

國 立 交 通 大 學

資訊科學系

碩 士 論 文

M M O G 中 介 軟 體 之 儲 存 元 件 與 服 務

A Research of Persistence Component on

MMOG Middleware

研 究 生：葉倫武

指導教授：袁賢銘 教授

中 華 民 國 九 十 四 年 六 月

MMOG 中介軟體之儲存元件與服務

A Research of Persistence Component on MMOG Middleware

研 究 生：葉倫武 Student：Lun-Wu Yeh

指導教授：袁賢銘 Advisor：Shyan-Ming Yuan

國 立 交 通 大 學
資 訊 科 學系
碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 i

MMOG 中介軟體之儲存元件與服務

學生：葉倫武 指導教授：袁賢銘

國立交通大學資訊科學系

摘要

MMOG (Massively Multiplayer Online Game)是一種提供多人同時在一個虛擬遊戲

世界互動的遊戲類型。但是開發一個 MMOG 的難度是非常高的，開發者會遭遇到問題，

例如高效能的網路、分散式的技術、延展性、容錯機制、負載平衡…等，而這些問題大

多是一般遊戲所不會遭遇到的問題，所以開發一個 MMOG 是非常耗費時間和人力的。

DOIT (Distributed Organized Information Terra)是一套中介軟體平台，來讓開發者能夠減

少開發時所遇到的問題與負擔。然而 DOIT 並沒有提供資料儲存方面的元件與服務，所

以開發者必須自行處理各式各樣的 MMOG 物件與資料傳輸，以及在伺服器主機和資料

庫之間的交易問題。

而我們提出的這套儲存元件與服務可以減少系統開發時的負擔，並提高系統效能，

它包含了一些基本且常見的 MMOG 物件型態，讓開發者可以方便的來開發與使用，而

in-memory 方面的 operation，可以提升系統效能，而此系統會管理這些物件，並處理其

資料同步和交易方面的問題，來讓開發者可以更快速、更方便的來開發一套 MMOG。

 ii

A Research of Persistence Component on MMOG Middleware

Student: Lun-Wu Yeh Advisor: Shyan-Ming Yuan

Department of Computer and Information Science

National Chiao Tung University

Abstract

MMOG (Massively Multiplayer Online Game) is a type of computer game that enables

hundreds or thousands of players to simultaneously interact in a game world via the Internet.

But developing a MMOG is very hard. Developer will encounter many problems, such as

high-performance network, distributed technology, extensibility, fault tolerance, load

balancing…etc. Most of these issues are not existed in traditional single-player games.

Therefore, development a MMOG will consume a lot of time and plenty efforts. DOIT

(Distributed Organized Information Terra) is the middleware platform to reduce development

effort. However, DOIT does not provide data persistence mechanism. Developers have to

handle varied MMOG objects, data transport between servers and database transaction.

Persistence components can reduce system development effort and enhanced system

performance. It includes MMOG objects for designing and implementing a game. There are

in-memory operation to enhance system performance and manager to handle data

synchronization and transaction. With persistence components, developers will construct

MMOG more conveniently and quickly.

 iii

Acknowledgement

首先我要感謝袁賢銘教授給我的指導，在我的研究領域裡給予我很多的意見，並且

給予我最大的空間來發揮我的創意。也要感謝所有幫助過和指導過我的學長，蕭存喻和

吳瑞祥學長給我很多意見與指導，並給予我許多的建議，讓我能完成這篇論文，而鄭明

俊和邱繼弘學長則是讓我學到了些做研究的方法。還要感謝郭予中和陳冠傑，幫助我在

英文寫作方面的問題，另外還要感謝陳俊元和林慧雯，常常大家一起在實驗室努力到深

夜，最後我要感謝我的爸媽，給予我這個良好的環境讓我求學生涯毫無後顧之憂，專心

於學業，謹以這篇小小的學術成就來感謝您們的養育之恩。

 iv

Table of Contents

Acknowledgement ..iii

Table of Contents.. iv

List of Figures ... vi

List of Tables ..vii

Chapter 1 Introduction ... 1

1.1. MMOG ...1

1.2. Motivation ..2

1.3. Research Objectives ...3

1.4. Organization ...4

Chapter 2 Related Works ... 6

2.1. DOIT middleware platform..7

2.2. Existing persistence handling of MMOG middleware platform8

2.3. EJB ...8

2.4. JDO...9

2.5. Hibernate ..9

2.6. Other related research about persistent framework ..10

2.7. Summary... 11

Chapter 3 System Architecture .. 12

3.1. MMOG platform objects ..12

3.2. System Architecture..14

3.3. Memory Component...16

3.4. System Object...16

Chapter 4 Implementation Detail & issue .. 20

 v

4.1. Application Tier..21

4.2. Manager Tier ..24

4.3. Persistent Tier ...27

4.4. Implementation issues ..27

Chapter 5 Experiment and Discussion.. 30

5.1. Round1: Database relationship...30

5.2. Round2: 80% read and 20% update ...38

Chapter 6 Future Works and Conclusions ... 42

6.1. Conclusions ..42

6.2. Future Works ..43

Bibliography .. 45

 vi

List of Figures

Figure 2-1: Object Relational Mapping Engine ...6

Figure 3-1: MMOG Object Types ..12

Figure 3-2: DOIT System Architecture ..14

Figure 3-3: Hibernate System Architecture ..15

Figure 3-4: High-level System Architecture...15

Figure 4-1: System Architecture...20

Figure 4-2: Class diagram of system objects..22

Figure 4-3: Interface and implementation of MemoryManager...............................24

Figure 4-4: MemoryObject...25

Figure 4-5: MapKey ...26

Figure 4-6: MemoryManager ...26

Figure 5-1: Experiment with our system architecture ..31

Figure 5-2: Experiment without our system architecture ...32

Figure 5-3: Experiment result of round1 single table insert operation.....................33

