

國 立 交 通 大 學

資訊科學系

碩 士 論 文

一個非同步低耦合度之動態格網運算系統

An Asynchronous Decoupled Dynamic Grid Computation System

研 究 生：沈上謙

指導教授：袁賢銘 教授

中 華 民 國 九 十 四 年 六 月

一個非同步低耦合度之動態格網運算系統

An Asynchronous Decoupled Dynamic Grid Computation System

研 究 生：沈上謙 Student：Shang-chien Shen

指導教授：袁賢銘 Advisor：Shyan-ming Yuan

國 立 交 通 大 學

資 訊 科 學 系

碩 士 論 文

A Thesis
Submitted to Department of Computer and Information Science

College of Electrical Engineering and Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 ii

一個非同步低耦合度之動態格網運算系統

研究生：沈上謙 指導教授：袁賢銘

國立交通大學電機資訊學院

資訊科學研究所

摘要

諸如基因排序以及蛋白質解析等複雜的解碼工作需要大量的運算量以及繁複眾

多的執行步驟，業界多半利用格網運算(Grid Computing)的方式將繁重的運算工

作交予後端的分散式叢集電腦群來快速完成，這一類的格網系統通常仰賴著昂貴

的硬體設備或是特殊、特定的軟體，使得格網運算這個名詞數年以來一直狹隘地

隸屬於高速科學計算的領域。縱使在科學領域已被廣泛使用，昂貴的整體擁有成

本(Total Cost of Ownership)讓一般使用者或甚至中小型企業對於採用格網概念

望之卻步。龐大的潛在電腦運算資源依然未能有效被利用。使用者持續尋找著更

多的運算資源來解決他們的問題。在這些挑戰之上，格網本身尚暴露著技術層面

的瑕疵。業界的方案無法有效解決諸如此類單一切入點故障(Single-point of

Failure)的架構性問題、動態擴充格網體積的延展性問題(Scalability)、或是支援

跨平台特性的普及性問題。

本篇論文提出一個低成本的純軟體跨平台格網方案，有效解決單一切入點故障、

動態擴充格網體積等問題，並提供簡化格網應用程式開發的工具組以及程式設計

介面(API)，大幅縮短研發人員粹取企業內部運算資源的時間，將生產力最佳化。

研發人員將能專注於設計與開發，而不再需要週而復始地在企業中辛苦獵取閒置

但是隱形的運算資源。

 iii

An Asynchronous Decoupled Dynamic Grid Computation System

Student：Shang-chien Shen Advisor：Dr. Shyan-ming Yuan

Department of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

Abstract

Complex jobs such as bio-genetic sequencing and protein modeling requires massive

quantity of calculation and execution procedures. Today, industry applies Grid

Computing technologies to delegate the intensive computational work to a farm of

cluster computers in order to accelerate computing speed. This category of grid

computing rely on sumptuous hardware or distinctive, specific software, thus

restraining grid computing to constricted domains such as high-speed scientific

computation. Despite the widespread acceptance of grid concept, high TCO(Total

Cost of Ownership) intimidated the general public or even SMEs(Small-Medium

Enterprises) from adopting grid technologies. Vast amount of potential computing

capacity still remains untapped. Users are continually searching for more computing

resources to assist solve problems. On top of these challenges, Grid itself suffers

certain technical imperfections. Commercial solutions are incapable of solving

single-point-of-failure issues, incapable of dynamically expanding the volume of grid

network and is certainly having a difficult time migrating grid infrastructure to a

universe of different electronic devices existing today.

 iv

This research proposes a low-cost, pure software-based, cross-platform grid

framework, eliminating the mishap of single-point of failure, allowing dynamic grid

expansion. The framework also provides utility tools and Application Programming

Interfaces(APIs) that simplifies the process of grid application development, thus

optimizes overall productivity. Developers must focus on design and development

rather than hunting for resources hidden within the enterprise.

 v

Acknowledgement

首先我要感謝在這兩年的歷程之中給予我珍貴的建議，並引導我朝正確研究方向

邁進的指導教授 袁賢銘 教授，在指導過程之中給予我龐大的空間讓我自由揮灑

創意。另外要感謝 蕭存喻、高子漢、葉秉哲 與 吳瑞祥 四位學長不時給我豐富

的意見以及適時的鼓勵讓我可以順利地完成這篇論文。同時也謝謝分散式系統實

驗室裡的成員 柯憲昌、葉倫武、顏志明，在研究上彼此互助交換意見，相互學

習，一起成長。特別謝謝 憲昌在計畫中幫了我許許多多的忙，祝福他進入產業

界後能順利將自己心中的理想與憧憬實現。

最後，謹將此篇小小的學術成就獻給我的父母親 沈立勝 與 王麗文 ，感謝你們

給予我良好的環境讓我求學生涯無後顧之憂，專心於學術研究，同時也謝謝你們

多年以來對我無條件地支持與栽培。

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. VI

TABLE OF CONTENTS ...VII

LIST OF FIGURES...X

LIST OF TABLES ..XII

LIST OF CODES.. XIII

1. INTRODUCTION ..1

1.1. PREFACE...1
1.2. MOTIVATION ...1
1.3. RESEARCH OBJECTIVES ...2

1.3.1 Low-Cost and Cross-Platform...3
1.3.2 High Performance Resource Sharing ..3
1.3.3 High-Scalability ..4
1.3.4 High-Flexibility ...4
1.3.5 Simple-to-Use ..4

1.4. RESEARCH CONTRIBUTION ..5
1.5. OUTLINE OF THE THESIS..6
1.6. SUMMARY ...7

2. BACKGROUND ...8

2.1. CHAPTER INTRODUCTION ...8
2.2. SUPER COMPUTER, PHYSICAL CLUSTER AND VIRTUAL GRID.................................9
2.3. GRID COMPUTING DEFINITION ...10
2.4. SYSTEM ARCHITECTURES...12

2.4.1 Client-Server Architecture ..12
2.4.2 Peer-to-Peer Architecture..13
2.4.3 Space-oriented Architecture..14

2.5. COMMUNICATION MODELS ...15
2.5.1 Synchronous Transmission Model ...15
2.5.2 Asynchronous Transmission Model..16

2.6. RELATED WORKS ...17
2.7. SUMMARY ...18

3. SYSTEM ARCHITECTURE ..19

3.1. OVERVIEW ..19
3.2. MGRID PLATFORM..20

 vii

3.2.1 HTTP Server..22
3.2.2 Activation Daemon ..22
3.2.3 Nucleus Service ...24
3.2.4 Distributed Space Service ...26
3.2.5 Transaction Service...29
3.2.6 Leasing Service ...31
3.2.7 Security Service ...32
3.2.8 GC Service (Garbage-Collector Service) ..32

3.3. MGRID ENGINE ..33
3.3.1 Engine Kernel ...34
3.3.2 Generic Task Processor (GTP)..36
3.3.3 JVM Monitor...38
3.3.4 Machine Monitor ..38
3.3.5 Engine Command Listener ...38

3.4. MGRID TOOLKIT ..39
3.4.1 Engines Monitor ...42
3.4.2 Command Issuer ...42
3.4.3 GUI Displayer ...43

3.5. SYSTEM NON-FUNCTIONAL ISSUES: SCALABILITY AND FLEXIBILITY.................43
3.6. SUMMARY ...44

4. PROGRAMMING INTERFACE DESIGN..45

4.1. FOREWORD ..45
4.2. MGRID.API PACKAGE..46
4.3. MGRID.ENGINE PACKAGE...52
4.4. MGRID.TOOLKIT PACKAGE ...54
4.5. MGRID.EXAMPLES PACKAGE ...56
4.6. RECOMMENDED MGRID APPLICATIONS ...56
4.7. SUMMARY ...57

5. EXPERIMENT AND EVALUATION ...58

5.1. LINPACK BENCHMARK ...58
5.2. COMPARISON WITH MULTI-PROCESSOR MACHINES ..59

5.2.1 Performance: Multiprocessor vs. mGrid ..59
5.2.2 Utilization: Multiprocessor vs. mGrid ..60
5.2.3 Scalability: Multiprocessor vs. mGrid ..62
5.2.4 More on Performance: The number of Spaces matters ...62

5.3. COMPARISON WITH CLUSTERS ...63
5.3.1 Performance: Clusters vs. mGrid ...63

 viii

5.3.2 Total Cost of Ownership: Clusters vs. mGrid ...64
5.3.3 Single-Point-of-Failure Issue: Clusters vs. mGrid ..66

5.4. DISCUSSION ...66

6. CONCLUSION, BUSINESS OPPORTUNITIES & FUTURE WORKS69

6.1. CONCLUSION & BUSINESS OPPORTUNITIES...69
6.2. FUTURE WORKS ...70

REFERENCES...72

APPENDIX: USER TUTORIAL ..75

▪ RECOMMENDED DEVELOPMENT FLOW ...75
▪ MGRID PLATFORM QUICK SETUP ...76
▪ MGRID ENGINE QUICK GUIDE ..76
▪ MGRID TOOLKIT QUICK GUIDE ..78
▪ RUNNING AN EXAMPLE..79

 ix

LIST OF FIGURES

FIGURE 1-1: MGRID PLATFORM RUNS ON VARIOUS ELECTRONIC DEVICES WITH JAVA SUPPORT5
FIGURE 2-1: A CLIENT-SERVER BASED GRID ARCHITECTURE[16] ...12
FIGURE 2-2: A PEER-TP-PEER BASED GRID ARCHITECTURE[16] ..13
FIGURE 2-3: A SPCAE-ORIENTED GRID ARCHITECTURE ..14
FIGURE 3-1: MACROSCOPIC VIEW OF MGRID FRAMEWORK. MGRID IS CONSISTED OF FOUR MAJOR

PORTIONS..19
FIGURE 3-2: IN-DEPTH COMPONENT VIEW OF THE MGRID PLATFORM, INDICATED IN RED21
FIGURE 3-3: UNDERLYING CODE TRANSMISSION STEPS FOR MGRID PLATFORM..................................23
FIGURE 3-4: HOW NUCLEUS SERVICE WORKS WITH THE OTHER SERVICES FROM MGRID PLATFORM .25

FIGURE 3-5: ALL SERVICE COMPONENTS NEEDS TO REGISTER WITH THE NUCLEUS SERVICE UPON

START ..26
FIGURE 3-6: THE SPCAE-ORIENTED GRID ARCHITECTURE USED IN MGRID FRAMEWORK27
FIGURE 3-7: A SPACE IS CONSISTED OF SEVERAL COMPUTING DEVICES ..28
FIGURE 3-8: TRANSACTION SERVICE SUPPORTS THE 2-PHASE COMMIT PROTOCOL: EITHER ALL OR

NONE! ..30
FIGURE 3-9: IN-DEPTH COMPONENT VIEW OF THE MGRID ENGINE, INDICATED IN RED33
FIGURE 3-10: ENGINE KERNEL CONSTANTLY FETCH TASKS FROM SPACE...35
FIGURE 3-11: IN-DEPTH COMPONENT VIEW OF THE MGRID TOOLKIT, INDICATED IN RED39
FIGURE 3-12: MGRID TOOLKIT AND ENGINE INITIAL LINKING STEPS - WHEN THE TOOLKIT RESIDES IN

WAN ...40
FIGURE 3-13: WHEN THE TOOLKIT RESIDES IN LAN, THE ALGORITHM NEEDS TO BE SLIGHTLY MODIFIED

..41

FIGURE 4-1: HIGH-LEVEL VIEW OF THE ENTIRE MGRID API LIBRARY, INDICATED IN RED45
FIGURE 4-2: UML CLASS DIAGRAM OF MGRID.API. SIMPLICITY IS OUR PRIMARY OBJECTIVE..............47
FIGURE 4-3: UML CLASS DIAGRAM OF CPUUSAGE UTILITY CLASS WITHIN MGRID.ENGINE PACKAGE .52

FIGURE 4-4: UML CLASS DIAGRAM OF MONITORINGTHREAD UTILITY CLASS WITHIN MGRID.TOOLKIT

PACKAGE ...54
FIGURE 5-1: OUR TEST CASE. AX=B WHERE K=1000...58
FIGURE 5-2: PERFORMANCE COMPARISON WITH MULTIPROCESSOR MACHINES, CHART VIEW60
FIGURE 5-3: PERFORMANCE & TCO COMPARISON WITH CLUSTERSS, MGRID IS MUCH

COST-EFFECTIVE! ..65
FIGURE 5-4: OVERALL COMPARISON BETWEEN MGRID, MULTIPROCESSOR & GRIDS/CLUSTERS67
FIGURE APPENDIX-1: RECOMMENDED MGRID FRAMEWORK DEVELOPMENT FLOW75
FIGURE APPENDIX-2: THE BATCH FILES THAT STARTS THE MGRID PLATFORM, SIMPLE AND

