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We show that a Brans-Dicke model admits some anisotropically inflating solutions which are identical

to the solutions found in a higher derivative pure gravity theory. These inflating solutions were shown to

break the cosmic no-hair theorem such that they do not approach the de Sitter universe at large times. The

stability conditions of these solutions in this scalar-tensor theory are shown explicitly in this paper. It is

shown that there exist unstable modes of the anisotropic perturbations. Therefore the inflating solutions

are unstable in the scalar-tensor theory.
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I. INTRODUCTION

The inflationary universe is central to the astronomical
observations aim to test and understand how the universe
might have evolved from a general initial condition into its
present state of large-scale isotropy and homogeneity to-
gether with an almost flat spectrum of near-Gaussian fluc-
tuations. There is a period of accelerated expansion during
the epoch of the early universe [1]. It has been shown that
the simplest physically motivated inflationary scenario is
induced by the acceleration driven by a scalar field with a
constant potential. It is therefore important to find out
whether universal acceleration and an asymptotic approach
to the de Sitter metric always occurs. In fact, a series of
cosmic no-hair theorems of varying strengths and degrees
of applicability have been proved in support of certain
constraints on the field parameters for its occurrence [2–
8]. Note that from the point of view of an effective theory
of gravity, a system with quadratic curvature terms should
be understood as some perturbative correction to Einstein
gravity suitable in some energy scale. Therefore, higher
derivative gravity theories are supposed to play an impor-
tant role in the physics of the early universe. Moreover, the
conformal equivalence between these higher-order theories
in vacuum and general relativity in the presence of a scalar
field has also been shown in Refs. [9–11]. For example, a
conformal transformation has been used to prove that a
general theory with the action S ¼ R

dDx
ffiffiffi
g

p ½Fð�;RÞ �
ð�=2Þðr�Þ2�, where Fð�;RÞ is an arbitrary function of a
scalar � and scalar curvature R, is equivalent to a system
described by the Einstein-Hilbert action plus scalar fields.
Therefore it is interesting to study the cross relations
between the higher-order theories and general relativity
in the presence of a scalar field.

In particular, higher-order gravity theories give field
equations which are higher order than two in time deriva-
tives and generally have runaway solutions. The runaway
solutions are supposed to be unphysical because they grow

with time scales which are beyond the limits of validity of
the theory. Thus, in this context, probably not all solutions
have physical significance [12]. For instance, it is interest-
ing to learn that the expanding solution found in the higher-
order gravity theory studied in Ref. [13] does not have a
limit in general relativity (i.e. it is not defined for � ! 0).
An isotropic example of this phenomena is the Starobinsky
inflation [14]. Indeed, it was shown that when quadratic
terms are added to the Lagrangian of general relativity then
new types of a cosmological solution arise when �> 0
which have no counterparts in general relativity in the
Bianchi type II and type VIh spaces [13]. Theses solutions
inflate anisotropically and do not approach the de Sitter
spacetime at large times. They hence provide counterex-
amples to the expectation that a cosmic no-hair theorem
will continue to hold in simple higher-order extensions of
general relativity. Other consequences of these higher-
order theories have also been studied in [15–19].
A pure gravity theory which is quadratic in the scalar

curvature and the Ricci tensor was considered in Ref. [13]
for the model consists of the four-dimensional gravita-
tional action

SBH ¼ 1

2

Z
d4x

ffiffiffi
g

p ðRþ �R2 þ �R��R
�� � 2�Þ: (1)

The Einstein equations can be shown to be [13]

G�� þ��� þ�g�� ¼ 0; (2)

where G�� � R�� � Rg��=2 and

��� � 2�RðR�� � 1
4Rg��Þ þ ð2�þ �Þ

� ðg��D
2 �D�D�ÞRþ �D2ðR�� � 1

2Rg��Þ
þ 2�ðR���� � 1

4g��R��ÞR��: (3)

Here the tensor ��� incorporates the deviation from regu-

lar Einstein gravity related to the coupling constants � and
�.
New classes of exact solutions are found in a spatially

homogeneous universe of the Bianchi type II space given*gore@mail.nctu.edu.tw
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by the metric

ds2II¼�dt2þe2bt
�
dxþa

2
ðzdy�ydzÞ

�
2þebtðdy2þdz2Þ;

(4)

where

a2 ¼ 11þ 8�ð11�þ 3�Þ
30�

; b2 ¼ 8�ð�þ 3�Þ þ 1

30�
:

(5)

Here a and b are some constant functions of � and �.
These solutions are spacetime homogeneous with a five-
dimensional isotropy group. They have a one-parameter
family of four-dimensional Lie groups [20–22]. Interesting
discussions related to these solutions can be found in
Ref. [13].

