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摘要 

隨著網際網路的發展，網路學習(e-Learning)也越來越普及。為了促進學習資

源在不同網路學習系統間的分享與再利用，近年來有許多國際性組織提出了各種

格式的標準，其中最被廣泛應用的是 SCORM。另外，在 e-learning 系統中的學

習資源通常都存放在資源庫(Learning Object Repository (LOR) )中，而當資源庫中

存放著大量物件時，隨即會面臨到大量物件的管理問題。因此在本篇論文中，我

們提出了一個階層式的管理機制 (Level-wise Content Management System 

(LCMS) )來有效地管理符合SCORM標準的學習資源庫。LCMS的流程可分為“建

構”與“搜尋”兩大部份。在建構階段(Constructing Phase)，我們先運用 SCORM 標

準中所提供的資訊，將學習資源轉換成一個樹狀架構。接著考慮到 SCORM 中的

詮釋性資料(Metadata)對一般人的複雜度，另外提出了一個方式來輔助使用者來

加強學習資源中各學習物件的詮釋性資訊。而後藉由分群的技術，我們針對資源

庫中的學習物件建立了一個多層有向非環圖，稱為 Level-wise Content Clustering 

Graph (LCCG)來儲存物件的資訊以及學習物件間的關聯。在搜尋階段(Searching 

Phase)，提出了一個搜尋機制以利用已建立的 LCCG 找出使用者想要的學習物

件。除此之外，考量到使用者在下搜尋關鍵字時的難處，在此亦基於 LCCG 提

出了一個方式來輔助使用者改善搜尋用詞以在學習資源庫中找出相關的物件。最

後，我們實作了一個雛形系統並進行了一些實驗。由實驗結果可知，LCMS 的確

能有效地管理符合 SCORM 標準的學習資源庫。 

關鍵字: 學習資源庫, e-Learning, SCORM, 內容管理 
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Abstract 

 

With rapid development of the Internet, e-learning system has become more and 

more popular. Currently, to solve the issue of sharing and reusing of learning contents 

in different e-learning systems, several standards formats have been proposed by 

international organizations in recent years, and Sharable Content Object Reference 

Model (SCORM) is the most popular one among existing international standards. In 

e-learning system, learning contents are usually stored in database, called Learning 

Object Repository (LOR). In LOR, a huge amount of SCORM learning contents 

including associated learning objects will result in the issues of management over 

wired/wireless environment. Therefore, in this thesis, we propose a management 

approach, called Level-wise Content Management Scheme (LCMS), to efficiently 

maintain, search, and retrieve the learning contents in SCORM compliant LOR. The 

LCMS includes two phases: Constructing Phase and Searching Phase. In 

Constructing Phase, we first transform the content tree (CT) from the SCORM 

content package to represent each learning materials. Then, considering about the 

difficulty of giving learning objects useful metadata, an information enhancing 

module is proposed to assist users in enhancing the meta-information of content trees. 

Afterward, a multistage graph as Directed Acyclic Graph (DAG) with relationships 
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among learning objects, called Level-wise Content Clustering Graph (LCCG), will be 

created by applying incremental clustering techniques. In Searching phase, based on 

the LCCG, we propose a searching strategy to traverse the LCCG for retrieving the 

desired learning objects. Besides, the short query problem is also one of our concerns. 

In general, while users want to search desired learning contents, they usually make 

rough queries. But this kind of queries often results in a lot of irrelevant searching 

results. So a query expansion method is also proposed to assist users in refining their 

queries and searching more specific learning objects from a LOR. Finally, for 

evaluating the performance, a web-based system has been implemented and some 

experiments also have been done. The experimental results show that our LCMS is 

efficient and workable to manage the SCORM compliant learning objects. 

 

Keywords: Learning Object Repository (LOR), E-learning, SCORM,  

Content Management 
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Chapter 1  Introduction 

With rapid development of the internet, e-Learning system has become more and 

more popular. E-learning system can make learners study at any time and any location 

conveniently. However, because the learning materials in different e-learning systems 

are usually defined in specific data format, the sharing and reusing of learning 

materials among these systems becomes very difficult. To solve the issue of uniform 

learning materials format, several standards formats including SCORM [SCORM], 

IMS [IMS], LOM [LTSC], AICC [AICC], etc. have been proposed by international 

organizations in recent years. By these standard formats, the learning materials in 

different learning management system can be shared, reused, extended, and 

recombined. 

 

Recently, in SCORM 2004 (aka SCORM1.3), ADL outlined the plans of the 

Content Object Repository Discovery and Resolution Architecture (CORDRA) as a 

reference model which is motivated by an identified need for contextualized learning 

object discovery. Based upon CORDRA, learners would be able to discover and 

identify relevant material from within the context of a particular learning activity 

[SCORM][CETIS][LSAL]. Therefore, this shows how to efficiently retrieve desired 

learning contents for learners has become an important issue. Moreover, in mobile 

learning environment, retransmitting the whole document under the 

connection-oriented transport protocol, such as TCP, will result in lower throughput 

due to the head-of-line blocking and Go-Back-N error recovery mechanism in an 

error-sensitive environment. Accordingly, a suitable management scheme for 

managing learning resources and providing teachers/learners an efficient search 

service to retrieve the desired learning resources is necessary over the wired/wireless 
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environment. 

 

In SCORM, a content packaging scheme is proposed to package the learning 

content resources into learning objects (LOs), and several related learning objects can 

be packaged into a learning material. Besides, SCORM provides user with plentiful 

metadata to describe each learning object. Moreover, the structure information of 

learning materials can be stored and represented as a tree-like structure described by 

XML language [W3C][XML]. Therefore, in this thesis, we propose a Level-wise 

Content Management Scheme (LCMS) to efficiently maintain, search, and retrieve 

learning contents in SCORM compliant learning object repository (LOR). This 

management scheme consists of two phases: Constructing Phase and Searching Phase. 

In Constructing Phase, we first transform the content structure of SCORM learning 

materials (Content Package) into a tree-like structure, called Content Tree (CT), to 

represent each learning materials. Then, considering about the difficulty of giving 

learning objects useful metadata, we propose an automatic information enhancing 

module, which includes a Keyword/phrase Extraction Algorithm (KE-Alg) and a 

Feature Aggregation Algorithm (FA-Alg), to assist users in enhancing the 

meta-information of content trees. Afterward, an Incremental Level-wise Content 

Clustering Algorithm (ILCC-Alg) is proposed to cluster content trees and create a 

multistage graph, called Level-wise Content Clustering Graph (LCCG), which 

contains both vertical hierarchy relationships and horizontal similarity relationships 

among learning objects.  

