)

where Ok be the multiplication of a scalar factor α on each block matrix Ãkl. To verify

this phenomenon mathematically, we first consider the coupling matrix A = G(β), as

given in (3.37). Let l = m
2j ∈ N, where i is a fixed positive integer. We then write A

into an l × l block matrix of the form.

A = G(β) =




A1(β) A2(1) 0 . . 0 AT
2 (β)

AT
2 (1) A1(1) A2(1) . . 0 0
0 . . . .
. . . . .
. . . . 0
0 0 . . AT

2 (1) A1(1) A2(1)
A2(β) 0 . . 0 AT

2 (1) A1(β)




l×l,

(4.2a)

where
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A1(β) =




−1 − β 1
1 −2 1 0

. . .
. . .

0 . . 1
1 −2




2i×2i,

Ā1(β) =




−2 1
1 −2 1 0

. . .
. . .

0 . . 1
1 −1 − β




2i×2i,

(4.2b)

and

A2(β) =




0 . . . 0
. .
. .
0 0
β 0 . . 0




2i×2i

. (4.2c)

Then the newly transformed coupling matrix G = G(α, β) is an l × l block matrix of

the following form.

G(α, β) =




G1(α, β) G2(α, 1) 0 · · · 0 GT
2 (α, β)

GT
2 (α, 1) G1(α, 1) G2(α, 1) · · · 0 0

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 0 · · · GT
2 (α, 1) G1(α, 1) G2(α, 1)

G2(α, β) 0 · · · 0 GT
2 (α, 1) ÎG1(α, β)Î




l×l.

(4.3a)

Here
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G1(α, β) =




−1 − β 1 0 · · · · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 1 −2 1
0 · · · · · · 0 1 −2




2j×2j

− α(1 + β)

22j
eeT

=: A1(β, 2j) − α(1 + β)

22j
eeT , (4.3b)

where e = (1, 1, ..., 1)T , j is a positive integer, α > 0 is a (wavelet) scalar factor and

β ∈ R represents a mixed boundary constant. Moreover,

G2(α, β) =




0 0 · · · 0
...

...
0 0
β 0 · · · 0


+

αβ

22j
eeT

=: A2(β, 2j) +
αβ

22j
eeT , (4.3c)

Î =




0 0 · · · · · · 0 1
0 0 · · · 0 1 0
... · · · ...
... · · · ...
0 1 0 · · · 0 0
1 0 · · · · · · 0 0




.

(4.3d)

The dimension of G(α, β) is l2j × l2j . From here on, we shall call l and j the block

and the wavelet dimensions of G(α, β), respectively.

The matrix G(α, β) carries a new relationship among the coupled oscillators, which

might not be as simple as the original matrix A.
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4.2 Perturbed Block Circulant Matrix and Their

Eigenvalue Problems

Of concern here is the eigencurve problem for a class of ”perturbed” block circulant

matrices.

G(α, β)b = λ(α, β)b. (4.4)

Here G(α, β) is a block circulant matrix (see e.g., [15]) only if β = 1. It is well-known,

see e.g., Theorem 5.6.4 of [15], that for each α the eigenvalues of G(α, 1) consists of

eigenvalues of a certain linear combinations of its block matrices. Such results are

called the reduced eigenvalue problem for G(α, 1).

Writing the eigenvalue problem G(α, β)b = λb, where b = (b1,b2, ...,bl)
T and

bi ∈ C2j

, in block component form, we get

GT
2 (α, 1)bi−1 + G1(α, 1)bi + G2(α, 1)bi+1 = λbi, 1 ≤ i ≤ l. (4.5a)

Mixed boundary conditions would yield that

GT
2 (α, 1)b0 +G1(α, 1)b1 +G2(α, 1)b2 = λb1 = G1(α, β)b1 +G2(α, 1)b2 +GT

2 (α, β)bl,

and

GT
2 (α, 1)bl−1 + G1(α, 1)bl + G2(α, 1)bl+1 = λbl

= G2(α, β)b1 + GT
2 (α, 1)bl−1 + ÎG1(α, β)Îbl,

or, equivalently,

GT
2 (α, 1)b0 = (G1(α, β) − G1(α, 1))b1 + GT

2 (α, β)bl
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= [




1 − β 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


+

α(1 − β)

22j
eeT ]b1 + [




0 · · · 0 β
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0


 +

αβ

22j
eeT ]bl

= (1 − β)GT
2 (α, 1)Îb1 + βG2(α, 1)bl, (4.5b)

and

G2(α, 1)bl+1 = (ÎG1(α, β)Î−G1(α, 1))bl + G2(α, β)b1

= (1 − β)GT
2 (α, 1)Îbl + βG2(α, 1)b1. (4.5c)

To study the block difference equation (4.5), we set

bj = δjv, (4.6)

where v ∈ C2j

and δ ∈ C.

Substituting (4.6) into (4.5a), we have

[GT
2 (α, 1) + δ(G1(α, 1) − λI) + δ2G2(α, 1)]v = 0. (4.7)

To have a nontrivial solution v satisfying (4.7), we need to have

det[GT
2 (α, 1) + δ(G1(α, 1) − λI) + δ2G2(α, 1)] = 0. (4.8)
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Definition 4.2.1. Equation (4.8) is to be called the characteristic equation of the block

difference equation (4.5a). Let δk = δk(λ) 6= 0 and vk = vk(λ) 6= 0 be complex numbers

and vectors, respectively, satisfying (4.7). Here k = 1, 2, ..., m and m ≤ 2j. Assume

that there exists a λ ∈ C, such that bj = Σm
k=1ckδ

j
k(λ)vk(λ), j=0,1,...,l+1, satisfy

equation (4.5b,c), where ck ∈ C. If, in addition, bj, j = 1, 2, ..., l, are not all zero

vectors, then such δk(λ) is called a characteristic value of equation (4.5) or (4.4) with

respect to λ and vk(λ) its corresponding characteristic vector.

Remark 4.2.2. Clearly, for each α and β, λ in the Definition of 4.2.1 is an eigenvalue

of G(α, β).

Should no ambiguity arises, we will write GT
2 (α, 1) = GT

2 , G1(α, 1) = G1 and G2(α, 1) =

G2. Likewise, we will write A2(β, 2j) = A2(β) and A1(β, 2j) = A1(β).

Proposition 4.2.3. Let ρ(λ) = {δi(λ) : δi(λ) is a root of equation (4.8)}, and let

ρ(λ) = { 1
δi(λ)

: δi(λ) is a root of equation (4.8)}. Then ρ(λ) = ρ(λ). Let δi and δk

be in ρ(λ). We further assume that δi and vi = (vi1, · · · , vi2j)T satisfy (4.7). Suppose

δi · δk = 1. Then δk and vk = (vi2j , vi2j−1, · · · , vi2, vi1)
T =: vs

i also satisfy (4.7).

Conversely, if δi · δk 6= 1, then vk 6= vs
i .

Proof. To proof ρ(λ) = ρ(λ), we see that

det[GT
2 + δ(G1 − λI) + δ2G2] = δ2det[

1

δ2
GT

2 +
1

δ
(G1 − λI) + G2]

= δ2det[
1

δ2
GT

2 +
1

δ
(G1 − λI) + G2]

T = δ2det[GT
2 +

1

δ
(G1 − λI) +

1

δ2
G2].

Thus, if δ is a root of equation (4.8), then so is 1
δ
. To see the last assertion of the

proposition, we write equation (4.7) with δ = δi and v = vi in component form.