Figure 5-4: Experiment result of round1 single table update operation33

Figure 5-5: Experiment result of round1 Many-to-One insert operation34

Figure 5-6: Experiment result of round1 Many-to-One update operation................35

Figure 5-7: Experiment result of round1 One-to-One insert operation....................36

Figure 5-8: Experiment result of round1 One-to-One update operation36

Figure 5-9: Experiment result of round1 Many-to-Many insert operation...............37

Figure 5-10: Experiment result of round1 Many-to-Many update operation...........38

Figure 5-11: Experiment result of round2 ..40

 vii

List of Tables

Table 5-1: Hardware configuration of round1..30

Table 5-2: Experiment result of round1 single table ..32

Table 5-3: Experiment result of round1 Many-to-One relationship34

Table 5-4: Experiment result of round1 One-to-One relationship............................35

Table 5-5: Experiment result of round1 Many-to-Many relationship37

Table 5-6: Hardware configuration of round2..39

Table 5-7: Experiment result of round2..40

 1

Chapter 1 Introduction

1.1. MMOG

MMOG (Massively Multiplayer Online Game) is a type of computer game that

enables hundreds or thousands of players to simultaneously interact in a game world

they are connected to via the Internet. But developing a MMOG is very hard.

Developer will encounter plenty of problems, such as high-performance network to

exchange thousands of messages in a short time, distributed technology to deploy

many servers, extensibility, fault tolerance, load balancing…etc. Most of these issues

are not existed in usual game. Therefore, development a MMOG will consume a lot of

time and plenty efforts.

 MMOGs are the main stream of many other game types at present. Several

companies devote themselves to this field, including large companies, such as

Microsoft and SONY, etc. And, many companies provide plenty of hardware and

software to support game development. All large-scale game companies develop

MMOG as an important policy without exception. But, adjudging one game is good

or bad that have many considerations. Not only determine by game content but also

the server processing power and stability are important issues. By means of the

MMOG middleware platform which developed can promote server processing power

and stability. And we can develop MMOG more quickly by means of some existence

functionality in this platform. The opportunity will be taken beforehand in the present

environment in which we need to strive for time.

DOIT [1] (Distributed Organized Information Terra) is a middleware platform of

 2

MMOGs. It provides many technologies such as distribute architecture, load

balancing, avatar migration…etc. It also provides plenty of simple APIs to

programmer to develop MMOGs.

1.2. Motivation

Although DOIT provides many features for developer, it does not handle the

MMOG data well. Game data is the key to a success game. Besides networking,

another important issue is persistent on MMOGs middleware platform. Because it’s

plenty of the game data, they can’t be place to main memory at a time. When users

logout the game, user’s data must be the same when they login next time. Relational

database is the most people to use and performance fits in with the requirements of

large scale system.

Nowadays, there are plenty of commercial products of MMOGs middleware

platform. For example, Butterfly.net [2], Terazona [3] are famous commercial

solutions. But, we usually can’t know the detail and internal design of the commercial

products. The similar type of the software, MUD (multi-user dungeon), has some

open sources software such as JAdventure [4], TigerMUD [5]. Take these for example,

these software are aware of that data to deal with on persistent component. So, it can

hard code to write or to add some mechanism of error handling. This kind of way is

not a general solution. It is not convenient to programmer of MMOGs to modify or

develop.

 In addition to design the roles in the game, the MMOG developer also need to

design the fields of the table and the relations of the tables in the relational database.

 3

When programming, they even use the complicate SQL (Structured Query Language)

command to manipulate game data. It takes them too much efforts and waste a lot of

time. For the reason, we wish to overcome all issues to simplify game development.

1.3. Research Objectives

In order to reduce the developing effort and provide a better MMOG environment,

persistence components are necessary. They will not only handle manipulate

relation-database but also provide a better method to use. For the reason, those

components should fulfill the following requirement: easy-to-use, high-performance

and transparent persistent.

 Easy-to-use

It takes much time and efforts to develop a MMOG. If we can provide simple,

easy-to-use and useful API to developer of MMOGs, it can save much more time to

develop a MMOG.

 High-performance

Generally speaking, there are always thousands of people, even ten thousands of

people on line at the same time in a MMOG. So, the performance issue is very

important to us. But, how can we response these plenty of uses in a short time? It is a

very important issue for us to solve.

 4

 Transparent persistent

Programmers can be in object points of view to design and write the MMOG, but

can’t be in table points of view in relational database. Through simple API, the

framework will save user’s data to relational database automatically. Programmers

will not feel that they use relational database on the backend. It achieve to transparent

in persistent.

According to our research objectives, we design a framework to process all

storage issues. This framework will let programmers use simple way to write MMOG.

Let programmers concentrate on designing and writing game logic, not to care about

the data on the bottom layer what kind of databases to store data.

DOIT middleware platform doesn’t have any system components or services

about storage. Programmers must be use JDBC [6] to hard code to write the persistent

parts. Although, this way is more free to programmers. However, it can not restrict to

programmers to write the code of persistent parts only. It will have big problems to

maintain the system when the scales of MMOGs become larger and larger. If the

system is written by our component and architecture, it will be more easy to maintain

and avoid the code relative to use the JDBC to write the persistent pares directly.

1.4. Organization

In Chapter 2, we enumerate the persistent framework on the market and discuss

there pros and cons. And we discuss some research about in memory operation. In

Chapter 3, we introduce the components in our system and their responsibility. In

 5

Chapter 4, we discuss the implementation details for each component in our system.

In Chapter 5, we build up some experiments and evaluations to our system. In Chapter

6, we give the conclusion and future works for our system.

 6

Chapter 2 Related Works

Objects views of designing MMOG will let programmers develop MMOG

characters and logics more conveniently. Programmers will concentrate on developing

MMOG if they only design every character in the MMOG and various attributes of

characters.

