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摘要 

  

諸如基因排序以及蛋白質解析等複雜的解碼工作需要大量的運算量以及繁複眾

多的執行步驟，業界多半利用格網運算(Grid Computing)的方式將繁重的運算工

作交予後端的分散式叢集電腦群來快速完成，這一類的格網系統通常仰賴著昂貴

的硬體設備或是特殊、特定的軟體，使得格網運算這個名詞數年以來一直狹隘地

隸屬於高速科學計算的領域。縱使在科學領域已被廣泛使用，昂貴的整體擁有成

本(Total Cost of Ownership)讓一般使用者或甚至中小型企業對於採用格網概念

望之卻步。龐大的潛在電腦運算資源依然未能有效被利用。使用者持續尋找著更

多的運算資源來解決他們的問題。在這些挑戰之上，格網本身尚暴露著技術層面

的瑕疵。業界的方案無法有效解決諸如此類單一切入點故障(Single-point of 

Failure)的架構性問題、動態擴充格網體積的延展性問題(Scalability)、或是支援

跨平台特性的普及性問題。 

本篇論文提出一個低成本的純軟體跨平台格網方案，有效解決單一切入點故障、

動態擴充格網體積等問題，並提供簡化格網應用程式開發的工具組以及程式設計

介面(API)，大幅縮短研發人員粹取企業內部運算資源的時間，將生產力最佳化。

研發人員將能專注於設計與開發，而不再需要週而復始地在企業中辛苦獵取閒置

但是隱形的運算資源。 
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Abstract 

 

Complex jobs such as bio-genetic sequencing and protein modeling requires massive 

quantity of calculation and execution procedures. Today, industry applies Grid 

Computing technologies to delegate the intensive computational work to a farm of 

cluster computers in order to accelerate computing speed. This category of grid 

computing rely on sumptuous hardware or distinctive, specific software, thus 

restraining grid computing to constricted domains such as high-speed scientific 

computation. Despite the widespread acceptance of grid concept, high TCO(Total 

Cost of Ownership) intimidated the general public or even SMEs(Small-Medium 

Enterprises) from adopting grid technologies. Vast amount of potential computing 

capacity still remains untapped. Users are continually searching for more computing 

resources to assist solve problems. On top of these challenges, Grid itself suffers 

certain technical imperfections. Commercial solutions are incapable of solving 

single-point-of-failure issues, incapable of dynamically expanding the volume of grid 

network and is certainly having a difficult time migrating grid infrastructure to a 

universe of different electronic devices existing today. 
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This research proposes a low-cost, pure software-based, cross-platform grid 

framework, eliminating the mishap of single-point of failure, allowing dynamic grid 

expansion. The framework also provides utility tools and Application Programming 

Interfaces(APIs) that simplifies the process of grid application development, thus 

optimizes overall productivity. Developers must focus on design and development 

rather than hunting for resources hidden within the enterprise. 
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1.  INTRODUCTION 

 

 

 

1.1. PREFACE 

Complex jobs such as bio-genetic sequencing and protein modeling requires massive 

quantity of calculation and execution procedures. Today, industry applies Grid 

Computing technologies to delegate the intensive computational work to a farm of 

cluster computers in order to accelerate computing speed. This category of grid 

computing rely on sumptuous hardware or distinctive, specific software, thus 

restraining grid computing to constricted domains such as high-speed scientific 

computation. 

 

1.2. MOTIVATION 

Despite the widespread acceptance of grid concept, high TCO (Total Cost of 

Ownership) intimidated the general public or even SMEs(Small-Medium Enterprises) 

from adopting grid technologies. Vast amount of potential computing capacity still 

remains untapped. Table 1-1[1] designates a research adapted from Internet 

Infrastructure & Services by Bear, Stearns & Co., quantifying the total idle 

computational resources, into a more tangible measurement. The result is astonishing. 

 

 $/processor $/used $/used processor Cost of unused cycles 

1 desktop $1,200 $300 $150 $1,050 

1000 desktops $1,200,000 $300,000 $150,000 $1,050,000 

Table 1-1: Cost of unused computational resources [1] 

 

  1



According to the research, an enterprise with one thousand computers wastes   

minimum of $1.05 million worth of computational resources daily.  

On top of things, Grid itself still suffers certain technical imperfections. Commercial 

solutions such as the SUN Grid [2] are incapable of solving single-point-of-failure 

issues, incapable of dynamically expanding the volume of grid network and is 

certainly having a difficult time migrating grid infrastructure to a universe of different 

electronic devices existing today.  

In addition, the steep learning curve substantially increases the cost and risk of 

developing a stable real-world grid application. We must keep in mind that grid users 

are seldom experts in distributed technology, the significance of their innovation in 

developing applications often exceeds their knowledge towards grids. Thus, 

middleware providers need to provide exception-free, thread-safe and simple-to-use 

tools and APIs for grid application developers.  

This research proposes a low-cost, pure software-based, cross-platform grid 

framework, named mGrid. mGrid eliminates the mishap of single-point of failure and 

permits dynamic grid expansion. The framework also provides utility tools and 

Application Programming Interfaces(APIs) that simplifies the process of grid 

application development, thus optimizes overall productivity. Developers must focus 

on design and development rather than hunting for resources hidden within the 

enterprise. 

 

1.3. RESEARCH OBJECTIVES 

mGrid framework is intended to achieve six major objectives: low-cost, 

cross-platform, high performance resource sharing, high-scalability, high-flexibility 
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and simple-to-use. 

 

1.3.1 Low-Cost and Cross-Platform 

Sumptuous hardware or distinctive, specific software is a key problem averting grid 

technologies from being embraced by the general public. In order for grid solutions to 

be extensively adopted, two issues needs to be taken into consideration.  

First is the cost issue, the TCO of owning a grid must be sufficiently acceptable. The 

second is the ability to connect various electronic devices existing today. In other 

words, the cross-platform characteristic of a grid solution directly determines the 

potential volume of the grid in the future.  

 

1.3.2 High Performance Resource Sharing 

Performance is undeniably the key measurement in evaluating a grid middleware. 

People expect grids to be fast, reliable and stable, anything less would be intolerable. 

Performance in grid systems is effected by two sets of elements: 

● The nature of the job submitted to the grid. Sequential computation is by nature 

the worst case in grid performance, compared to complete parallel computations. 

● Grid architecture design. Bad task scheduling algorithms could lead to potential 

bottleneck of the whole system, while naive control-message routing strategy 

could quickly overload the grid environment. 

From the middleware provider’s point of view, the first element is beyond our scope. 

Nevertheless, the second element is the responsibility of a good grid middleware. 
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1.3.3 High-Scalability 

The performance growth of a grid is direct proportional to how fast it can scale, e.g. 

the more computers that is currently within/joining the grid, the faster it processes 

tasks. Scalability can be classified into two categories: static and dynamic. Majority of 

commercial grids supports only static scaling, the grid size is fixed to a predefined 

cluster of computers, new computers joining the grid will require manual modification 

of attributes in the central task dispatching server. Dynamic scaling does not require 

manual interference, new computers notifies the grid of its existence automatically. 

Grid systems should be able to scale dynamically and scale high. 

 

1.3.4 High-Flexibility 

A grid framework should preserve resilience for application developers. Grid 

computing is an approach that lets you organize widespread, diverse collections of 

resources into a more uniform, manageable, visual whole. The resources we are 

referring here does not narrowly limit to CPU or storage, it might refer to anything 

with digital representation, e.g. Multimedia files, libraries, data, applications…etc. A 

good grid middleware should be as flexible as possible, it should not confine the 

innovation of grid application programmers within the scope of a badly designed 

middleware API.  

In other words, creativity should not be limited by the framework. 

 

1.3.5 Simple-to-Use 

Grid systems involves complicated low-level network communications and protocol 

design. A grid middleware has the responsibility to hide these underlying complexities. 
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A set of simple-to-use Application Programmer Interfaces(APIs) should be provided 

for application designers. Furthermore, cumbersome grid administrative jobs should 

be made simple by utility tools, provided with the middleware.  

 

1.4. RESEARCH CONTRIBUTION 

To achieve the objectives listed in section 1.3, we encountered various perplexities 

while designing mGrid. This thesis discusses the issues that were encountered and our 

corresponding solutions. The major contributions of this research can thus be 

categorized into seven parts. 

● We crafted a low-cost, pure software-based high performance grid solution that 

works on various devices with java support. Figure 1-1 below depicts this 

cross-platform characteristic: 

 

 

Figure 1-1: mGrid platform runs on various electronic devices with Java support 
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● We introduced a simple-to-use grid programming model. 

● We introduced a set of utility tools to facilitate the administration of mGrid.   

● We discussed the scalability issues in grid middleware, and implemented mGrid 

with a decentralized space-oriented architecture that supports dynamic grid 

expansion, and effectively solved the single-point-of-failure problem. 

● We discussed the flexibility issues of grid middleware and proposed a 

considerably general platform for developers to write a variety of grid 

applications. 

● We experimented mGrid performance with a modified version of the Linpack 

benchmark[3], a standard benchmarking program for commercial super 

computers. 

● We analyzed the pros and cons of various grid design decisions. 

 

1.5. OUTLINE OF THE THESIS 

This dissertation is composed of six chapters. Chapter 1, this one, is introductory. 

In Chapter 2, we introduce the background of grid computing methodologies and 

bring forth major commercial solutions for discussion.  

In Chapter 3, we confer the detail implementations of mGrid framework. This section 

proposes our peculiar distributed algorithms and system architectures that render life 

to mGrid, pro and con of various design decisions is also debated here.  

In Chapter 4, we switch to the developers’ point of view by introducing the mGrid 

API. We can appreciate the ease in both writing grid applications and administrating 

grid environments using tools and APIs supplied with mGrid. This chapter also serves 

as a tutorial for the developers to operate the mGrid framework. Last but not least, 
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some innovative example applications of mGrid framework is also presented here. 

In Chapter 5, we put mGrid performance to the test using a modified version of 

Linpack benchmark[3]. Various experiments will be held and the performance of 

mGrid framework will be thoroughly quantified. Finally, in Chapter 6, we bring forth 

conclusion and a brief discussion on future works along with potential business 

opportunities.      

 

1.6. SUMMARY 

In this chapter we briefly described what grid computing is, what it can do, and the 

problems that exists with industrial grid solutions today. Grids are expensive thus 

intimidated the general public or SMEs(Small-Medium Enterprises) from adopting 

grid technologies. Furthermore, commercial grids still suffer from technical 

imperfections. Then we pointed out the objectives of this thesis and introduced our 

proposed grid system, named mGrid framework. In the end we categorized the major 

contributions of this research into multiple points. 
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2.  BACKGROUND 

 

 

 

2.1. CHAPTER INTRODUCTION 

This chapter gives you the background of our research. To begin with, in section 2.2, 

we bring forth an interesting comparison of three popular models of super computing, 

namely super computers, physical clusters and virtual grids. A survey on their price, 

capability, size and such is revealed here. This survey serve as one of our basis in 

explaining why grid concept is gradually replacing traditional super computers or 

large mainframe clusters.  

Next, we introduce the definition of grid computing according to TurboWrox 

Corporation[9] in section 2.3. What is a grid? How can it be applied? What 

applications are suitable to be submitted to a grid for processing? What are not?  

It is known that commercial grid solutions are implemented using dissimilar 

architectures and communication models, which possesses different characteristics. 

Sections 2.4 and 2.5 discusses several approaches in implementing a grid, the pros 

and cons, and explain why we choose a particular model. Finally we introduce other 

related works in section 2.6. 