 

In Searching phase, based on the LCCG, we propose a searching strategy called 

LCCG Content Search Algorithm (LCCG-CSAlg) to traverse the LCCG for 

retrieving the desired learning content. Besides, the short query problem is also one of 
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our concerns. In general, while users want to search desired learning contents, they 

usually make rough queries. But this kind of queries often results in a lot of irrelevant 

searching results. So a Content-base Query Expansion Algorithm (CQE-Alg) is also 

proposed to assist users in searching more specific learning contents by a rough query. 

By integrating the original query with the concepts stored in LCCG, the CQE-Alg can 

refine the query and retrieve more specific learning contents from a learning object 

repository. 

 

To evaluate the performance, a web-based Learning Object Management 

System (LOMS) has been implemented and several experiments have also been done. 

The experimental results show that our approach is efficient to manage the SCORM 

compliant learning objects. 

 

This thesis is organized as follows: Chapter 2 introduces the related works. 

Overall system architecture will be described in Chapter 3. And Chapters 4 and 5 

present the details of the proposed system. Chapter 6 follows with the implementation 

issues and experiments of the system. Chapter 7 concludes with a summary. 
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Chapter 2  Background and Related Work 

In this chapter, we review SCORM standard and some related works as follows. 

2.1 SCORM (Sharable Content Object Reference Model) 

Among those existing standards for learning contents, SCORM, which is 

proposed by the U.S. Department of Defense’s Advanced Distributed Learning (ADL) 

organization in 1997, is currently the most popular one. The SCORM specifications 

are a composite of several specifications developed by international standards 

organizations, including the IEEE [LTSC], IMS [IMS], AICC [AICC] and ARIADNE 

[ARIADNE]. In a nutshell, SCORM is a set of specifications for developing, 

packaging and delivering high-quality education and training materials whenever and 

wherever they are needed. SCORM-compliant courses leverage course development 

investments by ensuring that compliant courses are "RAID:" Reusable: easily 

modified and used by different development tools, Accessible: can be searched and 

made available as needed by both learners and content developers, Interoperable: 

operates across a wide variety of hardware, operating systems and web browsers, and 

Durable: does not require significant modifications with new versions of system 

software [Jonse04]. 

 

In SCORM, content packaging scheme is proposed to package the learning 

objects into standard learning materials, as shown in Figure 2.1. The content 

packaging scheme defines a learning materials package consisting of four parts, that is, 

1) Metadata: describes the characteristic or attribute of this learning content, 2) 

Organizations: describes the structure of this learning material, 3) Resources: 

denotes the physical file linked by each learning object within the learning material, 
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and 4) (Sub) Manifest: describes this learning material is consisted of itself and 

another learning material. In Figure 2.1, the organizations define the structure of 

whole learning material, which consists of many organizations containing arbitrary 

number of tags, called item, to denote the corresponding chapter, section, or 

subsection within physical learning material. Each item as a learning activity can be 

also tagged with activity metadata which can be used to easily reuse and discover 

within a content repository or similar system and to provide descriptive information 

about the activity. Hence, based upon the concept of learning object and SCORM 

content packaging scheme, the learning materials can be constructed dynamically by 

organizing the learning objects according to the learning strategies, students' learning 

aptitudes, and the evaluation results. Thus, the individualized learning materials can 

be offered to each student for learning, and then the learning material can be reused, 

shared, recombined. 

 

Figure 2.1: SCORM Content Packaging Scope and Corresponding Structure of 
Learning Materials 
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2.2 Document Clustering/Management 

For fast retrieving the information from structured documents, Ko et al. [KC02] 

proposed a new index structure which integrates the element-based and 

attribute-based structure information for representing the document. Based upon this 

index structure, three retrieval methods including 1) top-down, 2) bottom-up, and 3) 

hybrid are proposed to fast retrieve the information form the structured documents. 

However, although the index structure takes the elements and attributes information 

into account, it is too complex to be managed for the huge amount of documents.  

 

How to efficiently manage and transfer document over wireless environment has 

become an important issue in recent years. The articles [LM+00][YL+99] have 

addressed that retransmitting the whole document is a expensive cost in faulty 

transmission. Therefore, for efficiently streaming generalized XML documents over 

the wireless environment, Wong et al. [WC+04] proposed a fragmenting strategy, 

called Xstream, for flexibly managing the XML document over the wireless 

environment. In the Xstream approach, the structural characteristics of XML 

documents has been taken into account to fragment XML contents into an 

autonomous units, called Xstream Data Unit (XDU). Therefore, the XML document 

can be transferred incrementally over a wireless environment based upon the XDU. 

However, how to create the relationships between different documents and provide 

the desired content of document have not been discussed. Moreover, the above 

articles didn’t take the SCORM standard into account yet. 
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In order to create and utilize the relationships between different documents and 

provide useful searching functions, document clustering methods have been 

extensively investigated in a number of different areas of text mining and information 

retrieval. Initially, document clustering was investigated for improving the precision 

or recall in information retrieval systems [KK02] and as an efficient way of finding 

the nearest neighbors of the document [BL85]. Recently, it is proposed for the use of 

searching and browsing a collection of documents efficiently [VV+04][KK04].  

 

In order to discover the relationships between documents, each document should 

be represented by its features, but what the features are in each document depends on 

different views. Common approaches from information retrieval focus on keywords. 

The assumption is that similarity in words usage indicates similarity in content. Then, 

the selected words seen as descriptive features are represented by a vector, and one 

distinct dimension assigns one feature respectively. The way to represent each 

document by the vector is called Vector Space Model method [CK+92]. In this thesis, 

we also employ the VSM model to encode the keywords/phrases of learning objects 

into vectors to represent the features of learning objects. 
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2.3 Keyword/phrase Extraction 

As those mentioned above, the common approach to represent documents is 

giving them a set of keywords/phrases, but where those keywords/phrases comes from? 

The most popular approach is using the TF-IDF weighting scheme to mining 

keywords from the context of documents. TF-IDF weighting scheme is based on the 

term frequency (TF) or the term frequency combined with the inverse document 

frequency (TF-IDF). The formula of IDF is  where n is total number of 

documents and df is the number of documents that contains the term. By applying 

statistical analysis, TF-IDF can extract representative words from documents, but the 

long enough context and a number of documents are both its prerequisites. 

)/log( dfn

 

In addition, a rule-based approach combining fuzzy inductive learning was 

proposed by Shigeaki and Akihiro [SA04]. The method decomposes textual data into 

word sets by using lexical analysis, and then discovers key phrases using key phrase 

relation rules training from amount of data. Besides, Khor and Khan [KK01] proposed 

a key phrase identification scheme, which employs the tagging technique to indicate 

the positions of potential noun phrase and uses statistical results to confirm them. By 

this kind of identification scheme, the number of documents is not a matter. However, 

a long enough context is still needed to extracted key-phrases from documents.  
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Chapter 3  Level-wise Content Management Scheme 

(LCMS) 

In an e-learning system, learning contents are usually stored in database, called 

Learning Object Repository (LOR). Because the SCORM standard has been accepted 

and applied popularly, its compliant learning contents are also created and developed. 