2j∑

m=1

[(GT
2 )lmvim + δi(Ḡ1)lmvim + δ2

i (G2)lmvim] = 0, l = 1, 2, ..., 2j. (4.9)

Here Ḡ1 = G1 − λI. Now the right hand side of (4.9) becomes
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(
1

δk
)2{

2j∑

m=1

[(G2)l(2j+1−m)vi(2j+1−m) + δk(Ḡ1)l(2j+1−m)vi(2j+1−m)

+δ2
k(G

T
2 )l(2j+1−m)vi(2j+1−m)]}

= (
1

δk
)2{

2j∑

m=1

[(GT
2 )(2j+1−l)mvi(2j+1−m) + δk(Ḡ1)(2j+1−l)mvi(2j+1−m)

+δ2
k(G2)(2j+1−l)m)vi(2j+1−m)]}, l = 1, 2, ..., 2j. (4.10)

We have used the fact that

(A)(2j+1−l)m = (AT )l(2j+1−m), (4.11)

where A = GT
2 or Ḡ1 or G2 to justify the equality in (4.10). However, (4.11) follows

from (4.4c) and (4.4d). Letting vi(2j+1−m) = vkm, we have that the pair (δk, vk) satisfies

(4.7). Suppose vk = vs
i , we see, similarly, that the pair ( 1

δi
, vk) also satisfy (4.7). Thus

1
δi

= δk.

Remark 4.2.4. Equation (4.8) is a palindromic equation. That is for each λ, δ and

δ−1 are both the roots of (4.8). However, eigenvalue problem discussed here is not a

palindromic eigenvalue problem [23].

Definition 4.2.5. We shall call vs and −vs, the symmetric vector and antisymmetric

vector of v, respectively. A vector v is symmetric (resp., antisymmetric) if v = vs

(resp., v = −vs).

Theorem 4.2.6. Let δk = e
πk
l

i, k is an integer and i =
√
−1, then δ2k, k=0,1,...,l-1,

are characteristic values of equation (4.5) with β = 1. For each α, if λ ∈ C satisfies

det[GT
2 + δ2k(G1 − λI) + δ2

2kG2] = 0,

for some k ∈ Z, 0 ≤ k ≤ l − 1, then λ is an eigenvalue of G(α, 1).
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Proof. Let λ be as assumed. Then there exists a v ∈ C2j

, v 6= 0 such that

[GT
2 + δ2k(G1 − λI) + δ2

2kG2]v = 0.

Let bj = δj
2kv, 0 ≤ j ≤ l + 1. Then such b′

js satisfy (4.5a), (4.5b), and (4.5c). We just

proved the assertion of the theorem.

Corollary 4.2.7. Set

Γk = G1 + δ2l−kG
T
2 + δkG2. (4.12)

Then the eigenvalues of G(α, 1), for each α, consists of eigenvalues of Γk, k = 0, 2, 4, ..., 2(l−

1). That is ρ(G(α, 1)) =

l−1⋃

k=0

ρ(Γ2k). Here ρ(A) = the spectrum of the matrix A.

Remark 4.2.8. G(α, 1) is a block circulant matrix. The assertion of Corollary 4.2.7

is not new (see e.g., Theorem 5.6.4 of [15]). Here we merely gave a different proof.

To study the eigenvalue of G(α, 0) for each α, we begin with considering the eigenvalues

and eigenvectors of GT
2 + G1 + G2 and GT

2 − G1 + G2.

Proposition 4.2.9. Let T1(G) (resp., T2(G)) be the set of linearly independent eigen-

vectors of the matrix C that are symmetric (resp., antisymmetric). Then |T1(G
T
2 +

G1 +G2)| = |T2(G
T
2 +G1 +G2)| = |T1(G

T
2 −G1 +G2)| = |T2(G

T
2 −G1 +G2)| = 2j−1.

Here |A| denote the cardinality of the set A.

Proof. We will only illustrate the case for GT
2 −G1 + G2 =: G. We first observe that

|T1(G)| is less than or equal to 2j−1. So is |T2(G)|. We also remark the cardinality of

the set of all linearly independent eigenvectors of G is 2j. If 0 < |T1(G)| < 2j−1, there

must exist an eigenvector v for which v 6= vs, v 6= −vs and v /∈ span{T1(G), T2(G)},
the span of the vectors in T1(G) and T2(G). It then follows from Proposition 2.1 that

v+vs, a symmetric vector, is in the span{T1(G)}. Moreover, v−vs is in span{T2(G)}.
Hence v ∈ span{T1(G), T2(G)}, a contradiction. Hence, |T1(G)| = 2j−1. Similarly, we

conclude that |T2(G)| = 2j−1.
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Theorem 4.2.10. Let δk = e
πk
l

i, k is an integer, i =
√
−1. For each α, if λ ∈ C

satisfies

det[GT
2 + δk(G1 − λI) + δ2

kG2] = 0,

for some k ∈ Z, 1 ≤ k ≤ l − 1, then λ is an eigenvalue of G(α, 0). Let λ be the

eigenvalue of GT
2 +G1+G2 (resp., −GT

2 +G1−G2) for which its associated eigenvector

v satisfies Îv = v (resp., Îv = −v), then λ is also an eigenvalue of G(α, 0).

Proof. For any 1 ≤ k ≤ l − 1, let δk be as assumed. Let λk and νk be a number and a

nonzero vector, respectively, satisfying

[GT
2 + δk(G1 − λkI) + δ2

kG2]vk = 0. (4.13)

Using Proposition 4.2.3, we see that λk satisfies

det[GT
2 + δ2l−k(G1 − λkI) + δ2

2l−kG2] = 0. (4.14)

Let v2l−k be a nonzero vector satisfying [GT
2 + δ2l−k(G1 − λkI) + δ2

2l−kG2]v2l−k = 0.

Letting

bi = δi
kvk + δkδ

i
2l−kv2l−k, i = 0, 1, ..., l + 1,

we conclude, via (4.13) and (4.14), that bi satisfy (4.5a) with λ = λk. Moreover,

Îb1 = δk Îvk + Îv2n−k = δkv2l−k + vk = b0.

We have used Proposition 4.2.3 to justify the second equality above. Similarly, bl+1 =

Îbl. To see λ = λk, 1 ≤ k ≤ l − 1, is indeed an eigenvalue of G(α, 0) for each α, it
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remains to show that bi 6= 0 for some i. Using Proposition 4.2.3, we have that there

exists an m, 1 ≤ m ≤ 2j such that vkm = v(2l−k)(2j−m+1) 6= 0. We first show that

b0 6= 0. Let m be the index for which vkm 6= 0. Suppose b0 = 0. Then

vkm + δkv(2l−k)m = 0

and

vk(2j−m+1) + δkv(2l−k)(2j−m+1) = v(2l−k)m + δkvkm = 0.

And so, vkm = δ2
kvkm, a contradiction. Let λ and v be as assumed in the last assertion

of theorem. Letting bi = v (resp., bi = (−1)iv), we conclude that λ is an eigenvalue

of G(α, 0) with corresponding eigenvector (b1,b2, · · · ,bl)
T . Thus, λk is an eigenvalue

of G(α, 0) for each α.

Corollary 4.2.11. Let δk = e
πk
l

i, k is an integer, i =
√
−1. Then, for each α,

ρ(C(α, 0)) =

l−1⋃

k=1

ρ(Γk)
⋃

ρS(Γ0)
⋃

ρAS(Γl), where ρS(A) (resp., ρAS(A)) the set of

eigenvalues of A for which their corresponding eigenvectors are symmetric (resp., an-

tisymmetric).

We next consider the eigenvalues of G(α, β).

Theorem 4.2.12. Let δk = e
πk
l

i, k is an integer, i =
√
−1. Then, for each α,

ρ(G(α, β)) ⊃





[ l
2
]⋃

k=1

ρ(Γ2k)
⋃

ρS(Γ0), l is odd,

l
2
−1⋃

k=1

ρ(Γ2k)
⋃

ρS(Γ0)
⋃

ρAS(Γl), l is even.

Here [ l
2
] is the greatest integer that is less than or equal to l

2
.

Proof. We illustrate only the case that l is even. Assume that k is such that 1 ≤ k ≤
l
2
− 1. Let bi = δi

2kv2k + δ2kδ
i
2l−2kv2l−2k, we see clearly that such bi, i = 0, 1, l, l + 1,

satisfy both Neumann and periodic boundary conditions, respectively. And so

b0 = (1 − β)b0 + βb0 = (1 − β)Îb1 + βbl,
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and

bl+1 = (1 − β)bl+1 + βbl+1 = (1 − β)Îbl + βb1.

