

國 立 交 通 大 學

資訊科學系

碩 士 論 文

符合 SCORM 標準之學習資源庫
的管理機制之研究

A Content Management Scheme in
SCORM Compliant Learning Object Repository

研 究 生：宋昱璋

指導教授：曾憲雄 教授

中 華 民 國 九 十 四 年 六 月

符合 SCORM 標準之學習資源庫的管理機制之研究

A Content Management Scheme in
SCORM Compliant Learning Object Repository

研 究 生：宋昱璋 Student：Yu-Chang Sung
指導教授：曾憲雄 Advisor：Shian-Shyong Tseng

國 立 交 通 大 學
資 訊 科 學系
碩 士 論 文

A Thesis
Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

符合 SCORM 標準之學習資源庫

的管理機制之研究

研究生：宋昱璋 指導教授：曾憲雄教授

國立交通大學資訊科學研究所

摘要

隨著網際網路的發展，網路學習(e-Learning)也越來越普及。為了促進學習資

源在不同網路學習系統間的分享與再利用，近年來有許多國際性組織提出了各種

格式的標準，其中最被廣泛應用的是 SCORM。另外，在 e-learning 系統中的學

習資源通常都存放在資源庫(Learning Object Repository (LOR))中，而當資源庫中

存放著大量物件時，隨即會面臨到大量物件的管理問題。因此在本篇論文中，我

們提出了一個階層式的管理機制 (Level-wise Content Management System

(LCMS))來有效地管理符合SCORM標準的學習資源庫。LCMS的流程可分為“建

構”與“搜尋”兩大部份。在建構階段(Constructing Phase)，我們先運用 SCORM 標

準中所提供的資訊，將學習資源轉換成一個樹狀架構。接著考慮到 SCORM 中的

詮釋性資料(Metadata)對一般人的複雜度，另外提出了一個方式來輔助使用者來

加強學習資源中各學習物件的詮釋性資訊。而後藉由分群的技術，我們針對資源

庫中的學習物件建立了一個多層有向非環圖，稱為 Level-wise Content Clustering

Graph (LCCG)來儲存物件的資訊以及學習物件間的關聯。在搜尋階段(Searching

Phase)，提出了一個搜尋機制以利用已建立的 LCCG 找出使用者想要的學習物

件。除此之外，考量到使用者在下搜尋關鍵字時的難處，在此亦基於 LCCG 提

出了一個方式來輔助使用者改善搜尋用詞以在學習資源庫中找出相關的物件。最

後，我們實作了一個雛形系統並進行了一些實驗。由實驗結果可知，LCMS 的確

能有效地管理符合 SCORM 標準的學習資源庫。

關鍵字: 學習資源庫, e-Learning, SCORM, 內容管理

 i

A Content Management Scheme in SCORM

Compliant Learning Object Repository

Student: Yu-Chang Sung Advisor: Dr. Shian-Shyong Tseng

Department of Computer and Information Science
National Chiao Tung University

Abstract

With rapid development of the Internet, e-learning system has become more and

more popular. Currently, to solve the issue of sharing and reusing of learning contents

in different e-learning systems, several standards formats have been proposed by

international organizations in recent years, and Sharable Content Object Reference

Model (SCORM) is the most popular one among existing international standards. In

e-learning system, learning contents are usually stored in database, called Learning

Object Repository (LOR). In LOR, a huge amount of SCORM learning contents

including associated learning objects will result in the issues of management over

wired/wireless environment. Therefore, in this thesis, we propose a management

approach, called Level-wise Content Management Scheme (LCMS), to efficiently

maintain, search, and retrieve the learning contents in SCORM compliant LOR. The

LCMS includes two phases: Constructing Phase and Searching Phase. In

Constructing Phase, we first transform the content tree (CT) from the SCORM

content package to represent each learning materials. Then, considering about the

difficulty of giving learning objects useful metadata, an information enhancing

module is proposed to assist users in enhancing the meta-information of content trees.

Afterward, a multistage graph as Directed Acyclic Graph (DAG) with relationships

 ii

among learning objects, called Level-wise Content Clustering Graph (LCCG), will be

created by applying incremental clustering techniques. In Searching phase, based on

the LCCG, we propose a searching strategy to traverse the LCCG for retrieving the

desired learning objects. Besides, the short query problem is also one of our concerns.

In general, while users want to search desired learning contents, they usually make

rough queries. But this kind of queries often results in a lot of irrelevant searching

results. So a query expansion method is also proposed to assist users in refining their

queries and searching more specific learning objects from a LOR. Finally, for

evaluating the performance, a web-based system has been implemented and some

experiments also have been done. The experimental results show that our LCMS is

efficient and workable to manage the SCORM compliant learning objects.

Keywords: Learning Object Repository (LOR), E-learning, SCORM,

Content Management

 iii

誌謝

這篇論文的完成，必須感謝許多人的協助與支持。首先必須感謝我的指導教

授，曾憲雄老師，由於他耐心的指導和勉勵，讓我得以順利完成此篇論文。此外，

在老師的帶領下，這兩年來，除了學習應有的專業知識外，對於待人處世的方面

也啟發不少，而研究上許多觀念的釐清更是讓我受益匪淺，真的十分感激。同時，

必須感謝我的口試委員，黃國禎教授、楊鎮華教授與袁賢銘教授，他們對這篇論

文提供了不少寶貴的建議。

此外要感謝兩位博士班的學長，蘇俊銘學長和翁瑞鋒學長。除了在數位學習

領域上讓我了解不少的知識外，在研究上或是系統的發展上都提供了不少的建議

及協助，且這篇論文能夠順利完成也得力於學長們的幫忙。

另外也要感謝實驗室的學長、同學以及學弟們，王慶堯學長、楊哲青學長、

陳君翰、林易虹。不管是論文上或是系統的建置上都給我許多的協助與建議。同

時也感謝其他的同學，黃柏智、陳瑞言、邱成樑、吳振霖、李育松，陪我度過這

忙碌以及充實的碩士生涯。

要感謝的人很多，無法一一詳述，在此僅向所有幫助過我的人，致上我最深

的謝意。

 iv

Table of Contents

摘要……………………………………………………………………………………i

Abstract………………………………………………………………………………..ii

誌謝…………………………………………………………………………………...iv

Table of Content……………………………………………………………………….v

List of Figure………………………………………………………………………….vi

List of Example………………………………………………………………………vii

List of Definition…………………………………………………………………….viii

List of Algorithm…………………………………………………………………….. ix

Chapter 1 Introduction ...1

Chapter 2 Background and Related Work..4

2.1 SCORM (Sharable Content Object Reference Model)....................................4

2.2 Document Clustering/Management ...6

2.3 Keyword/phrase Extraction ...8

Chapter 3 Level-wise Content Management Scheme (LCMS)9

3.1 The Processes of LCMS...9

Chapter 4 Constructing Phase of LCMS..12

4.1 Content Tree Transforming Module ..12

4.2 Information Enhancing Module...15

4.2.1 Keyword/phrase Extraction Process ...15

4.2.2 Feature Aggregation Process...19

4.3 Level-wise Content Clustering Module ...22

4.3.1 Level-wise Content Clustering Graph (LCCG)22

4.3.2 Incremental Level-wise Content Clustering Algorithm......................24

Chapter 5 Searching Phase of LCMS ..30

5.1 Preprocessing Module..30

5.2 Content-based Query Expansion Module ..31

5.3 LCCG Content Searching Module...34

Chapter 6 Implementation and Experiments..37

6.1 System Implementation ...37

6.2 Experimental Results ...40

Chapter 7 Conclusion and Future Work...46

 v

List of Figures

Figure 2.1: SCORM Content Packaging Scope and Corresponding Structure of

Learning Materials ..5

Figure 3.1: Level-wise Content Management Scheme (LCMS)11

Figure 4.1: The Representation of Content Tree..13

Figure 4.2: An Example of Content Tree Transforming ..13

Figure 4.3: An Example of Keyword/phrase Extraction..17

Figure 4.4: An Example of Keyword Vector Generation...20

Figure 4.5: An Example of Feature Aggregation ...21

Figure 4.6: The Representation of Level-wise Content Clustering Graph22

Figure 4.7: The Process of ILCC-Algorithm ...24

Figure 4.8: An Example of Incremental Single Level Clustering................................26

Figure 4.9: An Example of Incremental Level-wise Content Clustering.....................28