Therefore, in LOR, a huge amount of SCORM learning contents including associated 

learning objects (LO) will result in the issues of management. Recently, SCORM 

international organization has focused on how to efficiently maintain, search, and 

retrieve desired learning objects in LOR for users. In this thesis, we propose a new 

approach, called, Level-wise Content Management Scheme (LCMS), to efficiently 

maintain, search, and retrieve the learning contents in SCORM compliant LOR.  

 

3.1 The Processes of LCMS 

As shown in Figure 3.1, the scheme of LCMS is divided into Constructing Phase 

and Searching Phase. The former first creates the content tree (CT) from the SCORM 

content package by Content Tree Transforming Module, enriches the 

meta-information of each content node (CN) and aggregates the representative feature 

of the content tree by Information Enhancing Module, and then creates and maintains 

a multistage graph as Directed Acyclic Graph (DAG) with relationships among 

learning objects, called Level-wise Content Clustering Graph (LCCG), by applying 

clustering techniques. The latter assists user to expand their queries by Content-based 

Query Expansion Module, and then traverses the LCCG by LCCG Content Searching 

Module to retrieve desired learning contents with general and specific learning objects 

according to the query of users over wire/wireless environment. 

 9



Constructing Phase includes the following three modules: 

 Content Tree Transforming Module: it transforms the content structure of 

SCORM learning material (Content Package) into a tree-like structure with the 

representative feature vector and the variant depth, called Content Tree (CT), for 

representing each learning material. 

 

 Information Enhancing Module: it assists user to enhance the meta-information 

of a content tree. This module consists of two processes: 1) Keyword/phrase 

Extraction Process, which employs a pattern-based approach to extract additional 

useful keywords/phrases from other metadata for each content node (CN) to 

enrich the representative feature of CNs, and 2) Feature Aggregation Process, 

which aggregates those representative features by the hierarchical relationships 

among CNs in the CT to integrate the information of the CT. 

 

 Level-wise Content Clustering Module: it clusters learning objects (LOs) 

according to content trees to establish the level-wise content clustering graph 

(LCCG) for creating the relationships among learning objects. This module 

consists of three processes: 1) Single Level Clustering Process, which clusters the 

content nodes of the content tree in each tree level, 2) Content Cluster Refining 

Process, which refines the clustering result of the Single Level Clustering Process 

if necessary, and 3) Concept Relation Connection Process, which utilizes the 

hierarchical relationships stored in content trees to create the links between the 

clustering results of every two adjacent levels. 
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Searching Phase includes the following three modules: 

 Preprocessing Module: it encodes the original user query into a single vector, 

called query vector, to represent the keywords/phrases in the user’s query. 

 

 Content-based Query Expansion Module: it utilizes the concept feature stored 

in the LCCG to make a rough query contain more concepts and find more precise 

learning objects.  

 

 LCCG Content Searching Module: it traverses the LCCG from these entry 

nodes to retrieve the desired learning objects in the LOR and to deliver them for 

learners. 

 

 
Figure 3.1: Level-wise Content Management Scheme (LCMS)
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Chapter 4  Constructing Phase of LCMS 

In this chapter, we describe the constructing phrase of LCMS, which includes 1) 

Content Tree Transforming module, 2) Information Enhancing module, and 3) 

Level-wise Content Clustering module, shown in the left part of Figure 3.1. 

 

4.1 Content Tree Transforming Module 

Because we want to create the relationships among leaning objects (LOs) 

according to the content structure of learning materials, the organization information 

in SCORM content package will be transformed into a tree-like representation, called 

Content Tree (CT), in this module. Here, we define a maximum depth δ for every 

CT. The formal definition of a CT is described as follows. 

 

Definition 4.1: Content Tree (CT) 

Content Tree (CT) = (N, E), where 

 N = { n0, n1,…, nm }.  

 E = { 1+ii nn  | 0≦ i < the depth of CT }. 

 

As shown in Figure 4.1, in CT, each node is called “Content Node (CN)” 

containing its metadata and original keywords/phrases information to denote the 

representative feature of learning contents within this node. E denotes the link edges 

from node ni in upper level to ni+1 in immediate lower level. 
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1.
2. 
3.
4. 

1. 
2. 

 
Figure 4.1: The Representation of Content Tree 

 

Example 4.1: Content Tree (CT) Transformation 

Given a SCORM content package shown in the left hand side of Figure 4.2, we 

parse the metadata to find the keywords/phrases in each CN node. Because the CN, 

“3.1”, is too long, so that its included child nodes, i.e., “3.1.1” and “3.1.2”, are 

merged into one CN, “3.1”, and the weight of each keywords/phrases is computed by 

averaging the number of times it appearing in “3.1”, “3.1.1”, and “3.1.2”. For 

example, the weight of “AI” for “3.1” is computed as avg.(1, avg.(1, 0)) = 0.75. Then, 

after applying Content Tree Transforming Module, the CT is shown in the right part 

of Figure 4.2. 

 

 
Figure 4.2: An Example of Content Tree Transforming 
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Algorithm 4.1: Content Package to Content Tree Algorithm (CP2CT-Alg) 

Symbols Definition: 

CP : denotes the SCORM content package. 

CT : denotes the Content Tree transformed the CP. 

CN : denotes the Content Node in CT. 

CNleaf: denotes the leaf node CN in CT. 

DCT : denotes the desired depth of CT. 

DCN : denotes the depth of a CN 

 

Input : SCORM content package (CP) 

Output : Content Tree (CT) 

 

Step 1: For each element <item> in CP  

1.1: Create a CN with keyword/phrase information. 

1.2: Insert it into the corresponding level in CT. 

Step 2: For each CNleaf in CT 

If the depth of CNleaf > DCT

Then its parent CN in depth = DCT will merge the keywords/phrases of 

all included child nodes and run the rolling up process to assign 

the weight of those keywords/phrases. 

Step 3: Content Tree (CT) 
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4.2 Information Enhancing Module 

In general, it is a hard work for user to give learning materials an useful metadata, 

especially useful “keywords/phrases”. Therefore, we propose an information 

enhancement module to assist user to enhance the meta-information of learning 

materials automatically. This module consists of two processes: 1) Keyword/phrase 

Extraction Process and 2) Feature Aggregation Process. The former extracts 

additional useful keywords/phrases from other meta-information of a content node 

(CN). The latter aggregates the features of content nodes in a content tree (CT) 

according to its hierarchical relationships. 

 

4.2.1 Keyword/phrase Extraction Process 

Nowadays, more and more learning materials are designed as multimedia 

contents. Accordingly, it is difficult to extract meaningful semantics from multimedia 

resources. In SCORM, each learning object has plentiful metadata to describe itself. 