Here, δ2k, 1 ≤ k ≤ l
2
− 1, are characteristic values of equation of (4.5). Thus, if

λ ∈ ρ(Γ2k), then λ is an eigenvalue of G(α, β). The assertions for Γ0 and Γn can be

done similarly.

Remark 4.2.13. If n is an even number, for each α and β, half of the eigenvalues of

G(α, β) are independent of the choice of β. The other characteristic values of (4.5)

seem to depend on β. It is of interest to find them.

4.3 The Chaotic Control for Periodic and Neumann

Boundary Conditions

We begin with considering the eigencurves of Γk, as given in (4.12). Clearly,

Γk =




−2 1 0 · · · · · · δ2l−k

1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 1 −2 1
δk · · · · · · 0 1 −2




m×m

− α(2 − 2 cos πk
l
)

m
eeT

=: D1(k) − α(k)eeT , (4.15)

where m = 2j . We next find a unitary matrix to diagonalize D1(k).

Remark 4.3.1. Let (λ(k),v(k)) be the eigenpair of D1(k). If eTv(k) = 0, then λ(k)

is also an eigenvalue of Γk.

Proposition 4.3.2. Let

θl,k =
2lπ

m
+

kπ

nm
, l = 0, 1, ..., m − 1, (4.16a)
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pl(k) =
(
eiθl,k , ei2θl,k , · · · , eimθl,k

)T
(4.16b)

and

P (k) =
(

p0(k)√
m

, · · · ,
pm−1(k)√

m

)
. (4.16c)

(i) Then P (k) is a unitary matrix and P H(k)D1(k)P (k) = Diag(λ0,k · · ·λm−1,k), where

P H is the conjugate transpose of P , and

λl,k = 2 cos θl,k − 2, l = 0, 1, .., m − 1. (4.16d)

(ii) Moreover, for 0 ≤ k ≤ 2l, the eigenvalues of D1(k) are distinct if and only if

k 6= 0, l or 2l.

Proof. Let b = (b1, ..., bm)T . Writing the eigenvalue problem D1(k)b = λb in compo-

nent form, we get

bj−1 − (2 + λ)bj + bj+1 = 0, j = 2, 3, ..., m− 1, (4.17a)

−(2 + λ)b1 + b2 + δ2n−kbm = 0, (4.17b)

δkb1 + bm−1 − (2 + λ)bm = 0. (4.17c)

Set bj = δj, where δ satisfies the characteristic equation 1 − (2 + λ)δ + δ2 = 0

of the system D1(k)b = λb. Then the boundary conditions (4.17b) and (4.17c) are

reduced to

δm = δk. (4.18)

Thus, the solutions eiθl,k , l = 0, 1, ..., m− 1, of (4.18) are the candidates for the charac-

teristic values of (4.17). Substituting eiθl,k into (4.17a) and solving for λ, we see that

λ = λl,k are the candidates for the eigenvalues of D1(k). Clearly, (λ,b) = (λl,k,pl(k))

satisfies D1(k)b = λb and b = pl(k) 6= 0. Thus, λ = λl,k are, indeed, the eigenvalues

of D1(k). To complete the proof of the proposition, it suffices to show that P (k) is

unitary. To this end, we need to compute pH
l (k) · pl′(k). Clearly, pH

l (k) · pl(k) = m.
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Now, let l 6= l′, we have that

pH
l (k) · pl′(k) =

m∑

j=1

eij(θl,k−θl′,k) =

m∑

j=1

eij(
2(l−l′)

m
π) =

r(1 − rm)

1 − r
= 0,

where r = ei( 2(l−l′)
m

π). Hence, P (k) is unitary. The last assertion of the proposition is

obvious.

To prove the main results in this section, we also need the following proposition. Some

of assertions of the proposition are from Theorem 8.6.2 of [2].

Proposition 4.3.3. Suppose D = diag(d1, ..., dm) ∈ Rm×m and that the diagonal

entries satisfy d1 > · · · > dm. Let γ 6= 0 and z = (z1, ..., zm)T ∈ Rn. Assume

that (λi(γ), vi(γ)) are the eigenpairs of D + γzzT with λ1(γ) ≥ λ(γ) ≥ ... ≥ λm(γ). (i)

Let A = {k : 1 ≤ k ≤ m, zk = 0}, Ac = {1, ..., m} − A. If k ∈ A, then dk = λk. (ii)

Assume α > 0. Then the following interlacing relations hold λ1(γ) ≥ d1 ≥ λ2(γ) ≥
d2 ≥ ... ≥ λm(γ) ≥ dm. Moreover, the strict inequality holds for these indexes i ∈ Ac.

(iii) Let i ∈ Ac, λi(γ) are strictly increasing in γ and lim
α→∞

λi(γ) = λ̄i for all i, where λ̄i

are the roots of g(λ) =
∑

k∈Ac

z2
i

dk − λ
with λ̄i ∈ (di, di−1). In case that 1 ∈ Ac, d0 = ∞.

Proof. The proof of interlacing relations in (ii) and the assertion in (i) can be found in

Theorem 8.6.2 of [2]. We only prove the remaining assertions of the proposition. Re-

arranging z so that zT = (0, 0, ..., 0, zi1, ..., zik) =: (0, ..., 0, z̄T ), where i1 < i2 < ... < ik

and ij ∈ Ac, j = 1, ..., k. The diagonal matrix D is rearranged accordingly. Let

D = diag(D1, D2), where D2 = diag(di1, ..., dik). Following Theorem 8.6.2 of [2], we

see that λij (γ) are the roots of the scalar equation fγ(λ), where

fγ(λij(γ)) = 1 + γ
k∑

j=1

z2
j

dij − λij(γ)
= 0. (4.19)

Differentiate the equation above with respect to γ, we get
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k∑

j=1

z2
ij

dij − λij (γ)
+ (γ

k∑

j=1

z2
ij

(dij − λik(γ))2
)
dλij(γ)

dγ
= 0.

Thus,

dλij (γ)

dγ
=

1

γ2

k∑

j=1

z2
ij

(dij − λij (γ))2
> 0.

Clearly, for each ij , the limit of λij (γ) as γ → ∞ exists, say λ̄ij . Since, for dij < λ <

dij−1,

k∑

j=1

z2
ij

dij − λij(γ)
=

1

γ
.

Taking the limit as α → ∞ on both side of the equation above, we get

k∑

j=1

z2
ij

dij − λ̄ij

= 0 (4.20)

as desired.

We are now in the position to state the following theorems.

Theorem 4.3.4. let l and m = 2j be given positive integers. For each k, k =

1, 2, · · · , l − 1, and α, we denote by λl,k(α), l = 0, 1, · · · , 2j − 1, the eigenvalues of

Γk. For k = 1, 2, · · · , l − 1, we let (λl,k, ul,k), l = 0, 1, · · · , 2j − 1, be the eigenpairs of

D1(k), as defined in (4.15). Then the following hold true.

(i) λl,k(α) is strictly decreasing in α, l = 0, 1, · · · , 2j − 1 and k = 1, 2, · · · , l − 1.

(ii)There exist λ∗
l,k such that lim

α→∞
λl,k(α) = λ∗

l,k. Moreover, gk(λ
∗
l,k) = 0, where

gk(λ) =

m∑

l=1

1

(λl−1,k)(λl−1,k + λ)
. (4.21)
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Proof. The first assertion of the theorem follows from proposition 4.3.3-(iii). Let k be

as assumed. Set, for l = 0, 1, ..., m− 1,

zl+1 = pH
l (k)e =

m∑

j=1

eijθl,k =
e−θl,k(1 − e−imθl,k)

1 − e−θl,k
=

e−θl,k(1 − e−ik π
n )

1 − e−θl,k
.

Then

z̄l+1zl+1 =
2 − 2 cosmθl,k

2 − 2 cos θl,k
=

2 cos kπ
n
− 2

λl,k
6= 0. (4.22)

Let P (k) be as given in (4.16c). Then

−P H(k) · Γk · P (k) = Diag(−λ0,k, ...,−λm−1,k) + α(k)P H
l (k)e(P H

l (k)e)H .