Figure 5.1: Preprocessing: Query Vector Generator ..30

Figure 5.2: The Process of Content-based Query Expansion32

Figure 5.3: The Process of LCCG Content Searching...32

Figure 5.4: The Diagram of Near Similarity According to the Query Threshold Q

and Clustering Threshold T...35

Figure 6.1: System Screenshot: LOMS configuration...38

Figure 6.2: System Screenshot: Searching...39

Figure 6.4: System Screenshot: Searching Results..39

Figure 6.5: System Screenshot: Viewing Learning Objects ..40

Figure 6.6: The F-measure of Each Query...42

Figure 6.7: The Searching Time of Each Query ..42

Figure 6.8: The Comparison of ISLC-Alg and ILCC-Alg with Cluster Refining42

Figure 6.9: The precision with/without CQE-Alg……………………………………44

Figure 6.10: The recall with/without CQE-Alg………………………………………44

Figure 6.11: The F-measure with/withour CQE-Alg………….….………………….44

Figure 6.12: The Results of Accuracy and Relevance in Questionnaire......................45

 vi

List of Examples

Example 4.1: Content Tree (CT) Transformation ..13

Example 4.2: Keyword/phrase Extraction ...17

Example 4.3: Keyword Vector (KV) Generation...19

Example 4.4: Feature Aggregation ..20

Example 4.5: Cluster Feature (CF) and Content Node List (CNL)24

Example 5.1: Preprocessing: Query Vector Generator ..30

 vii

List of Definitions

Definition 4.1: Content Tree (CT) ...12

Definition 4.2: Level-wise Content Clustering Graph (LCCG)...................................22

Definition 4.3: Cluster Feature ..23

Definition 5.1: Near Similarity Criterion...34

 viii

List of Algorithms

Algorithm 4.1: Content Package to Content Tree Algorithm (CP2CT-Alg)................14

Algorithm 4.2: Keyword/phrase Extraction Algorithm (KE-Alg)...............................18

Algorithm 4.3: Feature Aggregation Algorithm (FA-Alg)...21

Algorithm 4.4: Incremental Single Level Clustering Algorithm (ISLC-Alg)..............26

Algorithm 4.5: Incremental Level-wise Content Clustering Algorithm (ILCC-Alg) ..29

Algorithm 5.1: Content-based Query Expansion Algorithm (CQE-Alg)33

Algorithm 5.2: LCCG Content Searching Algorithm (LCCG-CSAlg)36

 ix

Chapter 1 Introduction

With rapid development of the internet, e-Learning system has become more and

more popular. E-learning system can make learners study at any time and any location

conveniently. However, because the learning materials in different e-learning systems

are usually defined in specific data format, the sharing and reusing of learning

materials among these systems becomes very difficult. To solve the issue of uniform

learning materials format, several standards formats including SCORM [SCORM],

IMS [IMS], LOM [LTSC], AICC [AICC], etc. have been proposed by international

organizations in recent years. By these standard formats, the learning materials in

different learning management system can be shared, reused, extended, and

recombined.

Recently, in SCORM 2004 (aka SCORM1.3), ADL outlined the plans of the

Content Object Repository Discovery and Resolution Architecture (CORDRA) as a

reference model which is motivated by an identified need for contextualized learning

object discovery. Based upon CORDRA, learners would be able to discover and

identify relevant material from within the context of a particular learning activity

[SCORM][CETIS][LSAL]. Therefore, this shows how to efficiently retrieve desired

learning contents for learners has become an important issue. Moreover, in mobile

learning environment, retransmitting the whole document under the

connection-oriented transport protocol, such as TCP, will result in lower throughput

due to the head-of-line blocking and Go-Back-N error recovery mechanism in an

error-sensitive environment. Accordingly, a suitable management scheme for

managing learning resources and providing teachers/learners an efficient search

service to retrieve the desired learning resources is necessary over the wired/wireless

 1

environment.

In SCORM, a content packaging scheme is proposed to package the learning

content resources into learning objects (LOs), and several related learning objects can

be packaged into a learning material. Besides, SCORM provides user with plentiful

metadata to describe each learning object. Moreover, the structure information of

learning materials can be stored and represented as a tree-like structure described by

XML language [W3C][XML]. Therefore, in this thesis, we propose a Level-wise

Content Management Scheme (LCMS) to efficiently maintain, search, and retrieve

learning contents in SCORM compliant learning object repository (LOR). This

management scheme consists of two phases: Constructing Phase and Searching Phase.

In Constructing Phase, we first transform the content structure of SCORM learning

materials (Content Package) into a tree-like structure, called Content Tree (CT), to

represent each learning materials. Then, considering about the difficulty of giving

learning objects useful metadata, we propose an automatic information enhancing

module, which includes a Keyword/phrase Extraction Algorithm (KE-Alg) and a

Feature Aggregation Algorithm (FA-Alg), to assist users in enhancing the

meta-information of content trees. Afterward, an Incremental Level-wise Content

Clustering Algorithm (ILCC-Alg) is proposed to cluster content trees and create a

multistage graph, called Level-wise Content Clustering Graph (LCCG), which

contains both vertical hierarchy relationships and horizontal similarity relationships

among learning objects.

In Searching phase, based on the LCCG, we propose a searching strategy called

LCCG Content Search Algorithm (LCCG-CSAlg) to traverse the LCCG for

retrieving the desired learning content. Besides, the short query problem is also one of

 2

our concerns. In general, while users want to search desired learning contents, they

usually make rough queries. But this kind of queries often results in a lot of irrelevant

searching results. So a Content-base Query Expansion Algorithm (CQE-Alg) is also

proposed to assist users in searching more specific learning contents by a rough query.

By integrating the original query with the concepts stored in LCCG, the CQE-Alg can

refine the query and retrieve more specific learning contents from a learning object

repository.

To evaluate the performance, a web-based Learning Object Management

System (LOMS) has been implemented and several experiments have also been done.

The experimental results show that our approach is efficient to manage the SCORM

compliant learning objects.

This thesis is organized as follows: Chapter 2 introduces the related works.

Overall system architecture will be described in Chapter 3. And Chapters 4 and 5

present the details of the proposed system. Chapter 6 follows with the implementation

issues and experiments of the system. Chapter 7 concludes with a summary.

 3

Chapter 2 Background and Related Work

In this chapter, we review SCORM standard and some related works as follows.

2.1 SCORM (Sharable Content Object Reference Model)

Among those existing standards for learning contents, SCORM, which is

proposed by the U.S. Department of Defense’s Advanced Distributed Learning (ADL)

organization in 1997, is currently the most popular one. The SCORM specifications

are a composite of several specifications developed by international standards

organizations, including the IEEE [LTSC], IMS [IMS], AICC [AICC] and ARIADNE

[ARIADNE]. In a nutshell, SCORM is a set of specifications for developing,

packaging and delivering high-quality education and training materials whenever and

wherever they are needed. SCORM-compliant courses leverage course development

investments by ensuring that compliant courses are "RAID:" Reusable: easily

modified and used by different development tools, Accessible: can be searched and

made available as needed by both learners and content developers, Interoperable:

operates across a wide variety of hardware, operating systems and web browsers, and

Durable: does not require significant modifications with new versions of system

software [Jonse04].

In SCORM, content packaging scheme is proposed to package the learning

objects into standard learning materials, as shown in Figure 2.1. The content

packaging scheme defines a learning materials package consisting of four parts, that is,

1) Metadata: describes the characteristic or attribute of this learning content, 2)

Organizations: describes the structure of this learning material, 3) Resources:

denotes the physical file linked by each learning object within the learning material,

 4

and 4) (Sub) Manifest: describes this learning material is consisted of itself and

another learning material. In Figure 2.1, the organizations define the structure of

whole learning material, which consists of many organizations containing arbitrary

number of tags, called item, to denote the corresponding chapter, section, or

subsection within physical learning material. Each item as a learning activity can be

also tagged with activity metadata which can be used to easily reuse and discover

within a content repository or similar system and to provide descriptive information

about the activity. Hence, based upon the concept of learning object and SCORM

content packaging scheme, the learning materials can be constructed dynamically by

organizing the learning objects according to the learning strategies, students' learning

aptitudes, and the evaluation results. Thus, the individualized learning materials can

be offered to each student for learning, and then the learning material can be reused,

shared, recombined.

Figure 2.1: SCORM Content Packaging Scope and Corresponding Structure of
Learning Materials

 5

2.2 Document Clustering/Management

For fast retrieving the information from structured documents, Ko et al. [KC02]

proposed a new index structure which integrates the element-based and

attribute-based structure information for representing the document. Based upon this

index structure, three retrieval methods including 1) top-down, 2) bottom-up, and 3)

hybrid are proposed to fast retrieve the information form the structured documents.