STRAIGHT-FORWARD ...76
FIGURE APPENDIX-3: MGRID ENGINE GRAPHICAL USER INTERFACE ..77
FIGURE APPENDIX-4: MGRID TOOLKIT LOGIN SCREEN..78

 x

FIGURE APPENDIX-5: MGRID TOOLKIT MAIN INTERFACE. CLEAR VIEW OF A COMPLICATED GRID

NETWORK! ...79
FIGURE APPENDIX-6: 3D ROTATING DEMO PROGRAM. THE MORE MGRID ENGINES, THE FASTER IT

ROTATES!...80

 xi

LIST OF TABLES

TABLE 1-1: COST OF UNUSED COMPUTATIONAL RESOURCES [1] ..1
TABLE 2-1: COMPARISON OF SUPER COMPUTERS, CLUSTERS AND GRIDS [10][11][12][13]9
TABLE 5-1: PERFORMANCE COMPARISON WITH COMMERCIAL MULTIPROCESSOR MACHINES (MFLOP/S)

..60

TABLE 5-2: CPU RESOURCE WASTED (%)..61
TABLE 5-3: CPU RESOURCE UTILIZATION COMPARISON BETWEEN MULTIPROCESSOR PRODUCTS AND

MGRID ...61
TABLE 5-4: MGRID SYSTEM SCALES EASILY (MFLOP/S) ..62
TABLE 5-5: PERFORMANCE COMPARISON WITH COMMERCIAL CLUSTERS ..64
TABLE 5-6: TCO(TOTAL COST OF OWNERSHIP) COMPARISON OF MGRID WITH COMMERCIAL

CLUSTERS[28]...65
TABLE 5-7: SITUATION CONSIDERING THE NUMBER OF SPACES FAILED (MFLOP/S)..............................66
TABLE 5-8: SUPPOSE WE COMBINE FOUR CPUS TOGETHER INTO A MGRID VIRTUAL GRID, WHAT DO WE

GET?..67

 xii

LIST OF CODES

LISTING 3-1: TRANSACTION ALGORITHM PSEUDO-CODE ...31
LISTING 3-2: POLICY FILE THAT ALLOWS TOTAL ACCESS TO MGRID PLATFORM FROM ANYONE.32
LISTING 3-3: ALLOWS TOTAL ACCESS EXCEPT FOR INCOMING CONNECTION FROM IP 192.168.11.2 ..32

LISTING 3-4: A NAÏVE GTP IMPLEMENTATION PSEUDO-CODE ...36
LISTING 3-5: A MODIFIED GTP IMPLEMENTATION PSEUDO-CODE – BETTER SOLUTION........................37
LISTING 4-1: A SIMPLE EXAMPLE OF UTILIZING SPACEACCESSOR, TASKENTRY AND RESULTENTRY ..48

LISTING 4-2: EXAMPLE CLASS EXTENDINGTASKENTRY...49
LISTING 4-3: EXAMPLE CLASS EXTENDING RESULTENTRY ...49
LISTING 4-4: EXAMPLE CODE THAT FETCHES A REMOTE ENGINE’S INFO AND DISPLAYS ITS CONTENTS

..50

LISTING 4-5: EXAMPLE CODE THAT SENDS A SHUTDOWN COMMAND TO A REMOTE ENGINE.................51
LISTING 4-6: AN EXAMPLE CODE SEGMENT USING THE CPUUSAGE CLASS ..53
LISTING 4-7: EXAMPLE CODE THAT USES MONITORINGTHREAD CLASS TO DISPLAY ALL ENGINES ON

NETWORK ..55

 xiii

1. INTRODUCTION

1.1. PREFACE

Complex jobs such as bio-genetic sequencing and protein modeling requires massive

quantity of calculation and execution procedures. Today, industry applies Grid

Computing technologies to delegate the intensive computational work to a farm of

cluster computers in order to accelerate computing speed. This category of grid

computing rely on sumptuous hardware or distinctive, specific software, thus

restraining grid computing to constricted domains such as high-speed scientific

computation.

1.2. MOTIVATION

Despite the widespread acceptance of grid concept, high TCO (Total Cost of

Ownership) intimidated the general public or even SMEs(Small-Medium Enterprises)

from adopting grid technologies. Vast amount of potential computing capacity still

remains untapped. Table 1-1[1] designates a research adapted from Internet

Infrastructure & Services by Bear, Stearns & Co., quantifying the total idle

computational resources, into a more tangible measurement. The result is astonishing.

 $/processor $/used $/used processor Cost of unused cycles

1 desktop $1,200 $300 $150 $1,050

1000 desktops $1,200,000 $300,000 $150,000 $1,050,000

Table 1-1: Cost of unused computational resources [1]

 1

According to the research, an enterprise with one thousand computers wastes

minimum of $1.05 million worth of computational resources daily.

On top of things, Grid itself still suffers certain technical imperfections. Commercial

solutions such as the SUN Grid [2] are incapable of solving single-point-of-failure

issues, incapable of dynamically expanding the volume of grid network and is

certainly having a difficult time migrating grid infrastructure to a universe of different

electronic devices existing today.

In addition, the steep learning curve substantially increases the cost and risk of

developing a stable real-world grid application. We must keep in mind that grid users

are seldom experts in distributed technology, the significance of their innovation in

developing applications often exceeds their knowledge towards grids. Thus,

middleware providers need to provide exception-free, thread-safe and simple-to-use

tools and APIs for grid application developers.

This research proposes a low-cost, pure software-based, cross-platform grid

framework, named mGrid. mGrid eliminates the mishap of single-point of failure and

permits dynamic grid expansion. The framework also provides utility tools and

Application Programming Interfaces(APIs) that simplifies the process of grid

application development, thus optimizes overall productivity. Developers must focus

on design and development rather than hunting for resources hidden within the

enterprise.

1.3. RESEARCH OBJECTIVES

mGrid framework is intended to achieve six major objectives: low-cost,

cross-platform, high performance resource sharing, high-scalability, high-flexibility

 2

and simple-to-use.

1.3.1 Low-Cost and Cross-Platform

Sumptuous hardware or distinctive, specific software is a key problem averting grid

technologies from being embraced by the general public. In order for grid solutions to

be extensively adopted, two issues needs to be taken into consideration.

First is the cost issue, the TCO of owning a grid must be sufficiently acceptable. The

second is the ability to connect various electronic devices existing today. In other

words, the cross-platform characteristic of a grid solution directly determines the

potential volume of the grid in the future.

1.3.2 High Performance Resource Sharing

Performance is undeniably the key measurement in evaluating a grid middleware.

People expect grids to be fast, reliable and stable, anything less would be intolerable.

Performance in grid systems is effected by two sets of elements:

● The nature of the job submitted to the grid. Sequential computation is by nature

the worst case in grid performance, compared to complete parallel computations.

● Grid architecture design. Bad task scheduling algorithms could lead to potential

bottleneck of the whole system, while naive control-message routing strategy

could quickly overload the grid environment.

From the middleware provider’s point of view, the first element is beyond our scope.

Nevertheless, the second element is the responsibility of a good grid middleware.

 3

1.3.3 High-Scalability

The performance growth of a grid is direct proportional to how fast it can scale, e.g.

the more computers that is currently within/joining the grid, the faster it processes

tasks. Scalability can be classified into two categories: static and dynamic. Majority of

commercial grids supports only static scaling, the grid size is fixed to a predefined

cluster of computers, new computers joining the grid will require manual modification

of attributes in the central task dispatching server. Dynamic scaling does not require

manual interference, new computers notifies the grid of its existence automatically.

Grid systems should be able to scale dynamically and scale high.

1.3.4 High-Flexibility

A grid framework should preserve resilience for application developers. Grid

computing is an approach that lets you organize widespread, diverse collections of

resources into a more uniform, manageable, visual whole. The resources we are

referring here does not narrowly limit to CPU or storage, it might refer to anything

with digital representation, e.g. Multimedia files, libraries, data, applications…etc. A

good grid middleware should be as flexible as possible, it should not confine the

innovation of grid application programmers within the scope of a badly designed

middleware API.

In other words, creativity should not be limited by the framework.

1.3.5 Simple-to-Use

Grid systems involves complicated low-level network communications and protocol

design. A grid middleware has the responsibility to hide these underlying complexities.

 4

A set of simple-to-use Application Programmer Interfaces(APIs) should be provided

for application designers. Furthermore, cumbersome grid administrative jobs should

be made simple by utility tools, provided with the middleware.

1.4. RESEARCH CONTRIBUTION

To achieve the objectives listed in section 1.3, we encountered various perplexities

while designing mGrid. This thesis discusses the issues that were encountered and our

corresponding solutions. The major contributions of this research can thus be

categorized into seven parts.

● We crafted a low-cost, pure software-based high performance grid solution that

works on various devices with java support. Figure 1-1 below depicts this

cross-platform characteristic:

Figure 1-1: mGrid platform runs on various electronic devices with Java support

 5

● We introduced a simple-to-use grid programming model.

● We introduced a set of utility tools to facilitate the administration of mGrid.

● We discussed the scalability issues in grid middleware, and implemented mGrid

with a decentralized space-oriented architecture that supports dynamic grid

expansion, and effectively solved the single-point-of-failure problem.

● We discussed the flexibility issues of grid middleware and proposed a

considerably general platform for developers to write a variety of grid

applications.

● We experimented mGrid performance with a modified version of the Linpack

benchmark[3], a standard benchmarking program for commercial super

computers.

● We analyzed the pros and cons of various grid design decisions.

1.5. OUTLINE OF THE THESIS

This dissertation is composed of six chapters. Chapter 1, this one, is introductory.

In Chapter 2, we introduce the background of grid computing methodologies and

bring forth major commercial solutions for discussion.

In Chapter 3, we confer the detail implementations of mGrid framework. This section

proposes our peculiar distributed algorithms and system architectures that render life

to mGrid, pro and con of various design decisions is also debated here.

In Chapter 4, we switch to the developers’ point of view by introducing the mGrid

API. We can appreciate the ease in both writing grid applications and administrating

grid environments using tools and APIs supplied with mGrid. This chapter also serves

as a tutorial for the developers to operate the mGrid framework. Last but not least,

 6

some innovative example applications of mGrid framework is also presented here.

In Chapter 5, we put mGrid performance to the test using a modified version of

Linpack benchmark[3]. Various experiments will be held and the performance of

mGrid framework will be thoroughly quantified. Finally, in Chapter 6, we bring forth

conclusion and a brief discussion on future works along with potential business

opportunities.

1.6. SUMMARY

In this chapter we briefly described what grid computing is, what it can do, and the

problems that exists with industrial grid solutions today. Grids are expensive thus

intimidated the general public or SMEs(Small-Medium Enterprises) from adopting

grid technologies. Furthermore, commercial grids still suffer from technical

imperfections. Then we pointed out the objectives of this thesis and introduced our

proposed grid system, named mGrid framework. In the end we categorized the major

contributions of this research into multiple points.

 7

2. BACKGROUND

2.1. CHAPTER INTRODUCTION

This chapter gives you the background of our research. To begin with, in section 2.2,

we bring forth an interesting comparison of three popular models of super computing,

namely super computers, physical clusters and virtual grids. A survey on their price,

capability, size and such is revealed here. This survey serve as one of our basis in

explaining why grid concept is gradually replacing traditional super computers or

large mainframe clusters.

Next, we introduce the definition of grid computing according to TurboWrox

Corporation[9] in section 2.3. What is a grid? How can it be applied? What

applications are suitable to be submitted to a grid for processing? What are not?

It is known that commercial grid solutions are implemented using dissimilar

architectures and communication models, which possesses different characteristics.

Sections 2.4 and 2.5 discusses several approaches in implementing a grid, the pros

and cons, and explain why we choose a particular model. Finally we introduce other

related works in section 2.6.

Note that each survey we made has a certain level of impact on how we implement

the mGrid Framework. We try to present to you concrete evidence referenced from

other academic researches and industrial studies to justify our path of choice.

 8

2.2. SUPER COMPUTER, PHYSICAL CLUSTER AND VIRTUAL GRID

Grid computing is not the only option in efficiently solving complicated scientific

calculations, there are other options existing. These options includes:

● Super Computers. Large and expensive singular computing hardware, normally

used in areas such as weather condition modeling and nuclear simulation.

Famous examples include NEC Earth simulator[10] and IBM ASCI White[11].

● Physical Clusters. Supercomputing devices consists of a large number of

computers. Each of the computing node is interconnected using a LAN. Physical

clusters usually resides within a single organization and is rarely open to the

public. Jobs are dispatched to the back-end cluster for computation.

● Virtual Grids. PCs’ computing capacity are donated freely to join virtual grids.

Each PC is connected across the internet using software programs. Famous

examples include SETI@Home[12], Folding@Home[13] and GIMPS[14]. A

virtual grid usually span across several geographical locations.