Note that if k is as assumed, it follows from Proposition 4.3.1-(ii) that λl,k, l =

0, ..., m − 1, are distinct. Thus, we are in the position to apply Proposition 4.3.3.

Specifically, by noting Ac = φ, we see that λ∗
0,k satisfies g(λ) = 0, where

g(λ) =
m∑

l=1

1

(λl−1,k)(λl−1,k + λ)
.

We have used (4.16d), (4.20) and (4.22) to find g(λ).

We next give an upper bound for λ∗
0,k, k = 1, 2, · · · , n − 1.

Theorem 4.3.5. The following inequalities hold true.

λ∗
0,k < λ0,l, k = 1, 2, · · · , l − 1. (4.23)

Proof. To complete the proof of (4.23), it suffices to show that gk(−λ0,l) < 0. Now,

gk(−λ0,l) =

m∑

l=1

1

[2cos(2(l−1)π
m

+ kπ
lm

) − 2][2cos(2(l−1)π
m

+ kπ
lm

) − 2cos π
m

]
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=: h(m, l, k) = h(2j , l, k). (4.24)

We shall prove that h(2j, l, k) < 0 by the induction on j. For j = 1, h(2, l, k) =

1

2

[
1

cos2(kπ
2l

) − 1

]
< 0, k = 1, 2, · · · , l − 1. Assume h(2j , l, k) < 0. Here, l ∈ N and

k = 1, 2, · · · , l − 1. We first note that

cos

(
2(2j + i − 1)π

2j+1
+

kπ

2j+1l

)
= −cos

(
2(i − 1)π

2j+1
+

kπ

2j+1l

)

=: −cosθi−1,k,j+1, i = 1, 2, · · · , 2j. (4.25)

Moreover, upon using (4.25), we get that

1

(cosθi−1,k,j+1 − 1)(cosθi−1,k,j+1 − cosθ0,l,j+1)

+
1

(cosθ2j+i−1,k,j+1 − 1)(cosθ2j+i−1,k,j+1 − cosθ0,l,j+1)

=
1

(cosθi−1,k,j+1 − 1)(cosθi−1,k,j+1 − cosθ0,l,j+1)

+
1

(cosθi−1,k,j+1 + 1)(cosθi−1,k,j+1 + cosθ0,l,j+1)

=
2cos2θi−1,k,j+1 + 2cosθ0,l,j+1

(cos2θi−1,k,j+1 − 1)(cos2θi−1,k,j+1 − cos2θ0,l,j+1)

=
8(cos2θi−1,k,j+1 + cosθ0,l,j+1)

(cos2θi−1,k,j+1 − 1)(cos2θi−1,k,j+1 − cos2θ0,l,j+1)

=
2(cos2θi−1,k,j+1 + cosθ0,l,j+1)

(cosθi−1,k,j − 1)(cosθi−1,k,j − cosθ0,l,j)
. (4.26)
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We are now in a position to compute h(2j+1, l, k). Using (4.26), we get that

h(2j+1, l, k) =
2j+1∑

l=1

1

4(cosθl−1,k,j+1 − 1)(cosθl−1,k,j+1 − cosθ0,l,j+1)

=

2j∑

l=1

2(cos2θl−1,k,j+1 + cosθ0,l,j+1)

(cosθl−1,k,j − 1)(cosθi−1,k,j − cosθ0,l,j)

≤ 8(cos2θ0,k,j+1 + cosθ0,l,j+1)h(2j, l, k). (4.27)

We have used the facts that cos2θ0,k,j+1 > cos2θi−1,k,j+1, i = 2, · · · , 2j, and that the

first term (i=1) of the summation in (4.27) is negative while all the others are positive

to justify the inequality in (4.27). It then follows from (4.27) that h(2j+1, l, k) < 0. We

just complete the proof of the theorem.

Theorem 4.3.6. Let l and j be the block and wavelet dimensions of G(α, 1), respec-

tively. Assume l and j are any positive integers. Let λ2(α) be the second eigencurve of

G(α, 1). Then the following hold.

(i) λ2(α) is a nonincreasing function of α.

(ii) If l is an even number, then λ2(α) = λ0,n whenever α ≥ α∗ for some α∗ > 0.

(iii) If l is an odd number, then λ2(α) < λ0,n whenever α ≥ α for some α > 0.

Proof. We first remark that in the case of β = 1, the set of the indexes k′s in (4.15)

is {0, 2, 4, ..., 2(l − 1)} := Il. Suppose l is an even number. Then l ∈ Il. Thus,

δl = −1, θ0,l = π
m

, and p0(l) =
(
ei π

m , ei 2π
m , · · · , eiπ

)T

. Applying Proposition 4.3.2, we

see that p0(l) − ps
0(l), an antisymmetric vector, is also an eigenvector of D1(l). And

so eT (p0(l) − ps
0(l)) = 0. It then follows from Remark 4.3.1 that λ0,l is an eigenvalue

of Γl = D1(l) − ρ(l)eeT for all α. The first and second assertions of the theorem now

follow from Theorems 4.3.4 and 4.3.5. Let l be an odd number. Then δi · δi 6= 1 for
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any i ∈ In. Thus, if the pair (δi, vi) satisfy (4.7), then vi 6= −vs
i . Otherwise, the pair

(δi, vi − (−vi)
s) = (δi, vi + vs

i ) also satisfy (4.7). This is a contradiction to the last

assertion in Proposition 4.2.3. Thus, vH
i · e 6= 0 for any i ∈ In. We then conclude,

via Proposition 4.3.3-(iii) and Theorem 4.3.5, that the last assertion of the theorem

holds.

Remark 4.3.7. (i)Let the number of uncoupled (chaotic) oscillators be N = l2j. If l is

an odd number, then the wavelet method for controlling the coupling chaotic oscillators

work even better in the sense that the critical coupling strength ǫ can be made even

smaller. (ii)For l being a multiple of 4 and j ∈ N, the assertions in Theorem 3.3 was

first proved in [6] by a different method.

Theorem 4.3.8. Let l and j be the block and wavelet dimensions of G(α, 0), respec-

tively. Assume l and j are any positive integers. Let λ2(α) be the second eigencurve of

G(α, 0). Then for any l, there exists a α̃ such that λ2(α) = λ0,n whenever α ≥ α̃.

Remark 4.3.9. For l ∈ N and j = 1, the explicit formulas for the eigenvalues of

G(α, 0) was obtained in [4]. Such results are possible due to the fact that the dimension

of the matrices in (4.8) is 2 × 2.

4.4 Numerical Illustrations for Periodic and Neu-

mann Boundary Conditions

To illustrate how such wavelet transform affects the critical coupling strength, we

consider G to be diffusively coupled with Periodic and Neumann Boundary Conditions.

4.4.1 Periodic Boundary Conditions

In this section, we consider the nearest neighbor coupling with periodic boundary con-

ditions. The resulting coupling matrix G(1) is given as in (3.37). Let the dimension of

A1(1), A2(1) and Ā1(1) be 2 × 2. Then

A1(1) =

(
−2 1
1 −2

)
= Ā1(1), A2(1) =

(
0 0
1 0

)
, (4.28a)
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Ã1(1) = α

(
−1

2
−1

2

−1
2

−1
2

)
= ˜̄A1, Ã2(1) = α

(
1
4

1
4

1
4

1
4

)
. (4.28b)

Then Gi(1) = Ai(1) + Ãi(1), i=1, 2, Ḡ1(1) = Ā1(1) + ˜̄A1(1). Thus,

G1(1) =

(
−1

2
(4 + α) 1

2
(2 − α)

1
2
(2 − α) −1

2
(4 + α)

)
= Ḡ1(1),G2(1) =

(
α
4

α
4

1
4
(4 + α) α

4

)
. (4.28c)

We begin with identifying some trivial eigenvalues of G(α, 1).

