
國立交通大學

資訊科學系

碩 士 論 文

在網站閘道器上提供差別服務品質之

多重資源請求排程

Multiple-resource Request Scheduling

for Differentiated QoS at Website Gateway

研 究 生：馮若華

指導教授：林盈達 教授

中 華 民 國 九 十 四 年 六 月

 ii

在網站閘道器上提供差別服務品質之

多重資源請求排程

學生：馮若華 指導教授：林盈達

國立交通大學資訊科學研究所

摘 要

差別服務品質是網站經營者提供給客戶不同層級服務的一種方式，傳統 HTTP請求

排程的方法可以達成這個目標，但是它們排程請求只能管理一種伺服器資源，例如 CPU

或 Disk I/O，但實際上伺服器在處理一個請求時會消耗多種資源，單一資源的排程法會

導致資源的浪費或系統的過載。本論文提出了一個名為 mQoS的多重資源請求排程演算

法來將伺服器上的多種資源使用量作差別管理，mQoS排程演算法是部署在網路閘道器

上，因此它對客戶端及伺服器端是透明的。mQoS排程器中是由數個子排程器及一個主

排程器所組成，每一個子排程器管理一種伺服器資源以便在各個服務類別之間差別資源

使用量，主排程器則檢查每種伺服器資源的可使用量並觸發適當的子排程器以平衡各伺

服器資源的使用。mQoS排程演算法的設計想法是源自於傳統的 Deficit Round Robin封

包排程演算法，每個服務類別都對應到一個 deficit counter 以紀錄其未使用的伺服器資

源量，而子排程器中的 deficit counter 可以被任何一個子排程器減值，主要原因為請求

是消耗多重資源而非單一資源。mQoS 閘道器的實作是架於 Squid及 Linux之上。在性

能評估方面，將比較 mQoS、無排程(nQoS)及單一資源排程(sQoS)以展現 mQoS 排程的

效果。在以差別服務比例 6:3:1 分配給三個服務類別的例子中，mQoS 排程準確地分配

各種伺服器資源，另外，mQoS排程的總伺服器吞吐量比 sQoS排程增進了 21%。mQoS

的平均使用者察覺延遲比其他兩種方式較短。

關鍵字：多重資源、差別服務、請求排程

 iii

Multiple-resource Request Scheduling for
Differentiated QoS at Website Gateway

Student: Ruo-Hua Feng Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao Tung University

Abstract

Differentiated quality of service is a way for a Website operator to provide different

service levels to its clients. Traditional HTTP request scheduling schemes can achieve this,

but they schedule requests to manage only one server resource, such as CPU or Disk I/O.

Actually, processing a request on the server will consume multiple resources. In this paper, a

multiple-resource request scheduling algorithm, called mQoS, for differentiating the

utilization of the server resources is presented. The mQoS scheduler consists of several

sub-schedulers and a main scheduler. Each sub-scheduler manages a server resource to

differentiate the utilization among the classes. The main scheduler checks the availability of

every server resource and triggers an appropriate sub-scheduler to balance the utilization of

server resources. The idea of the mQoS scheduling algorithm is derived from the traditional

deficit round-robin method. There are some deficit counters in a sub-scheduler. However, a

deficit counter of a sub-scheduler can be decremented by other sub-schedulers because a

request would consume multiple resources. The implementation of the mQoS gateway is

based on the Squid and Linux. In the evaluation, the mQoS scheduling is compared with no

scheduling (nQoS) and single-resource request scheduling (sQoS). The mQoS scheduling

reveals the accurate differentiation on every server resource. In addition, the total server

throughput in the mQoS scheme is improved by 21%, compared with the sQoS s. The average

user-perceived latency of the mQoS scheduling is shorter than other schemes.

Keywords: Multiple Resources, Request Scheduling, Service Differentiation

 iv

Contents

Chapter 1. Introduction... 1

Chapter 2. Problems of Server Resource Management.. 4

Chapter 3. The mQoS Gateway Architecture and Scheduling Algorithm 8

3.1 Server Prober ... 9

3.2 Content-aware Request Classifier..11

3.3 Multiple-resource Request Scheduler ..11

3.4 Multiple-Resource Request Scheduling Algorithm ... 13

Chapter 4. Implementation and Evaluation ... 21

4.1 Implementation .. 21

4.2 Evaluation.. 22

4.3 Differentiation on the Resource Utilization... 23

4.4 Differentiation on the Server Throughput ... 25

4.5 Resource Sharing ... 27

4.6 Differentiation on the User-perceived Latency ... 27

Chapter 5. Conclusion and Future Work.. 30

References .. 32

 v

List of Figures

Figure 1. Server resource utilization under different scheduling schemes. 7

Figure 2. Architecture of the mQoS gateway. ... 9

Figure 3. mQoS scheduler. ... 13

Figure 4. Flowchart of the mQoS scheduling algorithm.. 15

Figure 5. Pseudo Code of the mQoS scheduling algorithm. .. 18

Figure 6. An example of the mQoS scheduling... 20

Figure 7. Implementation of the mQoS gateway on the Squid. ... 22

Figure 8. Evaluation environment .. 23

Figure 9. Server resource utilization of the nQoS, sQoS, and mQoS scheduling. 24

Figure 10. Server throughputs of the nQoS, sQoS, and mQoS scheduling. 26

Figure 11. Types of outstanding requests by the sQoS and mQoS scheduling. 26

Figure 12. Resource sharing of the nQoS, sQoS, and mQoS scheduling. 27

Figure 13. User-perceived latency of the nQoS, sQoS, and mQoS scheduling. 28

Figure 14. Decomposition of the user-perceived latency in the mQoS scheduling. 29

1

Chapter 1. Introduction

Web Quality of Service (QoS) is a way for a Web service provider to

differentiate its service levels to users. Through service differentiation, a Web service

provider can allow a specific group of users, e.g. paid users, to get better server

throughput or user-perceived latency than other general users. There are many ways

of enforcing Web QoS. The effort of some past researches was to modify the system

kernel or the server daemon of a Web server, a caching proxy, or a cluster dispatcher

for service differentiation. These QoS-enabled boxes intercept HTTP requests,

perform request classification and schedule requests for dealing with the bottlenecked

resource, such as throughput or CPU utilization.