These three options possesses different characteristics. Entry barriers in adopting each

of the mentioned technology is also different. Table 2-1 presents a comparison of

these three choices, using commercial products as example:

Computing Option Name Specification Cost (million USD)

Super Computer IBM ASCI White 8192 RS/6000 processors

6TB memory

$110

Super Computer NEC Earth Sim 5104 vector processors

16GB memory

$350

Physical Cluster 100,000 Intel P4 1G processors

256MB memory

$213

Virtual Grid 100,000 Intel P4 1G

256MB memory

Absorbed by PC owners

Table 2-1: Comparison of super computers, clusters and grids [10][11][12][13]

 9

According to a market research report by the Insight Research Corporation in 2004,

cost is the primary decisive factor for the adoption of super computing devices[15].

This means, the higher the TCO(Total Cost of Ownership) for an enterprise to obtain a

grid, the lower chance that they will actually adopt the technology. Table 2-1 shows

that virtual grids proliferated an undeniable attraction due to its low-cost. Therefore,

one of our major research objective is in creating a low-cost grid framework that

provide all the necessary functions of a grid.

mGrid is a pure java-based grid framework. The java language provided

cross-platform abilities so that an enterprise can interconnect all of their internal

computers using mGrid Framework, regardless of their operating systems. This

thoroughly utilizes all the idle resources in an enterprise without having to purchase

any new hardware. TCO is thus lowered to an acceptable range with mGrid.

2.3. GRID COMPUTING DEFINITION

IDC and Insight Research Corporation predicts that worldwide grid spending will

grow from $714.9 million in 2005 to approximately $19.2 billion in 2010[15]. With

all the hype in the future of grid computing, it is surprising that there is still a lack of

approval on what it is. TurboWrox Corp’s definition is a pragmatic one[9]. It is a

computing model that:

● Aggregate a set of diverse, widespread, distributed CPU resources into an

organized virtual supercomputer.

● Aggregate a set of diverse, widespread, distributed Memory resources into an

organized virtual system memory.

● Aggregate a set of diverse, widespread, distributed Data resources into an

organized virtual data warehouse.

 10

● Provide a unified visual view of the set of disperse resources mentioned above.

● Provide simple management, administration and utilization of distributed

resources spanning across the network.

TurboWrox’s grid definition left out one important item:

● Grid is flexible.

mGrid sees grid computing not only as a mean to aggregate computing resources, but

also as a platform for innovative grid applications. It needs to be extremely flexible

for developers to write various creative applications other than computation-based

programs. See chapter 4 for more creative grid applications written with mGrid.

So what kind of application is suitable for a grid?

Our answer is that parallel programs are more applicable to grids. By parallel

programs we refer to a set of procedures that do not interfere with one another. Each

step in the program is independent. An example of such system is a distributed

searching program that allows searching on individual grid nodes. Parallelism ignite

the full potential of grids, see chapter 5 for the quantification of our statement here.

In summary, mGrid matches all five of TurboWrox’s grid definitions, and we added

an extra definition of our own, by allowing more flexibility in mGrid Framework.

Now that we understand the basic background of grid computing, what it is, what it

can do, we now dive into more advanced discussions: underlying technical variations

of grids. We begin with higher-level architectural options, then lower-level

communication model options.

 11

2.4. SYSTEM ARCHITECTURES

Three possible types of grid system architectures are Client-Server, Peer-to-Peer and

Space-oriented. We discuss each individual approaches and analyze their advantages

and disadvantages.

2.4.1 Client-Server Architecture

Client-Server model is simple and common in the world of network. Certainly, it can

be applied to grid computing as well. In the Client-Server model, a grid user submits

jobs to a centralized job dispatcher, this dispatcher then “dispatch” jobs to a

appropriate node within the grid for processing, according to the current load of each

computing node. Figure 2-1 depicts such model:

Figure 2-1: a Client-Server based grid architecture[16]

The major advantage of Client-Server model is in its easy management nature. The

central dispatcher also serves as the management node, thus the administration of

each computing node can be conducted by directly linking to the dispatcher server.

Its disadvantages includes the Single-point-of-Failure(SPF), and low-scalability. SPF

refers to the situation when the central dispatcher server crashes, the entire back-end

 12

grid is immediately rendered useless. As for the second disadvantage, low-scalability

is obvious when a new compute node joins the grid, configuration needs to be

manually made in the dispatcher server. This is an extremely tedious task when you

need to substantially expand your grid size.

2.4.2 Peer-to-Peer Architecture

The Peer-to-Peer grid model works in a simple manner: a grid user simply pass the

jobs to its immediate neighbors for processing. Sometimes your task will be flooded

across the whole p2p network depending on the grid algorithm the system applies.

Figure 2-2 illustrates a p2p grid architecture:

Figure 2-2: a Peer-to-Peer based grid architecture[16]

The advantage of a peer-to-peer architecture is that it does not have a centralized

control, thus the SPF problem mentioned in section 2.4.1 is eliminated. Furthermore,

new nodes can be added to an existing network without much effort.

The disadvantage is in its state consistency. What happens when a node with a job on

hand suddenly crashes? How would we know which job is lost? Is it really lost or is it

still under processing somewhere deep in your p2p network? The second downside is

 13

that the entire network state needs to be maintained by the grid user itself, the grid

user needs to know the condition of each of its neighbor node in order to pass jobs to

the right neighbors for processing. This enormously increases the overall workload of

the grid user.

2.4.3 Space-oriented Architecture

Space-oriented concept originates from the Linda programming model from Yale

University[17]. It basically works as follows: a grid user submits jobs to a storage

space on the network, each computing node then fetch jobs randomly from the space

to process. After the processing completes, the results were passed back into the space,

the grid user then collects and combines the results from the space. Section 3.2.4

explains the space concept and our implementation in more detail. Figure 2-1 depicts

a simple space-oriented architecture:

Figure 2-3: a Space-oriented grid architecture

The space-oriented architecture seemed to be a panacea for grid computing. It has the

advantage of both Client-Server and Peer-to-Peer architectures, yet it solved most of

 14

the problems occurring in both models[17]. First, the space can be distributed across

the network thus the SPF problem in 2.4.1 is settled. Secondly, all the compute node

needs to register itself to the space upon start-up, thus the space manages and

monitors the entire grid for the user.

One important characteristic of space-oriented grids is that each compute node

spontaneously fetch jobs FROM the space for processing, this differs from both the

Client-Server and Peer-to-Peer models in that these two models push the jobs TO the

compute nodes for process. This implies one more advantage: each node in a

space-oriented architecture is allowed to leave the network at will.

Due to the advantages the space-oriented architecture has over the other two models,

mGrid chooses the space-oriented model as the underlying system architecture.

Next, we discuss the lower-level communication protocol options.

2.5. COMMUNICATION MODELS

Grid nodes communicate with one another by means of communication protocol.

Since different protocols bring about different effects on a grid system, we need to

understand the features of each mechanism and decide which is most appropriate for

grid computing systems.

Two models are introduced in this section, namely Synchronous Transmission and

Asynchronous Transmission.

2.5.1 Synchronous Transmission Model

Synchronous transmission refers to the fact that when a client requests a remote

service call, the execution process is temporarily suspended until a reply is received

 15

from the remote service. An implementation of such concept is the RPC(Remote

Procedure Call) technology. Most commercial products such as SUN Grid[2] and

IBM IntraGrid[18] are based on synchronous transmission mode.

2.5.2 Asynchronous Transmission Model

Asynchronous transmission, on the other hand, allows the service requestors to

continue running after a request is sent, without blocking the entire program waiting

for a reply. Examples of asynchronous transmission are MOMs(Message-Oriented

Middleware) such as JMS(Java Messaging service)[19].

Synchronous and asynchronous transmission have advantages and disadvantages. The

latter tends to be more robust to failures, while the former tends to be easier to

develop with.

So which transmission model is suitable for grid computing? Reference [19] uses a

simple M/M/1 queuing model to prove that for a piece of program that is consisted

mainly of parallel codes, the overall performance of the asynchronous model is better

than the synchronous model. Furthermore, grid computing applications by nature are

supposed to be parallel, submitting sequential programs to a grid is essentially

senseless. Therefore we expect the majority of mGrid users will utilize our framework

in solving parallel problems. With these facts in mind, we decided to use the

asynchronous transmission model for mGrid Framework.

Note that many commercial products are synchronous-based, thus we expect to have a

better start than these grid solutions by choosing the correct transmission mode in

advance.

 16

2.6. RELATED WORKS

Many international research institutes and companies have collaborated in developing

various projects associated with grid computing. These projects can be horizontally

classified into specific-grids, general-grids and grid middlewares.

SETI@Home[12], Folding@Home[13] & GIMPS[14] are examples of specific-grids,

meaning each of them solves only very specific problems. SETI@Home allows you to

download a software that turns your computer into a node within SETI’s grid, this

software analyzes radio telescope data using the CPU resources of your PC and

transmits results back to SETI central server. Folding@Home uses a similar

architecture to studies protein folding, misfolding, aggregation, and related diseases.

GIMPS works in the same fashion only it conducts a different job.

SUN Grid[2], IBM Intra Grid[18] and ALiCE[20] are examples of general-grids.

These grid solutions do not restrict the logic of the applications running on-top of

them. SUN Grid software typically bundles with SUN blade servers and allows jobs

to be submitted to it. IBM Intra Grid provides an experimental worldwide-scale grid

system accessible to all IBM employees. ALiCE is a java-based grid solution

developed by National University of Singapore, applications such as protein modeling

is written and tested with this framework.

Finally, Globus toolkit[21], Legion[22], JXTA[23] and GridSim[24] are considered

grid middlewares. Globus is an open system that provides a set of basic services.

Users can build higher-level services using lower-level services. Globus is largely

platform dependent and requires UNIX to run. Furthermore, its complicated

infrastructure setup, application development and deployment created a high learning

curve both in mastering and using Globus. Legion is a toolkit that treats all software

 17

and hardware in the grid as objects, and provide remote method calls between these

objects. JXTA is a set of protocols developed by SUN Microsystems to ease the

development of p2p application, different grid systems can be built by using these

protocols. Last but not least, GridSim offers a complete solution in the simulation of

grid networks.

Most of the above researches are built on-top of the Client-Server architecture, and

utilizes Synchronous transmission as underlying protocol. From sections 2.4 & 2.5 we

pointed out that some of these technical decisions are probably not the best ones.

2.7. SUMMARY

This concludes our research background. We understand that there are multiple ways

to super computing, and virtual grids offer a cost-effect and attractive option.

Companies that cannot afford high TCO in purchasing grid solutions should consider

about adopting grids that are purely software-based, such as mGrid.

Virtual grids can be implemented using various design options, such as determining

the system architecture and communication models. In sections 2.4 & 2.5 we used

concrete research results that proves the following:

● Space-oriented Architecture is a good choice for grids

● For parallel computing, asynchronous transmission model is more appropriate.

Finally we give an introduction on other related works of grids. The surveys and

observations done in this chapter has influential impact in our design of mGrid

Framework. In the next chapter we will walk you through our underlying

implementation design in a thorough manner.

 18

3. SYSTEM ARCHITECTURE

3.1. OVERVIEW

The proposed solution in this thesis, named mGrid framework, is a low-cost, pure

java-based, high-performance grid solution. mGrid attempts to migrate grid

computing concept onto mobile devices(e.g. Personal Digital Assistants, Cellular

phones) and onto large computational equipments(e.g. PCs, mainframes), which has

minimum network connectivity support. Figure 3-1 depicts the macroscopic view of

the mGrid framework:

Figure 3-1: Macroscopic view of mGrid framework. mGrid is consisted of four major portions

mGrid framework is consisted of four major portions:

 19

● mGrid Platform

● mGrid Engine

● mGrid Toolkit

● mGrid API

mGrid Engines can be installed on devices with java support. The J2SE[4] and

J2EE[4] version is fully operational, while the J2ME[4] version currently has minimal

functions. Engines deployed on devices automatically constructs a mGrid network

environment that support transaction, natural load-balancing and security.

Application developers then use the mGrid API to compose various grid applications

that utilizes the mGrid environment formed by the engines. Note that at least a single

engine must be started for a mGrid network to be successfully built. We also provide a

set of useful tools in the mGrid toolkit to allow easy monitoring and administrating of

mGrid networks.

In this chapter we will focus on the implementation methodologies and distributed

algorithms of three items: mGrid Platform, mGrid Engine and mGrid Toolkit. In

chapter 4 we will discuss the mGrid API in depth.

We will emphasize on the J2SE and J2EE version of mGrid framework.

3.2. mGrid PLATFORM

Before we talk about mGrid Engine and mGrid Toolkit, we need to have some basic

understanding of the platform itself. Note that both the engine and toolkit rely on the

grid infrastructure constructed by the software components within mGrid platform.

mGrid platform is an augmented version of SUN’s JINI network technology[8], by

augmented version we mean that it provides additional features such as including

 20

more specialized service components dedicated to grid computing.

