Multiple-resouree Request Scheduling
for Differentiated QoS at Website Gateway

oy iEEE
Jf]z] o HEFE kE

PoE R4 e ERD

AP B RELNREBETL
7 E R RGP

$1 0 BEE R R

DERRTEE S P 2

&
vaJPl’izz»r‘%%'f{f&iH;:%'iﬁﬁ RS R s IRTR G- 85 2 B HTTP 3
PARSS ZTUES B PR R LT PREEGFRE G EE- ARRET R 4 CPU
2 DIk /0> e f %t PIREAAIL- B R g4 5 BT R 8- TRt ¢

ERFTROAF S LB o ARSNGB &3 mQoSh i & F ik R diw &
FERBPIRBEL DI ATRE R FLB TR o MQOS AT E 2 E3F AWy X
o RS UHE SR PIRER ISP O mQoSH 2 EY Ld B FRAEEL - B
PREMES S - B EglC BEIRET R bl BIRBER T LN TR
R APRBENRAFBPIRET Row @ % EEPF R § O3 BB LR
JREF R * o mQOS R ALIF & 2 k3 874 £k p >t @ e Deficit Round Robin £
§ PR B E 0 BRI PR BT - B deficit counter 1k g B K i * iR IR E T
RE oA HARE P 5 deficit counter T AR E R - BFRAETRE AL RFLGFR

=

AL EFT R 22HE - Tk o mQoS Wi B (T4 78 Squid 2 Linux 2+ o &t

Tl

o 3FE S om0 Bt o mQOS ~ & £ 42 (nQ0S) £ H — F iR 42(sQ0S) 11 E IR mQOS #E A2 £
pe o A BRI 6] 6:311 A fe b= BIRIAEE N 6] F ¢ o mQoS £ AR X A fie
ERPIREFT R ¥ o mQOSE AR A FIRE S oL ¥ vt SQOS £ AFH i 7 21% - mQOS

chlioR & F2FutBv g a2 e

MatF @ 5 €5k~ LYR - e

M ultiple-resource Reguest Scheduling for
Differentiated QoS at Website Gateway

Student: Ruo-Hua Feng Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science
National Chiao Tung University

Abstract

Differentiated quality of service is a way for a Website operator to provide different
service levels to its clients. Traditional HTTP request scheduling schemes can achieve this,
but they schedule requests to manage only one server resource, such as CPU or Disk I/O.
Actually, processing a request on the server will consume multiple resources. In this paper, a
multiple-resource request scheduling ' algorithm, caled mQoS, for differentiating the
utilization of the server resources is presented:. The mQoS scheduler consists of several
sub-schedulers and a main scheduler. Each sub-scheduler manages a server resource to
differentiate the utilization among‘the Classes. The:main scheduler checks the availability of
every server resource and triggers an appropriate sub-scheduler to balance the utilization of
server resources. The idea of the mQoS scheduling algorithm is derived from the traditional
deficit round-robin method. There are some deficit counters in a sub-scheduler. However, a
deficit counter of a sub-scheduler can be decremented by other sub-schedulers because a
request would consume multiple resources. The implementation of the mQoS gateway is
based on the Squid and Linux. In the evaluation, the mQoS scheduling is compared with no
scheduling (nQoS) and single-resource request scheduling (sQoS). The mQoS scheduling
reveals the accurate differentiation on every server resource. In addition, the total server
throughput in the mQoS scheme is improved by 21%, compared with the sQoS s. The average
user-perceived latency of the mQoS scheduling is shorter than other schemes.

K eywords: Multiple Resources, Request Scheduling, Service Differentiation

Contents

Chapter 1. INTrOUCTIONeeiiiiiiieee et ne e 1
Chapter 2. Problems of Server Resource Management..........coouveeerieeneeeneesiiee s 4
Chapter 3. The mQoS Gateway Architecture and Scheduling Algorithmc.c..c....... 8
L SEIVEN PIODEN ...ttt 9
3.2 Content-aware REQUESE ClaSSITIENcociiiiieiiieiie e 11
3.3 Multiple-resource Request SChEAUIEYcooiiiiiiiieee e 11
3.4 Multiple-Resource Request Scheduling Algorithmoceiiiiiiiieee 13
Chapter 4. Implementation and EVAlUGLION:............c.coreeiiieriieiieeieesee e 21
4.1 Implementationooo e b o i b B e 21
4.2 EVAIUBLION.....coiiiiiiiiiie i B basefatbesnt e e beE ettt ettt e et e e enns 22
4.3 Differentiation on the Resource UTil1Zation..cut......ooveieiiiceeee e 23
4.4 Differentiation on the Server Throughput ..o 25
4.5 RESDUICE SNAING ...ttt e e 27
4.6 Differentiation on the User-perceived LaleNCYccooveeriieiiiiiienieecee e 27
Chapter 5. Conclusion and FUTUre WOrK.........cocooiiiiiiiieieeee e 30
REFEIENCES ...ttt e st b et e e ab e e b e ne e nne e 32

List of Figures

Figure 1. Server resource utilization under different scheduling schemes.cccccovienens 7
Figure 2. Architecture of the MQOS QaLEWAY.cciueiiiiriierie e 9
Figure 3. MQOS SChEAUIES.coiie e 13
Figure 4. Flowchart of the mQoS scheduling algorithm............ccoooiiiiii 15
Figure 5. Pseudo Code of the mQoS scheduling algorithm. ..o 18
Figure 6. An example of the mQOS SChedUIING.ccviiiiiiiiiie e 20
Figure 7. Implementation of the mQoS gateway on the Squid.cccceiiieiiiniiieeeee 22
Figure 8. Evaluation ENVIFONMENLuiiiiiiiieiie ettt ne e 23
Figure 9. Server resource utilization of the nQoS, sQ0S, and mQoS scheduling. 24
Figure 10. Server throughputs of the NQoSsQeS, and MQoS scheduling.ccccveeeeneennee. 26
Figure 11. Types of outstanding requests by the SQ0S and mQoS scheduling. 26
Figure 12. Resource sharing of the nQoS, sQoS; and mQoS scheduling.cccceeieenneeene. 27
Figure 13. User-perceived latency of the nQoS, sQoS, and mQoS scheduling. 28
Figure 14. Decomposition of the user-perceived latency in the mQoS scheduling. 29

Chapter 1. Introduction

Web Quality of Service (QoS) is a way for a Web service provider to
differentiate its service levels to users. Through service differentiation, a Web service
provider can allow a specific group of users, e.g. paid users, to get better server
throughput or user-perceived latency than other general users. There are many ways
of enforcing Web QoS. The effort of some past researches was to modify the system
kernel or the server daemon of a Web server, a caching proxy, or a cluster dispatcher
for service differentiation. These QoS-enabled boxes intercept HTTP requests,
perform request classification and schedule requests for dealing with the bottlenecked
resource, such as throughput or CPU utilization.

