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在網站閘道器上提供差別服務品質之 

多重資源請求排程 
 

學生：馮若華          指導教授：林盈達 

國立交通大學資訊科學研究所 

摘 要 

差別服務品質是網站經營者提供給客戶不同層級服務的一種方式，傳統 HTTP請求

排程的方法可以達成這個目標，但是它們排程請求只能管理一種伺服器資源，例如 CPU

或 Disk I/O，但實際上伺服器在處理一個請求時會消耗多種資源，單一資源的排程法會

導致資源的浪費或系統的過載。本論文提出了一個名為 mQoS的多重資源請求排程演算

法來將伺服器上的多種資源使用量作差別管理，mQoS排程演算法是部署在網路閘道器

上，因此它對客戶端及伺服器端是透明的。mQoS排程器中是由數個子排程器及一個主

排程器所組成，每一個子排程器管理一種伺服器資源以便在各個服務類別之間差別資源

使用量，主排程器則檢查每種伺服器資源的可使用量並觸發適當的子排程器以平衡各伺

服器資源的使用。mQoS排程演算法的設計想法是源自於傳統的 Deficit Round Robin封

包排程演算法，每個服務類別都對應到一個 deficit counter 以紀錄其未使用的伺服器資

源量，而子排程器中的 deficit counter 可以被任何一個子排程器減值，主要原因為請求

是消耗多重資源而非單一資源。mQoS 閘道器的實作是架於 Squid及 Linux之上。在性

能評估方面，將比較 mQoS、無排程(nQoS)及單一資源排程(sQoS)以展現 mQoS 排程的

效果。在以差別服務比例 6:3:1 分配給三個服務類別的例子中，mQoS 排程準確地分配

各種伺服器資源，另外，mQoS排程的總伺服器吞吐量比 sQoS排程增進了 21%。mQoS

的平均使用者察覺延遲比其他兩種方式較短。 

 
關鍵字：多重資源、差別服務、請求排程 
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Abstract 

Differentiated quality of service is a way for a Website operator to provide different 

service levels to its clients. Traditional HTTP request scheduling schemes can achieve this, 

but they schedule requests to manage only one server resource, such as CPU or Disk I/O. 

Actually, processing a request on the server will consume multiple resources. In this paper, a 

multiple-resource request scheduling algorithm, called mQoS, for differentiating the 

utilization of the server resources is presented. The mQoS scheduler consists of several 

sub-schedulers and a main scheduler. Each sub-scheduler manages a server resource to 

differentiate the utilization among the classes. The main scheduler checks the availability of 

every server resource and triggers an appropriate sub-scheduler to balance the utilization of 

server resources. The idea of the mQoS scheduling algorithm is derived from the traditional 

deficit round-robin method. There are some deficit counters in a sub-scheduler. However, a 

deficit counter of a sub-scheduler can be decremented by other sub-schedulers because a 

request would consume multiple resources. The implementation of the mQoS gateway is 

based on the Squid and Linux. In the evaluation, the mQoS scheduling is compared with no 

scheduling (nQoS) and single-resource request scheduling (sQoS). The mQoS scheduling 

reveals the accurate differentiation on every server resource. In addition, the total server 

throughput in the mQoS scheme is improved by 21%, compared with the sQoS s. The average 

user-perceived latency of the mQoS scheduling is shorter than other schemes. 

Keywords: Multiple Resources, Request Scheduling, Service Differentiation
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Chapter 1. Introduction 
 

Web Quality of Service (QoS) is a way for a Web service provider to 

differentiate its service levels to users. Through service differentiation, a Web service 

provider can allow a specific group of users, e.g. paid users, to get better server 

throughput or user-perceived latency than other general users. There are many ways 

of enforcing Web QoS. The effort of some past researches was to modify the system 

kernel or the server daemon of a Web server, a caching proxy, or a cluster dispatcher 

for service differentiation. These QoS-enabled boxes intercept HTTP requests, 

perform request classification and schedule requests for dealing with the bottlenecked 

resource, such as throughput or CPU utilization. 

There are two issues in the above schemes. The first issue is where to deploy a 

QoS-enabled box. Many researches have been proposed in modifying the system 

kernel  [1] or server daemon  [2] [3] of a Web server to have the capability of 

scheduling HTTP requests. However, this solution is hard to be deployed on a 

non-open operating system or server daemon. Some researches have been proposed in 

enforcing request scheduling on a dispatcher of a cluster server [4-6]. The 

QoS-enabled dispatcher schedules requests to the backend servers in a weighted 

round-robin fashion or according to the server loads. Some researches have proposed 

QoS-enabled content adaptation  [7] [8] or cache replacement algorithms  [9] on 

caching proxies instead of request scheduling for service differentiation.  

The second issue is what resource for a request scheduling to manage for. 