Note that each survey we made has a certain level of impact on how we implement 

the mGrid Framework. We try to present to you concrete evidence referenced from 

other academic researches and industrial studies to justify our path of choice. 
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2.2. SUPER COMPUTER, PHYSICAL CLUSTER AND VIRTUAL GRID 

Grid computing is not the only option in efficiently solving complicated scientific 

calculations, there are other options existing. These options includes: 

● Super Computers. Large and expensive singular computing hardware, normally 

used in areas such as weather condition modeling and nuclear simulation. 

Famous examples include NEC Earth simulator[10] and IBM ASCI White[11].  

● Physical Clusters. Supercomputing devices consists of a large number of 

computers. Each of the computing node is interconnected using a LAN. Physical 

clusters usually resides within a single organization and is rarely open to the 

public. Jobs are dispatched to the back-end cluster for computation. 

● Virtual Grids. PCs’ computing capacity are donated freely to join virtual grids. 

Each PC is connected across the internet using software programs. Famous 

examples include SETI@Home[12], Folding@Home[13] and GIMPS[14]. A 

virtual grid usually span across several geographical locations. 

These three options possesses different characteristics. Entry barriers in adopting each 

of the mentioned technology is also different. Table 2-1 presents a comparison of 

these three choices, using commercial products as example: 

 

Computing Option Name Specification Cost (million USD) 

Super Computer IBM ASCI White 8192 RS/6000 processors 

6TB memory 

$110  

Super Computer NEC Earth Sim 5104 vector processors 

16GB memory 

$350 

Physical Cluster  100,000 Intel P4 1G processors 

256MB memory 

$213 

Virtual Grid  100,000 Intel P4 1G 

256MB memory 

Absorbed by PC owners

Table 2-1: Comparison of super computers, clusters and grids [10][11][12][13] 
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According to a market research report by the Insight Research Corporation in 2004, 

cost is the primary decisive factor for the adoption of super computing devices[15]. 

This means, the higher the TCO(Total Cost of Ownership) for an enterprise to obtain a 

grid, the lower chance that they will actually adopt the technology. Table 2-1 shows 

that virtual grids proliferated an undeniable attraction due to its low-cost. Therefore, 

one of our major research objective is in creating a low-cost grid framework that 

provide all the necessary functions of a grid. 

mGrid is a pure java-based grid framework. The java language provided 

cross-platform abilities so that an enterprise can interconnect all of their internal 

computers using mGrid Framework, regardless of their operating systems. This 

thoroughly utilizes all the idle resources in an enterprise without having to purchase 

any new hardware. TCO is thus lowered to an acceptable range with mGrid. 

 

2.3. GRID COMPUTING DEFINITION 

IDC and Insight Research Corporation predicts that worldwide grid spending will 

grow from $714.9 million in 2005 to approximately $19.2 billion in 2010[15]. With 

all the hype in the future of grid computing, it is surprising that there is still a lack of 

approval on what it is. TurboWrox Corp’s definition is a pragmatic one[9]. It is a 

computing model that: 

● Aggregate a set of diverse, widespread, distributed CPU resources into an 

organized virtual supercomputer. 

● Aggregate a set of diverse, widespread, distributed Memory resources into an 

organized virtual system memory. 

● Aggregate a set of diverse, widespread, distributed Data resources into an 

organized virtual data warehouse. 
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● Provide a unified visual view of the set of disperse resources mentioned above. 

● Provide simple management, administration and utilization of distributed 

resources spanning across the network. 

TurboWrox’s grid definition left out one important item: 

● Grid is flexible. 

mGrid sees grid computing not only as a mean to aggregate computing resources, but 

also as a platform for innovative grid applications. It needs to be extremely flexible 

for developers to write various creative applications other than computation-based 

programs. See chapter 4 for more creative grid applications written with mGrid. 

So what kind of application is suitable for a grid?  

Our answer is that parallel programs are more applicable to grids. By parallel 

programs we refer to a set of procedures that do not interfere with one another. Each 

step in the program is independent. An example of such system is a distributed 

searching program that allows searching on individual grid nodes. Parallelism ignite 

the full potential of grids, see chapter 5 for the quantification of our statement here.  

In summary, mGrid matches all five of TurboWrox’s grid definitions, and we added 

an extra definition of our own, by allowing more flexibility in mGrid Framework.  

Now that we understand the basic background of grid computing, what it is, what it 

can do, we now dive into more advanced discussions: underlying technical variations 

of grids. We begin with higher-level architectural options, then lower-level 

communication model options. 
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2.4. SYSTEM ARCHITECTURES  

Three possible types of grid system architectures are Client-Server, Peer-to-Peer and 

Space-oriented. We discuss each individual approaches and analyze their advantages 

and disadvantages. 

 

2.4.1 Client-Server Architecture  

Client-Server model is simple and common in the world of network. Certainly, it can 

be applied to grid computing as well. In the Client-Server model, a grid user submits 

jobs to a centralized job dispatcher, this dispatcher then “dispatch” jobs to a 

appropriate node within the grid for processing, according to the current load of each 

computing node. Figure 2-1 depicts such model: 

 

 

Figure 2-1: a Client-Server based grid architecture[16] 

 

The major advantage of Client-Server model is in its easy management nature. The 

central dispatcher also serves as the management node, thus the administration of 

each computing node can be conducted by directly linking to the dispatcher server.  

Its disadvantages includes the Single-point-of-Failure(SPF), and low-scalability. SPF 

refers to the situation when the central dispatcher server crashes, the entire back-end 
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grid is immediately rendered useless. As for the second disadvantage, low-scalability 

is obvious when a new compute node joins the grid, configuration needs to be 

manually made in the dispatcher server. This is an extremely tedious task when you 

need to substantially expand your grid size.     

 

2.4.2 Peer-to-Peer Architecture  

The Peer-to-Peer grid model works in a simple manner: a grid user simply pass the 

jobs to its immediate neighbors for processing. Sometimes your task will be flooded 

across the whole p2p network depending on the grid algorithm the system applies. 

Figure 2-2 illustrates a p2p grid architecture: 

 

 

Figure 2-2: a Peer-to-Peer based grid architecture[16] 

 

The advantage of a peer-to-peer architecture is that it does not have a centralized 

control, thus the SPF problem mentioned in section 2.4.1 is eliminated. Furthermore, 

new nodes can be added to an existing network without much effort. 

The disadvantage is in its state consistency. What happens when a node with a job on 

hand suddenly crashes? How would we know which job is lost? Is it really lost or is it 

still under processing somewhere deep in your p2p network? The second downside is 
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that the entire network state needs to be maintained by the grid user itself, the grid 

user needs to know the condition of each of its neighbor node in order to pass jobs to 

the right neighbors for processing. This enormously increases the overall workload of 

the grid user.  

 

2.4.3 Space-oriented Architecture 

Space-oriented concept originates from the Linda programming model from Yale 

University[17]. It basically works as follows: a grid user submits jobs to a storage 

space on the network, each computing node then fetch jobs randomly from the space 

to process. After the processing completes, the results were passed back into the space, 

the grid user then collects and combines the results from the space. Section 3.2.4 

explains the space concept and our implementation in more detail. Figure 2-1 depicts 

a simple space-oriented architecture: 

 

 
Figure 2-3: a Space-oriented grid architecture 

 

The space-oriented architecture seemed to be a panacea for grid computing. It has the 

advantage of both Client-Server and Peer-to-Peer architectures, yet it solved most of 
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the problems occurring in both models[17]. First, the space can be distributed across 

the network thus the SPF problem in 2.4.1 is settled. Secondly, all the compute node 

needs to register itself to the space upon start-up, thus the space manages and 

monitors the entire grid for the user.  

One important characteristic of space-oriented grids is that each compute node 

spontaneously fetch jobs FROM the space for processing, this differs from both the 

Client-Server and Peer-to-Peer models in that these two models push the jobs TO the 

compute nodes for process. This implies one more advantage: each node in a 

space-oriented architecture is allowed to leave the network at will. 

Due to the advantages the space-oriented architecture has over the other two models, 

mGrid chooses the space-oriented model as the underlying system architecture. 

Next, we discuss the lower-level communication protocol options. 

 

2.5. COMMUNICATION MODELS 

Grid nodes communicate with one another by means of communication protocol. 

Since different protocols bring about different effects on a grid system, we need to 

understand the features of each mechanism and decide which is most appropriate for 

grid computing systems.  

Two models are introduced in this section, namely Synchronous Transmission and 

Asynchronous Transmission.  

 

2.5.1 Synchronous Transmission Model  

Synchronous transmission refers to the fact that when a client requests a remote 

service call, the execution process is temporarily suspended until a reply is received 
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from the remote service. An implementation of such concept is the RPC(Remote 

Procedure Call) technology. Most commercial products such as SUN Grid[2] and 

IBM IntraGrid[18] are based on synchronous transmission mode. 

 

2.5.2 Asynchronous Transmission Model 

Asynchronous transmission, on the other hand, allows the service requestors to 

continue running after a request is sent, without blocking the entire program waiting 

for a reply. Examples of asynchronous transmission are MOMs(Message-Oriented 

Middleware) such as JMS(Java Messaging service)[19]. 

Synchronous and asynchronous transmission have advantages and disadvantages. The 

latter tends to be more robust to failures, while the former tends to be easier to 

develop with. 

So which transmission model is suitable for grid computing? Reference [19] uses a 

simple M/M/1 queuing model to prove that for a piece of program that is consisted 

mainly of parallel codes, the overall performance of the asynchronous model is better 

than the synchronous model. Furthermore, grid computing applications by nature are 

supposed to be parallel, submitting sequential programs to a grid is essentially 

senseless. Therefore we expect the majority of mGrid users will utilize our framework 

in solving parallel problems. With these facts in mind, we decided to use the 

asynchronous transmission model for mGrid Framework. 

Note that many commercial products are synchronous-based, thus we expect to have a 

better start than these grid solutions by choosing the correct transmission mode in 

advance. 
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2.6. RELATED WORKS 

Many international research institutes and companies have collaborated in developing 

various projects associated with grid computing. These projects can be horizontally 

classified into specific-grids, general-grids and grid middlewares.  

SETI@Home[12], Folding@Home[13] & GIMPS[14] are examples of specific-grids, 

meaning each of them solves only very specific problems. SETI@Home allows you to 

download a software that turns your computer into a node within SETI’s grid, this 

software analyzes radio telescope data using the CPU resources of your PC and 

transmits results back to SETI central server. Folding@Home uses a similar 

architecture to studies protein folding, misfolding, aggregation, and related diseases. 

GIMPS works in the same fashion only it conducts a different job. 

SUN Grid[2], IBM Intra Grid[18] and ALiCE[20] are examples of general-grids. 

These grid solutions do not restrict the logic of the applications running on-top of 

them. SUN Grid software typically bundles with SUN blade servers and allows jobs 

to be submitted to it. IBM Intra Grid provides an experimental worldwide-scale grid 

system accessible to all IBM employees. ALiCE is a java-based grid solution 

developed by National University of Singapore, applications such as protein modeling 

is written and tested with this framework. 

Finally, Globus toolkit[21], Legion[22], JXTA[23] and GridSim[24] are considered 

grid middlewares. Globus is an open system that provides a set of basic services. 

Users can build higher-level services using lower-level services. Globus is largely 

platform dependent and requires UNIX to run. Furthermore, its complicated 

infrastructure setup, application development and deployment created a high learning 

curve both in mastering and using Globus. Legion is a toolkit that treats all software 
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and hardware in the grid as objects, and provide remote method calls between these 

objects. JXTA is a set of protocols developed by SUN Microsystems to ease the 

development of p2p application, different grid systems can be built by using these 

protocols. Last but not least, GridSim offers a complete solution in the simulation of 

grid networks. 

Most of the above researches are built on-top of the Client-Server architecture, and 

utilizes Synchronous transmission as underlying protocol. From sections 2.4 & 2.5 we 

pointed out that some of these technical decisions are probably not the best ones.  