There are two issues in the above schemes. The first issue is where to deploy a

QoS-enabled box. Many researches have been proposed in modifying the system

kernel [1] or server daemon [2] [3] of a Web server to have the capability of

scheduling HTTP requests. However, this solution is hard to be deployed on a

non-open operating system or server daemon. Some researches have been proposed in

enforcing request scheduling on a dispatcher of a cluster server [4-6]. The

QoS-enabled dispatcher schedules requests to the backend servers in a weighted

round-robin fashion or according to the server loads. Some researches have proposed

QoS-enabled content adaptation [7] [8] or cache replacement algorithms [9] on

caching proxies instead of request scheduling for service differentiation.

The second issue is what resource for a request scheduling to manage for.

Common request scheduling schemes schedule requests by managing the

bottlenecked resource, such as the number of requests per second. This request

scheduler seems to perform the single-resource scheduling, which has a blind spot.

2

Processing a request on a server needs to consume multiple resources, e.g. CPU, disk

I/O, and bandwidth, rather than a single resource. In the single-resource scheduling,

some resources may be wasted, when the managed resource is well utilized. A request

scheduler should well utilize all resources by scheduling requests for managing all

resource utilization. Some researches have discussed multiple-resource request

scheduling, but many of them are applied on grid computing and multimedia

applications [10-12], few on HTTP request scheduling [13-15].

Considering the issues of QoS deployment and multiple-resource request

scheduling, this paper presents a multiple-resource request scheduling algorithm

called mQoS, which is deployed at a Website gateway for controlling the requests

toward a Web server. Today’s gateways can perform firewall packet inspection,

intrusion detection, virus scanning, and so on. A Websites operator can deploy a

gateway for preventing attacks and providing value-added services. Hence, enforcing

request scheduling at a Website gateway is practical, and it can provide service

differentiation without any modification on clients and the server.

There are three main functions in the mQoS gateway: request profiling and

server profiling, content-aware request classification, and mQoS scheduling. The

request profiling finds out the amounts of the server resources consumed by a request,

whereas the server profiling measures the capacities of the server resources. The

request classification mechanism inspects the headers or payloads of requests and puts

requests into proper class queues. Specially, a service class has several queues, each

of which stores specific resource-intensive requests. That is, it will be m*n queues,

when there are m service classes and n server resources. The mQoS scheduling,

derived from the Deficit Round Robin (DRR) scheduling [16], composed of one main

scheduler and several sub-schedulers. One sub-scheduler, which has some deficit

counters, manages one server resource. However, differing from the traditional DRR

3

scheduling, a deficit counter of a class in a sub-scheduler can be decremented by any

sub-scheduler because a request would consume multiple resources rather than a

single resource. In addition, the main scheduler maintains the availability of the server

resources in the resource availability counters. The main scheduler hence can know

which resource is the most available and then triggers the corresponding

sub-scheduler to service specific resource-intensive requests.

The mQoS gateway is implemented on Squid and Linux. The request and

response modules of Squid are modified to be capable of classifying and scheduling

requests. In the evaluation, the mQoS scheduling is compared with no scheduling

(nQoS) and single-resource request scheduling (sQoS). The resource utilization,

server throughput, and user-perceived latency of every scheduling are measured to

demonstrate the effect of the mQoS scheduling. From the test results, the mQoS

scheduling reveals its capabilities of differentiating server resource utilization,

maximizing the total server throughput, and sharing resource.

The rest of this paper is organized as follows. Chapter 2 states the problems of

resource management on a Web server. Chapter 3 introduces the architecture of the

mQoS gateway and the designs of the request profiling and server profiling,

content-aware request classification, and mQoS scheduling algorithm. Chapter 4

describes the implementation and evaluation of the mQoS gateway. Finally, Chapter 5

gives the conclusion and the future work of this research.

4

Chapter 2. Problems of Server Resource Management

The workload on a Web server will affect the utilization of the server resource. In

the light-load situation, every HTTP request will get enough resources when being

processed, but there could be unused resources on the server. Conversely, in the

heavy-load situation, a request may be queued on the server and wait for being

processed. If the server resources are inadequate for the requirements of the arrival

requests, an HTTP request would experience long queuing and processing delay. For

maximizing the utilization of the server resources and avoiding extra delay

simultaneously, the resources on the server should be well managed.

Some researches have proposed admission control schemes to prevent new

arrival requests from accessing a heavy loaded server[17-20]. With admission control,

a server would drop new arrival requests when its resources cannot meet the

requirements of the requests. However, admission control itself is not sufficient to

support service differentiation because all arrival requests have the same probability

to access server resources. The purpose of service differentiation is to allow different

clients receive different treatments, such as server throughput and response time. For

service differentiation, some researches have proposed request scheduling algorithms

to control the workload on a server [1] [2] [18] [21] [22]. The general schemes of the

mentioned scheduling algorithms are to allocate different amounts of concurrent

connections, request rate, or bandwidth among service classes.

A request entering a server requires several types of resources, e.g. CPU, disk

I/O, and bandwidth, when being processed. The lack of any available resource would

lead to a bottleneck. In other words, if there are n kinds of resources, there could be n

kinds of bottlenecks on the server. Many of the mentioned request scheduling

5

algorithms deal with the problems of single-resource scheduling. They manage a

single resource for maximizing the utilization and differentiating the utilization

simultaneously, but they cannot avoid the bottlenecks derived from the other

resources. A resource can be managed well, while the other resources may be still

available or inadequate for new arrival requests. A single-resource scheduling

algorithm could lead to an inefficient or overloaded server. Hence, a request

scheduling algorithm should consider the presence of multiple server resources. In the

below, three requests scheduling schemes, no scheduling, single-resource request

scheduling, and multiple-resource request scheduling, are discussed. The assumption

for the discussion is that there are three resources, CPU, disk I/O, and bandwidth, on

the server and a request will consume multiple resources. Besides, there are three

service classes of clients issuing requests to the server, and the heavy-load situation is

considered.