Proposition 4.4.1. For each α, 0 and -4 are eigenvalues of G(α, 1). If, in addition,

l
2
(> 1) is a positive integer, then -2 is also an eigenvalue of G(α, 1) for any α.

Proof. Let G(α, 1) + 4I = (c1, c2, ..., cm), where ci, 1 ≤ i ≤ m, are column vectors.

Then

m∑

j=1

(−1)j+1cj = 0. Thus -4 is an eigenvalue of G(α, 1) for each α > 0. Let

G(α, 1)+2I = (c1, c2, ..., cm). If m = 2l(> 4) is a multiple of four, then

m∑

j=1

δ(j)cj = 0,

where

δ(j) =

{
1 if j = 4k or 4k + 1 for some k,
−1 if j = 4k + 2 or 4k + 3 for some k.

Thus, -2 is an eigenvalue of G(α, 1) for each α with such N .

Writing the corresponding eigenvalue problem G(α, 1)b = λb, where

b = (b1,b2, · · · ,bl)
T and bi ∈ C

2, in block component form, we have

GT
2 (1)bi−1 + G1(1)bi + G2(1)bi+1 = λbi, 1 ≤ i ≤ l. (4.29a)

Periodic boundary conditions would yield that

GT
2 (1)b0 + G1(1)b1 + G2(1)b2 = λb1 = G1(1)b1 + G2(1)b2 + GT

2 (1)bl

and
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GT
2 (1)bl−1 + G1(1)bl + G2(1)bl+1 = λbn = G2(1)b1 + GT

2 (1)bl−1 + Ḡ1(1)bl,

or, equivalently,

b0 = bl,b1 = bl+1. (4.29b,c)

To study the block difference equation (4.29), we first seek to find the solution bi of

the form.

bi = δi

(
1
ν

)
. (4.30)

Substituting (4.30) into (4.29a), we get

[GT
2 (1) + δ(G1(1) − λI) + δ2G2(1)]

(
1
ν

)
= 0. (4.31)

To have a nontrivial solution

(
1
ν

)
to equation (4.31), we need to have

det[GT
2 (1) + δ(G1(1) − λI) + δ2G2(1)] = 0, (4.32a)

or, equivalently,

αδ4+(4α+4+2αλ)δ3−(8+10α+16λ+4αλ+4λ2)δ2+(4α+4+2αλ)δ+α = 0. (4.32b)

Equation (4.32b) is to be called the characteristic equation of the block difference

equation(4.29a). To study the property of equation (4.32b), we need the following

proposition.
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Proposition 4.4.2. Let D1, D2 and D3 be 2 × 2 matrices. Suppose D1 = DT
3 and

D2 = DT
2 . Let x1, x2, x3 and x4 be roots of det[D1 + xD2 + x2D3] = 0, where x ∈ C.

Then we may renumber the subscripts if necessary so that

x1x2 = 1 = x3x4. (4.33a)

If, in addition, diagonal elements of D1 and D2, respectively, are both equal, then

y1y2 = 1 = y3y4. (4.33b)

Here

(
1
yi

)
, i=1, 2, 3, 4, are vectors satisfying

[D1 + xiD2 + x2
i D3]

(
1
yi

)
= 0. (4.33c)

Proof. If D1, D2 and D3 are as assumed, then

det[D1 + xD2 + x2D3] = ax4 + bx3 + cx2 + bx + a (4.34)

for some constants a 6= 0, b, and c. Letting y = x + 1
x
, then (4.34) can be writ-

ten as αy2 + βy + γ, where α, β and γ depend on the constants a, b, and c. Thus

det[D1 + xD2 + x2D3] = 0 is equivalent to x2 − λ±x + 1 = 0, where λ± are the roots

a1y
2 + b1y + c1 = 0. Consequently, x1x2 = 1 = x3x4.

Letting D1 =

(
a1 b1

c1 a1

)
= DT

3 and D2 =

(
a2 b2

b2 a2

)
, we write (4.33c) in component

form.

(a1 + yib1) + (a2 + yib2)xi + (a1 + yic1)x
2
i = 0, i = 1, 2, 3, 4, (4.35a)

(c1 + yia1) + (b2 + yia2)xi + (b1 + yia1)x
2
i = 0, i = 1, 2, 3, 4, (4.35b)
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For i = 1, (4.35a) is equal to

(a1 + y1b1) + (a2 + y1b2)
1

x2
+ (a1 + y1c1)

1

x2
2

= 0

or

(a1 + y1c1) + (a2 + y1b2)x2 + (a1 + y1b1)x
2
2 = 0

or

(c1 +
1

y1

a1) + (b2 +
1

y1

a2)x2 + (b1 +
1

y1

a1)x
2
2 = 0. (4.35c)

Using equations (4.35c), (4.35b) with i = 2, and the uniqueness of yi, i = 1, 2, 3, 4,

we conclude that y1y2 = 1. Similarly, y3y4 = 1. We just complete the proof of the

proposition.

We are now in a position to further study equation (4.32). We assume, momentar-

ily, that equation (4.32) has four distinct roots δ1, δ2, δ3 and δ4. The general solutions

to (4.29a) can then be written as

bi = c1δ
i
1

(
1
ν1

)
+ c2δ

i
2

(
1
ν2

)
+ c3δ

i
3

(
1
ν3

)
+ c4δ

i
4

(
1
ν4

)

.

(4.36)

Here νi, i = 1, 2, 3, 4, are some constants depending on δi.

Applying (4.36) to boundary conditions (4.29b,c), we get

c1(δ
l
1 − 1)

(
1
ν1

)
+ c2(δ

l
2 − 1)

(
1
ν2

)
+ c3(δ

l
3 − 1)

(
1
ν3

)

+c4(δ
l
4 − 1)

(
1
ν4

)
= 0 (4.37a)
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and

c1δ1(δ
l
1 − 1)

(
1
ν1

)
+ c2δ2(δ

l
2 − 1)

(
1
ν2

)
+ c3δ3(δ

l
3 − 1)

(
1
ν3

)

+c4δ4(δ
l
4 − 1)

(
1
ν4

)
= 0. (4.37b)

Writing (4.37) in matrix form, we have




1 1 1 1
ν1 ν2 ν3 ν4

δ1 δ2 δ3 δ4

ν1δ1 ν2δ2 ν3δ3 ν4δ4


 diag(δl

1 − 1, δl
2 − 1, δl

3 − 1, δl
4 − 1)




c1

c2

c3

c4


 = 0. (4.38)

Now if, diag(δl
1−1, δl

2 −1, δl
3 −1, δl

4 −1) is singular, then equation (4.36) has nontrivial

solutions ci , i=1,2,3,4. Note that diag(δl
1 − 1, δl

2 − 1, δl
3 − 1, δl

4 − 1) is singular if and

only if δi, i=1,2,3,4, satisfy

δl = 1 (4.39)

and (4.32b). To solve system of equations (4.39) and (4.32b), we first note that

δm = ei 2mπ
l , 0 ≤ m ≤ n − 1, (4.40)

are roots of equation (4.39). Substituting (4.40) into (4.32b), we get that the imaginary

part of the resulting equation is

[−4 sin
4mπ

l
]λ2 + [2α sin

6mπ

l
− (4α + 16) sin

4mπ

l
+ 2α sin

2mπ

l
]λ

+[α sin
8mπ

l
+ 4(1 + α) sin

6mπ

l
− (8 + 10α) sin

4mπ

l
+ 4(1 + α) sin

2mπ

l
] = 0. (4.41)
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Before we proceed to compute the real part of the resulting equation, we need the

following lemma.

Lemma 4.4.3. Let a, b, and c be any complex number, then

cos 2θ(sin 4θ + a sin 3θ + b sin 2θ + a sin θ)

= sin 2θ(cos 4θ + a cos 3θ + b cos 2θ + a cos θ + 1). (4.42)

Since the proof of the lemma is straighforward, we will skip it.

Using (4.41) and (4.42), we see immediately that the real part of (4.32b) with δ = ei 2mπ
l

is a constant multiple
sin 4mπ

l

cos 4mπ
l

of its imaginary part. We next show that (4.41) is indeed

the characteristic equation of the matrix G(α, 1).