 

2.7. SUMMARY 

This concludes our research background. We understand that there are multiple ways 

to super computing, and virtual grids offer a cost-effect and attractive option. 

Companies that cannot afford high TCO in purchasing grid solutions should consider 

about adopting grids that are purely software-based, such as mGrid.  

Virtual grids can be implemented using various design options, such as determining 

the system architecture and communication models. In sections 2.4 & 2.5 we used 

concrete research results that proves the following:  

● Space-oriented Architecture is a good choice for grids  

● For parallel computing, asynchronous transmission model is more appropriate.  

Finally we give an introduction on other related works of grids. The surveys and 

observations done in this chapter has influential impact in our design of mGrid 

Framework. In the next chapter we will walk you through our underlying 

implementation design in a thorough manner.  
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3.  SYSTEM ARCHITECTURE 

 

 

 

3.1. OVERVIEW 

The proposed solution in this thesis, named mGrid framework, is a low-cost, pure 

java-based, high-performance grid solution. mGrid attempts to migrate grid 

computing concept onto mobile devices(e.g. Personal Digital Assistants, Cellular 

phones) and onto large computational equipments(e.g. PCs, mainframes), which has 

minimum network connectivity support. Figure 3-1 depicts the macroscopic view of 

the mGrid framework: 

 

 

Figure 3-1: Macroscopic view of mGrid framework. mGrid is consisted of four major portions 

 

mGrid framework is consisted of four major portions:  
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● mGrid Platform 

● mGrid Engine 

● mGrid Toolkit 

● mGrid API  

mGrid Engines can be installed on devices with java support. The J2SE[4] and 

J2EE[4] version is fully operational, while the J2ME[4] version currently has minimal 

functions. Engines deployed on devices automatically constructs a mGrid network 

environment that support transaction, natural load-balancing and security.  

Application developers then use the mGrid API to compose various grid applications 

that utilizes the mGrid environment formed by the engines. Note that at least a single 

engine must be started for a mGrid network to be successfully built. We also provide a 

set of useful tools in the mGrid toolkit to allow easy monitoring and administrating of 

mGrid networks. 

In this chapter we will focus on the implementation methodologies and distributed 

algorithms of three items: mGrid Platform, mGrid Engine and mGrid Toolkit. In 

chapter 4 we will discuss the mGrid API in depth.  

We will emphasize on the J2SE and J2EE version of mGrid framework. 

 

3.2. mGrid PLATFORM 

Before we talk about mGrid Engine and mGrid Toolkit, we need to have some basic 

understanding of the platform itself. Note that both the engine and toolkit rely on the 

grid infrastructure constructed by the software components within mGrid platform. 

mGrid platform is an augmented version of SUN’s JINI network technology[8], by 

augmented version we mean that it provides additional features such as including 
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more specialized service components dedicated to grid computing.   

Figure 3-2 shows the in-depth components that constitute the mGrid platform:  

 

 
Figure 3-2: In-depth component view of the mGrid Platform, indicated in red 

 

mGrid platform adheres to the SOA(Service-Oriented Architecture) concept[5], each 

component can exist as a remote service across the internet. For instance, we can start 

Nucleus service, Transaction service and Security service on computers A , B and C 

lying on the network. These services uses mGrid’s underlying protocol to search, 

discover and communicate with one another, as if they were running on the same 

machine. Protocol details will be described in section 3.2.3. SOA allows the stress of 

executing services to be evenly-distributed across the network, so that no single 

computer will be overloaded[5]. 

Now we introduce the individual components within mGrid platform. We begin with 

two lower-level components first: HTTP Server and Activation Daemon.  
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3.2.1 HTTP Server 

mGrid platform requires this facility because for many vital operations to realize, 

code needs to be dynamically downloaded from some remote service running 

somewhere on your network. The actual transmission of java code take place via the 

HTTP protocol. The implementation of our server is minimal, it only supports the 

GET operation, which is sufficient for code downloading.  

In general, any code that may need to be downloaded across the network has to be 

accessible from a HTTP server instance. 

 

3.2.2 Activation Daemon 

An activation daemon[6] is a piece of software which allows services that is invoked 

only rarely to essentially “hibernate”, and be automatically awakened when they are 

needed. Every service component will need to register itself with an activation 

daemon instance before running. Activation daemon has two major responsibilities: 

● Service hibernation & de-hibernation: Manage the transition between active and 

inactive states for each service component.  

● Service self-recovery: Restart a particular service after it crashes, restoring it to 

its previous state before the crash.  

We make use of the activation daemon software that comes with J2SDK 5.0[4]. At 

minimal, you will need to run an instance of activation daemon on each host that runs 

services. The daemon creates log files that contains information of the activable 

service which has registered itself to the daemon. State transition and crash recovery 
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relies on the information saved within those log files. 

The reason we apply activation daemons not only is because it is able to recover 

services after a crash, but also economizes the use of system resources by sending 

currently unused service components into “hibernate” mode. The down-side is that it 

adds an extra layer below each service component, efficiency is therefore decreased 

during a service’s initial start-up time by approximately 7.5%, but proposed no further 

decreases in subsequent service calls. We decided that this is a minor trade-off 

compared to the valuable capabilities it adds to our platform. 

In summary, the mGrid platform requires both HTTP server and activation daemon 

for services to pass necessary java codes across the network and to be self-recovery. 

This concept is exhibited in Figure 3-3:  

 

 
Figure 3-3: Underlying code transmission steps for mGrid platform 

 

ow that we understood how the lower-level code passing operates, we can start to N

probe into the upper-level service components provided by mGrid platform, namely 

Nucleus service, Transaction service, Leasing service, Security service, GC(Garbage 
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Collector) service and Distributed Space service. Note that these services relies 

heavily upon the schemes described in sections 3.2.1 and 3.2.2. 

3.2.3 Nucleus Service 

As the name implies, this service is the central core among the other services listed in 

nd of naming/directory service[7], it keeps 

 

2.  of the service it 

3. es and proxy code. 

art-up, using IP multicast(in 

5. ecessary proxy code it requires from the first 

6. The service user communicates with the service component in a p2p manner 

the mGrid platform. A good analogy would be our solar system: The Nucleus service 

will be the sun, while the other services within mGrid platform are the planets 

constantly revolving around it, all using the functionalities the Nucleus service 

provides. 

You can think of Nucleus service as a ki

track of all other mGrid services currently running on the network. However, it differs 

from traditional naming/directory services, which only provides simple string-object 

mapping, the Nucleus service supports java type search, i.e. You can search for a 

particular service using the interface it implements or any of its super-interfaces. 

The Nucleus service co-operates with other active services using the following steps: 

1. A new mGrid platform service component searches for Nucleus services upon

start-up, using IP multicast(in LAN) or unicast(beyond LAN).  

 The service component publishes the attributes and proxy code

provides to the Nucleus service. 

 Nucleus service saves the attribut

4. A service user searches for a Nucleus service upon st

LAN) or unicast(beyond LAN).  

 The service user downloads the n

Nucleus service it found. 

using the proxy code. 
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The ed in Figure 3-4: above steps are illustrat

 
Figure 3-4: How Nucleus service works with the other services from mGrid platform 

 

Note that steps 2 and 5 in Figure 3-4 utilizes the underlying dynamic code download 

echanisms makes this possible:  

● Y  instances of Nucleus service on your 

 

(Max num of Nucleus failure tolerated) = (Total num of Nucleus started) – 1 (1)

scheme introduced in section 3.2.1. 

Each Nucleus is also fault-tolerant, two m

● Each Nucleus service relies on the activation daemon described in section 3.2.2 

to recover its state after a crash or restart. So you must run an activation daemon 

on each machine that runs a Nucleus.  

ou have the option of running multiple

network. This redundancy allows unexpected failures of some Nucleus. It means 

as long as a single Nucleus lives, the mGrid platform can perform its duties as if 

no failure occurred, since each service user requires only a minimum of one 

Nucleus for proxy code downloading (see step 4 in Figure 3-4). This can be 

summarized into a simple mathematical formula: 
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Before discussing other service components in mGrid platform, we need to kee  

hat all the mGrid platform services needs to register itself to the Nucleus 

 

p in

mind t

service upon start-up. Nucleus service keeps track of all mGrid service components 

currently running, and is capable of making them visible to service users, even if users 

have no previous knowledge of where the service components are on the network.     

This interaction between service components, service users and Nucleus is illustrated 

once more using an UML sequence diagram in Figure 3-5: 

 

 

Figure 3-5: All service components needs to register with the Nucleus service upon start 

 

3.2

he Distributed Space Service serves as the job exchanging location for our grid 

and taken from a space. From this point on we shall 

-oriented grid 

.4 Distributed Space Service 

T

system, all jobs are transmitted to 

refer the distributed space service as simply “space” for convenience.  

The concept of the space-oriented grid has been introduced in section 2.4.3, let’s add 

it with more detailed explanation here. Figure 3-6 shows the space

concept: 
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Figure 3-6: The Space-oriented grid architecture used in mGrid Framework 

 

he space works in a very simple manner. Suppose we have multiple users U, a single 

 jobs to S.  

k to S. 

e S for final presentation. 

Note that each space need to reg  

 temporary memory residing on the 

T

space S, and multiple Engines E: 

1. U submits a series of parallel

2. E fetch the jobs randomly from S. 

3. E process the jobs. 

4. E put the results bac

5. U collects the results from th

ister itself to the Nucleus, refer to Figures 3-4 & 3-5.

After a space has successfully registered itself to a Nucleus, it is then visible to both 

mGrid users and mGrid Engines for discovery and use. This space discovery process 

will be explained in more detail in section 3.3 later on. Right now we only need to 

know that a space acts as the central job exchanging ground for our grid Framework. 

So what is a space exactly? 

The simple answer is that a space is a piece of
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network that is consisted of multiple computers. Computers participating in the same 

space can share each other’s memory and storage space. Figure 3-7 depicts a space: 

 

 

Figure 3-7: a “Space” is consisted of several computing devices 

 

Figure 3-7 ill s X,Y and Z. 

omputer X sits at geographic location A, while computers Y and Z sits at geographic 

tremely useful and sufficient. Suppose we 

ustrates a single space consisted of three personal computer

c

location B. By initiating a distributed space service on each of the computers, we 

combine them into a single logical space entity that is consistent and shares 

memory/storage resources, regardless of their actual geographical whereabouts. In 

other words, a space service is a virtualization middleware which connects computer 

memories across the network. Space service uses multicast to search for other space 

services in the same LAN, while unicast is used if the other space services are located 

outside of the LAN. 

A space only supports three simple operations: 1. Fetch 2. Put and 3. Read. These 

three very basic operations proves to be ex

have a Genetic Algorithm computation on hand, each step can be first disassembled 
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into tasks. Each task is then Put into the space by the client. The engines Fetch these 

tasks from space and does the processing, then it Put the results back into the space. 

Finally, the client Read the results in space and reassemble them for presentation.  

A space utilizes the other services, namely Transaction service, Leasing service, 

Security service and GC(Garbage-Collector) service, to provide add-on functionalities 

such as safe-transaction, space garbage-cleaning, space access-authorization and 

leasing. These final four mGrid platform service components will be introduced in 

sections 3.2.5, 3.2.6, 3.2.7 and 3.2.8 below. 

 

3.2.5 Transaction Service 

A transaction service needs to register with the Nucleus before being used by other 

ransaction service provide the ACID 

ted space service, 

service components, see section 3.2.3. T

properties to data manipulations. In simple words, it allows a series of operations to 

complete altogether, if a single operation in the whole series fail, the transaction fails, 

and everything gets rolled-back to its initial state. 

Our implementation of Transaction service supports the 2-phase commit protocol. 