There are two issues in the,above schemes. The first issue is where to deploy a
QoS-enabled box. Many researches have been proposed in modifying the system
kernel [1] or server daemon T2][3] of ‘a“Web ‘'server to have the capability of
scheduling HTTP requests. However; ‘this'solution is hard to be deployed on a
non-open operating system or server daemon. Some researches have been proposed in
enforcing request scheduling on a dispatcher of a cluster server [4-6]. The
QoS-enabled dispatcher schedules requests to the backend servers in a weighted
round-robin fashion or according to the server loads. Some researches have proposed
QoS-enabled content adaptation [7][8] or cache replacement algorithms [9] on
caching proxies instead of request scheduling for service differentiation.

The second issue is what resource for a request scheduling to manage for.
Common request scheduling schemes schedule requests by managing the
bottlenecked resource, such as the number of requests per second. This request

scheduler seems to perform the single-resource scheduling, which has a blind spot.

Processing a request on a server needs to consume multiple resources, e.g. CPU, disk
1/0, and bandwidth, rather than a single resource. In the single-resource scheduling,
some resources may be wasted, when the managed resource is well utilized. A request
scheduler should well utilize all resources by scheduling requests for managing all
resource utilization. Some researches have discussed multiple-resource request
scheduling, but many of them are applied on grid computing and multimedia
applications [10-12], few on HT TP request scheduling [13-15].

Considering the issues of QoS deployment and multiple-resource request
scheduling, this paper presents a multiple-resource request scheduling algorithm
called mQoS, which is deployed at a Website gateway for controlling the requests
toward a Web server. Today’s gateways can perform firewall packet inspection,
intrusion detection, virus scanning, and so on. /A Websites operator can deploy a
gateway for preventing attacks-and.providing.value-added services. Hence, enforcing
request scheduling at a Website gateway.is-practical, and it can provide service
differentiation without any modification.on clients and the server.

There are three main functions in the mQoS gateway: request profiling and
server profiling, content-aware request classification, and mQoS scheduling. The
reguest profiling finds out the amounts of the server resources consumed by a request,
whereas the server profiling measures the capacities of the server resources. The
request classification mechanism inspects the headers or payloads of requests and puts
requests into proper class queues. Specially, a service class has several queues, each
of which stores specific resource-intensive requests. That is, it will be m*n queues,
when there are m service classes and n server resources. The mQoS scheduling,
derived from the Deficit Round Robin (DRR) scheduling [16], composed of one main
scheduler and several sub-schedulers. One sub-scheduler, which has some deficit

counters, manages one server resource. However, differing from the traditional DRR

2

scheduling, a deficit counter of a class in a sub-scheduler can be decremented by any
sub-scheduler because a request would consume multiple resources rather than a
single resource. In addition, the main scheduler maintains the availability of the server
resources in the resource availability counters. The main scheduler hence can know
which resource is the most available and then triggers the corresponding
sub-scheduler to service specific resource-intensive requests.

The mQoS gateway is implemented on Squid and Linux. The request and
response modules of Squid are modified to be capable of classifying and scheduling
requests. In the evaluation, the mQoS scheduling is compared with no scheduling
(nQoS) and single-resource request scheduling (sQoS). The resource utilization,
server throughput, and user-perceived latency of every scheduling are measured to
demonstrate the effect of the mQoS scheduling.. From the test results, the mQoS
scheduling reveals its capabilities of differentiating server resource utilization,
maximizing the total server throughput; and-sharing resource.

The rest of this paper is organized as follows. Chapter 2 states the problems of
resource management on a Web server. Chapter 3 introduces the architecture of the
mQoS gateway and the designs of the request profiling and server profiling,
content-aware request classification, and mQoS scheduling algorithm. Chapter 4
describes the implementation and evaluation of the mQoS gateway. Finally, Chapter 5

gives the conclusion and the future work of this research.

Chapter 2. Problems of Server Resource M anagement

The workload on a Web server will affect the utilization of the server resource. In
the light-load situation, every HTTP request will get enough resources when being
processed, but there could be unused resources on the server. Conversely, in the
heavy-load situation, a request may be queued on the server and wait for being
processed. If the server resources are inadequate for the requirements of the arrival
requests, an HTTP request would experience long queuing and processing delay. For
maximizing the utilization of the server resources and avoiding extra delay
simultaneously, the resources on the server should be well managed.

Some researches have proposed, admission control schemes to prevent new
arrival requests from accessing aheavy loaded server[17-20]. With admission control,
a server would drop new arrival requests when “its resources cannot meet the
requirements of the requests. However, admission-control itself is not sufficient to
support service differentiation because all arrival requests have the same probability
to access server resources. The purpose of service differentiation is to allow different
clients receive different treatments, such as server throughput and response time. For
service differentiation, some researches have proposed request scheduling algorithms
to control the workload on a server [1][2][18][21][22]. The general schemes of the
mentioned scheduling algorithms are to allocate different amounts of concurrent
connections, request rate, or bandwidth among service classes.

A request entering a server requires several types of resources, e.g. CPU, disk
I/0, and bandwidth, when being processed. The lack of any available resource would
lead to a bottleneck. In other words, if there are n kinds of resources, there could be n

kinds of bottlenecks on the server. Many of the mentioned request scheduling

algorithms deal with the problems of single-resource scheduling. They manage a
single resource for maximizing the utilization and differentiating the utilization
simultaneously, but they cannot avoid the bottlenecks derived from the other
resources. A resource can be managed well, while the other resources may be still
available or inadequate for new arrival requests. A single-resource scheduling
algorithm could lead to an inefficient or overloaded server. Hence, a request
scheduling algorithm should consider the presence of multiple server resources. In the
below, three requests scheduling schemes, no scheduling, single-resource request
scheduling, and multiple-resource request scheduling, are discussed. The assumption
for the discussion is that there are three resources, CPU, disk 1/0O, and bandwidth, on
the server and a request will consume multiple resources. Besides, there are three
service classes of clients issuing reguests to the server, and the heavy-load situation is

considered.