Database

Database

Database

Object Relational
Mapping Engine

Object

Object

Object

Object

Database

Database

Database

Object Relational
Mapping Engine

Object

Object

Object

Object

Figure 2-1: Object Relational Mapping Engine

Relational database is the main stream of the market. It is the most people to use

on the storage aspect. It also has better performance than other database, such as

network database or object-oriented database. However, programmers must design the

game objects of the table fields when programmers write the persistent code.

Programmers even use the complicate SQL command to write the storage code. Most

programmers use object-oriented language to develop system because it is easier to

 7

write and maintain program code. The gap between object-oriented language and

relation database is large. In order to solve this problem, there are many ORM tools to

turn up. ORM is so-called Object Relational Mapping tools. It maps the objects in

program to the tables in relational database. Although we use the ORM tools to

develop the system, it does not have better performance to use the JDBC directly.

When the scale of the system is more and more large, it will take us much time to

maintain the system. Hence, if we can choose a kind of ORM tools to develop system,

it can reduce the system development and maintenance time. The research topic about

ORM tools were lasted for several years. There are a lot of open source software and

complete commercial products about ORM tools. This chapter will list some ORM

tools which most people are using and compare them in detail.

2.1. DOIT middleware platform

DOIT (Distributed Organized Information Terra) is a MMOG middleware

platform. It uses the three tier architecture that is client-gateway-server architecture. It

has the load balancing and simple API for programmer easy to develop the MMOG.

And it also provides the user define protocol that it can prevent game cheating. It has

many characteristics, such as easy to develop MMOG for example, scalability,

flexibility, easy-to-use and high-performance … etc. However, there are no complete

and good mechanisms about persistence in DOIT middleware platform. It just let

programmer to use JDBC to develop storage part of code.

 8

2.2. Existing persistence handling of MMOG

middleware platform

Nowadays, even though there are some existence MMOG middleware platforms

such as Butterfly.net, Terazona …etc. But there are all commercial products. We can

not to know the inner component and detail design. The similar type of the software,

MUD (multi-user dungeon), has some open sources software such as JAdventure and

TigerMUD. This software is already aware of that format of storage component. So it

writes hard code and adds some error handling mechanism. This is not general

solution for programming. It is not convenient for programmers to develop MMOG

and modifying it to use.

2.3. EJB

EJB [7] (Enterprise JavaBeans) is a part component of J2EE architecture. Entity

Bean uses to communication with database. CMP (Container Managed Persistence)

uses the J2EE container to manage the storage. It is more convenient for programmer

using it to develop storage program. But when we use EJB to develop storage

program, it must have J2EE container. J2EE container requires consuming a lot of

memory in average. Programmers must be according to the specification of EJB to

develop EJB program. Programmers must overwrite some method. Its specification is

very complicate. You will want to an expert understanding of this API before coding

with EJB. Also, you need to be aware that each J2EE container requires proprietary

deployment descriptors outside of ejb-jar.xml. Therefore, it costs very much to

 9

develop program using EJB.

2.4. JDO

JDO [8] (Java Data Object) is a standard persistent framework which proposed

by Sun Microsystems Inc.. Its specification is provided by JSR 12 [9]. JDO is an

architecture that provides a standard way to transparently persist plain java object. It

is designed to work in multiple tiers of enterprise architecture, including J2SE, Web

tier, and Application Server. JDO dose not itself provide some functionality in EJB

such as distributed objects, distributed transactions, or security services. If those

functionalities are needed, programmer can integrate JDO with a J2EE container that

provides these services to achieve that. However, for the time being, it uses byte code

enhancement for the JDO reference implementation for the most part on the market. It

doesn’t seems a good choose for the java developer that using post byte code compiler.

Hence, there are really not so many developers using the JDO technique now.

2.5. Hibernate

Hibernate [10] is a famous persistent framework. Programmer just writes plain

java object and an xml mapping file. And programmer can use its simple API to

access persistent object. Hibernate also provides primary key generation algorithm for

us to choose. It has better performance to the same kind of products. It uses many

technologies to promote better performance such as lazy initiation, outer join fetching

and batch fetching …etc. It is open source software. The development team maintains

 10

it constantly and updates new version time after time. There are many software

frameworks using it on persistent part such as Spring Framework [11], XPlanner

[12] …etc. Presently, Hibernate is the most popular ORM tools which used to develop

persistent code. There are many detail documents on network, so it can solve problem

easily.

2.6. Other related research about persistent

framework

There are many other ORM tools. For example, Apache Project provides a useful

persistent framework called OJB [13] (ObjectRelationalBridge). It is also an OR

Mapping tools. It provides JDO reference implementation but not already release

completely now. It is a newer open source ORM tool. So, there are a little people used

it to develop persistent code. There are less related documents to introduce them.

In addition to using ORM tools, we use some operation about in-memory to

promote performance. And there are some researches in this field. TimesTen [14]

bring up the Front-Tier which takes some operation in backend database to front end

application server. Although they achieve better performance, it takes plenty of

memory. On the other hand, MMDB (main memory database) is the similar to

in-memory operation. XSol [15] bring up the system to achieve this way and some

functionality resembling ORM tools. Nevertheless, their system is mainly used to

integrate their application server.

 11

2.7. Summary

Even through there are many kinds of ORM tool on the market, there are

advantage and shortcoming individually. Entity Beans provide much additional

functionalities such as transaction service, security services …etc. But when we want

to execute the Entity Beans, it must have a J2EE container. The J2EE container has

much overhead. When we don’t want the other features about J2EE container, it

wastes so much memory to the system. JDO is a standard specification proposing by

Sun. But JDO use the byte code enhancement technology, there are few developer to

use it to develop storage code. On the other hand, Hibernate can build up on any

application or any platform, it can’t have problem of EJB which must be used to J2EE

container. Moreover, Hibernate supports the ORM and transaction service. It can

access the data in database through Hibernate and also can be a persistent foundation

management of MMOG middleware platform.

 12

Chapter 3 System Architecture

3.1. MMOG platform objects

There are many kinds of characters in a MMOG, for example, player’s data, level,

equipments … etc. These are persistent data which must be stored in database.