Note that the distributed space service utilizes the transaction service to insure data 

integrity, the space is required to discover the transaction service through the Nucleus 

(consult section 3.2.3) before it can be transaction-enabled.  

Figure 3-8 illustrates the transaction steps in mGrid platform using UML sequence 

diagram. The interaction between mGrid Client, the Distribu

Transaction service and mGrid Engines is the center focus, we will not show 

transaction-unrelated steps such as the discovery of services. 
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Figure 3-8: Transaction service supports the 2-phase commit protocol: Either all or none! 

 

Le e 

ansaction, this means T1 and T2 must both complete successfully or neither will. 

t us explain Figure 3-8 step by step. Assume tasks T1 and T2 belong to the sam

tr

Transaction service keeps this principal in mind and constantly polls Engines A and B 

using the 2-phase commit protocol. If both Engines A and B succeed in processing T1 

and T2 consecutively, then the transaction service sends the commit message to both 

engines, finishing up the transaction. If either engine fail to finish processing a task, 

then the transaction is considered a failure and roll-back procedure is taken. The 

system returns to its initial state and re-processes T1 and T2 again. 

We use a simple pseudo-code in the next page to demonstrate the transaction 

algorithm described above: 
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T1, T2 : belong to the same transaction; 

 

ransacted processing of tasks(T1, T2) 

e. 

Step2. T1, T2 are registered to the Transaction service to be managed. 

 and T2 for processing. 

 

e A || Engine B has not completed processing) 

 

as completed? 

} 

 

Step6. commit the transaction and the client read the results from space. 

} 

T

{ 

Step1. T1, T2 are put into the spac

Step3. Engine A and Engine B fetch T1

Step4. Engine A and Engine B are registered to the transaction service. 

While(Engin

{

Step5. Transaction service asks Engines A,B if the processing h

Listing 3-1: Transaction algorithm pseudo-code 

 

he Space service needs to discover the Transaction service before using it, the 

.2.6 Leasing Service 

elf before being used. All objects sent to a space 

T

discovery procedure is described in Figures 3-4 and 3-5, section 3.2.3.  

 

3

Leasing Service needs to register its

has a lease time attribute, indicating its TTL(Time-To-Live) within a space. A Leasing 

service manages a hashtable of object-TTL pair, and constantly removes the expired 

objects from a space. This allows the unused objects to be recycled and memory 

resources could be released, thus mitigates the loading of the entire grid. 

However, lease time have the option to be renewed to prevent it from being discarded 

by the Leasing service.  
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3.2.7 Security Service 

ty model. The Security service reads a 

grant { 

java.security.AllPermission "", ""; 

mGrid platform supports policy-based securi

policy file before the mGrid platform starts, this policy file include all the policies that 

has to be obeyed. The following are two simple examples of a policy file: 

 

    permission 

 };

Listing 3-2: Policy File that allows total access to mGrid platform from anyone. 

 

grant { 

java.security.AllPermission "", ""; 

1.2", "connect, refuse"; 

    permission 

    permission java.net.SocketPermission "192.168.1

 };

Listing 3-3: Allows total access except for incoming connection from IP 192.168.11.2 

Security service provides a static method of authentication and authorization for 

.2.8 GC Service (Garbage-Collector Service) 

ervice. Like all the other service 

 

mGrid platform. Currently the platform has been initially tested using the total access 

policy.  

 

3

GC service is short for Garbage-collector s

components in mGrid platform, it needs to register itself to the Nucleus before being 

used. GC service differs from the Leasing service described in section 3.2.6 in that it 

can force all the objects to be cleaned up, regardless of their leasing time. This service 

is useful in situations when the entire platform needs to be restarted. 

Other uses of GC Service would be specifying a group of unwanted objects, such as 
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illegal submitted tasks. The GC service removes these tasks without effecting the 

other regular operation of mGrid platform.  

So far we have completed the introduction of the underlying mGrid Platform, and 

.3. mGrid ENGINE 

t on-top of the mGrid Platform. Figure 3-9 shows the in-depth 

should have a brief understanding of how a space-oriented grid works(see section 

3.2.4). mGrid Engine is another key portion of our framework that is built on-top of 

mGrid Platform. In the following section we will introduce the mGrid Engine. 

 

3

mGrid Engine is buil

components that constitutes mGrid Engine: 

 

 
Figure 3-9: In-depth component view of the mGrid Engine, indicated in red 

 

ngines can be deployed on a variety of devices with java support. After successful E

deployment and execution, engines allow a disperse set of devices to link together and 

form a virtual supercomputing environment that shares CPU, memory, storage, file 
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resources and so forth. We call this environment the mGrid Environment. 

Developers then utilizes the mGrid APIs (see chapter 4) to write various grid 

Grid Engine’s role, we begin introducing the 

.3.1 Engine Kernel 

ain component which enables the engine to communicate with 

rid 

● processing, 

● onitoring messages sent to mGrid Toolkit (see 

●  mGrid Toolkit (see section 

If we look at engine kernel assists the engine to search 

applications that access the resources harnessed within mGrid environment. These 

applications includes protein modeling, ray-tracing and prime number searching 

programs. 

Now that we have a high-level idea of m

inner-level components that propels the engine, starting with the core of the Engine: 

Engine Kernel. 

 

3

Engine Kernel is the m

the underlying mGrid Platform. The engine kernel has four major responsibilities: 

● Initializes the engine, search for the space service instance provided by the mG

Platform (see section 3.2.4 for distributed space service introduction). 

Fetches tasks from space, pass them to the Generic Task Processor for 

then put results back to space. 

Acts as the middleman for m

section 3.4 for Toolkit monitoring details). 

Acts as the middleman for control messages sent from

3.4 for Toolkit controlling details). 

technically, an engine kernel 

for space instances within mGrid Platform, and constantly fetch tasks from the space 

for processing. Figure 3-10 illustrates how an engine kernel interacts with a space 

using UML sequence diagram: 
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Figure 3-10: Engine kernel constantly fetch tasks from space. 

A mGrid client 3.2.3) and use 

it to lookup a space instance(section 3.2.4). After obtaining the space, the client 

anages the task 

 

 uses multicast to search for the Nucleus service (section 

program then feed the space with tasks that needs to be processed by the mGrid 

Environment. On the other side, engine kernel also uses multicast to search for a 

Nucleus and use it to lookup a space, then randomly fetch any available tasks that 

currently resides within the space. When the processing is completed, a result object 

will be fed into the space by the kernel, where it will be read by the client and 

reassembled with other results objects for presentation. 

Note that the engine kernel only fetches the tasks from the space, it does not process it! 

Instead, the Generic Task Processor introduced in the next section m

processing. 
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3.3.2 Generic Task Processor (GTP) 

After the engine kernel fetched a task from space, this task is passed to the Generic 

dynamic class loading feature of the java 

en feed the result back to space: 

{ 

      aTask = EngineKernel.takeTaskFromSpace(); 

 = aTask.process(); 

    EngineKernel.putResultInSpace(result); 

d”); 

Task Processor(GTP) for processing.  

As the name implies, the GTP is generic enough to handle different sorts of logical 

calculations, this is achieved through the 

programming language. In other words, when the GTP receives a task, the task’s 

computational code will be dynamically loaded into the processor. The GTP does not 

have any previous knowledge of the task logic that it will process, everything loads in 

on the fly. 

A naïve version of GTP pseudo-code looks like listing 3-4, it simply fetches a task 

from space, process it, th

 

While(true) 

      result

  

 

      println(“a task is processe

} 

Listing 3-4: A naïve GTP implementation pseudo-code 

 

The above GTP ine fails after it 

tched a task but did not successfully process it? This task would then be lost. For a 

 

pseudo-code has a critical flaw. What if the eng

fe

system with high-reliability demand this is not an acceptable situation. 

Therefore our GTP implementation makes use of mGrid Platform’s Transaction 

service (consult section 3.2.5 for detailed description on how transaction service
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works). By integrating transaction service into GTP, we ensure a highly-reliable grid 

system. A modified version of GTP pseudo-code is listed below: 

 

 While(true) 

 

 

 

 

Listing 3-5: A modified GTP implementation pseudo-code – better solution 

 

Listing 3 h a task 

om space, or if task processing fails, the transaction service will abort the 

{ 

    TransactionService txn = Platform.createTransactionService();  

= EngineKernel.takeTaskFromSpace(); 

  if(aTask == null) 

    

      r .process(); 

if(r ull) 

    

      EngineKernel.putResultInSpace(result); 

    txn ; 

      aTask 

  

{   

txn.abort(); 

return; 

}   

esult = aTask

esult == n

{   

txn.abort(); 

return; 

}   

.commit()

 

      println(“a task is processed”); 

} 

-5 illustrates GTP with transaction support. If an engine fail to fetc

fr

transaction and attempt to roll-back the entire computation. Only when the calculation 

is guaranteed to be successful, will the transaction be considered finished and 

committed.   

In summary, GTP acts as the central processing unit in mGrid Engine.  
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3.3.3 JVM Monitor 

JVM Monitor digs the local machine’s JVM profile for display in the mGrid Engine 

 Furthermore, it periodically sends heartbeat messages in the 

e local machine’s CPU and memory status every 1000ms. 

Grid Engine graphical user interface. Furthermore, it 

and Listener waits for commands sent from the mGrid Toolkit, such as 

processing condition thresholds. Command 

graphical user interface.

form of EngineInfoEntry containing the JVM attributes to a remote mGrid Toolkit 

software for administration purposes. All messages generated by the JVM Monitor 

goes through the engine kernel, which in turn passes the message to the distributed 

space service on mGrid Platform, where it is read by mGrid Toolkit for display. 

JVM attributes includes JRE version, operating system name, OS patch level, JDK 

version and so forth. 

See section 3.4.1 for EngineInfoEntry details. 

 

3.3.4 Machine Monitor 

Machine Monitor reflects th

The status is displayed in the m

periodically sends heartbeat messages in the form of EngineInfoEntry containing the 

machine’s latest status to a remote mGrid Toolkit software for monitoring purposes. 

All messages generated by the Machine Monitor goes through the engine kernel, the 

kernel passes the message to the distributed space, where it is read by mGrid Toolkit 

for display. Machine status includes CPU and memory usage level. 

See section 3.4.1 for EngineInfoEntry details. 

 

3.3.5 Engine Command Listener 

Engine Comm

shutting down an engine or setting 
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messages sent from mGrid Toolkit first go through the engine kernel, which in turn 

passes them into the distributed space service on the mGrid Platform, where they are 

fetched by the Engine Command Listener component for analysis and execution. 

Command messages are concealed in an EngineCommandEntry class. See section 

3.4.2 for further information regarding EngineCommandEntry. 

At this point, we have completed the technical introduction of mGrid Engine. 

However, engines are by themselves a full-fledged software with simple-to-use 

Grid Framework provided a simple-to-use utility tool called mGrid Toolkit, which 

onitoring of existing mGrid environments.  

graphical user interfaces. Appendix has a thorough user tutorial on mGrid Engine. 

Last but not least, we discuss mGrid Toolkit in the next section. mGrid Toolkit is an 

utility tool that simplifies the administration of any mGrid network environment. 

 

3.4. mGrid TOOLKIT 

m

enables easy administrating and m

 

 
Figure 3-11: In-depth component view of the mGrid Toolkit, indicated in red 
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Figure 3-11 illustrates the tools included in mGrid Toolkit, namely Network tool, 

Workflow tool, System tool and Help tool. At this stage we have fully-implemented 

the Network tool, thus it will be the focus of this section.  

But before we start to introduce the components within the Network Tool, we need to 

understand how mGrid Toolkit initially connects with mGrid Engines. Keep in mind 

that engines might randomly spread across WAN and different LANs. There are two 

possible situations: 

Scenario 1. The toolkit resides in public network (WAN).  

Scenario 2. The toolkit resides in private network (LAN). 