No Scheduling (nQoS)

The nQoS scheduling is no any resource management scheme, such as admission
control or request scheduling, enforces for the service differentiation. The requests
originated from the three classes of clients contend for the server resources. The
server works on a first-come-first-serve basis. The server workload of the nQoS
scheduling is shown in Figure 1(a). The vertical axis stands for the resource utilization
and cl1, c2 and c3 stand for the class 1, class 2 and class 3, respectively. Due to the
resource contention, every class of clients gets athird of each server resource. All the
server resource Uutilization is effected by the workload, but there is no service
differentiation. The pending requests would be queued on the server and wait for
being processed, causing extra resource consumption, and prolonged user-perceived

latency.

Single-resource Request Scheduling (sQoS)

In the sQOS scheduling, a request scheduler manages the utilization of one server
resource. Figure 1(b) shows the server workload of the sQoS scheduling. The CPU
resource is managed for service differentiation, and the ratio of the resource allocation
to the three classes of clients is 6:3:1. In the example, the sQoS scheduling indeed
allocates the expected amount of the CPU resource to the three classes of clients, but
it cannot take care the utilization of the other resources. The sQoS scheduling will
stop scheduling any requests to the server when the CPU resource is well utilized.
However, the disk 1/0 and bandwidth resources are actually still affordable for the
new arrival disk I/O- and bandwidth- intensive requests, respectively, causing the
waste of disk I/0 and bandwidth resources. Conversely, the sQoS scheduling will
keep scheduling requests to the server when it finds the CPU resource is available.
However, the disk 1/0 and bandwidth resources may: be already fully utilized for the
scheduled requests, causing -an overloaded. server and potentially prolonged

user-perceived latency.

Multiple-resource Request Scheduling (mQoS)

In the mQoS scheduling, a request scheduler manages all the server resources.
The server workload of the mQoS scheduling is shown in Figure 1(c). The mQoS
scheduling chooses the appropriate requests to well utilize all the resources and at the
same time allows the three classes of clients to use every resource proportionally. The
mQoS scheduling eliminates the resource wasting or server overloading occurred in
the sQoS scheduling, and the total server throughput can be improved. Due to
scheduling the requests into the server, each resource utilization under mQosS is better
than that under nQoS. The mQoS scheduling further avoids resource contention and

enables service differentiation.

Utilization Utilization
100% 100%

C1
Cl| |c1

67% - C1

c2 Cz2| [C2

40%

33%

C3

(@]
w
(@]
w

10% |-

C1

C1

Q
N

o
w

CPU
Disk 170
Bandwidth

(a) nQoS scheduling

In the above discussion, the mQoS- scheduling seems to be a better solution for

server resource management. Inthis paper,.a mQoS: scheduling algorithm for service

Disk I/0 |Q

Bandwidth

(b) sQoS scheduling

Figure 1. Server resource utilization under different scheduling schemes.

Utilization
100%

C1 C1 C1

40%
C2 C2 C2

10%
C3 C3 C3
z 2
o e z
0 T
a g
m

(c) mQoS scheduling

differentiation is presented. The mQoS ‘scheduling algorithm has the capability of

managing multiple server resources. The mQoS scheduling algorithm is deployed on a
Website gateway located in front of a Web server. The arrival requests are queued and
wait for being scheduled on the mQoS gateway instead of the server. This has the

advantage of avoiding extra resource consumption on the server. The server itself can

concentrate on the request processing only.

Chapter 3. The mQoS Gateway Architecture and
Scheduling Algorithm

The purpose of the mQoS gateway is to avoid resource bottlenecks, provide
differentiation of resource differentiation, and maximize the server throughput. To do
this, the mQoS gateway performs three tasks: request profiling and server profiling,
request classification, and request scheduling. The request profiling and server
profiling let the mQoS gateway know the resource consumption of a request and the
capacity of each server resource. The request classification allows the mQoS gateway
to classify requests into different service classes. The request scheduling determines
the order and the time in which the mQoS gatéway sends a request to the server.

The architecture of the mQoS gateway, as.shown in Figure 2, is composed of
three components. server prober, request classifier, and request scheduler. The
working flow of the gateway is described as follows. Before the on-line operation of
the gateway, the server prober sends HTTP requests one by one to scan all the Web
pages on the server. The resource monitor program running on the server monitorsthe
resource consumption for every request and reports this information to the server
prober. The server prober records the URLSs and resource consumption of the Web
pages in the Web page table for the reference of the request classifier. The QoS policy
table defines the service classes and their classification rules. Once the gateway starts
to work, it incepts arrival requests. The request classifier classifies the incepted
requests into different service classes according to the rules defined in the QoS policy
table. Then the request classifier refers to the Web page table, tags the information of
the resource consumption to each request, and puts the tagged requests into the

corresponding queues. The request scheduler checks the availability of the server

resources. If the available server resources are enough, the request scheduler fetches a
request from a proper queue and sends it to the server. The detailed design of the

server prober, request classifier, and request scheduler are discussed below.

QoS Policy Table Web Page Table
Olass 1: [Quantum 1, (Rule 1, Rule 2, Rule 3,)] URL 1: (Resource 1, Resource 2, Resource 3,) Server
Olass 2: [Quantum 2, (Rule 1, Rule 2, Rule 3,)] URL 2 (Resource 1, Resource 2, Resource 3,)
1, Rule 2, Rule 3, ..)] roe 1, Resou roe 3, ..)

Class 3: [Quantum 3, (Rule URL 3: (Resou roe 2, Resou Prober

o _‘_

P Class 1

> Closs 2 Resource 1
- |y{ Sub—scheduler
P Class 3

» Class 1
[N Resource 2 Main Web
Request » Class2 — [TTTTTTTTTHS s
. |y Sub—scheduler Scheduler Server
Classifier L clsss — [TTTTTI111J

» Class 1
™ Resource 3
> Goss2 — TTTTIIIIID)
|y{ Sub—scheduler

» Class 3
Class Queue Request Scheduler

T

mQoS Gateway

Figure 2. Architecture of the mQoS gateway.

3.1 Server Prober

The mQoS gateway is deployed in front of any type of Web servers. The gateway
has to know the server resource consumption of a request and the capacity of each
server resource for the management task. For this, the server prober is used for request
profiling and server profiling. The request profiling is the process of measuring the
resource consumption of a request, whereas the server profiling is the process of
measuring the maximum capacity of each server resource.

For measuring the resource consumption of a request, the server prober sends
HTTP requests one by one to scan all the Web pages on the server. Starting from the
homepage, the server prober recursively parses every Web page and finds the URLS
of the embedded objects and hyperlinks until the Web site is traversed. During the
traversing, the monitor program running on the server monitors the amounts of server

resources consumed for each request and reports this information to the server prober.