Figure 3-2 shows the in-depth components that constitute the mGrid platform:

Figure 3-2: In-depth component view of the mGrid Platform, indicated in red

mGrid platform adheres to the SOA(Service-Oriented Architecture) concept[5], each

component can exist as a remote service across the internet. For instance, we can start

Nucleus service, Transaction service and Security service on computers A , B and C

lying on the network. These services uses mGrid’s underlying protocol to search,

discover and communicate with one another, as if they were running on the same

machine. Protocol details will be described in section 3.2.3. SOA allows the stress of

executing services to be evenly-distributed across the network, so that no single

computer will be overloaded[5].

Now we introduce the individual components within mGrid platform. We begin with

two lower-level components first: HTTP Server and Activation Daemon.

 21

3.2.1 HTTP Server

mGrid platform requires this facility because for many vital operations to realize,

code needs to be dynamically downloaded from some remote service running

somewhere on your network. The actual transmission of java code take place via the

HTTP protocol. The implementation of our server is minimal, it only supports the

GET operation, which is sufficient for code downloading.

In general, any code that may need to be downloaded across the network has to be

accessible from a HTTP server instance.

3.2.2 Activation Daemon

An activation daemon[6] is a piece of software which allows services that is invoked

only rarely to essentially “hibernate”, and be automatically awakened when they are

needed. Every service component will need to register itself with an activation

daemon instance before running. Activation daemon has two major responsibilities:

● Service hibernation & de-hibernation: Manage the transition between active and

inactive states for each service component.

● Service self-recovery: Restart a particular service after it crashes, restoring it to

its previous state before the crash.

We make use of the activation daemon software that comes with J2SDK 5.0[4]. At

minimal, you will need to run an instance of activation daemon on each host that runs

services. The daemon creates log files that contains information of the activable

service which has registered itself to the daemon. State transition and crash recovery

 22

relies on the information saved within those log files.

The reason we apply activation daemons not only is because it is able to recover

services after a crash, but also economizes the use of system resources by sending

currently unused service components into “hibernate” mode. The down-side is that it

adds an extra layer below each service component, efficiency is therefore decreased

during a service’s initial start-up time by approximately 7.5%, but proposed no further

decreases in subsequent service calls. We decided that this is a minor trade-off

compared to the valuable capabilities it adds to our platform.

In summary, the mGrid platform requires both HTTP server and activation daemon

for services to pass necessary java codes across the network and to be self-recovery.

This concept is exhibited in Figure 3-3:

Figure 3-3: Underlying code transmission steps for mGrid platform

ow that we understood how the lower-level code passing operates, we can start to N

probe into the upper-level service components provided by mGrid platform, namely

Nucleus service, Transaction service, Leasing service, Security service, GC(Garbage

 23

Collector) service and Distributed Space service. Note that these services relies

heavily upon the schemes described in sections 3.2.1 and 3.2.2.

3.2.3 Nucleus Service

As the name implies, this service is the central core among the other services listed in

nd of naming/directory service[7], it keeps

2. of the service it

3. es and proxy code.

art-up, using IP multicast(in

5. ecessary proxy code it requires from the first

6. The service user communicates with the service component in a p2p manner

the mGrid platform. A good analogy would be our solar system: The Nucleus service

will be the sun, while the other services within mGrid platform are the planets

constantly revolving around it, all using the functionalities the Nucleus service

provides.

You can think of Nucleus service as a ki

track of all other mGrid services currently running on the network. However, it differs

from traditional naming/directory services, which only provides simple string-object

mapping, the Nucleus service supports java type search, i.e. You can search for a

particular service using the interface it implements or any of its super-interfaces.

The Nucleus service co-operates with other active services using the following steps:

1. A new mGrid platform service component searches for Nucleus services upon

start-up, using IP multicast(in LAN) or unicast(beyond LAN).

 The service component publishes the attributes and proxy code

provides to the Nucleus service.

 Nucleus service saves the attribut

4. A service user searches for a Nucleus service upon st

LAN) or unicast(beyond LAN).

 The service user downloads the n

Nucleus service it found.

using the proxy code.

 24

The ed in Figure 3-4: above steps are illustrat

Figure 3-4: How Nucleus service works with the other services from mGrid platform

Note that steps 2 and 5 in Figure 3-4 utilizes the underlying dynamic code download

echanisms makes this possible:

● Y instances of Nucleus service on your

(Max num of Nucleus failure tolerated) = (Total num of Nucleus started) – 1 (1)

scheme introduced in section 3.2.1.

Each Nucleus is also fault-tolerant, two m

● Each Nucleus service relies on the activation daemon described in section 3.2.2

to recover its state after a crash or restart. So you must run an activation daemon

on each machine that runs a Nucleus.

ou have the option of running multiple

network. This redundancy allows unexpected failures of some Nucleus. It means

as long as a single Nucleus lives, the mGrid platform can perform its duties as if

no failure occurred, since each service user requires only a minimum of one

Nucleus for proxy code downloading (see step 4 in Figure 3-4). This can be

summarized into a simple mathematical formula:

 25

Before discussing other service components in mGrid platform, we need to kee

hat all the mGrid platform services needs to register itself to the Nucleus

p in

mind t

service upon start-up. Nucleus service keeps track of all mGrid service components

currently running, and is capable of making them visible to service users, even if users

have no previous knowledge of where the service components are on the network.

This interaction between service components, service users and Nucleus is illustrated

once more using an UML sequence diagram in Figure 3-5:

Figure 3-5: All service components needs to register with the Nucleus service upon start

3.2

he Distributed Space Service serves as the job exchanging location for our grid

and taken from a space. From this point on we shall

-oriented grid

.4 Distributed Space Service

T

system, all jobs are transmitted to

refer the distributed space service as simply “space” for convenience.

The concept of the space-oriented grid has been introduced in section 2.4.3, let’s add

it with more detailed explanation here. Figure 3-6 shows the space

concept:

 26

Figure 3-6: The Space-oriented grid architecture used in mGrid Framework

he space works in a very simple manner. Suppose we have multiple users U, a single

 jobs to S.

k to S.

e S for final presentation.

Note that each space need to reg

 temporary memory residing on the

T

space S, and multiple Engines E:

1. U submits a series of parallel

2. E fetch the jobs randomly from S.

3. E process the jobs.

4. E put the results bac

5. U collects the results from th

ister itself to the Nucleus, refer to Figures 3-4 & 3-5.

After a space has successfully registered itself to a Nucleus, it is then visible to both

mGrid users and mGrid Engines for discovery and use. This space discovery process

will be explained in more detail in section 3.3 later on. Right now we only need to

know that a space acts as the central job exchanging ground for our grid Framework.

So what is a space exactly?

The simple answer is that a space is a piece of

 27

network that is consisted of multiple computers. Computers participating in the same

space can share each other’s memory and storage space. Figure 3-7 depicts a space:

Figure 3-7: a “Space” is consisted of several computing devices

Figure 3-7 ill s X,Y and Z.

omputer X sits at geographic location A, while computers Y and Z sits at geographic

tremely useful and sufficient. Suppose we

ustrates a single space consisted of three personal computer

c

location B. By initiating a distributed space service on each of the computers, we

combine them into a single logical space entity that is consistent and shares

memory/storage resources, regardless of their actual geographical whereabouts. In

other words, a space service is a virtualization middleware which connects computer

memories across the network. Space service uses multicast to search for other space

services in the same LAN, while unicast is used if the other space services are located

outside of the LAN.

A space only supports three simple operations: 1. Fetch 2. Put and 3. Read. These

three very basic operations proves to be ex

have a Genetic Algorithm computation on hand, each step can be first disassembled

 28

into tasks. Each task is then Put into the space by the client. The engines Fetch these

tasks from space and does the processing, then it Put the results back into the space.

Finally, the client Read the results in space and reassemble them for presentation.

A space utilizes the other services, namely Transaction service, Leasing service,

Security service and GC(Garbage-Collector) service, to provide add-on functionalities

such as safe-transaction, space garbage-cleaning, space access-authorization and

leasing. These final four mGrid platform service components will be introduced in

sections 3.2.5, 3.2.6, 3.2.7 and 3.2.8 below.

3.2.5 Transaction Service

A transaction service needs to register with the Nucleus before being used by other

ransaction service provide the ACID

ted space service,

service components, see section 3.2.3. T

properties to data manipulations. In simple words, it allows a series of operations to

complete altogether, if a single operation in the whole series fail, the transaction fails,

and everything gets rolled-back to its initial state.

Our implementation of Transaction service supports the 2-phase commit protocol.

Note that the distributed space service utilizes the transaction service to insure data

integrity, the space is required to discover the transaction service through the Nucleus

(consult section 3.2.3) before it can be transaction-enabled.

Figure 3-8 illustrates the transaction steps in mGrid platform using UML sequence

diagram. The interaction between mGrid Client, the Distribu

Transaction service and mGrid Engines is the center focus, we will not show

transaction-unrelated steps such as the discovery of services.

 29

Figure 3-8: Transaction service supports the 2-phase commit protocol: Either all or none!

Le e

ansaction, this means T1 and T2 must both complete successfully or neither will.

t us explain Figure 3-8 step by step. Assume tasks T1 and T2 belong to the sam

tr

Transaction service keeps this principal in mind and constantly polls Engines A and B

using the 2-phase commit protocol. If both Engines A and B succeed in processing T1

and T2 consecutively, then the transaction service sends the commit message to both

engines, finishing up the transaction. If either engine fail to finish processing a task,

then the transaction is considered a failure and roll-back procedure is taken. The

system returns to its initial state and re-processes T1 and T2 again.

We use a simple pseudo-code in the next page to demonstrate the transaction

algorithm described above:

 30

T1, T2 : belong to the same transaction;

ransacted processing of tasks(T1, T2)

e.

Step2. T1, T2 are registered to the Transaction service to be managed.

 and T2 for processing.

e A || Engine B has not completed processing)

as completed?

}

Step6. commit the transaction and the client read the results from space.

}

T

{

Step1. T1, T2 are put into the spac

Step3. Engine A and Engine B fetch T1

Step4. Engine A and Engine B are registered to the transaction service.

While(Engin

{

Step5. Transaction service asks Engines A,B if the processing h

Listing 3-1: Transaction algorithm pseudo-code

he Space service needs to discover the Transaction service before using it, the

.2.6 Leasing Service

elf before being used. All objects sent to a space

T

discovery procedure is described in Figures 3-4 and 3-5, section 3.2.3.

3

Leasing Service needs to register its

has a lease time attribute, indicating its TTL(Time-To-Live) within a space. A Leasing

service manages a hashtable of object-TTL pair, and constantly removes the expired

objects from a space. This allows the unused objects to be recycled and memory

resources could be released, thus mitigates the loading of the entire grid.

However, lease time have the option to be renewed to prevent it from being discarded

by the Leasing service.

 31

3.2.7 Security Service

ty model. The Security service reads a

grant {

java.security.AllPermission "", "";

mGrid platform supports policy-based securi

policy file before the mGrid platform starts, this policy file include all the policies that

has to be obeyed. The following are two simple examples of a policy file:

 permission

 };

Listing 3-2: Policy File that allows total access to mGrid platform from anyone.

grant {

java.security.AllPermission "", "";

1.2", "connect, refuse";

 permission

 permission java.net.SocketPermission "192.168.1

 };

Listing 3-3: Allows total access except for incoming connection from IP 192.168.11.2

Security service provides a static method of authentication and authorization for

.2.8 GC Service (Garbage-Collector Service)

ervice. Like all the other service

mGrid platform. Currently the platform has been initially tested using the total access

policy.

3

GC service is short for Garbage-collector s

components in mGrid platform, it needs to register itself to the Nucleus before being

used. GC service differs from the Leasing service described in section 3.2.6 in that it

can force all the objects to be cleaned up, regardless of their leasing time. This service

is useful in situations when the entire platform needs to be restarted.

Other uses of GC Service would be specifying a group of unwanted objects, such as

 32

illegal submitted tasks. The GC service removes these tasks without effecting the

other regular operation of mGrid platform.

So far we have completed the introduction of the underlying mGrid Platform, and

.3. mGrid ENGINE

t on-top of the mGrid Platform. Figure 3-9 shows the in-depth

should have a brief understanding of how a space-oriented grid works(see section

3.2.4). mGrid Engine is another key portion of our framework that is built on-top of

mGrid Platform. In the following section we will introduce the mGrid Engine.

3

mGrid Engine is buil

components that constitutes mGrid Engine:

Figure 3-9: In-depth component view of the mGrid Engine, indicated in red

ngines can be deployed on a variety of devices with java support. After successful E

deployment and execution, engines allow a disperse set of devices to link together and

form a virtual supercomputing environment that shares CPU, memory, storage, file

 33

resources and so forth. We call this environment the mGrid Environment.