 

 

Figure 3-12: mGrid Toolkit and Engine initial linking steps - When the Toolkit resides in WAN 

 

Figure 3-12 illustrates the first scenario. In order for a Toolkit residing in public 

network to communicate with Engines (which might reside in both public or private 

networks), the Toolkit needs to publish its location information, namely IP/port, to the 

space service of the mGrid Platform. Engines A and B read this location information 

object and actively establish a socket connection TO the toolkit using the IP/port pair. 
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Toolkits in this scenario waits passively for the socket connection. 

However, if the toolkit resides in a private network, as stated in scenario two, the 

algorithm needs to be slightly modified. Figure 3-13 depicts this situation: 

 

 

Figure 3-13: When the Toolkit resides in LAN, the algorithm needs to be slightly modified 

 

In Figure 3-13, the toolkit resides in a private network. If we naïvely apply the 

algorithm steps given in Figure 3-12, initial socket connections between the toolkit 

and engines A & B will fail, for in this scenario the toolkit’s IP address is a private one, 

socket connections simply cannot be made to a private IP address!  

Instead, engines A and B must now publish their location information (IP/port) to the 

distributed space service running on mGrid Platform. The toolkit read engine A and 

B’s IP/port objects from the space, and then actively establishes socket connections 

consecutively TO mGrid Engines A and B using corresponding IP/port pairs. Engines 

in this scenario waits passively for the incoming connection. 

Combining the algorithms described in Figures 3-12 and 3-13, mGrid Toolkit is 
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endowed with the capability to monitor and control thousands of mGrid Engines 

spanning across perplex LAN and WAN architectures concealed in today’s internet. 

Once the socket connections were successfully built, the Network tool can then be 

applied to monitor and control the engines simultaneously.  

Now we introduce each of the components within the Network tool (consult Figure 

3-11 for the component view). 

 

3.4.1 Engines Monitor 

In sections 3.3.3 and 3.3.4 we m

onitored by the mGrid Toolkit, this is achieved with the Engines 

The EngineInfoEntry class contains information such as CPU status, memory status, 

 

 network. 

entioned that an engine’s JVM profiles and machine 

status can be m

Monitor component contained in Network Tool. Periodically an engine serializes an 

EngineInfoEntry java object across the network, using the socket established 

previously with the toolkit.  

JVM version and so forth. 

On the other side, the Engines Monitor de-serializes this EngineInfoEntry through an 

ObjectInputStream class provided with J2SDK5.0[4]. It then unwraps the 

EngineInfoEntry object and analyze the information concealed within. 

3.4.2 Command Issuer 

The network tool uses the Command Issuer component to transmit control commands 

to any specific engine. The command Issuer utilizes the ObjectOutputStream class in 

J2SDK5.0[4] to serialize an EngineCommandEntry object across the socket 

connection established previously to an engine running on the
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The EngineCommandEntry class contains the command for the engine to execute, 

such as shutting down an engine or setting a processing threshold for an engine. 

n the other side of the network, an engine de-serializes the EngineCommandEntry, 

the command concealed within. 

 (section 3.4.2) to manipulate the 

pleted the technical introduction of mGrid Toolkit. 

inistration of the entire mGrid environment spanning 

WAN. 

 should 

be made highly-scalable and highly-flexible. In this section let us examine whether 

er task. This implies 

O

unwraps the object and executes 

 

3.4.3 GUI Displayer 

The GUI Displayer has one single purpose: create a graphical user interface to display 

the real-time engine status contained in EngineInfoEntry (section 3.4.1) and to allow 

administrators to send EngineCommandEntry

behavior of remote engine instances. 

At this point, we have com

However, mGrid Toolkit by itself is a full-fledged software with intuitive graphical 

user interfaces. See the appendix for mGrid Toolkit user’s tutorial. 

In summary, mGrid Toolkit contains several useful tools such as the Network tool. 

Network tool allows easy adm

across different LANs and 

 

3.5. SYSTEM NON-FUNCTIONAL ISSUES: SCALABILITY AND FLEXIBILITY 

In section 1.4 we mentioned that apart from performance, a good grid system

these characteristics exists for mGrid. mGrid Platform is implemented using the 

space-oriented architecture (see section 2.4.3), this has three advantages: 

● Natural Load Balancing: mGrid Engines fetch tasks from a space for processing, 

only when it completed the current task, will it fetch anoth
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that devices with more CPU resources can process more tasks during a fixed 

ompared to devices with less CPU resources (see section 3.3: 

withdraw from a mGrid network freely 

(see section 3.3: mGrid Engine). 

  

which allows the task logic to be loaded 

to the engine on the fly for processing. An engine does not need any previous 

mGrid T

Both the en

All partic

where a variety of reso

toolkit s dministration of mGrid environments. See appendix for a 

com

period of time, c

mGrid Engine). 

● Dynamic Grid Expansion: Engines can search for a space dynamically upon start, 

without any human intervention. Thus adding new devices to a mGrid network is 

extremely convenient. Engines can also 

● No Single-Point-of-failure: a logical Space is actually physically distributed on 

multiple machines (see section 3.4.2: Distributed Space service), thus even when 

a few space service fails, the mGrid platform still remains operational. 

The above three points endowed mGrid Framework with a high level of scalability. As 

for Flexibility, the Generic Task Processor (see section 3.3.2: Generic Task Processor) 

uses java’s dynamic class loading capabilities 

in

knowledge of task logics. This enables developers to write a variety of innovative 

applications using mGrid APIs. 

 

3.6. SUMMARY 

mGrid Framework is consisted of four portions: mGrid Platform, mGrid Engine, 

oolkit and mGrid API. In this chapter we talked about the previous three. 

gine and toolkit relies on the grid infrastructure created by the platform. 

ipants with an engine activated is a legal entity within a mGrid environment, 

urces can be shared among each other. Finally, the mGrid 

implifies the a

plete user’s tutorial on mGrid Engine and Toolkit. 
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4.  

 

 

 

4.1. 

The mGrid Fram

PROGRAMMING INTERFACE DESIGN 

FOREWORD 

ework is consisted of four portions: mGrid Platform, mGrid Engine, 

mGrid Toolkit and mGrid API. In chapter 3 we introduced the previous three. In this 

chapter we will probe into the last item: mGrid API. Figure 4-1 illustrates a high-level 

view of the entire mGrid API library: 

 

 
Figure 4-1: High-level view of the entire mGrid API library, indicated in red 

 

Developers utilizes the libraries provided by mGrid API to write various creative grid 

essed within a mGrid environment 

ee section 3.3: mGrid Engine).  

API is divided into four sub-packages: 

applications that makes use of the resources harn

(s

Currently the mGrid 
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● mGrid.api: the core of mGrid API. Classes in this package enable developers to 

 mGrid Engine (consult section 3.3: mGrid 

Engine). Multiple engine-related utility classes are also included.  

● mGrid.toolkit: contains an implementation of mGrid Toolkit (consult section 3.4: 

mGrid Toolkit) and a set of toolkit-related utility classes. 

● mGrid.examples: presently includes a 3D graphics demo program written with 

mGrid.api that utilizes the CPU resources harnessed in a mGrid Environment. 

The packages will be introduced respectively in subsequent sections. We first begin 

with the mGrid.api package. 

 

4.2. mGrid.api PACKAGE 

The mGrid.api package is the core of mGrid API. Our development objective is to 

make it simple to use and easy to expand.  

1. SpaceAccessor class: enable grid application developers to access platform 

lt section 

2. 

itted to mGrid Engines for processing. 

discover space services (see section 3.4.2: Distributed Space service), to build 

different categories of task entries and to create a diverse set of engine 

commands.  

● mGrid.engine: an implementation of

Simplicity is our primary concern.  

The package has three major categories of classes: 

functions such as searching and using a distributed space service (consu

3.4.2: Distributed Space service). 

TaskEntry, ResultEntry, Command classes: enable developers to define the logics 

of grid task chunks to be subm
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3. EngineInfoEntry, EngineCommandEntry classes: Developers extends these two 

classes to add more engine monitoring attributes and to build an extended set of 

Figure 4-2 shows the UML

 

engine commands respectively. 

 class diagram of mGrid.api package: 

 
Figure 4-2: UML Class diagram of mGrid.api. Simplicity is our primary objective 

 

SpaceAccess

sp

Task

the object generated by the class which extends TaskEntry simply as “a task”.  

mote mGrid Engine. 

or class has one simple function getSpaces() which returns a distributed 

ace service for the developers to operate on. Furthermore, you should sub-class 

Entry and implement your computation logic in its execute() method. We refer to 

A task object is passed into a space, where it is fetched by a re
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Once an engine obtains a task object, it dynamically loads the logic code within the 

task’s execute() method and start processing (consult section 3.3.2: Generic Task 

Processor). A class sub-classing ResultEntry is returned to the space after processing 

completes, within contains the computation results. 

Listing 4-1 is an example code of utilizing the SpaceAccessor, TaskEntry and 

ResultEntry classes: 

 

import mGrid.api.*; 

//… 

 

Space space = SpaceAccessor.getSpaces();  

 

TaskEntry task = new MyTask(); 

space.put(task); 

 

//wait for processing to complete 

ResultEntry template = new ResultEntry(); 

 

System.out.println(result.toString());   

ResultEntry result = space.read(template); 

Listing 4-1: A simple example of utilizing SpaceAccessor, TaskEntry and ResultEntry 

 

When you obtained a space reference using the SpaceAccessor, you can call the put() 

method on the space object to put a task in a space, call read() and fetch() methods to 

logics within the execute() method 

that comes with the TaskEntry class, by extending TaskEntry. Listings 4-2 & 4-3 

read and fetch an entry from space respectively. Note that for read() and fetch() 

methods you will need to specify a template first. In listing 4-1 a template with the 

type ResultEntry is specified, this means an entry with type ResultEntry will be read 

or fetched from the space. 

Keep in mind that you should implement your code 

  48



depicts example classes extending TaskEntry and ResultEntry: 

 

import mGrid.api.*; 

//… 

MyTask extends TaskEntry 

MyTask() 

cessor.getSpaces();  

} 

s method! 

 

          return result; 

   } 

public class 

{ 

   private Space space;  

   public 

{ 

    space = SpaceAc

 

   //place your computation logic in thi

   public Entry execute() 

   {

          ResultEntry result = new MyResult();  

          space.put(result); 

}  
Listing 4-2: Example class extending TaskEntry 

public class MyResult extends ResultEntry 

tring toString() 

{ 

} 

 

import mGrid.api.*; 

//… 

{ 

public S

    return “I am a result!!”; 

} 

Listing 4-3: Example class extending ResultEntry 

Finally, EngineInfoEntry and EngineCommandEntry classes allows you to access a 

remote engine’s information and specify a command for an engine respectively. 
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Listing 4-2 fetch ngine’s information and displays it on screen: 

 

port mGrid.api.*; 

Sp ace = SpaceAccessor.getSpaces();  

EngineInfoEntry template = new EngineInfoEntry(); 

mplate.ip = “192.168.11.2”; 

late); 

the remote engine’s information 

.ip);   

Info.port);   

m.out.println(engineInfo.cpu);   

es a remote mGrid E

im

//… 

 

ace sp

 

te

EngineInfoEntry engineInfo = space.fetch(temp

 

//print 

System.out.println(engineInfo.hostname);   

System.out.println(engineInfo

System.out.println(engine

Syste

System.out.println(engineInfo.mem);   

Listing 4-4: Exampl splays its contents 

Listing 4-2 req  the EngineInfoEntry object of a remote engine 

with the IP add plate object with the type 

EngineInfoEntry nd setting its String ip field to “192.168.11.2”. Next, we call the 

fetch() method on e space reference, passing in the template as parameter. If a 

matching EngineIn space, it is retrieved. Finally, we can 

print engine information such as hostname, IP, port, CPU usage rate, memory usage 

rate, using engine engineInfo.cpu and 

ngineInfo.mem fields on the EngineInfoEntry you retrieved from a space respectively. 

