— —3
e B 7
E}%ﬁ[=T

.21/

MMOG ¢ 4 #it 88z &2 a7 ~ # & JR I%

A Research of Persistence Component on
MMOG Middleware

SR 1

UR ISR S i

Hi 2 5 B Ju o P4 F A

MMOG # /7 #2555 ~ 1 &2 P43
A Research of Persistence Component on MMOG Middleware

oA T EGBRN Student : Lun-Wu Yeh
R 2T & Advisor : Shyan-Ming Yuan
B o2« F
Foaf F o
AL o
A Thesis

Submitted to Institute of Computer and Information Science
College of Electrical Engineering.and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

PERRA e R

MMOG ¥ 4 #All2 T = i 2 IR 7%

CRRE AT BERE T

R i+ F"%?fﬂ-g

&

MMOG (Massively Multiplayer Online Game)fl— & % * [ﬁjﬁajf?ig (i ik s
TP Zr prpdEea 7] o (AL 52—~ i MMOG fi Ji‘ﬁ@fﬂg’?ﬁ e B éﬁi?ﬁff& RGHEHIRE
(U FREFORIEE 7 s R Gt RSB IR 3 s R
- AT (ARSI - o AL < MMOG KL TR A - g -
DOIT (Distributed Organized Information Terra)kl— = [1/7 i ¥ i » e %Jé@i;{?:gﬁd’ﬁ%
J/F‘ﬁ]éﬁiiﬁﬁgl’?iﬂ?UEWFﬁJEEE‘? 15 = SRy DOFEEA LR k] s T ripv o (15255 > o

AR ST K SRR MM v 0 1) T [TR
VB L pAIRIE -

WFWF%E SR T (SRR D AR 9 SR
SEE e LR SIS MMOG P RITE - SRAHAEE I RIS R - iy
in-memory ipY operation » i HEF RIS [P”;ﬁf **{llﬂﬁﬂ[jf R
CPRIFM AL b IR - A H T RO~ RS [s - = MMOG -

A Research of Persistence Component on MMOG Middleware

Student: Lun-Wu Yeh Advisor: Shyan-Ming Yuan

Department of Computer and Information Science

National Chiao Tung University

Abstract

MMOG (Massively Multiplayer Online Game) is a type of computer game that enables
hundreds or thousands of players to simultaneously interact in a game world via the Internet.
But developing a MMOG is very:hard. Developer:will encounter many problems, such as
high-performance network, distributed technology, extensibility, fault tolerance, load
balancing...etc. Most of these issues are-not existed in traditional single-player games.
Therefore, development a MMOG will-'consume a lot of time and plenty efforts. DOIT
(Distributed Organized Information Terra) is the middleware platform to reduce development
effort. However, DOIT does not provide data persistence mechanism. Developers have to

handle varied MMOG objects, data transport between servers and database transaction.

Persistence components can reduce system development effort and enhanced system
performance. It includes MMOG objects for designing and implementing a game. There are
in-memory operation to enhance system performance and manager to handle data
synchronization and transaction. With persistence components, developers will construct

MMOG more conveniently and quickly.

Acknowledgement

[T BB P SRa T pofra - T SSRGS LR 2
ARG R PR T SRS FOAIE SRR RIS PSR - R S A
SRS RS LSRR TR S SRR R YRR - [
ISR 5 R FRLAS S e P o ARG (A 5 R T

wmﬁmPWﬁg’Hﬁ@QW%@@ﬁﬁﬁLﬁ’ﬁﬁ*%*ﬂjﬁﬁj?
@’ﬁ%ﬂ%@%ﬂwﬁﬁ’ﬁ$ﬂﬁﬁﬂwW%ﬁ TGS VR R
WY I ERT T] PO e ik BB IR L

—ﬁ[
r

Table of Contents

ACKNOWIEAGEMENT ...t e e e ii
Table Of CONTENTS......cciiieee e e v
LiST OF FIQUIES ..ttt Vi
LISt OF TABDIES ... s Vil
Chapter 1 INtrodUCTIONc.ooiiiiiece e e 1
L1, IMIMOG .t 1
1.2, MOTIVALION Lottt bbb 2
1.3, ReSEarch ODJECLIVEScuiiieice et 3
S O 1o 1o 12 11 o] [PPSR 4
Chapter 2 Related WOIKS ... i e sstee et e e nneas 6
2.1. DOIT middleware platform ..ot i 7
2.2. Existing persistence handling of- MMOG middleware platform............cccccccuvnen. 8
2.3, BB e e e e 8
2.4, JDO . e 9
2.5, HIDEINGLE ... s 9
2.6. Other related research about persistent frameworkccccovvvivevviienveiecnnn, 10
2.7, SUMIMAIY .ttt ittt ettt sttt ettt she et e e sbe e e sb e e ehe e s st e e et e e e mbe e sbe e e mbeeabeeanbeenneeannis 11
Chapter 3 System ArChiteCtUre........c.cccveiiecie e 12
3.1, MMOG platform ODJECTS ..o e 12
3.2, SYSIEM AFCNITECIUIE. ... eiuie et 14
3.3, MemOry COMPONENT.......oiiiiiiiietie ettt e e sne e eesreeeane e 16
K V1 (=] 0 1O][SR 16
Chapter 4 Implementation Detail & ISSUEcceevvveiveiiciieie e 20

o R Y o o] o= [0 I I -] S USSR 21

4.2, IMANAGET TIBK oottt ettt sb bbb e e 24
4.3, PerISISIENT TIEK ..ottt 27
4.4, IMPIEMENTATION ISSUESc.veuviiiieiitiitieiieee ettt 27
Chapter 5 Experiment and DiSCUSSION.........c.cccueiieiiieerienee e e eseesieesee e 30
5.1. Roundl: Database relationship..........ccoceeiiieiinineisiesse e 30
5.2. Round2: 80% read and 20% UPAALEccceeveeiieiiieiiee e 38
Chapter 6 Future Works and ConcluSIONSccovveiiiiniienie e 42
B.1. CONCIUSIONSviiiiiiieiit bbb 42
B.2. FULUIE WOTKS ..ottt 43
BIDHOGIrapny ... 45