9

As an example, a query page consumes 15 units of CPU, 5 units of disk 1/0 and 8
units of bandwidth per second. To increase the validity of the measurement, the
probed results are verified through the liner verification. That is, when the prober
sends multiple requests to the server concurrently, the amount of the resource
consumption is multiplied as the number of concurrent requests being processed on
the server. Notice that this information is not directly used by the request scheduling
algorithm because the actual percentage of the resource consumption is not known
yet.

In order to calculate the percentage of the resource consumption of a request, the
server prober has to measure the maximum capacity of each server resource. Thus, the
server prober sends huge amount of specific resource-intensive requests at the same
time to the server and checks the resource utilization. The maximum capacity can be
measured when the resource is fully utilized. After all the resource capacities are
measured, the actual capacities of the' server-resources and the percentages of the
resource consumption of a request-are derived. ‘The maximum capacity of a server
resource can be derived from multiplying the number of the concurrent requests on
the server by the resource consumption of a request. As an example of measuring the
CPU capacity, if there is 100 requests being processed by a fully-loaded server and
the CPU resource consumption of each request is 15 units, then the maximum CPU
capacity is 1500 units. The percentage of the CPU resource consumption of a request
can be also derived from dividing its CPU resource consumption by the CPU capacity.
In the above example of a query, its percentage of the CPU resource consumption is
1% (15/1500). The server prober finally records the URL s and resource consumption
information in the Web page table for the use of the request classifier and request

scheduler.

10

3.2 Content-aware Request Classifier

The request classifier is used to identify requests which classes and which
resource tendency they belong. The classification is based on the predefined rules in
the QoS policy table. The header and payload of a request will be inspected by the
request classifier to check whether it matches a rule. If yes, the request will be
classified into this corresponding class; otherwise, it will be compared with the other
rules until classified. Once a request is classified, its URL will be inspected to match
the URLs in the Web page table. The purpose is to find out the expected resource
consumption and judge the tendency of the resource consumption. For example, a
reguest consuming 9 % of CPU, 5 % of disk 1/0 and 7 % of bandwidth is regarded as
a CPU-intensive request. After a request is matched with the QoS policy table and
Web page table, the request classifier tags ‘the information of the resource
consumption to the request and put the request. into an appropriate queue. Every
service class has several queues, each of -which 'stores specific resource-intensive
requests. If there are m service classes. and n server resources, there are totally m*n

gueues. The requests wait in the queues for being scheduled by the request scheduler.

3.3 Multiple-resource Request Scheduler

The request scheduler schedules the requests in the class queues to manage the
server resources in order to provide service differentiation. The key idea of the mQoS
scheduling is derived from the deficit round robin (DRR) scheduling for packet
scheduling. A traditional DRR scheduler serves head-of-line (HOL) packet of every
non-empty queue which the value of the deficit counter is greater than the size of the
packet. If it is lower, then later the deficit counter is incremented by a given value
called quantum. A deficit counter is decremented by the size of a packet. However,

some considerations should be noticed on scheduling requests using the concept of the

1

DRR scheduling. The traditional DRR schedules packets to manage the bandwidth of
a link, whereas the presented mQoS scheduler schedules requests to manage the
multiple resources of a server. The utilization of the server resources has to be
balanced. None of the resources should be overused or underused; otherwise a
resource bottleneck would happen or a server resource would be wasted.

The mQoS scheduler consists of a main scheduler and several sub-schedulers, as
shown in Figure 3. A sub-scheduler services the class queues of a server resource for
differentiating the resource utilization among the classes, and the main scheduler
triggers an appropriate sub-scheduler according to the availability of the server
resources. In a sub-scheduler, there are several deficit counters (DCs), each of which
is associated with a class to record the unused quantum. However, differing from the
traditional DRR scheduling, a DC .of a sub-scheduler can be decremented by any other
sub-schedulers because a request would consume multiple resources rather than single
resource. Each sub-scheduler has a.round-robin pointer that indicates which class
gueue to be serviced. When the round-robin-pointer moves back to the first class

gueue, every DC of the sub-scheduler is incremented by the predefined quantum.

12

Notation of resource requirements:
CPU, Disk I/0, Bandwidth |

Deficit Counter

Class 1 [8.25]653] — Class 1
Class 2 [8.1.4]7.34] Class 2
Class 3 [7.32]9.58] Class 3

CPU Sub-scheduler

— Resource Availability Counter
Deficit Counter

Class 1 [2.8,3[354] . Class 1 —_— cPu[100 |
Class 2 [275]6.85] Class 2 Disk 1/0[100]
Class 3 [1.6.2]39.2] Class 3 Bandwidth| 100 |

Disk [/O Sub—scheduler

Deficit Counter

Class 1 [41.8]7.689] —> Class 1
Class 2 [1.37]3.27] Class 2
Class 3 [549]1.39] Class 3

Bandwidth Sub—scheduler Main Scheduler

Class Queue Request Scheduler

Figure 3. mQoS scheduler.

In the main scheduler, respurce availability. counters (RACs) are used to record
the availability of the server resources.-Each RAC: contains the percentage of the
availability of a server resource.”By. checking the-RACs, the main scheduler knows
which resource is the most available and then triggers the corresponding
sub-scheduler to service a specific resource-intensive request. Therefore, the main
scheduler can maximize the resource utilization and balance the utilization among the

resources.

3.4 Multiple-Resource Request Scheduling Algorithm

The mQoS scheduling algorithm works as shown in Figure 4. Initially, the value
of each RAC is set to 100, which means each type of server resource is 100%
available. Each round-robin pointer in these sub-schedulers moves to the first class
gueue. In the traditional DRR scheduling, a DC is incremented only when the

round-robin pointer moves to its corresponding queue. However, here all DCs of a

13

sub-scheduler are incremented at the same time by the predefined quantum because
the DC of a sub-scheduler could be decremented by another sub-scheduler. The main
scheduler checks the values of the RACs to find out which resource is the most
available. A sub-scheduler will be triggered for scheduling the corresponding
resource-intensive requests to effectively utilize the most available resource. The main
scheduler randomly triggers a sub-scheduler, since there is no resource more available

than the others.

14

Initailization
Request Main Sub- Response
Classifier \ Scheduler \ scheduler Processing‘
Get the most available

Accept a request

v

Classify the request

v

server resrouce

v

New service cycle
of scheduling?

