sl = Gp] A S

2L
5%
-rr J wb

- BRI b M4 e AR R

An Asynchronous Decoupled Dynamic Grid Computation System

Foyod kg

hEFE TR R

fr & XN plJe o =2 A

Rt I ER T A TS §)

An Asynchronous Decoupled Dynamic Grid Computation System

I S AN T 8 Student : Shang-chien Shen

R T Advisor : Shyan-ming Yuan

A'Thesis
Submitted to Department ‘of Computer and Information Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer and Information Science
June 2005

Hsinchu, Taiwan, Republic of China

PEARA, e £

il

= TR (S8 £ 2 2 AR Y
et kT ST - R,

B 3 RN

TYPVE| S

i

BRSPS b S VI SR T (TR SRR B
LRVERT R 2 AR FEAEEE FT(Grid Computing) iyt =K %o f
(5™ b 53 [S8 R BRGSO s TR
FORIPRISE T R 7) s R I B 1 £) e iy
SRR R S RO - SR RS BT 7 | Ry FI e

(Total Cost of Ownership) “A&fji = HaVEL = 1] 5] -5 iR i
LAYl « B oyl PRI ETETR IR 5 o R T E RS R
CROST TSRS PO » P T R S R
[OTR PI HRGE I AT - 0 Bl (Single-point of
Failure)ts 4 HEHIRE - S RS 1o s HE IR (Scalability) - 9 RLS 2
B LV R -

Ry SRl S5 PRI AR e - R
PR RN S TIRE 4R 8 O A P B 2T M
fTIAPD) > IFVERTPE VRV R TR R % R
TP FUR =R R = B [y £ sy S e 3 =) VIR
(FLRLEEFJ 3 Ere R o

il

An Asynchronous Decoupled Dynamic Grid Computation System

Student - Shang-chien Shen Advisor - Dr. Shyan-ming Yuan

Department of Computer and Information Science
College of Electrical Engineering and Computer Science

National Chiao Tung University

Abstract

Complex jobs such as bio-genetic sequencing and protein modeling requires massive
quantity of calculation and executionrprocedures. Today, industry applies Grid
Computing technologies to delegate the intensive computational work to a farm of
cluster computers in order to “accelerate-computing speed. This category of grid
computing rely on sumptuous hardware: ‘or distinctive, specific software, thus
restraining grid computing to constricted domains such as high-speed scientific
computation. Despite the widespread acceptance of grid concept, high TCO(Total
Cost of Ownership) intimidated the general public or even SMEs(Small-Medium
Enterprises) from adopting grid technologies. Vast amount of potential computing
capacity still remains untapped. Users are continually searching for more computing
resources to assist solve problems. On top of these challenges, Grid itself suffers
certain technical imperfections. Commercial solutions are incapable of solving
single-point-of-failure issues, incapable of dynamically expanding the volume of grid
network and is certainly having a difficult time migrating grid infrastructure to a

universe of different electronic devices existing today.

v

This research proposes a low-cost, pure software-based, cross-platform grid
framework, eliminating the mishap of single-point of failure, allowing dynamic grid
expansion. The framework also provides utility tools and Application Programming
Interfaces(APIs) that simplifies the process of grid application development, thus
optimizes overall productivity. Developers must focus on design and development

rather than hunting for resources hidden within the enterprise.

Acknowledgement

P RIS ERY = PO [25 S P = S Dk
SRV JE P TR AP Hn e e PV RIRRSS R
AT o DISHEURAGEE A g ~ B SO T GUSREE PO SRR PGS
(ENTNRS (L 9H'@W%ﬁ@$mw¢ il 4 318153 e ks
B RIS B AP ~ B ~ BT S B S L A
B - SR F IR R RD SR e it wigEpns T R g
i BRI e 1 bR AT R

i AﬁPﬁJWﬁ%WW%WWN”#Hﬁ%?EEW’@%MW
RS OB P VR R ALY R By [Y
LI LR ET R E S

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENT VI
TABLE OF CONTENTS VII
LIST OF FIGURES X
LIST OF TABLES XII
LIST OF CODES XIII
1. INTRODUCTION 1
T PREFACE ...ttt 1
T2 MOTIVATION ..ottt 1
1.3. RESEARCH OBUJECTIVESccocooiiiiiiiie ettt 2
1.3.1 Low-Cost and Cross-PIatfOrm..........ccoeiiiiiiiiice e 3

1.3.2 High Performance ReSOUICe SNAriNGccocooiiiiiiiiiiie et 3

1.3.3 HIgh-SCalADITILYocueiiiiiiece et e 4

1.3.4 High-FIEXIDITITY ...t BB ettt bbbt 4

1.3.5 SIMPIE-TO-USE ...t ittt ettt be bbb e e e et sbenbesbeebe e e ennennens 4

1.4. RESEARCH CONTRIBUTIONo e i it 5
1.5. OUTLINE OF THE THESIS ... 0 et 6
1.6. SUMMARY ..o ki o immmirsmmsimie s bt ettt 7

2. BACKGROUND 8
2.1. CHAPTER INTRODUCTIONc.ccoitiiiiiiiiinettnee ettt 8
2.2. SUPER COMPUTER, PHYSICAL CLUSTER AND VIRTUAL GRID............c.cccceevrurnnnen. 9
2.3. GRID COMPUTING DEFINITIONcoccoiiiiiiieiiteete ettt 10
2.4. SYSTEMARCHITECTURES...........cooiiiiiiccteereeereeet et 12
2.4.1 Client-Server ArCNITECTUIEccviiiiiiiieee bbb 12

2.4.2 Peer-to-Peer ATCNITECIUNE. ..o e 13

2.4.3 Space-oriented ArChITECIUINE.o 14

2.5. COMMUNICATION MODELSc.ccooitiiiiiiniieinneeneecseeeseetee sttt 15
2.5.1 Synchronous TransmisSioN IMOGEIccoiiiiiiiiiiiiee e 15

2.5.2 Asynchronous TransmisSion IMOGEL.........cc.coiiiiiiiiiiieie e 16

2.6. RELATED WORKScoootiiiicntet ettt ettt sttt 17
2.7. SUMMARY ..ottt bttt sttt sttt st 18

3. SYSTEM ARCHITECTURE 19
UL OVERVIEW ...ttt ettt 19
3.2. MGRID PLATFORM......c.ooiiiiiiiiicte ettt 20

vii

K A I T Y=Y 22

3.2.2 ACHIVALION DAEMONocuiiiriiiiireii ettt 22
3.2.3 NUCIBUS SEIVICE ..ottt 24
3.2.4 DisStributed SPACE SEIVICEciviiviieieeeieieire st e sttt sre e s neere e e enaeneens 26
3.2.5 TraNSACLION SEIVICE.......coviriiiiireiie e 29
3.2.6 LEASING SEIVICE ..e.viiveiereeieieiesiesteste st eee st e et st e te e era e e esaesaestesteaneeteeseeneeseestesresneareaneeneennens 31
3.2.7 SECUNILY SEIVICE ..viiveiereeieieiestesteste st et e et st e tesre et e e es e seestesteaneeteeneeneeseestesteaneareaneeneennens 32
3.2.8 GC Service (Garbage-ColleCtOr SEIVICE)ccviiviveiiieie e se e e e e e eae e 32
3. 3.MGRIDENGINE ...ttt 33
K IO J0 = o 1 LN =T =1 USRS 34
3.3.2 Generic Task ProCesSOr (GTP)....uiiviiceiereriestiseseeteeseee e ste e sresreeeesee e sse e snesresneenaeneens 36
3.3.3 IVIM MONITOT ...ttt 38
3.3.4 MACKINE MONITON ...c.evciicrcce s 38
3.3.5 ENgine Command LISTENENcccoviieieiie s se ettt ne e e 38
3.4. MGRID TOOLKIT ..ottt 39
K I = g o 1 LTS 1Y o (o USRS 42
3.4.2Command ISSUEKcovrvrriinenr s BRI s 42
3.4.3 GUI DISPIAYET ..o st vy smes e e afhtis s e neenteseessessesnesseaseenseseessessessensessennennsens 43
3.5. SYSTEM NON-FUNCTIONAL ISSUES: SCALABILITY AND FLEXIBILITY 43
3.6. SUMMARY ... ek bt s e ettt ettt b et sesesens 44
PROGRAMMING INTERFACE DESIGN 45
QA FOREWORDcocooouitiiiieieieeieie b it saias s kbt b sttt b st ss st seses et sssensesns 45
4.2. MGRID.API PACKAGE............cooii ettt 46
4.3. MGRID.ENGINE PACKAGEocooiiieieee ettt 52
4.4. MGRID.TOOLKIT PACKAGE ..ottt 54
4.5. MGRID.EXAMPLES PACKAGEccooiiiiieieee ettt 56
4.6. RECOMMENDED MGRID APPLICATIONSocoiiiiiiiieeeieeee e 56
A.T7.SUMMARYoomiiiiiiiiiiiitee ettt b bbbttt b st s s s et ss e sesns 57
EXPERIMENT AND EVALUATION 58
5.1. LINPACKBENCHMARKcocoooitiiiiiiiieieieieseeieiete ettt 58
5.2. COMPARISON WITH MULTI-PROCESSOR MACHINES.cccccoooviniiirneeenns 59
5.2.1 Performance: Multiprocessor VS. MGccccviveiiriireiere e sieeeee s 59
5.2.2 Utilization: Multiprocessor VS. MGcccovviieireiieiiee s 60
5.2.3 Scalability: Multiprocessor VS. MGcccovviiviieieiee s 62
5.2.4 More on Performance: The number of Spaces Matters...........ccovveivererieverinsiesieereesere e 62
5.3. COMPARISON WITH CLUSTERSocoooiiiieiiiiceieieie et 63
5.3.1 Performance: CIUSEErS VS. MGIITcvovrimiinieirneeee s 63

5.3.2 Total Cost of Ownership: CIUSters vs. MGIidcccoovveieiiniiiie e
5.3.3 Single-Point-of-Failure Issue: CIUSters VS. MGIIdcccccvvviivieeieerecie s e
BUA.DISCUSSIONcooooiiiieeeeeee ettt ettt ss s s s

6. CONCLUSION, BUSINESS OPPORTUNITIES & FUTURE WORKS

6.1. CONCLUSION & BUSINESS OPPORTUNITIES..........cccoootniniiiiiiinnnnecieeeeeeee
6.2. FUTURE WORKScoocoiiiiiiicett ettt ettt

REFERENCES

APPENDIX: USER TUTORIAL

*» RECOMMENDED DEVELOPMENT FLOW ..ottt
* MGRID PLATFORM QUICK SETUPcocciiiiiiieicicctttr ettt
* MGRID ENGINE QUICK GUIDEc.ccoiiiiiiiecicccttrr ettt
* MGRID TOOLKIT QUICK GUIDEc.ccociiiiiniiiicieetcttr ettt
"RUNNING AN EXAMPLEcoooiiiiiiiiiiinnree ettt

X

69

69
70

72

75

LIST OF FIGURES

FIGURE 1-1: MGRID PLATFORM RUNS ON VARIOUS ELECTRONIC DEVICES WITH JAVA SUPPORT 5
FIGURE 2-1: A CLIENT-SERVER BASED GRID ARCHITECTURE[16].....cccoiivieiieiieieieieeieeie e 12
FIGURE 2-2: A PEER-TP-PEER BASED GRID ARCHITECTURE[L6] ...coovviiiiieiieiieiieieieie e 13
FIGURE 2-3: A SPCAE-ORIENTED GRID ARCHITECTUREcocuteiiiieiiiesiieniieteeteenseenaesseesseeseensesnsesnnesens 14

FIGURE 3-1: MACROSCOPIC VIEW OF MGRID FRAMEWORK. MGRID IS CONSISTED OF FOUR MAJOR

[=T0] 8 0] N TR 19
FIGURE 3-2: IN-DEPTH COMPONENT VIEW OF THE MGRID PLATFORM, INDICATED IN REDcccc....... 21
FIGURE 3-3: UNDERLYING CODE TRANSMISSION STEPS FOR MGRID PLATFORMuuvvvieeiiiiinireeeeeeeennne 23

FIGURE 3-4: How NUCLEUS SERVICE WORKS WITH THE OTHER SERVICES FROM MGRID PLATFORM. 25

FIGURE 3-5: ALL SERVICE COMPONENTS NEEDS TO REGISTER WITH THE NUCLEUS SERVICE UPON

LY N2 & RS RR 26
FIGURE 3-6: THE SPCAE-ORIENTED GRID ARCHITECTURE USED IN MGRID FRAMEWORK 27
FIGURE 3-7: A SPACE IS CONSISTED OF SEVERAL COMPUTING DEVICES......cceiitiiiiiiieeeeeeeeieiieeeeeeeeenns 28

FIGURE 3-8: TRANSACTION SERVICE SUPPORTS THE 2-PHASE COMMIT PROTOCOL: EITHER ALL OR

NONE! L.ttt ettt ettt et et et et et te bt e et e st esbe b e s s e be et e essessasbesbassebeeseeseessassessenseseeseeseessessensensenne 30
FIGURE 3-9: IN-DEPTH COMPONENT VIEW.OF THE MGRID ENGINE, INDICATED INREDcccveevreennen. 33
FIGURE 3-10: ENGINE KERNEL CONSTANTLY FETCH TASKS FROM SPACE.........cceeeitieerieeteeereeeerreeneans 35
FIGURE 3-11: IN-DEPTH COMPONENTVIEW OF THE MGRID TOOLKIT, INDICATED IN REDc.c........ 39

FIGURE 3-12: MGRID TOOLKIT AND ENGINE INITIAL LINKING STEPS - WHEN THE TOOLKIT RESIDES IN

.. 41
FIGURE 4-1: HIGH-LEVEL VIEW OF THE ENTIRE MGRID API LIBRARY, INDICATED IN REDccvvvveeeeene. 45
FIGURE 4-2: UML CLASS DIAGRAM OF MGRID.API. SIMPLICITY IS OUR PRIMARY OBJECTIVE............... 47

FIGURE 4-3: UML CLASS DIAGRAM OF CPUUSAGE UTILITY CLASS WITHIN MGRID.ENGINE PACKAGE .52

FIGURE 4-4: UML CLASS DIAGRAM OF MONITORING THREAD UTILITY CLASS WITHIN MGRID.TOOLKIT

PACKAGE ...t eeeee e e e e e e e e e e e e e et e e e e e e e e e eaaeeeeeateeeaetr e e e et e e eareeeeeaaeeeenaaeeeanreeaan 54
FIGURE 5-1: OUR TEST CASE. AX=B WHERE K=1000........cccottiiiiiiieieeieeiiieeeeeeeeeeeeeeeeeeeeeineeeeeesena 58
FIGURE 5-2: PERFORMANCE COMPARISON WITH MULTIPROCESSOR MACHINES, CHART VIEW 60