List of Figures

Figure 2-1: Object Relational Mapping ENgGine ... 6
Figure 3-1: MMOG ODJECE TYPES ...vveveeiieiecieerie et 12
Figure 3-2: DOIT System ArChiteCUIecoiviiiieieiie e 14
Figure 3-3: Hibernate System ArchiteCture..........coveveieervere e 15
Figure 3-4: High-level System ArchiteCture...........ccoccovviiiiiiie e 15
Figure 4-1: System ArChItECIUIE........ccveiieiie e 20
Figure 4-2: Class diagram of System ODJECtS........cccoviiiiriiiiiiieeee e 22
Figure 4-3: Interface and implementation of MemoryManager..........c.cccccecvevveenenne. 24
Figure 4-4: MemOrYODJECT...... .ot sne e s 25
Figure 4-5: MapKEY ... e B e oifis e ee e eee e e e e ssee e eeesreesaeaneesneesreeneennes 26
Figure 4-6: MemOryMAENAGETcctiiiiiur e imteeeeieeeesiee e eie e sie e e siee e ee e sreeseesnes 26
Figure 5-1: Experiment:with.our system arChiteCturecccocevveveviiesieesesrie s 31
Figure 5-2: Experiment without our system architecturecccooevcevieieeieenenes 32
Figure 5-3: Experiment result of round1l single table insert operation..................... 33
Figure 5-4: Experiment result of round1l single table update operation................... 33
Figure 5-5: Experiment result of round1l Many-to-One insert operation 34
Figure 5-6: Experiment result of round1l Many-to-One update operation................ 35
Figure 5-7: Experiment result of roundl One-to-One insert operation................... 36
Figure 5-8: Experiment result of round1 One-to-One update operation.................. 36
Figure 5-9: Experiment result of round1l Many-to-Many insert operation............... 37
Figure 5-10: Experiment result of round1 Many-to-Many update operation........... 38
Figure 5-11: Experiment result of rouNd2cccoveveiieiiece e 40

Vi

List of Tables

Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-5:
Table 5-6:

Table 5-7:

Hardware configuration of roundl...........cccooviiieiiniiniennene e, 30
Experiment result of roundl single table ..., 32
Experiment result of round1 Many-to-One relationship............c.ccocue..... 34
Experiment result of round1 One-to-One relationship..........cccccceeevueenee. 35
Experiment result of round1 Many-to-Many relationship 37
Hardware configuration of round2............ccceoevieeniciesieese e 39
Experiment result of round2............ccoooeiiiiiiii 40

vii

Chapter 1 Introduction

1.1. MMOG

MMOG (Massively Multiplayer Online Game) is a type of computer game that
enables hundreds or thousands of players to simultaneously interact in a game world
they are connected to via the Internet. But developing a MMOG is very hard.
Developer will encounter plenty of problems, such as high-performance network to
exchange thousands of messages in a short time, distributed technology to deploy
many servers, extensibility, fault tolerance, load balancing...etc. Most of these issues
are not existed in usual game. Therefore, development a MMOG will consume a lot of

time and plenty efforts.

MMOGs are the main stream :of many._other-game types at present. Several
companies devote themselves to*this. field; including large companies, such as
Microsoft and SONY, etc. And, many companies provide plenty of hardware and
software to support game development. All large-scale game companies develop
MMOG as an important policy without exception. But, adjudging one game is good
or bad that have many considerations. Not only determine by game content but also
the server processing power and stability are important issues. By means of the
MMOG middleware platform which developed can promote server processing power
and stability. And we can develop MMOG more quickly by means of some existence
functionality in this platform. The opportunity will be taken beforehand in the present

environment in which we need to strive for time.

DOIT [1] (Distributed Organized Information Terra) is a middleware platform of

MMOGs. It provides many technologies such as distribute architecture, load
balancing, avatar migration...etc. It also provides plenty of simple APIs to

programmer to develop MMOGs.

1.2. Motivation

Although DOIT provides many features for developer, it does not handle the
MMOG data well. Game data is the key to a success game. Besides networking,
another important issue is persistent on MMOGs middleware platform. Because it’s
plenty of the game data, they can’t be place to main memory at a time. When users
logout the game, user’s data must be the same when they login next time. Relational
database is the most people to use and performance. fits in with the requirements of

large scale system.

Nowadays, there are plenty of commercial products of MMOGs middleware
platform. For example, Butterfly.net [2], Terazona [3] are famous commercial
solutions. But, we usually can’t know the detail and internal design of the commercial
products. The similar type of the software, MUD (multi-user dungeon), has some
open sources software such as JAdventure [4], TigerMUD [5]. Take these for example,
these software are aware of that data to deal with on persistent component. So, it can
hard code to write or to add some mechanism of error handling. This kind of way is
not a general solution. It is not convenient to programmer of MMOGs to modify or

develop.

In addition to design the roles in the game, the MMOG developer also need to

design the fields of the table and the relations of the tables in the relational database.

When programming, they even use the complicate SQL (Structured Query Language)
command to manipulate game data. It takes them too much efforts and waste a lot of

time. For the reason, we wish to overcome all issues to simplify game development.

1.3. Research Objectives

In order to reduce the developing effort and provide a better MMOG environment,
persistence components are necessary. They will not only handle manipulate
relation-database but also provide a better method to use. For the reason, those
components should fulfill the following requirement: easy-to-use, high-performance

and transparent persistent.

® Easy-to-use

It takes much time and efforts to develop a MMOG. If we can provide simple,
easy-to-use and useful API to developer of MMOGs, it can save much more time to

develop a MMOG.

® High-performance

Generally speaking, there are always thousands of people, even ten thousands of
people on line at the same time in a MMOG. So, the performance issue is very
important to us. But, how can we response these plenty of uses in a short time? It is a

very important issue for us to solve.

® Transparent persistent

Programmers can be in object points of view to design and write the MMOG, but
can’t be in table points of view in relational database. Through simple API, the
framework will save user’s data to relational database automatically. Programmers
will not feel that they use relational database on the backend. It achieve to transparent

in persistent.