No Scheduling (nQoS)

The nQoS scheduling is no any resource management scheme, such as admission

control or request scheduling, enforces for the service differentiation. The requests

originated from the three classes of clients contend for the server resources. The

server works on a first-come-first-serve basis. The server workload of the nQoS

scheduling is shown in Figure 1(a). The vertical axis stands for the resource utilization

and c1, c2 and c3 stand for the class 1, class 2 and class 3, respectively. Due to the

resource contention, every class of clients gets a third of each server resource. All the

server resource utilization is effected by the workload, but there is no service

differentiation. The pending requests would be queued on the server and wait for

being processed, causing extra resource consumption, and prolonged user-perceived

latency.

6

Single-resource Request Scheduling (sQoS)

In the sQoS scheduling, a request scheduler manages the utilization of one server

resource. Figure 1(b) shows the server workload of the sQoS scheduling. The CPU

resource is managed for service differentiation, and the ratio of the resource allocation

to the three classes of clients is 6:3:1. In the example, the sQoS scheduling indeed

allocates the expected amount of the CPU resource to the three classes of clients, but

it cannot take care the utilization of the other resources. The sQoS scheduling will

stop scheduling any requests to the server when the CPU resource is well utilized.

However, the disk I/O and bandwidth resources are actually still affordable for the

new arrival disk I/O- and bandwidth- intensive requests, respectively, causing the

waste of disk I/O and bandwidth resources. Conversely, the sQoS scheduling will

keep scheduling requests to the server when it finds the CPU resource is available.

However, the disk I/O and bandwidth resources may be already fully utilized for the

scheduled requests, causing an overloaded server and potentially prolonged

user-perceived latency.

Multiple-resource Request Scheduling (mQoS)

In the mQoS scheduling, a request scheduler manages all the server resources.

The server workload of the mQoS scheduling is shown in Figure 1(c). The mQoS

scheduling chooses the appropriate requests to well utilize all the resources and at the

same time allows the three classes of clients to use every resource proportionally. The

mQoS scheduling eliminates the resource wasting or server overloading occurred in

the sQoS scheduling, and the total server throughput can be improved. Due to

scheduling the requests into the server, each resource utilization under mQoS is better

than that under nQoS. The mQoS scheduling further avoids resource contention and

enables service differentiation.

7

C1

C2

C3
B

an
d
w

id
th

C
P

U

D
is

k
I/

O
33%

67%

100%

Utilization

C1

C2

C3

C1

C2

C3

(a) nQoS scheduling

(b) sQoS scheduling

(c) mQoS scheduling

Figure 1. Server resource utilization under different scheduling schemes.

In the above discussion, the mQoS scheduling seems to be a better solution for

server resource management. In this paper, a mQoS scheduling algorithm for service

differentiation is presented. The mQoS scheduling algorithm has the capability of

managing multiple server resources. The mQoS scheduling algorithm is deployed on a

Website gateway located in front of a Web server. The arrival requests are queued and

wait for being scheduled on the mQoS gateway instead of the server. This has the

advantage of avoiding extra resource consumption on the server. The server itself can

concentrate on the request processing only.

8

Chapter 3. The mQoS Gateway Architecture and

Scheduling Algorithm

The purpose of the mQoS gateway is to avoid resource bottlenecks, provide

differentiation of resource differentiation, and maximize the server throughput. To do

this, the mQoS gateway performs three tasks: request profiling and server profiling,

request classification, and request scheduling. The request profiling and server

profiling let the mQoS gateway know the resource consumption of a request and the

capacity of each server resource. The request classification allows the mQoS gateway

to classify requests into different service classes. The request scheduling determines

the order and the time in which the mQoS gateway sends a request to the server.

The architecture of the mQoS gateway, as shown in Figure 2, is composed of

three components: server prober, request classifier, and request scheduler. The

working flow of the gateway is described as follows. Before the on-line operation of

the gateway, the server prober sends HTTP requests one by one to scan all the Web

pages on the server. The resource monitor program running on the server monitors the

resource consumption for every request and reports this information to the server

prober. The server prober records the URLs and resource consumption of the Web

pages in the Web page table for the reference of the request classifier. The QoS policy

table defines the service classes and their classification rules. Once the gateway starts

to work, it incepts arrival requests. The request classifier classifies the incepted

requests into different service classes according to the rules defined in the QoS policy

table. Then the request classifier refers to the Web page table, tags the information of

the resource consumption to each request, and puts the tagged requests into the

corresponding queues. The request scheduler checks the availability of the server

9

resources. If the available server resources are enough, the request scheduler fetches a

request from a proper queue and sends it to the server. The detailed design of the

server prober, request classifier, and request scheduler are discussed below.

Figure 2. Architecture of the mQoS gateway.

3.1 Server Prober

The mQoS gateway is deployed in front of any type of Web servers. The gateway

has to know the server resource consumption of a request and the capacity of each

server resource for the management task. For this, the server prober is used for request

profiling and server profiling. The request profiling is the process of measuring the

resource consumption of a request, whereas the server profiling is the process of

measuring the maximum capacity of each server resource.

For measuring the resource consumption of a request, the server prober sends

HTTP requests one by one to scan all the Web pages on the server. Starting from the

homepage, the server prober recursively parses every Web page and finds the URLs

of the embedded objects and hyperlinks until the Web site is traversed. During the

traversing, the monitor program running on the server monitors the amounts of server

resources consumed for each request and reports this information to the server prober.

10

As an example, a query page consumes 15 units of CPU, 5 units of disk I/O and 8

units of bandwidth per second. To increase the validity of the measurement, the

probed results are verified through the liner verification. That is, when the prober

sends multiple requests to the server concurrently, the amount of the resource

consumption is multiplied as the number of concurrent requests being processed on

the server. Notice that this information is not directly used by the request scheduling

algorithm because the actual percentage of the resource consumption is not known

yet.