FIGURE 5-3: PERFORMANCE & TCO COMPARISON WITH CLUSTERSS, MGRID IS MUCH

(o101 B =1 =i = =Ton 1V =1 TR 65
FIGURE 5-4: OVERALL COMPARISON BETWEEN MGRID, MULTIPROCESSOR & GRIDS/CLUSTERS......... 67
FIGURE APPENDIX-1: RECOMMENDED MGRID FRAMEWORK DEVELOPMENT FLOWccoevvvvinireeeeeeeenne 75

STRAIGHT-FORWARDuvtiieeieieeeeteeeeeeeeeeeeteee e eeee e e e et e e eeaeeeeeeteeeeestseeeeeaeeeeeaeeeeentseeeeenneeeenrees 76
FIGURE APPENDIX-3: MGRID ENGINE GRAPHICAL USER INTERFACEuvuiiiieieeeeieeeieeeeeeeeeeieeeeeeeeean 77
FIGURE APPENDIX-4: MGRID TOOLKIT LOGIN SCREEN........ccctttiiutriieeeeeieeeieieeeeesessissseeeeesessnssesseessesnns 78

FIGURE APPENDIX-5: MGRID TOOLKIT MAIN INTERFACE. CLEAR VIEW OF A COMPLICATED GRID

X1

LIST OF TABLES

TABLE 1-1: COST OF UNUSED COMPUTATIONAL RESOURCES [1] ...ooviiiiiieiieiieiieiieieieie e 1
TABLE 2-1: COMPARISON OF SUPER COMPUTERS, CLUSTERS AND GRIDS [10][11][12][13]c.ccveneevee 9

TABLE 5-1: PERFORMANCE COMPARISON WITH COMMERCIAL MULTIPROCESSOR MACHINES (MFLOP/S)

TABLE 5-2: CPU RESOURCE WASTED (%)

TABLE 5-3: CPU RESOURCE UTILIZATION COMPARISON BETWEEN MULTIPROCESSOR PRODUCTS AND

Y (€] o ST 61
TABLE 5-4: MGRID SYSTEM SCALES EASILY (MFLOP/S)oouiiiiieieiesieeie ettt 62
TABLE 5-5: PERFORMANCE COMPARISON WITH COMMERCIAL CLUSTERSooeiiivieeeeeeeeeeeeeeeeeeeeeeenns 64

TABLE 5-6: TCO(TOTAL COST OF OWNERSHIP) COMPARISON OF MGRID WITH COMMERCIAL
CLUSTERS[28] ... e eutetiie ettt etetet ettt ett et et e st esbesbesseeseestessessessessesseaseassassassessessessessesssassassassensans 65

TABLE 5-7: SITUATION CONSIDERING THE NUMBER OF SPACES FAILED (MFLOP/S).....ccccvecveiereniennnnn. 66

TABLE 5-8: SUPPOSE WE COMBINE FOUR CPUS TOGETHER INTO A MGRID VIRTUAL GRID, WHAT DO WE

BT 2 ettt ettt b bt h et b e E bbbt e a e st et bbbt e st sttt e b s bt bt et ennenten 67

Xii

LIST OF CODES

LISTING 3-1: TRANSACTION ALGORITHM PSEUDO-CODEcetieueiiieeeeeeeeeieereeeeeeeeeeeeeeeesesessesseseeessennns 31
LISTING 3-2: PoLICY FILE THAT ALLOWS TOTAL ACCESS TO MGRID PLATFORM FROM ANYONE. 32
LISTING 3-3: ALLOWS TOTAL ACCESS EXCEPT FOR INCOMING CONNECTION FROM IP 192.168.11.2..32

LISTING 3-4: ANAIVE GTP IMPLEMENTATION PSEUDO-CODEuvitiiiiiiiiiiieieeeeeeeeeeeeeeeeeseseennesneessenns 36

LISTING 4-1: A SIMPLE EXAMPLE OF UTILIZING SPACEACCESSOR, TASKENTRY AND RESULTENTRY ..48

LISTING 4-2: EXAMPLE CLASS EXTENDING TASKENTRY ...coiiiiiiiiiiiieee ettt ettt e e eeeenaeeneeeseean 49

.. 50
LISTING 4-5: EXAMPLE CODE THAT SENDS A SHUTDOWN COMMAND TO A REMOTE ENGINE................. 51
LISTING 4-6: AN EXAMPLE CODE SEGMENT USING THE CPUUSAGE CLASScceoovviieieeeieeeiee e 53
LISTING 4-7: EXAMPLE CODE THAT USES MONITORINGTHREAD CLASS TO DISPLAY ALL ENGINES ON

NETWORKoetveutenteteeteeteestessestessesesseeseessessassessessessesseessassassassessassensesssaseassassessessensensensesssassessensenss 55

xiii

1. INTRODUCTION

1.1. PREFACE

Complex jobs such as bio-genetic sequencing and protein modeling requires massive
quantity of calculation and execution procedures. Today, industry applies Grid
Computing technologies to delegate the intensive computational work to a farm of
cluster computers in order to accelerate computing speed. This category of grid
computing rely on sumptuous hardware or distinctive, specific software, thus
restraining grid computing to constricted .domains such as high-speed scientific

computation.

1.2. MOTIVATION

Despite the widespread acceptance of grid concept, high TCO (Total Cost of
Ownership) intimidated the general public or even SMEs(Small-Medium Enterprises)
from adopting grid technologies. Vast amount of potential computing capacity still
remains untapped. Table 1-1[1] designates a research adapted from Internet
Infrastructure & Services by Bear, Stearns & Co., quantifying the total idle

computational resources, into a more tangible measurement. The result is astonishing.

$/processor $/used $/used processor |Cost of unused cycles
1 desktop $1,200 $300 $150 $1,050
1000 desktops |$1,200,000 $300,000 |$150,000 $1,050,000

Table 1-1: Cost of unused computational resources [1]

According to the research, an enterprise with one thousand computers wastes

minimum of $1.05 million worth of computational resources daily.

On top of things, Grid itself still suffers certain technical imperfections. Commercial
solutions such as the SUN Grid [2] are incapable of solving single-point-of-failure
issues, incapable of dynamically expanding the volume of grid network and is
certainly having a difficult time migrating grid infrastructure to a universe of different

electronic devices existing today.

In addition, the steep learning curve substantially increases the cost and risk of
developing a stable real-world grid application. We must keep in mind that grid users
are seldom experts in distributed technology, the significance of their innovation in
developing applications often exeéeds their, knowledge towards grids. Thus,
middleware providers need to provide exception-free, thread-safe and simple-to-use

tools and APIs for grid application developers.

This research proposes a low-cost;.. pure software-based, cross-platform grid
framework, named mGrid. mGrid eliminates the mishap of single-point of failure and
permits dynamic grid expansion. The framework also provides utility tools and
Application Programming Interfaces(APIs) that simplifies the process of grid
application development, thus optimizes overall productivity. Developers must focus
on design and development rather than hunting for resources hidden within the

enterprise.

1.3. RESEARCH OBJECTIVES

mGrid framework is intended to achieve six major objectives: low-cost,

cross-platform, high performance resource sharing, high-scalability, high-flexibility

and simple-to-use.

1.3.1 Low-Cost and Cross-Platform

Sumptuous hardware or distinctive, specific software is a key problem averting grid
technologies from being embraced by the general public. In order for grid solutions to

be extensively adopted, two issues needs to be taken into consideration.

First is the cost issue, the TCO of owning a grid must be sufficiently acceptable. The
second is the ability to connect various electronic devices existing today. In other
words, the cross-platform characteristic of a grid solution directly determines the

potential volume of the grid in the future.

1.3.2 High Performance Resource Sharing

Performance is undeniably the-keyimeasurement in evaluating a grid middleware.

People expect grids to be fast, reliablesand stable; anything less would be intolerable.
Performance in grid systems is effected by two sets of elements:

e The nature of the job submitted to the grid. Sequential computation is by nature

the worst case in grid performance, compared to complete parallel computations.

e Grid architecture design. Bad task scheduling algorithms could lead to potential

bottleneck of the whole system, while naive control-message routing strategy

could quickly overload the grid environment.

From the middleware provider’s point of view, the first element is beyond our scope.

Nevertheless, the second element is the responsibility of a good grid middleware.

1.3.3 High-Scalability

The performance growth of a grid is direct proportional to how fast it can scale, e.g.
the more computers that is currently within/joining the grid, the faster it processes
tasks. Scalability can be classified into two categories: static and dynamic. Majority of
commercial grids supports only static scaling, the grid size is fixed to a predefined
cluster of computers, new computers joining the grid will require manual modification
of attributes in the central task dispatching server. Dynamic scaling does not require
manual interference, new computers notifies the grid of its existence automatically.

Grid systems should be able to scale dynamically and scale high.

1.3.4 High-Flexibility

A grid framework should preserve resilience for application developers. Grid
computing is an approach that’lets you-organize widespread, diverse collections of
resources into a more uniform,”manageable, visual whole. The resources we are
referring here does not narrowly limit to CPU or storage, it might refer to anything
with digital representation, e.g. Multimedia files, libraries, data, applications...etc. A
good grid middleware should be as flexible as possible, it should not confine the
innovation of grid application programmers within the scope of a badly designed

middleware API.

In other words, creativity should not be limited by the framework.

1.3.5 Simple-to-Use

Grid systems involves complicated low-level network communications and protocol

design. A grid middleware has the responsibility to hide these underlying complexities.

A set of simple-to-use Application Programmer Interfaces(APIs) should be provided
for application designers. Furthermore, cumbersome grid administrative jobs should

be made simple by utility tools, provided with the middleware.

1.4. RESEARCH CONTRIBUTION

To achieve the objectives listed in section 1.3, we encountered various perplexities
while designing mGrid. This thesis discusses the issues that were encountered and our
corresponding solutions. The major contributions of this research can thus be
categorized into seven parts.

e We crafted a low-cost, pure software-based high performance grid solution that

works on various devices with j

I./
\

<) 3 ‘ -

- — r 1T &

Java £ :

FPersonal computers

-

Settop Boxes

port. Figure 1-1 below depicts this

cross-platform characteristi

{{E~N

@

Carmmunicstors Fager=s

High-=nd
Servers

FDAs

{1

Cellular phones

miGrid Toolkit

miGrid Toolkit
Standard Edition API
(o7 'Micro Edition API

mGrid Engine
CLDC + MIDF

Memory: = + 3Z2MEB 3ZMB = = 32Kh

Figure 1-1: mGrid platform runs on various electronic devices with Java support

e We introduced a simple-to-use grid programming model.

e We introduced a set of utility tools to facilitate the administration of mGrid.

e We discussed the scalability issues in grid middleware, and implemented mGrid
with a decentralized space-oriented architecture that supports dynamic grid
expansion, and effectively solved the single-point-of-failure problem.

e We discussed the flexibility issues of grid middleware and proposed a
considerably general platform for developers to write a variety of grid
applications.

o We experimented mGrid performance with a modified version of the Linpack
benchmark[3], a standard benchmarking program for commercial super
computers.

e We analyzed the pros and cons'of various grid.design decisions.

1.5. OUTLINE OF THE THESIS

This dissertation is composed of six chapters: Chapter 1, this one, is introductory.

In Chapter 2, we introduce the background of grid computing methodologies and

bring forth major commercial solutions for discussion.

In Chapter 3, we confer the detail implementations of mGrid framework. This section
proposes our peculiar distributed algorithms and system architectures that render life

to mGrid, pro and con of various design decisions is also debated here.

In Chapter 4, we switch to the developers’ point of view by introducing the mGrid
API. We can appreciate the ease in both writing grid applications and administrating
grid environments using tools and APIs supplied with mGrid. This chapter also serves

as a tutorial for the developers to operate the mGrid framework. Last but not least,

some innovative example applications of mGrid framework is also presented here.

In Chapter 5, we put mGrid performance to the test using a modified version of
Linpack benchmark[3]. Various experiments will be held and the performance of
mGrid framework will be thoroughly quantified. Finally, in Chapter 6, we bring forth
conclusion and a brief discussion on future works along with potential business

opportunities.

1.6. SUMMARY

In this chapter we briefly described what grid computing is, what it can do, and the
problems that exists with industrial grid solutions today. Grids are expensive thus
intimidated the general public or SMEs(Small-Medium Enterprises) from adopting
grid technologies. Furthermore, commercials grids still suffer from technical
imperfections. Then we pointed out the-objectives of this thesis and introduced our
proposed grid system, named mGrid framework. In the end we categorized the major

contributions of this research into multiple points.

2. BACKGROUND

2.1. CHAPTER INTRODUCTION

This chapter gives you the background of our research. To begin with, in section 2.2,
we bring forth an interesting comparison of three popular models of super computing,
namely super computers, physical clusters and virtual grids. A survey on their price,
capability, size and such is revealed here. This survey serve as one of our basis in
explaining why grid concept is gradually replacing traditional super computers or

large mainframe clusters.

Next, we introduce the definition of grid computing according to TurboWrox
Corporation[9] in section 2.3; What is a grid? How can it be applied? What

applications are suitable to be submitted to a grid for processing? What are not?

It is known that commercial grid solutions are implemented using dissimilar
architectures and communication models, which possesses different characteristics.
Sections 2.4 and 2.5 discusses several approaches in implementing a grid, the pros
and cons, and explain why we choose a particular model. Finally we introduce other

related works in section 2.6.

Note that each survey we made has a certain level of impact on how we implement
the mGrid Framework. We try to present to you concrete evidence referenced from

other academic researches and industrial studies to justify our path of choice.

2.2. SUPER COMPUTER, PHYSICAL CLUSTER AND VIRTUAL GRID

Grid computing is not the only option in efficiently solving complicated scientific

calculations, there are other options existing. These options includes:

e Super Computers. Large and expensive singular computing hardware, normally

used in areas such as weather condition modeling and nuclear simulation.

Famous examples include NEC Earth simulator[10] and IBM ASCI White[11].

e Physical Clusters. Supercomputing devices consists of a large number of

computers. Each of the computing node is interconnected using a LAN. Physical

clusters usually resides within a single organization and is rarely open to the

public. Jobs are dispatched to the back-end cluster for computation.

e Virtual Grids. PCs’ computing capacity are donated freely to join virtual grids.

Each PC is connected acrdss ,therinterfiet using software programs. Famous

examples include SETI@Home[12], Folding@Home[13] and GIMPS[14]. A

virtual grid usually span actess several-geographical locations.