Trigger an appropriate
sub-scheduler

Inspect the resource
requirements

v

Put the request to an
appropriate class queue

I

Increment the DCs by
the quanta

Class queue
empty ?

Get a request from the
head of the class queue

v

Inspect the resource
requirements

erver resource
enough?

No Value of DCs

ound robin point
in the last class?

enough?

Decrement the DCs by
the resource

requirements

A
Move the round robin
pointer to the next
class

Move the round robin
pointer to the first class

Decrement the RACs
by the resource
requirements

Send the request to the
server

Accept a response

v

Inspect the resource
requirements

Increment the RACs by
the resource
requirements

Send the response to
the client

End

Figure 4. Flowchart of the mQoS scheduling algorithm.

The triggered sub-scheduler inspects the resource consumption information of

the HOL request of the queue which the round-robin pointer locates. If no request

walits in this queue, the sub-scheduler moves the round-robin pointer to the next queue

15

and the remaining deficit will not carried over to the next service cycle inthe DC. The
resource requirements of the request are compared with the values of the RACs. If
any resource is not enough for the requirements, the sub-scheduler will move the
round-robin pointer to the next queue without scheduling this request. If the resource
requirements are satisfied, the sub-scheduler will check the values of the DCs of the
same class from all the sub-schedulers to see whether this class has enough value in
DCs. If no, the sub-scheduler will move the round-robin pointer to the next queue
without scheduling the request. If yes, the sub-scheduler fetches the request from the
gueue, decrements the amounts of the resource requirements from the DCs and RACs,
and sends this request to the server.

When the response from the server is back, the RACs will be incremented by the
amounts of the resource requirements from the request to reflect the server releases
the consumed resources. The main.scheduler-continues to trigger a sub-scheduler. A
sub-scheduler continues to serve the.requests-from a queue until the queue becomes
empty, the resource requirements cannot be satisfied. Since the scheduler has to be
aware of the responses, the mQoS scheduler is not proper to work with direct routing.

The pseudo code of the mQoS scheduling algorithm is shown in Figure 5. The
engueuing module performs the request classification to put a request into an
appropriate queue. The dequeuing module executes the mQoS scheduling algorithm
to schedule the requests in the class queues. The response module checks the finish of

aresponse and increments the RACs.

/* The definitions of variables

r: number of resources

¢: number of classes

k: resource tendency

DC: deficit counter

RAC: resource avail ability counter
RRP: round-robin pointer

RR: resource requirement

16

Q: quantum

SF: serviceflag

QF: quantum flag

RF: service cycleflag
EF: empty flag

*/

I nitialization:
For (i=0;i<r;i=i+1)
RAC; = 100; /* initialize resource availability counters*/
RF, = TRUE; /* initialize Service cycleflags*/
move_pointer(RRP;, 0); /* move every round-robin pointer to thefirst class */
For(j=0;j<cj=j+1)
DC;; = 0; /* initialize deficit counters*/
QFi; == TRUE; /* initialize quantum flags */
EFi; == FALSE; /* reset empty flags*/

Request enqueuing module: on arrival of request p
j = get_clasy(p);

RR = get_resource_requirements(p);

k = get_resource_tendency(RR);

enqueue(Queuey;, p)

Request dequeuing modules:
While (TRUE)
m = get_most_available resource(RAC);

RF., = TURE;
For (j=0;j <c;j=]j+1)/* checkiahew service cycle*/
If (QFy == FALSE)
RF., = FALSE;

If (RF, == TRUE) /* increment deficit‘countersif itiisanew service cycle*/
For =0j<cj=j+1)
If(EF == TRUE)
DGy =0;
EF = FALSE;
DC, = DGy + Q; /* increment all deficit counters by quanta */
QF = FALSE;

j = get_pointer_value(m);

if((p=get_head request(Queue;)) == NULL)
QF = TRUE; /* ready to increment deficit counter by quantum in the next service cycle */
EF = TRUE; /* thisisan empty case */

RR = get_resource_requirements(p);

S =TRUE;
For (i=0;i<r;i=1i+1)/* check every resource */
If (RAC <RR) or (DC;; < RR) then /* meet resource requirements and deficits*/
S =FALSE;
If j==c-1)then
move_pointer(RRPy, 0); /* move round-robin pointer to the first class */
Else
move_pointer(RRP,, j + 1); /* move round-robin pointer to the next class */
If (DCj <RR) then
QFi = TRUE; /* ready to increment deficit counter by quantum in the next cycle */

17

If (SF == TRUE) /* service the request out */
For (i=0;i<r;i=i+1)
DC;; = DG;; - RR; /* decrement deficit counters */
RAC; = RAG; - RR; /* decrement resource availability counters */
send_request(p);

Response processing module: on arrival of response q
For (i=0;i<r;i=i+1)

RR = get_resource_requirements(q);

RAC; = RAG; + RR; /* increment resource availability counters*/
send_response(q);

Figure 5. Pseudo Code of the mQoS scheduling algorithm.

Figure 6 exhibits an example of the mQoS scheduling. In this example, the
requests are classed into three service classes: class 1, class 2, and class 3. The ratio of
the service weights of the classes is set to 6:3:1, hence the quantum assigned to each
classis 60, 30 and 10, respectively. The server resourcesto be managed are CPU, disk
1/0, and bandwidth. Because there are three service classes and three server resources,
totally nine class queues exist: The initial stage Is shown in Figure 3. The main
schedule randomly triggers theZCPU sub-scheduler. The CPU sub-scheduler inspects
the HOL request of the class-1 queue and knows the resource requirements of this
request is (CPU: 6, disk I/O: 5, bandwidth: 3). The CPU sub-scheduler compares the
amounts of the resource requirements to the values of the RACs (CPU: 100, disk I/O:
100, bandwidth: 100) and concludes the server resources are enough. Then it
compares the resource requirements to the values of the DCs of the CPU, disk 1/0O,
and bandwidth for class 1 (CPU: 60, disk 1/0: 60, bandwidth: 60) and concludes the
value in DCs is enough. The CPU sub-scheduler now sends the request to the server
and decrements the DCs and RACs. The results of the decrements on the DCs and
RACs are shown in Figure 6(a). The main scheduler now triggers the bandwidth
sub-scheduler because the bandwidth resource is the most available. The bandwidth
sub-scheduler sends the HOL request of the class-1 queue to the server. The result

after this request scheduling is shown in Figure 6(b). Now the disk 1/O resource

18

becomes the most available, hence the main scheduler triggers the disk 1/0
sub-scheduler to send a request. Suppose the server has finished responding the first
request after the request sent by the disk 1/O sub-scheduler. The final values of the

RACs and DCs are shown in Figure 6(c).