According to our research objectives, we design a framework to process all
storage issues. This framework will let programmers use simple way to write MMOG.
Let programmers concentrate on designing and writing game logic, not to care about

the data on the bottom layer what kind of databases to store data.

DOIT middleware platform doesn’t have any System components or services
about storage. Programmers must be:use JDBE [6] to hard code to write the persistent
parts. Although, this way is more free to programmers. However, it can not restrict to
programmers to write the code of persistent parts only. It will have big problems to
maintain the system when the scales of MMOGs become larger and larger. If the
system is written by our component and architecture, it will be more easy to maintain

and avoid the code relative to use the JDBC to write the persistent pares directly.

1.4. Organization

In Chapter 2, we enumerate the persistent framework on the market and discuss
there pros and cons. And we discuss some research about in memory operation. In

Chapter 3, we introduce the components in our system and their responsibility. In
4

Chapter 4, we discuss the implementation details for each component in our system.
In Chapter 5, we build up some experiments and evaluations to our system. In Chapter

6, we give the conclusion and future works for our system.

Chapter 2 Related Works

Objects views of designing MMOG will let programmers develop MMOG
characters and logics more conveniently. Programmers will concentrate on developing
MMOG if they only design every character in the MMOG and various attributes of

characters.

Figure 2-1: Object Relational Mapping Engine

Relational database is the main stream of the market. It is the most people to use
on the storage aspect. It also has better performance than other database, such as
network database or object-oriented database. However, programmers must design the
game objects of the table fields when programmers write the persistent code.
Programmers even use the complicate SQL command to write the storage code. Most
programmers use object-oriented language to develop system because it is easier to

6

write and maintain program code. The gap between object-oriented language and
relation database is large. In order to solve this problem, there are many ORM tools to
turn up. ORM is so-called Object Relational Mapping tools. It maps the objects in
program to the tables in relational database. Although we use the ORM tools to
develop the system, it does not have better performance to use the JDBC directly.
When the scale of the system is more and more large, it will take us much time to
maintain the system. Hence, if we can choose a kind of ORM tools to develop system,
it can reduce the system development and maintenance time. The research topic about
ORM tools were lasted for several years. There are a lot of open source software and
complete commercial products about ORM tools. This chapter will list some ORM

tools which most people are using and compare them in detail.

2.1. DOIT middleware platform

DOIT (Distributed Organized Information Terra) is a MMOG middleware
platform. It uses the three tier architecture that is client-gateway-server architecture. It
has the load balancing and simple API for programmer easy to develop the MMOG.
And it also provides the user define protocol that it can prevent game cheating. It has
many characteristics, such as easy to develop MMOG for example, scalability,
flexibility, easy-to-use and high-performance ... etc. However, there are no complete
and good mechanisms about persistence in DOIT middleware platform. It just let

programmer to use JDBC to develop storage part of code.

2.2. Existing persistence handling of MMOG

middleware platform

Nowadays, even though there are some existence MMOG middleware platforms
such as Butterfly.net, Terazona ...etc. But there are all commercial products. We can
not to know the inner component and detail design. The similar type of the software,
MUD (multi-user dungeon), has some open sources software such as JAdventure and
TigerMUD. This software is already aware of that format of storage component. So it
writes hard code and adds some error handling mechanism. This is not general
solution for programming. It is not convenient for programmers to develop MMOG

and modifying it to use.

2.3. BEJB

EJB [7] (Enterprise JavaBeans) is a part component of J2EE architecture. Entity
Bean uses to communication with database. CMP (Container Managed Persistence)
uses the J2EE container to manage the storage. It is more convenient for programmer
using it to develop storage program. But when we use EJB to develop storage
program, it must have J2EE container. J2EE container requires consuming a lot of
memory in average. Programmers must be according to the specification of EJB to
develop EJB program. Programmers must overwrite some method. Its specification is
very complicate. You will want to an expert understanding of this APl before coding
with EJB. Also, you need to be aware that each J2EE container requires proprietary

deployment descriptors outside of ejb-jar.xml. Therefore, it costs very much to
8

develop program using EJB.

2.4. JDO

JDO [8] (Java Data Object) is a standard persistent framework which proposed
by Sun Microsystems Inc.. Its specification is provided by JSR 12 [9]. JDO is an
architecture that provides a standard way to transparently persist plain java object. It
is designed to work in multiple tiers of enterprise architecture, including J2SE, Web
tier, and Application Server. JDO dose not itself provide some functionality in EJB
such as distributed objects, distributed transactions, or security services. If those
functionalities are needed, programmer can integrate JDO with a J2EE container that
provides these services to achieye that. However, for.the time being, it uses byte code
enhancement for the JDO reference implementation for the most part on the market. It
doesn’t seems a good choose for the java developer that using post byte code compiler.

Hence, there are really not so many developers using the JDO technique now.

2.5. Hibernate

Hibernate [10] is a famous persistent framework. Programmer just writes plain
java object and an xml mapping file. And programmer can use its simple API to
access persistent object. Hibernate also provides primary key generation algorithm for
us to choose. It has better performance to the same kind of products. It uses many
technologies to promote better performance such as lazy initiation, outer join fetching

and batch fetching ...etc. It is open source software. The development team maintains

it constantly and updates new version time after time. There are many software
frameworks using it on persistent part such as Spring Framework [11], XPlanner
[12] ...etc. Presently, Hibernate is the most popular ORM tools which used to develop
persistent code. There are many detail documents on network, so it can solve problem

easily.

2.6. Other related research about persistent

framework

There are many other ORM tools: For example, Apache Project provides a useful
persistent framework called OJB [13] (ObjectRelationalBridge). It is also an OR
Mapping tools. It provides JDO reference implementation but not already release
completely now. It is a newer open source ORM tool. So, there are a little people used

it to develop persistent code. There are less related documents to introduce them.