However, although the index structure takes the elements and attributes information

into account, it is too complex to be managed for the huge amount of documents.

How to efficiently manage and transfer document over wireless environment has

become an important issue in recent years. The articles [LM+00][YL+99] have

addressed that retransmitting the whole document is a expensive cost in faulty

transmission. Therefore, for efficiently streaming generalized XML documents over

the wireless environment, Wong et al. [WC+04] proposed a fragmenting strategy,

called Xstream, for flexibly managing the XML document over the wireless

environment. In the Xstream approach, the structural characteristics of XML

documents has been taken into account to fragment XML contents into an

autonomous units, called Xstream Data Unit (XDU). Therefore, the XML document

can be transferred incrementally over a wireless environment based upon the XDU.

However, how to create the relationships between different documents and provide

the desired content of document have not been discussed. Moreover, the above

articles didn’t take the SCORM standard into account yet.

 6

In order to create and utilize the relationships between different documents and

provide useful searching functions, document clustering methods have been

extensively investigated in a number of different areas of text mining and information

retrieval. Initially, document clustering was investigated for improving the precision

or recall in information retrieval systems [KK02] and as an efficient way of finding

the nearest neighbors of the document [BL85]. Recently, it is proposed for the use of

searching and browsing a collection of documents efficiently [VV+04][KK04].

In order to discover the relationships between documents, each document should

be represented by its features, but what the features are in each document depends on

different views. Common approaches from information retrieval focus on keywords.

The assumption is that similarity in words usage indicates similarity in content. Then,

the selected words seen as descriptive features are represented by a vector, and one

distinct dimension assigns one feature respectively. The way to represent each

document by the vector is called Vector Space Model method [CK+92]. In this thesis,

we also employ the VSM model to encode the keywords/phrases of learning objects

into vectors to represent the features of learning objects.

 7

2.3 Keyword/phrase Extraction

As those mentioned above, the common approach to represent documents is

giving them a set of keywords/phrases, but where those keywords/phrases comes from?

The most popular approach is using the TF-IDF weighting scheme to mining

keywords from the context of documents. TF-IDF weighting scheme is based on the

term frequency (TF) or the term frequency combined with the inverse document

frequency (TF-IDF). The formula of IDF is where n is total number of

documents and df is the number of documents that contains the term. By applying

statistical analysis, TF-IDF can extract representative words from documents, but the

long enough context and a number of documents are both its prerequisites.

)/log(dfn

In addition, a rule-based approach combining fuzzy inductive learning was

proposed by Shigeaki and Akihiro [SA04]. The method decomposes textual data into

word sets by using lexical analysis, and then discovers key phrases using key phrase

relation rules training from amount of data. Besides, Khor and Khan [KK01] proposed

a key phrase identification scheme, which employs the tagging technique to indicate

the positions of potential noun phrase and uses statistical results to confirm them. By

this kind of identification scheme, the number of documents is not a matter. However,

a long enough context is still needed to extracted key-phrases from documents.

 8

Chapter 3 Level-wise Content Management Scheme

(LCMS)

In an e-learning system, learning contents are usually stored in database, called

Learning Object Repository (LOR). Because the SCORM standard has been accepted

and applied popularly, its compliant learning contents are also created and developed.

Therefore, in LOR, a huge amount of SCORM learning contents including associated

learning objects (LO) will result in the issues of management. Recently, SCORM

international organization has focused on how to efficiently maintain, search, and

retrieve desired learning objects in LOR for users. In this thesis, we propose a new

approach, called, Level-wise Content Management Scheme (LCMS), to efficiently

maintain, search, and retrieve the learning contents in SCORM compliant LOR.

3.1 The Processes of LCMS

As shown in Figure 3.1, the scheme of LCMS is divided into Constructing Phase

and Searching Phase. The former first creates the content tree (CT) from the SCORM

content package by Content Tree Transforming Module, enriches the

meta-information of each content node (CN) and aggregates the representative feature

of the content tree by Information Enhancing Module, and then creates and maintains

a multistage graph as Directed Acyclic Graph (DAG) with relationships among

learning objects, called Level-wise Content Clustering Graph (LCCG), by applying

clustering techniques. The latter assists user to expand their queries by Content-based

Query Expansion Module, and then traverses the LCCG by LCCG Content Searching

Module to retrieve desired learning contents with general and specific learning objects

according to the query of users over wire/wireless environment.

 9

Constructing Phase includes the following three modules:

 Content Tree Transforming Module: it transforms the content structure of

SCORM learning material (Content Package) into a tree-like structure with the

representative feature vector and the variant depth, called Content Tree (CT), for

representing each learning material.

 Information Enhancing Module: it assists user to enhance the meta-information

of a content tree. This module consists of two processes: 1) Keyword/phrase

Extraction Process, which employs a pattern-based approach to extract additional

useful keywords/phrases from other metadata for each content node (CN) to

enrich the representative feature of CNs, and 2) Feature Aggregation Process,

which aggregates those representative features by the hierarchical relationships

among CNs in the CT to integrate the information of the CT.

 Level-wise Content Clustering Module: it clusters learning objects (LOs)

according to content trees to establish the level-wise content clustering graph

(LCCG) for creating the relationships among learning objects. This module

consists of three processes: 1) Single Level Clustering Process, which clusters the

content nodes of the content tree in each tree level, 2) Content Cluster Refining

Process, which refines the clustering result of the Single Level Clustering Process

if necessary, and 3) Concept Relation Connection Process, which utilizes the

hierarchical relationships stored in content trees to create the links between the

clustering results of every two adjacent levels.

 10

Searching Phase includes the following three modules:

 Preprocessing Module: it encodes the original user query into a single vector,

called query vector, to represent the keywords/phrases in the user’s query.

 Content-based Query Expansion Module: it utilizes the concept feature stored

in the LCCG to make a rough query contain more concepts and find more precise

learning objects.

 LCCG Content Searching Module: it traverses the LCCG from these entry

nodes to retrieve the desired learning objects in the LOR and to deliver them for

learners.

Figure 3.1: Level-wise Content Management Scheme (LCMS)

 11

Chapter 4 Constructing Phase of LCMS

In this chapter, we describe the constructing phrase of LCMS, which includes 1)

Content Tree Transforming module, 2) Information Enhancing module, and 3)

Level-wise Content Clustering module, shown in the left part of Figure 3.1.

4.1 Content Tree Transforming Module

Because we want to create the relationships among leaning objects (LOs)

according to the content structure of learning materials, the organization information

in SCORM content package will be transformed into a tree-like representation, called

Content Tree (CT), in this module. Here, we define a maximum depth δ for every

CT. The formal definition of a CT is described as follows.

Definition 4.1: Content Tree (CT)

Content Tree (CT) = (N, E), where

 N = { n0, n1,…, nm }.

 E = { 1+ii nn | 0≦ i < the depth of CT }.

As shown in Figure 4.1, in CT, each node is called “Content Node (CN)”

containing its metadata and original keywords/phrases information to denote the

representative feature of learning contents within this node. E denotes the link edges

from node ni in upper level to ni+1 in immediate lower level.

 12

1.
2.
3.
4.

1.
2.

Figure 4.1: The Representation of Content Tree

Example 4.1: Content Tree (CT) Transformation

Given a SCORM content package shown in the left hand side of Figure 4.2, we

parse the metadata to find the keywords/phrases in each CN node. Because the CN,

“3.1”, is too long, so that its included child nodes, i.e., “3.1.1” and “3.1.2”, are

merged into one CN, “3.1”, and the weight of each keywords/phrases is computed by

averaging the number of times it appearing in “3.1”, “3.1.1”, and “3.1.2”. For

example, the weight of “AI” for “3.1” is computed as avg.(1, avg.(1, 0)) = 0.75. Then,

after applying Content Tree Transforming Module, the CT is shown in the right part

of Figure 4.2.

Figure 4.2: An Example of Content Tree Transforming

 13

Algorithm 4.1: Content Package to Content Tree Algorithm (CP2CT-Alg)

Symbols Definition:

CP : denotes the SCORM content package.

CT : denotes the Content Tree transformed the CP.

CN : denotes the Content Node in CT.

CNleaf: denotes the leaf node CN in CT.

DCT : denotes the desired depth of CT.