In order to calculate the percentage of the resource consumption of a request, the

server prober has to measure the maximum capacity of each server resource. Thus, the

server prober sends huge amount of specific resource-intensive requests at the same

time to the server and checks the resource utilization. The maximum capacity can be

measured when the resource is fully utilized. After all the resource capacities are

measured, the actual capacities of the server resources and the percentages of the

resource consumption of a request are derived. The maximum capacity of a server

resource can be derived from multiplying the number of the concurrent requests on

the server by the resource consumption of a request. As an example of measuring the

CPU capacity, if there is 100 requests being processed by a fully-loaded server and

the CPU resource consumption of each request is 15 units, then the maximum CPU

capacity is 1500 units. The percentage of the CPU resource consumption of a request

can be also derived from dividing its CPU resource consumption by the CPU capacity.

In the above example of a query, its percentage of the CPU resource consumption is

1% (15/1500). The server prober finally records the URLs and resource consumption

information in the Web page table for the use of the request classifier and request

scheduler.

11

3.2 Content-aware Request Classifier

The request classifier is used to identify requests which classes and which

resource tendency they belong. The classification is based on the predefined rules in

the QoS policy table. The header and payload of a request will be inspected by the

request classifier to check whether it matches a rule. If yes, the request will be

classified into this corresponding class; otherwise, it will be compared with the other

rules until classified. Once a request is classified, its URL will be inspected to match

the URLs in the Web page table. The purpose is to find out the expected resource

consumption and judge the tendency of the resource consumption. For example, a

request consuming 9 % of CPU, 5 % of disk I/O and 7 % of bandwidth is regarded as

a CPU-intensive request. After a request is matched with the QoS policy table and

Web page table, the request classifier tags the information of the resource

consumption to the request and put the request into an appropriate queue. Every

service class has several queues, each of which stores specific resource-intensive

requests. If there are m service classes and n server resources, there are totally m*n

queues. The requests wait in the queues for being scheduled by the request scheduler.

3.3 Multiple-resource Request Scheduler

The request scheduler schedules the requests in the class queues to manage the

server resources in order to provide service differentiation. The key idea of the mQoS

scheduling is derived from the deficit round robin (DRR) scheduling for packet

scheduling. A traditional DRR scheduler serves head-of-line (HOL) packet of every

non-empty queue which the value of the deficit counter is greater than the size of the

packet. If it is lower, then later the deficit counter is incremented by a given value

called quantum. A deficit counter is decremented by the size of a packet. However,

some considerations should be noticed on scheduling requests using the concept of the

12

DRR scheduling. The traditional DRR schedules packets to manage the bandwidth of

a link, whereas the presented mQoS scheduler schedules requests to manage the

multiple resources of a server. The utilization of the server resources has to be

balanced. None of the resources should be overused or underused; otherwise a

resource bottleneck would happen or a server resource would be wasted.

The mQoS scheduler consists of a main scheduler and several sub-schedulers, as

shown in Figure 3. A sub-scheduler services the class queues of a server resource for

differentiating the resource utilization among the classes, and the main scheduler

triggers an appropriate sub-scheduler according to the availability of the server

resources. In a sub-scheduler, there are several deficit counters (DCs), each of which

is associated with a class to record the unused quantum. However, differing from the

traditional DRR scheduling, a DC of a sub-scheduler can be decremented by any other

sub-schedulers because a request would consume multiple resources rather than single

resource. Each sub-scheduler has a round-robin pointer that indicates which class

queue to be serviced. When the round-robin pointer moves back to the first class

queue, every DC of the sub-scheduler is incremented by the predefined quantum.

13

Figure 3. mQoS scheduler.

In the main scheduler, resource availability counters (RACs) are used to record

the availability of the server resources. Each RAC contains the percentage of the

availability of a server resource. By checking the RACs, the main scheduler knows

which resource is the most available and then triggers the corresponding

sub-scheduler to service a specific resource-intensive request. Therefore, the main

scheduler can maximize the resource utilization and balance the utilization among the

resources.

3.4 Multiple-Resource Request Scheduling Algorithm

The mQoS scheduling algorithm works as shown in Figure 4. Initially, the value

of each RAC is set to 100, which means each type of server resource is 100%

available. Each round-robin pointer in these sub-schedulers moves to the first class

queue. In the traditional DRR scheduling, a DC is incremented only when the

round-robin pointer moves to its corresponding queue. However, here all DCs of a

14

sub-scheduler are incremented at the same time by the predefined quantum because

the DC of a sub-scheduler could be decremented by another sub-scheduler. The main

scheduler checks the values of the RACs to find out which resource is the most

available. A sub-scheduler will be triggered for scheduling the corresponding

resource-intensive requests to effectively utilize the most available resource. The main

scheduler randomly triggers a sub-scheduler, since there is no resource more available

than the others.

15

Main
Scheduler

Response
Processing

Request
Classifier

Start

Initailization

Accept a request

New service cycle
of scheduling?

Classify the request

Increment the DCs by
the quanta

Get the most available
server resrouce

Trigger an appropriate
sub-scheduler

Server resources
enough?

Decrement the DCs by
the resource
requirements

Value of DCs
enough?

Get a request from the
head of the class queue

Put the request to an
appropriate class queue

Decrement the RACs
by the resource
requirements

Send the request to the
server

Accept a response

Inspect the resource
requirements

Increment the RACs by
the resource
requirements

Send the response to
the client

Move the round robin
pointer to the next

class

Round robin pointer
in the last class?

Move the round robin
pointer to the first class

Inspect the resource
requirements

Inspect the resource
requirements

End

No

Yes

Sub-
scheduler

No

Yes

Yes

No

No

Yes

Class queue
empty ?

No

Yes

Figure 4. Flowchart of the mQoS scheduling algorithm.

The triggered sub-scheduler inspects the resource consumption information of

the HOL request of the queue which the round-robin pointer locates. If no request

waits in this queue, the sub-scheduler moves the round-robin pointer to the next queue

16

and the remaining deficit will not carried over to the next service cycle in the DC. The

resource requirements of the request are compared with the values of the RACs. If

any resource is not enough for the requirements, the sub-scheduler will move the

round-robin pointer to the next queue without scheduling this request. If the resource

requirements are satisfied, the sub-scheduler will check the values of the DCs of the

same class from all the sub-schedulers to see whether this class has enough value in

DCs. If no, the sub-scheduler will move the round-robin pointer to the next queue

without scheduling the request. If yes, the sub-scheduler fetches the request from the

queue, decrements the amounts of the resource requirements from the DCs and RACs,

and sends this request to the server.