In addition to using ORM tools, we use some operation about in-memory to
promote performance. And there are some researches in this field. TimesTen [14]
bring up the Front-Tier which takes some operation in backend database to front end
application server. Although they achieve better performance, it takes plenty of
memory. On the other hand, MMDB (main memory database) is the similar to
in-memory operation. XSol [15] bring up the system to achieve this way and some
functionality resembling ORM tools. Nevertheless, their system is mainly used to

integrate their application server.

10

2.7. Summary

Even through there are many kinds of ORM tool on the market, there are
advantage and shortcoming individually. Entity Beans provide much additional
functionalities such as transaction service, security services ...etc. But when we want
to execute the Entity Beans, it must have a J2EE container. The J2EE container has
much overhead. When we don’t want the other features about J2EE container, it
wastes so much memory to the system. JDO is a standard specification proposing by
Sun. But JDO use the byte code enhancement technology, there are few developer to
use it to develop storage code. On the other hand, Hibernate can build up on any
application or any platform, it can’t have problem of EJB which must be used to J2EE
container. Moreover, Hibernate .Supportsithe’ORM and transaction service. It can
access the data in database through Hibernate and also can be a persistent foundation

management of MMOG middleware platform:

11

Chapter 3 System Architecture

3.1. MMOG platform objects

There are many kinds of characters in a MMOG, for example, player’s data, level,
equipments ... etc. These are persistent data which must be stored in database.
Player’s data should be existed in game world when they login at next time. These are
basic kinds of persistent data. When system boot at begin, it loads data into memory
such as the map of the game world. These kind of persistent data just load once from
database. Afterward, these data can not be altered definitely any more. And some
game objects may be used by two players at the same time. Two or more players may
alter one object simultaneously. Even_through there are so many kinds of game
objects in a game world. To sum up, all game objects'merely can be classified into the

following types. We introduce briefly:-these -types in our system.

A

Multiple T 1 Multi-object Multi-object | Read-only
write through batch update

Simultaneously|
use Single object Single object | Read-only
write through batch update

User position

Emergency

Single

Figure 3-1: MMOG Object Types

We survey many object types in MMOGs. We analysis its many object types then

conclude these to some kinds of object type. The results are in Figure 3-1. According
12

to horizontal axis, it indicates emergency level for storing data to database. The
emergency level high to low is from left to right. Write through means the very
emergency data which must be written to backend database as soon as possible. And
some data are not emergency which can be stored in MemoryManager. After a
while, it can write a batch of data to backend database. And, the most less emergency
data, it means the read only data. It must not write to database. According to vertical
axis, it indicates how many users access this object at the same time.

For example, guild is an example for multi-object write through. In MMOG,
many people may join to the same guild. This data are very important. If some data
has been modified, it must be written to backend data quickly. Team is an example for
multi-object batch update. In MMOG, few players can make up of a team. But this
information is temporary. So it can‘be stored to MemoryManager for the time being.
After a while, it updates a batch of data to database-The players data in MMOG are
belong to single object write through. Every-player’s data are very important, so it
must be written to backend database. quickly: But the player’s position is not
important. It can not update to backend database immediately. And some data like
game world map and NPC are all read only data. So these kinds of data must not

update any information to backend database.

13

3.2. System Architecture

8o
o

8 :
A— ~

Client Gateway Server

Database

Figure 3-2: DOIT System Architecture

There are three tiers in DOIT blatform that is client-gateway-server architecture.
HAISRS 6

Our system is established on front;end of ‘Ha“tat‘)a‘se.‘\ It is the red part which is front of

1

the database in figure 3-2. We ad‘d‘"‘;s”omemompdnents front of database to let
programmers more conveniently.‘“l‘t 18 cqnvehient for programmers to develop

programs related to persistence.

In general, programmer can use Hibernate to communicate with database. Figure
3-3 indicates this architecture. Programmers must not write the bottom layer programs
which using JDBC and complicated SQL command. They just use the simple API

which is provided by Hibernate then they can access the data in database easily.

In the application programs, some objects must be stored in database. Another
object is transient which just store in memory. Even if the system reboot doesn’t

matter with the transient object.

14

Figure 3-3: Hibernate System Architecture

Figure 3-4 indicates our high level system architecture. As Figure 3-4 indicated,

Hibernate can divide into two parts in detail. One is used to communication with

Hibernate and programmer’s object.

Hibernate

Figure 3-4: High-level System Architecture

15

3.3. Memory Component

® MemoryManager
“MemoryManager” is the layer between Hibernate and application layer.
The purpose of the component is to manage the objects in memory which
developer used. If programmers want to access the persistent objects, it must
communication with MemoryManager. MemoryManager will control the life
cycle of persistent objects.
If programmers want to persistent some object to backend database, it must
rely on MemoryManager. They can not take objects to Hibernate immediately.
It can improve performance.and efficiency to persist object by means of

MemoryManager.

® MemoryObject

The basic units which are stored in MemoryManager are
MemoryObject. Excluding the data of the MemoryManager, there is much
more information in MemoryObject. This information can be used to manage

life cycle of MemoryObject.

3.4. System Object

To help programmers develop MMOG more convenient and quicker, we define

some kinds of system objects. Developers just think about characters in game.

16

Programmers consider the behavior of the character in the game to decide what kinds
of system object. Programmers can use it by inheriting the system object. We can be
in object points of view to design the game. It must not consider the table field points
of view in relational database Programmers take viewpoint of object to design and

develop the MMOG. Let programmer develop the MMOG more convenient.

® BaseObject

It is the basic object type of system object. Every type of object must inherit

this object.

® TransientObject

It is transient and temporary ‘object in the system. As far as developing
MMOG are concerned it is used to NPC (non-player character) in general. We
can produce it again even if the system reboot. It needs not to access any data in

database.

® PersistentObject

Persistent object means that this kind of object must store in database. As far
as developing MMOG are concerned it is used to player’s data, treasure and
equipments ... etc. PersistentObject class is the basic type of persistent

class. All kinds of persistent object must inherit it.

17

I. ImmutablePersistentObject

It only needs to fetch data from database at the first time for this kind of
persistent object. After that, this object needs not to update its record in
database. It will not alter the data itself. As far as developing MMOG are
concerned it is used to map data. In the beginning, map just only load to

memory from database. Map doesn’t alter its data any more.