Note that the no-hair theorem for Einstein gravity states
that the presence of a positive cosmological constant drives
the late-time evolution towards the de Sitter spacetime for
Bianchi type I–VIII spaces [6]. The matter sources are
required to obey the strong-energy condition. It has also
been shown that the cosmic no-hair theorem cannot be
proved and counterexamples exist if this condition does
not hold exactly [7,23–26].

The Bianchi type solutions given above inflate in the
presence of a positive cosmological constant �. They are,
however, neither de Sitter, nor asymptotically de Sitter.
Because of the complexity of the equations of motion it
is difficult to extract information about the stability of these
nonperturbative solutions in general. We found, however,
that this solution is also a solution to a Brans-Dicke type
scalar-tensor theory in the Bianchi type II space. We will
show that this is indeed true for a scalar-tensor theory. The
stability conditions of anisotropic perturbations will also
be presented shortly in this paper. We will show, however,
that these anisotropically inflating solutions are not stable
under field perturbations. The critical role of the scalar
field in this theory may hopefully shed more light on the
stability problem of the anisotropic universes. Similar
solutions can also be found in a type VI Bianchi space
which will be discussed elsewhere.

II. THE SCALAR-TENSOR THEORY

The Barrow-Hervik (BH) solution (4) can also bewritten
as, in a different form,

ds2 ¼ �dt2 þ a21ðtÞdr2 þ gmndx
mdxn (6)

with ðx0; x1; x2; x3Þ ¼ ðt; r; z; �Þ, a21ðtÞ ¼ exp½bt�=a2 and
a22ðtÞ ¼ exp½2bt�=a2 where a and b denote some constant
functions of � and � given by Eq. (5). Here

gmn ¼ a22ðtÞ ra22ðtÞ
ra22ðtÞ a21ðtÞ þ r2a22ðtÞ

� �
: (7)

We will show that the BH solution (6) is also a solution to

the Brans-Dicke model given by

S ¼
Z

d4x
ffiffiffi
g

p �
c

2
R� w

2c
D�cD�c � 	c

�
: (8)

Indeed, the variation equation of the metric field gives

G�
� ¼ t

�
�

¼ 1

c

�
w

c
@�c @�c þD�D�c

� g��

�
w

2c
@�c @�c þ 	c

��
(9)

with t�� as the energy-momentum tensor associated with
the scalar field c . In addition, the trace equation implies
that

ð2!þ 3ÞD2c ¼ �2	c : (10)

Assuming that c is a function of t only, we can show that

t23 ¼ rðH1 �H2Þ
_c

c
: (11)

It is straightforward to show that the metric solution found
in Ref. [13] is also a solution to the scalar-tensor theory if

c ¼ c 0 exp

�
�2

a2 þ b2

b
t

�
;

w ¼ � 3

2
þ 
1 ¼ � 3

2
þ 4a2 þ b2

8ða2 þ b2Þ ;

	 ¼ a2ð4a2 þ b2Þ
2b2

> 0:

(12)

Therefore, we can show that �11=8 � w � �1 for all
possible combinations of a and b. The scalar-tensor theory
with the BH solution has a negative kinetic energy term.
The negative kinetic energy term can be removed from the
action by a proper choice of conformal coordinate via the
conformal transformation ~g�� ¼ c g��. As a result, the

scalar-tensor action becomes

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
cR� w

2c
D�cD�c � 	c

�

¼
Z

d4x
ffiffiffiffiffiffiffi�~g

p �
1

2
~R� 
1

2c 2
~D�c ~D�c � 	

c

�
(13)

in the conformal frame. Writing c ¼ c 0 exp½�2��, the
action becomes

S ¼
Z

d4x
ffiffiffiffiffiffiffi�~g

p �
1

2
~R� 2
1

~D�� ~D��� 	 exp½2��
�
:

(14)

A new set of solutions in this coordinate,

~a i ¼ aic 0 exp

�
�2

a2 þ b2

b
t

�
; � ¼ a2 þ b2

b
t;

(15)
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can therefore be obtained straightforwardly from the BH
solution (4).