Player’s data should be existed in game world when they login at next time. These are

basic kinds of persistent data. When system boot at begin, it loads data into memory

such as the map of the game world. These kind of persistent data just load once from

database. Afterward, these data can not be altered definitely any more. And some

game objects may be used by two players at the same time. Two or more players may

alter one object simultaneously. Even through there are so many kinds of game

objects in a game world. To sum up, all game objects merely can be classified into the

following types. We introduce briefly these types in our system.

Read-onlySingle object
batch update

Single object
write through

Read-onlyMulti-object
batch update

Multi-object
write through

Emergency

Simultaneously
use

Single

Multiple

High Low

Guild Team Map

User data User position NPC

Read-onlySingle object
batch update

Single object
write through

Read-onlyMulti-object
batch update

Multi-object
write through

Emergency

Simultaneously
use

Single

Multiple

High Low

Guild Team Map

User data User position NPC

Figure 3-1: MMOG Object Types

We survey many object types in MMOGs. We analysis its many object types then

conclude these to some kinds of object type. The results are in Figure 3-1. According

 13

to horizontal axis, it indicates emergency level for storing data to database. The

emergency level high to low is from left to right. Write through means the very

emergency data which must be written to backend database as soon as possible. And

some data are not emergency which can be stored in MemoryManager. After a

while, it can write a batch of data to backend database. And, the most less emergency

data, it means the read only data. It must not write to database. According to vertical

axis, it indicates how many users access this object at the same time.

For example, guild is an example for multi-object write through. In MMOG,

many people may join to the same guild. This data are very important. If some data

has been modified, it must be written to backend data quickly. Team is an example for

multi-object batch update. In MMOG, few players can make up of a team. But this

information is temporary. So it can be stored to MemoryManager for the time being.

After a while, it updates a batch of data to database. The players data in MMOG are

belong to single object write through. Every player’s data are very important, so it

must be written to backend database quickly. But the player’s position is not

important. It can not update to backend database immediately. And some data like

game world map and NPC are all read only data. So these kinds of data must not

update any information to backend database.

 14

3.2. System Architecture

Gateway Server DatabaseClient Gateway Server DatabaseClient

Figure 3-2: DOIT System Architecture

There are three tiers in DOIT platform that is client-gateway-server architecture.

Our system is established on front end of database. It is the red part which is front of

the database in figure 3-2. We add some components front of database to let

programmers more conveniently. It is convenient for programmers to develop

programs related to persistence.

In general, programmer can use Hibernate to communicate with database. Figure

3-3 indicates this architecture. Programmers must not write the bottom layer programs

which using JDBC and complicated SQL command. They just use the simple API

which is provided by Hibernate then they can access the data in database easily.

 In the application programs, some objects must be stored in database. Another

object is transient which just store in memory. Even if the system reboot doesn’t

matter with the transient object.

 15

Database

Hibernate

Persistent
Object

Transient
Object

Figure 3-3: Hibernate System Architecture

Figure 3-4 indicates our high level system architecture. As Figure 3-4 indicated,

Hibernate can divide into two parts in detail. One is used to communication with

database at the bottom layer. Another is used to get the persistent object. Programmer

uses the Session object to get persistent object and uses it to access data object. On

top of the system architecture, there are persistent objects and transient objects. We

add one layer called MemoryManager to handle user’s objects in memory between

Hibernate and programmer’s object.

Database

JDBC

Session

Memory Manager

Persistent
Object

Transient
Object

Hibernate

Figure 3-4: High-level System Architecture

 16

3.3. Memory Component

 MemoryManager

“MemoryManager” is the layer between Hibernate and application layer.

The purpose of the component is to manage the objects in memory which

developer used. If programmers want to access the persistent objects, it must

communication with MemoryManager. MemoryManager will control the life

cycle of persistent objects.

If programmers want to persistent some object to backend database, it must

rely on MemoryManager. They can not take objects to Hibernate immediately.

It can improve performance and efficiency to persist object by means of

MemoryManager.

 MemoryObject

The basic units which are stored in MemoryManager are

MemoryObject. Excluding the data of the MemoryManager, there is much

more information in MemoryObject. This information can be used to manage

life cycle of MemoryObject.

3.4. System Object

To help programmers develop MMOG more convenient and quicker, we define

some kinds of system objects. Developers just think about characters in game.

 17

Programmers consider the behavior of the character in the game to decide what kinds

of system object. Programmers can use it by inheriting the system object. We can be

in object points of view to design the game. It must not consider the table field points

of view in relational database Programmers take viewpoint of object to design and

develop the MMOG. Let programmer develop the MMOG more convenient.

 BaseObject

It is the basic object type of system object. Every type of object must inherit

this object.

 TransientObject

It is transient and temporary object in the system. As far as developing

MMOG are concerned it is used to NPC (non-player character) in general. We

can produce it again even if the system reboot. It needs not to access any data in

database.

 PersistentObject

Persistent object means that this kind of object must store in database. As far

as developing MMOG are concerned it is used to player’s data, treasure and

equipments … etc. PersistentObject class is the basic type of persistent

class. All kinds of persistent object must inherit it.

 18

I. ImmutablePersistentObject

It only needs to fetch data from database at the first time for this kind of

persistent object. After that, this object needs not to update its record in

database. It will not alter the data itself. As far as developing MMOG are

concerned it is used to map data. In the beginning, map just only load to

memory from database. Map doesn’t alter its data any more.

II. GeneralPersistentObject

It is general persistent object. At the same time, only one player can

access this object. For example, player’s personal data, basic equipments and

its attribute values all belong to this object type.

III. SyncPersistentObject

This persistent type object can be accessed by many players at the same

time opposite to GeneralPersistentObject class. So, our system can

deal with this object some synchronization control. If multiple threads

access this object at the same time, it also can execute normally. Developers

just use it by inheriting the SyncPersistentObject class. Our system

will guarantee the thread safe.