Il. GeneralPersistentObject

It is general persistent. object. At ,the same time, only one player can
access this object. For example, player’s personal data, basic equipments and

its attribute values all belong te-this object type.

1. SyncPersistentObject

This persistent type object can be accessed by many players at the same
time opposite to GeneralPersistentObject class. So, our system can
deal with this object some synchronization control. If multiple threads
access this object at the same time, it also can execute normally. Developers
just use it by inheriting the SyncPersistentObject class. Our system

will guarantee the thread safe.

In section 3-1, we analysis many MMOG object types and conclude to six type.

18

These six types of MMOG objects can map to our system object. Single object write
through and single object batch update map to GeneralPersistentObject.
Since only one player can access this object at the same time. Multi-object write
through and multi-object batch update map to SyncPersistentObject. Because
multi player may access these object at the same time. And read only data map to
ImmutablePersistentObject. MemoryManager can handle write through

and batch update. It can let programmer to determine object behavior.

19

Chapter 4 Implementation Detail & issue

In this chapter, we begin to dive into the implementation details for our system.
Our system’s architecture is depicted in figure 4-1. Developers interact with the
application layer which is the front-end of the system. The middle tier is
MemoryManager which communications with Hibernate. Hibernate
communications with the database directly at the backend. A rational database is used

to store the actual data.

JavaBean
Object

Hibernate

Object -

JavaBean
Object

Figure 4-1: System Architecture

Programmers develop the objects which inherit different type of system objects
and programmers write additional methods according the game characters by the
getter and setter model. Programmers write that methods to the getter and setter model.
Programmers don’t have to overwrite some complicated methods like EJB, they just
have to write some simple JavaBean [16]. When these JavaBean objects are stored

into MemoryManager, they'll be encapsulated into MemoryObject. When

20

MemoryManager wants to store MemoryObject’s to the backend, it returns
original JavaBean objects and gives them to Hibernate which will then be stored into

database.

4.1. Application Tier

Programmers develop the game content and game logic in the application tier.
There are many types of character in the MMOG. They can be classified into several
types of objects based upon the behavior of persistent objects. We define some basic
kinds of object type in our system. Programmers can choose which object type to use
according to the object’s attributes and correspoending game character. The following
will introduce every kinds of ;object in: detail. in-our system and its relationship

between each other.

® BaseObject

The BaseObject class is the base class of all system objects. All system
objects must inherit from this object. It defines an identity attribute called id and
overwrites the equals(obj:Object) method of java.lang.Object. It

differentiates every object by object’s id.

BaseObject class inherits mmog.doit.GameObject class in the
DOIT middleware platform. When programmers use DOIT to develop MMOG,
every character must inherit from GameObject class. Then the

GameObjChannel delegate some methods call to its associating game object.

21

<<lInterface>>
Serializable

%

GameObject

& : int
&y :int

[SsetX(x : int) : int
getx(: void
[SsetY(y : int) : int

[®getY() : void
[Sistatus() : Message

£

BaseObject
E¥id : Long

®getld() : Long

[®setld() : void
[®equals(obj : Object) : wid
[®hashCode() : int

|
! \ o0 o ;
TransientObject |- PersistentObject

| |BSversion : Long

[getVersion() : Long
| 8isetVersion() : void
[®equals(obj : Object) : void

GeneralPersistentObject

®makePersistent() : void
[®renewPersistent() : void
[®makeTransient() : void
[®refresh() : void

ImmutablePersistentObject

SyncPersistentObject

®makePersistent() : void
[®renewPersistent() : boolean
[®makeTransient() : void
[irefresh() : void

Figure 4-2: Class diagram of system objects

® TransientObject

The TransientObject class extends BaseObject class. It is a

22

temporary object in our system. The TransientObject is stored in main

memory. It can’t be stored in database.

® PersistentObject

PersistentObjet class also inherits BaseObject class. Classes
which extend from PersistentObject class can be stored into the database.
Beside the attributes inherited from BaseObject class, it also adds a version
attribute which can be used to keep track of when it was stored. The value is a

timestamp which that time was stored in database.

® ImmutablePersistentObject

This type of class is -mainly ‘used-in.objects where data is immutable. It
means that we can not modify: any.of its-attributes after loading from database.

So we don’t have any action about saving or loading data from database.

® GeneralPersistentObject

There are three main methods in this kind of persistent class. They are
makePersistent(), makeTransient() and renewPersistent()
which are used to insert, delete and update. Besides these, there is a method
called refresh() which can renew the state of the object and keep it
concurrent with the database. This class can be used by only one player at any

given time.

23

® SyncPersistentObject

This class is similar to GeneralPersistentObject class. But this
class can be accessed by many players at the same time. The system decides
whether to store this object according to the version attribute, thus achieving data
consistency. The renewPersistent() will return a boolean value to

determine if the data has been stored to the database successfully or not.

4.2. Manager Tier

<<Interface>>
MemoryManager

WaddObject(per : PersistentObject, newObj : boolean, emergency : boolean, lifetime : long) : void
®addObject(per : PersistentObject, newObj : boolean, emergency : boolean) : void

®getObject(c : Class, id : Long) : PersistentObject

Wcontains(obj : PersistentObject) : boolean

®clear() : void

@getObjectCount() : int

®cleanUp() : void

Fflush() : void

7
|

MemoryManagerimpl
B&instance : MemoryManagerimpl
B¥cleanUpTimer : Timer
EZflushTimer : Timer
B%map : HashMap

®periodicCleanUp(delay : int, argname : int) : void
periodicFlush(delay : int, period : int) : void
RcancelCleanUp() : void

®cancelFlush() : void

®save(memObj : MemoryObject) : void

Figure 4-3: Interface and implementation of MemoryManager

MemoryManager is used to manage persistent objects. It provides a basic and

24

simple API to programmers developing MMOG?’s. Figure 4-3 indicates the interface
and the implementation of MemoryManager. addObject can add objects
developer created to MemoryManager, and the objects can chose whether or not to
store to the database directly by setting the attributes. We can also set the objects' life
cycles. Then MemoryManager will flush the objects that exist in
MemoryManager to the database periodically. And cleanUp will take expired
object to garbage collection periodically. Because a system’s main memory is not
infinite, it can not store all objects in main memory all the time. For this reason, we
implemented the LRU [17] (Least-Recently-Used) algorithm. When system’s main
memory is not enough, it will store the object to database which longest time since

last been used. And it will delete that object from main memory.