Next, we give a simple example on how to send a “shutdown” command to a remote 

mGrid Engine using EngineCommandEntry class. This is demonstrated in listing 4-3: 

 

e code that fetches a remote engine’s info and di

 

uested the space for

ress of 192.168.11.2. We first create a tem

 a

th

foEntry currently exists in 

Info.hostname, engineInfo.ip, engineInfo.port, 

e
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import mG

//… 

 

Space spa

 

EngineCo dEntry(); 

engineCom

engineCom

 

//send the P=192.168.11.3 

space.put

rid.api.*; 

ce = SpaceAccessor.getSpaces();  

mmandEntry engineCommand= new EngineComman

mand.ip = “192.168.11.3”; 

mand.command = “System.exit(0)”; 

shutdown command to the engine with I

(engineCommand); 

Listing 4-5 and to a remote engine 

 

The example co : Shuts down a remote engine 

wit

pace. At th

address of 192.168.1

ext we introduce the mGrid.engine package. 

 

 

 

: Example code that sends a “shutdown” comm

de in listing 4-3 executes a simple task

h the IP address of 192.168.11.3.  

First, We create an object of EngineCommandEntry type and set its String ip field to 

“192.168.11.3”, and its String command to “System.exit(0)”. Next we simply put this 

EngineCommandEntry object into s is point, the mGrid Engine with the ip 

1.3 should asynchronously retrieve the command object from the 

space, parse the String command field for the code it should execute (see section 3.3.5: 

Engine Command Listener). In our case, the engine shuts itself down. 

We have finished a brief introduction on mGrid.api package. As you can see, by 

conducting a few simple calls you are empowered to monitor an entire cluster of 

mGrid Engines, send tasks for them to process, retrieve results, and conduct a variety 

of commands on any specific engine instance on the network. 

N
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4.3. m KAGE 

We provided a full-fledged mGrid Engine implementation in the mGrid.engine 

package, along with an engine-related utility class. In this section we will not list the 

detail lopment 

of mG d Engine, for an introduction on 

how engines works. Here we will focus solely on the utility class: CpuUsage class.  

Figur  diagram of CpuUsage class: 

Grid.engine PAC

 class diagrams of the engine code, since this is not relevant to the deve

rid applications. Instead, see section 3.3: mGri

e 4-3 illustrates the UML class

 

 
Figure 4-3: UML class diagram of CpuUsage utility class within mGrid.engine package 

 

 class to detect the CPU and memory 

atus of the local machine, and to send this information to the mGrid Toolkit software 

r remote monitoring (see section 3.4: mGrid Toolkit).  

Application developers utilizes the CpuUsage

st

fo
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Furthermore, experienced engineers have the option of writing their own engine 

import mGrid.engine.*; 

 

 

//start sending monitoring messages to toolkit 

engine.startMonitor(); 

 

System.out.println(engine.getCPUTime()); 

System.out.println(engine.getRAMStat()); 

 

//stop sending monitoring messages to toolkit 

engine.stopMonitor(); 

implementation using the methods provided in CpuUsage class, combined with the 

classes in mGrid.api package. Listing 4-4 shows an example code of using the 

CpuUsage class: 

 

//… 

CpuUsage engine = new CpuUsage(); 

Listing 4-6: an example code segment using the CpuUsage class 

 

In listing 4-4, we first create an object of CpuUsage class, this initializes the 

monitoring thread on the local machine. Next, by calling startMonitor() method, the 

device’s status messages are constantly sent across the network to the toolkit software. 

Methods getCPUTime() and getRAMStat() returns the current CPU and memory usage 

rate of the local machine respectively. Finally, stopMonitor() stops sending monitoring

me

mGrid.api and mGrid.engine 

 

 

ssages to the toolkit. 

At this point we have introduced how to apply the 

packages to a grid application. This should be sufficient for most grid-based programs. 

In the following section, we dive into the mGrid.toolkit package. 
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4.4. mGrid.toolkit PACKAGE 

We also supply a fully-featured mGrid Toolkit software in the mGrid.toolkit package. 

Apart from the toolkit software, another utility class called MonitoringThread is also 

at the disposal of mGrid application developers. MonitoringThread class contains a 

 all the engines currently under monitor. Figure 4-4 depicts the UML class 

diagram of the MonitoringThread class: 

 

hashtable of

 

Figure 4-4: UML Class diagram of MonitoringThread utility class within mGrid.toolkit package 

 

es field with remote 

ngines’ information. Hashtable engines field contains engineIP-EngineInfoEntry pair, 

When you initialize a MonitoringThread instance, a new thread is started and runs in 

the background. This thread continuously looks for all the engines currently running 

within a mGrid environment, and populates its Hashtable engin

e
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by iterating through all entries in the hashtable, a developer can retrieve a set of 

import mGrid.toolkit.*; 

//… 

 

MonitoringThread toolkit = new MonitoringThread(); 

toolkit.start(); 

 

//hashtable containing all the engines currently alive on the network 

HashTable allEngines = toolkit.engines; 

 

//iterate through all the entries in the hashtable, listing out all remote engine 

Enumeration e = allEngines.elements(); 

while(e.hasMoreElements()) 

{ 

    EngineInfoEntry engineInfo = (EngineInfoEntry) e.nextElement(); 

 

    //print each remote engine’s information 

System.out.println(engineInfo.hostname);   

System.out.println(engineInfo.ip);   

System.out.println(engineInfo.port);   

System.out.println(engineInfo.cpu);   

System.out.println(engineInfo.mem);                     

EngineInfoEntry objects containing useful engine information, see listing 4-4 for uses 

of EngineInfoEntry class. 

Listing 4-7 below shows an example code displaying all the mGrid Engines currently 

running on the network using MonitoringThread class: 

 

} 

Listing 4-7: Example code that uses MonitoringThread class to display all engines on network 

 

Note that only a machine that has a mGrid Engine software running, or have called 

the startMonitor() method on the CpuUsage class (see section 4.3), can it be a legal 

candidate for detection by the MonitoringThread class. 
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With mGrid.toolkit, mGrid.api and mGrid.engine packages in hand, a programmer 

can now fully-utilize the strength of parallel computing provided by the mGrid 

Framework.  

In the last package, namely mGrid.examples, we give a demo application written with 

the previous three API packages. 

 

4.5. CKAGE 

Developers can consult the code in this package to further assist them on how to write 

real-world mGrid applications. mGrid.examples package contains a demo program 

which utilizes the classes in mGrid.api, mGrid.engine and mGrid.toolkit packages. 

The running 3D graphics rotation. However, 

inste putation is 

divid nks that can be passed into a mGrid 

environment for a cluster of mGrid Engines to process in a parallel fashion. This 

mean etwork, the 

rotat but as you start more engine instances 

on other 

See appe ronment and running this demo.  

 

4.6. MMENDED mGrid APPLICATIONS 

Grid API enables programmers to develop numerous innovative application. But 

mGrid.examples PA

demo program consisted of a window 

ad of conducting the 3D calculation on the local machine, the com

ed into multiple independent task chu

s that when you only have a single mGrid Engine running on your n

ing speed of the 3D graphics is minimal, 

machines, it immediately accelerates! 

ndix section on setting up a mGrid Envi

RECO

m

which sort of application can fully-utilize the power of our framework?  

Here, we recommend four categories of appropriate applications:  
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● Category 1: All returned results needs to be pieced together in order to produce a 

final result, and each chunk of task produces a single result. Image-processing 

applications such as ray-tracing fall into this category. 

tatistical analysis applications such as customer 

behavior analysis programs fall into this category. Each computer analyzes its 

. 

● Category 3: Some, but not all task chunks produce results. Searching engines fall 

ctive 

ning the programming interfaces. In sections 4.2 to 4.5, we use numerous 

rate mGrid API into your own 

the ability to 

.  

● Category 2: Returned results are independent of one another, but each task chunk 

produces its own result. S

own customer behavior

into this category. Search tasks are dispatched onto multiple computers, while 

only a few will return the search result which fits your searching criteria.  

● Category 4: Only a single task will give you the correct result. Programs written 

to break encrypted messages falls into this category. Multiple tasks will be issued 

to the grid, while only a single one will return the correct decrypted message. 

Note that not all applications are suitable for a grid network. All four categories of 

applications we give above share a similar characteristic: parallelism. Keep in mind 

that only parallel programs can fully appreciate the power of mGrid Framework.  

 

4.7. SUMMARY 

In this chapter we introduced the entire mGrid API. Simplicity is our main obje

while desig

easy-to-understand code segments to teach how to integ

application. Finally, we recommend four primary categories of applications that is 

appropriate to be written with mGrid Framework. Now you should have 

judge whether or not to develop your program using mGrid, and how
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5.

 

 

 

In th

Linp

testing software for industrial supercomputers, such as the top500[27].  

We

with m

of a system

perform

individual issues respectively

 

Ax=b. In our case, k=1000.  

 

  EXPERIMENT AND EVALUATION 

is chapter we experiment the performance of mGrid Framework using the 

ack benchmark[26]. Linpack benchmark is widely accepted as the de facto 

 will first briefly explain what Linpack benchmark does, then compare our results 

ultiprocessor machines and clusters. However, to determine the good and bad 

, many aspects needs to be taken into consideration. These aspects include 

ance, scalability, utilization percentage and cost. We will look into these 

. 

5.1. LINPACK BENCHMARK 

The Linpack benchmark used in our experiment randomly generates a dense 

1000x1000 system with one right hand side, Ax=b.  

Figure 5-1 shows an example of 

 
Figure 5-1: Our test case. Ax=b where k=1000 

 

For a matrix with size k, there are 2/3k^3+O(k^2) floating point operations to be 
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performed, including both additions and multiplications. The calculation is based on 

aussian elimination with partial pivoting. 

ark, the matrix product can be split into submatrices and performed 

 parallel. Each submatric calculation is implemented as an independent task. 

 

computation speed of a system. 

 this section, we compare our system with various commercial multiprocessor 

■ Scenario one: 1, 2, 4, 8 compute nodes. Only the first node runs the distributed 

space service (see section 3.2.4: Distributed Space Service).  

■ Scenario two: 1, 2, 4, 8 compute nodes. All nodes runs an instance of distributed 

space service. 

Note that each compute node in our mGrid environment is a Pentium4 with 1700MHz 

CPU, 512MB RAM, running J2SDK5.0. Node

g

In Linpack benchm

in

In the following two sections, we compare our benchmark results against 

multiprocessor machines and clusters respectively. 

5.2. COMPARISON WITH MULTI-PROCESSOR MACHINES 

Multiprocessor machines differs from clusters in that all the CPUs resides in the same 

address space, and shares common physical memory. Multiprocessor machines 

intends to increase the overall 

In

products.  

 

5.2.1 Performance: Multiprocessor vs. mGrid 

We designed two scenarios for mGrid: 

s are interconnected using 100Mbps 

Ethernet. 
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the result is shown in table 5-1[26]: 

 

Machine 1 CPU 2 CPU 4 CPU 8 CPU Cost of 2 CPUs 

HP AlphaServer ES80 7/1150(1.15GHz) 1184 3424 6584 11410 * 
Cray SV1ex-1-32(500 MHz) 1554 2947 5358 8938 * 
HP 9000 rp8420-32  2905 5435 9478 14150 $ 93,000 
NEC SX-4/1 1944 3570 6780 12780 $ 52,680 
Comp 4 7905 $ 23,900 aq Server ES40(667MHz) 1031 1923 380

IBM 4396 8302 $ 31,500  eServer pSeries 610 Model B80 1451 2521 

HP Dome 1497 2506 4319 8055 * Super

mGrid ario one 2 2640 5277 10541 $ 4,909  Scen 132

mGrid 30 $ 4,909  Scenario two 1330 2659 5316 106

Table 5-1: Performance comparison with commercial multiprocessor machines (Mflop/s) 

 

Figure 5-2 illustrates the line chart of table 5-1: 

 

 

 

 

 

 

 

 

 

5.2.2 Utilization: Multiprocessor vs. mGrid 

ystems using different CPUs, merely comparing performance is not rational. 