Common request scheduling schemes schedule requests by managing the 

bottlenecked resource, such as the number of requests per second. This request 

scheduler seems to perform the single-resource scheduling, which has a blind spot. 
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Processing a request on a server needs to consume multiple resources, e.g. CPU, disk 

I/O, and bandwidth, rather than a single resource. In the single-resource scheduling, 

some resources may be wasted, when the managed resource is well utilized. A request 

scheduler should well utilize all resources by scheduling requests for managing all 

resource utilization. Some researches have discussed multiple-resource request 

scheduling, but many of them are applied on grid computing and multimedia 

applications [10-12], few on HTTP request scheduling [13-15].  

Considering the issues of QoS deployment and multiple-resource request 

scheduling, this paper presents a multiple-resource request scheduling algorithm 

called mQoS, which is deployed at a Website gateway for controlling the requests 

toward a Web server. Today’s gateways can perform firewall packet inspection, 

intrusion detection, virus scanning, and so on. A Websites operator can deploy a 

gateway for preventing attacks and providing value-added services. Hence, enforcing 

request scheduling at a Website gateway is practical, and it can provide service 

differentiation without any modification on clients and the server.  

There are three main functions in the mQoS gateway: request profiling and 

server profiling, content-aware request classification, and mQoS scheduling. The 

request profiling finds out the amounts of the server resources consumed by a request, 

whereas the server profiling measures the capacities of the server resources. The 

request classification mechanism inspects the headers or payloads of requests and puts 

requests into proper class queues. Specially, a service class has several queues, each 

of which stores specific resource-intensive requests. That is, it will be m*n queues, 

when there are m service classes and n server resources. The mQoS scheduling, 

derived from the Deficit Round Robin (DRR) scheduling  [16], composed of one main 

scheduler and several sub-schedulers. One sub-scheduler, which has some deficit 

counters, manages one server resource. However, differing from the traditional DRR 
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scheduling, a deficit counter of a class in a sub-scheduler can be decremented by any 

sub-scheduler because a request would consume multiple resources rather than a 

single resource. In addition, the main scheduler maintains the availability of the server 

resources in the resource availability counters. The main scheduler hence can know 

which resource is the most available and then triggers the corresponding 

sub-scheduler to service specific resource-intensive requests.  

The mQoS gateway is implemented on Squid and Linux. The request and 

response modules of Squid are modified to be capable of classifying and scheduling 

requests. In the evaluation, the mQoS scheduling is compared with no scheduling 

(nQoS) and single-resource request scheduling (sQoS). The resource utilization, 

server throughput, and user-perceived latency of every scheduling are measured to 

demonstrate the effect of the mQoS scheduling. From the test results, the mQoS 

scheduling reveals its capabilities of differentiating server resource utilization, 

maximizing the total server throughput, and sharing resource.  

The rest of this paper is organized as follows. Chapter 2 states the problems of 

resource management on a Web server. Chapter 3 introduces the architecture of the 

mQoS gateway and the designs of the request profiling and server profiling, 

content-aware request classification, and mQoS scheduling algorithm. Chapter 4 

describes the implementation and evaluation of the mQoS gateway. Finally, Chapter 5 

gives the conclusion and the future work of this research.  
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Chapter 2. Problems of Server Resource Management 
 

The workload on a Web server will affect the utilization of the server resource. In 

the light-load situation, every HTTP request will get enough resources when being 

processed, but there could be unused resources on the server. Conversely, in the 

heavy-load situation, a request may be queued on the server and wait for being 

processed. If the server resources are inadequate for the requirements of the arrival 

requests, an HTTP request would experience long queuing and processing delay. For 

maximizing the utilization of the server resources and avoiding extra delay 

simultaneously, the resources on the server should be well managed.  

Some researches have proposed admission control schemes to prevent new 

arrival requests from accessing a heavy loaded server[17-20]. With admission control, 

a server would drop new arrival requests when its resources cannot meet the 

requirements of the requests. However, admission control itself is not sufficient to 

support service differentiation because all arrival requests have the same probability 

to access server resources. The purpose of service differentiation is to allow different 

clients receive different treatments, such as server throughput and response time. For 

service differentiation, some researches have proposed request scheduling algorithms 

to control the workload on a server  [1] [2] [18] [21] [22]. The general schemes of the 

mentioned scheduling algorithms are to allocate different amounts of concurrent 

connections, request rate, or bandwidth among service classes.  

A request entering a server requires several types of resources, e.g. CPU, disk 

I/O, and bandwidth, when being processed. The lack of any available resource would 

lead to a bottleneck. In other words, if there are n kinds of resources, there could be n 

kinds of bottlenecks on the server. Many of the mentioned request scheduling 
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algorithms deal with the problems of single-resource scheduling. They manage a 

single resource for maximizing the utilization and differentiating the utilization 

simultaneously, but they cannot avoid the bottlenecks derived from the other 

resources. A resource can be managed well, while the other resources may be still 

available or inadequate for new arrival requests. A single-resource scheduling 

algorithm could lead to an inefficient or overloaded server. Hence, a request 

scheduling algorithm should consider the presence of multiple server resources. In the 

below, three requests scheduling schemes, no scheduling, single-resource request 

scheduling, and multiple-resource request scheduling, are discussed. The assumption 

for the discussion is that there are three resources, CPU, disk I/O, and bandwidth, on 

the server and a request will consume multiple resources. Besides, there are three 

service classes of clients issuing requests to the server, and the heavy-load situation is 

considered.  