These three options possesses different characteristics. Entry barriers in adopting each

of the mentioned technology is also different. Table 2-1 presents a comparison of

these three choices, using commercial products as example:

Computing Option Name Specification Cost (million USD)
Super Computer IBM ASCI White 8192 RS/6000 processors $110
6TB memory
Super Computer NEC Earth Sim 5104 vector processors $350
16GB memory
Physical Cluster 100,000 Intel P4 1G processors |$213

256MB memory

Virtual Grid

100,000 Intel P4 1G
256MB memory

Absorbed by PC owners

Table 2-1: Comparison of super computers, clusters and grids [10][11][12][13]

According to a market research report by the Insight Research Corporation in 2004,
cost is the primary decisive factor for the adoption of super computing devices[15].
This means, the higher the TCO(Total Cost of Ownership) for an enterprise to obtain a
grid, the lower chance that they will actually adopt the technology. Table 2-1 shows
that virtual grids proliferated an undeniable attraction due to its low-cost. Therefore,
one of our major research objective is in creating a low-cost grid framework that

provide all the necessary functions of a grid.

mGrid is a pure java-based grid framework. The java language provided
cross-platform abilities so that an enterprise can interconnect all of their internal
computers using mGrid Framework, regardless of their operating systems. This
thoroughly utilizes all the idle resources in an enterprise without having to purchase

any new hardware. TCO is thus lowered to an-dcceptable range with mGrid.

2.3. GRID COMPUTING DEFINITION

IDC and Insight Research Corporation predicts that worldwide grid spending will
grow from $714.9 million in 2005 to approximately $19.2 billion in 2010[15]. With
all the hype in the future of grid computing, it is surprising that there is still a lack of
approval on what it is. TurboWrox Corp’s definition is a pragmatic one[9]. It is a
computing model that:
o Aggregate a set of diverse, widespread, distributed CPU resources into an
organized virtual supercomputer.
e Aggregate a set of diverse, widespread, distributed Memory resources into an
organized virtual system memory.
o Aggregate a set of diverse, widespread, distributed Data resources into an

organized virtual data warehouse.

10

e Provide a unified visual view of the set of disperse resources mentioned above.
e Provide simple management, administration and utilization of distributed

resources spanning across the network.

TurboWrox’s grid definition left out one important item:

e Grid is flexible.

mGrid sees grid computing not only as a mean to aggregate computing resources, but
also as a platform for innovative grid applications. It needs to be extremely flexible
for developers to write various creative applications other than computation-based

programs. See chapter 4 for more creative grid applications written with mGrid.

So what kind of application is suitable for a grid?

Our answer is that parallel programs rare more .applicable to grids. By parallel
programs we refer to a set of procedures that do not interfere with one another. Each
step in the program is independent. An-example-of such system is a distributed
searching program that allows searching onindividual grid nodes. Parallelism ignite

the full potential of grids, see chapter 5 for the quantification of our statement here.

In summary, mGrid matches all five of TurboWrox’s grid definitions, and we added

an extra definition of our own, by allowing more flexibility in mGrid Framework.

Now that we understand the basic background of grid computing, what it is, what it
can do, we now dive into more advanced discussions: underlying technical variations
of grids. We begin with higher-level architectural options, then lower-level

communication model options.

11

2.4. SYSTEM ARCHITECTURES

Three possible types of grid system architectures are Client-Server, Peer-to-Peer and
Space-oriented. We discuss each individual approaches and analyze their advantages

and disadvantages.

2.4.1 Client-Server Architecture

Client-Server model is simple and common in the world of network. Certainly, it can
be applied to grid computing as well. In the Client-Server model, a grid user submits
jobs to a centralized job dispatcher, this dispatcher then “dispatch” jobs to a
appropriate node within the grid for processing, according to the current load of each

computing node. Figure 2-1 depicts such modél:

i Job Processors
Submit jobs H o

Grid User i Job Dispatcher

) jebs

H
H H
H Grid Environment ;
P R R R AR AR EREI IR IR IR IIAAR AR AR ARARRRRASS

Figure 2-1: a Client-Server based grid architecture[16]

The major advantage of Client-Server model is in its easy management nature. The
central dispatcher also serves as the management node, thus the administration of

each computing node can be conducted by directly linking to the dispatcher server.

Its disadvantages includes the Single-point-of-Failure(SPF), and low-scalability. SPF

refers to the situation when the central dispatcher server crashes, the entire back-end

12

grid is immediately rendered useless. As for the second disadvantage, low-scalability
is obvious when a new compute node joins the grid, configuration needs to be
manually made in the dispatcher server. This is an extremely tedious task when you

need to substantially expand your grid size.

2.4.2 Peer-to-Peer Architecture

The Peer-to-Peer grid model works in a simple manner: a grid user simply pass the
jobs to its immediate neighbors for processing. Sometimes your task will be flooded
across the whole p2p network depending on the grid algorithm the system applies.

Figure 2-2 illustrates a p2p grid architecture:

Grid User

Grid Environment

Figure 2-2: a Peer-to-Peer based grid architecture[16]

The advantage of a peer-to-peer architecture is that it does not have a centralized
control, thus the SPF problem mentioned in section 2.4.1 is eliminated. Furthermore,

new nodes can be added to an existing network without much effort.

The disadvantage is in its state consistency. What happens when a node with a job on
hand suddenly crashes? How would we know which job is lost? Is it really lost or is it

still under processing somewhere deep in your p2p network? The second downside is

13

that the entire network state needs to be maintained by the grid user itself, the grid
user needs to know the condition of each of its neighbor node in order to pass jobs to
the right neighbors for processing. This enormously increases the overall workload of

the grid user.

2.4.3 Space-oriented Architecture

Space-oriented concept originates from the Linda programming model from Yale
University[17]. It basically works as follows: a grid user submits jobs to a storage
space on the network, each computing node then fetch jobs randomly from the space
to process. After the processing completes, the results were passed back into the space,
the grid user then collects and combines, the results from the space. Section 3.2.4

explains the space concept and Qur implqrpentatioﬁ in more detail. Figure 2-1 depicts
=] s

1

a simple space-oriented architecture:

S
H

H
H

Grid User

H
H

Grid Environment }

R —————.

K
A B R R A R A A A AR A A A AR AR AR RAAIIR AR IRERIRaaRARRaRRRRRRaa

Figure 2-3: a Space-oriented grid architecture

The space-oriented architecture seemed to be a panacea for grid computing. It has the

advantage of both Client-Server and Peer-to-Peer architectures, yet it solved most of

14

the problems occurring in both models[17]. First, the space can be distributed across
the network thus the SPF problem in 2.4.1 is settled. Secondly, all the compute node
needs to register itself to the space upon start-up, thus the space manages and

monitors the entire grid for the user.

One important characteristic of space-oriented grids is that each compute node
spontaneously fetch jobs FROM the space for processing, this differs from both the
Client-Server and Peer-to-Peer models in that these two models push the jobs TO the
compute nodes for process. This implies one more advantage: each node in a

space-oriented architecture is allowed to leave the network at will.

Due to the advantages the space-oriented architecture has over the other two models,

mGrid chooses the space-oriented modelas the'underlying system architecture.

Next, we discuss the lower-level communication protocol options.

2.5. COMMUNICATION MODELS

Grid nodes communicate with one another by means of communication protocol.
Since different protocols bring about different effects on a grid system, we need to
understand the features of each mechanism and decide which is most appropriate for

grid computing systems.

Two models are introduced in this section, namely Synchronous Transmission and

Asynchronous Transmission.

2.5.1 Synchronous Transmission Model

Synchronous transmission refers to the fact that when a client requests a remote

service call, the execution process is temporarily suspended until a reply is received

15

from the remote service. An implementation of such concept is the RPC(Remote
Procedure Call) technology. Most commercial products such as SUN Grid[2] and

IBM IntraGrid[18] are based on synchronous transmission mode.

2.5.2 Asynchronous Transmission Model

Asynchronous transmission, on the other hand, allows the service requestors to
continue running after a request is sent, without blocking the entire program waiting
for a reply. Examples of asynchronous transmission are MOMs(Message-Oriented

Middleware) such as IMS(Java Messaging service)[19].

Synchronous and asynchronous transmission have advantages and disadvantages. The
latter tends to be more robust to failures, while the former tends to be easier to

develop with.

So which transmission model 1s suitable-for-giid computing? Reference [19] uses a
simple M/M/1 queuing model to prove.that for a piece of program that is consisted
mainly of parallel codes, the overall performance of the asynchronous model is better
than the synchronous model. Furthermore, grid computing applications by nature are
supposed to be parallel, submitting sequential programs to a grid is essentially
senseless. Therefore we expect the majority of mGrid users will utilize our framework
in solving parallel problems. With these facts in mind, we decided to use the

asynchronous transmission model for mGrid Framework.

Note that many commercial products are synchronous-based, thus we expect to have a
better start than these grid solutions by choosing the correct transmission mode in

advance.

16

2.6. RELATED WORKS

Many international research institutes and companies have collaborated in developing
various projects associated with grid computing. These projects can be horizontally

classified into specific-grids, general-grids and grid middlewares.

SETI@Home[12], Folding@Home[13] & GIMPS[14] are examples of specific-grids,
meaning each of them solves only very specific problems. SETI@Home allows you to
download a software that turns your computer into a node within SETI’s grid, this
software analyzes radio telescope data using the CPU resources of your PC and
transmits results back to SETI central server. Folding@Home uses a similar
architecture to studies protein folding, misfolding, aggregation, and related diseases.

GIMPS works in the same fashion only it conducts a different job.

SUN Grid[2], IBM Intra Grid{18].and ALI€CE[20]-are examples of general-grids.
These grid solutions do not restrictithe-logic-of the applications running on-top of
them. SUN Grid software typically-bundles with- SUN blade servers and allows jobs
to be submitted to it. IBM Intra Grid provides an experimental worldwide-scale grid
system accessible to all IBM employees. ALICE is a java-based grid solution
developed by National University of Singapore, applications such as protein modeling

is written and tested with this framework.

Finally, Globus toolkit[21], Legion[22], JXTA[23] and GridSim[24] are considered
grid middlewares. Globus is an open system that provides a set of basic services.
Users can build higher-level services using lower-level services. Globus is largely
platform dependent and requires UNIX to run. Furthermore, its complicated
infrastructure setup, application development and deployment created a high learning

curve both in mastering and using Globus. Legion is a toolkit that treats all software

17

and hardware in the grid as objects, and provide remote method calls between these
objects. JXTA is a set of protocols developed by SUN Microsystems to ease the
development of p2p application, different grid systems can be built by using these
protocols. Last but not least, GridSim offers a complete solution in the simulation of

grid networks.

Most of the above researches are built on-top of the Client-Server architecture, and
utilizes Synchronous transmission as underlying protocol. From sections 2.4 & 2.5 we

pointed out that some of these technical decisions are probably not the best ones.

2.7. SUMMARY

This concludes our research background: We understand that there are multiple ways
to super computing, and virtual gridscoffer ‘a cost-effect and attractive option.
Companies that cannot afford high TCO.in purchasing grid solutions should consider

about adopting grids that are purely software-based; such as mGrid.

Virtual grids can be implemented using various design options, such as determining
the system architecture and communication models. In sections 2.4 & 2.5 we used
concrete research results that proves the following:

e Space-oriented Architecture is a good choice for grids

e For parallel computing, asynchronous transmission model is more appropriate.

Finally we give an introduction on other related works of grids. The surveys and
observations done in this chapter has influential impact in our design of mGrid
Framework. In the next chapter we will walk you through our underlying

implementation design in a thorough manner.

18

3. SYSTEM ARCHITECTURE

3.1. OVERVIEW

The proposed solution in this thesis, named mGrid framework, is a low-cost, pure
java-based, high-performance grid solution. mGrid attempts to migrate grid
computing concept onto mobile devices(e.g. Personal Digital Assistants, Cellular
phones) and onto large computational equipments(e.g. PCs, mainframes), which has
minimum network connectivity support. Figure 3-1 depicts the macroscopic view of

the mGrid framework:

4 - x mGrid Framework

Devices

mGrid Users

Figure 3-1: Macroscopic view of mGrid framework. mGrid is consisted of four major portions

mGrid framework is consisted of four major portions:

19

e mGrid Platform
e mGrid Engine
e mGrid Toolkit

e mQGrid API

mGrid Engines can be installed on devices with java support. The J2SE[4] and
J2EE[4] version is fully operational, while the J2ME[4] version currently has minimal
functions. Engines deployed on devices automatically constructs a mGrid network

environment that support transaction, natural load-balancing and security.

Application developers then use the mGrid API to compose various grid applications
that utilizes the mGrid environment formed by the engines. Note that at least a single
engine must be started for a mGrid network to be successfully built. We also provide a
set of useful tools in the mGrid toolKit to allow easy'monitoring and administrating of

mGrid networks.

In this chapter we will focus on the implementation methodologies and distributed
algorithms of three items: mGrid Platform, mGrid Engine and mGrid Toolkit. In

chapter 4 we will discuss the mGrid API in depth.

We will emphasize on the J2SE and J2EE version of mGrid framework.

3.2. mGrid PLATFORM

Before we talk about mGrid Engine and mGrid Toolkit, we need to have some basic
understanding of the platform itself. Note that both the engine and toolkit rely on the
grid infrastructure constructed by the software components within mGrid platform.
mGrid platform is an augmented version of SUN’s JINI network technology[8], by

augmented version we mean that it provides additional features such as including

20

more specialized service components dedicated to grid computing.

Figure 3-2 shows the in-depth components that constitute the mGrid platform:

mGrid Toolki
mGrid Standard Edition API

mGrid Engine Command Mag

Memory: = + 3Z2MB

Area of dlsm_lulm

—HabLA

Figure 3-2: In-depth compc .l WGrid Platform, indicated in red

mGrid platform adheres to the S‘ .' ervice-Of nted Architecture) concept[5], each
component can exist as a remote service across the internet. For instance, we can start
Nucleus service, Transaction service and Security service on computers A , B and C
lying on the network. These services uses mGrid’s underlying protocol to search,
discover and communicate with one another, as if they were running on the same
machine. Protocol details will be described in section 3.2.3. SOA allows the stress of
executing services to be evenly-distributed across the network, so that no single

computer will be overloaded[5].

Now we introduce the individual components within mGrid platform. We begin with

two lower-level components first: HTTP Server and Activation Daemon.

21

3.2.1 HTTP Server

mGrid platform requires this facility because for many vital operations to realize,
code needs to be dynamically downloaded from some remote service running
somewhere on your network. The actual transmission of java code take place via the
HTTP protocol. The implementation of our server is minimal, it only supports the

GET operation, which is sufficient for code downloading.