In section 3-1, we analysis many MMOG object types and conclude to six type.

 19

These six types of MMOG objects can map to our system object. Single object write

through and single object batch update map to GeneralPersistentObject.

Since only one player can access this object at the same time. Multi-object write

through and multi-object batch update map to SyncPersistentObject. Because

multi player may access these object at the same time. And read only data map to

ImmutablePersistentObject. MemoryManager can handle write through

and batch update. It can let programmer to determine object behavior.

 20

Chapter 4 Implementation Detail & issue

In this chapter, we begin to dive into the implementation details for our system.

Our system’s architecture is depicted in figure 4-1. Developers interact with the

application layer which is the front-end of the system. The middle tier is

MemoryManager which communications with Hibernate. Hibernate

communications with the database directly at the backend. A rational database is used

to store the actual data.

Database
Mem

Object

Hibernate
Object

JavaBean
Object

JavaBean
Object Hibernate

Memory
Manager

Mem
Object

Mem
Object

Mem
Object

Mem
Object

Transient
Object

Transient
Object

Application

Figure 4-1: System Architecture

Programmers develop the objects which inherit different type of system objects

and programmers write additional methods according the game characters by the

getter and setter model. Programmers write that methods to the getter and setter model.

Programmers don’t have to overwrite some complicated methods like EJB, they just

have to write some simple JavaBean [16]. When these JavaBean objects are stored

into MemoryManager, they'll be encapsulated into MemoryObject. When

 21

MemoryManager wants to store MemoryObject’s to the backend, it returns

original JavaBean objects and gives them to Hibernate which will then be stored into

database.

4.1. Application Tier

Programmers develop the game content and game logic in the application tier.

There are many types of character in the MMOG. They can be classified into several

types of objects based upon the behavior of persistent objects. We define some basic

kinds of object type in our system. Programmers can choose which object type to use

according to the object’s attributes and corresponding game character. The following

will introduce every kinds of object in detail in our system and its relationship

between each other.

 BaseObject

The BaseObject class is the base class of all system objects. All system

objects must inherit from this object. It defines an identity attribute called id and

overwrites the equals(obj:Object) method of java.lang.Object. It

differentiates every object by object’s id.

BaseObject class inherits mmog.doit.GameObject class in the

DOIT middleware platform. When programmers use DOIT to develop MMOG,

every character must inherit from GameObject class. Then the

GameObjChannel delegate some methods call to its associating game object.

 22

BaseObject
id : Long

getId() : Long
setId() : void
equals(obj : Objec t) : void
hashCode() : int

TransientObject PersistentObject
version : Long

getVersion() : Long
setVersion() : void
equals(obj : Object) : void

ImmutablePersistentObject

GeneralPersistentObject

makePersistent() : void
renewPersistent() : void
makeTransient() : void
refresh() : void

SyncPersistentObject

makePersistent() : void
renewPersistent() : boolean
makeTransient() : void
refresh() : void

GameObject
x : int
y : int

setX(x : int) : int
getX() : void
setY(y : int) : int
getY() : void
status() : Message

Serializable
<<Interface>>

Figure 4-2: Class diagram of system objects

 TransientObject

The TransientObject class extends BaseObject class. It is a

 23

temporary object in our system. The TransientObject is stored in main

memory. It can’t be stored in database.

 PersistentObject

PersistentObjet class also inherits BaseObject class. Classes

which extend from PersistentObject class can be stored into the database.

Beside the attributes inherited from BaseObject class, it also adds a version

attribute which can be used to keep track of when it was stored. The value is a

timestamp which that time was stored in database.

 ImmutablePersistentObject

This type of class is mainly used in objects where data is immutable. It

means that we can not modify any of its attributes after loading from database.

So we don’t have any action about saving or loading data from database.

 GeneralPersistentObject

There are three main methods in this kind of persistent class. They are

makePersistent(), makeTransient() and renewPersistent()

which are used to insert, delete and update. Besides these, there is a method

called refresh() which can renew the state of the object and keep it

concurrent with the database. This class can be used by only one player at any

given time.

 24

 SyncPersistentObject

This class is similar to GeneralPersistentObject class. But this

class can be accessed by many players at the same time. The system decides

whether to store this object according to the version attribute, thus achieving data

consistency. The renewPersistent() will return a boolean value to

determine if the data has been stored to the database successfully or not.

4.2. Manager Tier

MemoryManager

addObject(per : PersistentObject, newObj : boolean, emergency : boolean, lifetime : long) : void
addObject(per : PersistentObject, newObj : boolean, emergency : boolean) : void
getObject(c : Class, id : Long) : PersistentObject
contains(obj : PersistentObject) : boolean
clear() : void
getObjectCount() : int
cleanUp() : void
flush() : void

<<Interface>>

MemoryManagerImpl
instance : MemoryManagerImpl
cleanUpTimer : Timer
flushTimer : Timer
map : HashMap

periodicCleanUp(delay : int, argname : int) : void
periodicFlush(delay : int, period : int) : void
cancelCleanUp() : void
cancelFlush() : void
save(memObj : MemoryObject) : void

Figure 4-3: Interface and implementation of MemoryManager

 MemoryManager is used to manage persistent objects. It provides a basic and

 25

simple API to programmers developing MMOG’s. Figure 4-3 indicates the interface

and the implementation of MemoryManager. addObject can add objects

developer created to MemoryManager, and the objects can chose whether or not to

store to the database directly by setting the attributes. We can also set the objects' life

cycles. Then MemoryManager will flush the objects that exist in

MemoryManager to the database periodically. And cleanUp will take expired

object to garbage collection periodically. Because a system’s main memory is not

infinite, it can not store all objects in main memory all the time. For this reason, we

implemented the LRU [17] (Least-Recently-Used) algorithm. When system’s main

memory is not enough, it will store the object to database which longest time since

last been used. And it will delete that object from main memory.