Developers then utilizes the mGrid APIs (see chapter 4) to write various grid

Grid Engine’s role, we begin introducing the

.3.1 Engine Kernel

ain component which enables the engine to communicate with

rid

● processing,

● onitoring messages sent to mGrid Toolkit (see

● mGrid Toolkit (see section

If we look at engine kernel assists the engine to search

applications that access the resources harnessed within mGrid environment. These

applications includes protein modeling, ray-tracing and prime number searching

programs.

Now that we have a high-level idea of m

inner-level components that propels the engine, starting with the core of the Engine:

Engine Kernel.

3

Engine Kernel is the m

the underlying mGrid Platform. The engine kernel has four major responsibilities:

● Initializes the engine, search for the space service instance provided by the mG

Platform (see section 3.2.4 for distributed space service introduction).

Fetches tasks from space, pass them to the Generic Task Processor for

then put results back to space.

Acts as the middleman for m

section 3.4 for Toolkit monitoring details).

Acts as the middleman for control messages sent from

3.4 for Toolkit controlling details).

technically, an engine kernel

for space instances within mGrid Platform, and constantly fetch tasks from the space

for processing. Figure 3-10 illustrates how an engine kernel interacts with a space

using UML sequence diagram:

 34

Figure 3-10: Engine kernel constantly fetch tasks from space.

A mGrid client 3.2.3) and use

it to lookup a space instance(section 3.2.4). After obtaining the space, the client

anages the task

 uses multicast to search for the Nucleus service (section

program then feed the space with tasks that needs to be processed by the mGrid

Environment. On the other side, engine kernel also uses multicast to search for a

Nucleus and use it to lookup a space, then randomly fetch any available tasks that

currently resides within the space. When the processing is completed, a result object

will be fed into the space by the kernel, where it will be read by the client and

reassembled with other results objects for presentation.

Note that the engine kernel only fetches the tasks from the space, it does not process it!

Instead, the Generic Task Processor introduced in the next section m

processing.

 35

3.3.2 Generic Task Processor (GTP)

After the engine kernel fetched a task from space, this task is passed to the Generic

dynamic class loading feature of the java

en feed the result back to space:

{

 aTask = EngineKernel.takeTaskFromSpace();

 = aTask.process();

 EngineKernel.putResultInSpace(result);

d”);

Task Processor(GTP) for processing.

As the name implies, the GTP is generic enough to handle different sorts of logical

calculations, this is achieved through the

programming language. In other words, when the GTP receives a task, the task’s

computational code will be dynamically loaded into the processor. The GTP does not

have any previous knowledge of the task logic that it will process, everything loads in

on the fly.

A naïve version of GTP pseudo-code looks like listing 3-4, it simply fetches a task

from space, process it, th

While(true)

 result

 println(“a task is processe

}

Listing 3-4: A naïve GTP implementation pseudo-code

The above GTP ine fails after it

tched a task but did not successfully process it? This task would then be lost. For a

pseudo-code has a critical flaw. What if the eng

fe

system with high-reliability demand this is not an acceptable situation.

Therefore our GTP implementation makes use of mGrid Platform’s Transaction

service (consult section 3.2.5 for detailed description on how transaction service

 36

works). By integrating transaction service into GTP, we ensure a highly-reliable grid

system. A modified version of GTP pseudo-code is listed below:

 While(true)

Listing 3-5: A modified GTP implementation pseudo-code – better solution

Listing 3 h a task

om space, or if task processing fails, the transaction service will abort the

{

 TransactionService txn = Platform.createTransactionService();

= EngineKernel.takeTaskFromSpace();

 if(aTask == null)

 r .process();

if(r ull)

 EngineKernel.putResultInSpace(result);

 txn ;

 aTask

{

txn.abort();

return;

}

esult = aTask

esult == n

{

txn.abort();

return;

}

.commit()

 println(“a task is processed”);

}

-5 illustrates GTP with transaction support. If an engine fail to fetc

fr

transaction and attempt to roll-back the entire computation. Only when the calculation

is guaranteed to be successful, will the transaction be considered finished and

committed.

In summary, GTP acts as the central processing unit in mGrid Engine.

 37

3.3.3 JVM Monitor

JVM Monitor digs the local machine’s JVM profile for display in the mGrid Engine

 Furthermore, it periodically sends heartbeat messages in the

e local machine’s CPU and memory status every 1000ms.

Grid Engine graphical user interface. Furthermore, it

and Listener waits for commands sent from the mGrid Toolkit, such as

processing condition thresholds. Command

graphical user interface.

form of EngineInfoEntry containing the JVM attributes to a remote mGrid Toolkit

software for administration purposes. All messages generated by the JVM Monitor

goes through the engine kernel, which in turn passes the message to the distributed

space service on mGrid Platform, where it is read by mGrid Toolkit for display.

JVM attributes includes JRE version, operating system name, OS patch level, JDK

version and so forth.

See section 3.4.1 for EngineInfoEntry details.

3.3.4 Machine Monitor

Machine Monitor reflects th

The status is displayed in the m

periodically sends heartbeat messages in the form of EngineInfoEntry containing the

machine’s latest status to a remote mGrid Toolkit software for monitoring purposes.

All messages generated by the Machine Monitor goes through the engine kernel, the

kernel passes the message to the distributed space, where it is read by mGrid Toolkit

for display. Machine status includes CPU and memory usage level.

See section 3.4.1 for EngineInfoEntry details.

3.3.5 Engine Command Listener

Engine Comm

shutting down an engine or setting

 38

messages sent from mGrid Toolkit first go through the engine kernel, which in turn

passes them into the distributed space service on the mGrid Platform, where they are

fetched by the Engine Command Listener component for analysis and execution.

Command messages are concealed in an EngineCommandEntry class. See section

3.4.2 for further information regarding EngineCommandEntry.

At this point, we have completed the technical introduction of mGrid Engine.

However, engines are by themselves a full-fledged software with simple-to-use

Grid Framework provided a simple-to-use utility tool called mGrid Toolkit, which

onitoring of existing mGrid environments.

graphical user interfaces. Appendix has a thorough user tutorial on mGrid Engine.

Last but not least, we discuss mGrid Toolkit in the next section. mGrid Toolkit is an

utility tool that simplifies the administration of any mGrid network environment.

3.4. mGrid TOOLKIT

m

enables easy administrating and m

Figure 3-11: In-depth component view of the mGrid Toolkit, indicated in red

 39

Figure 3-11 illustrates the tools included in mGrid Toolkit, namely Network tool,

Workflow tool, System tool and Help tool. At this stage we have fully-implemented

the Network tool, thus it will be the focus of this section.

But before we start to introduce the components within the Network Tool, we need to

understand how mGrid Toolkit initially connects with mGrid Engines. Keep in mind

that engines might randomly spread across WAN and different LANs. There are two

possible situations:

Scenario 1. The toolkit resides in public network (WAN).

Scenario 2. The toolkit resides in private network (LAN).

Figure 3-12: mGrid Toolkit and Engine initial linking steps - When the Toolkit resides in WAN

Figure 3-12 illustrates the first scenario. In order for a Toolkit residing in public

network to communicate with Engines (which might reside in both public or private

networks), the Toolkit needs to publish its location information, namely IP/port, to the

space service of the mGrid Platform. Engines A and B read this location information

object and actively establish a socket connection TO the toolkit using the IP/port pair.

 40

Toolkits in this scenario waits passively for the socket connection.

However, if the toolkit resides in a private network, as stated in scenario two, the

algorithm needs to be slightly modified. Figure 3-13 depicts this situation:

Figure 3-13: When the Toolkit resides in LAN, the algorithm needs to be slightly modified

In Figure 3-13, the toolkit resides in a private network. If we naïvely apply the

algorithm steps given in Figure 3-12, initial socket connections between the toolkit

and engines A & B will fail, for in this scenario the toolkit’s IP address is a private one,

socket connections simply cannot be made to a private IP address!

Instead, engines A and B must now publish their location information (IP/port) to the

distributed space service running on mGrid Platform. The toolkit read engine A and

B’s IP/port objects from the space, and then actively establishes socket connections

consecutively TO mGrid Engines A and B using corresponding IP/port pairs. Engines

in this scenario waits passively for the incoming connection.

Combining the algorithms described in Figures 3-12 and 3-13, mGrid Toolkit is

 41

endowed with the capability to monitor and control thousands of mGrid Engines

spanning across perplex LAN and WAN architectures concealed in today’s internet.

Once the socket connections were successfully built, the Network tool can then be

applied to monitor and control the engines simultaneously.

Now we introduce each of the components within the Network tool (consult Figure

3-11 for the component view).

3.4.1 Engines Monitor

In sections 3.3.3 and 3.3.4 we m

onitored by the mGrid Toolkit, this is achieved with the Engines

The EngineInfoEntry class contains information such as CPU status, memory status,

 network.

entioned that an engine’s JVM profiles and machine

status can be m

Monitor component contained in Network Tool. Periodically an engine serializes an

EngineInfoEntry java object across the network, using the socket established

previously with the toolkit.

JVM version and so forth.

On the other side, the Engines Monitor de-serializes this EngineInfoEntry through an

ObjectInputStream class provided with J2SDK5.0[4]. It then unwraps the

EngineInfoEntry object and analyze the information concealed within.

3.4.2 Command Issuer

The network tool uses the Command Issuer component to transmit control commands

to any specific engine. The command Issuer utilizes the ObjectOutputStream class in

J2SDK5.0[4] to serialize an EngineCommandEntry object across the socket

connection established previously to an engine running on the

 42

The EngineCommandEntry class contains the command for the engine to execute,

such as shutting down an engine or setting a processing threshold for an engine.

n the other side of the network, an engine de-serializes the EngineCommandEntry,

the command concealed within.

 (section 3.4.2) to manipulate the

pleted the technical introduction of mGrid Toolkit.

inistration of the entire mGrid environment spanning

WAN.

 should

be made highly-scalable and highly-flexible. In this section let us examine whether

er task. This implies

O

unwraps the object and executes

3.4.3 GUI Displayer

The GUI Displayer has one single purpose: create a graphical user interface to display

the real-time engine status contained in EngineInfoEntry (section 3.4.1) and to allow

administrators to send EngineCommandEntry

behavior of remote engine instances.

At this point, we have com

However, mGrid Toolkit by itself is a full-fledged software with intuitive graphical

user interfaces. See the appendix for mGrid Toolkit user’s tutorial.

In summary, mGrid Toolkit contains several useful tools such as the Network tool.

Network tool allows easy adm

across different LANs and

3.5. SYSTEM NON-FUNCTIONAL ISSUES: SCALABILITY AND FLEXIBILITY

In section 1.4 we mentioned that apart from performance, a good grid system

these characteristics exists for mGrid. mGrid Platform is implemented using the

space-oriented architecture (see section 2.4.3), this has three advantages:

● Natural Load Balancing: mGrid Engines fetch tasks from a space for processing,

only when it completed the current task, will it fetch anoth

 43

that devices with more CPU resources can process more tasks during a fixed

ompared to devices with less CPU resources (see section 3.3:

withdraw from a mGrid network freely

(see section 3.3: mGrid Engine).

which allows the task logic to be loaded

to the engine on the fly for processing. An engine does not need any previous

mGrid T

Both the en

All partic

where a variety of reso

toolkit s dministration of mGrid environments. See appendix for a

com

period of time, c

mGrid Engine).

● Dynamic Grid Expansion: Engines can search for a space dynamically upon start,

without any human intervention. Thus adding new devices to a mGrid network is

extremely convenient. Engines can also

● No Single-Point-of-failure: a logical Space is actually physically distributed on

multiple machines (see section 3.4.2: Distributed Space service), thus even when

a few space service fails, the mGrid platform still remains operational.

The above three points endowed mGrid Framework with a high level of scalability. As

for Flexibility, the Generic Task Processor (see section 3.3.2: Generic Task Processor)

uses java’s dynamic class loading capabilities

in

knowledge of task logics. This enables developers to write a variety of innovative

applications using mGrid APIs.

3.6. SUMMARY

mGrid Framework is consisted of four portions: mGrid Platform, mGrid Engine,

oolkit and mGrid API. In this chapter we talked about the previous three.

gine and toolkit relies on the grid infrastructure created by the platform.

ipants with an engine activated is a legal entity within a mGrid environment,

urces can be shared among each other. Finally, the mGrid

implifies the a

plete user’s tutorial on mGrid Engine and Toolkit.

 44

4.

4.1.

The mGrid Fram

PROGRAMMING INTERFACE DESIGN

FOREWORD

ework is consisted of four portions: mGrid Platform, mGrid Engine,

mGrid Toolkit and mGrid API. In chapter 3 we introduced the previous three. In this

chapter we will probe into the last item: mGrid API. Figure 4-1 illustrates a high-level

view of the entire mGrid API library:

Figure 4-1: High-level view of the entire mGrid API library, indicated in red

Developers utilizes the libraries provided by mGrid API to write various creative grid

essed within a mGrid environment

ee section 3.3: mGrid Engine).