Figure 5-2: Performance comparison with multiprocessor machines, chart view 

Scalability Results - Performance vs. CPUs
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The processing performance is direct proportional to the speed of CPU used, thus with 

different s
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Instead we need to focus on the utilization of each CPU. For instance, the best 

erformed system: the HP 9000 rp8420-32 with 1 CPU can reach 2905 Mflop/s, 

tically with 2 CPUs it shou h fl t y 

plies 6.454% roc g po s w  Fu ermore, with 

ld theoretically re 324 op/s alit y a 4150 

putation capability! 

On the contrary, with mGrid Framework, less than 0.3% of CPU power is left idle. 

s that mGrid Fra rk c lly  yo pute nodes, while 

achines will was ore computation resources as y ore 

CPUs to the system.  

shown in Table 5-2: 

Machine 1 CPU 2 CPU 4 CPU 8 CPU 

p

theore ld reac 5810 M op/s, ye in realit it only reached 

5435 Mflop/s, this im  of p essin wer i asted. rth

8 CPUs, it shou ach 2 0 Mfl , in re y it onl chieved 1

Mflop/s, it implies a 39.113% loss of com  

This result show mewo an fu utilize ur com

multiprocessor m te m ou add m

The under-utilization situation of each system is 

 

Cray SV1ex-1-32(500 MHz)   5.1801802 13.803089 28.104891 

HP 9000 rp8420-32 (1000MHz PA-8800)   6.454389 18.433735 39.113597 

NEC SX-4/1   8.1790123 12.808642 17.824074 

Compaq Server ES40(667MHz)   6.7410281 7.7594568 4.1585839 

IBM eServer pSeries 610 Model B80   13.128877 24.259132 28.480358 

HP SuperDome   16.299265 27.872411 32.740481 

mGrid Scenario one   0.1512859 0.2080182 0.330938 

mGrid Scenario two   0.037594 0.075188 0.093985 

Table 5-2: CPU Resource wasted (%) 

 

rom Table5-2, we can conclude that (average approximation):  

Commercial multiprocessor products 1 CPU + 1 CPU ≈ 1.512 CPUs 

F

 

mGrid Framework 1 CPU + 1 CPU ≈ 1.985 CPUs 

Table 5-3: CPU Resource utilization comparison between multiprocessor products and mGrid 
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Table 5-3 is an approximate calculation. At this point we have shown that mGrid 

Framework can utilize a set of dispersed computing resources much better than 

multiprocessor machines. 

 

5.2.3 Scalability: Multiprocessor vs. mGrid 

Now let’s see the price it takes for systems to scale. For multiprocessor machines, if 

+1 CPUs is required, you will have to purchase a whole new 

ply not 

fective. On the other hand, scaling up is simple for mGrid. We scale the size of 

a mGrid Environment in table 5-4: 

 

Machine 8 CPU 

the CPU quantity exceeds the maximum number a single machine can contain, this 

often means one thing: to scale further, purchasing a second machine is inevitable. 

Let’s say you have a multiprocessor machine with a maximum of n CPU slots, if the 

processing power of n

machine pre-installed with 1 CPU, thus leaving n-1 slots empty. This is sim

cost-ef

9 CPU 10 CPU 11 CPU 

mGrid  one 10541 118 Scenario 60 13181 14199 

mGrid 10630 119 Scenario two 55 13300 14632 

Table 5-4: mGrid System scales o

 

As we mentioned in chapter 1, scalability is one of our primary concerns. Here we 

show that adding more CPUs to a mGrid environment is much more simpler and 

cost-effective than adding more CPUs to multiprocessor machines. 

 

5.2.4 Mor  of Spaces matters

Before we end this sub-section, one more interesting ef

In mGrid scenario one, we run a single space service on the first machine, while in 

 easily (Mfl p/s) 

e on Performance: The number  

fect deserves to be discussed. 
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scenario two, all machines runs an instance of space service. The performance of 

scenario two is clearly better than that of scenario one. See tables 5-1 & 5-4. The 

reason is as follows: If we have a mGrid environment with 2 compute nodes, and 

ese two nodes both runs an instance of space service, there is an approximate 50% 

the same machine as the mGrid Engine. 

puting node”, and has its own set of CPUs and 

emory. A regular cluster differs from mGrid in two ways: 

within a cluster usual s th e o g s

ss a variety of operat tem

● Cluster compute nodes often resides within the same LAN, while mGrid spans 

across multiple LANs and WANs. 

ership) and better 

alability than the commercial clusters, offering the same computing capability. 

5.3.1 Performance: Clusters vs. mGrid 

th

chance that the task-to-be-processed resides in 

Thus decreases the propagation time of fetching a task from a remote space.  

We can assume that for most cases, the performance outcome is direct proportional to 

the number of space services activated. 

 

5.3. COMPARISON WITH CLUSTERS 

A cluster is a commonly found computing environment that connects multiple 

independent workstations residing on the same LAN(Local Area Network). Each 

workstation is referred to as a “com

m

● Compute nodes ly run e sam peratin ystem, while 

mGrid spans acro ing sys s. 

Here we compare our system with multiple eminent cluster computers. Our goal here 

is to show that our system brings lower TCO(Total Cost of Own

sc

 

First we look at the Linpack Performance of the following commercial clusters, as 
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shown in table 5-5: 

 

Machine Num of Nodes Gflop/s 

Sun HPC 6500(400MHz 8MB L2 Cache) 18 13.05 

CRAY T3E-1200E (600 MHz) 16 13.41 

SGI Origin 2000 (250 MHz) 32 13.22 

Intel Paragon XPS-35 (50 MHz, OS=R1.1) 512 15.2 

Compaq GS140 cluster 24 15.31 

mGrid Scenario one  11 13.87 

mGrid Scenario two  11 14.29 

Table 5-5: Performance comparison with commercial clusters 

essor machines, can harness all the available 

very dissimilar hardware 

an

two nership) of owning a mGrid 

environment with equal computing capability as the commercial clusters listed above. 

Second, we show that unlike traditional clusters, mGrid can effectively avert the SPF 

problem (Single-Point-of-Failure). 

As we mentioned in section 2.2, high TCO is the primary factor that prevents 

individuals or SMEs from adopting grid-like technology, thus our objective is aimed 

at offering a low-cost grid solution. Table 5-6 depicts the costs of various commercial 

 

Cluster architecture, unlike multiproc

CPU resources just as well as mGrid does. Thus our assumption here is that all the 

compute nodes within a cluster (and within mGrid environment) is close to 99-100% 

utilized. The performance is shown in table 5-5. However, we do not intend to 

compare the absolute performance, since each cluster has 

d is interconnected using different network technologies. Instead, we will compare 

things. First, we compare the TCO (Total Cost of Ow

 

5.3.2 Total Cost of Ownership: Clusters vs. mGrid 

cluster computers[28].  
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Machine TCO (million $USD) Gflop/s 

Sun HPC 6500(400MHz 8MB L2 Cache) 0.3 13.05 

CRAY T3E-1200E (600 MHz) 0.14 13.41 

SGI Orig 50 MHz) 0.85 in 2000 (2 13.22 

Intel Par 1.92 15agon XPS-35 (50 MHz, OS=R1.1) .2 

Compaq 1.64 15 GS140 cluster .31 

mGrid S 0.027 13cenario one  .87 

mGrid S 0.027 14cenario two  .29 

Table 5-6 nership) comparison of l clusters[28] 

 

A mGrid envi ely $0.027mn 

SD[20], while the TCO of other commercial clusters with similar computation 

: TCO(Total Cost of Ow mGrid with commercia

ronment with 11 Pentium4 1700MHz costs approximat

U

power ranges from $0.3mn ~ $1.92mn USD. This implies that on average a 

commercial cluster with more or less the same computing power is 36 times more 

expensive than our mGrid solution.  

This is further illustrated in Figure 5-3: 

 

 

Figure 5-3: Performance & TCO comparison with clusters, mGrid is much cost-effective! 
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We own that mGrid is a cheap and effe r ing. With a 

fai rid proves itself  an excellen y point to grid 

com nd SMEs.  

 

5.3 ailure Issue: Clusters Grid 

N  

ommercial clusters, we turn our focus back to the technical aspect once more. 

ace service is alive, the mGrid environment 

can continue on processing jobs, table 5-7 shows the situation when mGrid scenario 

two suffers from space failure of different levels: 

 

Machine 0 fail 1 fail 2 fail  3 fail 

 have sh ctive shortcut to g id comput

rly reasonable TCO, mG to be t entr

puting for individuals a

.3 Single-Point-of-F  vs. m

ow that we proved mGrid is economically more cost-effective than many

c

Traditional clusters suffers from the severe Single-Point-of-Failure (SPF) problem, by 

single-point-of-failure we mean that when the dispatch server of a cluster fails, the 

entire backend cluster is immediately rendered useless (consult section 2.4.1: 

Client-Server Architecture). mGrid, on the other hand, do not have the SPF problem. 

As long as at least a single distributed sp

mGrid with 11 compute nodes 14632 14520 14320 14199 

Table 5-7: Situation considering the number of spaces failed (Mflop/s) 

 

mGrid can tolerate with space failures, yet failures do bring performance downgrade 

of acceptable level. 

 

5.4. DISCUSSION 

mGrid is a low-cost grid solution that most SMEs can afford. Comparing with 

multiprocessor machines, it has greater scalability and allows better utilization of 

CPU resources. Furthermore, it averted the SPF problem that most traditional cluster 
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commercial products suffer. A concluding comparison is shown below, we normalized 

all of our experiment data into a rating scale ranging from 0 to 1. A 1 shows the best 

rating, while a 0 indicates the poorest rating : 

 Cluster/Grid 

 

Name Multiprocessor mGrid Framework

Linpack Performance 0.965 1.000 0.997 

Linpack Utilization 0.731 1.000 1.000 

TCO 0.009 1.000 0.027 

Scalability 0.003 1.000 0.857 

SPF 1.000 1.000 0.000 

 Figure 5-4: Overall comparison between mGrid, Multiprocessor & grids/clusters 

 

In this final section, we will discuss the mGrid mathematically. The question is this: 

Suppose we create a mGrid Environment using the following four computers[26], 

what do we get? 

 

Node CPU 

1 Pentium4 1700MHz, 1330Mflop/s 

2 Intel/HP Itanium 800M  MflHz, 580 op/s 

3 AMD Opteron 1200MHz, 443 Mflop/s 

4 AMD Athlon 1530 MHz, 832 Mflop/s 

Table 5-8: Suppose we combine four CPUs together into a mGrid virtual grid, what do we get? 

w many operations per cycle each processor does. For node one: 

 

First we calculate ho

 

using similar method we obtain 0.725 (op/cycle) for node two, 0.369 (op/cycle) for 

node three and 0.544 (op/cycle) for node four. Since we are conducting parallel 
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processing, this means for the combined mGrid environment, there is a total of 

0.764+0.725+0.369+0.544=2.402 operations per cycle. According to our benchmark, 

the overall floating point calculation of mGrid environment with these four nodes is 

160 Mflop/s. Thus: 

 

3

 

we see the overall frequency of the resul Grid enviro  is approximately 

1316MHz. Our conclusion is, by adding mo mputers to a m ent, the 

operations per cycle the system can do grows, yet the frequency will be each of the 

processors’ average.  

rallel computing. 