MemoryObject
per : PersistentObject
lifetime : long
startTime : long
expire : boolean
newObj : boolean

getObj() : PersistentObject
setObj(per : PersistentObject) : void
getLifetime() : long
setLifetime(lifetime : long) : void
isExpire() : boolean
setExpire(expire : boolean) : void
getStartTime() : long
setStartTime(startTime : long) : void
isNewObj() : boolean
setNewObj(newObj : boolean) : void

Figure 4-4: MemoryObject

 All objects which are stored in MemoryManager are encapsulated in

MemoryObject’s. Figure 4-4 indicates the member functions of MemoryObject.

MemoryObject can keep track of some information about itself, such as the

 26

lifetime, whether or not it’s expired, whether or not to create a new object, etc.

 The implementation of MemoryManager class was done by hash. The

identification key of this hash is the id and class name combined. Every pair is unique,

so every single object can identified in MemoryManager.

MapKey
id : Long
className : String

getId() : Long
setId(id : Long) : void
getClassName() : String
setClassName(className : String) : void

Figure 4-5: MapKey

Mem
Object

Memory
Manager

Mem
Object

Mem
Object

Mem
Object

Mem
Object

id
className

key value

Memory
Object

MapKey

Mem
Object

Mem
Object

Hash

Figure 4-6: MemoryManager

 27

4.3. Persistent Tier

Our system actually used Hibernate to communicate with the backend database.

In Hibernate, we used Session class to handle almost all actions about accessing

the database. For every thread in our system, we use one ThreadLocal class to

persist a Session object, so every thread can access only its local value and can not

the others'. The transaction in Hibernate also works in the same way. The Session

object in Hibernate is obtained using SessionFactory class. The

SessionFactory class is a heavyweight class, so a system better has only one

SessionFactory in its application. We set that attribute to static, and encapsulate

in HibernateUtil class for developers to use.

4.4. Implementation issues

In the following, we list some issues about this system. And we will discuss

about these issues.

 POJO

Information technology progresses at a great speed these days. Every

company wants to quickly produce new games and new contents to players

which use and play them. Under this demand, programmer must develop games

more quickly. In order to develop more quickly, programmers can not spend too

much time on surveying and understanding complicate specifications and API’s.

 28

For example, programmers who want to use EJB to develop a system must

understand that all system architecture and its complicated specification before

actually develop the system. During the implantation process, they must

overwrite many EJB methods. In comparison, when using our system,

programmer only needs to write POJO (Plain Old Java Object) Java programs. It

greatly decreases the time of development. The product can ship faster gaining

an advantage on the market.

 In-memory

With regard to a MMOG, user data changes and updates happen very often.

Facing thousands of connection in a MMOG, how we can achieve high

performance and short response time is a very important issue. Due to fast

hardware advancement in recent year, main memory price has become lower and

lower gradually. There used to be only few data which can be stored in main

memory, but now, much more data can be stored in main memory. It can promote

system performance in evidence. In-memory data management has become an

issue for many more applications that are in dire need of high performance.

Therefore, in-memory data management and operation will become an important

topic.

 Develop Cost

EJB is a persistence framework standard which Sun Microsystems Inc.

brought up. But, when programmers use EJB to develop programs, there must be

J2EE containers. However, J2EE containers cost a great deal to companies.

Although there are some free and open source J2EE containers on the market,

 29

their performances are not enough to support large scale system such as a

MMOG. Because there are many players playing the game on line at the same

time, there must be some commercial product such as J2EE container to sustain

this kind of application. Our system uses Hibernate to store objects to the

backend database. It is an open source persistence framework. We can modify its

code depending on our requirements. Hibernate is not in the J2EE architecture,

so it need not have any J2EE container to execute. It can run standalone without

J2EE environment. Company need not consume any capital on commercial

persistence framework and J2EE container.

 Maintain cost

With regard to a complete MMOG, if programmers used JDBC to hard code

the storage program, when their system becomes larger in scale, the will become

much harder to maintain. But if programmers used our system to develop their

system, their source code can be more modular and clear. Programmers only

have to take an object view on designing their system. Their system becomes

more clear and modular thus more convenient on maintenance later.

 30

Chapter 5 Experiment and Discussion

We start to experiment and evaluation our system in this chapter. We experiment

in two rounds. In the first round, we enumerate the most often four table relationship

in database. It experiment our system by using this four kinds of relationship in the

first round. And the second round, we adopt general test case to evaluation the

database system. This experiment is 80% read operation and 20% write operation to

experiment.

5.1. Round1: Database relationship

In this round, we use usually four cases about table relationship in database. We

use these four cases to experiment our system. There are single table, many-to-one,

one-to-one and many-to-many.

 Hardware configuration

Usage Number Configuration

Database 1 P4 2.4GHz CPU with 512MB ram

Application 1 P4 2.4GHz CPU with 1GB ram

Table 5-1: Hardware configuration of round1

Table 5-1 indicates the hardware configure in this experiment. In order to

other packets to interfere with this experiment, it uses one switch hub to connect

these two computers. And it uses 100 MB Ethernet network to connect each

other.

 31

 Software configuration

We use the MS SQL Server 2000 to our persistent storage. In application tier,

we use JDK 5.0 for our experiments. It compares with using our system

component or not in all environment. We experiment difference between using

our system component and doesn’t use our system component.

Figure 5-1 indicates our system architecture. We flush objects in

MemoryManager every 1000 millisecond. And figure 5-2 doesn’t use our system

component. It simply uses Hibernate alone. We take 1000、2000、3000、4000

objects to experiment. We perform insert and update operation to our

experiments and keep track of that time.

Because this experiment need many objects in memory, the Java virtual

machine parameter can not use default value. We set initial heap size to 384MB

and set maximum heap size to 512MB.