API is divided into four sub-packages:

applications that makes use of the resources harn

(s

Currently the mGrid

 45

● mGrid.api: the core of mGrid API. Classes in this package enable developers to

 mGrid Engine (consult section 3.3: mGrid

Engine). Multiple engine-related utility classes are also included.

● mGrid.toolkit: contains an implementation of mGrid Toolkit (consult section 3.4:

mGrid Toolkit) and a set of toolkit-related utility classes.

● mGrid.examples: presently includes a 3D graphics demo program written with

mGrid.api that utilizes the CPU resources harnessed in a mGrid Environment.

The packages will be introduced respectively in subsequent sections. We first begin

with the mGrid.api package.

4.2. mGrid.api PACKAGE

The mGrid.api package is the core of mGrid API. Our development objective is to

make it simple to use and easy to expand.

1. SpaceAccessor class: enable grid application developers to access platform

lt section

2.

itted to mGrid Engines for processing.

discover space services (see section 3.4.2: Distributed Space service), to build

different categories of task entries and to create a diverse set of engine

commands.

● mGrid.engine: an implementation of

Simplicity is our primary concern.

The package has three major categories of classes:

functions such as searching and using a distributed space service (consu

3.4.2: Distributed Space service).

TaskEntry, ResultEntry, Command classes: enable developers to define the logics

of grid task chunks to be subm

 46

3. EngineInfoEntry, EngineCommandEntry classes: Developers extends these two

classes to add more engine monitoring attributes and to build an extended set of

Figure 4-2 shows the UML

engine commands respectively.

 class diagram of mGrid.api package:

Figure 4-2: UML Class diagram of mGrid.api. Simplicity is our primary objective

SpaceAccess

sp

Task

the object generated by the class which extends TaskEntry simply as “a task”.

mote mGrid Engine.

or class has one simple function getSpaces() which returns a distributed

ace service for the developers to operate on. Furthermore, you should sub-class

Entry and implement your computation logic in its execute() method. We refer to

A task object is passed into a space, where it is fetched by a re

 47

Once an engine obtains a task object, it dynamically loads the logic code within the

task’s execute() method and start processing (consult section 3.3.2: Generic Task

Processor). A class sub-classing ResultEntry is returned to the space after processing

completes, within contains the computation results.

Listing 4-1 is an example code of utilizing the SpaceAccessor, TaskEntry and

ResultEntry classes:

import mGrid.api.*;

//…

Space space = SpaceAccessor.getSpaces();

TaskEntry task = new MyTask();

space.put(task);

//wait for processing to complete

ResultEntry template = new ResultEntry();

System.out.println(result.toString());

ResultEntry result = space.read(template);

Listing 4-1: A simple example of utilizing SpaceAccessor, TaskEntry and ResultEntry

When you obtained a space reference using the SpaceAccessor, you can call the put()

method on the space object to put a task in a space, call read() and fetch() methods to

logics within the execute() method

that comes with the TaskEntry class, by extending TaskEntry. Listings 4-2 & 4-3

read and fetch an entry from space respectively. Note that for read() and fetch()

methods you will need to specify a template first. In listing 4-1 a template with the

type ResultEntry is specified, this means an entry with type ResultEntry will be read

or fetched from the space.

Keep in mind that you should implement your code

 48

depicts example classes extending TaskEntry and ResultEntry:

import mGrid.api.*;

//…

MyTask extends TaskEntry

MyTask()

cessor.getSpaces();

}

s method!

 return result;

 }

public class

{

 private Space space;

 public

{

 space = SpaceAc

 //place your computation logic in thi

 public Entry execute()

 {

 ResultEntry result = new MyResult();

 space.put(result);

}
Listing 4-2: Example class extending TaskEntry

public class MyResult extends ResultEntry

tring toString()

{

}

import mGrid.api.*;

//…

{

public S

 return “I am a result!!”;

}

Listing 4-3: Example class extending ResultEntry

Finally, EngineInfoEntry and EngineCommandEntry classes allows you to access a

remote engine’s information and specify a command for an engine respectively.

 49

Listing 4-2 fetch ngine’s information and displays it on screen:

port mGrid.api.*;

Sp ace = SpaceAccessor.getSpaces();

EngineInfoEntry template = new EngineInfoEntry();

mplate.ip = “192.168.11.2”;

late);

the remote engine’s information

.ip);

Info.port);

m.out.println(engineInfo.cpu);

es a remote mGrid E

im

//…

ace sp

te

EngineInfoEntry engineInfo = space.fetch(temp

//print

System.out.println(engineInfo.hostname);

System.out.println(engineInfo

System.out.println(engine

Syste

System.out.println(engineInfo.mem);

Listing 4-4: Exampl splays its contents

Listing 4-2 req the EngineInfoEntry object of a remote engine

with the IP add plate object with the type

EngineInfoEntry nd setting its String ip field to “192.168.11.2”. Next, we call the

fetch() method on e space reference, passing in the template as parameter. If a

matching EngineIn space, it is retrieved. Finally, we can

print engine information such as hostname, IP, port, CPU usage rate, memory usage

rate, using engine engineInfo.cpu and

ngineInfo.mem fields on the EngineInfoEntry you retrieved from a space respectively.

Next, we give a simple example on how to send a “shutdown” command to a remote

mGrid Engine using EngineCommandEntry class. This is demonstrated in listing 4-3:

e code that fetches a remote engine’s info and di

uested the space for

ress of 192.168.11.2. We first create a tem

 a

th

foEntry currently exists in

Info.hostname, engineInfo.ip, engineInfo.port,

e

 50

import mG

//…

Space spa

EngineCo dEntry();

engineCom

engineCom

//send the P=192.168.11.3

space.put

rid.api.*;

ce = SpaceAccessor.getSpaces();

mmandEntry engineCommand= new EngineComman

mand.ip = “192.168.11.3”;

mand.command = “System.exit(0)”;

shutdown command to the engine with I

(engineCommand);

Listing 4-5 and to a remote engine

The example co : Shuts down a remote engine

wit

pace. At th

address of 192.168.1

ext we introduce the mGrid.engine package.

: Example code that sends a “shutdown” comm

de in listing 4-3 executes a simple task

h the IP address of 192.168.11.3.

First, We create an object of EngineCommandEntry type and set its String ip field to

“192.168.11.3”, and its String command to “System.exit(0)”. Next we simply put this

EngineCommandEntry object into s is point, the mGrid Engine with the ip

1.3 should asynchronously retrieve the command object from the

space, parse the String command field for the code it should execute (see section 3.3.5:

Engine Command Listener). In our case, the engine shuts itself down.

We have finished a brief introduction on mGrid.api package. As you can see, by

conducting a few simple calls you are empowered to monitor an entire cluster of

mGrid Engines, send tasks for them to process, retrieve results, and conduct a variety

of commands on any specific engine instance on the network.

N

 51

4.3. m KAGE

We provided a full-fledged mGrid Engine implementation in the mGrid.engine

package, along with an engine-related utility class. In this section we will not list the

detail lopment

of mG d Engine, for an introduction on

how engines works. Here we will focus solely on the utility class: CpuUsage class.

Figur diagram of CpuUsage class:

Grid.engine PAC

 class diagrams of the engine code, since this is not relevant to the deve

rid applications. Instead, see section 3.3: mGri

e 4-3 illustrates the UML class

Figure 4-3: UML class diagram of CpuUsage utility class within mGrid.engine package

 class to detect the CPU and memory

atus of the local machine, and to send this information to the mGrid Toolkit software

r remote monitoring (see section 3.4: mGrid Toolkit).

Application developers utilizes the CpuUsage

st

fo

 52

Furthermore, experienced engineers have the option of writing their own engine

import mGrid.engine.*;

//start sending monitoring messages to toolkit

engine.startMonitor();

System.out.println(engine.getCPUTime());

System.out.println(engine.getRAMStat());

//stop sending monitoring messages to toolkit

engine.stopMonitor();

implementation using the methods provided in CpuUsage class, combined with the

classes in mGrid.api package. Listing 4-4 shows an example code of using the

CpuUsage class:

//…

CpuUsage engine = new CpuUsage();

Listing 4-6: an example code segment using the CpuUsage class

In listing 4-4, we first create an object of CpuUsage class, this initializes the

monitoring thread on the local machine. Next, by calling startMonitor() method, the

device’s status messages are constantly sent across the network to the toolkit software.

Methods getCPUTime() and getRAMStat() returns the current CPU and memory usage

rate of the local machine respectively. Finally, stopMonitor() stops sending monitoring

me

mGrid.api and mGrid.engine

ssages to the toolkit.

At this point we have introduced how to apply the

packages to a grid application. This should be sufficient for most grid-based programs.

In the following section, we dive into the mGrid.toolkit package.

 53

4.4. mGrid.toolkit PACKAGE

We also supply a fully-featured mGrid Toolkit software in the mGrid.toolkit package.

Apart from the toolkit software, another utility class called MonitoringThread is also

at the disposal of mGrid application developers. MonitoringThread class contains a

 all the engines currently under monitor. Figure 4-4 depicts the UML class

diagram of the MonitoringThread class:

hashtable of

Figure 4-4: UML Class diagram of MonitoringThread utility class within mGrid.toolkit package

es field with remote

ngines’ information. Hashtable engines field contains engineIP-EngineInfoEntry pair,

When you initialize a MonitoringThread instance, a new thread is started and runs in

the background. This thread continuously looks for all the engines currently running

within a mGrid environment, and populates its Hashtable engin

e

 54

by iterating through all entries in the hashtable, a developer can retrieve a set of

import mGrid.toolkit.*;

//…

MonitoringThread toolkit = new MonitoringThread();

toolkit.start();

//hashtable containing all the engines currently alive on the network

HashTable allEngines = toolkit.engines;

//iterate through all the entries in the hashtable, listing out all remote engine

Enumeration e = allEngines.elements();

while(e.hasMoreElements())

{

 EngineInfoEntry engineInfo = (EngineInfoEntry) e.nextElement();

 //print each remote engine’s information

System.out.println(engineInfo.hostname);

System.out.println(engineInfo.ip);

System.out.println(engineInfo.port);

System.out.println(engineInfo.cpu);

System.out.println(engineInfo.mem);

EngineInfoEntry objects containing useful engine information, see listing 4-4 for uses

of EngineInfoEntry class.

Listing 4-7 below shows an example code displaying all the mGrid Engines currently

running on the network using MonitoringThread class:

}

Listing 4-7: Example code that uses MonitoringThread class to display all engines on network

Note that only a machine that has a mGrid Engine software running, or have called

the startMonitor() method on the CpuUsage class (see section 4.3), can it be a legal

candidate for detection by the MonitoringThread class.

 55

With mGrid.toolkit, mGrid.api and mGrid.engine packages in hand, a programmer

can now fully-utilize the strength of parallel computing provided by the mGrid

Framework.

In the last package, namely mGrid.examples, we give a demo application written with

the previous three API packages.

4.5. CKAGE

Developers can consult the code in this package to further assist them on how to write

real-world mGrid applications. mGrid.examples package contains a demo program

which utilizes the classes in mGrid.api, mGrid.engine and mGrid.toolkit packages.

The running 3D graphics rotation. However,

inste putation is

divid nks that can be passed into a mGrid

environment for a cluster of mGrid Engines to process in a parallel fashion. This

mean etwork, the

rotat but as you start more engine instances

on other

See appe ronment and running this demo.

4.6. MMENDED mGrid APPLICATIONS

Grid API enables programmers to develop numerous innovative application. But

mGrid.examples PA

demo program consisted of a window

ad of conducting the 3D calculation on the local machine, the com

ed into multiple independent task chu

s that when you only have a single mGrid Engine running on your n

ing speed of the 3D graphics is minimal,

machines, it immediately accelerates!

ndix section on setting up a mGrid Envi

RECO

m

which sort of application can fully-utilize the power of our framework?

Here, we recommend four categories of appropriate applications:

 56

● Category 1: All returned results needs to be pieced together in order to produce a

final result, and each chunk of task produces a single result. Image-processing

applications such as ray-tracing fall into this category.

tatistical analysis applications such as customer

behavior analysis programs fall into this category. Each computer analyzes its

.

● Category 3: Some, but not all task chunks produce results. Searching engines fall

ctive

ning the programming interfaces. In sections 4.2 to 4.5, we use numerous

rate mGrid API into your own

the ability to

.

● Category 2: Returned results are independent of one another, but each task chunk

produces its own result. S

own customer behavior

into this category. Search tasks are dispatched onto multiple computers, while

only a few will return the search result which fits your searching criteria.

● Category 4: Only a single task will give you the correct result. Programs written

to break encrypted messages falls into this category. Multiple tasks will be issued

to the grid, while only a single one will return the correct decrypted message.

Note that not all applications are suitable for a grid network. All four categories of

applications we give above share a similar characteristic: parallelism. Keep in mind

that only parallel programs can fully appreciate the power of mGrid Framework.