MemoryObject
Bfper : PersistentObject
B&llifetime : long
B&startTime : long
B¥lexpire : boolean
E&newObj : boolean

#getObj() : PersistentObject
WsetObj(per : PersistentObject) : woid
WgetLifetime() : long
WsetlLifetime(lifetime : long) : void
WisExpire() : boolean
WsetExpire(expire : boolean) : void
WgetStartTime() : long
WsetStartTime(startTime : long) : void
isNewODbj() : boolean
%setNewObj(newObj : boolean) : void

Figure 4-4: MemoryObject

All objects which are stored in MemoryManager are encapsulated in
MemoryObject’s. Figure 4-4 indicates the member functions of MemoryObject.

MemoryObject can keep track of some information about itself, such as the

25

lifetime, whether or not it’s expired, whether or not to create a new object, etc.

The implementation of MemoryManager class was done by hash. The
identification key of this hash is the id and class name combined. Every pair is unique,

so every single object can identified in MemoryManager.

MapKey

&%id : Long
E8className : String

[®getld() : Long

[®setld(id : Long) : void

[®getClassName() : String
[®setClassName(className : String) : void

Figure 4-6: MemoryManager

26

4.3. Persistent Tier

Our system actually used Hibernate to communicate with the backend database.
In Hibernate, we used Session class to handle almost all actions about accessing
the database. For every thread in our system, we use one ThreadLocal class to
persist a Session object, so every thread can access only its local value and can not
the others'. The transaction in Hibernate also works in the same way. The Session
object in Hibernate is obtained using SessionFactory class. The
SessionFactory class is a heavyweight class, so a system better has only one
SessionFactory in its application. \We set that attribute to static, and encapsulate

in HibernateUti I class for developersito use.

4.4. Implementation issues

In the following, we list some issues about this system. And we will discuss

about these issues.

® POJO

Information technology progresses at a great speed these days. Every
company wants to quickly produce new games and new contents to players
which use and play them. Under this demand, programmer must develop games
more quickly. In order to develop more quickly, programmers can not spend too

much time on surveying and understanding complicate specifications and API’s.

27

For example, programmers who want to use EJB to develop a system must
understand that all system architecture and its complicated specification before
actually develop the system. During the implantation process, they must
overwrite many EJB methods. In comparison, when using our system,
programmer only needs to write POJO (Plain Old Java Object) Java programs. It
greatly decreases the time of development. The product can ship faster gaining

an advantage on the market.

® In-memory

With regard to a MMOG, user data changes and updates happen very often.
Facing thousands of connection in a MMOG, how we can achieve high
performance and short response time is @ very important issue. Due to fast
hardware advancement in recent year, main memory price has become lower and
lower gradually. There used to ibe-only-few data which can be stored in main
memory, but now, much more data.can bestored in main memory. It can promote
system performance in evidence. In-memory data management has become an
issue for many more applications that are in dire need of high performance.
Therefore, in-memory data management and operation will become an important

topic.

® Develop Cost

EJB is a persistence framework standard which Sun Microsystems Inc.
brought up. But, when programmers use EJB to develop programs, there must be
J2EE containers. However, J2EE containers cost a great deal to companies.

Although there are some free and open source J2EE containers on the market,

28

their performances are not enough to support large scale system such as a
MMOG. Because there are many players playing the game on line at the same
time, there must be some commercial product such as J2EE container to sustain
this kind of application. Our system uses Hibernate to store objects to the
backend database. It is an open source persistence framework. We can modify its
code depending on our requirements. Hibernate is not in the J2EE architecture,
so it need not have any J2EE container to execute. It can run standalone without
J2EE environment. Company need not consume any capital on commercial

persistence framework and J2EE container.

® Maintain cost

With regard to a complete. MMOG, if programmers used JDBC to hard code
the storage program, when-their.system-becomes larger in scale, the will become
much harder to maintain. But4f programmers used our system to develop their
system, their source code can be more modular and clear. Programmers only
have to take an object view on designing their system. Their system becomes

more clear and modular thus more convenient on maintenance later.

29

Chapter 5 Experiment and Discussion

We start to experiment and evaluation our system in this chapter. We experiment
in two rounds. In the first round, we enumerate the most often four table relationship
in database. It experiment our system by using this four kinds of relationship in the
first round. And the second round, we adopt general test case to evaluation the
database system. This experiment is 80% read operation and 20% write operation to

experiment.

5.1. Roundl: Database relationship

In this round, we use usually four cases about table relationship in database. We
use these four cases to experiment our system. There are single table, many-to-one,

one-to-one and many-to-many.

® Hardware configuration

Usage Number | Configuration
Database 1 P4 2.4GHz CPU with 512MB ram
Application | 1 P4 2.4GHz CPU with 1GB ram

Table 5-1: Hardware configuration of roundl

Table 5-1 indicates the hardware configure in this experiment. In order to
other packets to interfere with this experiment, it uses one switch hub to connect
these two computers. And it uses 100 MB Ethernet network to connect each

other.

30

® Software configuration

We use the MS SQL Server 2000 to our persistent storage. In application tier,
we use JDK 5.0 for our experiments. It compares with using our system
component or not in all environment. We experiment difference between using
our system component and doesn’t use our system component.

Figure 5-1 indicates our system architecture. We flush objects in
MemoryManager every 1000 millisecond. And figure 5-2 doesn’t use our system
component. It simply uses Hibernate alone. We take 1000 ~ 2000 ~ 3000 ~ 4000
objects to experiment. We perform insert and update operation to our

experiments and keep track of that time.