DatabaseMem
Object

Hibernate
Object

JavaBean
Object

JavaBean
Object Hibernate

Memory
Manager

Mem
Object

Mem
Object

Mem
Object

Mem
Object

Transient
Object

Transient
Object

Application

DatabaseMem
Object

Hibernate
Object

JavaBean
Object

JavaBean
Object Hibernate

Memory
Manager

Mem
Object

Mem
Object

Mem
Object

Mem
Object

Transient
Object

Transient
Object

Application

Figure 5-1: Experiment with our system architecture

 32

Database
Hibernate

Object

JavaBean
Object

JavaBean
Object

Hibernate

Transient
Object

Transient
Object

Application

Database
Hibernate

Object

JavaBean
Object

JavaBean
Object

Hibernate

Transient
Object

Transient
Object

Application

Figure 5-2: Experiment without our system architecture

 Single table

In this experiment, we use one class called GameRole which have eight

attributes and inherits GeneralPersistentObject. And we write an xml

mapping file to description this object map to one table in database. The results

are as follows, it takes insert and update operation.

Single table average time taken (millisecond)

Insert Update Object

number without MemMgr with MemMgr without MemMgr with MemMgr

1000 3148.25 992 5144.75 1257.75

2000 8179.75 1910.25 16566.5 2503.5

3000 15050.75 2894.5 58648.75 3496.25

4000 29183.5 3801 207211 4707

Table 5-2: Experiment result of round1 single table

 33

Round1 : single table : Insert

0

5000

10000

15000

20000

25000

30000

35000

1000 2000 3000 4000

object number

m
ill

is
ec

on
d

without MemMgr with MemMgr

Figure 5-3: Experiment result of round1 single table insert operation

Round1 : single table : Update

0

50000

100000

150000

200000

250000

1000 2000 3000 4000

object number

m
ill

is
ec

o
n

d

without MemMgr with MemMgr

Figure 5-4: Experiment result of round1 single table update operation

 Many-to-One relationship

In this experiment, we use two classes which GameRole and Equipment.

 34

These two classes both inherit GeneralPersistentObject. GameRole

have eight attributes and Equipment have four attributes. Every GameRole

has one Equipment attribute. But one Equipment can be owned by many

GameRole. The results are as follows, it takes insert and update operation.

Many-to-One relationship average time taken (millisecond)

Insert Update Object

number without MemMgr with MemMgr without MemMgr with MemMgr

1000 4160.25 1199 7980.5 1699.5

2000 11019.5 2336.25 27629 3273.25

3000 22195.5 3562.5 93004 4758

4000 36066.5 4722.5 482898.5 6453

Table 5-3: Experiment result of round1 Many-to-One relationship

Round1 : N-to-1 : Insert

0

5000

10000

15000

20000

25000

30000

35000

40000

1000 2000 3000 4000

object number

m
ill

is
ec

o
nd

without MemMgr with MemMgr

Figure 5-5: Experiment result of round1 Many-to-One insert operation

 35

Round1 : N-to-1 : Update

0

100000

200000

300000

400000

500000

600000

1000 2000 3000 4000

object number

m
il

lis
ec

o
nd

without MemMgr with MemMgr

Figure 5-6: Experiment result of round1 Many-to-One update operation

 One-to-One relationship

In this experiment, we use two classes which GameRole and Equipment.

These two classes both inherit GeneralPersistentObject. GameRole

have nine attributes and Equipment have five attributes. Every GameRole has

one Equipment attribute. One Equipment can be owned by only one

GameRole. The results are as follows, it takes insert and update operation.

One-to-One relationship average time taken (millisecond)

Insert Update Object

number without MemMgr with MemMgr without MemMgr with MemMgr

1000 7898.5 1870.75 33781 3999.75

2000 26437.5 3824.25 124394.5 6429.25

3000 51062.5 5679.75 183726.75 9101.5

4000 100957 10128.75 278801 11859.25

Table 5-4: Experiment result of round1 One-to-One relationship

 36

Round1 : 1-to-1 : Insert

0

20000

40000

60000

80000

100000

120000

1000 2000 3000 4000

object number

m
ill

is
ec

o
nd

without MemMgr with MemMgr

Figure 5-7: Experiment result of round1 One-to-One insert operation

Round1 : 1-to-1 : Update

0

50000

100000

150000

200000

250000

300000

1000 2000 3000 4000

object number

m
il

lis
ec

on
d

without MemMgr with MemMgr

Figure 5-8: Experiment result of round1 One-to-One update operation

 Many-to-Many relationship

In this experiment, we use two classes which GameRole and Equipment.

These two classes both inherit GeneralPersistentObject. GameRole

 37

have nine attributes and Equipment have five attributes. Every GameRole has

many Equipment attribute and its type is java.util.Set. One

Equipment can be owned by many GameRole and its type is also

java.util.Set. The results are as follows, it takes insert and update

operation.

Many-to-Many relationship average time taken (millisecond)

Insert Update Object

number without MemMgr with MemMgr without MemMgr with MemMgr

1000 60164 2683.75 180132.75 4398.5

2000 216660.25 9851.75 630894.5 18707

3000 318129 7797.25 1030347.25 25867.5

4000 920843.75 8941.5 1830486.75 29734.25

Table 5-5: Experiment result of round1 Many-to-Many relationship

Round1 : N-to-N : Insert

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1000 2000 3000 4000

object number

m
ill

is
ec

o
nd

without MemMgr with MemMgr

Figure 5-9: Experiment result of round1 Many-to-Many insert operation

 38

Round1 : N-to-N : Update

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1000 2000 3000 4000

object number

m
ill

is
ec

o
nd

without MemMgr with MemMgr

Figure 5-10: Experiment result of round1 Many-to-Many update operation

To sum up these four cases, when object numbers have fewer such as 1000 or

2000 objects, there is little difference between our system architecture and simple to

use Hibernate. But when there are plenty of object numbers such as 3000 or 4000, our

system architecture needs only less time to do this operation. Because it simply uses

Hibernate to do these operations that directly write data to database every time. But it

uses our system components that write data to memory first and these objects can be

stored to MemoryManager. Our MemoryManager can manage this object and its

life cycle in memory. After a period of time, data can be committed to database. So it

takes less time and performance will be better.