4.7. SUMMARY

In this chapter we introduced the entire mGrid API. Simplicity is our main obje

while desig

easy-to-understand code segments to teach how to integ

application. Finally, we recommend four primary categories of applications that is

appropriate to be written with mGrid Framework. Now you should have

judge whether or not to develop your program using mGrid, and how

 57

5.

In th

Linp

testing software for industrial supercomputers, such as the top500[27].

We

with m

of a system

perform

individual issues respectively

Ax=b. In our case, k=1000.

 EXPERIMENT AND EVALUATION

is chapter we experiment the performance of mGrid Framework using the

ack benchmark[26]. Linpack benchmark is widely accepted as the de facto

 will first briefly explain what Linpack benchmark does, then compare our results

ultiprocessor machines and clusters. However, to determine the good and bad

, many aspects needs to be taken into consideration. These aspects include

ance, scalability, utilization percentage and cost. We will look into these

.

5.1. LINPACK BENCHMARK

The Linpack benchmark used in our experiment randomly generates a dense

1000x1000 system with one right hand side, Ax=b.

Figure 5-1 shows an example of

Figure 5-1: Our test case. Ax=b where k=1000

For a matrix with size k, there are 2/3k^3+O(k^2) floating point operations to be

 58

performed, including both additions and multiplications. The calculation is based on

aussian elimination with partial pivoting.

ark, the matrix product can be split into submatrices and performed

 parallel. Each submatric calculation is implemented as an independent task.

computation speed of a system.

 this section, we compare our system with various commercial multiprocessor

■ Scenario one: 1, 2, 4, 8 compute nodes. Only the first node runs the distributed

space service (see section 3.2.4: Distributed Space Service).

■ Scenario two: 1, 2, 4, 8 compute nodes. All nodes runs an instance of distributed

space service.

Note that each compute node in our mGrid environment is a Pentium4 with 1700MHz

CPU, 512MB RAM, running J2SDK5.0. Node

g

In Linpack benchm

in

In the following two sections, we compare our benchmark results against

multiprocessor machines and clusters respectively.

5.2. COMPARISON WITH MULTI-PROCESSOR MACHINES

Multiprocessor machines differs from clusters in that all the CPUs resides in the same

address space, and shares common physical memory. Multiprocessor machines

intends to increase the overall

In

products.

5.2.1 Performance: Multiprocessor vs. mGrid

We designed two scenarios for mGrid:

s are interconnected using 100Mbps

Ethernet.

 59

the result is shown in table 5-1[26]:

Machine 1 CPU 2 CPU 4 CPU 8 CPU Cost of 2 CPUs

HP AlphaServer ES80 7/1150(1.15GHz) 1184 3424 6584 11410 *
Cray SV1ex-1-32(500 MHz) 1554 2947 5358 8938 *
HP 9000 rp8420-32 2905 5435 9478 14150 $ 93,000
NEC SX-4/1 1944 3570 6780 12780 $ 52,680
Comp 4 7905 $ 23,900 aq Server ES40(667MHz) 1031 1923 380

IBM 4396 8302 $ 31,500 eServer pSeries 610 Model B80 1451 2521

HP Dome 1497 2506 4319 8055 * Super

mGrid ario one 2 2640 5277 10541 $ 4,909 Scen 132

mGrid 30 $ 4,909 Scenario two 1330 2659 5316 106

Table 5-1: Performance comparison with commercial multiprocessor machines (Mflop/s)

Figure 5-2 illustrates the line chart of table 5-1:

5.2.2 Utilization: Multiprocessor vs. mGrid

ystems using different CPUs, merely comparing performance is not rational.

Figure 5-2: Performance comparison with multiprocessor machines, chart view

Scalability Results - Performance vs. CPUs

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 4 8

M
flo

p/
s

HP AlphaServer ES80 7/1150(1.15GHz)

Cray SV1ex-1-32(500 MHz)

HP 9000 rp8420-32 (1000MHz PA-8800)

NEC SX-4/1

Compaq Server ES40(667MHz)

IBM eServer pSeries 610 Model B80

HP SuperDome

mGrid Scenrio one

mGrid Scenrio two

CPUs

The processing performance is direct proportional to the speed of CPU used, thus with

different s

 60

Instead we need to focus on the utilization of each CPU. For instance, the best

erformed system: the HP 9000 rp8420-32 with 1 CPU can reach 2905 Mflop/s,

tically with 2 CPUs it shou h fl t y

plies 6.454% roc g po s w Fu ermore, with

ld theoretically re 324 op/s alit y a 4150

putation capability!

On the contrary, with mGrid Framework, less than 0.3% of CPU power is left idle.

s that mGrid Fra rk c lly yo pute nodes, while

achines will was ore computation resources as y ore

CPUs to the system.

shown in Table 5-2:

Machine 1 CPU 2 CPU 4 CPU 8 CPU

p

theore ld reac 5810 M op/s, ye in realit it only reached

5435 Mflop/s, this im of p essin wer i asted. rth

8 CPUs, it shou ach 2 0 Mfl , in re y it onl chieved 1

Mflop/s, it implies a 39.113% loss of com

This result show mewo an fu utilize ur com

multiprocessor m te m ou add m

The under-utilization situation of each system is

Cray SV1ex-1-32(500 MHz) 5.1801802 13.803089 28.104891

HP 9000 rp8420-32 (1000MHz PA-8800) 6.454389 18.433735 39.113597

NEC SX-4/1 8.1790123 12.808642 17.824074

Compaq Server ES40(667MHz) 6.7410281 7.7594568 4.1585839

IBM eServer pSeries 610 Model B80 13.128877 24.259132 28.480358

HP SuperDome 16.299265 27.872411 32.740481

mGrid Scenario one 0.1512859 0.2080182 0.330938

mGrid Scenario two 0.037594 0.075188 0.093985

Table 5-2: CPU Resource wasted (%)

rom Table5-2, we can conclude that (average approximation):

Commercial multiprocessor products 1 CPU + 1 CPU ≈ 1.512 CPUs

F

mGrid Framework 1 CPU + 1 CPU ≈ 1.985 CPUs

Table 5-3: CPU Resource utilization comparison between multiprocessor products and mGrid

 61

Table 5-3 is an approximate calculation. At this point we have shown that mGrid

Framework can utilize a set of dispersed computing resources much better than

multiprocessor machines.

5.2.3 Scalability: Multiprocessor vs. mGrid

Now let’s see the price it takes for systems to scale. For multiprocessor machines, if

+1 CPUs is required, you will have to purchase a whole new

ply not

fective. On the other hand, scaling up is simple for mGrid. We scale the size of

a mGrid Environment in table 5-4:

Machine 8 CPU

the CPU quantity exceeds the maximum number a single machine can contain, this

often means one thing: to scale further, purchasing a second machine is inevitable.

Let’s say you have a multiprocessor machine with a maximum of n CPU slots, if the

processing power of n

machine pre-installed with 1 CPU, thus leaving n-1 slots empty. This is sim

cost-ef

9 CPU 10 CPU 11 CPU

mGrid one 10541 118 Scenario 60 13181 14199

mGrid 10630 119 Scenario two 55 13300 14632

Table 5-4: mGrid System scales o

As we mentioned in chapter 1, scalability is one of our primary concerns. Here we

show that adding more CPUs to a mGrid environment is much more simpler and

cost-effective than adding more CPUs to multiprocessor machines.

5.2.4 Mor of Spaces matters

Before we end this sub-section, one more interesting ef

In mGrid scenario one, we run a single space service on the first machine, while in

 easily (Mfl p/s)

e on Performance: The number

fect deserves to be discussed.

 62

scenario two, all machines runs an instance of space service. The performance of

scenario two is clearly better than that of scenario one. See tables 5-1 & 5-4. The

reason is as follows: If we have a mGrid environment with 2 compute nodes, and

ese two nodes both runs an instance of space service, there is an approximate 50%

the same machine as the mGrid Engine.

puting node”, and has its own set of CPUs and

emory. A regular cluster differs from mGrid in two ways:

within a cluster usual s th e o g s

ss a variety of operat tem

● Cluster compute nodes often resides within the same LAN, while mGrid spans

across multiple LANs and WANs.

ership) and better

alability than the commercial clusters, offering the same computing capability.

5.3.1 Performance: Clusters vs. mGrid

th

chance that the task-to-be-processed resides in

Thus decreases the propagation time of fetching a task from a remote space.

We can assume that for most cases, the performance outcome is direct proportional to

the number of space services activated.

5.3. COMPARISON WITH CLUSTERS

A cluster is a commonly found computing environment that connects multiple

independent workstations residing on the same LAN(Local Area Network). Each

workstation is referred to as a “com

m

● Compute nodes ly run e sam peratin ystem, while

mGrid spans acro ing sys s.

Here we compare our system with multiple eminent cluster computers. Our goal here

is to show that our system brings lower TCO(Total Cost of Own

sc

First we look at the Linpack Performance of the following commercial clusters, as

 63

shown in table 5-5:

Machine Num of Nodes Gflop/s

Sun HPC 6500(400MHz 8MB L2 Cache) 18 13.05

CRAY T3E-1200E (600 MHz) 16 13.41

SGI Origin 2000 (250 MHz) 32 13.22

Intel Paragon XPS-35 (50 MHz, OS=R1.1) 512 15.2

Compaq GS140 cluster 24 15.31

mGrid Scenario one 11 13.87

mGrid Scenario two 11 14.29

Table 5-5: Performance comparison with commercial clusters

essor machines, can harness all the available

very dissimilar hardware

an

two nership) of owning a mGrid

environment with equal computing capability as the commercial clusters listed above.

Second, we show that unlike traditional clusters, mGrid can effectively avert the SPF

problem (Single-Point-of-Failure).

As we mentioned in section 2.2, high TCO is the primary factor that prevents

individuals or SMEs from adopting grid-like technology, thus our objective is aimed

at offering a low-cost grid solution. Table 5-6 depicts the costs of various commercial

Cluster architecture, unlike multiproc

CPU resources just as well as mGrid does. Thus our assumption here is that all the

compute nodes within a cluster (and within mGrid environment) is close to 99-100%

utilized. The performance is shown in table 5-5. However, we do not intend to

compare the absolute performance, since each cluster has

d is interconnected using different network technologies. Instead, we will compare

things. First, we compare the TCO (Total Cost of Ow

5.3.2 Total Cost of Ownership: Clusters vs. mGrid

cluster computers[28].

 64

Machine TCO (million $USD) Gflop/s

Sun HPC 6500(400MHz 8MB L2 Cache) 0.3 13.05

CRAY T3E-1200E (600 MHz) 0.14 13.41

SGI Orig 50 MHz) 0.85 in 2000 (2 13.22

Intel Par 1.92 15agon XPS-35 (50 MHz, OS=R1.1) .2

Compaq 1.64 15 GS140 cluster .31

mGrid S 0.027 13cenario one .87

mGrid S 0.027 14cenario two .29

Table 5-6 nership) comparison of l clusters[28]

A mGrid envi ely $0.027mn

SD[20], while the TCO of other commercial clusters with similar computation

: TCO(Total Cost of Ow mGrid with commercia

ronment with 11 Pentium4 1700MHz costs approximat

U

power ranges from $0.3mn ~ $1.92mn USD. This implies that on average a

commercial cluster with more or less the same computing power is 36 times more

expensive than our mGrid solution.

This is further illustrated in Figure 5-3:

Figure 5-3: Performance & TCO comparison with clusters, mGrid is much cost-effective!

 65

We own that mGrid is a cheap and effe r ing. With a

fai rid proves itself an excellen y point to grid

com nd SMEs.

5.3 ailure Issue: Clusters Grid

N

ommercial clusters, we turn our focus back to the technical aspect once more.

ace service is alive, the mGrid environment

can continue on processing jobs, table 5-7 shows the situation when mGrid scenario

two suffers from space failure of different levels:

Machine 0 fail 1 fail 2 fail 3 fail

 have sh ctive shortcut to g id comput

rly reasonable TCO, mG to be t entr

puting for individuals a

.3 Single-Point-of-F vs. m

ow that we proved mGrid is economically more cost-effective than many

c

Traditional clusters suffers from the severe Single-Point-of-Failure (SPF) problem, by

single-point-of-failure we mean that when the dispatch server of a cluster fails, the

entire backend cluster is immediately rendered useless (consult section 2.4.1:

Client-Server Architecture). mGrid, on the other hand, do not have the SPF problem.

As long as at least a single distributed sp

mGrid with 11 compute nodes 14632 14520 14320 14199

Table 5-7: Situation considering the number of spaces failed (Mflop/s)

mGrid can tolerate with space failures, yet failures do bring performance downgrade

of acceptable level.