In general, any code that may need to be downloaded across the network has to be

accessible from a HTTP server instance.

3.2.2 Activation Daemon

An activation daemon[6] is a piece of Software.which allows services that is invoked
only rarely to essentially “hibernate’,-and be-automatically awakened when they are
needed. Every service component will need to register itself with an activation
daemon instance before running. Activation daemon has two major responsibilities:
e Service hibernation & de-hibernation: Manage the transition between active and
inactive states for each service component.
e Service self-recovery: Restart a particular service after it crashes, restoring it to

its previous state before the crash.

We make use of the activation daemon software that comes with J2SDK 5.0[4]. At
minimal, you will need to run an instance of activation daemon on each host that runs
services. The daemon creates log files that contains information of the activable

service which has registered itself to the daemon. State transition and crash recovery

22

relies on the information saved within those log files.

The reason we apply activation daemons not only is because it is able to recover
services after a crash, but also economizes the use of system resources by sending
currently unused service components into “hibernate” mode. The down-side is that it
adds an extra layer below each service component, efficiency is therefore decreased
during a service’s initial start-up time by approximately 7.5%, but proposed no further
decreases in subsequent service calls. We decided that this is a minor trade-off

compared to the valuable capabilities it adds to our platform.

In summary, the mGrid platform requires both HTTP server and activation daemon
for services to pass necessary java codes across the network and to be self-recovery.

This concept is exhibited in Figure 3-3:"

Saervice Provider

Service Requestor

(1) iz} (33 Service Component

Downloaded Code * *

HE Activation Daemon

HTTP Server

STEP 1: Service component registers to the activation dasmaon
STEP 2: Necessary code downloaded from service via HTTP protocol
STEF 3: Downloaded code is utilized to communicate back to the service

Figure 3-3: Underlying code transmission steps for mGrid platform

Now that we understood how the lower-level code passing operates, we can start to
probe into the upper-level service components provided by mGrid platform, namely

Nucleus service, Transaction service, Leasing service, Security service, GC(Garbage

23

Collector) service and Distributed Space service. Note that these services relies
heavily upon the schemes described in sections 3.2.1 and 3.2.2.

3.2.3 Nucleus Service

As the name implies, this service is the central core among the other services listed in
the mGrid platform. A good analogy would be our solar system: The Nucleus service
will be the sun, while the other services within mGrid platform are the planets
constantly revolving around it, all using the functionalities the Nucleus service

provides.

You can think of Nucleus service as a kind of naming/directory service[7], it keeps
track of all other mGrid services currently running on the network. However, it differs
from traditional naming/directory services, which only provides simple string-object
mapping, the Nucleus service supports java type search, i.e. You can search for a

particular service using the intetface it implements orany of its super-interfaces.

The Nucleus service co-operates with ‘other active services using the following steps:

1. A new mGrid platform service component searches for Nucleus services upon
start-up, using I[P multicast(in LAN) or unicast(beyond LAN).

2. The service component publishes the attributes and proxy code of the service it
provides to the Nucleus service.

3. Nucleus service saves the attributes and proxy code.

4. A service user searches for a Nucleus service upon start-up, using IP multicast(in
LAN) or unicast(beyond LAN).

5. The service user downloads the necessary proxy code it requires from the first
Nucleus service it found.

6. The service user communicates with the service component in a p2p manner

using the proxy code.

24

The above steps are illustrated in Figure 3-4:

Service Proxy

- OPro:f code
-

| —
Ee——= service attributes
. [——————1
(1) search for Nucleus services

Service Component Fon, 12) publish service (3) stores the service

4

Nucleus service A&

(&) p2p communication Ewlth service

i, (4] locates the first Mucleus service it finds
Q=
Proxy Code | (5] download necessary proxy code using
the scheme in sections 3.2.1 & 3.2.2

Nucleus service B

Service user

Figure 3-4: How Nucleus service works with the other services from mGrid platform

Note that steps 2 and 5 in Figure 3-4 utilizes the underlying dynamic code download

scheme introduced in section 3.2.1.

Each Nucleus is also fault-tolerant, two mechanisms rﬁakes this possible:

e Each Nucleus service relies ‘on the activation:daemon described in section 3.2.2
to recover its state after a crash or restart. So you must run an activation daemon
on each machine that runs a Nucleus.

e You have the option of running multiple instances of Nucleus service on your
network. This redundancy allows unexpected failures of some Nucleus. It means
as long as a single Nucleus lives, the mGrid platform can perform its duties as if
no failure occurred, since each service user requires only a minimum of one
Nucleus for proxy code downloading (see step 4 in Figure 3-4). This can be

summarized into a simple mathematical formula:

(Max num of Nucleus failure tolerated) = (Total num of Nucleus started) — 1 (1)

25

Before discussing other service components in mGrid platform, we need to keep in
mind that all the mGrid platform services needs to register itself to the Nucleus
service upon start-up. Nucleus service keeps track of all mGrid service components
currently running, and is capable of making them visible to service users, even if users

have no previous knowledge of where the service components are on the network.

This interaction between service components, service users and Nucleus is illustrated

once more using an UML sequence diagram in Figure 3-5:

t]l“':l LETVICE 3
£
!) -
7 | search for Mucleus wang mulicast |
- " : I] fl
Dastnbuted Space Service | TS T |
Transaction Service : }:
LN SETVICE search for Nucleus wsing multicast
SECUNTY Service
(0 Service 1
I\
I U SeTVICE prasy code

communicate with service COMPONERT USLAE proxy

|
|
|
|
|
|
| e !
I lockup a particular service I
|
|
|
|
|
|
|
|

Figure 3-5: All service components needs to register with the Nucleus service upon start

3.2.4 Distributed Space Service

The Distributed Space Service serves as the job exchanging location for our grid
system, all jobs are transmitted to and taken from a space. From this point on we shall

refer the distributed space service as simply “space” for convenience.

The concept of the space-oriented grid has been introduced in section 2.4.3, let’s add

it with more detailed explanation here. Figure 3-6 shows the space-oriented grid

concept:

26

Feich jobs

mGrid Users

u :

E

xmﬁrld Environment |

H
B L L T T LR PP R T T R R P I P L RN P L e

Figure 3-6: The Space-oriented grid architecture used in mGrid Framework

The space works in a very simple magﬁef. 'Sﬁlﬂposg we have multiple users U, a single

space S, and multiple Engines E = !"! AR

1. U submits a series of paraliél jobsr toS

2. E fetch the jobs randomly fromS.

L& 1Lk

3. E process the jobs.
4. E put the results back to S.

5. U collects the results from the S for final presentation.

Note that each space need to register itself to the Nucleus, refer to Figures 3-4 & 3-5.
After a space has successfully registered itself to a Nucleus, it is then visible to both
mGrid users and mGrid Engines for discovery and use. This space discovery process
will be explained in more detail in section 3.3 later on. Right now we only need to

know that a space acts as the central job exchanging ground for our grid Framework.

So what is a space exactly?

The simple answer is that a space is a piece of temporary memory residing on the

27

network that is consisted of multiple computers. Computers participating in the same

space can share each other’s memory and storage space. Figure 3-7 depicts a space:

Space: Distributed Shared Memory

Distributed Space : Distributed Space Distributed Space

Service Service Service

1. unicast: search _3. multicast search_

2. mutual: memory sharing i 4. mutual memory ;haljﬁg

Ry Ry hy

Geographic Location A Geographic Location B

Figure 3-7: a “Space” is consisted of several computing devices

Figure 3-7 illustrates a single sp‘éce cohsisted ‘bf three personal computers X,Y and Z.
computer X sits at geographic location A, while computers Y and Z sits at geographic
location B. By initiating a distributed space service on each of the computers, we
combine them into a single logical space entity that is consistent and shares
memory/storage resources, regardless of their actual geographical whereabouts. In
other words, a space service is a virtualization middleware which connects computer
memories across the network. Space service uses multicast to search for other space
services in the same LAN, while unicast is used if the other space services are located

outside of the LAN.

A space only supports three simple operations: 1. Fetch 2. Put and 3. Read. These
three very basic operations proves to be extremely useful and sufficient. Suppose we

have a Genetic Algorithm computation on hand, each step can be first disassembled

28

into tasks. Each task is then Put into the space by the client. The engines Fetch these
tasks from space and does the processing, then it Put the results back into the space.

Finally, the client Read the results in space and reassemble them for presentation.

A space utilizes the other services, namely Transaction service, Leasing service,
Security service and GC(Garbage-Collector) service, to provide add-on functionalities
such as safe-transaction, space garbage-cleaning, space access-authorization and
leasing. These final four mGrid platform service components will be introduced in

sections 3.2.5, 3.2.6, 3.2.7 and 3.2.8 below.

3.2.5 Transaction Service

A transaction service needs to register with the Nucleus before being used by other
service components, see section 3.2.3. Tramsaction service provide the ACID
properties to data manipulations. In simple words, it'allows a series of operations to
complete altogether, if a single operation in the whole series fail, the transaction fails,

and everything gets rolled-back to its initial state.

Our implementation of Transaction service supports the 2-phase commit protocol.
Note that the distributed space service utilizes the transaction service to insure data
integrity, the space is required to discover the transaction service through the Nucleus

(consult section 3.2.3) before it can be transaction-enabled.

Figure 3-8 illustrates the transaction steps in mGrid platform using UML sequence
diagram. The interaction between mGrid Client, the Distributed space service,
Transaction service and mGrid Engines is the center focus, we will not show

transaction-unrelated steps such as the discovery of services.

29

Y

"
%

read resulis R, B2 T

!

d I pul task T | register T1 with imansaction service | |
- L »l | I
lh_h [1.72 | pul fask T2 | register T2 with iransaction service | processing |
are in the same | N N task |

. » »
ramsaction . P '
i L Fetch Task T1 for processing i
I~ e 1
1 I Task TL) I
| : - - d » |
| TCgISIT Engime A w ith Iranssction service |
| | ___________ o \ |
d Taole T fmye S
| e Fetch J-.1.‘\-|'5 12 for processing vy
I I Task T2 Yy
| | } ;L
| repister Enging B with ransaction sesvice meadyT
| |—————————— = —_ »
: : ' Mot
i | i
| |
| : A
| G fmmmm——
| | | cormmit |
| | ™ e
I | | Teady? |
| ! ' L +
| | | YES! |
| | e e a | Ay |
| | | commit
| | | |
| | e resnlt B
| I
| |
I [
I T

|

T 1
send resull B2 |
|

|

i
el

Figure 3-8: Transaction service supports the 2-phase commit protocol: Either all or none!

Let us explain Figure 3-8 step by step; Assume tasks T1 and T2 belong to the same
transaction, this means T1 and T2 must both complete successfully or neither will.
Transaction service keeps this principal in mind and constantly polls Engines A and B
using the 2-phase commit protocol. If both Engines A and B succeed in processing T1
and T2 consecutively, then the transaction service sends the commit message to both
engines, finishing up the transaction. If either engine fail to finish processing a task,
then the transaction is considered a failure and roll-back procedure is taken. The

system returns to its initial state and re-processes T1 and T2 again.

We use a simple pseudo-code in the next page to demonstrate the transaction

algorithm described above:

30

T1, T2 : belong to the same transaction;

Transacted processing of tasks(T1, T2)
{
Step1. T1, T2 are put into the space.
Step2. T1, T2 are registered to the Transaction service to be managed.
Step3. Engine A and Engine B fetch T1 and T2 for processing.

Step4. Engine A and Engine B are registered to the transaction service.
While(Engine A || Engine B has not completed processing)

{

Step5. Transaction service asks Engines A,B if the processing has completed?

Step6. commit the transaction and the client read the results from space.

Listing 3-1: Transaction algorithm pseudo-code

The Space service needs to discover the Transaction service before using it, the

discovery procedure is described in Figures 3-4 and 3-5, section 3.2.3.

3.2.6 Leasing Service

Leasing Service needs to register itself before being used. All objects sent to a space
has a lease time attribute, indicating its TTL(Time-To-Live) within a space. A Leasing
service manages a hashtable of object-TTL pair, and constantly removes the expired
objects from a space. This allows the unused objects to be recycled and memory

resources could be released, thus mitigates the loading of the entire grid.

However, lease time have the option to be renewed to prevent it from being discarded

by the Leasing service.

31

3.2.7 Security Service

mGrid platform supports policy-based security model. The Security service reads a
policy file before the mGrid platform starts, this policy file include all the policies that

has to be obeyed. The following are two simple examples of a policy file:

grant {

permission java.security.AllPermission "",

5

Listing 3-2: Policy File that allows total access to mGrid platform from anyone.

grant {

permission java.security.AllPermission "", "";

permission java.net.SocketPermission “192.168.11.2", "connect, refuse";
k

Listing 3-3: Allows total access except for inceming connection from IP 192.168.11.2

Security service provides a static “method-of ‘authentication and authorization for
m@Grid platform. Currently the platform has been initially tested using the total access

policy.

3.2.8 GC Service (Garbage-Collector Service)

GC service is short for Garbage-collector service. Like all the other service
components in mGrid platform, it needs to register itself to the Nucleus before being
used. GC service differs from the Leasing service described in section 3.2.6 in that it
can force all the objects to be cleaned up, regardless of their leasing time. This service

is useful in situations when the entire platform needs to be restarted.

Other uses of GC Service would be specifying a group of unwanted objects, such as

32

illegal submitted tasks. The GC service removes these tasks without effecting the

other regular operation of mGrid platform.

So far we have completed the introduction of the underlying mGrid Platform, and
should have a brief understanding of how a space-oriented grid works(see section
3.2.4). mGrid Engine is another key portion of our framework that is built on-top of

mGrid Platform. In the following section we will introduce the mGrid Engine.

3.3. mGrid ENGINE

mGrid Engine is built on-top of the mGrid Platform. Figure 3-9 shows the in-depth

components that constitutes mGrid Engine:

mGrid Toolk
mGrid Standard Edition API

Cowrrna reed M-u_

Generic Machine Mond

mGrid Platform Components

JVm I
Memory: « + 32MB

I" mGrid Engine

ﬂwm#m

Figure 3-9: In-depth component view of the mGrid Engine, indicated in red

Engines can be deployed on a variety of devices with java support. After successful
deployment and execution, engines allow a disperse set of devices to link together and

form a virtual supercomputing environment that shares CPU, memory, storage, file

33

resources and so forth. We call this environment the mGrid Environment.

Developers then utilizes the mGrid APIs (see chapter 4) to write various grid
applications that access the resources harnessed within mGrid environment. These
applications includes protein modeling, ray-tracing and prime number searching

programs.