Because this experiment:need many obj in memory, the Java virtual

" ‘) Y
machine parameter can not use defaul

6. We set initial heap size to 384MB
43 :

JavaBean
Object
Hibernate
Object

JavaBean
Object

Figure 5-1: Experiment with our system architecture

31

JavaBean
Object

Hibernate
Object,

JavaBean
Object

ﬂﬁ'.:'.‘-"‘)j‘:-b._“:f';?_.ﬁ.:p
Figure 5-2: Experiment without,0

> (@M= ElSHY

L

system architecture

=4

alled GameRole which have eight
¥l IT':“‘_-.\, " n)

)
. . . P - .
attributes and inherits GeneralPersistentObject. And we write an xml
mapping file to description this object map to one table in database. The results

are as follows, it takes insert and update operation.

Single table average time taken (millisecond)

Object Insert Update

number | without MemMgr | with MemMgr | without MemMgr | with MemMgr
1000 3148.25 992 5144.75 1257.75
2000 8179.75 1910.25 16566.5 2503.5
3000 15050.75 2894.5 58648.75 3496.25
4000 29183.5 3801 207211 4707

Table 5-2: Experiment result of round1 single table

32

Round1 : single table : Insert

—— without MemMgr —=— with MemMgr ‘

35000

30000 o
25000

2
£ 20000
= 15000 |
g
10000
O | | |
1000 2000 3000 4000

object number

Figure 5-3: Experiment result of round1 single table insert operation

Round] : single table : Update

—— without MemMgr —®— with MemMgr

250000

200000 »

150000

100000

millisecond

50000

0 ‘ = = ‘ =

1000 2000 3000 4000

object number

Figure 5-4: Experiment result of roundl single table update operation

® Many-to-One relationship

In this experiment, we use two classes which GameRole and Equipment.

33

These two classes both inherit GeneralPersistentObject. GameRole
have eight attributes and Equipment have four attributes. Every GameRole
has one Equipment attribute. But one Equipment can be owned by many

GameRole. The results are as follows, it takes insert and update operation.

Many-to-One relationship average time taken (millisecond)

Obiject Insert Update

number | without MemMgr | with MemMgr | without MemMgr | with MemMgr
1000 4160.25 1199 7980.5 1699.5
2000 11019.5 2336.25 27629 3273.25
3000 22195.5 3562.5 93004 4758
4000 36066.5 4722.5 482898.5 6453

Table 5-3: Experiment.result-of roundl Many-to-One relationship

Round]1 : N-to-1 : Insert

—— without MemMgr —=*— with MemMgr ‘

40000
35000 | //////’
30000

25000 //’///

20000

15000

10000 | */////////////*////

5000 - . .

1000 2000 3000 4000

millisecond

object number

Figure 5-5: Experiment result of round1 Many-to-One insert operation

34

Roundl : N-to-1 : Update

—— without MemMgr —*— with MemMgr ‘

600000

500000 r

400000 /

300000 r

millisecond

200000 r

100000

0 ./—/

1000 2000 3000 4000

object number

Figure 5-6: Experiment result of round1 Many-to-One update operation

® One-to-One relationship

In this experiment, we-use two classes which GameRole and Equipment.
These two classes both inherit*GeneralPersistentObject. GameRole
have nine attributes and Equ i pment‘have five attributes. Every GameRol e has
one Equipment attribute. One Equipment can be owned by only one

GameRole. The results are as follows, it takes insert and update operation.

One-to-One relationship average time taken (millisecond)

Object Insert Update

number | without MemMgr | with MemMgr | without MemMgr | with MemMgr
1000 7898.5 1870.75 33781 3999.75
2000 26437.5 3824.25 124394.5 6429.25
3000 51062.5 5679.75 183726.75 9101.5
4000 100957 10128.75 278801 11859.25

Table 5-4: Experiment result of round1 One-to-One relationship

35

Roundl : 1-to-1 : Insert

—— without MemMgr —=— with MemMgr

120000

100000 o

80000 |

60000

millisecond

40000 r

20000
/ . ————— =

O T !
1000 2000 3000 4000

object number

Figure 5-7: Experiment result of round1 One-to-One insert operation

Roundl : 1-to-1 : Update

—— without MemMgr —®— with MemMgr ‘

300000

250000 e
200000

150000 /

100000 /

millisecond

50000 e
0 - - - —a
1000 2000 3000 4000

object number

Figure 5-8: Experiment result of round1 One-to-One update operation

® Many-to-Many relationship
In this experiment, we use two classes which GameRolle and Equipment.

These two classes both inherit GeneralPersistentObject. GameRole

36

have nine attributes and Equ ipment have five attributes. Every GameRole has
many Equipment attribute and its type is java.util.Set. One
Equipment can be owned by many GameRole and its type is also
jJava.util_Set. The results are as follows, it takes insert and update

operation.

Many-to-Many relationship average time taken (millisecond)

Obiject Insert Update

number | without MemMgr | with MemMgr | without MemMgr | with MemMgr
1000 60164 2683.75 180132.75 4398.5
2000 216660.25 9851.75 630894.5 18707
3000 318129 7797.25 1030347.25 25867.5
4000 920843.75 8941.5 1830486.75 29734.25

Table 5-5: Experiment result of round1 Many-to-Many relationship

Round!l : N-to-N : Insert

—— without MemMgr —®— with MemMgr

1000000
900000 »
800000
700000
600000
500000
400000
300000
200000
100000

0 M ‘ . ‘ . ‘ .

1000 2000 3000 4000

millisecond

object number

Figure 5-9: Experiment result of round1 Many-to-Many insert operation

37

2000000
1800000
1600000
1400000
1200000
1000000
800000
600000
400000
200000
0

millisecond

Round]1 : N-to-N : Update

—— without MemMgr —=— with MemMgr

-

“/////’

Wl

1000 2000 3000

object number

4000

Figure 5-10: Experiment result of reundl Many-to-Many update operation

To sum up these four cases, when object numbers have fewer such as 1000 or
2000 objects, there is little difference between our.system architecture and simple to
use Hibernate. But when there are plenty ‘of object numbers such as 3000 or 4000, our
system architecture needs only less time to do this operation. Because it simply uses
Hibernate to do these operations that directly write data to database every time. But it
uses our system components that write data to memory first and these objects can be
stored to MemoryManager. Our MemoryManager can manage this object and its

life cycle in memory. After a period of time, data can be committed to database. So it

takes less time and performance will be better.