Notation of resource requirements:
CPU, Disk 1/0, Bandwidth | Defioit Gounter
Class | [8.25] —> Class |
Class 2 [8.1.4]7.34] Class 2
Class 3 [7.3,2]9.56] Class 3
CPU Sub-scheduler
Sr—— Resource Availability Counter Recuest
Class 1 [2,83]354] — > Class 1 cPU[94 |
Class 2 [2,7,5]6.85] Class 2 Disk VO[95] >
Class 3 [162]39,2] Class 3 ——> Bandwidth| 97]
Disk 1/0O Sub-scheduler
Deficit Counter
Class 1 [41.8]7.609] —> Class |
Class 2 [1.37]3,27] Class 2
Class 3 [5,49]1.39] Class 3
Bandwidth Sub—scheduler Main Scheduler
Class Queue Request Scheduler
(a) The CPU sub-scheduler sends a request.
Notation of resource requirements:
CPU, Disk 1/0, Bandwidth | Defioit Gounter
Class | [8.25] —> Class |
Class 2 [8.1.4]7.34] Class 2
Class 3 [7.3,2]9.56] Class 3
CPU Sub-scheduler
Sr—— Resource Availability Counter Reguest
Class 1 [2,83]354] — > Class 1 cPu[87 |
Class 2 [2,7,5]6.85] Class 2 —— Disk/O[89 | >
Class 3 [1,6,2]3,9.2] Class 3 Bandwidth| 88 |
Disk 1/0O Sub-scheduler
Deficit Counter
Class I [4.1.8] — Class 1
Class 2 [1,37]327] Class 2
Class 3 [5,49]1.39] Class 3
Bandwidth Sub—scheduler Main Scheduler
Class Queue Request Scheduler

(b) The bandwidth sub-scheduler sends arequest.

19

Class 1

Class 2

Class 3

Class 1

Class 2

Class 3

Class 1

Class 2

Class 3

Notation of resource requirements:
CPU, Disk 1/0, Bandwidth |

[825]

[8.1.4]7.34]

[7.32]9586]

[283]

|2.7.5]6.85]

[1.6.2]39,2]

[41.8]

[1.37]3827]

[5.49]1,309]

Class Queue

Deficit Counter
—> Class 1 44

Class 2 30

Class 3
CPU Sub-scheduler

Deficit Counter

> Class 1 44

Class 2 30

Class 3
Disk 1/0 Sub-sche

o

uler

Deficit Counter
—> Class 1 44

Class 2 30
Class 3
Bandwidth Sub—scheduler

Resource Availability Counter

Disk 1/0
Bandwidth

Response

Main Scheduler

Request

»
»>

Request Scheduler

(c) The disk 1/0 sub-scheduler sends a request and then a response returns.

Figure 6. An example of the mQoS scheduling.

20

Chapter 4. Implementation and Evaluation

4.1 Implementation

The implementation of the mQoS gateway is based on the Squid package and
Linux operating system. The Squid package is modified to be capable of request
classification and request scheduling. The Squid is of a single-process event-driven
architecture, which uses the select() system call to smultaneously wait for events on
all connections being handled. When select() delivers one or more events, the main
loop of the Squid invokes handlers for each ready connection. The performance and
scalability of the mQoS gateway is good because it does not need to fork a child
process for each request. The server prober and resource monitor program are
implemented as the server daemons running onthe gateway and server, respectively.
When a request enters the gateway, the iptable, utility rewrites the destination IP
address and port number of this incoming.-packet to redirect it to Squid. Such
redirection mechanism makes the mQoS gateway works transparently to clients and
the server. The Squid gateway performs request classification and scheduling and
sends the request to the server. The Squid gateway then receives the response from the
server without caching the response and sends it to the client.

The original Squid is a caching proxy used to cache the responses from a Web
server. It is deployed between clients and servers to incept requests and responses.
The request and response processing of Squid are shown in Figure 7. When a client
issues a request, Squid reads the request, parses the request, and checks whether the
response of this request is already in the cache. If yes, Squid fetches the cached data
from the cache and sends it to the client. Otherwise, Squid prepares to forward the
reguest and sends the request to the server. When the server returns a response, Squid

reads the response, parses the response, and stores or replaces the response data in the

21

cache. Squid then prepares to forward the response and sends the response to the
client.

In the mQoS gateway, the request and response processing modules of the Squid
are modified to be capable of request classification and request scheduling. The cache
module of checking in the request direction and the module of cache storing or
replacing in the response direction are bypassed. Instead, the request classification is
performed before Squid prepares to forward a request. Afterward, the request
scheduling is performed before Squid sends a request to the server. When Squid
finishes reading and parsing a response, the request scheduler updates the resource

availability counters and then makes a preparation of forwarding the response to the

client.
|' _________ !
—» Readarequest | Parse the request Check the cache | Prepare to forward > Send the request to —»
| | the request the server
Classify the
request
Schedule the
request
Update the resource
availability counters
|' _________ a
-« Send the response | | Prepare to forward l Store or replace | Parse the responsc |4 Read a response |4—
to the client the response | the cache :

Figure 7. Implementation of the mQoS gateway on the Squid.

4.2 Evaluation

The effect of server resource management is discussed theoretically in Chapter 2.
Here the implementations of the nQoS, sQoS, and mQoS scheduling are practically
evaluated on server resource utilization, server throughput, and user-perceived latency.
The evaluation environment consists of a traffic generator, a gateway, and a Web

server, shown in Figure 8. Spirent’s Avalanche software and SmartBits platform are

22

used as the traffic generator. Avalanche emulates a large number of clients to issue
HTTP requests to the server and gather the statistics. The gateway performs the
traditional DRR scheduling to manage the CPU resource of the server for the sQoS
scheduling, or the mQoS scheduling algorithm to manage the CPU, disk 1/O, and
bandwidth resources. In the nQoS scheduling, the gateway only forwards requests and
responses between the traffic generator and the server without any processing. The
Web server is based on Apache and PHP,