DCN : denotes the depth of a CN

Input : SCORM content package (CP)

Output : Content Tree (CT)

Step 1: For each element <item> in CP

1.1: Create a CN with keyword/phrase information.

1.2: Insert it into the corresponding level in CT.

Step 2: For each CNleaf in CT

If the depth of CNleaf > DCT

Then its parent CN in depth = DCT will merge the keywords/phrases of

all included child nodes and run the rolling up process to assign

the weight of those keywords/phrases.

Step 3: Content Tree (CT)

 14

4.2 Information Enhancing Module

In general, it is a hard work for user to give learning materials an useful metadata,

especially useful “keywords/phrases”. Therefore, we propose an information

enhancement module to assist user to enhance the meta-information of learning

materials automatically. This module consists of two processes: 1) Keyword/phrase

Extraction Process and 2) Feature Aggregation Process. The former extracts

additional useful keywords/phrases from other meta-information of a content node

(CN). The latter aggregates the features of content nodes in a content tree (CT)

according to its hierarchical relationships.

4.2.1 Keyword/phrase Extraction Process

Nowadays, more and more learning materials are designed as multimedia

contents. Accordingly, it is difficult to extract meaningful semantics from multimedia

resources. In SCORM, each learning object has plentiful metadata to describe itself.

Thus we focus on the metadata of SCORM content package, like “title” and

“description”, and want to find some useful keywords/phrases from them. These

metadata contain plentiful information which can be extracted, but they often consist

of a few sentences. So, traditional information retrieval techniques can not have a

good performance here.

To solve the problem mentioned above, we propose a Keyword/phrase

Extraction Algorithm (KE-Alg) to extract keyword/phrase from these short sentences.

First, we use tagging techniques to indicate the candidate positions of interesting

keyword/phrases. Then, we apply pattern matching technique to find useful patterns

from those candidate phrases.

 15

To find the potential keywords/phrases from the short context, we maintain sets

of words and use them to indicate candidate positions where potential words/phrases

may occur. For example: the phrase after the word “called” may be a key-phrase; the

phrase before the word “are” may be a key-phrase; the word “this” will not be a part

of key-phrases in general cases. These word-sets are stored in a database, called

Indication Sets (IS). At present, we just collect a Stop-Word Set to indicate the words

which are not a part of key-phrases to break the sentences. Our Stop-Word Set

includes punctuation marks, pronouns, articles, prepositions, and conjunctions in the

English grammar. We still can collect more kinds of inference word sets to perform

better prediction if it is necessary in the future.

Afterward, we use the WordNet [WN] to analyze the lexical features of the

words in the candidate phrases. WordNet is a lexical reference system whose design is

inspired by current psycholinguistic theories of human lexical memory. It is

developed by the Cognitive Science Laboratory at Princeton University. In WordNet,

English nouns, verbs, adjectives and adverbs are organized into synonym sets, each

representing one underlying lexical concept. And different relation-links have been

maintained in the synonym sets. Presently, we just use WordNet (version 2.0) as a

lexical analyzer here.

To extract useful keywords/phrases from the candidate phrases with lexical

features, we have maintained another database, called Pattern Base (PB). The

patterns stored in Pattern Base are defined by domain experts. Each pattern consists

of a sequence of lexical features or important words/phrases. Here are some examples:

« noun + noun », « adj. + adj. + noun », « adj. + noun », « noun (if the word can

only be a noun) », « noun + noun + “scheme” ». Every domain could have its own

 16

interested patterns. These patterns will be used to find useful phrases, which may be a

keyword/phrase of the corresponding domain. After comparing those candidate

phrases by the whole Pattern Base, useful keywords/phrases will be extracted.

Example 4.2 illustrates an example of the Keywords/phrases Extraction Algorithm.

Those details are shown in Algorithm 4.2.

Example 4.2: Keyword/phrase Extraction

As shown in Figure 4.3, give a sentence as follows: “challenges in applying

artificial intelligence methodologies to military operations”. We first use Stop-Word

Set to partition it into several candidate phrases: {“challenges”, “applying artificial

intelligence methodologies”, “military operation”}. By querying WordNet, we can get

the lexical features of these candidate phrases are: {“n/v”, “v+adj+n+n”, “n/adj+n”}.

Afterward, by matching with the important patterns stored in Pattern Base, we can

find two interesting patterns “adj+n” and “n/adj+n” occurring in this sentence.

Finally, we extract two key-phrases: “artificial intelligence" and “military operation”.

Figure 4.3: An Example of Keyword/phrase Extraction

 17

Algorithm 4.2: Keyword/phrase Extraction Algorithm (KE-Alg)

Symbols Definition:

SWS: denotes a stop-word set; consists of punctuation marks, pronouns, articles,

prepositions, and conjunctions in English grammar

PS : denotes a sentence

PC : denotes a candidate phrase

PK : denotes keyword/phrase

Input : a sentence

Output : a set of keyword/phrase (PKs) extracted from input sentence

Step 1: Break the input sentence into a set of PCs by SWS

Step 2: For each PC in this set

2.1: For each word in this PC

2.1.1: Find out the lexical feature of the word by querying WordNet.

2.2: Compare the lexical feature of this PC with Pattern-Base.

2.2.1: If there is any interesting pattern found in this PC,

mark the corresponding part as a PK.

Step 3: Return PKs

 18

4.2.2 Feature Aggregation Process

In Section 4.2.1, additional useful keywords/phrases have been extracted to

enhance the representative features of content nodes (CNs). In this section, we utilize

the hierarchical relationship of a content tree (CT) to further enhance those features.

Considering the nature of a CT: the nodes closer to the root will contain more general

concepts which can cover all of its children nodes. For example, a learning content

“data structure” must cover the concepts of “linked list”.

Before aggregating the representative features of a content tree (CT), we apply

the Vector Space Model (VSM) approach [CK+92][RW86] to represent the

keywords/phrases of a CN. Here, we encode each content node (CN) by the simple

encoding method which uses single vector, called keyword vector (KV), to represent

the keywords/phrases of the CN. Each dimension of the KV represents one

keyword/phrase of the CN. And all representative keywords/phrases are maintained in

a Keyword/phrase Database in the system.

Example 4.3: Keyword Vector (KV) Generation

As shown in Figure 4.4, the content node CNA has a set of representative

keywords/phrases: {“e-learning”, “SCORM”, “learning object repository”}. And we

have a keyword/phrase database shown in the right part of Figure 4.4. Via a direct

mapping, we can find the initial vector of CNA is <1, 1, 0, 0, 1>. Then, we normalize

the initial vector and get the keyword vector of CNA: <0.33, 0.33, 0, 0, 0.33>

 19

<1, 1, 0, 0, 1>

“e-learning”, “SCORM”,
“learning object repository”

<0.33, 0.33, 0, 0, 0.33>

 1.
 2.

 3.
 4.
 5.

Figure 4.4: An Example of Keyword Vector Generation

After generating the keyword vectors (KVs) of content nodes (CNs), we compute

the feature vector (FV) of each content node by aggregating its own keyword vector

with the feature vectors of its children nodes. For the leaf node, we set its FV = KV;

For the internal nodes, FV = (1-alpha) * KV + alpha * avg.(FVs of its children),

where alpha is a parameter used to define the intensity of the hierarchical relationship

in a content tree (CT). The higher the alpha is, the more features are aggregated.

Example 4.4: Feature Aggregation

In Figure 4.5, content tree CTA consists of three content nodes: CN1, CN2, and

CN3. Now, we already have the KVs of these content nodes and want to calculate their

feature vectors (FVs). For the leaf node CN2, FVCN2 = KVCN2 = <0.2, 0, 0.8, 0>.