Theorem 4.4.4. : Let m×m, m = 2k, k ∈ N, be the dimension of the matrix G(α, 1).

Let dimension of each block matrix in G(α, 1) be 2× 2. Then the eigenvalues λ±
m(α, 1)

of C(α, 1) are of the following form.

λ±
m(α, 1) =

1

2
(α cos

2mπ

l
− α − 4) ± 1

2
[(α cos

2mπ

l
− α − 4)2

+ 4(α cos2 2mπ

l
+ 2(α + 1) cos

2mπ

l
− 2 − 3α)]

1
2

=: λ̌m(α, 1) ± λ̂m(α, 1), m = 0, 1, ..., l − 1. (4.43)

Proof. Solving (4.41), we get (4.43). Using Proposition 4.4.2, we see that if δ = 1

or -1 is a root of equation (4.32b), then the multiplicity of δ = 1 or -1 is both two.

Thus, we have only proved the following. (i)If l
2

is not a positive integer, then for

each α, λ±
m(α, 1), m = 1, 2, ..., l − 1, are eigenvalues of G(α, 1). (ii)If l

2
is a positive

integer, then for each α, λ±
m(α, 1), m = 1, 2, ..., l

2
− 1, l

2
+ 1, ..., l − 1, are eigenvalues

of G(α, 1). To complete the proof of the theorem, it remains to show that for each α,

λ±
0 (α, 1)(= 0,−4) are eigenvalues of G(α, 1) for each α and that if, additionally, l

2
> 1

is a positive integer, then for each α, λ±
l
2

(α, 1)(= −2,−2 − 2α) are also eigenvalues of
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G(α, 1). Using Proposition 4.4.1, we only need to show that −2 − 2α = (λ−
l
2

(α, 1)) is

an eigenvalue of G(α, 1) for fixed α. To this end, we see that

trace of G(α, 1) = −l(α + 4). (4.44)

Let m = 2l > 4 be a multiple of four, then

λ+
l
2

(α, 1) + (
l∑

j=1,j 6= l
2

λ±
j (α, 1)) + λ±

0 (α, 1) = −2 − (l − 2)(α + 4) − 4. (4.45)

Using (4.44) and (4.45), we have that the remaining eigenvalue of G(α, 1) for each α is

−2 − 2α, which is equal to λ−
l
2

(α, 1). We thus complete the proof of the theorem.

Proposition 4.4.5. For all α > 0, we have that λ̂m(α, 1) > 0, λ̌m(α, 1) < 0 and

λ±
m(α, 1) ≤ 0.

Proof. Obviously, λ̌m(α, 1) < 0. Now, letting t = cos 2mπ
l

, we have that

4(λ̂m(α, 1))2 = (t − 1)2α2 + 4(t2 − 1)α + 8(1 + t)

= ((t − 1)α + 2(t + 1))2 + 4(1 − t2) > 0

for any α > 0. Thus λ̂m(α, 1) > 0. To prove the last assertion of the proposition, we

note, via (4.43), that

0 > 4(α cos2 2mπ

l
+ 2(α + 1) cos

2mπ

l
− 2 − 3α) =: l.

Thus,

2λ±
m(α, 1) = 2λ̌m(α, 1) ± (4λ̌2

m(α, 1) + l)
1
2 ≤ 0.

We just complete the proof of the proposition.
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Proposition 4.4.6. If l
2

is not a positive integer, then the eigencurves λ±
m(α, 1), m =

1, 2, ..., l − 1, are strictly decreasing in α ∈ (0,∞). If l
2
(> 1) is a positive integer,

then λ±
m(α, 1), m = 1, 2, ..., l

2
− 1, l

2
+ 1, ..., l− 1, and λ−

l
2

(α, 1) are strictly decreasing in

α ∈ (0,∞).

Proof. Letting t = cos 2mπ
l

, we write (4.43) as

λ±
m(α, 1) =

1

2
{α(t − 1) − 4 ± [(t − 1)2α2 + 4(t2 − 1)α + 8(1 + t)]

1
2}

=:
1

2
{α(t − 1) − 4 ± (tα)

1
2} =: λ±

t (α). (4.46)

Then

2
dλ±

m(α, 1)

dα
= (t − 1)(1 ± (t − 1)α + 2(t + 1)√

tα
).

A direct computation would yield that

tα ≥ ((t − 1)α + 2(t + 1))2.

Thus, dλ±
m(α,1)
dα

≤ 0. The equality holds only if t=1 or t= -1 for λ+
m.

Proposition 4.4.7. (i) In the α−λ plane, λ+
t (α, 1) intersect with λ = −2+ k at αt,k,

where

αt,k =
2(1 + t) − k2

(1 − t)(1 + t + k)
. (4.47)

(ii) For −1 ≤ t < 1, lim
α→∞

λ+
t (α, 1) = −(t + 3).

Proof. Solving equation −2 + k = λ+
t (α, 1), we easily get that αt,k are as asserted.

Rewriting λ+
t (α, 1) as
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λ+
t (α, 1) =

−2α(t − 1)(t + 3) + 4(1 − t)

α(t − 1) − 4 −√
tα

,

we see that lim
α→∞

λ+
t (α, 1) = −(t + 3) for −1 ≤ t < 1.

Theorem 4.4.8. Let m be any positive even integer. The dimension of each block

matrix in G(α, 1) is 2 × 2. Then (i) Suppose m is a multiple of four and m > 4. For

each α > 0, let λ2(α, 1) be the second largest eigenvalue of G(α, 1). Then λ2(α, 1) =

λ+
1 (α, 1), for 0 ≤ α ≤ 1

sin2 π
l

=: α1; and λ2(α, 1) = λ+
n
2
(α, 1) = −2 for all α ∈ [α1,∞).

See Figure 4.1.

(ii) Suppose m is not a multiple of four. Then there exists a α̃c such that λ2(α, 1) =

λ+

[ l
2
]
(α) for all α ≥ α̃c. Here [ l

2
] = the largest positive integer that is less than or equal

to l
2
. Moreover, λ2(α, 1) < −2 whenever α > α1. See Figure 4.2.

Proof. For αt,k to be positive, we must have

2(1 + t) > k2. (4.48)

Now,

(1 − t)2(1 + t + k)2 dαt,k

dt
= 2(t + 1)2 − k3 + 4k − 2tk2

> (1 + t)k2 − k3 + 4k − 2tk2

= −k(k2 + (t − 1)k − 4)

= −k(k − t+)(k − t−),

where t± =
1−t±

√
16+(1−t)2

2
. Note that we have used (4.48) to justify the above inequal-

ity. Moreover t− < 0 and t+ ≥ 2. Thus,
dαt,k

dt
> 0 whenever λ = −2 + k, 0 ≤ k < 2,

and λ = λ+
t (α, 1) have the intersections intersect at the positive αt,k. Upon using

Proposition 4.4.6, we conclude that for 0 ≤ m ≤ l − 1, the portion of the graphs of

λ+
m(α, 1) lying above the line λ = −2 do not intersect each other. Thus, λ2(α, 1) is as

asserted.
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By Proposition 4.4.7-(ii), we have that

lim
α→∞

λ+
m(α, 1) = −(cos

2mπ

l
+ 3) =: λ∞

m = λ∞
t .

Then λ∞
m , 0 < m ≤ l − 1, have a maximum at m = [ l

2
]. Thus, there exists a α̃c such

that λ2(α, 1) = λ+

[ l
2
]
(α, 1) for all α ≥ α̃c. The last assertion of the theorem follows from

Proposition 4.4.7-(i) and Proposition 4.4.1.

Remark 4.4.9. (i) Since λ+
t (α, 1) is increasing in t and λ∞

t is decreasing in t. The

eigencurves λ+
m(α, 1), 0 < m ≤ [ l

2
], must be crossing each other.

(ii) The first columnin Table 4.1 contains the values of λ±
m(1, 1), m=0,1,...,5, while

the second column contains the eigenvalues of G(1, 1) obtained by using Mathematica.