There are three kinds of pages in the server, and different pages will lead to
different consumption of the multiple resources when being accessed. The mathematic
computation web pages compute equations and are CPU-intensive. The album web
pages access photograph database and are Disk 1/O-intensive. The chemical formula
displaying web pages parse the formula notation'to show the formula in 3D and are
Bandwidth-intensive. In the evaluation, three:service classes are defined in the QoS
policy table, and the ratio of the quantum.is set-to 6:3:1. The workload contains three
kinds of resource intensive requests, but' the traffic generator issues more
CPU-intensive requests than the other types of requests in order to test the capabilities
of the mQoS scheduling. The server as 640 MHz CPU and 128 MB RAM, and the

gateway has 700 MHz and 256 MB RAM. Avalanche keeps 600 outstanding requests

from clients.
. Requests Requests
Emulated Clients » mQoS Gateway > Web Server
(by Avalanche) |« (by Squid) < (by Apache)
Responses Responses

Figure 8. Evaluation environment

4.3 Differentiation on the Resource Utilization
Different request scheduling schemes result in different utilization of the server

resources, shown in Figure 9. In Figure 9(a), the nQoS scheduling, every class gets a

23

third of every server resource due to the resource contention. Although three resources
are well utilized, there is no differentiation on the resource utilization among three
classes. In Figure 9(b), the sQoS scheduling, the gateway schedules requests to well
utilize the CPU resource of the server and simultaneously to differentiate the resource
utilization to the ratio of 6:3:1. However, the gateway stops sending requests to the
server when the CPU resource of the server is well utilized, causing the waste of the
disk 1/0 and bandwidth resources of the server. In Figure 9(c), the mQoS scheduler
sends appropriate requests to the server to well utilize the three server resources.
Furthermore, the differentiation of the resource utilization is evidently observed from

that every server resource is utilized by the three classes according to the defined ratio

of 6:3:1.
nQoS Scheduling
100%
c 90% o
2 80% i
8 70% 1
£ 60% o
> 50% =
S 40% o
3 30% —
3 20% —
T 10% o
0% ; ;
CPU Disk 1/0 Bandwidth
[m Class 1 W Class 2 OClass 3 O Total|
(a) Resource utilization in the nQoS scheduling.
sQoS Scheduling mQoS Scheduling
100% 100% —
c 90% c 90%
2 80% 2 80%
8 70% — 8 70%
= 60% = 60%
> 50% > 50% —
S 40% S 40% —
3 30% 3 30% —
§ 20% § 20% lE — F
10% 10% —
0% | =l = 0% ‘
CPU Disk 1/0 Bandwidth CPU Disk 1/0 Bandwidth
[E Class 1 W Class 2 OClass 3 O Total [E Class 1 W Class 2 OClass 3 O Total
(b) Resource utilization in the sQoS (c) Resource utilization in the mQoS
scheduling. scheduling.

Figure 9. Server resource utilization of the nQoS, sQoS, and mQoS scheduling.

24

4.4 Differentiation on the Server Throughput

The amount of the utilization of every server resource will affect the server
throughput, as presented in Figure 10. In the nQoS and mQoS scheduling, the
maximum total throughput is close to 300 requests per second which is limited by the
server throughput. However, in the sQoS scheduling, due to the waste of the disk 1/0O
and bandwidth resources of the server, the total throughput is only 260 requests per
second. The mQoS scheduling improves the total throughput by 21% from sQoS.
Another finding is that there is no differentiation on the server throughput among the
three classes in the nQoS scheduling. However, the sQoS and mQoS scheduling
reveal the differentiation on the server throughput because they schedule requests for
different classes. The ratio of the server throughput of the three classes is close to
6:3:1.

In Figure 10, the server throughput of the nQoS-scheduling is close to that of the
mQoS scheduling. The server service rate-is-within limited, because of the limited
server resource. The workload in‘the nQoS and mQoS scheduling make the server
resource well utilized. In nQoS case, the server faces uncontrolled heavy request
arrival rate, whereas in mQoS case, the server faces the scheduled request arrival rate
which can well utilize the server. Although under these different situations, the server
throughput is still limited by the server service rate. Due to uncontrolled request
arrival rate, the user-perceived latency in nQoS is longer than that in mQoS. Figure 13

provides an evidence of this.

25

Server Throughput
350
< 300 — =
c .
9 250 T
Q
¢ 200 L
0 -
@ 150] —
=}
g 100 L
Bl Sl
O Il Il
nQoS sQoS mQoS
\D Class 1 W Class 2 [IClass 3 DTotal\

Figure 10. Server throughputs of the nQoS, sQoS, and mQoS scheduling.

The throughput improvement in the mQoS scheduling results from the fact that
the gateway sends appropriate requests to the server to effectively utilize the three
server resources. Figure 11 compares the types of outstanding requests between the
sQoS and mQoS scheduling. In Figure 11(a), the sQoS scheduling, the gateway does
not try to balance the utilization of the server resources. However in Figure 11(b), the
mQoS scheduling, the main scheduler takes’effect to'balance the utilization on every
resource. Also the three sub-schedulers differentiate the utilization of every resource

among the three classes with aratio closeto 6:3:1.

SQOS -+ Class 1, CPU -=Class 2, CPU -+ Class 3, CPU m QOS -=Class 1, CPU -=Class 2, CPU -=Class 3,CPU
h d | —-Class 1, Disk /0 —=Class 2, Disk /0 ——Class 3, Disk I/0 h | ——Class 1, Disk /0 —+Class 2, Disk /0 — Class 3, Disk I/0
Scheduling |- ciass 1. Bandwiath Class 2. Bandwidth + Class 3, Bangwiath Scheduling|-.- cjass 1. Bandwicth Class 2, Bandwicth + Class 3,8
60 60

a
o

a
o

o
o

40 \\
/\.\A X
20 / \'\ﬁ\.—/
\.AW

0 — e, :

N
o

Requests/Second
8
Requests/Second
8

=
o

o

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Time (Second) Time (Second)

(a) Types of outstanding requests sent by (b) Types of outstanding requests sent by
the sQoS scheduling the mQoS scheduling
Figure 11. Types of outstanding requests by the sQoS and mQoS scheduling.

26

4.5 Resource Sharing

In the evaluation of the differentiation on the resource utilization, the three
classes proportion the utilization of three server resources. If there are no request for a
class, the available resources should be shared among the active classes (i.e., those
having requests in the queues) in proportion. Figure 12 shows the situation of the
resource sharing. The clients of the class 3 stop sending requests to the server during
the evaluation. The server resources are then shared by the clients of the class 1 and
class 2. The observation of Figure 12 is similar to that of Figure 9. In the mQoS

scheduling, every server resource is utilized by the two active classes according the

ratio of 6:3.

nQoS Scheduling

100%
90%

80%

70%

60%

50%

40%

30%
20%

Resource Utilization

10%

0%

E

g

CPU

Disk‘1/O Bandwidth

[EClass 1 W Class 2 O Total]

(a) Resource sharing'in'the nQoS scheduling.

sQoS Scheduling

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Resource Utilization

L

Bandwidth

CPU Disk 1/0

[Class 1 W Class 2 O Total]

mQoS Scheduling

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Resource Utilization

CPU Disk 1/0 Bandwidth

[Class 1 W Class 2 O Total

(b) Resource sharing in the sQoS
scheduling.