Similarly, FVCN3 = KVCN3 = <0.4, 0, 0, 0.6>. For the internal node CN1, according to

the formula, FVCN1 = (1-α) * KVCN1 + α * avg.(FVCN2, FVCN3). Here we set the

intensity parameter α as 0.5, so

FVCN1 = 0.5 * KVCN1 + 0.5 * avg.(FVCN2, FVCN3)

 = 0.5 * <0.5, 0.5, 0, 0> + 0.5 * avg.(<0.2, 0, 0.8, 0>, <0.4, 0, 0, 0.6>)

 = <0.4, 0.25, 0.2, 0.15>

 20

Figure 4.5: An Example of Feature Aggregation

Algorithm 4.3: Feature Aggregation Algorithm (FA-Alg)

Symbols Definition:

D : denotes the maximum depth of the content tree (CT)

L0~LD-1 : denote the levels of CT descending from the top level to the lowest level

KV : denotes the keyword vector of a content node (CN)

FV : denotes the feature vector of a CN

Input : a CT with keyword vectors

Output : a CT with feature vectors

Step 1: For i = LD-1 to L0

 1.1: For each CNj in Li of this CT

 1.1.1: If the CNj is a leaf-node, FVCNj = KVCNj

 Else, FVCNj = (1-α) KVCNj + α * avg.(FVs of its child-nodes)

Step 2: Return CT with feature vectors

 21

4.3 Level-wise Content Clustering Module

After structure transforming and representative feature enhancing, we apply the

clustering technique to create the relationships among content nodes (CNs) of content

trees (CTs). In this thesis, we propose a Directed Acyclic Graph (DAG), called

Level-wise Content Clustering Graph (LCCG), to store the related information of

each cluster. Based upon the LCCG, the desired learning content including general

and specific LOs can be retrieved for users.

4.3.1 Level-wise Content Clustering Graph (LCCG)

Figure 4.6: The Representation of Level-wise Content Clustering Graph

As shown in Figure 4.6, LCCG is a multi-stage graph with relationships

information among learning objects, e.g., a Directed Acyclic Graph (DAG). Its

definition is described in Definition 4.2:

Definition 4.2: Level-wise Content Clustering Graph (LCCG)

Level-wise Content Clustering Graph (LCCG) = (N, E), where

 N = { (CF0, CNL0), (CF1, CNL1), …, (CFm, CNLm) }.

It stores the related information, Cluster Feature (CF) and Content Node

 22

List (CNL), in a cluster, called LCC-Node. The CNL stores the indexes of

learning objects included in this LCC-Node.

 E = { 1+ii nn | 0≦ i < the depth of LCCG }.

It denotes the link edge from node ni in upper stage to ni+1 in immediate

lower stage.

For the purpose of content clustering, the number of the stages of LCCG is equal

to the maximum depth (δ) of CT, and each stage handles the clustering result of

these CNs in the corresponding level of different CTs. That is, the top stage of LCCG

stores the clustering results of the root nodes in the CTs, and so on. In addition, in

LCCG, the Cluster Feature (CF) stores the related information of a cluster. It is

similar with the Cluster Feature proposed in the Balance Iterative Reducing and

Clustering using Hierarchies (BIRCH) clustering algorithm and defined as follows.

Definition 4.3: Cluster Feature

The Cluster Feature (CF) = (N, VS , CS), where

 N: it denotes the number of the content nodes (CNs) in a cluster.

 VS =∑=

N

i iFV
1

. It denotes the sum of feature vectors (FVs) of CNs.

 CS = |/||/|
1

NVSNVN

i i =∑ =

v
. It denotes the average value of the feature

vector sum in a cluster. The | | denotes the Euclidean distance of the feature

vector. The (VS /N) can be seen as the Cluster Center (CC) of a cluster.

Moreover, during content clustering process, if a content node (CN) in a content

tree (CT) with feature vector (FV) is inserted into the cluster CFA = (NA, AVS , CSA),

 23

the new CFA = (, 1+AN FVVSA + , () ()1/ ++ AA NFVVS). An example of Cluster

Feature (CF) and Content Node List (CNL) is shown in Example 4.5.

Example 4.5: Cluster Feature (CF) and Content Node List (CNL)

Assume a cluster C0 stores in the LCC-Node NA with (CFA, CNLA) and contains

four CNs: CN01, CN02, CN03, and CN04, which include four feature vectors, <3,3,2>,

<3,2,2>, <2,3,2> and <4,4,2>, respectively. Then, the AVS = <12,12,8>, the CC

= AVS /NA = <3,3,2>, and the CSA = |CC| = (9+9+4)1/2 = 4.69. Thus, the CFA = (4,

<12,12,8>, 4.69), and CNLA = { CN01, CN02, CN03, CN04}

4.3.2 Incremental Level-wise Content Clustering Algorithm

Based upon the definition of LCCG, we propose an Incremental Level-wise

Content Clustering Algorithm, called ILCC-Alg, to create the LCC-Graph according

to the CTs transformed from learning objects. The ILCC-Alg includes two processes:

1) Single Level Clustering Process, 2) Content Cluster Refining Process, and 3)

Concept Relation Connection Process. Figure 4.7 illustrates the flowchart of

ILCC-Alg.

Figure 4.7: The Process of ILCC-Algorithm

 24

(1) Single Level Clustering Process

In this process, the content nodes (CNs) of CT in each tree level can be clustered

by different similarity threshold. The content clustering process is started from the

lowest level to the top level in CT. All clustering results are stored in the LCCG. In

addition, during content clustering process, the similarity measure between a CN and

an LCC-Node is defined by the cosine function which is the most common for the

document clustering. It means that, given a CN NA and an LCC-Node LCCNA, the

similarity measure is calculated by

AA

AA

AA

LCCNCN

LCCNCN
LCCNCNAA FVFV

FVFV
FVFVLCCNCNsim

•
==),cos(),(,

where FVCNA and FVLCCNA are the feature vectors of CNA and LCCNA respectively.

The larger the value is, the more similar two feature vectors are. And the cosine value

will be equal to 1 if these two feature vectors are totally the same.

The basic concept of Incremental Single Level Clustering Algorithm (ISLC-Alg)

is also described in Figure 4.8. In Figure 4.8.1, we have an existing clustering result

and two new objects, CN4 and CN5, needed to be clustered. First we compute the

similarity between CN4 and the existing clusters, LCC-Node1 and LCC-Node2. In this

example, the similarities between them are all smaller than the similarity threshold.

That means the concept of CN4 is not similar with the concepts of existing clusters, so

we treat CN4 as a new cluster LCC-Node3. Then we cluster the next new object, CN5.

After computing and comparing the similarities between CN5 and existing clusters,

we find CN5 is similar enough with LCC-Node2, so we put CN5 into LCC-Node2 and

update the feature of this cluster. The final result of this example is shown in Figure

4.8.4. Moreover, the detail of ISLC-Alg is shown in Algorithm 4.1.

 25

Figure 4.8: An Example of Incremental Single Level Clustering

Algorithm 4.4: Incremental Single Level Clustering Algorithm (ISLC-Alg)

Symbols Definition:

LNSet : the existing LCC-Nodes (LNS) in the same level (L)

CNN : a new content node (CN) needed to be clustered

Ti : the similarity threshold of the level (L) for clustering process.

Input : LNSet, CNN and Ti.

Output : The set of LCC-Nodes storing the new clustering results.

Step 1: n∀ i ∈ LNSet, calculate the similarity sim(ni, CNN)

Step 2: Find the most similar one, n*, for CNN

 2.1: If sim(n*, CNN) > Ti

Then insert CNN into the cluster n* and update its CF and CL

Else insert CNN as a new cluster stored in a new LCC-Node.

Step 3: Return the set of the LCC-Nodes.

 26

(2) Content Cluster Refining Process

Due to the ISLC-Alg algorithm runs the clustering process by inserting the

content trees (CTs) incrementally, the content clustering results are influenced by the

inputs order of CNs. In order to reduce the effect of input order, the Content Cluster

Refining Process is necessary. Given the content clustering results of ISLC-Alg,

Content Cluster Refining Process utilizes the cluster centers of original clusters as the

inputs and runs the single level clustering process again for modifying the accuracy of

original clusters. Moreover, the similarity of two clusters can be computed by the

Similarity Measure as follows:

BA

AAAA

BA

BA
BA CSCS

NVSNVS
CCCC
CCCCCCCCCosSimilarity

*
)()(),(•

=
•

==

After computing the similarity, if the two clusters have to be merged into a new

cluster, the new CF of this new cluster is: CFnew= (BA NN + , BA VSVS + ,

)/()(BABA NNVSVS ++).

(3) Concept Relation Connection Process

The concept relation connection process is used to create the links between

LCC-Nodes in adjacent stages of LCCG. Based on the hierarchical relationships stores

in content trees (CTs), we can find the relationships between more general subjects

and more specific ones. Thus, after applying ISLC-Alg to two adjacent stages, we

then apply Concept Relation Connection Process and create new LCC-Links

Figure 4.9 shows the basic concept of Incremental Level-wise Content

Clustering Algorithm (ILCC-Alg). Every time getting a new content tree (CT), we

 27

apply ISLC-Alg from bottom to top, and update the semantic relation links between

adjacent stages. Finally we can get a new clustering result. The algorithm of

ILCC-Alg is shown in Algorithm 4.5.