5.2. Round2: 80% read and 20% update

In this round, it takes the general rule for evaluation database. It uses 80% read

 39

operation and 20% write operation to experiment. We experiment that using our

system architecture or not. Table 5-6 indicates this result that keep track of average

time taken using 500、1000、2000、3000 and 4000 objects.

 Hardware configuration

Usage Number Configuration

Database 1 P4 2.4GHz CPU with 512MB ram

Application 1 P4 2.4GHz CPU with 1GB ram

Table 5-6: Hardware configuration of round2

Table 5-6 indicates the hardware configure in this experiment. In order to

other packets to interfere with this experiment, it uses one switch hub to connect

these two computers. And it uses 100 MB Ethernet network to connect each

other.

 Software configuration

We use the MS SQL Server 2000 to our persistent storage. In application tier,

we use JDK 5.0 for our experiments. It compares with using our system

component or not in all environment. We experiment difference between using

our system component and doesn’t use our system component.

Because this experiment need many objects in memory, the Java virtual

machine parameter can not use default value. We set initial heap size to 384MB

and set maximum heap size to 512MB.

 40

Average time taken (millisecond)

Object number without MemoryManager with MemoryManager

1000 5318.8 53

2000 13503.2 62.6

3000 29265.6 75

4000 54890.6 93.8

Table 5-7: Experiment result of round2

80% read / 20% write

0

10000

20000

30000

40000

50000

60000

1000 2000 3000 4000

object number

m
ill

is
ec

o
n

d

with MemMgr without MemMgr

Figure 5-11: Experiment result of round2

These results lead us these conclusion. When using ours system component, the

time taken will not increase very much which object number from 1000 increase to

4000. But it increases much time in evidence when it only uses Hibernate to do this

 41

operation. If it only execute one time, the result can not be so much difference.

Because we use what kinds of system architecture whether or not, it must load data

from database when it executes read operation at first time. It will be faster that using

our system component after the first time to do read operation. Because our system

will be cache data in main memory, the read operation will be faster than does not use

our system in evidence.

 42

Chapter 6 Future Works and Conclusions

6.1. Conclusions

MMOG is very hot game type at present. But, it needs much strength and many

efforts to develop a complete MMOG. So, how to use the least time to develop a

complete MMOG is very important.

We accomplish persistent system architecture and services which base on DOIT

middleware platform. At the bottom layer, we use an open source persistent

framework called Hibernate to communication with database. We define some basic

type class for programmer to use. It can develop MMOG characters simply according

to inherit these classes. Programmers even can use these components to develop other

kinds of application.

The following part, we take two points of view to discuss and analyze our

system.

 Design time

In observing the perspective on design time, if programmers can use this

system to develop MMOG, it will save much time and many efforts. Our system

already defines many classes and provides some simple used API. Developers

need not write the complicated SQL command but they still can achieve

persistent functionality. So, developers can concentrate his mind on designing

game content and logic. They need not take efforts to deal with problem about

 43

design system. It can decrease developers overhead.

 Run time

In observing the perspective on run time, it is efficiency that we store object

to main memory before data are actually stored to database. After that, we store

in-memory object data to database periodically. Our system also supports

transaction management. It can guarantee data integrity and consistency. When

many players access the same data, we can use the mechanism of synchronization.

Don’t worry about data inconsistency problem.

By means of the platform and its services, not only can reduce designing

program and developing time for game but also can improve performance to the

server.

6.2. Future Works

In the thesis, these experiments are all single operation. These are quite different

from actual game. After all, the actual online game can not fix insert and update

operation like our experiment. If we can design and implement an actuality game and

let many users to play this game to experiment. It will more fit with the situation

which actual game happened. And we can take this result to tuning performance with

our system.

MMOG is more hotter and hotter in recently year. So there are many kinds of

 44

games are produced on the market. Our system objects may be not comfortable for

this new type of games. How to design the object type to more suitable for new type

of games? And let it can promote all system performance. It will be a very important

research topic.

 45

Bibliography

[1] Chen-en Lu, Tsun-Yu Hsiao, Shyan-Ming Yuan. Design issues of a Flexible,

Scalable, and Easy-to-use MMOG Middleware. In Proceeding of Symposium

on Digital Life and Internet Technologies 2004

[2] Butterfly.net, http://www.butterfly.net/

[3] Zona Inc., http://www.zona.net/

[4] JAdventure, http://graphmud.sourceforge.net/

[5] TigerMUD, http://www.tigermud.com/

[6] Sun Microsystems Inc. JDBC Technology,

http://java.sun.com/products/jdbc/

[7] Sun Microsystems Inc. Enterprise JavaBeans Technology,

http://java.sun.com/products/ejb/

[8] Sun Microsystems Inc. Java Data Objects,

http://java.sun.com/products/jdo/

[9] JSR-12,

http://jcp.org/aboutJava/communityprocess/final/jsr01

2/index2.html

[10] Hibernate, http://www.hibernate.org/

[11] Spring Framework , http://www.springframework.org/

[12] XPlanner, http://www.xplanner.org/

[13] ObJectRelationalBridge, http://db.apache.org/ojb/

[14] The TimesTen Team. In-Memory Data Management in the Application Tier.

Proceeding of the 16th International conference on Data Engineering, February

2000.

 46

[15] John Grundy, Steve Newby, Thomas Whitmore and Peter Grundeman.

Extending a Persistent Object Framework to Enhance Enterprise Application

Server Performance. The 13th Australasian Database Conference (ADC2002).

[16] Sun Microsystems Inc. JavaBean,

http://java.sun.com/products/javabeans/

[17] Abraham Silberschatz, Peter Baer Galvin. Operating System Concepts.

Publisher by John Wiley & Sons Inc.