Now that we have a high-level idea of mGrid Engine’s role, we begin introducing the
inner-level components that propels the engine, starting with the core of the Engine:

Engine Kernel.

3.3.1 Engine Kernel

Engine Kernel is the main component which' e€nablés the engine to communicate with
the underlying mGrid Platform.The engine kernel has four major responsibilities:
e Initializes the engine, search-for the space-service instance provided by the mGrid
Platform (see section 3.2.4 for distributed Space service introduction).
e Fetches tasks from space, pass them to the Generic Task Processor for processing,
then put results back to space.
e Acts as the middleman for monitoring messages sent to mGrid Toolkit (see
section 3.4 for Toolkit monitoring details).
e Acts as the middleman for control messages sent from mGrid Toolkit (see section

3.4 for Toolkit controlling details).

If we look at engine kernel technically, an engine kernel assists the engine to search
for space instances within mGrid Platform, and constantly fetch tasks from the space
for processing. Figure 3-10 illustrates how an engine kernel interacts with a space

using UML sequence diagram:

34

Chicnl Prosram SDaoe Mucleus Engine Kernel Engine Kernel

| I regisies I I I
| L >J I I
I I SR i I I
| | | |lockupa Space | |
! : B et Space ocaticn ! !
| | (e —~ |
I | L loakup a Spece [
| | E] {
| I | refumn Space location |
; Spce location
l lockup & Space e o o e e —
I [J | |
[Ly] “1 | I
[relurn A Speec location i I |
T e e e e e e e e 1 | I
I [s5u2 Tasks I i i |
I [ssuc Tasks l"_t= : refrieve & Task : I
Issuc Tasks retrieve & Task | I
I _p i i I
| [zsue Tasks i | | |
| N I | I
| i i I I
I : « [I : a4 Rosul | I
| Foich a Besult L_: i [Eurn a mesni I |
Fetch u Result L reten & Fesult | |
I Py] | |
I | I | I

Figure 3-10: Engine kernel cbhs)fahtly fétch tasks from space.

A mGrid client uses multicast to sﬂearch‘ for th¢ Nucleus service (section 3.2.3) and use
it to lookup a space instance(section 3.2.4). After obtaining the space, the client
program then feed the space with tasks that needs to be processed by the mGrid
Environment. On the other side, engine kernel also uses multicast to search for a
Nucleus and use it to lookup a space, then randomly fetch any available tasks that
currently resides within the space. When the processing is completed, a result object
will be fed into the space by the kernel, where it will be read by the client and

reassembled with other results objects for presentation.

Note that the engine kernel only fetches the tasks from the space, it does not process it!
Instead, the Generic Task Processor introduced in the next section manages the task

processing.

35

3.3.2 Generic Task Processor (GTP)

After the engine kernel fetched a task from space, this task is passed to the Generic

Task Processor(GTP) for processing.

As the name implies, the GTP is generic enough to handle different sorts of logical
calculations, this is achieved through the dynamic class loading feature of the java
programming language. In other words, when the GTP receives a task, the task’s
computational code will be dynamically loaded into the processor. The GTP does not
have any previous knowledge of the task logic that it will process, everything loads in

on the fly.

A naive version of GTP pseudo-code looks like listing 3-4, it simply fetches a task

from space, process it, then feed the result back to'space:

While(true)
{

aTask = EngineKernel.takeTaskFromSpace();
result = aTask.process();

EngineKernel.putResultinSpace(resulit);

printin(“a task is processed”);

Listing 3-4: A naive GTP implementation pseudo-code

The above GTP pseudo-code has a critical flaw. What if the engine fails after it
fetched a task but did not successfully process it? This task would then be lost. For a

system with high-reliability demand this is not an acceptable situation.

Therefore our GTP implementation makes use of mGrid Platform’s Transaction

service (consult section 3.2.5 for detailed description on how transaction service

36

works). By integrating transaction service into GTP, we ensure a highly-reliable grid

system. A modified version of GTP pseudo-code is listed below:

While(true)
{
TransactionService txn = Platform.createTransactionService();
aTask = EngineKernel.takeTaskFromSpace();
if(aTask == null)
{
txn.abort();

return;

result = aTask.process();
if(result == null)
{
txn.abort();

return;

EngineKernel.putResultinSpace(result);

txn.commit();

printin(“a task is processed”);

}

Listing 3-5: A modified GTP implementation pseudo-code — better solution

Listing 3-5 illustrates GTP with transaction support. If an engine fail to fetch a task
from space, or if task processing fails, the transaction service will abort the
transaction and attempt to roll-back the entire computation. Only when the calculation
is guaranteed to be successful, will the transaction be considered finished and

committed.

In summary, GTP acts as the central processing unit in mGrid Engine.

37

3.3.3 JVM Monitor

JVM Monitor digs the local machine’s JVM profile for display in the mGrid Engine
graphical user interface. Furthermore, it periodically sends heartbeat messages in the
form of EnginelnfoEntry containing the JVM attributes to a remote mGrid Toolkit
software for administration purposes. All messages generated by the JVM Monitor
goes through the engine kernel, which in turn passes the message to the distributed

space service on mGrid Platform, where it is read by mGrid Toolkit for display.

JVM attributes includes JRE version, operating system name, OS patch level, JDK

version and so forth.

See section 3.4.1 for EnginelnfoEntry details.

3.3.4 Machine Monitor

Machine Monitor reflects the local maghine’s'€PU and memory status every 1000ms.
The status is displayed in the mGrid Engine’ graphical user interface. Furthermore, it
periodically sends heartbeat messages in the form of EnginelnfoEntry containing the
machine’s latest status to a remote mGrid Toolkit software for monitoring purposes.
All messages generated by the Machine Monitor goes through the engine kernel, the
kernel passes the message to the distributed space, where it is read by mGrid Toolkit

for display. Machine status includes CPU and memory usage level.

See section 3.4.1 for EnginelnfoEntry details.

3.3.5 Engine Command Listener

Engine Command Listener waits for commands sent from the mGrid Toolkit, such as

shutting down an engine or setting processing condition thresholds. Command

38

messages sent from mGrid Toolkit first go through the engine kernel, which in turn
passes them into the distributed space service on the mGrid Platform, where they are
fetched by the Engine Command Listener component for analysis and execution.
Command messages are concealed in an EngineCommandEntry class. See section

3.4.2 for further information regarding EngineCommandEntry.

At this point, we have completed the technical introduction of mGrid Engine.
However, engines are by themselves a full-fledged software with simple-to-use

graphical user interfaces. Appendix has a thorough user tutorial on mGrid Engine.

Last but not least, we discuss mGrid Toolkit in the next section. mGrid Toolkit is an

utility tool that simplifies the administration of any mGrid network environment.

3.4. mGrid TOOLKIT

tool called mGrid Toolkit, which

enables easy administrating and monitori xisting mGrid environments.

" mGrid Toolkit

mGrid Standard Edition API

mGrid Engine Command Msg

mGrid Platform Components
JUM
Memaory: - » 32MB

ul:umNHnlm

Figure 3-11: In-depth component view of the mGrid Toolkit, indicated in red

39

Figure 3-11 illustrates the tools included in mGrid Toolkit, namely Network tool,
Workflow tool, System tool and Help tool. At this stage we have fully-implemented

the Network tool, thus it will be the focus of this section.

But before we start to introduce the components within the Network Tool, we need to
understand how mGrid Toolkit initially connects with mGrid Engines. Keep in mind
that engines might randomly spread across WAN and different LANs. There are two
possible situations:

Scenario 1. The toolkit resides in public network (WAN).

Scenario 2. The toolkit resides in private network (LAN).

Distributed Space
Service

T i
’.mGrld oolkit (1) publish Toolkit ip/port Toolkit ip/port info

J .. _.-.-.:n.“

(WAM o WAN)

,-"(21 Engines read Toolkit ip/port

o

mGrid Engine A e

i3) Socket connection from .
Engine to Toolkit
{i.e, LAN to WAN)

v _
S
-'-I'I""

l.-'-.
¥
as
et

gt

Figure 3-12: mGrid Toolkit and Engine initial linking steps - When the Toolkit resides in WAN

Figure 3-12 illustrates the first scenario. In order for a Toolkit residing in public
network to communicate with Engines (which might reside in both public or private
networks), the Toolkit needs to publish its location information, namely IP/port, to the
space service of the mGrid Platform. Engines A and B read this location information

object and actively establish a socket connection TO the toolkit using the IP/port pair.

40

Toolkits in this scenario waits passively for the socket connection.

However, if the toolkit resides in a private network, as stated in scenario two, the

algorithm needs to be slightly modified. Figure 3-13 depicts this situation:

Digtributed Space
Service

Engine A ip/port info

(1) publish Engine |pfport A,

Engine B ip/port info
mGrid Engine g.v“' __-' “*, '“.,.-‘....--
(3) Socket connection from et LU M
Toolkit to Engines

(le.LAN to WAN) .o\,

e

'II.H"-"I:...
e 7 (2) Toolkit read
j ¢ Enaines Psiports '@ mcrid Engine B
#

WAN oo J [LAN to LAN)
"7 LAN Y mérid Toolkit

Figure 3-13: When the Toolkit residestin‘LAN,-the algorithm needs to be slightly modified

In Figure 3-13, the toolkit resides in a private network. If we naively apply the
algorithm steps given in Figure 3-12, initial socket connections between the toolkit
and engines A & B will fail, for in this scenario the toolkit’s IP address is a private one,

socket connections simply cannot be made to a private IP address!

Instead, engines A and B must now publish their location information (IP/port) to the
distributed space service running on mGrid Platform. The toolkit read engine A and
B’s IP/port objects from the space, and then actively establishes socket connections
consecutively TO mGrid Engines A and B using corresponding IP/port pairs. Engines

in this scenario waits passively for the incoming connection.

Combining the algorithms described in Figures 3-12 and 3-13, mGrid Toolkit is

41

endowed with the capability to monitor and control thousands of mGrid Engines

spanning across perplex LAN and WAN architectures concealed in today’s internet.

Once the socket connections were successfully built, the Network tool can then be

applied to monitor and control the engines simultaneously.

Now we introduce each of the components within the Network tool (consult Figure

3-11 for the component view).

3.4.1 Engines Monitor

In sections 3.3.3 and 3.3.4 we mentioned that an engine’s JVM profiles and machine
status can be monitored by the mGrid Toolkit, this is achieved with the Engines
Monitor component contained in Network Tool. Reriodically an engine serializes an
EnginelnfoEntry java object -across the network; using the socket established

previously with the toolkit.

The EnginelnfoEntry class contains information such as CPU status, memory status,

JVM version and so forth.

On the other side, the Engines Monitor de-serializes this EnginelnfoEntry through an
ObjectlnputStream class provided with J2SDKS5.0[4]. It then unwraps the

EnginelnfoEntry object and analyze the information concealed within.

3.4.2 Command Issuer

The network tool uses the Command Issuer component to transmit control commands
to any specific engine. The command Issuer utilizes the ObjectOutputStream class in
J2SDK5.0[4] to serialize an EngineCommandEntry object across the socket

connection established previously to an engine running on the network.

42

The EngineCommandEntry class contains the command for the engine to execute,

such as shutting down an engine or setting a processing threshold for an engine.

On the other side of the network, an engine de-serializes the EngineCommandEntry,

unwraps the object and executes the command concealed within.

3.4.3 GUI Displayer

The GUI Displayer has one single purpose: create a graphical user interface to display
the real-time engine status contained in EnginelnfoEntry (section 3.4.1) and to allow
administrators to send EngineCommandEntry (section 3.4.2) to manipulate the

behavior of remote engine instances.

At this point, we have completéd the technical introduction of mGrid Toolkit.
However, mGrid Toolkit by itself.is a full-fledged software with intuitive graphical

user interfaces. See the appendix for mGrid-Toelkit user’s tutorial.

In summary, mGrid Toolkit contains”several ‘useful tools such as the Network tool.
Network tool allows easy administration of the entire mGrid environment spanning

across different LANs and WAN.

3.5. SYSTEM NON-FUNCTIONAL ISSUES: SCALABILITY AND FLEXIBILITY

In section 1.4 we mentioned that apart from performance, a good grid system should
be made highly-scalable and highly-flexible. In this section let us examine whether
these characteristics exists for mGrid. mGrid Platform is implemented using the
space-oriented architecture (see section 2.4.3), this has three advantages:

e Natural Load Balancing: mGrid Engines fetch tasks from a space for processing,

only when it completed the current task, will it fetch another task. This implies

43

that devices with more CPU resources can process more tasks during a fixed
period of time, compared to devices with less CPU resources (see section 3.3:
mGrid Engine).

e Dynamic Grid Expansion: Engines can search for a space dynamically upon start,
without any human intervention. Thus adding new devices to a mGrid network is
extremely convenient. Engines can also withdraw from a mGrid network freely
(see section 3.3: mGrid Engine).

e No Single-Point-of-failure: a logical Space is actually physically distributed on
multiple machines (see section 3.4.2: Distributed Space service), thus even when

a few space service fails, the mGrid platform still remains operational.

The above three points endowed mGrid Framework with a high level of scalability. As
for Flexibility, the Generic Task Processor](se€ section 3.3.2: Generic Task Processor)
uses java’s dynamic class loading capabilities which allows the task logic to be loaded
into the engine on the fly for “processing:“An engine does not need any previous
knowledge of task logics. This enables ‘developers to write a variety of innovative

applications using mGrid APIs.

3.6. SUMMARY

mGrid Framework is consisted of four portions: mGrid Platform, mGrid Engine,
mGrid Toolkit and mGrid API. In this chapter we talked about the previous three.
Both the engine and toolkit relies on the grid infrastructure created by the platform.
All participants with an engine activated is a legal entity within a mGrid environment,
where a variety of resources can be shared among each other. Finally, the mGrid
toolkit simplifies the administration of mGrid environments. See appendix for a

complete user’s tutorial on mGrid Engine and Toolkit.

44

4. PROGRAMMING INTERFACE DESIGN

4.1. FOREWORD

The mGrid Framework is consisted of four portions: mGrid Platform, mGrid Engine,
m@Grid Toolkit and mGrid API. In chapter 3 we introduced the previous three. In this
chapter we will probe into the last item: mGrid API. Figure 4-1 illustrates a high-level

view of the entire mGrid API library:

mGrid Toolki

mGrid.api mGrid.engine mGrid.toolkit

mrid Standard Edition AP

miGrid Engine

mrid Platform Componenms
JUM
Memory: = » 32MB

nl:-llmln-nlm

Figure 4-1: High-level view of the entire mGrid API library, indicated in red

Developers utilizes the libraries provided by mGrid API to write various creative grid
applications that makes use of the resources harnessed within a mGrid environment

(see section 3.3: mGrid Engine).