Figure 4.9: An Example of Incremental Level-wise Content Clustering

 28

Algorithm 4.5: Incremental Level-wise Content Clustering Algorithm
(ILCC-Alg)

Symbols Definition:

D : denotes the maximum depth of the content tree (CT).

L0~LD-1 : denote the levels of CT descending from the top level to the lowest level.

S0~SD-1 : denote the stages of LCC-Graph.

T0~TD-1 : denote the similarity thresholds for clustering the content nodes (CNs) in

the level L0~LD-1 respectively.

CTN : denotes a new CT with a maximum depth (D) needed to be clustered.

CNSet : denotes the CNs in the content tree level (L).

LG : denotes the existing LCC-Graph

LNSet : denotes the existing LCC-Nodes (LNS) in the same level (L)

Input : LG, CTN, T0~TD-1

Output : LCCG which holds the clustering results in every content tree level.

Step 1: For i = LD-1 to L0, do the following Step 2 to Step 4.

Step 2: Single Level Clustering:

2.1: LNSet = the LNs LG in L∈

∈

i

2.2: CNSet = the CNs CTN in Li

2.2: For LNSet and any CN ∈ CNSet,

Run Incremental Single Level Clustering Algorithm (ISLC-Alg)

with threshold Ti.

Step 3: If i < D-1

3.1: Construct LCCG-Link between Si and Si+1.

Step 4: Return the new LCCG

 29

Chapter 5 Searching Phase of LCMS

In this chapter, we describe the searching phrase of LCMS, which includes 1)

Preprocessing module, 2) Content-based Query Expansion module and 3) LCCG

Content Searching module, shown in the right part of Figure 3.1.

5.1 Preprocessing Module

In this module, we translate user’s query into a vector to represent the concepts

user want to search. Here, we encode a query by the simple encoding method which

uses a single vector, called query vector (QV), to represent the keywords/phrases in

the user’s query. If a keyword/phrase appears in the Keyword/phrase Database of the

system, the corresponding position in the query vector will be set as “1”. If the

keyword/phrase does not appear in the Keyword/phrase Database, it will be ignored.

And all the other positions in the query vector will be set as “0”.

Example 5.1: Preprocessing: Query Vector Generator

As shown in Figure 5.1, the original query is: {“e-learning”, “LCMS”, “learning

object repository”}. And we have a Keyword/phrase Database shown in the right part

of Figure 5.1. Via a direct mapping, we can find the query vector is <1, 0, 0, 0, 1>.

Figure 5.1: Preprocessing: Query Vector Generator

 30

5.2 Content-based Query Expansion Module

In general, while users want to search desired learning contents, they usually

make rough queries, or called short queries. Using this kind of queries, users will

retrieve a lot of irrelevant results. Then, they need to browse many irrelevant item to

learn “How to set an useful query in this system to get what I want?” by themselves.

In most cases, systems use the relational feedback provided by users to refine the

query and do another search, iteratively. It works but often takes time for users to

browse a lot of non-interested items. In order to assist users efficiently find more

specific content, we proposed a query expansion scheme, called Content-based Query

Expansion, based on the multi-stage index of LOR, i.e., LCCG.

Figure 5.2 shows the process of Content-based Query Expansion. In LCCG,

every LCC-Node can be treated as a concept, and each concept has its own feature: a

set of weighted keywords/phrases. Therefore, we can search the LCCG and find a

sub-graph related to the original rough query by computing the similarity of the

feature vector stored in LCC-Nodes and the query vector. Then we integrate these

related concepts with the original query by calculating the linear combination of them.

After concept fusing, the expanded query could contain more concepts and perform a

more specific search. Users can control an expansion degree to decide how much

expansion s/he needs. Via this kind of query expansion, users can use rough query to

find more specific content stored in the LOR in less iterations of query refinement.

The algorithm of Content-based Query Expansion is described in Algorithm 5.1.

 31

Figure 5.2: The Process of Content-based Query Expansion

Figure 5.3: The Process of LCCG Content Searching

 32

Algorithm 5.1: Content-based Query Expansion Algorithm (CQE-Alg)

Symbols Definition:

Q : denotes the query vector whose dimension is the same as the feature vector of

content node (CN)

TE : denotes the expansion threshold assigned by user

β : denotes the expansion parameter assigned by system administrator

S0~SD-1: denote the stage of an LCCG from the top stage to the lowest stage

ExpansionSet and DataSet: denote the sets of LCC-Nodes

Input : a query vector Q, expansion threshold TE

Output : an expanded query vector EQ

Step 1: Initial the ExpansionSet =φ and DataSet =φ

Step 2: For each stage Si∈LCCG,

repeatedly execute the following steps until Si≧SDES

2.1: DataSet = DataSet LCC-Nodes in stage S∪ i and ExpansionSet=φ

2.2: For each Nj DataSet, ∈

If (the similarity between Nj and Q) T≥ E

Then insert Nj into ExpansionSet

2.3: DataSet = ExpansionSet //for searching more precise LCC-Nodes in

next stage in LCCG

Step 3: EQ = (1-β)*Q + β*avg(feature vectors of LCC-Nodes in ExpansionSet)

Step 4: return EQ

 33

5.3 LCCG Content Searching Module

The process of LCCG Content Searching is shown in Figure 5.3. In LCCG, every

LCC-Node contains several similar content nodes (CNs) in different content trees

(CTs) transformed from content package of SCORM compliant learning materials.

The content within LCC-Nodes in upper stage is more general than the content in

lower stage. Therefore, based upon the LCCG, users can get their interesting learning

contents which contain not only general concepts but also specific concepts. The

interesting learning content can be retrieved by computing the similarity of cluster

center (CC) stored in LCC-Nodes and the query vector. If the similarity of LCC-Node

satisfies the query threshold users defined, the information of learning contents

recorded in this LCC-Node and its included child LCC-Nodes are interested for users.

Moreover, we also define the Near Similarity Criterion to decide when to stop the

searching process. Therefore, if the similarity between the query and the LCC-Node

in the higher stage satisfies the definition of Near Similarity Criterion, it is not

necessary to search its included child LCC-Nodes which may be too specific to use

for users. The Near Similarity Criterion is defined as follows:

Definition 5.1: Near Similarity Criterion

Assume that the similarity threshold T for clustering is less than the similarity

threshold S for searching. Because similarity function is the cosine function, the

threshold can be represented in the form of the angle. The angle of T is denoted as

 and the angle of S is denoted as . When the angle between the

query vector and the cluster center (CC) in LCC-Node is lower than

TT
1cos−=θ SS

1cos−=θ

TS θθ − , we

define that the LCC-Node is near similar for the query. The diagram of Near

Similarity is shown in Figure.

 34

Figure 5.4: The Diagram of Near Similarity According to the Query Threshold Q and

Clustering Threshold T

In other words, Near Similarity Criterion is that the similarity value between the

query vector and the cluster center (CC) in LCC-Node is larger than)(TSCos θθ − ,

so that the Near Similarity can be defined again according to the similarity threshold

T and S.

()()22 11TS

)(SimilarityNear

TS

SinSinCosCosCos TSTSTS

−−+×=

+=−>

　　　　　　　　　　　　　

θθθθθθ

By the Near Similarity Criterion, the algorithm of the LCCG Content Searching

Algorithm (LCCG-CSAlg) is proposed as shown in Algorithm 5.2.

 35

Algorithm 5.2: LCCG Content Searching Algorithm (LCCG-CSAlg)

Symbols Definition:

Q : denotes the query vector whose dimension is the same as the feature vector

of content node (CN)

D : denotes the number of the stage in an LCCG.

S0~SD-1: denote the stage of an LCCG from the top stage to the lowest stage.

ResultSet, DataSet, and NearSimilaritySet: denote the sets of LCC-Nodes.

Input: The query vector Q, search threshold T and

the destination stage SDES where S0≤SDES≤SD-1.

Output: the ResultSet contains the set of similar clusters stored in LCC-Nodes.

Step 1: Initiate the DataSet =φ and NearSimilaritySet =φ

Step 2: For each stage Si∈LCCG,

 repeatedly execute the following steps until Si≧SDES

2.1: DataSet = DataSet LCC-Nodes in stage S∪ i, and ResultSet=φ

2.2: For each Nj DataSet, ∈

If Nj is near similar with Q

Then insert Nj into NearSimilaritySet.