Thus we focus on the metadata of SCORM content package, like “title” and 

“description”, and want to find some useful keywords/phrases from them. These 

metadata contain plentiful information which can be extracted, but they often consist 

of a few sentences. So, traditional information retrieval techniques can not have a 

good performance here. 

 

To solve the problem mentioned above, we propose a Keyword/phrase 

Extraction Algorithm (KE-Alg) to extract keyword/phrase from these short sentences. 

First, we use tagging techniques to indicate the candidate positions of interesting 

keyword/phrases. Then, we apply pattern matching technique to find useful patterns 

from those candidate phrases. 
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To find the potential keywords/phrases from the short context, we maintain sets 

of words and use them to indicate candidate positions where potential words/phrases 

may occur. For example: the phrase after the word “called” may be a key-phrase; the 

phrase before the word “are” may be a key-phrase; the word “this” will not be a part 

of key-phrases in general cases. These word-sets are stored in a database, called 

Indication Sets (IS). At present, we just collect a Stop-Word Set to indicate the words 

which are not a part of key-phrases to break the sentences. Our Stop-Word Set 

includes punctuation marks, pronouns, articles, prepositions, and conjunctions in the 

English grammar. We still can collect more kinds of inference word sets to perform 

better prediction if it is necessary in the future. 

 

Afterward, we use the WordNet [WN] to analyze the lexical features of the 

words in the candidate phrases. WordNet is a lexical reference system whose design is 

inspired by current psycholinguistic theories of human lexical memory. It is 

developed by the Cognitive Science Laboratory at Princeton University. In WordNet, 

English nouns, verbs, adjectives and adverbs are organized into synonym sets, each 

representing one underlying lexical concept. And different relation-links have been 

maintained in the synonym sets. Presently, we just use WordNet (version 2.0) as a 

lexical analyzer here. 

 

To extract useful keywords/phrases from the candidate phrases with lexical 

features, we have maintained another database, called Pattern Base (PB). The 

patterns stored in Pattern Base are defined by domain experts. Each pattern consists 

of a sequence of lexical features or important words/phrases. Here are some examples: 

« noun + noun », « adj. + adj. + noun », « adj. + noun », « noun (if the word can 

only be a noun) », « noun + noun + “scheme” ». Every domain could have its own 
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interested patterns. These patterns will be used to find useful phrases, which may be a 

keyword/phrase of the corresponding domain. After comparing those candidate 

phrases by the whole Pattern Base, useful keywords/phrases will be extracted. 

Example 4.2 illustrates an example of the Keywords/phrases Extraction Algorithm. 

Those details are shown in Algorithm 4.2. 

 

Example 4.2: Keyword/phrase Extraction 

As shown in Figure 4.3, give a sentence as follows: “challenges in applying 

artificial intelligence methodologies to military operations”. We first use Stop-Word 

Set to partition it into several candidate phrases: {“challenges”, “applying artificial 

intelligence methodologies”, “military operation”}. By querying WordNet, we can get 

the lexical features of these candidate phrases are: {“n/v”, “v+adj+n+n”, “n/adj+n”}. 

Afterward, by matching with the important patterns stored in Pattern Base, we can 

find two interesting patterns “adj+n” and “n/adj+n” occurring in this sentence. 

Finally, we extract two key-phrases: “artificial intelligence" and “military operation”. 

 

 

Figure 4.3: An Example of Keyword/phrase Extraction 
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Algorithm 4.2: Keyword/phrase Extraction Algorithm (KE-Alg) 

Symbols Definition: 

SWS: denotes a stop-word set; consists of punctuation marks, pronouns, articles, 

prepositions, and conjunctions in English grammar 

PS : denotes a sentence 

PC : denotes a candidate phrase 

PK : denotes keyword/phrase 

 

Input : a sentence 

Output : a set of keyword/phrase (PKs) extracted from input sentence 

 

Step 1: Break the input sentence into a set of PCs by SWS 

Step 2: For each PC in this set 

2.1: For each word in this PC 

2.1.1: Find out the lexical feature of the word by querying WordNet. 

2.2: Compare the lexical feature of this PC with Pattern-Base. 

2.2.1: If there is any interesting pattern found in this PC, 

mark the corresponding part as a PK. 

Step 3: Return PKs 
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4.2.2 Feature Aggregation Process 

In Section 4.2.1, additional useful keywords/phrases have been extracted to 

enhance the representative features of content nodes (CNs). In this section, we utilize 

the hierarchical relationship of a content tree (CT) to further enhance those features. 

Considering the nature of a CT: the nodes closer to the root will contain more general 

concepts which can cover all of its children nodes. For example, a learning content 

“data structure” must cover the concepts of “linked list”. 

 

Before aggregating the representative features of a content tree (CT), we apply 

the Vector Space Model (VSM) approach [CK+92][RW86] to represent the 

keywords/phrases of a CN. Here, we encode each content node (CN) by the simple 

encoding method which uses single vector, called keyword vector (KV), to represent 

the keywords/phrases of the CN. Each dimension of the KV represents one 

keyword/phrase of the CN. And all representative keywords/phrases are maintained in 

a Keyword/phrase Database in the system. 

 

Example 4.3: Keyword Vector (KV) Generation 

As shown in Figure 4.4, the content node CNA has a set of representative 

keywords/phrases: {“e-learning”, “SCORM”, “learning object repository”}. And we 

have a keyword/phrase database shown in the right part of Figure 4.4. Via a direct 

mapping, we can find the initial vector of CNA is <1, 1, 0, 0, 1>. Then, we normalize 

the initial vector and get the keyword vector of CNA: <0.33, 0.33, 0, 0, 0.33> 
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<1, 1, 0, 0, 1>

“e-learning”, “SCORM”,
“learning object repository”

<0.33, 0.33, 0, 0, 0.33>

   1. 
   2. 

   3. 
   4. 
   5. 

 
Figure 4.4: An Example of Keyword Vector Generation 

 

After generating the keyword vectors (KVs) of content nodes (CNs), we compute 

the feature vector (FV) of each content node by aggregating its own keyword vector 

with the feature vectors of its children nodes. For the leaf node, we set its FV = KV; 

For the internal nodes, FV = (1-alpha) * KV + alpha * avg.(FVs of its children), 

where alpha is a parameter used to define the intensity of the hierarchical relationship 

in a content tree (CT). The higher the alpha is, the more features are aggregated. 

 

Example 4.4: Feature Aggregation 

In Figure 4.5, content tree CTA consists of three content nodes: CN1, CN2, and 

CN3. Now, we already have the KVs of these content nodes and want to calculate their 

feature vectors (FVs). For the leaf node CN2, FVCN2 = KVCN2 = <0.2, 0, 0.8, 0>. 