 

No Scheduling (nQoS) 

The nQoS scheduling is no any resource management scheme, such as admission 

control or request scheduling, enforces for the service differentiation. The requests 

originated from the three classes of clients contend for the server resources. The 

server works on a first-come-first-serve basis. The server workload of the nQoS 

scheduling is shown in Figure 1(a). The vertical axis stands for the resource utilization 

and c1, c2 and c3 stand for the class 1, class 2 and class 3, respectively. Due to the 

resource contention, every class of clients gets a third of each server resource. All the 

server resource utilization is effected by the workload, but there is no service 

differentiation. The pending requests would be queued on the server and wait for 

being processed, causing extra resource consumption, and prolonged user-perceived 

latency. 
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Single-resource Request Scheduling (sQoS) 

In the sQoS scheduling, a request scheduler manages the utilization of one server 

resource. Figure 1(b) shows the server workload of the sQoS scheduling. The CPU 

resource is managed for service differentiation, and the ratio of the resource allocation 

to the three classes of clients is 6:3:1. In the example, the sQoS scheduling indeed 

allocates the expected amount of the CPU resource to the three classes of clients, but 

it cannot take care the utilization of the other resources. The sQoS scheduling will 

stop scheduling any requests to the server when the CPU resource is well utilized. 

However, the disk I/O and bandwidth resources are actually still affordable for the 

new arrival disk I/O- and bandwidth- intensive requests, respectively, causing the 

waste of disk I/O and bandwidth resources. Conversely, the sQoS scheduling will 

keep scheduling requests to the server when it finds the CPU resource is available. 

However, the disk I/O and bandwidth resources may be already fully utilized for the 

scheduled requests, causing an overloaded server and potentially prolonged 

user-perceived latency. 

 

Multiple-resource Request Scheduling (mQoS) 

In the mQoS scheduling, a request scheduler manages all the server resources. 

The server workload of the mQoS scheduling is shown in Figure 1(c). The mQoS 

scheduling chooses the appropriate requests to well utilize all the resources and at the 

same time allows the three classes of clients to use every resource proportionally. The 

mQoS scheduling eliminates the resource wasting or server overloading occurred in 

the sQoS scheduling, and the total server throughput can be improved. Due to 

scheduling the requests into the server, each resource utilization under mQoS is better 

than that under nQoS. The mQoS scheduling further avoids resource contention and 

enables service differentiation. 
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Figure 1. Server resource utilization under different scheduling schemes. 

 

In the above discussion, the mQoS scheduling seems to be a better solution for 

server resource management. In this paper, a mQoS scheduling algorithm for service 

differentiation is presented. The mQoS scheduling algorithm has the capability of 

managing multiple server resources. The mQoS scheduling algorithm is deployed on a 

Website gateway located in front of a Web server. The arrival requests are queued and 

wait for being scheduled on the mQoS gateway instead of the server. This has the 

advantage of avoiding extra resource consumption on the server. The server itself can 

concentrate on the request processing only.  

 



8 

Chapter 3. The mQoS Gateway Architecture and 

Scheduling Algorithm 
 

The purpose of the mQoS gateway is to avoid resource bottlenecks, provide 

differentiation of resource differentiation, and maximize the server throughput. To do 

this, the mQoS gateway performs three tasks: request profiling and server profiling, 

request classification, and request scheduling. The request profiling and server 

profiling let the mQoS gateway know the resource consumption of a request and the 

capacity of each server resource. The request classification allows the mQoS gateway 

to classify requests into different service classes. The request scheduling determines 

the order and the time in which the mQoS gateway sends a request to the server.  

The architecture of the mQoS gateway, as shown in Figure 2, is composed of 

three components: server prober, request classifier, and request scheduler. The 

working flow of the gateway is described as follows. Before the on-line operation of 

the gateway, the server prober sends HTTP requests one by one to scan all the Web 

pages on the server. The resource monitor program running on the server monitors the 

resource consumption for every request and reports this information to the server 

prober. The server prober records the URLs and resource consumption of the Web 

pages in the Web page table for the reference of the request classifier. The QoS policy 

table defines the service classes and their classification rules. Once the gateway starts 

to work, it incepts arrival requests. The request classifier classifies the incepted 

requests into different service classes according to the rules defined in the QoS policy 

table. Then the request classifier refers to the Web page table, tags the information of 

the resource consumption to each request, and puts the tagged requests into the 

corresponding queues. The request scheduler checks the availability of the server 
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resources. If the available server resources are enough, the request scheduler fetches a 

request from a proper queue and sends it to the server. The detailed design of the 

server prober, request classifier, and request scheduler are discussed below. 

 

 
Figure 2. Architecture of the mQoS gateway. 