Else If (the similarity between Nj and Q) T ≥

Then insert Nj into ResultSet }

2.3: DataSet = ResultSet. //for searching more precise LCC-Nodes in

next stage in LCCG

Step 3: Output the ResultSet = ResultSet NearSimilaritySet ∪

 36

Chapter 6 Implementation and Experimental Results

6.1 System Implementation

To evaluate the performance, we have implemented a web-based system, called

Learning Object Management System (LOMS). The operating system of our web

server is FreeBSD4.9. Besides, we use PHP4 as the programming language and

MySQL as the database to build up the whole system.

Figure 6.1 shows the configuration page of our LOMS. The upper part lists the

parameters used in our Level-wise Content Management Scheme (LCMS). The

“maximum depth of a content tree” is used in CP2CT-Alg to decide the maximum

depth of the content trees (CTs) transformed from SCORM content packages (CPs).

Then the “clustering similarity thresholds” defines the clustering thresholds of each

level in the ILCC-Alg. Besides, the “searching similarity thresholds” and “near

similarity threshold” are used in the LCCG-CSAlg to traverse the LCCG and retrieve

the desired learning objects. The lower part of this page provides the links to maintain

the Keyword/phrase Database, Stop-Word Set, and Pattern Base of our system.

As shown in Figure 6.2, users can set the query words to search LCCG and

retrieve the desired learning contents. Besides, they can also set other searching

criterions about other SCORM metadata such as “version”, “status”, “language”,

“difficulty”, etc. to do further restrictions. Then all searching results with hierarchical

relationships are shown in Figure 6.3. By displaying the learning objects with their

hierarchical relationships, users can know more clearly if that is what they want.

Besides, users can search the relevant items by simply clicking the buttons in the left

 37

side of this page or view the desired learning contents by selecting the hyper-links. As

shown in Figure 6.4, a learning content can be found in the right side of the window,

and the hierarchical structure of this learning content is listed in the left side.

Therefore, user can easily browse the other parts of this learning contents without

perform another search.

Figure 6.1: System Screenshot: LOMS configuration

 38

Figure 6.2: System Screenshot: Searching

Figure 6.3: System Screenshot: Searching Results

 39

Figure 6.4: System Screenshot: Viewing Learning Objects

6.2 Experimental Results

In this section, we describe the experimental results about our LCMS.

(1) Synthetic Learning Materials Generation and Evaluation Criterion

Here, we use synthetic learning materials to evaluate the performance of our

clustering algorithms. All synthetic learning materials are generated by three

parameters: 1) V: The dimension of feature vectors in learning materials, 2) D: the

depth of the content structure of learning materials, 3) B: the upper bound and lower

bound of included sub-section for each section in learning materials.

In the Incremental Level-wise Content Clustering Algorithm (ILCC-Alg), the

Incremental Single Level Clustering Algorithm (ISLC-Alg) can be seen as a kind of

traditional clustering algorithms. To evaluate the performance, we compare the

 40

performance of ILCC-Alg with ISLC-Alg which uses the leaf-nodes as input in

content trees. The resulted cluster quality is evaluated by the F-measure [LA99]

which combines the precision and recall from the information retrieval. The

F-measure is formulated as follows:

RP
RPF

+
××

=
2

, where P and R are precision and recall respectively. The range of F-measure is [0,1].

The higher the F-measure is, the better the clustering result is.

(2) Experimental Results of Synthetic Learning materials

There are 500 synthetic learning materials with V=15, D=3, and B = [5, 10] are

generated. The clustering thresholds of ILCC-Alg and ISLC-Alg are 0.92. After

clustering, there are 101, 104 and 2529 clusters generated from 500, 3664 and 27456

content nodes in the level L0, L1, and L2 of content trees, respectively. Then, 30

queries generated randomly are used to compare the performance of two clustering

algorithms. The F-measure of each query with threshold 0.85 is shown in Figure 6.5.

Moreover, this experiment is run on AMD Athlon 1.13GHz processor with 512 MB

DDR RAM under the Windows XP operating system. As shown in Figure 6.5, the

differences of the F-measures between ILCC-Alg and ISLC-Alg are small in most

cases. Moreover, in Figure 6.6, the searching time using LCCG-CSAlg in ILCC-Alg

is far less than the time needed in ISLC-Alg. Figure 6.7 shows that the clustering with

clustering refinement can improve the accuracy of LCCG-CSAlg search.

 41

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
query

F-
m

ea
su

re
ISLC-Alg ILCC-Alg

Figure 6.5: The F-measure of Each Query

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
query

se
ar

ch
in

g
ti
m

e
(m

s)

ISLC-Alg ILCC-Alg

Figure 6.6: The Searching Time of Each Query

0

0.2

0.4
0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
query

F-
m

ea
su

re

ISLC-Alg ILCC-Alg(with Cluster Refining)

Figure 6.7: The Comparison of ISLC-Alg and ILCC-Alg with Cluster Refining

 42

(3) Real Learning Materials Experiment

In order to evaluate the performance of our LCMS more practically, we also do

two experiments using the real SCORM compliant learning materials. Here, we

collect 100 articles with 5 specific topics: concept learning, data mining, information

retrieval, knowledge fusion, and intrusion detection, where every topic contains 20

articles. Every article is transformed into SCORM compliant learning materials and

then imported into our web-based system. In addition, 15 participants, who are

graduate students of Knowledge Discovery and Engineering Lab of NCTU, used the

system to query their desired learning materials.

To evaluate our Content-based Query Expansion Algorithm (CQE-Alg), we

select several sub-topics contained in our collection and request participants to search

them using at most two keywords/phrases with/without our query expasion function.

In this experiments, every sub-topic is assigned to three or four participants to

perform the search. And then we compare the precision and recall of those search

results to analyze the performance. As shown in Figure 6.9 and Figure 6.10, after

applying the CQE-Alg, because we can expand the initial query and find more

learning objects in some related domains, the precision may decrease slightly in some

cases while the recall can be significantly improved. Moreover, as shown in Figure

6.11, in most real cases, the F-measure can be improved in most cases after applying

our CQE-Alg. Therefore, we can conclude that our query expansion scheme can help

users find more desired learning objects without reducing the search precision too

much.

 43

0
0.2
0.4
0.6
0.8

1

ag
en

t-b
ase

d l
ear

nin
g

da
ta

fus
ion

ind
uc

tiv
e i

nfe
ren

ce

inf
orm

ati
on

 in
teg

rat
ion

int
rus

ion
 de

tec
tio

n

ite
rat

ive
 le

arn
ing

on
tol

og
y f

usi
on

ve
rsi

on
 sp

ace
 le

arn
ing

sub-topics

pr
ec

is
io

n

without CQE-Alg with CQE-Alg

Figure 6.9: The precision with/without CQE-Alg

0
0.2
0.4
0.6
0.8

1

ag
en

t-b
ase

d l
ear

nin
g

da
ta

fus
ion

ind
uc

tiv
e i

nfe
ren

ce

inf
orm

ati
on

 in
teg

rat
ion

int
rus

ion
 de

tec
tio

n

ite
rat

ive
 le

arn
ing

on
tol

og
y f

usi
on

ve
rsi

on
 sp

ace
 le

arn
ing

sub-topics

re
ca

ll

without CQE-Alg with CQE-Alg

Figure 6.10: The recall with/without CQE-Alg

0
0.2
0.4
0.6
0.8

1

ag
en

t-b
ase

d l
ear

nin
g

da
ta

fus
ion

ind
uc

tiv
e i

nfe
ren

ce

inf
orm

ati
on

 in
teg

rat
ion

int
rus

ion
 de

tec
tio

n

ite
rat

ive
 le

arn
ing

on
tol

og
y f

usi
on

ve
rsi

on
 sp

ace
 le

arn
ing

sub-topics

re
ca

ll

without CQE-Alg with CQE-Alg

Figure 6.11: The F-measure with/withour CQE-Alg

 44

Moreover, a questionnaire is used to evaluate the performance of our system for

these participants. The questionnaire includes the following two questions: 1)

Accuracy degree: “Are these learning materials desired?”, 2) Relevance degree: “Are

the obtained learning materials with different topics related to your query?”. As

shown in Figure 6.11, we can conclude that the LCMS scheme is workable and

beneficial for users according to the results of questionnaire.