When the response from the server is back, the RACs will be incremented by the

amounts of the resource requirements from the request to reflect the server releases

the consumed resources. The main scheduler continues to trigger a sub-scheduler. A

sub-scheduler continues to serve the requests from a queue until the queue becomes

empty, the resource requirements cannot be satisfied. Since the scheduler has to be

aware of the responses, the mQoS scheduler is not proper to work with direct routing.

The pseudo code of the mQoS scheduling algorithm is shown in Figure 5. The

enqueuing module performs the request classification to put a request into an

appropriate queue. The dequeuing module executes the mQoS scheduling algorithm

to schedule the requests in the class queues. The response module checks the finish of

a response and increments the RACs.

/* The definitions of variables
r: number of resources
c: number of classes
k: resource tendency
DC: deficit counter
RAC: resource availability counter
RRP: round-robin pointer
RR: resource requirement

17

Q: quantum
SF: service flag
QF: quantum flag
RF: service cycle flag
EF: empty flag
*/

Initialization:
For (i = 0; i < r; i = i + 1)
 RACi = 100; /* initialize resource availability counters */
 RFi = TRUE; /* initialize service cycle flags */
 move_pointer(RRPi, 0); /* move every round-robin pointer to the first class */
 For (j = 0; j < c, j = j + 1)
 DCij = 0; /* initialize deficit counters */
 QFij == TRUE; /* initialize quantum flags */

EFij == FALSE; /* reset empty flags */

Request enqueuing module: on arrival of request p
j = get_class(p);
RR = get_resource_requirements(p);
k = get_resource_tendency(RR);
enqueue(Queuekj, p)

Request dequeuing modules:
While (TRUE)
 m = get_most_available_resource(RAC);

 RFm = TURE;
 For (j=0; j < c ; j = j + 1) /* check a new service cycle */
 If (QFmj == FALSE)
 RFm = FALSE;

 If (RFm == TRUE) /* increment deficit counters if it is a new service cycle */
 For (j = 0; j < c; j = j + 1)
 If(EFmj == TRUE)
 DCmj = 0;
 EFmj = FALSE;
 DCmj = DCmj + Qj; /* increment all deficit counters by quanta */
 QFmj = FALSE;

 j = get_pointer_value(m);
 if((p = get_head_request(Queuemj)) == NULL)
 QFmj = TRUE; /* ready to increment deficit counter by quantum in the next service cycle */

EFmj = TRUE; /* this is an empty case */

 RR = get_resource_requirements(p);

 SF = TRUE;
 For (i=0; i < r ; i = i + 1) /* check every resource */
 If (RACi < RRi) or (DCij < RRi) then /* meet resource requirements and deficits*/
 SF = FALSE;
 If (j == c - 1) then
 move_pointer(RRPm, 0); /* move round-robin pointer to the first class */
 Else
 move_pointer(RRPm, j + 1); /* move round-robin pointer to the next class */
 If (DCij < RRi) then
 QFij = TRUE; /* ready to increment deficit counter by quantum in the next cycle */

18

 If (SF == TRUE) /* service the request out */
 For (i=0; i < r ; i = i + 1)
 DCij = DCij - RRi; /* decrement deficit counters */
 RACi = RACi - RRi; /* decrement resource availability counters */
 send_request(p);

Response processing module: on arrival of response q
For (i=0; i < r ; i = i + 1)
 RR = get_resource_requirements(q);
 RACi = RACi + RRi; /* increment resource availability counters */
send_response(q);

Figure 5. Pseudo Code of the mQoS scheduling algorithm.

Figure 6 exhibits an example of the mQoS scheduling. In this example, the

requests are classed into three service classes: class 1, class 2, and class 3. The ratio of

the service weights of the classes is set to 6:3:1, hence the quantum assigned to each

class is 60, 30 and 10, respectively. The server resources to be managed are CPU, disk

I/O, and bandwidth. Because there are three service classes and three server resources,

totally nine class queues exist. The initial stage is shown in Figure 3. The main

schedule randomly triggers the CPU sub-scheduler. The CPU sub-scheduler inspects

the HOL request of the class-1 queue and knows the resource requirements of this

request is (CPU: 6, disk I/O: 5, bandwidth: 3). The CPU sub-scheduler compares the

amounts of the resource requirements to the values of the RACs (CPU: 100, disk I/O:

100, bandwidth: 100) and concludes the server resources are enough. Then it

compares the resource requirements to the values of the DCs of the CPU, disk I/O,

and bandwidth for class 1 (CPU: 60, disk I/O: 60, bandwidth: 60) and concludes the

value in DCs is enough. The CPU sub-scheduler now sends the request to the server

and decrements the DCs and RACs. The results of the decrements on the DCs and

RACs are shown in Figure 6(a). The main scheduler now triggers the bandwidth

sub-scheduler because the bandwidth resource is the most available. The bandwidth

sub-scheduler sends the HOL request of the class-1 queue to the server. The result

after this request scheduling is shown in Figure 6(b). Now the disk I/O resource

19

becomes the most available, hence the main scheduler triggers the disk I/O

sub-scheduler to send a request. Suppose the server has finished responding the first

request after the request sent by the disk I/O sub-scheduler. The final values of the

RACs and DCs are shown in Figure 6(c).

(a) The CPU sub-scheduler sends a request.

(b) The bandwidth sub-scheduler sends a request.

20

(c) The disk I/O sub-scheduler sends a request and then a response returns.

Figure 6. An example of the mQoS scheduling.

21

Chapter 4. Implementation and Evaluation

4.1 Implementation

The implementation of the mQoS gateway is based on the Squid package and

Linux operating system. The Squid package is modified to be capable of request

classification and request scheduling. The Squid is of a single-process event-driven

architecture, which uses the select() system call to simultaneously wait for events on

all connections being handled. When select() delivers one or more events, the main

loop of the Squid invokes handlers for each ready connection. The performance and

scalability of the mQoS gateway is good because it does not need to fork a child

process for each request. The server prober and resource monitor program are

implemented as the server daemons running on the gateway and server, respectively.