 

3.1 Server Prober  

The mQoS gateway is deployed in front of any type of Web servers. The gateway 

has to know the server resource consumption of a request and the capacity of each 

server resource for the management task. For this, the server prober is used for request 

profiling and server profiling. The request profiling is the process of measuring the 

resource consumption of a request, whereas the server profiling is the process of 

measuring the maximum capacity of each server resource.  

For measuring the resource consumption of a request, the server prober sends 

HTTP requests one by one to scan all the Web pages on the server. Starting from the 

homepage, the server prober recursively parses every Web page and finds the URLs 

of the embedded objects and hyperlinks until the Web site is traversed. During the 

traversing, the monitor program running on the server monitors the amounts of server 

resources consumed for each request and reports this information to the server prober. 
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As an example, a query page consumes 15 units of CPU, 5 units of disk I/O and 8 

units of bandwidth per second. To increase the validity of the measurement, the 

probed results are verified through the liner verification. That is, when the prober 

sends multiple requests to the server concurrently, the amount of the resource 

consumption is multiplied as the number of concurrent requests being processed on 

the server. Notice that this information is not directly used by the request scheduling 

algorithm because the actual percentage of the resource consumption is not known 

yet.  

In order to calculate the percentage of the resource consumption of a request, the 

server prober has to measure the maximum capacity of each server resource. Thus, the 

server prober sends huge amount of specific resource-intensive requests at the same 

time to the server and checks the resource utilization. The maximum capacity can be 

measured when the resource is fully utilized. After all the resource capacities are 

measured, the actual capacities of the server resources and the percentages of the 

resource consumption of a request are derived. The maximum capacity of a server 

resource can be derived from multiplying the number of the concurrent requests on 

the server by the resource consumption of a request. As an example of measuring the 

CPU capacity, if there is 100 requests being processed by a fully-loaded server and 

the CPU resource consumption of each request is 15 units, then the maximum CPU 

capacity is 1500 units. The percentage of the CPU resource consumption of a request 

can be also derived from dividing its CPU resource consumption by the CPU capacity. 

In the above example of a query, its percentage of the CPU resource consumption is 

1% (15/1500). The server prober finally records the URLs and resource consumption 

information in the Web page table for the use of the request classifier and request 

scheduler. 
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3.2 Content-aware Request Classifier 

The request classifier is used to identify requests which classes and which 

resource tendency they belong. The classification is based on the predefined rules in 

the QoS policy table. The header and payload of a request will be inspected by the 

request classifier to check whether it matches a rule. If yes, the request will be 

classified into this corresponding class; otherwise, it will be compared with the other 

rules until classified. Once a request is classified, its URL will be inspected to match 

the URLs in the Web page table. The purpose is to find out the expected resource 

consumption and judge the tendency of the resource consumption. For example, a 

request consuming 9 % of CPU, 5 % of disk I/O and 7 % of bandwidth is regarded as 

a CPU-intensive request. After a request is matched with the QoS policy table and 

Web page table, the request classifier tags the information of the resource 

consumption to the request and put the request into an appropriate queue. Every 

service class has several queues, each of which stores specific resource-intensive 

requests. If there are m service classes and n server resources, there are totally m*n 

queues. The requests wait in the queues for being scheduled by the request scheduler.  

 

3.3 Multiple-resource Request Scheduler 

The request scheduler schedules the requests in the class queues to manage the 

server resources in order to provide service differentiation. The key idea of the mQoS 

scheduling is derived from the deficit round robin (DRR) scheduling for packet 

scheduling. A traditional DRR scheduler serves head-of-line (HOL) packet of every 

non-empty queue which the value of the deficit counter is greater than the size of the 

packet. If it is lower, then later the deficit counter is incremented by a given value 

called quantum. A deficit counter is decremented by the size of a packet. However, 

some considerations should be noticed on scheduling requests using the concept of the 
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DRR scheduling. The traditional DRR schedules packets to manage the bandwidth of 

a link, whereas the presented mQoS scheduler schedules requests to manage the 

multiple resources of a server. The utilization of the server resources has to be 

balanced. None of the resources should be overused or underused; otherwise a 

resource bottleneck would happen or a server resource would be wasted.  

The mQoS scheduler consists of a main scheduler and several sub-schedulers, as 

shown in Figure 3. A sub-scheduler services the class queues of a server resource for 

differentiating the resource utilization among the classes, and the main scheduler 

triggers an appropriate sub-scheduler according to the availability of the server 

resources. In a sub-scheduler, there are several deficit counters (DCs), each of which 

is associated with a class to record the unused quantum. However, differing from the 

traditional DRR scheduling, a DC of a sub-scheduler can be decremented by any other 

sub-schedulers because a request would consume multiple resources rather than single 

resource. Each sub-scheduler has a round-robin pointer that indicates which class 

queue to be serviced. When the round-robin pointer moves back to the first class 

queue, every DC of the sub-scheduler is incremented by the predefined quantum.  
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Figure 3. mQoS scheduler. 