Similarly, FVCN3 = KVCN3 = <0.4, 0, 0, 0.6>. For the internal node CN1, according to 

the formula, FVCN1 = (1-α) * KVCN1 + α * avg.(FVCN2, FVCN3). Here we set the 

intensity parameter α as 0.5, so  

FVCN1 = 0.5 * KVCN1 + 0.5 * avg.(FVCN2, FVCN3) 

         = 0.5 * <0.5, 0.5, 0, 0> + 0.5 * avg.(<0.2, 0, 0.8, 0>, <0.4, 0, 0, 0.6>) 

         = <0.4, 0.25, 0.2, 0.15> 
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Figure 4.5: An Example of Feature Aggregation 

 

Algorithm 4.3: Feature Aggregation Algorithm (FA-Alg) 

Symbols Definition: 

D  : denotes the maximum depth of the content tree (CT) 

L0~LD-1 : denote the levels of CT descending from the top level to the lowest level 

KV  : denotes the keyword vector of a content node (CN) 

FV  : denotes the feature vector of a CN 

 

Input : a CT with keyword vectors 

Output : a CT with feature vectors 

 

Step 1: For i = LD-1 to L0

  1.1: For each CNj in Li of this CT 

   1.1.1: If the CNj is a leaf-node, FVCNj = KVCNj 

                 Else, FVCNj = (1-α) KVCNj + α * avg.(FVs of its child-nodes) 

Step 2: Return CT with feature vectors 
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4.3 Level-wise Content Clustering Module 

After structure transforming and representative feature enhancing, we apply the 

clustering technique to create the relationships among content nodes (CNs) of content 

trees (CTs). In this thesis, we propose a Directed Acyclic Graph (DAG), called 

Level-wise Content Clustering Graph (LCCG), to store the related information of 

each cluster. Based upon the LCCG, the desired learning content including general 

and specific LOs can be retrieved for users. 

 

4.3.1 Level-wise Content Clustering Graph (LCCG) 

 
Figure 4.6: The Representation of Level-wise Content Clustering Graph 

 

As shown in Figure 4.6, LCCG is a multi-stage graph with relationships 

information among learning objects, e.g., a Directed Acyclic Graph (DAG). Its 

definition is described in Definition 4.2: 

 

Definition 4.2: Level-wise Content Clustering Graph (LCCG) 

Level-wise Content Clustering Graph (LCCG) = (N, E), where 

 N = { (CF0, CNL0), (CF1, CNL1), …, (CFm, CNLm) }.  

It stores the related information, Cluster Feature (CF) and Content Node 
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List (CNL), in a cluster, called LCC-Node. The CNL stores the indexes of 

learning objects included in this LCC-Node. 

 E = { 1+ii nn  | 0≦ i < the depth of LCCG }. 

It denotes the link edge from node ni in upper stage to ni+1 in immediate 

lower stage. 

 

For the purpose of content clustering, the number of the stages of LCCG is equal 

to the maximum depth (δ) of CT, and each stage handles the clustering result of 

these CNs in the corresponding level of different CTs. That is, the top stage of LCCG 

stores the clustering results of the root nodes in the CTs, and so on. In addition, in 

LCCG, the Cluster Feature (CF) stores the related information of a cluster. It is 

similar with the Cluster Feature proposed in the Balance Iterative Reducing and 

Clustering using Hierarchies (BIRCH) clustering algorithm and defined as follows. 

 

Definition 4.3: Cluster Feature 

The Cluster Feature (CF) = (N, VS , CS), where 

 N: it denotes the number of the content nodes (CNs) in a cluster. 

 VS =∑=

N

i iFV
1

. It denotes the sum of feature vectors (FVs) of CNs. 

 CS = |/||/|
1

NVSNVN

i i =∑ =

v
. It denotes the average value of the feature 

vector sum in a cluster. The | | denotes the Euclidean distance of the feature 

vector. The (VS /N) can be seen as the Cluster Center (CC) of a cluster. 

 

Moreover, during content clustering process, if a content node (CN) in a content 

tree (CT) with feature vector ( FV ) is inserted into the cluster CFA = (NA, AVS , CSA), 
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the new CFA = ( , 1+AN FVVSA + , ( ) ( )1/ ++ AA NFVVS ). An example of Cluster 

Feature (CF) and Content Node List (CNL) is shown in Example 4.5. 

 

Example 4.5: Cluster Feature (CF) and Content Node List (CNL) 

Assume a cluster C0 stores in the LCC-Node NA with (CFA, CNLA) and contains 

four CNs: CN01, CN02, CN03, and CN04, which include four feature vectors, <3,3,2>, 

<3,2,2>, <2,3,2> and <4,4,2>, respectively. Then, the AVS = <12,12,8>, the CC 

= AVS /NA = <3,3,2>, and the CSA = |CC| = (9+9+4)1/2 = 4.69. Thus, the CFA = (4, 

<12,12,8>, 4.69), and CNLA = { CN01, CN02, CN03, CN04} 

 

4.3.2 Incremental Level-wise Content Clustering Algorithm 

Based upon the definition of LCCG, we propose an Incremental Level-wise 

Content Clustering Algorithm, called ILCC-Alg, to create the LCC-Graph according 

to the CTs transformed from learning objects. The ILCC-Alg includes two processes: 

1) Single Level Clustering Process, 2) Content Cluster Refining Process, and 3) 

Concept Relation Connection Process. Figure 4.7 illustrates the flowchart of 

ILCC-Alg. 

 

 
Figure 4.7: The Process of ILCC-Algorithm 
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(1) Single Level Clustering Process 

In this process, the content nodes (CNs) of CT in each tree level can be clustered 

by different similarity threshold. The content clustering process is started from the 

lowest level to the top level in CT. All clustering results are stored in the LCCG. In 

addition, during content clustering process, the similarity measure between a CN and 

an LCC-Node is defined by the cosine function which is the most common for the 

document clustering. It means that, given a CN NA and an LCC-Node LCCNA, the 

similarity measure is calculated by 

AA

AA

AA

LCCNCN

LCCNCN
LCCNCNAA FVFV

FVFV
FVFVLCCNCNsim

•
== ),cos(),( , 

where FVCNA and FVLCCNA are the feature vectors of CNA and LCCNA respectively. 

The larger the value is, the more similar two feature vectors are. And the cosine value 

will be equal to 1 if these two feature vectors are totally the same.  

 

The basic concept of Incremental Single Level Clustering Algorithm (ISLC-Alg) 

is also described in Figure 4.8. In Figure 4.8.1, we have an existing clustering result 

and two new objects, CN4 and CN5, needed to be clustered. First we compute the 

similarity between CN4 and the existing clusters, LCC-Node1 and LCC-Node2. In this 

example, the similarities between them are all smaller than the similarity threshold. 

That means the concept of CN4 is not similar with the concepts of existing clusters, so 

we treat CN4 as a new cluster LCC-Node3. Then we cluster the next new object, CN5. 