5.2. Round2: 80% read and 20% update

In this round, it takes the general rule for evaluation database. It uses 80% read

38

operation and 20% write operation to experiment. We experiment that using our
system architecture or not. Table 5-6 indicates this result that keep track of average

time taken using 500 ~ 1000 ~ 2000 ~ 3000 and 4000 objects.

® Hardware configuration

Usage Number | Configuration
Database 1 P4 2.4GHz CPU with 512MB ram
Application | 1 P4 2.4GHz CPU with 1GB ram

Table 5-6: Hardware configuration of round2

Table 5-6 indicates the hardware configure in this experiment. In order to
other packets to interfere with this:experiment, it uses one switch hub to connect
these two computers. And.it uses: 100 MB Ethernet network to connect each

other.

® Software configuration

We use the MS SQL Server 2000 to our persistent storage. In application tier,
we use JDK 5.0 for our experiments. It compares with using our system
component or not in all environment. We experiment difference between using
our system component and doesn’t use our system component.

Because this experiment need many objects in memory, the Java virtual
machine parameter can not use default value. We set initial heap size to 384MB

and set maximum heap size to 512MB.

39

Average time taken (millisecond)

Object number | without MemoryManager | with MemoryManager
1000 5318.8 53
2000 13503.2 62.6
3000 29265.6 75
4000 54890.6 93.8

Table 5-7: Experiment result of round2

80% read / 20% write
—— with MemMgr —®— without MemMgr

60000

50000 v
— 40000
5
230000
= 20000 //

10000 /

0 < : < <> <
1000 2000 3000 4000
object number

Figure 5-11: Experiment result of round2

These results lead us these conclusion. When using ours system component, the
time taken will not increase very much which object number from 1000 increase to
4000. But it increases much time in evidence when it only uses Hibernate to do this

40

operation. If it only execute one time, the result can not be so much difference.
Because we use what kinds of system architecture whether or not, it must load data
from database when it executes read operation at first time. It will be faster that using
our system component after the first time to do read operation. Because our system
will be cache data in main memory, the read operation will be faster than does not use

our system in evidence.

4

Chapter 6 Future Works and Conclusions

6.1. Conclusions

MMOG is very hot game type at present. But, it needs much strength and many
efforts to develop a complete MMOG. So, how to use the least time to develop a

complete MMOG is very important.

We accomplish persistent system architecture and services which base on DOIT
middleware platform. At the bottom layer, we use an open source persistent
framework called Hibernate to communication with database. We define some basic
type class for programmer to use. Mt can develop MMOG characters simply according
to inherit these classes. Programmers even can use these components to develop other

kinds of application.

The following part, we take two points of view to discuss and analyze our

system.
® Designtime

In observing the perspective on design time, if programmers can use this
system to develop MMOG, it will save much time and many efforts. Our system
already defines many classes and provides some simple used API. Developers
need not write the complicated SQL command but they still can achieve
persistent functionality. So, developers can concentrate his mind on designing

game content and logic. They need not take efforts to deal with problem about

42

design system. It can decrease developers overhead.

® Runtime

In observing the perspective on run time, it is efficiency that we store object
to main memory before data are actually stored to database. After that, we store
in-memory object data to database periodically. Our system also supports
transaction management. It can guarantee data integrity and consistency. When
many players access the same data, we can use the mechanism of synchronization.

Don’t worry about data inconsistency problem.

By means of the platform and its|services, not only can reduce designing
program and developing time:for game but also can improve performance to the

Server.

6.2. Future Works

In the thesis, these experiments are all single operation. These are quite different
from actual game. After all, the actual online game can not fix insert and update
operation like our experiment. If we can design and implement an actuality game and
let many users to play this game to experiment. It will more fit with the situation
which actual game happened. And we can take this result to tuning performance with

our system.

MMOG is more hotter and hotter in recently year. So there are many kinds of

43

games are produced on the market. Our system objects may be not comfortable for
this new type of games. How to design the object type to more suitable for new type
of games? And let it can promote all system performance. It will be a very important

research topic.

44

Bibliography

[1]

[2]
[3]
[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Chen-en Lu, Tsun-Yu Hsiao, Shyan-Ming Yuan. Design issues of a Flexible,
Scalable, and Easy-to-use MMOG Middleware. In Proceeding of Symposium
on Digital Life and Internet Technologies 2004

Butterfly.net, http://www.butterfly.net/

Zona Inc., http://www.zona.net/

JAdventure, http://graphmud.sourceforge.net/

TigerMUD, http://www.tigermud.com/

Sun Microsystems Inc. JIDBC Technology,
http://java.sun.com/products/jdbc/

Sun Microsystems Inc. Enterprise JavaBeansTechnology,
http://java.sun.com/products/ejb/

Sun Microsystems Inc. Java Data Objects,
http://java.sun.com/products/jdo/

JSR-12,
http://jcp.org/aboutJava/communityprocess/final/jsr01
2/index2_html

Hibernate, http://www.hibernate.org/

Spring Framework , http://www.springframework.org/
XPlanner, http://www.xplanner.org/

ObJectRelationalBridge, http://db.apache.org/ojb/

The TimesTen Team. In-Memory Data Management in the Application Tier.
Proceeding of the 16th International conference on Data Engineering, February

2000.

45

[15] John Grundy, Steve Newby, Thomas Whitmore and Peter Grundeman.
Extending a Persistent Object Framework to Enhance Enterprise Application
Server Performance. The 13th Australasian Database Conference (ADC2002).

[16] Sun Microsystems Inc. JavaBean,
http://java.sun.com/products/javabeans/

[17] Abraham Silberschatz, Peter Baer Galvin. Operating System Concepts.

Publisher by John Wiley & Sons Inc.

46