 

In the main scheduler, resource availability counters (RACs) are used to record 

the availability of the server resources. Each RAC contains the percentage of the 

availability of a server resource. By checking the RACs, the main scheduler knows 

which resource is the most available and then triggers the corresponding 

sub-scheduler to service a specific resource-intensive request. Therefore, the main 

scheduler can maximize the resource utilization and balance the utilization among the 

resources.  

 

3.4 Multiple-Resource Request Scheduling Algorithm 

The mQoS scheduling algorithm works as shown in Figure 4. Initially, the value 

of each RAC is set to 100, which means each type of server resource is 100% 

available. Each round-robin pointer in these sub-schedulers moves to the first class 

queue. In the traditional DRR scheduling, a DC is incremented only when the 

round-robin pointer moves to its corresponding queue. However, here all DCs of a 
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sub-scheduler are incremented at the same time by the predefined quantum because 

the DC of a sub-scheduler could be decremented by another sub-scheduler. The main 

scheduler checks the values of the RACs to find out which resource is the most 

available. A sub-scheduler will be triggered for scheduling the corresponding 

resource-intensive requests to effectively utilize the most available resource. The main 

scheduler randomly triggers a sub-scheduler, since there is no resource more available 

than the others.   
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Figure 4. Flowchart of the mQoS scheduling algorithm. 

 

The triggered sub-scheduler inspects the resource consumption information of 

the HOL request of the queue which the round-robin pointer locates. If no request 

waits in this queue, the sub-scheduler moves the round-robin pointer to the next queue 
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and the remaining deficit will not carried over to the next service cycle in the DC. The 

resource requirements of the request are compared with the values of the RACs. If 

any resource is not enough for the requirements, the sub-scheduler will move the 

round-robin pointer to the next queue without scheduling this request. If the resource 

requirements are satisfied, the sub-scheduler will check the values of the DCs of the 

same class from all the sub-schedulers to see whether this class has enough value in 

DCs. If no, the sub-scheduler will move the round-robin pointer to the next queue 

without scheduling the request. If yes, the sub-scheduler fetches the request from the 

queue, decrements the amounts of the resource requirements from the DCs and RACs, 

and sends this request to the server.  

When the response from the server is back, the RACs will be incremented by the 

amounts of the resource requirements from the request to reflect the server releases 

the consumed resources. The main scheduler continues to trigger a sub-scheduler. A 

sub-scheduler continues to serve the requests from a queue until the queue becomes 

empty, the resource requirements cannot be satisfied. Since the scheduler has to be 

aware of the responses, the mQoS scheduler is not proper to work with direct routing.  

The pseudo code of the mQoS scheduling algorithm is shown in Figure 5. The 

enqueuing module performs the request classification to put a request into an 

appropriate queue. The dequeuing module executes the mQoS scheduling algorithm 

to schedule the requests in the class queues. The response module checks the finish of 

a response and increments the RACs.  

 
/* The definitions of variables 
r: number of resources 
c: number of classes 
k: resource tendency 
DC: deficit counter 
RAC: resource availability counter 
RRP: round-robin pointer 
RR: resource requirement 



17 

Q: quantum 
SF: service flag 
QF: quantum flag 
RF: service cycle flag 
EF: empty flag 
*/ 
 
Initialization: 
For (i = 0; i < r; i = i + 1)  
   RACi = 100; /* initialize resource availability counters */ 
   RFi = TRUE; /* initialize service cycle flags */ 
   move_pointer(RRPi, 0); /* move every round-robin pointer to the first class */ 
   For (j = 0; j < c, j = j + 1) 
      DCij = 0; /* initialize deficit counters */ 
      QFij == TRUE; /* initialize quantum flags */ 

EFij == FALSE; /* reset empty flags */ 
 
Request enqueuing module: on arrival of request p 
j = get_class(p); 
RR = get_resource_requirements(p); 
k = get_resource_tendency(RR); 
enqueue(Queuekj, p) 
 
Request dequeuing modules: 
While (TRUE)  
   m = get_most_available_resource(RAC); 
 
   RFm = TURE; 
   For (j=0; j < c ; j = j + 1) /* check a new service cycle */ 
      If (QFmj == FALSE) 
         RFm = FALSE; 
 
   If (RFm == TRUE) /* increment deficit counters if it is a new service cycle */ 
      For (j = 0; j < c; j = j + 1) 
         If(EFmj == TRUE) 
            DCmj = 0; 
            EFmj = FALSE; 
         DCmj = DCmj + Qj; /* increment all deficit counters by quanta */ 
         QFmj = FALSE; 
 
   j = get_pointer_value(m); 
   if( (p = get_head_request(Queuemj)) == NULL ) 
      QFmj = TRUE; /* ready to increment deficit counter by quantum in the next service cycle */  

EFmj = TRUE; /* this is an empty case */  
 
   RR = get_resource_requirements(p); 
 