5.4. DISCUSSION

mGrid is a low-cost grid solution that most SMEs can afford. Comparing with

multiprocessor machines, it has greater scalability and allows better utilization of

CPU resources. Furthermore, it averted the SPF problem that most traditional cluster

 66

commercial products suffer. A concluding comparison is shown below, we normalized

all of our experiment data into a rating scale ranging from 0 to 1. A 1 shows the best

rating, while a 0 indicates the poorest rating :

 Cluster/Grid

Name Multiprocessor mGrid Framework

Linpack Performance 0.965 1.000 0.997

Linpack Utilization 0.731 1.000 1.000

TCO 0.009 1.000 0.027

Scalability 0.003 1.000 0.857

SPF 1.000 1.000 0.000

 Figure 5-4: Overall comparison between mGrid, Multiprocessor & grids/clusters

In this final section, we will discuss the mGrid mathematically. The question is this:

Suppose we create a mGrid Environment using the following four computers[26],

what do we get?

Node CPU

1 Pentium4 1700MHz, 1330Mflop/s

2 Intel/HP Itanium 800M MflHz, 580 op/s

3 AMD Opteron 1200MHz, 443 Mflop/s

4 AMD Athlon 1530 MHz, 832 Mflop/s

Table 5-8: Suppose we combine four CPUs together into a mGrid virtual grid, what do we get?

w many operations per cycle each processor does. For node one:

First we calculate ho

using similar method we obtain 0.725 (op/cycle) for node two, 0.369 (op/cycle) for

node three and 0.544 (op/cycle) for node four. Since we are conducting parallel

 67

processing, this means for the combined mGrid environment, there is a total of

0.764+0.725+0.369+0.544=2.402 operations per cycle. According to our benchmark,

the overall floating point calculation of mGrid environment with these four nodes is

160 Mflop/s. Thus:

3

we see the overall frequency of the resul Grid enviro is approximately

1316MHz. Our conclusion is, by adding mo mputers to a m ent, the

operations per cycle the system can do grows, yet the frequency will be each of the

processors’ average.

rallel computing.

ting m nment

re co Grid environm

In other words, the frequency of a mGrid environment does not necessarily reflect the

performance. Even though you have a lower frequency, you still can achieve better

performance in pa

 68

6. CONCLUSION, BUSINESS OPPORTUNITIES & FUTURE WORKS

6.1. CONCLUSION & BUSINESS OPPORTUNITIES

here are various options in solving problems that requires supercomputing, yet the

ility, higher flexibility than many commercial

percomputing products such as multiprocessor machines and cluster computers. Our

rchitectural design also avoided common technical flaws found in grid products,

ch as the Single-Point-of-Failure problem.

ework also provides utility tools and a set of Application

ing Interfaces(APIs) that simplifies the process of grid application

ent, thus optimizes overall productivity. Developers must focus on design

ent rather than hunting for resources hidden within the enterprise.

ven though mGrid framework is designed primarily for scientific computing, its high

exibility enables it to be used in various innovative areas such as digital home

ntertainment. By deploying mGrid Engines on java-enabled platforms such as

ellular phones, STBs (Set-Top Boxes), and other multimedia devices, mGrid can

T

high TCO (Total Cost of Ownership) of supercomputing intimidated the SMEs from

adopting such technology. mGrid framework proves to be a low-cost, pure

software-based grid computing solution that can reduce the entry barrier of obtaining

a grid infrastructure.

Furthermore, this thesis also demonstrated the advantage of utilizing the

asynchronous, space-oriented architecture. mGrid showed reasonable performance,

superior utilization, greater scalab

su

a

su

Last but not least, the fram

Programm

developm

and developm

E

fl

e

c

 69

quickly harness all the multimedia resources hidden within each device, and allows

source sharing among a network of devices. This concept is depicted in Figure 6-1: re

Figure 6-1: Business opportunity: mGrid can be seen as the middleware for home networks

IDC predicted a continuous 20% growth in digital home market, reaching a hundred

billion USD worth of revenue by the year of 2010. With proper marketing strategy,

mGrid has the opportunity to play the role of “ammunition supplier” in this future war

of digital home entertainment.

6.2. FUTURE WORKS

There are multiple improvements available for mGrid Framework. First, the

functionality of the mGrid Toolkit can be further extended. At this point only the

network tool is operational, other tools such as designing tool, which enables

application developers to compose simple grid programs by means of graphical user

 70

interface can be added.

Many additional functions can be added to mGrid Engines as well, such as remotely

 of each engine, allowing engine to process tasks only if its

CPU/memory usage rate is under that threshold.

Finally, the mGrid Platform itself can be improved. More services must be added into

the platform if it is to be made commercial.

setting the threshold

 71

REFERENCES

[1] Chris Kwak and Robert Fagin, “Internet Infrastructure & Services”, Bear, Stearns

rosystems, “SUN Grid Overview”,

http://www.sun.com/service/sungrid/overview.html

& Co., May 2001.

[2] Sun Mic

.

puter Science, University of Tennessee, “Linpack benchmark – Java

version”, http://www.netlib.org/benchmark/linpackjava/

[3] Dept. of Com

.

rosystems, “J2SE, J2EE, J2ME”, http://www.javasoft.com/[4] Sun Mic .

M.P. Papazoglou & D. Georgakopoulos, “Service-Oriented Computing”,

Communications of the ACM, Vol. 46, pp. 25-28, October 2003.

rosystems, “Activation Daemon”,

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/rmid.html

[5]

[6] Sun Mic

.

rosystems, “JNDI”, http://java.sun.com/products/jndi/.

rosystems, “SUN JINI network technology”, http://www.jini.org/

[7] Sun Mic

[8] Sun Mic .

rid Computing & the Linda Programming

model”, Dr. Dobb's Journal, Boulder, Vol.29,N.9, pp.16-17,20,22,24, Sept.2004.

i Isobe, Takehiro Miyagoshi, and Kazumari Shibata,

Koyoto University, “NEC Earth Simulator”,

http://www.es.jamstec.go.jp/esc/eng/

[9] Rob Bjornson and Andrew Sherman, “G

[10] Reseach group of Hiroak

.

http://www.llnl.gov/asci/news/white_news.html[11] IBM, “IBM ASCI White”, .

 California at Berkeley, “SETI@Home”,

http://setiathome.ssl.berkeley.edu/

[12] University of

.

 72

[13] Stanford University, “Folding@Home”, http://folding.stanford.edu/.

4] GIMPS, http://www.mersenne.org/prime.htm[1 .

5] “Grid Computing: A Vertical Market Perspective 2005-2010”, The Insight

Research Corporation, Feb 2005.

g/pvm3/book/node16.html

[1

[16] Giovanni Flammia, “Peer to Peer is not for Everyone”, IEEE Intelligent systems,

Vol. 16, No. 3, pp. 78-79, May/June 2001.

[17] Linda Programming Model, http://www.netlib.or .

[18] D. S. M . Currier, S. Fibra, J.-Y.

[20] Y.M. Teo and X.B. Wang, “ALiCE: A S

[21] Globus Alliance,

eliksetian, J.-P. Prost, A. S. Bahl, I. Boutboul, D. P

Girard, K. M. Kassab, J.-L. Lepesant, C. Malone, and P. Manesco, “Design and

implementation of an enterprise grid”, IBM Systems Journal on Grid Computing,

Vol. 43, No. 4, pp. 646-664, 2004.

[19] Daniel A. Menasce, “MOM vs. RPC: Communication Models for Distributed

Applications”, IEEE Internet Computing Magazine, pp. 90-93, March/April

2005.

calable Runtime Infrastructure for High

Performance Grid Computing”, Proceedings of IFIP International Conference on

Network and Parallel Computing, pp. xx, Springer-Verlag Lecture Notes in

Computer Science, Wuhan, China, October 2004.

 “Globus Toolkit”, http://www.globus.org/.

[23] Anand Natrajan, Anh Nguyen-Tuong, Marty A. Humphrey, Andrew S.

Grimshaw, “The Legion Grid Portal”, Grid Com

No. 13–15, pp. 1365-1394, 2002

puting Environments, vol. 14,

.

[24] Sun Microsystems, “Project JXTA Overview”, http://www.jxta.org/.

[25] GridSim, http://www.buyya.com/gridsim/.

Computer Science Departm[26] Jack J. Dongarra, ent, University of Tennessee

“Performance of Various Computers Using Standard Linear Equations Software”,

 73

Technical Report CS-89-85, University of Tennessee, Computer Science Dept.,

The report is available electronically.

URL ftp://www.netlib.org/benchmark/performance.ps

University of Mannheimtop & Uni[27] versity of Tennessee, “Top 500

supercomputers”, http://www.top500.org/.

SAIC, [28] g/http://www.saic.com/supercomputin .

 74

APP

▪ RE

ent flow for mGrid framework:

ENDIX: USER TUTORIAL

COMMENDED DEVELOPMENT FLOW

Figure Appendix-1 shows our recommended developm

Figure Appendix-1: Recommended mGrid Framework development flow

ou will need to start the mGrid Platform services first. After you have successful

tup the platform, at least one mGrid Engine must be deployed on your network. At

is point, you can run the mGrid Toolkit to monitor the mGrid Environment you have

st created. Next, utilize the mGrid API to write your own applications! See the

llowing sections for setup instructions.

Y

se

th

ju

fo

 75

▪ mGrid PLATFORM QUICK SETUP

1. Install J2SDK 1.2 or above. See reference [4] for installation instructions.

2. Copy the mGrid package to your computer. This computer must have the J2SDK

pre-installed and basic network connectivity. (e.g. copy to C:\<mGrid Package>)

consecutively: (0)erase.bat, (1)http-server.bat, (2)activation.bat, (3)Nucleus.bat,

(4)txn.bat and (5)space.bat.

These files can be found in <mGrid Package>\bin\start.

3. Start the mGrid Platform by double-clicking the following batch files

Figure Appendix-2: The batch files that starts the mGrid Platform, simple and straight-forward

4. Done! At this point the mGrid Platform is fully initiated!

 Now that you have the mGrid Platform running, you need to start at least one

mGrid Engine instance on the network to form a mGrid Environment. You can

then use the mGrid API to write various innovative grid applications that utilizes

the resources harnessed within a mGrid environment, see chapter 5 for mGrid

 file run_GridEngine.bat to start the mGrid

API programmer’s guide.

▪ mGrid ENGINE QUICK GUIDE

1. You need to start at least one engine instance on your computer to form a mGrid

Environment. Double click the batch

 76

Engine software. This file can be found in <mGrid Package>\bin\engine.

2. You should now see the mGrid Engine graphical user interface:

Figure Appendix-3: mGrid Engine graphical user interface

h level and so forth are displayed.

C. System Panel. Show the CPU and memory usage of the local machine. You

memory diagrams by dragging the

The interface consists of four parts:

A. Main control panel. Call up the JVM, system usage and task message panels.

B. JVM Panel. Show the JVM profile of the local system. Information such as

JVM version, OS patc

can zoom-in or zoom-out the CPU/

portion you wish to inspect.

D. Task message Panel. Show the messages while processing a task. The

 77

messages show what tasks are currently being processed and whether an

▪ mGrid TOOLKIT QUICK GUIDE

1. You can start a mGrid Toolkit to monitor any existing mGrid environment.

Double click the batch file run_GridToolkit.bat to start the mGrid Toolkit, this file

can be found in <mGrid Package>\bin\toolkit.

2. A login screen should appear, type in your username and password.

error occurred. it also reflects the processing speed of the engine.

Figure Appendix-4: mGrid Toolkit login screen

3. After you successfully logged in ou should see the toolkit interface. This is

depicted in Figure

The entire mGrid network environm

clear as crystal! Y

a mGrid Engine ins

Furtherm

corresponding m

. Y

Appendix-4 on the following page.

ent is now right before your eyes, and as

ou can monitor the CPU/memory status of each device running

tance, acquire their machine and JVM information.

ore, by clicking the shutdown button you can remotely shutdown the

Grid Engine.

 78

Figure Appendix-5: mGrid Toolkit main interface. Clear view of a complicated grid network!

▪ RUNNING AN EXAMPLE

1. At this point you should have everything you need in place. To try out an

example, double t the demo program,

this file can be found in <mGrid Package>\bin\demo1.

 click the batch file run_Rotator3D.bat to star

2. You should see a screen containing three 3-dimensional objects rotating. This is

depicted in Figure Appendix-5 on the next page.

The idea is this: the program creates a large quantity of tasks for processing.

With a single mGrid Engine, the processing is extremely slow, thus the speed of

rotation is also slow. However, as you start more engines on your network, the

processing accelerates, thus the speed of rotation comparatively becomes faster!

 79

F

demo source codes on how to effectively utilize the mGrid

.

This concludes our tutorial on mGrid Framework.

igure Appendix-6: 3D rotating demo program. The more mGrid Engines, the faster it rotates!

3. You can refer to the

API to write grid programs of your own. The source code can be found in the

folder <mGrid Package>\mGrid\src\examples\ex1

 80