 

 

 

 

 

 

 

 

 

ting m nment

re co Grid environm

In other words, the frequency of a mGrid environment does not necessarily reflect the 

performance. Even though you have a lower frequency, you still can achieve better 

performance in pa

 

 

 

  68



6.  CONCLUSION, BUSINESS OPPORTUNITIES & FUTURE WORKS 

 

 

 

6.1. CONCLUSION & BUSINESS OPPORTUNITIES 

here are various options in solving problems that requires supercomputing, yet the 

ility, higher flexibility than many commercial 

percomputing products such as multiprocessor machines and cluster computers. Our 

rchitectural design also avoided common technical flaws found in grid products, 

ch as the Single-Point-of-Failure problem. 

ework also provides utility tools and a set of Application 

ing Interfaces(APIs) that simplifies the process of grid application 

ent, thus optimizes overall productivity. Developers must focus on design 

ent rather than hunting for resources hidden within the enterprise. 

ven though mGrid framework is designed primarily for scientific computing, its high 

exibility enables it to be used in various innovative areas such as digital home 

ntertainment. By deploying mGrid Engines on java-enabled platforms such as 

ellular phones, STBs (Set-Top Boxes), and other multimedia devices, mGrid can 

T

high TCO (Total Cost of Ownership) of supercomputing intimidated the SMEs from 

adopting such technology. mGrid framework proves to be a low-cost, pure 

software-based grid computing solution that can reduce the entry barrier of obtaining 

a grid infrastructure.  

Furthermore, this thesis also demonstrated the advantage of utilizing the 

asynchronous, space-oriented architecture. mGrid showed reasonable performance, 

superior utilization, greater scalab

su

a

su

Last but not least, the fram

Programm

developm

and developm

E

fl

e

c
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quickly harness all the multimedia resources hidden within each device, and allows 

source sharing among a network of devices. This concept is depicted in Figure 6-1: re

 

 

Figure 6-1: Business opportunity: mGrid can be seen as the middleware for home networks 

 

IDC predicted a continuous 20% growth in digital home market, reaching a hundred 

billion USD worth of revenue by the year of 2010. With proper marketing strategy, 

mGrid has the opportunity to play the role of “ammunition supplier” in this future war 

of digital home entertainment. 

 

6.2. FUTURE WORKS 

There are multiple improvements available for mGrid Framework. First, the 

functionality of the mGrid Toolkit can be further extended. At this point only the 

network tool is operational, other tools such as designing tool, which enables 

application developers to compose simple grid programs by means of graphical user 
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interface can be added. 

Many additional functions can be added to mGrid Engines as well, such as remotely 

 of each engine, allowing engine to process tasks only if its 

CPU/memory usage rate is under that threshold.  

Finally, the mGrid Platform itself can be improved. More services must be added into 

the platform if it is to be made commercial. 

 

 

 

 

 

 

 

 

setting the threshold

 

 

 

 

 

 

 

 

 

 

 

  71



REFERENCES 

 

 

 

[1] Chris Kwak and Robert Fagin, “Internet Infrastructure & Services”, Bear, Stearns 

rosystems, “SUN Grid Overview”, 

http://www.sun.com/service/sungrid/overview.html

& Co., May 2001. 

[2] Sun Mic

. 

puter Science, University of Tennessee, “Linpack benchmark – Java 

version”, http://www.netlib.org/benchmark/linpackjava/

[3] Dept. of Com

. 

rosystems, “J2SE, J2EE, J2ME”, http://www.javasoft.com/[4] Sun Mic . 

M.P. Papazoglou & D. Georgakopoulos, “Service-Oriented Computing”, 

Communications of the ACM, Vol. 46, pp. 25-28, October 2003. 

rosystems, “Activation Daemon”, 

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/rmid.html

[5] 

[6] Sun Mic

. 

rosystems, “JNDI”, http://java.sun.com/products/jndi/. 

rosystems, “SUN JINI network technology”, http://www.jini.org/

[7] Sun Mic

[8] Sun Mic . 

rid Computing & the Linda Programming 

model”, Dr. Dobb's Journal, Boulder, Vol.29,N.9, pp.16-17,20,22,24, Sept.2004. 

i Isobe, Takehiro Miyagoshi, and Kazumari Shibata, 

Koyoto University, “NEC Earth Simulator”, 

http://www.es.jamstec.go.jp/esc/eng/

[9] Rob Bjornson and Andrew Sherman, “G

[10] Reseach group of Hiroak

. 

http://www.llnl.gov/asci/news/white_news.html[11] IBM, “IBM ASCI White”, . 

 California at Berkeley, “SETI@Home”, 

http://setiathome.ssl.berkeley.edu/

[12] University of

. 

  72



[13] Stanford University, “Folding@Home”, http://folding.stanford.edu/. 

4] GIMPS, http://www.mersenne.org/prime.htm[1 . 

5] “Grid Computing: A Vertical Market Perspective 2005-2010”, The Insight 

Research Corporation, Feb 2005. 

g/pvm3/book/node16.html

[1

[16] Giovanni Flammia, “Peer to Peer is not for Everyone”, IEEE Intelligent systems, 

Vol. 16, No. 3, pp. 78-79, May/June 2001.

[17] Linda Programming Model, http://www.netlib.or . 

[18] D. S. M . Currier, S. Fibra, J.-Y. 

[20] Y.M. Teo and X.B. Wang, “ALiCE: A S

[21] Globus Alliance,

eliksetian, J.-P. Prost, A. S. Bahl, I. Boutboul, D. P

Girard, K. M. Kassab, J.-L. Lepesant, C. Malone, and P. Manesco, “Design and 

implementation of an enterprise grid”, IBM Systems Journal on Grid Computing, 

Vol. 43, No. 4, pp. 646-664, 2004. 

[19] Daniel A. Menasce, “MOM vs. RPC: Communication Models for Distributed 

Applications”, IEEE Internet Computing Magazine, pp. 90-93, March/April 

2005. 

calable Runtime Infrastructure for High 

Performance Grid Computing”, Proceedings of IFIP International Conference on 

Network and Parallel Computing, pp. xx, Springer-Verlag Lecture Notes in 

Computer Science, Wuhan, China, October 2004.  

 “Globus Toolkit”, http://www.globus.org/. 

[23] Anand Natrajan, Anh Nguyen-Tuong, Marty A. Humphrey, Andrew S. 

Grimshaw, “The Legion Grid Portal”, Grid Com

No. 13–15, pp. 1365-1394, 2002

puting Environments, vol. 14, 

.

[24] Sun Microsystems, “Project JXTA Overview”, http://www.jxta.org/. 

[25] GridSim, http://www.buyya.com/gridsim/. 

Computer Science Departm[26] Jack J. Dongarra, ent, University of Tennessee 

“Performance of Various Computers Using Standard Linear Equations Software”, 

  73



Technical Report CS-89-85, University of Tennessee, Computer Science Dept., 

The report is available electronically.  

URL ftp://www.netlib.org/benchmark/performance.ps 

University of Mannheimtop & Uni[27] versity of Tennessee, “Top 500 

supercomputers”, http://www.top500.org/. 

SAIC, [28] g/http://www.saic.com/supercomputin . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  74



APP

 

 

▪ RE

ent flow for mGrid framework: 

 

ENDIX:  USER TUTORIAL 

 

COMMENDED DEVELOPMENT FLOW  

Figure Appendix-1 shows our recommended developm

 

Figure Appendix-1: Recommended mGrid Framework development flow 

ou will need to start the mGrid Platform services first. After you have successful 

tup the platform, at least one mGrid Engine must be deployed on your network. At 

is point, you can run the mGrid Toolkit to monitor the mGrid Environment you have 

st created. Next, utilize the mGrid API to write your own applications! See the 

llowing sections for setup instructions. 

 

Y

se

th

ju

fo
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▪ mGrid PLATFORM QUICK SETUP 

1. Install J2SDK 1.2 or above. See reference [4] for installation instructions. 

2. Copy the mGrid package to your computer. This computer must have the J2SDK 

pre-installed and basic network connectivity. (e.g. copy to C:\<mGrid Package>) 

consecutively: (0)erase.bat, (1)http-server.bat, (2)activation.bat, (3)Nucleus.bat, 

(4)txn.bat and (5)space.bat.  

These files can be found in <mGrid Package>\bin\start. 

 

3. Start the mGrid Platform by double-clicking the following batch files 

 

Figure Appendix-2: The batch files that starts the mGrid Platform, simple and straight-forward 

 

4. Done! At this point the mGrid Platform is fully initiated!  

  Now that you have the mGrid Platform running, you need to start at least one 

mGrid Engine instance on the network to form a mGrid Environment. You can 

then use the mGrid API to write various innovative grid applications that utilizes 

the resources harnessed within a mGrid environment, see chapter 5 for mGrid 

 file run_GridEngine.bat to start the mGrid 

API programmer’s guide. 

 

▪ mGrid ENGINE QUICK GUIDE 

1. You need to start at least one engine instance on your computer to form a mGrid 

Environment. Double click the batch
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Engine software. This file can be found in <mGrid Package>\bin\engine. 

2. You should now see the mGrid Engine graphical user interface: 

 

 

Figure Appendix-3: mGrid Engine graphical user interface 

h level and so forth are displayed. 

C. System Panel. Show the CPU and memory usage of the local machine. You 

memory diagrams by dragging the 

 

The interface consists of four parts: 

A. Main control panel. Call up the JVM, system usage and task message panels. 

B. JVM Panel. Show the JVM profile of the local system. Information such as 

JVM version, OS patc

can zoom-in or zoom-out the CPU/

portion you wish to inspect. 

D. Task message Panel. Show the messages while processing a task. The 
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messages show what tasks are currently being processed and whether an 

 

▪ mGrid TOOLKIT QUICK GUIDE 

1. You can start a mGrid Toolkit to monitor any existing mGrid environment. 

Double click the batch file run_GridToolkit.bat to start the mGrid Toolkit, this file 

can be found in <mGrid Package>\bin\toolkit. 

2. A login screen should appear, type in your username and password. 

 

error occurred. it also reflects the processing speed of the engine. 

 

Figure Appendix-4: mGrid Toolkit login screen 

 

3. After you successfully logged in ou should see the toolkit interface. This is 

depicted in Figure 

The entire mGrid network environm

clear as crystal! Y

a mGrid Engine ins

Furtherm  

corresponding m

 

. Y

Appendix-4 on the following page.  

ent is now right before your eyes, and as 

ou can monitor the CPU/memory status of each device running 

tance, acquire their machine and JVM information. 

ore, by clicking the shutdown button you can remotely shutdown the

Grid Engine.  
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Figure Appendix-5: mGrid Toolkit main interface. Clear view of a complicated grid network! 

 

▪ RUNNING AN EXAMPLE 

1. At this point you should have everything you need in place. To try out an 

example, double t the demo program, 

this file can be found in <mGrid Package>\bin\demo1.  

 

 click the batch file run_Rotator3D.bat to star

2. You should see a screen containing three 3-dimensional objects rotating. This is 

depicted in Figure Appendix-5 on the next page. 

The idea is this: the program creates a large quantity of tasks for processing. 

With a single mGrid Engine, the processing is extremely slow, thus the speed of 

rotation is also slow. However, as you start more engines on your network, the 

processing accelerates, thus the speed of rotation comparatively becomes faster! 
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F  

demo source codes on how to effectively utilize the mGrid 

. 

 

This concludes our tutorial on mGrid Framework. 

 

igure Appendix-6: 3D rotating demo program. The more mGrid Engines, the faster it rotates!

 

3. You can refer to the 

API to write grid programs of your own. The source code can be found in the 

folder <mGrid Package>\mGrid\src\examples\ex1
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