   SF = TRUE; 
   For (i=0; i < r ; i = i + 1) /* check every resource */ 
      If (RACi < RRi) or (DCij < RRi ) then /* meet resource requirements and deficits*/ 
         SF = FALSE; 
         If (j == c - 1) then 
            move_pointer(RRPm, 0); /* move round-robin pointer to the first class */ 
         Else 
            move_pointer(RRPm, j + 1); /* move round-robin pointer to the next class */ 
         If (DCij < RRi ) then 
            QFij = TRUE; /* ready to increment deficit counter by quantum in the next cycle */ 
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   If (SF == TRUE) /* service the request out */ 
      For (i=0; i < r ; i = i + 1) 
         DCij = DCij - RRi; /* decrement deficit counters */ 
         RACi = RACi - RRi; /* decrement resource availability counters */ 
      send_request(p); 
 
Response processing module: on arrival of response q 
For (i=0; i < r ; i = i + 1) 
   RR = get_resource_requirements(q); 
   RACi = RACi + RRi; /* increment resource availability counters */ 
send_response(q); 

Figure 5. Pseudo Code of the mQoS scheduling algorithm. 
 

Figure 6 exhibits an example of the mQoS scheduling. In this example, the 

requests are classed into three service classes: class 1, class 2, and class 3. The ratio of 

the service weights of the classes is set to 6:3:1, hence the quantum assigned to each 

class is 60, 30 and 10, respectively. The server resources to be managed are CPU, disk 

I/O, and bandwidth. Because there are three service classes and three server resources, 

totally nine class queues exist. The initial stage is shown in Figure 3. The main 

schedule randomly triggers the CPU sub-scheduler. The CPU sub-scheduler inspects 

the HOL request of the class-1 queue and knows the resource requirements of this 

request is (CPU: 6, disk I/O: 5, bandwidth: 3). The CPU sub-scheduler compares the 

amounts of the resource requirements to the values of the RACs (CPU: 100, disk I/O: 

100, bandwidth: 100) and concludes the server resources are enough. Then it 

compares the resource requirements to the values of the DCs of the CPU, disk I/O, 

and bandwidth for class 1 (CPU: 60, disk I/O: 60, bandwidth: 60) and concludes the 

value in DCs is enough. The CPU sub-scheduler now sends the request to the server 

and decrements the DCs and RACs. The results of the decrements on the DCs and 

RACs are shown in Figure 6(a). The main scheduler now triggers the bandwidth 

sub-scheduler because the bandwidth resource is the most available. The bandwidth 

sub-scheduler sends the HOL request of the class-1 queue to the server. The result 

after this request scheduling is shown in Figure 6(b). Now the disk I/O resource 
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becomes the most available, hence the main scheduler triggers the disk I/O 

sub-scheduler to send a request. Suppose the server has finished responding the first 

request after the request sent by the disk I/O sub-scheduler. The final values of the 

RACs and DCs are shown in Figure 6(c). 

 

(a) The CPU sub-scheduler sends a request. 

(b) The bandwidth sub-scheduler sends a request. 
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(c) The disk I/O sub-scheduler sends a request and then a response returns. 

Figure 6. An example of the mQoS scheduling. 
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Chapter 4. Implementation and Evaluation 
 

4.1 Implementation 

The implementation of the mQoS gateway is based on the Squid package and 

Linux operating system. The Squid package is modified to be capable of request 

classification and request scheduling. The Squid is of a single-process event-driven 

architecture, which uses the select() system call to simultaneously wait for events on 

all connections being handled. When select() delivers one or more events, the main 

loop of the Squid invokes handlers for each ready connection. The performance and 

scalability of the mQoS gateway is good because it does not need to fork a child 

process for each request. The server prober and resource monitor program are 

implemented as the server daemons running on the gateway and server, respectively. 

When a request enters the gateway, the iptable utility rewrites the destination IP 

address and port number of this incoming packet to redirect it to Squid. Such 

redirection mechanism makes the mQoS gateway works transparently to clients and 

the server. The Squid gateway performs request classification and scheduling and 

sends the request to the server. The Squid gateway then receives the response from the 

server without caching the response and sends it to the client.  

The original Squid is a caching proxy used to cache the responses from a Web 

server. It is deployed between clients and servers to incept requests and responses. 

The request and response processing of Squid are shown in Figure 7. When a client 

issues a request, Squid reads the request, parses the request, and checks whether the 

response of this request is already in the cache. If yes, Squid fetches the cached data 

from the cache and sends it to the client. Otherwise, Squid prepares to forward the 

request and sends the request to the server. When the server returns a response, Squid 

reads the response, parses the response, and stores or replaces the response data in the 
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cache. Squid then prepares to forward the response and sends the response to the 

client.  

In the mQoS gateway, the request and response processing modules of the Squid 

are modified to be capable of request classification and request scheduling. The cache 

module of checking in the request direction and the module of cache storing or 

replacing in the response direction are bypassed. Instead, the request classification is 

performed before Squid prepares to forward a request. Afterward, the request 

scheduling is performed before Squid sends a request to the server. When Squid 

finishes reading and parsing a response, the request scheduler updates the resource 

availability counters and then makes a preparation of forwarding the response to the 

client. 