As indicated, the G(1, 1) and G(5, 1) obtained by both methods are identical. The

values λ±
m(3, 1), m=0,1,...,8, in the first and third columns of Table 4.2 are computed

by Maple, while those in the second and forth columns are computed by Matlab. Some

discrepancies between the values in the respective columns occur due to the round-off

errors.

(iii) Figure 4.1 illustrates the graph of λ±
m(α, 1), m=0,1,...,5, with l=6. The dotted part

of the curve is λ2(α, 1). Figure 4.2 gives the same information with l=9.

(iv) We conclude, via the last assertion of Theorem 4.4.8, that the wavelet approach

works even better when m is an even number but not a multiple of four. Indeed, in

such case, it synchronizes faster when α is chosen to be the critical value α̃c.

84



l=6

λ±
m(1, 1)

eigenvalues
λ±

m(5, 1)
eigenvalues

of G(1, 1) of G(5, 1)
λ+

0 (1, 1) = 0 0 λ+
0 (5, 1) = 0 0

λ+
1 (1, 1) = −9

4
+ 1

4

√
37 −9

4
+ 1

4

√
37 λ+

1 (5, 1) = −13
4

+ 1
4

√
13 −13

4
+ 1

4

√
13

λ+
2 (1, 1) = −11

4
+ 1

4

√
13 −11

4
+ 1

4

√
13 λ+

2 (5, 1) = −23
4

+ 1
4

√
181 −23

4
+ 1

4

√
181

λ+
3 (1, 1) = −2 −2 λ+

3 (5, 1) = −2 -2

λ+
2 (1, 1) = −11

4
+ 1

4

√
13 −11

4
+ 1

4

√
13 λ+

4 (5, 1) = −23
4

+ 1
4

√
181 −23

4
+ 1

4

√
181

λ+
2 (1, 1) = −11

4
+ 1

4

√
13 −11

4
+ 1

4

√
13 λ+

5 (5, 1) = −13
4

+ 1
4

√
13 −13

4
+ 1

4

√
13

λ−
0 (1, 1) = −4 −4 λ−

0 (5, 1) = −4 -4

λ−
1 (1, 1) = −9

4
− 1

4

√
37 −9

4
− 1

4

√
37 λ−

1 (5, 1) = −13
4
− 1

4

√
13 −13

4
− 1

4

√
13

λ−
2 (1, 1) = −11

4
− 1

4

√
13 −11

4
− 1

4

√
13 λ−

2 (5, 1) = −23
4
− 1

4

√
181 −23

4
− 1

4

√
181

λ−
3 (1, 1) = −4 −4 λ−

3 (5, 1) = −12 -12

λ−
4 (1, 1) = −11

4
− 1

4

√
13 −11

4
− 1

4

√
13 λ−

4 (5, 1) = −23
4
− 1

4

√
181 −23

4
− 1

4

√
181

λ−
5 (1, 1) = −11

4
− 1

4

√
13 −11

4
− 1

4

√
13 λ−

5 (5, 1) = −13
4
− 1

4

√
13 −13

4
− 1

4

√
13

Table 4.1
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+
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+
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+
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+
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+
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Figure 4.1

85



l=9

λ±
m(3, 1)

eigenvalues
λ±

m(10, 1)
eigenvalues

of G(3, 1) of G(10, 1)
λ+

0 (3, 1) = 0 0 λ+
0 (10, 1) = 0 0

λ+
1 (3, 1) ≈ −0.7967 -0.7967 λ+

1 (10, 1) ≈ −2.2938 -2.2930
λ+

2 (3, 1) ≈ −2.2524 -2.2525 λ+
2 (10, 1) ≈ −3.0135 -3.0140

λ+
3 (3, 1) ≈ −2.2975 -2.2974 λ+

3 (10, 1) ≈ −2.4465 -2.4466
λ+

4 (3, 1) ≈ −2.0399 -2.0399 λ+
4 (10, 1) ≈ −2.0535 -2.0542

λ+
5 (3, 1) ≈ −2.0399 -2.0399 λ+

5 (10, 1) ≈ −2.0535 -2.0542
λ+

6 (3, 1) ≈ −2.2975 -2.2974 λ+
6 (10, 1) ≈ −2.4465 -2.4466

λ+
7 (3, 1) ≈ −2.2524 -2.2525 λ+

7 (10, 1) ≈ −3.0135 -3.0140
λ+

8 (3, 1) ≈ −0.7967 -0.7967 λ+
8 (10, 1) ≈ −2.2938 -2.2930

λ−
0 (3, 1) = −4 -4 λ−

0 (10, 1) = −4 -4
λ−

1 (3, 1) ≈ −3.9051 -3.9052 λ−
1 (10, 1) ≈ −4.0458 -4.0465

λ−
2 (3, 1) ≈ −4.2268 -4.2265 λ−

2 (10, 1) ≈ −9.2505 -9.2495
λ−

3 (3, 1) ≈ −6.2025 -6.2026 λ−
3 (10, 1) ≈ −16.5534 -16.5534

λ−
4 (3, 1) ≈ −7.7791 -7.7792 λ−

4 (10, 1) ≈ −21.3427 -21.3427
λ−

5 (3, 1) ≈ −7.7791 -7.7792 λ−
5 (10, 1) ≈ −21.3427 -21.3427

λ−
6 (3, 1) ≈ −6.2025 -6.2026 λ−

6 (10, 1) ≈ −16.5534 -16.5534
λ−

7 (3, 1) ≈ −4.2268 -4.2265 λ−
7 (10, 1) ≈ −9.2505 -9.2495

λ−
8 (3, 1) ≈ −3.9051 -3.9052 λ−

8 (10, 1) ≈ −4.0458 -4.0465

Table 4.2
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Figure 4.2

4.4.2 Neumann Boundary Conditions

In this section, we consider the nearest neighbor coupling with Neumann boundary

conditions. The resulting coupling matrix G is then G(0), given as in (3.37).

With i = 1, we have

A1(0) =

(
−1 1
1 −2

)
, Ā1(0) =

(
−2 1
1 −1

)
, A2(1) =

(
0 0
1 0

)
,

A1(1) =

(
−2 1
1 −2

)
, A2(0) =

(
0 0
0 0

)
, Ã2(0) = α

(
0 0
0 0

)
,

87



Ã1(0) = α

(
−1

4
−1

4

−1
4

−1
4

)
= ˜̄A1(0), Ã2(1) = α

(
1
4

1
4

1
4

1
4

)
,

and

Ã1(1) = α

(
−1

2
−1

2

−1
2

−1
2

)

.

(4.49)

A direct calculation would yield that

G2(0) =

(
0 0
0 0

)
,

,

G1(0) =

(
−1

4
(4 + α) 1

4
(4 − α)

1
4
(4 − α) −1

4
(8 + α)

)

,

G2(1) =

(
α
4

α
4

1
4
(α + 4) α

4

)
,

G1(1) =

(
−1

2
(4 + α) 1

2
(2 − α)

1
2
(2 − α) −1

2
(4 + α)

)

,

Ḡ1(0) =

(
−1

4
(8 + α) 1

4
(4 − α)

1
4
(4 − α) −1

4
(4 + α)

)

.