Currently the mGrid API is divided into four sub-packages:

45

e mGrid.api: the core of mGrid API. Classes in this package enable developers to
discover space services (see section 3.4.2: Distributed Space service), to build
different categories of task entries and to create a diverse set of engine
commands.

e mGrid.engine: an implementation of mGrid Engine (consult section 3.3: mGrid
Engine). Multiple engine-related utility classes are also included.

o mGrid.toolkit: contains an implementation of mGrid Toolkit (consult section 3.4:
mGrid Toolkit) and a set of toolkit-related utility classes.

e mGrid.examples: presently includes a 3D graphics demo program written with

mGrid.api that utilizes the CPU resources harnessed in a mGrid Environment.

The packages will be introduced respectively in subsequent sections. We first begin

with the mGrid.api package.

4.2. mGrid.api PACKAGE

The mGrid.api package is the core of mGrid API. Our development objective is to

make it simple to use and easy to expand.

Simplicity is our primary concern.

The package has three major categories of classes:

1. SpaceAccessor class: enable grid application developers to access platform
functions such as searching and using a distributed space service (consult section

3.4.2: Distributed Space service).

2. TaskEntry, ResultEntry, Command classes: enable developers to define the logics

of grid task chunks to be submitted to mGrid Engines for processing.

46

3. EnginelnfoEntry, EngineCommandEntry classes: Developers extends these two
classes to add more engine monitoring attributes and to build an extended set of

engine commands respectively.

Figure 4-2 shows the UML class diagram of mGrid.api package:

mGrid.api

*» getSpaces() | ServiceMatches

*» executel) : Entry EngineCommandEntry

i]
]
i mGrid.api net.jini.core.entry mGrid.api '
. 1™ -, :
: ResultEntry i Entry ' EnginelnfoEntry i
i i i
i | ' | :
: & 2 Integer . i ' & cpu Long .
| & anzwer ; Integer - Pmerid . i & hostrame : String i
i : A o A
: & b Integer ' & in: String ___:
| Command V|| @ mem: Lang
i
i > ResutEntry() : woid : & port © Inteaer
! < ResultErtry() : void % execute() : Ertry :
: i > EnginelnfoEntey() : woid
]
' f . > EnginelnfoEntry() : woid
| — : V| teStringn) : String
]
i mGrid.api mGrid.api :
]]
]
i Spaceficcessor TaskEntry :
| |
]]
]]
]
]
]
]
]
]
]
]
]

& command © String

1| @ in: String

> EngineCommandEntry () woid
K EngineCommandErntry) ; woid
*» tostring () : String

Figure 4-2: UML Class diagram of mGrid.api. Simplicity is our primary objective

SpaceAccessor class has one simple function getSpaces() which returns a distributed
space service for the developers to operate on. Furthermore, you should sub-class
TaskEntry and implement your computation logic in its execute() method. We refer to

the object generated by the class which extends TaskEntry simply as “a task”.

A task object is passed into a space, where it is fetched by a remote mGrid Engine.

47

Once an engine obtains a task object, it dynamically loads the logic code within the
task’s execute() method and start processing (consult section 3.3.2: Generic Task
Processor). A class sub-classing ResultEntry is returned to the space after processing

completes, within contains the computation results.

Listing 4-1 is an example code of utilizing the SpaceAccessor, TaskEntry and

ResultEntry classes:

import mGrid.api.*;
...

Space space = SpaceAccessor.getSpaces();

TaskEntry task = new MyTask();

space.put(task);

/lwait for processing to complete
ResultEntry template = new ResultEntry();

ResultEntry result’= space.read(template);

System.out.printin(result.toString());

Listing 4-1: A simple example of utilizing SpaceAccessor, TaskEntry and ResultEntry

When you obtained a space reference using the SpaceAccessor, you can call the put()
method on the space object to put a task in a space, call read() and fetch() methods to
read and fetch an entry from space respectively. Note that for read() and fetch()
methods you will need to specify a template first. In listing 4-1 a template with the
type ResultEntry is specified, this means an entry with type ResultEntry will be read

or fetched from the space.

Keep in mind that you should implement your code logics within the execute() method

that comes with the TaskEntry class, by extending TaskEntry. Listings 4-2 & 4-3

48

depicts example classes extending TaskEntry and ResultEntry:

import mGrid.api.*;

...

public class MyTask extends TaskEntry

{
private Space space;
public MyTask()
{

space = SpaceAccessor.getSpaces();

}

/Iplace your computation logic in this method!
public Entry execute()
{
ResultEntry. result’= new MyResult();
space.put(result);

return result;

Listing 4-2: Example class extending TaskEntry

import mGrid.api.*;
/...
public class MyResult extends ResultEntry

{
public String toString()
{
return “l am a result!!”;
}
}

Listing 4-3: Example class extending ResultEntry

Finally, EnginelnfoEntry and EngineCommandEntry classes allows you to access a

remote engine’s information and specify a command for an engine respectively.

49

Listing 4-2 fetches a remote mGrid Engine’s information and displays it on screen:

import mGrid.api.*;
...

Space space = SpaceAccessor.getSpaces();

EnginelnfoEntry template = new EnginelnfoEntry();
template.ip = “192.168.11.2”;

EnginelnfoEntry enginelnfo = space.fetch(template);

/lprint the remote engine’s information
System.out.printin(enginelnfo.hostname);
System.out.printin(enginelnfo.ip);
System.out.printin(enginelnfo.port);

System.out.printin(enginelnfoicpu);

System.out.printin(enginelnfo.mem);

Listing 4-4: Example code thatfetches a remote engine’s info and displays its contents

Listing 4-2 requested the space for the EnginelnfoEntry object of a remote engine
with the IP address of 192.168.11.2. We first create a template object with the type
EnginelnfoEntry and setting its String ip field to “192.168.11.2”. Next, we call the
fetch() method on the space reference, passing in the template as parameter. If a
matching EnginelnfoEntry currently exists in space, it is retrieved. Finally, we can
print engine information such as hostname, IP, port, CPU usage rate, memory usage
rate, using enginelnfo.hostname, enginelnfo.ip, enginelnfo.port, enginelnfo.cpu and

enginelnfo.mem fields on the EnginelnfoEntry you retrieved from a space respectively.

Next, we give a simple example on how to send a “shutdown” command to a remote

mGrid Engine using EngineCommandEntry class. This is demonstrated in listing 4-3:

50

import mGrid.api.*;
...

Space space = SpaceAccessor.getSpaces();
EngineCommandEntry engineCommand= new EngineCommandEntry();
engineCommand.ip = “192.168.11.3”;

engineCommand.command = “System.exit(0)”;

/Isend the shutdown command to the engine with IP=192.168.11.3

space.put(engineCommand);

Listing 4-5: Example code that sends a “shutdown” command to a remote engine

The example code in listing 4-3 executes a simple task: Shuts down a remote engine

with the IP address of 192.168.11.3.

First, We create an object of EngineCommandEntry type and set its String ip field to
“192.168.11.3”, and its String command to ~‘System.exit(0)”. Next we simply put this
EngineCommandEntry object into space. At this point, the mGrid Engine with the ip
address of 192.168.11.3 should asynchronously retrieve the command object from the
space, parse the String command field for the code it should execute (see section 3.3.5:

Engine Command Listener). In our case, the engine shuts itself down.

We have finished a brief introduction on mGrid.api package. As you can see, by
conducting a few simple calls you are empowered to monitor an entire cluster of
mGrid Engines, send tasks for them to process, retrieve results, and conduct a variety

of commands on any specific engine instance on the network.

Next we introduce the mGrid.engine package.

51

4.3. mGrid.engine PACKAGE

We provided a full-fledged mGrid Engine implementation in the mGrid.engine
package, along with an engine-related utility class. In this section we will not list the
detail class diagrams of the engine code, since this is not relevant to the development
of mGrid applications. Instead, see section 3.3: mGrid Engine, for an introduction on

how engines works. Here we will focus solely on the utility class: CpuUsage class.

Figure 4-3 illustrates the UML class diagram of CpuUsage class:

mGrid.engine

Cpuleage java.io
[printstroam |
& along
@ blong java.lang

El\/ autoOnlinetotify Tirmer : Tirmer
Sy cpu: Cpullsage _EEEEE::::_T____]

Sy m_gse : ApplicationCorntext N

3\/ m_raminon ;. bhoalean | String | | System | | Throwable |
3\/ tn_started : bhoolean

java.util

R Cpullsage() ; woid -
% enableR AMMaonitor]) : vaid T _-‘
* main(] ; void

% Starthonitor) ; woid
* Stophonitor() ; void
M audRAMUsage() : void
MW finalizel) : void

M getCPUTIMEC) : long
M getRAMStE0) : long
M intCPULssge() : void
? stophanitar() © woid

Figure 4-3: UML class diagram of CpuUsage utility class within mGrid.engine package

Application developers utilizes the CpuUsage class to detect the CPU and memory
status of the local machine, and to send this information to the mGrid Toolkit software

for remote monitoring (see section 3.4: mGrid Toolkit).

52

Furthermore, experienced engineers have the option of writing their own engine
implementation using the methods provided in CpuUsage class, combined with the
classes in mGrid.api package. Listing 4-4 shows an example code of using the

CpuUsage class:

import mGrid.engine.*;
...

CpuUsage engine = new CpuUsage();

//start sending monitoring messages to toolkit

engine.startMonitor();

System.out.printin(engine.getCPUTime());
System.out.printin(engine.getRAMStat());

/Istop sending monitoring messages to-toolkit

engine.stopMonitor();

Listing 4-6: an example code segment using the CpuUsage class

In listing 4-4, we first create an object of CpuUsage class, this initializes the
monitoring thread on the local machine. Next, by calling startMonitor() method, the
device’s status messages are constantly sent across the network to the toolkit software.
Methods getCPUTime() and getRAMStat() returns the current CPU and memory usage
rate of the local machine respectively. Finally, stopMonitor() stops sending monitoring

messages to the toolkit.

At this point we have introduced how to apply the mGrid.api and mGrid.engine
packages to a grid application. This should be sufficient for most grid-based programs.

In the following section, we dive into the mGrid.toolkit package.

53

4.4. mGrid.toolkit PACKAGE

We also supply a fully-featured mGrid Toolkit software in the mGrid.toolkit package.
Apart from the toolkit software, another utility class called MonitoringThread is also
at the disposal of mGrid application developers. MonitoringThread class contains a

hashtable of all the engines currently under monitor. Figure 4-4 depicts the UML class

diagram of the MonitoringThread class:

mGrid.toolkit

Java.util MonitoringThread

Hashtable
& toolkitSpace © JavaSpace

13 engines : Hashtable
T template : EnginelnfoErtry

| EnginelnfoEntry | Ty toolkitid : ServicelD
T tookitSpaceservice | Servicettem

mGrid.api

net.jini.core.lookup —T'v’ AUMSpaces - int
_Tlv, spacezervices | Servicettem|)

% MonttoringThread() : vaid
* runll ; woid
? zearchForEngines() : woid

| ServicelD || Serviceltem |

net.jini.space

Figure 4-4: UML Class diagram of MonitoringThread utility class within mGrid.toolkit package

When you initialize a MonitoringThread instance, a new thread is started and runs in
the background. This thread continuously looks for all the engines currently running
within a mGrid environment, and populates its Hashtable engines field with remote

engines’ information. Hashtable engines field contains enginelP-EnginelnfoEntry pair,

54

by iterating through all entries in the hashtable, a developer can retrieve a set of
EnginelnfoEntry objects containing useful engine information, see listing 4-4 for uses

of EnginelnfoEntry class.

Listing 4-7 below shows an example code displaying all the mGrid Engines currently

running on the network using MonitoringThread class:

import mGrid.toolkit.*;
/...

MonitoringThread toolkit = new MonitoringThread();
toolkit.start();

/Ihashtable containing all the engines currently alive on the network

HashTable allEngines = toolkit.engines;

/literate through all the entries in'the hashtable, listing out all remote engine
Enumeration e = allEngines.elements();
while(e.hasMoreElements())

{

EnginelnfoEntry enginelnfo = (EnginelnfoEntry) e.nextElement();

/lprint each remote engine’s information
System.out.printin(enginelnfo.hostname);
System.out.printin(enginelnfo.ip);
System.out.printin(enginelnfo.port);
System.out.printin(engineinfo.cpu);

System.out.printin(enginelnfo.mem);

}

Listing 4-7: Example code that uses MonitoringThread class to display all engines on network

Note that only a machine that has a mGrid Engine software running, or have called
the startMonitor() method on the CpuUsage class (see section 4.3), can it be a legal

candidate for detection by the MonitoringThread class.

55

With mGrid.toolkit, mGrid.api and mGrid.engine packages in hand, a programmer
can now fully-utilize the strength of parallel computing provided by the mGrid

Framework.

In the last package, namely mGrid.examples, we give a demo application written with

the previous three API packages.

4.5. mGrid.examples PACKAGE

Developers can consult the code in this package to further assist them on how to write
real-world mGrid applications. mGrid.examples package contains a demo program

which utilizes the classes in mGrid.api, mGrid.engine and mGrid.toolkit packages.

The demo program consisted of a*window running 3D graphics rotation. However,
instead of conducting the 3D ecalculation on-the.local machine, the computation is
divided into multiple independent task.chunks that can be passed into a mGrid
environment for a cluster of mGrid Engines to" process in a parallel fashion. This
means that when you only have a single mGrid Engine running on your network, the
rotating speed of the 3D graphics is minimal, but as you start more engine instances

on other machines, it immediately accelerates!

See appendix section on setting up a mGrid Environment and running this demo.

4.6. RECOMMENDED mGrid APPLICATIONS

mGrid API enables programmers to develop numerous innovative application. But

which sort of application can fully-utilize the power of our framework?

Here, we recommend four categories of appropriate applications:

56

e Category 1: All returned results needs to be pieced together in order to produce a
final result, and each chunk of task produces a single result. Image-processing
applications such as ray-tracing fall into this category.

e Category 2: Returned results are independent of one another, but each task chunk
produces its own result. Statistical analysis applications such as customer
behavior analysis programs fall into this category. Each computer analyzes its
own customer behavior.

e Category 3: Some, but not all task chunks produce results. Searching engines fall
into this category. Search tasks are dispatched onto multiple computers, while
only a few will return the search result which fits your searching criteria.

e Category 4: Only a single task will give you the correct result. Programs written
to break encrypted messages falls into this category. Multiple tasks will be issued

to the grid, while only a single.one will return. the correct decrypted message.