 

 
Figure 7. Implementation of the mQoS gateway on the Squid. 

 

4.2 Evaluation 

The effect of server resource management is discussed theoretically in Chapter 2. 

Here the implementations of the nQoS, sQoS, and mQoS scheduling are practically 

evaluated on server resource utilization, server throughput, and user-perceived latency. 

The evaluation environment consists of a traffic generator, a gateway, and a Web 

server, shown in Figure 8. Spirent’s Avalanche software and SmartBits platform are 
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used as the traffic generator. Avalanche emulates a large number of clients to issue 

HTTP requests to the server and gather the statistics. The gateway performs the 

traditional DRR scheduling to manage the CPU resource of the server for the sQoS 

scheduling, or the mQoS scheduling algorithm to manage the CPU, disk I/O, and 

bandwidth resources. In the nQoS scheduling, the gateway only forwards requests and 

responses between the traffic generator and the server without any processing. The 

Web server is based on Apache and PHP.  

There are three kinds of pages in the server, and different pages will lead to 

different consumption of the multiple resources when being accessed. The mathematic 

computation web pages compute equations and are CPU-intensive. The album web 

pages access photograph database and are Disk I/O-intensive. The chemical formula 

displaying web pages parse the formula notation to show the formula in 3D and are 

Bandwidth-intensive. In the evaluation, three service classes are defined in the QoS 

policy table, and the ratio of the quantum is set to 6:3:1. The workload contains three 

kinds of resource intensive requests, but the traffic generator issues more 

CPU-intensive requests than the other types of requests in order to test the capabilities 

of the mQoS scheduling. The server as 640 MHz CPU and 128 MB RAM, and the 

gateway has 700 MHz and 256 MB RAM. Avalanche keeps 600 outstanding requests 

from clients.  

 

 
Figure 8. Evaluation environment 

 

4.3 Differentiation on the Resource Utilization 

Different request scheduling schemes result in different utilization of the server 

resources, shown in Figure 9. In Figure 9(a), the nQoS scheduling, every class gets a 



24 

third of every server resource due to the resource contention. Although three resources 

are well utilized, there is no differentiation on the resource utilization among three 

classes. In Figure 9(b), the sQoS scheduling, the gateway schedules requests to well 

utilize the CPU resource of the server and simultaneously to differentiate the resource 

utilization to the ratio of 6:3:1. However, the gateway stops sending requests to the 

server when the CPU resource of the server is well utilized, causing the waste of the 

disk I/O and bandwidth resources of the server. In Figure 9(c), the mQoS scheduler 

sends appropriate requests to the server to well utilize the three server resources. 

Furthermore, the differentiation of the resource utilization is evidently observed from 

that every server resource is utilized by the three classes according to the defined ratio 

of 6:3:1. 
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(a) Resource utilization in the nQoS scheduling. 
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(b) Resource utilization in the sQoS 

scheduling. 
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(c) Resource utilization in the mQoS 

scheduling. 
Figure 9. Server resource utilization of the nQoS, sQoS, and mQoS scheduling. 
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4.4 Differentiation on the Server Throughput 

The amount of the utilization of every server resource will affect the server 

throughput, as presented in Figure 10. In the nQoS and mQoS scheduling, the 

maximum total throughput is close to 300 requests per second which is limited by the 

server throughput. However, in the sQoS scheduling, due to the waste of the disk I/O 

and bandwidth resources of the server, the total throughput is only 260 requests per 

second. The mQoS scheduling improves the total throughput by 21% from sQoS. 

Another finding is that there is no differentiation on the server throughput among the 

three classes in the nQoS scheduling. However, the sQoS and mQoS scheduling 

reveal the differentiation on the server throughput because they schedule requests for 

different classes. The ratio of the server throughput of the three classes is close to 

6:3:1.  

In Figure 10, the server throughput of the nQoS scheduling is close to that of the 

mQoS scheduling. The server service rate is within limited, because of the limited 

server resource. The workload in the nQoS and mQoS scheduling make the server 

resource well utilized. In nQoS case, the server faces uncontrolled heavy request 

arrival rate, whereas in mQoS case, the server faces the scheduled request arrival rate 

which can well utilize the server. Although under these different situations, the server 

throughput is still limited by the server service rate. Due to uncontrolled request 

arrival rate, the user-perceived latency in nQoS is longer than that in mQoS. Figure 13 

provides an evidence of this. 
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Figure 10. Server throughputs of the nQoS, sQoS, and mQoS scheduling. 

 

The throughput improvement in the mQoS scheduling results from the fact that 

the gateway sends appropriate requests to the server to effectively utilize the three 

server resources. Figure 11 compares the types of outstanding requests between the 

sQoS and mQoS scheduling. In Figure 11(a), the sQoS scheduling, the gateway does 

not try to balance the utilization of the server resources. However in Figure 11(b), the 

mQoS scheduling, the main scheduler takes effect to balance the utilization on every 

resource. Also the three sub-schedulers differentiate the utilization of every resource 

among the three classes with a ratio close to 6:3:1. 
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(a) Types of outstanding requests sent by 

the sQoS scheduling 
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(b) Types of outstanding requests sent by 

the mQoS scheduling 
Figure 11. Types of outstanding requests by the sQoS and mQoS scheduling. 