When a request enters the gateway, the iptable utility rewrites the destination IP

address and port number of this incoming packet to redirect it to Squid. Such

redirection mechanism makes the mQoS gateway works transparently to clients and

the server. The Squid gateway performs request classification and scheduling and

sends the request to the server. The Squid gateway then receives the response from the

server without caching the response and sends it to the client.

The original Squid is a caching proxy used to cache the responses from a Web

server. It is deployed between clients and servers to incept requests and responses.

The request and response processing of Squid are shown in Figure 7. When a client

issues a request, Squid reads the request, parses the request, and checks whether the

response of this request is already in the cache. If yes, Squid fetches the cached data

from the cache and sends it to the client. Otherwise, Squid prepares to forward the

request and sends the request to the server. When the server returns a response, Squid

reads the response, parses the response, and stores or replaces the response data in the

22

cache. Squid then prepares to forward the response and sends the response to the

client.

In the mQoS gateway, the request and response processing modules of the Squid

are modified to be capable of request classification and request scheduling. The cache

module of checking in the request direction and the module of cache storing or

replacing in the response direction are bypassed. Instead, the request classification is

performed before Squid prepares to forward a request. Afterward, the request

scheduling is performed before Squid sends a request to the server. When Squid

finishes reading and parsing a response, the request scheduler updates the resource

availability counters and then makes a preparation of forwarding the response to the

client.

Figure 7. Implementation of the mQoS gateway on the Squid.

4.2 Evaluation

The effect of server resource management is discussed theoretically in Chapter 2.

Here the implementations of the nQoS, sQoS, and mQoS scheduling are practically

evaluated on server resource utilization, server throughput, and user-perceived latency.

The evaluation environment consists of a traffic generator, a gateway, and a Web

server, shown in Figure 8. Spirent’s Avalanche software and SmartBits platform are

23

used as the traffic generator. Avalanche emulates a large number of clients to issue

HTTP requests to the server and gather the statistics. The gateway performs the

traditional DRR scheduling to manage the CPU resource of the server for the sQoS

scheduling, or the mQoS scheduling algorithm to manage the CPU, disk I/O, and

bandwidth resources. In the nQoS scheduling, the gateway only forwards requests and

responses between the traffic generator and the server without any processing. The

Web server is based on Apache and PHP.

There are three kinds of pages in the server, and different pages will lead to

different consumption of the multiple resources when being accessed. The mathematic

computation web pages compute equations and are CPU-intensive. The album web

pages access photograph database and are Disk I/O-intensive. The chemical formula

displaying web pages parse the formula notation to show the formula in 3D and are

Bandwidth-intensive. In the evaluation, three service classes are defined in the QoS

policy table, and the ratio of the quantum is set to 6:3:1. The workload contains three

kinds of resource intensive requests, but the traffic generator issues more

CPU-intensive requests than the other types of requests in order to test the capabilities

of the mQoS scheduling. The server as 640 MHz CPU and 128 MB RAM, and the

gateway has 700 MHz and 256 MB RAM. Avalanche keeps 600 outstanding requests

from clients.

Figure 8. Evaluation environment

4.3 Differentiation on the Resource Utilization

Different request scheduling schemes result in different utilization of the server

resources, shown in Figure 9. In Figure 9(a), the nQoS scheduling, every class gets a

24

third of every server resource due to the resource contention. Although three resources

are well utilized, there is no differentiation on the resource utilization among three

classes. In Figure 9(b), the sQoS scheduling, the gateway schedules requests to well

utilize the CPU resource of the server and simultaneously to differentiate the resource

utilization to the ratio of 6:3:1. However, the gateway stops sending requests to the

server when the CPU resource of the server is well utilized, causing the waste of the

disk I/O and bandwidth resources of the server. In Figure 9(c), the mQoS scheduler

sends appropriate requests to the server to well utilize the three server resources.

Furthermore, the differentiation of the resource utilization is evidently observed from

that every server resource is utilized by the three classes according to the defined ratio

of 6:3:1.

nQoS Scheduling

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

CPU Disk I/O Bandwidth

R
es

ou
rc

e
U

til
iz

at
io

n

Class 1 Class 2 Class 3 Total
(a) Resource utilization in the nQoS scheduling.

sQoS Scheduling

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

CPU Disk I/O Bandwidth

Re
so

ur
ce

 U
til

iz
at

io
n

Class 1 Class 2 Class 3 Total
(b) Resource utilization in the sQoS

scheduling.

mQoS Scheduling

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

CPU Disk I/O Bandwidth

Re
so

ur
ce

 U
til

iz
at

io
n

Class 1 Class 2 Class 3 Total
(c) Resource utilization in the mQoS

scheduling.
Figure 9. Server resource utilization of the nQoS, sQoS, and mQoS scheduling.

25

4.4 Differentiation on the Server Throughput

The amount of the utilization of every server resource will affect the server

throughput, as presented in Figure 10. In the nQoS and mQoS scheduling, the

maximum total throughput is close to 300 requests per second which is limited by the

server throughput. However, in the sQoS scheduling, due to the waste of the disk I/O

and bandwidth resources of the server, the total throughput is only 260 requests per

second. The mQoS scheduling improves the total throughput by 21% from sQoS.

Another finding is that there is no differentiation on the server throughput among the

three classes in the nQoS scheduling. However, the sQoS and mQoS scheduling

reveal the differentiation on the server throughput because they schedule requests for

different classes. The ratio of the server throughput of the three classes is close to

6:3:1.

In Figure 10, the server throughput of the nQoS scheduling is close to that of the

mQoS scheduling. The server service rate is within limited, because of the limited

server resource. The workload in the nQoS and mQoS scheduling make the server

resource well utilized. In nQoS case, the server faces uncontrolled heavy request

arrival rate, whereas in mQoS case, the server faces the scheduled request arrival rate

which can well utilize the server. Although under these different situations, the server

throughput is still limited by the server service rate. Due to uncontrolled request

arrival rate, the user-perceived latency in nQoS is longer than that in mQoS. Figure 13

provides an evidence of this.