Note that not all applications afe suitable for-a grid network. All four categories of
applications we give above share a similar characteristic: parallelism. Keep in mind

that only parallel programs can fully appreciate the power of mGrid Framework.

4.7. SUMMARY

In this chapter we introduced the entire mGrid API. Simplicity is our main objective
while designing the programming interfaces. In sections 4.2 to 4.5, we use numerous
easy-to-understand code segments to teach how to integrate mGrid API into your own
application. Finally, we recommend four primary categories of applications that is
appropriate to be written with mGrid Framework. Now you should have the ability to

judge whether or not to develop your program using mGrid, and how.

57

5. EXPERIMENT AND EVALUATION

In this chapter we experiment the performance of mGrid Framework using the
Linpack benchmark[26]. Linpack benchmark is widely accepted as the de facto

testing software for industrial supercomputers, such as the top5S00[27].

We will first briefly explain what Linpack benchmark does, then compare our results
with multiprocessor machines and clusters. However, to determine the good and bad
of a system, many aspects needs to be taken into consideration. These aspects include
performance, scalability, utilization percentage and cost. We will look into these

individual issues respectively.

5.1. LINPACK BENCHMARK

The Linpack benchmark used in our experiment randomly generates a dense

1000x1000 system with one right hand side, Ax=b.

Figure 5-1 shows an example of Ax=b. In our case, k=1000.

[y Ggo *++ O] 2] M by 7
oy oy -+ o Ta b
a1 age - agpd Lo L by

Figure 5-1: Our test case. Ax=b where k=1000

For a matrix with size Kk, there are 2/3k"3+O(k"2) floating point operations to be

58

performed, including both additions and multiplications. The calculation is based on

gaussian elimination with partial pivoting.

In Linpack benchmark, the matrix product can be split into submatrices and performed

in parallel. Each submatric calculation is implemented as an independent task.

In the following two sections, we compare our benchmark results against

multiprocessor machines and clusters respectively.

5.2. COMPARISON WITH MULTI-PROCESSOR MACHINES

Multiprocessor machines differs from clusters in that all the CPUs resides in the same
address space, and shares common physical memory. Multiprocessor machines

intends to increase the overall computation speed of a system.

In this section, we compare our'system Wwith various commercial multiprocessor

products.

5.2.1 Performance: Multiprocessor vs. mGrid

We designed two scenarios for mGrid:

m Scenario one: 1, 2, 4, 8 compute nodes. Only the first node runs the distributed
space service (see section 3.2.4: Distributed Space Service).
m Scenario two: 1, 2, 4, 8 compute nodes. All nodes runs an instance of distributed

space service.

Note that each compute node in our mGrid environment is a Pentium4 with 1700MHz
CPU, 512MB RAM, running J2SDKS5.0. Nodes are interconnected using 100Mbps

Ethernet.

59

Mflop/s

the result is shown in table 5-1[26]:
Machine 1CPU 2CPU 4 CPU 8 CPU |Cost of 2 CPUs
HP AlphaServer ES80 7/1150(1.15GHz) 1184 3424 6584 11410 *
Cray SV1ex-1-32(500 MHz) 1554 2947 5358 8938 *
HP 9000 rp8420-32 2905 5435 9478 14150 $ 93,000
NEC SX-4/1 1944 3570 6780 12780 $ 52,680
Compaq Server ES40(667MHz) 1031 1923 3804 7905 $ 23,900
IBM eServer pSeries 610 Model B80 1451 2521 4396 8302 $ 31,500
HP SuperDome 1497 2506 4319 8055 *
mGrid Scenario one 1322 2640 5277 10541 $4,909
mGrid Scenario two 1330 2659 5316 10630 $4,909

Table 5-1: Performance comparison with commercial multiprocessor machines (Mflop/s)

Figure 5-2 illustrates the line chart of table 5-1:

Scalability Results - Performance vs. CPUs

16000
14000 |
12000
10000
8000 |
6000
4000
2000

—&— HP AlphaServer ES80 7/1150(1.15GHz)
—8— Cray SV1ex-1-32(500 MHz)
HP 9000 rp8420-32 (1000MHz PA-8800)

NEC SX-4/1

—¥— Compaq Server ES40(667MHz)
—&— [BM eServer pSeries 610 Model B80
—+— HP SuperDome
=== mGrid Scenrio one

mGrid Scenrio two

CPUs

Figure 5-2: Performance comparison with multiprocessor machines, chart view

5.2.2 Utilization: Multiprocessor vs. mGrid

The processing performance is direct proportional to the speed of CPU used, thus with

different systems using different CPUs, merely comparing performance is not rational.

60

Instead we need to focus on the utilization of each CPU. For instance, the best
performed system: the HP 9000 rp8420-32 with 1 CPU can reach 2905 Mflop/s,
theoretically with 2 CPUs it should reach 5810 Mflop/s, yet in reality it only reached
5435 Mflop/s, this implies 6.454% of processing power is wasted. Furthermore, with
8 CPUs, it should theoretically reach 23240 Mflop/s, in reality it only achieved 14150

Mflop/s, it implies a 39.113% loss of computation capability!

On the contrary, with mGrid Framework, less than 0.3% of CPU power is left idle.
This result shows that mGrid Framework can fully utilize your compute nodes, while
multiprocessor machines will waste more computation resources as you add more

CPUs to the system.

The under-utilization situation of each’'system is:shown in Table 5-2:

Machine 1 CPU 2CPU 4 CPU 8 CPU
Cray SV1ex-1-32(500 MHz) 5.1801802 (13.803089 (28.104891
HP 9000 rp8420-32 (1000MHz PA-8800) 6.454389 (18.433735 [39.113597
NEC SX-4/1 8.1790123 (12.808642 (17.824074
Compagq Server ES40(667MHz) 6.7410281 |7.7594568 (4.1585839
IBM eServer pSeries 610 Model B80 13.128877 |24.259132 [{28.480358
HP SuperDome 16.299265 |27.872411 |32.740481
mGrid Scenario one 0.1512859 |0.2080182 (0.330938
mGrid Scenario two 0.037594 |0.075188 |0.093985

Table 5-2: CPU Resource wasted (%)

From Table5-2, we can conclude that (average approximation):

Commercial multiprocessor products 1 CPU +1 CPU =1.512 CPUs
mGrid Framework 1 CPU +1 CPU =1.985 CPUs

Table 5-3: CPU Resource utilization comparison between multiprocessor products and mGrid

61

Table 5-3 is an approximate calculation. At this point we have shown that mGrid
Framework can utilize a set of dispersed computing resources much better than

multiprocessor machines.

5.2.3 Scalability: Multiprocessor vs. mGrid

Now let’s see the price it takes for systems to scale. For multiprocessor machines, if
the CPU quantity exceeds the maximum number a single machine can contain, this
often means one thing: to scale further, purchasing a second machine is inevitable.
Let’s say you have a multiprocessor machine with a maximum of n CPU slots, if the
processing power of n+1 CPUs is required, you will have to purchase a whole new
machine pre-installed with 1 CPU, thus Jleaving n-1 slots empty. This is simply not
cost-effective. On the other hand,’scalingup is'simple for mGrid. We scale the size of

a mQGrid Environment in table 5-4:

Machine 8 CPU 9 CPU 10 CPU 11 CPU
mGrid Scenario one 10541 11860 13181 14199
mGrid Scenario two 10630 11955 13300 14632

Table 5-4: mGrid System scales easily (Mflop/s)

As we mentioned in chapter 1, scalability is one of our primary concerns. Here we
show that adding more CPUs to a mGrid environment is much more simpler and

cost-effective than adding more CPUs to multiprocessor machines.

5.2.4 More on Performance: The number of Spaces matters

Before we end this sub-section, one more interesting effect deserves to be discussed.

In mGrid scenario one, we run a single space service on the first machine, while in

62

scenario two, all machines runs an instance of space service. The performance of
scenario two is clearly better than that of scenario one. See tables 5-1 & 5-4. The
reason is as follows: If we have a mGrid environment with 2 compute nodes, and
these two nodes both runs an instance of space service, there is an approximate 50%
chance that the task-to-be-processed resides in the same machine as the mGrid Engine.

Thus decreases the propagation time of fetching a task from a remote space.

We can assume that for most cases, the performance outcome is direct proportional to

the number of space services activated.

5.3. COMPARISON WITH CLUSTERS

A cluster is a commonly found .computing ;environment that connects multiple
independent workstations residing on the same LAN(Local Area Network). Each
workstation is referred to as a‘‘computing node”, and has its own set of CPUs and
memory. A regular cluster differs from mGrid in two ways:

e Compute nodes within a cluster usually runs the same operating system, while

mGrid spans across a variety of operating systems.

o Cluster compute nodes often resides within the same LAN, while mGrid spans

across multiple LANs and WANS.

Here we compare our system with multiple eminent cluster computers. Our goal here
is to show that our system brings lower TCO(Total Cost of Ownership) and better

scalability than the commercial clusters, offering the same computing capability.

5.3.1 Performance: Clusters vs. mGrid

First we look at the Linpack Performance of the following commercial clusters, as

63

shown in table 5-5:

Machine Num of Nodes |Gflop/s
Sun HPC 6500(400MHz 8MB L2 Cache) 18 13.05
CRAY T3E-1200E (600 MHz) 16 13.41
SGI Origin 2000 (250 MHz) 32 13.22
Intel Paragon XPS-35 (50 MHz, OS=R1.1) 512 15.2
Compaq GS140 cluster 24 15.31
mGrid Scenario one 11 13.87
mGrid Scenario two 11 14.29

Table 5-5: Performance comparison with commercial clusters

Cluster architecture, unlike multiprocessor machines, can harness all the available
CPU resources just as well as mGrid. does: FThus our assumption here is that all the
compute nodes within a cluster (and: within. mGrid €nvironment) is close to 99-100%
utilized. The performance is shown in table 5-5. However, we do not intend to
compare the absolute performarnee, simce €ach cluster has very dissimilar hardware
and is interconnected using different network technologies. Instead, we will compare
two things. First, we compare the TCO (Total Cost of Ownership) of owning a mGrid
environment with equal computing capability as the commercial clusters listed above.

Second, we show that unlike traditional clusters, mGrid can effectively avert the SPF

problem (Single-Point-of-Failure).

5.3.2 Total Cost of Ownership: Clusters vs. mGrid

As we mentioned in section 2.2, high TCO is the primary factor that prevents
individuals or SMEs from adopting grid-like technology, thus our objective is aimed

at offering a low-cost grid solution. Table 5-6 depicts the costs of various commercial

cluster computers[28].

64

Machine TCO (million $USD) |Gflop/s
Sun HPC 6500(400MHz 8MB L2 Cache) 0.3 13.05
CRAY T3E-1200E (600 MHz) 0.14 13.41
SGI Origin 2000 (250 MHz) 0.85 13.22
Intel Paragon XPS-35 (50 MHz, OS=R1.1) 1.92 15.2
Compaqg GS140 cluster 1.64 15.31
mGrid Scenario one 0.027 13.87
mGrid Scenario two 0.027 14.29

Table 5-6: TCO(Total Cost of Ownership) comparison of mGrid with commercial clusters[28]

A mGrid environment with 11 Pentium4 1700MHz costs approximately $0.027mn
USDJ[20], while the TCO of other commercial clusters with similar computation
power ranges from $0.3mn ~ $1.92mn USD. This implies that on average a

commercial cluster with more or lesssthe same computing power is 36 times more

expensive than our mGrid solutign.

This is further illustrated in Figure 5-3:

£1.92 mn 'l

.!S 1.64 mn

155¢
15¢
145F $0.85 ml;:
14
135F
15F
125
12F
115

$0.3 mn

IWlop/s

>

S 0,027 mn
@ TCO: milllon SUSD

TCO and Performance

O Sun HRC S50 4000 H= ShE 12
Cache)

O CEAY T3E-1200E (500 hif=)

0O &3] Cragin 2000 (250 hit=)

O Intel Paxagon 3PS-35 (50 M=,
CE=R1.1)

O Cormpag 503 140 cluster

O vwidd Beensaido one

B mi3ad Scensao two

Figure 5-3: Performance & TCO comparison with clusters, mGrid is much cost-effective!

65

We have shown that mGrid is a cheap and effective shortcut to grid computing. With a
fairly reasonable TCO, mGrid proves itself to be an excellent entry point to grid

computing for individuals and SMEs.

5.3.3 Single-Point-of-Failure Issue: Clusters vs. mGrid

Now that we proved mGrid is economically more cost-effective than many
commercial clusters, we turn our focus back to the technical aspect once more.
Traditional clusters suffers from the severe Single-Point-of-Failure (SPF) problem, by
single-point-of-failure we mean that when the dispatch server of a cluster fails, the
entire backend cluster is immediately rendered useless (consult section 2.4.1:
Client-Server Architecture). mGrid, on the other hand, do not have the SPF problem.
As long as at least a single distributed space.service is alive, the mGrid environment
can continue on processing jobs, table 5-7.shows the situation when mGrid scenario

two suffers from space failure of'different levels:

Machine 0 fail 1 fail 2 fail 3 fail

mGrid with 11 compute nodes 14632 14520 14320 14199

Table 5-7: Situation considering the number of spaces failed (Mflop/s)

mGrid can tolerate with space failures, yet failures do bring performance downgrade

of acceptable level.

5.4. DISCUSSION

mGrid is a low-cost grid solution that most SMEs can afford. Comparing with
multiprocessor machines, it has greater scalability and allows better utilization of

CPU resources. Furthermore, it averted the SPF problem that most traditional cluster

66

commercial products suffer. A concluding comparison is shown below, we normalized
all of our experiment data into a rating scale ranging from 0 to 1. A 1 shows the best

rating, while a 0 indicates the poorest rating :

Name Multiprocessor mGrid Framework |Cluster/Grid
Linpack Performance |0.965 1.000 0.997
Linpack Utilization 0.731 1.000 1.000
TCO 0.009 1.000 0.027
Scalability 0.003 1.000 0.857
SPF 1.000 1.000 0.000

Figure 5-4: Overall comparison between mGrid, Multiprocessor & grids/clusters

In this final section, we will discuss the mGrid mathematically. The question is this:
Suppose we create a mGrid Environment using the following four computers[26],

what do we get?

Node|CPU

1 Pentium4 1700MHz, 1330Mflop/s

Intel/HP Itanium 800MHz, 580 Mflop/s

2
3 AMD Opteron 1200MHz, 443 Mflop/s
4 AMD Athlon 1530 MHz, 832 Mflop/s

Table 5-8: Suppose we combine four CPUs together into a mGrid virtual grid, what do we get?