After computing and comparing the similarities between CN5 and existing clusters, 

we find CN5 is similar enough with LCC-Node2, so we put CN5 into LCC-Node2 and 

update the feature of this cluster. The final result of this example is shown in Figure 

4.8.4. Moreover, the detail of ISLC-Alg is shown in Algorithm 4.1. 
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Figure 4.8: An Example of Incremental Single Level Clustering 

 

Algorithm 4.4: Incremental Single Level Clustering Algorithm (ISLC-Alg) 

Symbols Definition: 

LNSet : the existing LCC-Nodes (LNS) in the same level (L) 

CNN : a new content node (CN) needed to be clustered 

Ti : the similarity threshold of the level (L) for clustering process. 

 

Input : LNSet, CNN and Ti. 

Output : The set of LCC-Nodes storing the new clustering results. 

 

Step 1:  n∀ i ∈  LNSet, calculate the similarity sim(ni, CNN) 

Step 2: Find the most similar one, n*, for CNN

     2.1: If sim(n*, CNN) > Ti  

Then insert CNN into the cluster n* and update its CF and CL  

Else insert CNN as a new cluster stored in a new LCC-Node. 

Step 3: Return the set of the LCC-Nodes. 
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(2) Content Cluster Refining Process 

Due to the ISLC-Alg algorithm runs the clustering process by inserting the 

content trees (CTs) incrementally, the content clustering results are influenced by the 

inputs order of CNs. In order to reduce the effect of input order, the Content Cluster 

Refining Process is necessary. Given the content clustering results of ISLC-Alg, 

Content Cluster Refining Process utilizes the cluster centers of original clusters as the 

inputs and runs the single level clustering process again for modifying the accuracy of 

original clusters. Moreover, the similarity of two clusters can be computed by the 

Similarity Measure as follows: 

BA

AAAA

BA

BA
BA CSCS

NVSNVS
CCCC
CCCCCCCCCosSimilarity

*
)()(),( •

=
•

==  

 

After computing the similarity, if the two clusters have to be merged into a new 

cluster, the new CF of this new cluster is: CFnew= ( BA NN + , BA VSVS + , 

)/()( BABA NNVSVS ++ ). 

 

(3) Concept Relation Connection Process 

The concept relation connection process is used to create the links between 

LCC-Nodes in adjacent stages of LCCG. Based on the hierarchical relationships stores 

in content trees (CTs), we can find the relationships between more general subjects 

and more specific ones. Thus, after applying ISLC-Alg to two adjacent stages, we 

then apply Concept Relation Connection Process and create new LCC-Links 

 

Figure 4.9 shows the basic concept of Incremental Level-wise Content 

Clustering Algorithm (ILCC-Alg). Every time getting a new content tree (CT), we 
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apply ISLC-Alg from bottom to top, and update the semantic relation links between 

adjacent stages. Finally we can get a new clustering result. The algorithm of 

ILCC-Alg is shown in Algorithm 4.5. 

 

 

Figure 4.9: An Example of Incremental Level-wise Content Clustering 
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Algorithm 4.5: Incremental Level-wise Content Clustering Algorithm 
(ILCC-Alg) 

Symbols Definition: 

D  : denotes the maximum depth of the content tree (CT). 

L0~LD-1 : denote the levels of CT descending from the top level to the lowest level.

S0~SD-1 : denote the stages of LCC-Graph. 

T0~TD-1 : denote the similarity thresholds for clustering the content nodes (CNs) in 

the level L0~LD-1 respectively.

CTN  : denotes a new CT with a maximum depth (D) needed to be clustered. 

CNSet  : denotes the CNs in the content tree level (L). 

LG  : denotes the existing LCC-Graph 

LNSet  : denotes the existing LCC-Nodes (LNS) in the same level (L) 

 

Input : LG, CTN, T0~TD-1 

Output : LCCG which holds the clustering results in every content tree level. 

 

Step 1: For i = LD-1 to L0, do the following Step 2 to Step 4. 

Step 2: Single Level Clustering:  

2.1: LNSet = the LNs  LG in L∈

∈

i

2.2: CNSet = the CNs  CTN in Li 

2.2: For LNSet and any CN ∈  CNSet, 

Run Incremental Single Level Clustering Algorithm (ISLC-Alg)  

with threshold Ti. 

Step 3: If i < D-1 

3.1: Construct LCCG-Link between Si and Si+1. 

Step 4: Return the new LCCG 
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Chapter 5  Searching Phase of LCMS 

In this chapter, we describe the searching phrase of LCMS, which includes 1) 

Preprocessing module, 2) Content-based Query Expansion module and 3) LCCG 

Content Searching module, shown in the right part of Figure 3.1. 

 

5.1 Preprocessing Module 

In this module, we translate user’s query into a vector to represent the concepts 

user want to search. Here, we encode a query by the simple encoding method which 

uses a single vector, called query vector (QV), to represent the keywords/phrases in 

the user’s query. If a keyword/phrase appears in the Keyword/phrase Database of the 

system, the corresponding position in the query vector will be set as “1”. If the 

keyword/phrase does not appear in the Keyword/phrase Database, it will be ignored. 

And all the other positions in the query vector will be set as “0”. 

 

Example 5.1: Preprocessing: Query Vector Generator 

As shown in Figure 5.1, the original query is: {“e-learning”, “LCMS”, “learning 

object repository”}. And we have a Keyword/phrase Database shown in the right part 

of Figure 5.1. Via a direct mapping, we can find the query vector is <1, 0, 0, 0, 1>. 

 

 

Figure 5.1: Preprocessing: Query Vector Generator  
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5.2 Content-based Query Expansion Module 

In general, while users want to search desired learning contents, they usually 

make rough queries, or called short queries. Using this kind of queries, users will 

retrieve a lot of irrelevant results. Then, they need to browse many irrelevant item to 

learn “How to set an useful query in this system to get what I want?” by themselves. 

In most cases, systems use the relational feedback provided by users to refine the 

query and do another search, iteratively. It works but often takes time for users to 

browse a lot of non-interested items. In order to assist users efficiently find more 

specific content, we proposed a query expansion scheme, called Content-based Query 

Expansion, based on the multi-stage index of LOR, i.e., LCCG. 

 

Figure 5.2 shows the process of Content-based Query Expansion. In LCCG, 

every LCC-Node can be treated as a concept, and each concept has its own feature: a 

set of weighted keywords/phrases. Therefore, we can search the LCCG and find a 

sub-graph related to the original rough query by computing the similarity of the 

feature vector stored in LCC-Nodes and the query vector. Then we integrate these 

related concepts with the original query by calculating the linear combination of them. 

After concept fusing, the expanded query could contain more concepts and perform a 

more specific search. Users can control an expansion degree to decide how much 

expansion s/he needs. Via this kind of query expansion, users can use rough query to 

find more specific content stored in the LOR in less iterations of query refinement. 