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

questionnaire

sc
or

e

Accuracy Degree Relevance Degree

Figure 6.12: The Results of Accuracy and Relevance in Questionnaire
(10 is the highest)

 45

Chapter 7 Conclusion and Future Work

In this thesis, we propose a Level-wise Content Management Scheme, called

LCMS, which includes two phases: Constructing phase and Searching phase. For

representing each teaching materials, a tree-like structure, called Content Tree (CT), is

first transformed from the content structure of SCORM Content Package in the

Constructing phase. And then, an information enhancing module, which includes the

Keyword/phrase Extraction Algorithm (KE-Alg) and the Feature Aggregation

Algorithm (FA-Alg), is proposed to assist user in enhancing the meta-information of

content trees. According to the CTs, the Level-wise Content Clustering Algorithm

(ILCC-Alg) is then proposed to create a multistage graph with relationships among

learning objects (LOs), called Level-wise Content Clustering Graph (LCCG).

Moreover, for incrementally updating the learning contents in LOR. The Searching

Phrase includes the LCCG Content Searching Algorithm (LCCG-CSAlg) to traverse

the LCCG for retrieving desired learning content with both general and specific

learning objects according to the query of users over the wire/wireless environment.

Besides, the Content-based Query Expansion Algorithm (CQE-Alg) is proposed to

assist users in refining their queries to retrieve more specific learning objects from a

learning object repository.

For evaluating the performance, a web-based Learning Object Management

System, called LOMS, has been implemented and several experiments also have been

done. The experimental results show that our LCMS is efficient and workable to

manage the SCORM compliant learning objects.

 46

In the near future, more real-world experiments with learning materials in several

domains will be implemented to analyze the performance and check if the proposed

management scheme can meet the need of different domains. Besides, we will

enhance the scheme of LCMS with scalability and flexibility for providing the web

service based upon real SCORM learning materials. Furthermore, we are trying to

construct a more sophisticated concept relation graph, even an ontology, to describe

the whole learning materials in an e-learning system and provide the navigation

guideline of a SCORM compliant learning object repository.

 47

References

Websites

[AICC] Aviation Industry CBT Committee (AICC) 2004, AICC - Aviation Industry
CBT Committee. http://www.aicc.org

[ARIADNE] Alliance for Remote Instructional and Authoring and Distribution
Networks for Europe (ARIADNE) 2004, ARIADNE: Foundation for The
European Knowledge Pool. http://www.ariadne-eu.org

[CETIS] CETIS 2004, ‘ADL to make a ‘repository SCORM’’, The Centre for
Educational Technology Interoperability Standards.
http://www.cetis.ac.uk/content2/20040219153041

[IMS] Instructional Management System (IMS) 2004, IMS Global Learning
Consortium. http://www.imsproject.org/

[Jonse04] Jones, E.R., 2004, Dr. Ed’s SCORM Course,
http://www.scormcourse.jcasolutions.com/index.php

[LSAL] LSAL 2003, ‘CORDRA (Content Object Repository Discovery and
Resolution/repository Architecture)’, Learning Systems Architecture Laboratory:
Carnegie Mellon LSAL. http://www.lsal.cmu.edu/lsal/expertise/projects/cordra

[LTSC] IEEE Learning Technology Standards Committee (LTSC) 2004, IEEE LTSC |
WG12. http://ltsc.ieee.org/wg12/

[SCORM] Sharable Content Object Reference Model (SCORM) 2004, Advanced
Distributed Learning. http://www.adlnet.org/

[W3C] W3C (updated 9 Jun. 2004), World Wide Web Consortium. http://www.w3.org

[WN] WordNet, http://wordnet.princeton.edu/

[XML] eXtensible Markup Language (XML) (updated 26 Mar. 2004), Extensible
Markup Language (XML). http://www.w3c.org/xml/

Articles

[BL85] C. Buckley, A. F. Lewit, “Optimizations of Inverted Vector Searches”,
SIGIR ’85, 1985, pp:97-110.

 48

http://www.aicc.org/
http://www.ariadne-eu.org/
http://www.cetis.ac.uk/content2/20040219153041
http://www.imsproject.org/
http://www.scormcourse.jcasolutions.com/index.php
http://www.lsal.cmu.edu/lsal/expertise/projects/cordra
http://ltsc.ieee.org/wg12/
http://www.adlnet.org/Scorm/scorm.cfm
http://www.w3.org/
http://wordnet.princeton.edu/
http://www.w3c.org/xml/

[CK+92] D. R. Cutting, D. R. Karger, J. O. Predersen, J. W. Tukey, “Scatter/Gather:
A Cluster-based Approach to Browsing Large Document Collections”,
Proceedings of the Fifteenth Interntional Conference on Research and
Development in Information Retrieval, 1992, pp. 318-329.

[KC02] S.K. Ko and Y.C. Choy, “A Structured Documents Retrieval Method
supporting Attribute-based Structure Information”, Proceedings of the 2002 ACM
symposium on Applied computing, 2002, pp. 668-674.

[KK01] S.W. Khor and M.S. Khan, “Automatic Query Expansions for aiding Web
Document Retrieval”, Proceedings of the fourth Western Australian Workshop on
Information Systems Research, 2001

[KK02] R. Kondadadi, R. Kozma, “A Modified Fuzzy ART for Soft Document
Clustering”, Proceedings of the 2002 International Joint Conference on Neural
Networks, Vol. 3, 2002, pp:2545-2549.

[KK04] M.S. Khan, S.W. Khor, “Web Document Clustering using a Hybrid Neural
Network”, Journal of Applied Soft Computing, Vol. 4, Issue 4, Sept. 2004.

[LA99] B. Larsen and C. Aone, “Fast and Effective Text Mining Using Linear-Time
Docu-ment Clustering”, Proceedings of the fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 1999, pp. 16-22.

[LM+00] H.V. Leong, D. MeLeod, A. Si, and S.M.T. Yau, “On Supporting
Weakly-Connected Browsing in a Mobile Web Environment”, Proceedings of
ICDCS2000, 2000, pp: 538-546.

[MR04] F. Meziane, Y. Rezgui, “A Document Management Methodology based on
Similarity Contents”, Journal of Information Science, Vol. 158, Jan. 2004.

[RW86] V.V. Raghavan, and S.K.M. Wong, “A Critical Analysis of Vector Space
Model in Information Retrieval”, Journal of the American Soczety for Information
Science, 37, 1986, pp. 279-287.

[SA04] S. Sakurai, A. Suyama, “Rule Discovery from Textual Data based on Key
Phrase Patterns”, Proceedings of the 2004 ACM Symposium on Applied
Computing, Mar. 2004.

[SS+03] M. Song, I.Y. Song, X.H. Hu, “KPSpotter: A Flexible Information
Gain-based Keyphrase Extraction System”, Proceedings of the fifth ACM
International Workshop on Web Information and Data Management, Nov. 2003

[VV+04] I. Varlamis, M. Vazirgiannis, M. Halkidi, Member, IEEE Computer Society,

 49

Benjamin Nguyen, “THESYS, a closer view on web content management
enhanced with link semantics”, IEEE Transaction on Knowledge and Data
Engineering, Jun. 2004.

[WC+04] E.Y.C. Wong, A.T.S. Chan, and H.V. Leong, “Efficient Management of XML
Con-tents over Wireless Environment by Xstream”, Proceedings of the 2004 ACM
sym-posium on Applied computing, 2004, pp. 1122-1127.

[WL+03] C.Y. Wang, Y.C. Lei, P.C. Cheng, S.S. Tseng, “A Level-wise Clustering
Algorithm on Structured Documents”, 2003.

[YL+99] S.M.T. Yau, H.V. Leong, D. MeLeod, and A. Si, “On Multi-Resolution
Document Transmission in A Mobile Web”, the ACM SIGMOD record, Vol. 28,
Issue 3, Sep. 1999, pp:37-42.

 50

	Introduction
	Background and Related Work
	SCORM (Sharable Content Object Reference Model)
	Document Clustering/Management
	Keyword/phrase Extraction

	Level-wise Content Management Scheme (LCMS)
	The Processes of LCMS

	Constructing Phase of LCMS
	Content Tree Transforming Module
	Information Enhancing Module
	Keyword/phrase Extraction Process
	Feature Aggregation Process

	Level-wise Content Clustering Module
	Level-wise Content Clustering Graph (LCCG)
	Incremental Level-wise Content Clustering Algorithm

	Searching Phase of LCMS
	Preprocessing Module
	Content-based Query Expansion Module
	LCCG Content Searching Module

	Implementation and Experimental Results
	System Implementation
	Experimental Results

	Conclusion and Future Work