(4.50)

As in the case of periodic boundary conditions, the eigenvalue problem G(α, 0)b = λb,

where b = (b1,b2, ...,bl)
T , bi ∈ C2, can be formed as block difference equation

GT
2 (1)bi−1 + G1(1)bi + G2(1)bi+1 = λbi, 1 ≤ i ≤ l. (4.51)

With Neumann boundary conditions, b0 and bl+1 must satisfy the following equations

G1(0)b1 + G2(1)b2 = λb1 = GT
2 (1)b0 + G1(1)b1 + G2(1)b2 (4.52a)

and

GT
2 (1)bl−1 + Ḡ1(0)bl = λbl = GT

2 (1)bl−1 + G1(1)bl + G2(1)bl+1 (4.52b)

Solving (4.52a) and (4.52b), respectively, we get
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b0 = (GT
2 (1))−1(G1(0) −G1(1))b1 =

(
0 1
1 0

)
b1 (4.53a)

and

bl+1 = G2(1)−1(Ḡ1(0) − G1(1))bl =

(
0 1
1 0

)
bl. (4.53b)

We then see that the characteristic equation of the block difference equation (4.51) is

det[GT
2 (1) + δ(G1(1) − λI) + δ2G2] = 0. (3.6a)

Here δ is such that bi = δi

(
1
ν

)
, where ν is a constant depending on δ. Expanding

the determinant in (4.54a), we get

αδ4 + 2(2α + 2 + λα)δ3 − 2(4 + 5α + 2(α + 4)λ + 2λ2)δ2

+2(2α + 2 + λα)δ + α = 0. (4.54b)

We assume, momentarily, that equation (4.54b) has four distinct roots δ1, δ2, δ3 and

δ4. The general solutions to (4.51) can then be written as

bi =

4∑

j=1

cjδ
i
j

(
1
νj

)
. (4.55)

Substituting (4.55) into boundary conditions (4.53), we get




δ1ν1 − 1 δ2ν2 − 1 δ3ν3 − 1 δ4ν4 − 1
δ1 − ν1 δ2 − ν2 δ3 − ν3 δ4 − ν4

δl
1(δ1ν1 − 1) δl

2(δ2ν2 − 1) δl
3(δ3ν3 − 1) δl

4(δ4ν4 − 1)
δl
1(δ1 − ν1) δl

2(δ2 − ν2) δl
3(δ3 − ν3) δl

4(δ4 − ν4)







c1

c2

c3

c4


 =: Dc = 0,

(4.56)
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where c = (c1, c2, c3, c4)
T . We are now in a position to simplify detD.

detD = (δ2ν2)(δ4ν4)

∣∣∣∣∣∣∣∣

δ1ν1 − 1 1 − δ1ν1 δ3ν3 − 1 1 − δ3ν3

δ1 − ν1 ν1 − δ1 δ3 − ν3 ν3 − δ3

δl
1(δ1ν1 − 1) δl

2(1 − δ1ν1) δl
3(δ3ν3 − 1) δl

4(1 − δ3ν3)
δl
1(δ1 − ν1) δl

2(ν1 − δ1) δl
3(δ3 − ν3) δl

4(ν3 − δ3)

∣∣∣∣∣∣∣∣

= (δ2ν2)(δ4ν4)(δ
l
1 − δl

2)(δ
l
3 − δl

4)

∣∣∣∣∣∣∣∣

0 1 − δ1ν1 0 1 − δ3ν3

0 ν1 − δ1 0 ν3 − δ3

δ1ν1 − 1 δl
2(1 − δ1ν1) δ3ν3 − 1 δl

4(1 − δ3ν3)
δ1 − ν1 δl

2(ν1 − δ1) δ3 − ν3 δl
4(ν3 − δ3)

∣∣∣∣∣∣∣∣

= (δ2ν2)(δ4ν4)(δ
l
1 − δl

2)(δ
l
3 − δl

4)

{[(δ1ν1 − 1)(ν3 − δ3) + (δ1 − ν1)(δ3ν3 − 1)]

∣∣∣∣
1 − δ1ν1 1 − δ3ν3

ν1 − δ1 ν3 − δ3

∣∣∣∣}.

Therefore, detD being equal to zero amounts to δ2l
i = 1 for i = 1, 2, 3, 4.

To get the characteristic equation of G(α, 0), we need to solve δ2l = 1 and equation

(4.54b). This leads to the following theorem.

Theorem 4.4.10. Let m be any positive even integer. The dimension of each block

matrix in G(α, 0) is 2 × 2. Let λ±
m(α, 0) be defined as follows.

λ±
m(α, 0) =

1

2
(α cos

mπ

l
− α − 4)

± 1

2
[(α cos

mπ

l
− α − 4)2 + 4(α cos2 mπ

l
+ 2(α + 1) cos

mπ

l
− 2 − 3α)]

1
2 .

(4.57)

Then λ±
m(α, 0), m = 1, 2, ..., l − 1, λ+

0 (α, 0) = 0 and λ+
l (α, 0) = −2 are eigenvalues of

G(α, 0) for each α > 0.

Proof. Substituting δ = ei mπ
l , 0 ≤ m ≤ l − 1, into (4.54b), we get (4.57). Clearly, if

δ 6= 1 or -1, or equivalently, cos mπ
l

6= 1 or -1, then λ±
m(α, 0), m = 1, 2, .., l − 1, are

eigencurves of G(α, 0). Since 0 = λ+
0 (α, 0) is an eigenvalue of G(α, 0) for all α, we only

90



need to show that λ+
l (α, 0) is, indeed, the eigenvalue of G(α, 0) for each α. To this end,

we see that trace(G(α, 0)) = −(l−2)(α+4)−6−α. However, λ+
0 (α, 0)+

l−1∑

j=1

λ±
j (α, 0) =

−(l − 1)(α + 4) =: k. Thus, trace(G(α, 0)) − k = −2 = λ+
l (α, 0). We just complete

the proof of the theorem.

Remark 4.4.11. (i) Letting t = cos mπ
l

, λ±
m(α, 0) = λ±

t (α, 0) and treating t as a real

parameter, we see that for fixed α > 0, the eigenvalues of G with periodic boundary

conditions and Neumann boundary conditions, respectively, lie on the curve λ±
t (α, 0)

in t − λ plane.

(ii) Note that λ±
m(α, 0) = λ±

2l−m(α, 0).

Theorem 4.4.12. : For each α, let λ(α, 0) be the second largest eigenvalue of G(α, 0).

Then λ(α, 0) = λ+
1 (α, 0), for 0 ≤ α ≤ 1

sin2 π
2l

=: ᾱ1; and λ(α, 0) = λ+
l (α, 0) = −2 for all

α ∈ [ᾱ1,∞).

We skip the proof of theorem due to its similarity with that of Theorem 4.4.8-(ii).

l=3

λ±
m(2, 0)

eigenvalues
λ±

m(5, 0)
eigenvalues

of G(2, 0) of G(5, 0)
λ+

0 (2, 0) = 0 0 λ+
0 (5, 0) = 0 0

λ+
1 (2, 0) = −5

2
+ 1

2

√
7 −5

2
+ 1

2

√
7 λ+

1 (5, 0) = −13
4

+ 1
4

√
13 −13

4
+ 1

4

√
13

λ+
2 (2, 0) = −7

2
+ 1

2

√
7 −7

2
+ 1

2

√
7 λ+

2 (5, 0) = −23
4

+ 1
4

√
181 −23

4
+ 1

4

√
181

λ+
3 (2, 0) = −2 -2 λ+

3 (5, 0) = −2 -2

λ−
1 (2, 0) = −5

2
− 1

2

√
7 −5

2
− 1

2

√
7 λ−

1 (5, 0) = −13
4
− 1

4

√
13 −13

4
− 1

4

√
13

λ−
2 (2, 0) = −7

2
− 1

2

√
7 −7

2
− 1

2

√
7 λ−

2 (5, 0) = −23
4
− 1

4

√
181 −23

4
− 1

4

√
181

Table 4.3
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Remark 4.4.13. Table 4.3 and Figure 4.3 illustrate, again, the accuracy of our theo-

rems.
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Chapter 5

Concluding Chapter

We conclude this chapter by mentioning some possible future work.

(i) It is of great interest to extend our method to study the real world topology.

(ii) It is certainly worthwhile to study how bounded dissipation of the coupled system

is related to the uncoupled dynamics and its connectivity topology.

(iii) It is interesting to study (global) synchronization of coupled system which lacks

bounded dissipation such as the Rössler system.

(iv) It is desirable to solve the reduced problem of G(α, β), 0 < β < 1.

(v) It is also of considerable interest to study the wavelet transform on coupled map

lattices.
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[30] J. Lü, X. Yu, and G. Chen, A time-varying complex dynamical network model and

its controlling synchronization criteria, IEEE Trans. Autom. Control, Vol. 50 Num.

6(2005), 841-846.
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