26

Server Throughput

0
50

100
150
200
250
300
350

nQoS sQoS mQoS

R
eq

ue
st

s/
Se

co
nd

Class 1 Class 2 Class 3 Total
Figure 10. Server throughputs of the nQoS, sQoS, and mQoS scheduling.

The throughput improvement in the mQoS scheduling results from the fact that

the gateway sends appropriate requests to the server to effectively utilize the three

server resources. Figure 11 compares the types of outstanding requests between the

sQoS and mQoS scheduling. In Figure 11(a), the sQoS scheduling, the gateway does

not try to balance the utilization of the server resources. However in Figure 11(b), the

mQoS scheduling, the main scheduler takes effect to balance the utilization on every

resource. Also the three sub-schedulers differentiate the utilization of every resource

among the three classes with a ratio close to 6:3:1.

sQoS
Scheduling

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12
Time (Second)

R
eq

ue
st

s/
Se

co
nd

Class 1, CPU Class 2, CPU Class 3, CPU
Class 1, Disk I/O Class 2, Disk I/O Class 3, Disk I/O
Class 1, Bandwidth Class 2, Bandwidth Class 3, Bandwidth

(a) Types of outstanding requests sent by

the sQoS scheduling

mQoS
Scheduling

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12
Time (Second)

R
eq

ue
st

s/
Se

co
nd

Class 1, CPU Class 2, CPU Class 3, CPU
Class 1, Disk I/O Class 2, Disk I/O Class 3, Disk I/O
Class 1, Bandwidth Class 2, Bandwidth Class 3, Bandwidth

(b) Types of outstanding requests sent by

the mQoS scheduling
Figure 11. Types of outstanding requests by the sQoS and mQoS scheduling.

27

4.5 Resource Sharing

In the evaluation of the differentiation on the resource utilization, the three

classes proportion the utilization of three server resources. If there are no request for a

class, the available resources should be shared among the active classes (i.e., those

having requests in the queues) in proportion. Figure 12 shows the situation of the

resource sharing. The clients of the class 3 stop sending requests to the server during

the evaluation. The server resources are then shared by the clients of the class 1 and

class 2. The observation of Figure 12 is similar to that of Figure 9. In the mQoS

scheduling, every server resource is utilized by the two active classes according the

ratio of 6:3.

nQoS Scheduling

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

CPU Disk I/O Bandwidth

Re
so

ur
ce

 U
til

iz
at

io
n

Class 1 Class 2 Total
(a) Resource sharing in the nQoS scheduling.

sQoS Scheduling

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

CPU Disk I/O Bandwidth

R
es

ou
rc

e
U

til
iz

at
io

n

Class 1 Class 2 Total
(b) Resource sharing in the sQoS

scheduling.

mQoS Scheduling

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

CPU Disk I/O Bandwidth

R
es

ou
rc

e
U

til
iz

at
io

n

Class 1 Class 2 Total
(c) Resource sharing in the mQoS

scheduling.
Figure 12. Resource sharing of the nQoS, sQoS, and mQoS scheduling.

4.6 Differentiation on the User-perceived Latency

User-perceived latency is the time between issuing a request and receiving a

response back at the client. Figure 13 shows the user-perceived latency of the nQoS,

28

sQoS, and mQoS scheduling. For the nQoS scheduling, there is no differentiation on

the user-perceived latency among the three classes. Because the heavy workload leads

to requests queued on the server, the average latency is longer than mQoS scheduling.

For the sQoS scheduling, although the user-perceived latency is differentiated, the

average latency is longer. For the mQoS scheduling, even though the mQoS gateway

differentiates the server resources, the user-perceived latency is also differentiated but

the ratio is not exactly 6:3:1. Furthermore, the average user-perceived latency of the

mQoS scheduling is shorter than those of the nQoS and sQoS scheduling.

User-perceived Latency

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000
2,200

nQoS sQoS mQoS

U
se

r-
pe

rc
ei

ve
d

La
te

nc
y

(m
s)

Class 1 Class 2 Class 3 Average

Figure 13. User-perceived latency of the nQoS, sQoS, and mQoS scheduling.

Decomposition of the User-Perceived Latency

The user-perceived latency in the mQoS scheduling mainly consists of the

gateway queuing time and server processing time. The gateway queuing time is the

time between accepting a request from the client and scheduling the request to the

server at the gateway. The server processing time is the time between accepting a

request from the gateway and sending the response to the client at the server. Figure

14 shows the decomposition of the user-perceived latency in the mQoS scheduling.

The server processing time is almost the same among the three classes, whereas the

queuing time of every class is different. Different queuing times lead to the

29

differentiation on the user-perceived latency.

Decomposition of User-perceived Latency

0
100
200
300
400
500
600
700
800
900

1,000
1,100
1,200

Class 1 Class 2 Class 3

Ti
m

e
(m

s)

Queuing Time Server Processing Time Total
Figure 14. Decomposition of the user-perceived latency in the mQoS scheduling.

30

Chapter 5. Conclusion and Future Work

Resource management on a Web server allows a Website operator to control the

utilization of the server resource and provide differentiated quality of service.

Traditional single-resource request scheduling cannot manage multiple server

resources well, that leads to resource wasting or overloading. This research presents a

multiple-resource request scheduling algorithm, call mQoS, deployed at the Website

gateway to provide service differentiation. The mQoS gateway consists of a server

prober, a request classifier, and a request scheduler. The server prober profiles the

resource consumption of every Web page and the capacity of every server resource.

The content-aware request classifier determines the resource tendency and the service

class of requests to classify them into different class queues. The mQoS scheduler

consists of several sub-schedulers and a main scheduler. Each sub-scheduler manages

a server resource and differentiates the resource utilization among the classes. The

main scheduler checks the availability of the server resources and triggers an

appropriate sub-scheduler to balance the utilization among the resources. The mQoS

scheduling algorithm is work-conservative to the server to keep the server resources

well utilized. However, it is non-work-conservative to the class queues because the

scheduler remains idle when there are no enough resources for servicing a request.