The algorithm of Content-based Query Expansion is described in Algorithm 5.1. 
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Figure 5.2: The Process of Content-based Query Expansion 

 

 

 

Figure 5.3: The Process of LCCG Content Searching 
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Algorithm 5.1: Content-based Query Expansion Algorithm (CQE-Alg) 

Symbols Definition: 

Q : denotes the query vector whose dimension is the same as the feature vector of 

content node (CN) 

TE : denotes the expansion threshold assigned by user 

β : denotes the expansion parameter assigned by system administrator 

S0~SD-1: denote the stage of an LCCG from the top stage to the lowest stage 

ExpansionSet and DataSet: denote the sets of LCC-Nodes 

 

Input : a query vector Q, expansion threshold TE

Output : an expanded query vector EQ

 

Step 1: Initial the ExpansionSet =φ  and DataSet =φ  

Step 2: For each stage Si∈LCCG, 

repeatedly execute the following steps until Si≧SDES

2.1: DataSet = DataSet  LCC-Nodes in stage S∪ i and ExpansionSet=φ  

2.2: For each Nj  DataSet,  ∈

If (the similarity between Nj and Q)  T≥ E  

Then insert Nj into ExpansionSet 

2.3: DataSet = ExpansionSet  //for searching more precise LCC-Nodes in 

next stage in LCCG 

Step 3: EQ = (1-β)*Q + β*avg(feature vectors of LCC-Nodes in ExpansionSet) 

Step 4: return EQ 
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5.3 LCCG Content Searching Module 

The process of LCCG Content Searching is shown in Figure 5.3. In LCCG, every 

LCC-Node contains several similar content nodes (CNs) in different content trees 

(CTs) transformed from content package of SCORM compliant learning materials. 

The content within LCC-Nodes in upper stage is more general than the content in 

lower stage. Therefore, based upon the LCCG, users can get their interesting learning 

contents which contain not only general concepts but also specific concepts. The 

interesting learning content can be retrieved by computing the similarity of cluster 

center (CC) stored in LCC-Nodes and the query vector. If the similarity of LCC-Node 

satisfies the query threshold users defined, the information of learning contents 

recorded in this LCC-Node and its included child LCC-Nodes are interested for users. 

Moreover, we also define the Near Similarity Criterion to decide when to stop the 

searching process. Therefore, if the similarity between the query and the LCC-Node 

in the higher stage satisfies the definition of Near Similarity Criterion, it is not 

necessary to search its included child LCC-Nodes which may be too specific to use 

for users. The Near Similarity Criterion is defined as follows: 

 

Definition 5.1: Near Similarity Criterion 

Assume that the similarity threshold T for clustering is less than the similarity 

threshold S for searching. Because similarity function is the cosine function, the 

threshold can be represented in the form of the angle. The angle of T is denoted as 

 and the angle of S is denoted as . When the angle between the 

query vector and the cluster center (CC) in LCC-Node is lower than 

TT
1cos−=θ SS

1cos−=θ

TS θθ − , we 

define that the LCC-Node is near similar for the query. The diagram of Near 

Similarity is shown in Figure. 
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Figure 5.4: The Diagram of Near Similarity According to the Query Threshold Q and 

Clustering Threshold T 

 

In other words, Near Similarity Criterion is that the similarity value between the 

query vector and the cluster center (CC) in LCC-Node is larger than )( TSCos θθ − , 

so that the Near Similarity can be defined again according to the similarity threshold 

T and S. 

( )( )22 11TS

)(SimilarityNear 
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By the Near Similarity Criterion, the algorithm of the LCCG Content Searching 

Algorithm (LCCG-CSAlg) is proposed as shown in Algorithm 5.2. 
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Algorithm 5.2: LCCG Content Searching Algorithm (LCCG-CSAlg) 

Symbols Definition: 

Q : denotes the query vector whose dimension is the same as the feature vector 

of content node (CN) 

D : denotes the number of the stage in an LCCG. 

S0~SD-1: denote the stage of an LCCG from the top stage to the lowest stage. 

ResultSet, DataSet, and NearSimilaritySet: denote the sets of LCC-Nodes. 

 

Input:  The query vector Q, search threshold T and  

the destination stage SDES where S0≤SDES≤SD-1. 

Output:  the ResultSet contains the set of similar clusters stored in LCC-Nodes. 

 

Step 1: Initiate the DataSet =φ  and NearSimilaritySet =φ  

Step 2: For each stage Si∈LCCG, 

      repeatedly execute the following steps until Si≧SDES

2.1: DataSet = DataSet  LCC-Nodes in stage S∪ i, and ResultSet=φ   

2.2: For each Nj  DataSet,  ∈

If Nj is near similar with Q  

Then insert Nj into NearSimilaritySet. 

Else If (the similarity between Nj and Q)  T  ≥

Then insert Nj into ResultSet } 

2.3: DataSet = ResultSet. //for searching more precise LCC-Nodes in  

next stage in LCCG 

Step 3: Output the ResultSet = ResultSet  NearSimilaritySet ∪
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Chapter 6  Implementation and Experimental Results 

6.1 System Implementation 

To evaluate the performance, we have implemented a web-based system, called 

Learning Object Management System (LOMS). The operating system of our web 

server is FreeBSD4.9. Besides, we use PHP4 as the programming language and 

MySQL as the database to build up the whole system. 

 

Figure 6.1 shows the configuration page of our LOMS. The upper part lists the 

parameters used in our Level-wise Content Management Scheme (LCMS). The 

“maximum depth of a content tree” is used in CP2CT-Alg to decide the maximum 

depth of the content trees (CTs) transformed from SCORM content packages (CPs). 

Then the “clustering similarity thresholds” defines the clustering thresholds of each 

level in the ILCC-Alg. Besides, the “searching similarity thresholds” and “near 

similarity threshold” are used in the LCCG-CSAlg to traverse the LCCG and retrieve 

the desired learning objects. The lower part of this page provides the links to maintain 

the Keyword/phrase Database, Stop-Word Set, and Pattern Base of our system.  

 

As shown in Figure 6.2, users can set the query words to search LCCG and 

retrieve the desired learning contents. Besides, they can also set other searching 

criterions about other SCORM metadata such as “version”, “status”, “language”, 

“difficulty”, etc. to do further restrictions. Then all searching results with hierarchical 

relationships are shown in Figure 6.3. By displaying the learning objects with their 

hierarchical relationships, users can know more clearly if that is what they want. 

Besides, users can search the relevant items by simply clicking the buttons in the left 
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side of this page or view the desired learning contents by selecting the hyper-links. As 

shown in Figure 6.4, a learning content can be found in the right side of the window, 

and the hierarchical structure of this learning content is listed in the left side. 

Therefore, user can easily browse the other parts of this learning contents without 

perform another search. 