 
 



27 

4.5 Resource Sharing 

In the evaluation of the differentiation on the resource utilization, the three 

classes proportion the utilization of three server resources. If there are no request for a 

class, the available resources should be shared among the active classes (i.e., those 

having requests in the queues) in proportion. Figure 12 shows the situation of the 

resource sharing. The clients of the class 3 stop sending requests to the server during 

the evaluation. The server resources are then shared by the clients of the class 1 and 

class 2. The observation of Figure 12 is similar to that of Figure 9. In the mQoS 

scheduling, every server resource is utilized by the two active classes according the 

ratio of 6:3.  
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(a) Resource sharing in the nQoS scheduling. 
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(b) Resource sharing in the sQoS 

scheduling. 
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(c) Resource sharing in the mQoS 

scheduling. 
Figure 12. Resource sharing of the nQoS, sQoS, and mQoS scheduling. 

 

4.6 Differentiation on the User-perceived Latency 

User-perceived latency is the time between issuing a request and receiving a 

response back at the client. Figure 13 shows the user-perceived latency of the nQoS, 
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sQoS, and mQoS scheduling. For the nQoS scheduling, there is no differentiation on 

the user-perceived latency among the three classes. Because the heavy workload leads 

to requests queued on the server, the average latency is longer than mQoS scheduling. 

For the sQoS scheduling, although the user-perceived latency is differentiated, the 

average latency is longer. For the mQoS scheduling, even though the mQoS gateway 

differentiates the server resources, the user-perceived latency is also differentiated but 

the ratio is not exactly 6:3:1. Furthermore, the average user-perceived latency of the 

mQoS scheduling is shorter than those of the nQoS and sQoS scheduling.   
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Figure 13. User-perceived latency of the nQoS, sQoS, and mQoS scheduling. 

 

Decomposition of the User-Perceived Latency 

The user-perceived latency in the mQoS scheduling mainly consists of the 

gateway queuing time and server processing time. The gateway queuing time is the 

time between accepting a request from the client and scheduling the request to the 

server at the gateway. The server processing time is the time between accepting a 

request from the gateway and sending the response to the client at the server. Figure 

14 shows the decomposition of the user-perceived latency in the mQoS scheduling. 

The server processing time is almost the same among the three classes, whereas the 

queuing time of every class is different. Different queuing times lead to the 
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differentiation on the user-perceived latency. 
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Figure 14. Decomposition of the user-perceived latency in the mQoS scheduling. 
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Chapter 5. Conclusion and Future Work 
 

Resource management on a Web server allows a Website operator to control the 

utilization of the server resource and provide differentiated quality of service. 

Traditional single-resource request scheduling cannot manage multiple server 

resources well, that leads to resource wasting or overloading. This research presents a 

multiple-resource request scheduling algorithm, call mQoS, deployed at the Website 

gateway to provide service differentiation. The mQoS gateway consists of a server 

prober, a request classifier, and a request scheduler. The server prober profiles the 

resource consumption of every Web page and the capacity of every server resource. 

The content-aware request classifier determines the resource tendency and the service 

class of requests to classify them into different class queues. The mQoS scheduler 

consists of several sub-schedulers and a main scheduler. Each sub-scheduler manages 

a server resource and differentiates the resource utilization among the classes. The 

main scheduler checks the availability of the server resources and triggers an 

appropriate sub-scheduler to balance the utilization among the resources. The mQoS 

scheduling algorithm is work-conservative to the server to keep the server resources 

well utilized. However, it is non-work-conservative to the class queues because the 

scheduler remains idle when there are no enough resources for servicing a request. 

The mQoS gateway is implemented on the Squid and Linux. The mQoS 

scheduling algorithm is compared with no scheduling (nQoS) and single-resource 

request scheduling (sQoS). The nQoS exposes no differentiation, and the sQoS 

exposes the differentiation only on the utilization of one server resource. However, the 

mQoS scheduling reveals the differentiation on the utilization of every server resource. 

Because all server resources are well utilized in the mQoS scheduling, the total server 

throughput is improved by 21%, compared with the sQoS scheduling. Moreover, the 
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user-perceived latency is also differentiated among the classes in the mQoS 

scheduling due to the differentiation of the gateway queuing delay. In the evaluation, 

the mQoS scheduling reveals its capabilities of differentiating the server resource 

utilization, maximizing the server throughput, and sharing resource. 

The presented mQoS scheduling algorithm is for one Web server. It should be 

improved to support scheduling requests for a cluster of servers. The more complex 

multiple-resource, multiple-server request scheduling algorithm can be implemented 

on a server load balancer. The issues of service differentiation, resource utilization, 

and server load balancing should be completely considered in the design of the new 

algorithm. 
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