The mQoS gateway is implemented on the Squid and Linux. The mQoS

scheduling algorithm is compared with no scheduling (nQoS) and single-resource

request scheduling (sQoS). The nQoS exposes no differentiation, and the sQoS

exposes the differentiation only on the utilization of one server resource. However, the

mQoS scheduling reveals the differentiation on the utilization of every server resource.

Because all server resources are well utilized in the mQoS scheduling, the total server

throughput is improved by 21%, compared with the sQoS scheduling. Moreover, the

31

user-perceived latency is also differentiated among the classes in the mQoS

scheduling due to the differentiation of the gateway queuing delay. In the evaluation,

the mQoS scheduling reveals its capabilities of differentiating the server resource

utilization, maximizing the server throughput, and sharing resource.

The presented mQoS scheduling algorithm is for one Web server. It should be

improved to support scheduling requests for a cluster of servers. The more complex

multiple-resource, multiple-server request scheduling algorithm can be implemented

on a server load balancer. The issues of service differentiation, resource utilization,

and server load balancing should be completely considered in the design of the new

algorithm.

32

References

[1] J. Almeida, M. Dabu, A. Manikutty, and P. Cao, “Providing Differentiated Levels

of Service in Web Content Hosting,” Proceedings of the 1st Workshop Internet

Server Performance, Jun. 1998.

[2] L. Eggert and J. Heidemann, “Application-Level Differentiated Services for Web

Servers,” World Wide Web Journal, vol. 2, no. 3, pp. 133-142, Aug. 1999.

[3] R. Pandey, J. F. Barnes, and R. Olsson, “Supporting Quality of Service in HTTP

Servers,” Proceedings of the 7th Annul ACM Symposium on Principles of

Distributed Computing, pp. 247-256, Jun. 1998.

[4] V. Cardellini, E. Casalicchio, M. Colajanni, and M. Mambelli, “Web Switch

Support for Differentiated Services,” ACM Performance Evaluation Review, vol.

29, no. 2, pp. 14-19, Sep. 2001.

[5] H. Zhu, H. Tang, and T. Yang, “Demand-driven Service Differentiation in

Cluster-based Network Servers,” Proceedings of the 20th Conference of the

IEEE Communications Society, vol. 2, pp. 679-688, Apr. 2001.

[6] K. Shen, H. Tang, and T. Yang, “A Flexible QoS Framework for Cluster-based

Network Services,” Proceedings of the 2002 USENIX Annual Technical

Conference, Dec. 2002.

[7] S. Chandra, C. S. Ellis, and A. Vahdat, “Application-Level Differentiated

Multimedia Web Services Using Quality Aware Transcoding,“ IEEE Journal on

Selected Areas in Communications, vol. 18, no. 12, Dec. 2000.

[8] C. C. Hung and L. Y. Hong, “Adaptive Proxy-based Content Transformation

Framework for the World-Wide Web,” Proceedings of the 4th International

Conference/Exhibition on High Performance Computing in the Asia-Pacific

33

Region, vol.2, pp. 747-750, May 2000.

[9] Y. Lu, T. Abdelzaher, C. Lu, and G. Tao, “An Adaptive Control Framework for

QoS Guarantees and its Application to Differentiated Caching Services,”

Proceedings of the 10th International Workshop on Quality of Service, May

2002.

[10] W. Leinberger, G. Karypis, and V. Kumar, “Job Scheduling in the presence of

Multiple Resource Requirements”, Proceedings of the 7th International

Conference on High Performance Networking and Computing, Apr.1999.

[11] W. Leinberger, G. Karypis, and V. Kumar, “Load Balancing Across

Near-Homogeneous Multi-Resource Servers”, Proceedings of the 9th

Heterogeneous Computing Workshop, pp. 60-71, May 2000.

[12] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar and J. Hansen, “A Scalable

Solution to the Multi-Resource QoS Problem,” Proceedings of the 20th IEEE

Real-Time Systems Symposium, Dec. 1999.

[13] M. E. Crovella, R. Frangioso and M. Harchol-Balter, “Connection Scheduling in

Web Servers,” Proceedings of the 1999 USENIX Symposium on Internet

Technologies and System, Oct. 1999.

[14] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster Reserves: A Mechanism for

Resource Management in Cluster-based Network Servers,” Proceedings of the

SIGMETRICS Conference on Measurement and Modeling of Computer Systems,

pp. 90-101, Jun. 2000.

[15] E. Casalicchio and M. Colajanni, “A Client-Aware Dispatching Algorithm for

Web Clusters Providing Multiple Services,” Proceedings of the 10th

International World Wide Web Conference, pp. 535-544, May 2001.

[16] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using Deficit Round-

Robin,” IEEE/ACM Transaction on Networking, vol. 4, issue 3, pp. 375-385, Jun.

34

1996.

[17] X. Chen, P. Mohapatra, and H. Chen, “An Admission Control Scheme for

Predictable Server Response Time for Web Accesses,” Proceedings of the 10th

World Wide Web Conference, pp. 545-554, May 2001.

[18] K. Li, and S. Jamin, “A Measure-Based Admission Control Web

server,“ Proceedings of the 9th Annual Joint Conference of the IEEE Computer

and Communications Societies, vol. 2, pp. 651-659, Mar. 2002.

[19] L. Cherkasova and P. Phaal, “Session-Based Admission Control: A Mechanism

for Peak Load Management of Commercial Web Sites,” IEEE Transactions on

Computers, vol. 51, issue 6, pp. 669-685, Jun. 2002.

[20] S. Elnikety, J. Treacy, E. Nahum, and W. Zwaenepol, “A Method for Transparent

Admission Control and Request Scheduling in E-Commerce Web Sites,”

Proceedings of the 13th International World Wide Web Conference, pp. 276-286,

May 2004.

[21] N. Bhatti and R. Friedrich, “Web Server Support for Tiered Services,” IEEE

Network, vol. 13, issue 5, pp. 64-71, Sep. 1999.

[22] V. Kanodia and E. W. Knightyly, “Ensuring Latency Targets in Multiclass Web

Servers,” IEEE Transaction on Parallel and Distributed Systems, vol. 14, no. 1,

pp. 84-93, Jan. 2003.