III. THE STABILITYANALYSIS

By writing

c ¼ c 0 exp½�2��; (16)

ai ¼ 1

a
exp½AiðtÞ� (17)

such that Hi ¼ _Ai, we can show that the field equations (9)
become

_A 2
1 þ 2 _A1

_A2 � 1

4
a2 exp½2A2 � 4A1�

¼ 2! _�2 þ 2ð2 _A1 þ _A2Þ _�þ 	; (18)

ð2!þ 3Þ½ €�þ ð2 _A1 þ _A2Þ _�� 2 _�2� þ 	 ¼ 0; (19)

€A1 þ 2 _A2
1 � €A2 � _A2

2 � _A1
_A2 � a2 exp½2A2 � 4A1�

¼ 2ð _A1 � _A2Þ _�: (20)

Here the first equation is the Gt
t equation, the second

equation is the trace equation (10), and the last equation
is the G2

3 equation. It can be shown that the BH solution

given by the set of solutions A1 ¼ bt=2, A2 ¼ bt, and� ¼
ða2 þ b2Þ=b does solve the above equations.
The perturbation equations of 
Ai and 
� with respect

to the BH solution given above can be shown to be

D
A �
ð4xþ 1Þ�� x ð2xþ 1Þ�þ x=2 �ð4xþ 3=2Þ
2ðxþ 1Þ� ðxþ 1Þ� �� 4x� 2

�2 � ð2xþ 1Þ�þ 4x ��2 þ ð2x� 1=2Þ�� 2x 1

0
@

1
A 
A1


A2


A3

0
@

1
A ¼ 0: (21)

Here we have defined 
A3 � 
 _�=b and x � a2=b2 for
convenience. Note that the perturbation equation becomes
a dimensionless form in this format. In addition, we have
also assumed that the perturbation equations are of the
form 
Ai ¼ ki exp½b�t� with ki some constant initial per-
turbations. The differential forms of the perturbation equa-
tions can be restored by replacing the constant eigenvalues
� by @t=b in the above equation. It is clear that a nontrivial
solution exists only if detD ¼ 0. This is equivalent to
solving an eigenvalue problem. As a result, all linear
combinations of the solutions


Ai ¼
X
j

kij exp½b�jt� (22)

to the eigenvalue equation (21) are also solutions to the

perturbation equation (21). Here kij are some constant
initial perturbations associated with the jth eigenmode
solution, and the eigenvalues �j are the solutions to the
perturbation equation.
This equation can be further simplified to a 2� 2matrix

equation by solving one of the equations which gives, e.g.,


A3 ¼ 1

8xþ 3
f½2ð4xþ 1Þ�� 2x�
A1

þ ½2ð2xþ 1Þ�þ x�
A2g: (23)

This will replace all the effects of the perturbation 
A3 as a
linear combination of 
A1 and 
A2. As a result, the 3� 3
matrix equationDA ¼ 0 reduces to a 2� 2 matrix equa-
tion

D 2
A2 � ð8xþ 2Þ�þ 2ð�� 8x2 � xÞ ð4xþ 2Þ�� 2ð�þ 16x2 þ 8xÞ
ð8xþ 3Þ�� ð�� 8x2 � xÞ �ð8xþ 3Þ�þ ð�þ 16x2 þ 8xÞ=2

� �

A1


A2

� �
¼ 0 (24)

with � � �2 � 2x�þ 3x for convenience. Therefore,
detD2 ¼ 0 can be calculated to give

�ð�� 3xÞ ¼ 0: (25)

This gives � ¼ 0 or � ¼ 2x for � ¼ 3x and � ¼
x� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 3x
p

for � ¼ 0. In fact, the trivial solution � ¼
0 is a degenerated solution to the perturbation equation. It
is a degenerated solution in a sense that 
A3 ¼ 0 (i.e.

� ¼ constant) is also a solution to the perturbation equa-
tions. Therefore, there are always unstable modes in this
theory given by � ¼ 2x and � ¼ x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 3x

p
. As a

result, the anisotropically inflating solution (6) will be
unstable after a period of inflation of the order of 1=ðb�Þ.

This will bring the anisotropically inflating universe to an
end. The resulting universe is then expected to return to the
de Sitter space provided proper constraints on the field
parameters are obeyed such that the de Sitter space be-
comes a stable final state.
In summary, new classes of exact anisotropically inflat-

ing solutions are found in spatially homogeneous universes
of the Bianchi type II space in Ref. [13]. We are motivated
to study a scalar-tensor theory that also admits such inflat-
ing solutions in the early times. Indeed, we found that these
solutions are also solutions to a Brans-Dicke type scalar-
tensor theory in the Bianchi type II space. In addition, we
also derive the stability conditions of the anisotropic per-
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turbations in this paper. We prove that these anisotropically
inflating solutions admit unstable modes and will bring the
inflationary universe to an end after a brief period of time
of the order 1=ðb�Þ described by the unstable mode 
Hi ¼
ki exp½b�t�.

Note that the effective energy-momentum tensor t�� of
the inflating solution in the scalar-tensor theory (8) is
exactly the same as the effective energy-momentum tensor
of the model studied in Ref. [13]. Therefore, the energy
conditions of this model are still the same as the energy
conditions obeyed by the higher derivative model. The

stability behavior of the scalar-tensor theory is not, how-
ever, identical to the higher derivative model. The critical
role of the scalar field in the inflationary era therefore
deserves more attention.
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