 

 

 
Figure 6.1: System Screenshot: LOMS configuration 
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Figure 6.2: System Screenshot: Searching 

 

 
Figure 6.3: System Screenshot: Searching Results 
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Figure 6.4: System Screenshot: Viewing Learning Objects 

 
 

6.2 Experimental Results 

In this section, we describe the experimental results about our LCMS. 

(1) Synthetic Learning Materials Generation and Evaluation Criterion 

Here, we use synthetic learning materials to evaluate the performance of our 

clustering algorithms. All synthetic learning materials are generated by three 

parameters: 1) V: The dimension of feature vectors in learning materials, 2) D: the 

depth of the content structure of learning materials, 3) B: the upper bound and lower 

bound of included sub-section for each section in learning materials. 

 

In the Incremental Level-wise Content Clustering Algorithm (ILCC-Alg), the 

Incremental Single Level Clustering Algorithm (ISLC-Alg) can be seen as a kind of 

traditional clustering algorithms. To evaluate the performance, we compare the 
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performance of ILCC-Alg with ISLC-Alg which uses the leaf-nodes as input in 

content trees. The resulted cluster quality is evaluated by the F-measure [LA99] 

which combines the precision and recall from the information retrieval. The 

F-measure is formulated as follows: 

RP
RPF

+
××

=
2  

, where P and R are precision and recall respectively. The range of F-measure is [0,1]. 

The higher the F-measure is, the better the clustering result is. 

 

(2) Experimental Results of Synthetic Learning materials 

There are 500 synthetic learning materials with V=15, D=3, and B = [5, 10] are 

generated. The clustering thresholds of ILCC-Alg and ISLC-Alg are 0.92. After 

clustering, there are 101, 104 and 2529 clusters generated from 500, 3664 and 27456 

content nodes in the level L0, L1, and L2 of content trees, respectively. Then, 30 

queries generated randomly are used to compare the performance of two clustering 

algorithms. The F-measure of each query with threshold 0.85 is shown in Figure 6.5. 

Moreover, this experiment is run on AMD Athlon 1.13GHz processor with 512 MB 

DDR RAM under the Windows XP operating system. As shown in Figure 6.5, the 

differences of the F-measures between ILCC-Alg and ISLC-Alg are small in most 

cases. Moreover, in Figure 6.6, the searching time using LCCG-CSAlg in ILCC-Alg 

is far less than the time needed in ISLC-Alg. Figure 6.7 shows that the clustering with 

clustering refinement can improve the accuracy of LCCG-CSAlg search. 

 

 41



0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
query

F-
m

ea
su

re
ISLC-Alg ILCC-Alg

 
Figure 6.5: The F-measure of Each Query 
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Figure 6.6: The Searching Time of Each Query 
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Figure 6.7: The Comparison of ISLC-Alg and ILCC-Alg with Cluster Refining 
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(3) Real Learning Materials Experiment 

In order to evaluate the performance of our LCMS more practically, we also do 

two experiments using the real SCORM compliant learning materials. Here, we 

collect 100 articles with 5 specific topics: concept learning, data mining, information 

retrieval, knowledge fusion, and intrusion detection, where every topic contains 20 

articles. Every article is transformed into SCORM compliant learning materials and 

then imported into our web-based system. In addition, 15 participants, who are 

graduate students of Knowledge Discovery and Engineering Lab of NCTU, used the 

system to query their desired learning materials. 

 

To evaluate our Content-based Query Expansion Algorithm (CQE-Alg), we 

select several sub-topics contained in our collection and request participants to search 

them using at most two keywords/phrases with/without our query expasion function. 

In this experiments, every sub-topic is assigned to three or four participants to 

perform the search. And then we compare the precision and recall of those search 

results to analyze the performance. As shown in Figure 6.9 and Figure 6.10, after 

applying the CQE-Alg, because we can expand the initial query and find more 

learning objects in some related domains, the precision may decrease slightly in some 

cases while the recall can be significantly improved. Moreover, as shown in Figure 

6.11, in most real cases, the F-measure can be improved in most cases after applying 

our CQE-Alg. Therefore, we can conclude that our query expansion scheme can help 

users find more desired learning objects without reducing the search precision too 

much. 
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Figure 6.9: The precision with/without CQE-Alg 
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Figure 6.10: The recall with/without CQE-Alg 
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Figure 6.11: The F-measure with/withour CQE-Alg 
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Moreover, a questionnaire is used to evaluate the performance of our system for 

these participants. The questionnaire includes the following two questions: 1) 

Accuracy degree: “Are these learning materials desired?”, 2) Relevance degree: “Are 

the obtained learning materials with different topics related to your query?”. As 

shown in Figure 6.11, we can conclude that the LCMS scheme is workable and 

beneficial for users according to the results of questionnaire. 
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Figure 6.12: The Results of Accuracy and Relevance in Questionnaire  
(10 is the highest) 
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Chapter 7  Conclusion and Future Work 

In this thesis, we propose a Level-wise Content Management Scheme, called 

LCMS, which includes two phases: Constructing phase and Searching phase. For 

representing each teaching materials, a tree-like structure, called Content Tree (CT), is 

first transformed from the content structure of SCORM Content Package in the 

Constructing phase. And then, an information enhancing module, which includes the 

Keyword/phrase Extraction Algorithm (KE-Alg) and the Feature Aggregation 

Algorithm (FA-Alg), is proposed to assist user in enhancing the meta-information of 

content trees. According to the CTs, the Level-wise Content Clustering Algorithm 

(ILCC-Alg) is then proposed to create a multistage graph with relationships among 

learning objects (LOs), called Level-wise Content Clustering Graph (LCCG). 

Moreover, for incrementally updating the learning contents in LOR. The Searching 

Phrase includes the LCCG Content Searching Algorithm (LCCG-CSAlg) to traverse 

the LCCG for retrieving desired learning content with both general and specific 

learning objects according to the query of users over the wire/wireless environment. 

Besides, the Content-based Query Expansion Algorithm (CQE-Alg) is proposed to 

assist users in refining their queries to retrieve more specific learning objects from a 

learning object repository.  

 

For evaluating the performance, a web-based Learning Object Management 

System, called LOMS, has been implemented and several experiments also have been 

done. The experimental results show that our LCMS is efficient and workable to 

manage the SCORM compliant learning objects. 
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In the near future, more real-world experiments with learning materials in several 

domains will be implemented to analyze the performance and check if the proposed 

management scheme can meet the need of different domains. Besides, we will 

enhance the scheme of LCMS with scalability and flexibility for providing the web 

service based upon real SCORM learning materials. Furthermore, we are trying to 

construct a more sophisticated concept relation graph, even an ontology, to describe 

the whole learning materials in an e-learning system and provide the navigation 

guideline of a SCORM compliant learning object repository. 
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