First we calculate how many operations per cycle each processor does. For node one:

1

LT
1330 Moo 1700 B 0,784 operations

1 sec 1 eycle 1 cycle
using similar method we obtain 0.725 (op/cycle) for node two, 0.369 (op/cycle) for

node three and 0.544 (op/cycle) for node four. Since we are conducting parallel

67

processing, this means for the combined mGrid environment, there is a total of
0.764+0.725+0.369+0.544=2.402 operations per cycle. According to our benchmark,
the overall floating point calculation of mGrid environment with these four nodes is
3160 Mflop/s. Thus:

163 Mo 1 cyche 1316E19317 cyche
X E = 1316 MHz
1 58 2,403 operations 1 58

we see the overall frequency of the resulting mGrid environment is approximately
1316MHz. Our conclusion is, by adding more computers to a mGrid environment, the
operations per cycle the system can do grows, yet the frequency will be each of the

processors’ average.

In other words, the frequency of a mGrid,enyironment does not necessarily reflect the
performance. Even though you have a lower frequency, you still can achieve better

performance in parallel computing:

68

6. CONCLUSION, BUSINESS OPPORTUNITIES & FUTURE WORKS

6.1. CONCLUSION & BUSINESS OPPORTUNITIES

There are various options in solving problems that requires supercomputing, yet the
high TCO (Total Cost of Ownership) of supercomputing intimidated the SMEs from
adopting such technology. mGrid framework proves to be a low-cost, pure
software-based grid computing solution that can reduce the entry barrier of obtaining

a grid infrastructure.

Furthermore, this thesis also demonstrated, the advantage of utilizing the
asynchronous, space-oriented architecture.-mGrid showed reasonable performance,
superior utilization, greater scalability, “higher ' flexibility than many commercial
supercomputing products such as‘multiprocessormachines and cluster computers. Our
architectural design also avoided common technical flaws found in grid products,

such as the Single-Point-of-Failure problem.

Last but not least, the framework also provides utility tools and a set of Application
Programming Interfaces(APIs) that simplifies the process of grid application
development, thus optimizes overall productivity. Developers must focus on design

and development rather than hunting for resources hidden within the enterprise.

Even though mGrid framework is designed primarily for scientific computing, its high
flexibility enables it to be used in various innovative areas such as digital home
entertainment. By deploying mGrid Engines on java-enabled platforms such as

cellular phones, STBs (Set-Top Boxes), and other multimedia devices, mGrid can

69

quickly harness all the multimedia resources hidden within each device, and allows

resource sharing among a network of devices. This concept is depicted in Figure 6-1:

" Multimedia Grid

o — WERED By MHP1.0-based OWERED BY
™ RID mGrkl Engine RID
" r-._‘.l-ulw Garme Conacie .."-_._
/ NotebookiPCs - i ﬁ ?l

ege ||§' i

@[' Ty !‘1 ﬂ&

5
> Teeenrs
- :' Mobile device
.-"'---.[_iig'rtal Camcoder

Figure 6-1: Business opportunity:'-_rﬁGrid [céﬁ.-be:-_s_een as the middleware for home networks

IDC predicted a continuous 20% growth in digital home market, reaching a hundred
billion USD worth of revenue by the year of 2010. With proper marketing strategy,
mGrid has the opportunity to play the role of “ammunition supplier” in this future war

of digital home entertainment.

6.2. FUTURE WORKS

There are multiple improvements available for mGrid Framework. First, the
functionality of the mGrid Toolkit can be further extended. At this point only the
network tool is operational, other tools such as designing tool, which enables

application developers to compose simple grid programs by means of graphical user

70

interface can be added.

Many additional functions can be added to mGrid Engines as well, such as remotely
setting the threshold of each engine, allowing engine to process tasks only if its

CPU/memory usage rate is under that threshold.

Finally, the mGrid Platform itself can be improved. More services must be added into

the platform if it is to be made commercial.

71

REFERENCES

[1] Chris Kwak and Robert Fagin, “Internet Infrastructure & Services”, Bear, Stearns

& Co., May 2001.
[2] Sun Microsystems, “SUN Grid Overview”,

http://www.sun.com/service/sungrid/overview.html.

[3] Dept. of Computer Science, University of Tennessee, “Linpack benchmark — Java

version”, http://www.netlib.org/benchmark/linpackjava/.

[4] Sun Microsystems, “J2SE, J2EE, J2ME”, http://www.javasoft.com/.

[5] M.P. Papazoglou & D. Georgakopoulos; “Service-Oriented Computing”,
Communications of the ACM, Vol. 46, pp: 25-28, October 2003.
[6] Sun Microsystems, “Activation. Dagmon;

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/rmid.html.

[7] Sun Microsystems, “JNDI”, http://java.sun.com/products/jndi/.

[8] Sun Microsystems, “SUN JINI network technology”, http://www.jini.org/.

[9] Rob Bjornson and Andrew Sherman, “Grid Computing & the Linda Programming
model”, Dr. Dobb's Journal, Boulder, Vol.29,N.9, pp.16-17,20,22,24, Sept.2004.
[10] Reseach group of Hiroaki Isobe, Takehiro Miyagoshi, and Kazumari Shibata,
Koyoto University, “NEC Earth Simulator”,

http://www.es.jamstec.go.jp/esc/eng/.

[11] IBM, “IBM ASCI White”, http://www.lInl.gov/asci/news/white_news.html.

[12] University of California at Berkeley, “SETI@Home”,

http://setiathome.ssl.berkeley.edu/.

72

[13] Stanford University, “Folding@Home”, http://folding.stanford.edu/.

[14] GIMPS, http://www.mersenne.org/prime.htm.

[15] “Grid Computing: A Vertical Market Perspective 2005-2010”, The Insight
Research Corporation, Feb 2005.

[16] Giovanni Flammia, “Peer to Peer is not for Everyone”, IEEE Intelligent systems,
Vol. 16, No. 3, pp. 78-79, May/June 2001.

[17] Linda Programming Model, http://www.netlib.org/pvm3/book/nodel6.html.

[18] D. S. Meliksetian, J.-P. Prost, A. S. Bahl, I. Boutboul, D. P. Currier, S. Fibra, J.-Y.
Girard, K. M. Kassab, J.-L. Lepesant, C. Malone, and P. Manesco, “Design and
implementation of an enterprise grid”, IBM Systems Journal on Grid Computing,
Vol. 43, No. 4, pp. 646-664, 2004.

[19] Daniel A. Menasce, “MOM vs: RPC: Communication Models for Distributed
Applications”, IEEE Internet Computing-Magazine, pp. 90-93, March/April
2005.

[20] Y.M. Teo and X.B. Wang, “ALiCE: A Sealable Runtime Infrastructure for High
Performance Grid Computing”, Proceedings of IFIP International Conference on
Network and Parallel Computing, pp. xx, Springer-Verlag Lecture Notes in
Computer Science, Wuhan, China, October 2004.

[21] Globus Alliance, “Globus Toolkit”, http://www.globus.org/.

[23] Anand Natrajan, Anh Nguyen-Tuong, Marty A. Humphrey, Andrew S.
Grimshaw, “The Legion Grid Portal”, Grid Computing Environments, vol. 14,
No. 13-15, pp. 1365-1394, 2002.

[24] Sun Microsystems, “Project JXTA Overview”, http://www.jxta.org/.

[25] GridSim, http://www.buyya.com/gridsim/.

[26] Jack J. Dongarra, Computer Science Department, University of Tennessee

“Performance of Various Computers Using Standard Linear Equations Software”,

73

Technical Report CS-89-85, University of Tennessee, Computer Science Dept.,
The report is available electronically.

URL ftp://www.netlib.org/benchmark/performance.ps

[27] University of Mannheimtop & University of Tennessee, “Top 500

supercomputers”, http://www.top500.org/.

[28] SAIC, http://www.saic.com/supercomputing/.

74

APPENDIX: USER TUTORIAL

* RECOMMENDED DEVELOPMENT FLOW

Figure Appendix-1 shows our recommended development flow for mGrid framework:

1. SETUP PLATFORM 2. DEPLOY ENGINES
Y merid A1 (ch.4)
4, DESIGN YOUR APP

xmarld Platform (Ch.3) xmﬂrld Engines (Ch.3)

e ™ =

5 &

..................-. d_ |

EEmmamfEssansEmEEE |I|. I

Service()

L]

Submit parallel tasks ==

P N ot T GO, 2 E_ |

Relrieve resuits o Y e

s

LJ | L] I\‘A @ J 3. MONITOR YOUR NETWORK

xmarld Toolkit (Ch.3)

Figure Appendix-1: Recommended mGrid Framework development flow

You will need to start the mGrid Platform services first. After you have successful
setup the platform, at least one mGrid Engine must be deployed on your network. At
this point, you can run the mGrid Toolkit to monitor the mGrid Environment you have
just created. Next, utilize the mGrid API to write your own applications! See the

following sections for setup instructions.

75

* mGrid PLATFORM QUICK SETUP

1. Install J2SDK 1.2 or above. See reference [4] for installation instructions.

2. Copy the mGrid package to your computer. This computer must have the J2SDK

pre-installed and basic network connectivity. (e.g. copy to C:\<mGrid Package>)

3. Start the mGrid Platform by double-clicking the following batch files
consecutively: (0)erase.bat, (1)http-server.bat, (2)activation.bat, (3)Nucleus.bat,

(4)txn.bat and (5)space.bat.

These files can be found in <mGrid Package>\bin\start.

-‘ﬁ]:IEIEtE!E!.]:IEI (1 http-srver. . (2activatiog ba =) Huoclens ba At bat [Sspace bat
t

Figure Appendix-2: The batch files'}'_.that thﬁgih%@riq.-ﬁl'atform, simple and straight-forward

‘i
u

*

4. Done! At this point the mGrid Platform is fully initiated!
Now that you have the mGrid Platform running, you need to start at least one
mGrid Engine instance on the network to form a mGrid Environment. You can
then use the mGrid API to write various innovative grid applications that utilizes
the resources harnessed within a mGrid environment, see chapter 5 for mGrid

API programmer’s guide.

* mGrid ENGINE QUICK GUIDE

1. You need to start at least one engine instance on your computer to form a mGrid

Environment. Double click the batch file run_GridEngine.bat to start the mGrid

76

Engine software. This file can be found in <mGrid Package>\bin\engine.

2. You should now see the mGrid Engine graphical user interface:

 un Wicrgyatems Inc
Ap T VA UL omy

ava HetEpntThe Gl Vi]|

Wormnor ihe varrus sty of e Laanil

fuEng JWM | SLCT B T SV | L
oy LA A AT Haan [Hamcg Fask i o
0L inual Macrane Spaci_|

ke

WD dapeing. |

i Cliaili B

[rn IR IE
Macring Profie & Frogram Flasdaayiel.
Linang fhes optin you cun vars B =" e
CPU sashis ol e hisl machee GG N e LIl

vanGrs DRaTs wed! D6 Ori iyl

Mk Pt |
CPU Usage Monitor

Engin Massaga
This explion @icws Enghs
RIRIERITAIEYY I WA AT g e

T THE G ST

O Tuncions W W02 m0a im0e mon
Dan S350 0na Srgee Lo THna
[D BECERLRG UL M | age

i Memary Usage Moniter

S Bl

e W MO 8 ue
Tima

Uzage %)
i B

Figure Appendix-3: mGrid Engine graphical user interface

The interface consists of four parts:

A. Main control panel. Call up the JVM, system usage and task message panels.

B. JVM Panel. Show the JVM profile of the local system. Information such as
JVM version, OS patch level and so forth are displayed.

C. System Panel. Show the CPU and memory usage of the local machine. You
can zoom-in or zoom-out the CPU/memory diagrams by dragging the
portion you wish to inspect.

D. Task message Panel. Show the messages while processing a task. The

77

messages show what tasks are currently being processed and whether an

error occurred. it also reflects the processing speed of the engine.

» mGrid TOOLKIT QUICK GUIDE

1. You can start a mGrid Toolkit to monitor any existing mGrid environment.
Double click the batch file run_GridToolkit.bat to start the mGrid Toolkit, this file

can be found in <mGrid Package>\bin\toolkit.

2. A login screen should appear, type in your username and password.

Login Name: |5hen |

Password: i"“*‘”"""ﬂ |

| & Login || [E] Help

Figure Appendix-4: mGrid Toolkit login screen

3. After you successfully logged in. You should see the toolkit interface. This is

depicted in Figure Appendix-4 on the following page.

The entire mGrid network environment is now right before your eyes, and as
clear as crystal! You can monitor the CPU/memory status of each device running
a mQGrid Engine instance, acquire their machine and JVM information.
Furthermore, by clicking the shutdown button you can remotely shutdown the

corresponding mGrid Engine.

78

mitod Tookks | 0

7 I miaid Netwmrk
B clen=
+ U Gervens
& ref-stefanfion) (AT ABE 11
o EhEn 10206011 13
B #mity 103 165 11 &3

[§ @ merwork Tool | [F worktiow Tool | B systom Tool | [Hew Tool | @ abewt
R g ek

hu-stwhabiion jopa Y00 mden 1
A (o 100, e B8]
miky fepia 24, mim &)

192.168.11.88 192.168.11.12 192.168.11.3
108 100 180 (.Y
m
rm -] ™ ﬁ
£ i i o~
E L] ﬁ' L E‘ = m
3 3 z -
- 4 H
]] o
wrls - acrs
Engnie Stafus Engirs Slahrs I
§ 3 % . Enging Sils
[Rem B mam (B oy W mem Wern B mam
W Shuddnwm L I Stidown I N Shutdrem
e — boeer i |

= RUNNING AN EXAMPLE 2 SEEE R

D A
T i
‘T

1. At this point you should have everything you need in place. To try out an
example, double click the batch file run_Rotator3D.bat to start the demo program,

this file can be found in <mGrid Package>\bin\demo1.

2. You should see a screen containing three 3-dimensional objects rotating. This is

depicted in Figure Appendix-5 on the next page.

The idea is this: the program creates a large quantity of tasks for processing.
With a single mGrid Engine, the processing is extremely slow, thus the speed of
rotation is also slow. However, as you start more engines on your network, the

processing accelerates, thus the speed of rotation comparatively becomes faster!

79

£ mGrid Demol @@E

.".

Figure Appendix-6: 3D rotating demo programi Thé.more mGrid Engines, the faster it rotates!

3. You can refer to the demo source codes-on how to effectively utilize the mGrid

API to write grid programs of your own. The source code can be found in the

folder <mGrid Package>\mGrid\src\examples\ex1.

This concludes our tutorial on mGrid Framework.

80