(c) Resource sharing in the mQoS
scheduling.

Figure 12. Resource sharing of the nQoS, sQoS, and mQoS scheduling.

4.6 Differentiation on the User-perceived Latency

User-perceived latency is the time between issuing a request and recelving a

response back at the client. Figure 13 shows the user-perceived latency of the nQoS,

27

sQoS, and mQoS scheduling. For the nQoS scheduling, there is no differentiation on
the user-perceived latency among the three classes. Because the heavy workload leads
to requests queued on the server, the average latency is longer than mQoS scheduling.
For the sQoS scheduling, although the user-perceived latency is differentiated, the
average latency is longer. For the mQoS scheduling, even though the mQoS gateway
differentiates the server resources, the user-perceived latency is also differentiated but
the ratio is not exactly 6:3:1. Furthermore, the average user-perceived latency of the

mQoS scheduling is shorter than those of the nQoS and sQoS scheduling.

User-perceived Latency

~ 2,000 1

2
(3]
g 600
S 400
8 0

nQoS sQOS mQoS

‘D Class 1 B Class 2 O Class 3 DAverage‘

Figure 13. User-perceived latency of thenQoS, sQoS, and mQoS scheduling.

Decomposition of the User-Perceived Latency

The user-perceived latency in the mQoS scheduling mainly consists of the
gateway queuing time and server processing time. The gateway queuing time is the
time between accepting a request from the client and scheduling the request to the
server at the gateway. The server processing time is the time between accepting a
request from the gateway and sending the response to the client at the server. Figure
14 shows the decomposition of the user-perceived latency in the mQoS scheduling.
The server processing time is almost the same among the three classes, whereas the

gueuing time of every class is different. Different queuing times lead to the

28

differentiation on the user-perceived latency.

Decomposition of User-perceived Latency

1,200
1,100]
1,000
900
800
700
600
500

400
300
200

0

Class 1 Class 2 Class 3

Time (ms)

‘D Queuing Time M Server Processing Time O Total‘

Figure 14. Decomposition of the user-perceived latency in the mQoS scheduling.

29

Chapter 5. Conclusion and Future Work

Resource management on a Web server allows a Website operator to control the
utilization of the server resource and provide differentiated quality of service.
Traditional single-resource request scheduling cannot manage multiple server
resources well, that leads to resource wasting or overloading. This research presents a
multiple-resource request scheduling algorithm, call mQoS, deployed at the Website
gateway to provide service differentiation. The mQoS gateway consists of a server
prober, a request classifier, and a request scheduler. The server prober profiles the
resource consumption of every Web page and the capacity of every server resource.
The content-aware request classifier determines the resource tendency and the service
class of requests to classify themiinto different class queues. The mQoS scheduler
consists of several sub-schedulers and a main.scheduler. Each sub-scheduler manages
a server resource and differentiatesithe resource utilization among the classes. The
main scheduler checks the availability of the server resources and triggers an
appropriate sub-scheduler to balance the utilization among the resources. The mQoS
scheduling algorithm is work-conservative to the server to keep the server resources
well utilized. However, it is non-work-conservative to the class queues because the
scheduler remains idle when there are no enough resources for servicing a request.

The mQoS gateway is implemented on the Squid and Linux. The mQoS
scheduling algorithm is compared with no scheduling (nQoS) and single-resource
request scheduling (sQoS). The nQoS exposes no differentiation, and the sQoS
exposes the differentiation only on the utilization of one server resource. However, the
mQoS scheduling reveals the differentiation on the utilization of every server resource.
Because all server resources are well utilized in the mQoS scheduling, the total server

throughput is improved by 21%, compared with the sQoS scheduling. Moreover, the

30

user-perceived latency is also differentiated among the classes in the mQoS
scheduling due to the differentiation of the gateway queuing delay. In the evaluation,
the mQoS scheduling reveals its capabilities of differentiating the server resource
utilization, maximizing the server throughput, and sharing resource.

The presented mQoS scheduling algorithm is for one Web server. 1t should be
improved to support scheduling requests for a cluster of servers. The more complex
multiple-resource, multiple-server request scheduling algorithm can be implemented
on a server load balancer. The issues of service differentiation, resource utilization,
and server load balancing should be completely considered in the design of the new

algorithm.

31

References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

J. Almeida, M. Dabu, A. Manikutty, and P. Cao, “Providing Differentiated Levels
of Service in Web Content Hosting,” Proceedings of the 1st WWorkshop Internet
Server Performance, Jun. 1998.

L. Eggert and J. Heidemann, “Application-Level Differentiated Services for Web
Servers,” World Wide Web Journal, vol. 2, no. 3, pp. 133-142, Aug. 1999.

R. Pandey, J. F. Barnes, and R. Olsson, “Supporting Quality of Service in HTTP
Servers,” Proceedings of the 7th Annul ACM Symposium on Principles of
Distributed Computing, pp. 247-256, Jun. 1998.

V. Carddlini, E. Casalicchio, M: Colagjanni, and M. Mambelli, “Web Switch
Support for Differentiated Services,”>ACM Performance Evaluation Review, vol.
29, no. 2, pp. 14-19, Sep. 2001.

H. Zhu, H. Tang, and T. “¥ang, ‘“Demand-driven Service Differentiation in
Cluster-based Network Servers,” Proceedings of the 20th Conference of the
| EEE Communications Society, vol. 2, pp. 679-688, Apr. 2001.

K. Shen, H. Tang, and T. Yang, “A Flexible QoS Framework for Cluster-based
Network Services,” Proceedings of the 2002 USENIX Annual Technical
Conference, Dec. 2002.

S. Chandra, C. S. Ellis, and A. Vahdat, “Application-Level Differentiated
Multimedia Web Services Using Quality Aware Transcoding,” |EEE Journal on
SHlected Areas in Communications, vol. 18, no. 12, Dec. 2000.

C. C. Hung and L. Y. Hong, “Adaptive Proxy-based Content Transformation
Framework for the World-Wide Web,” Proceedings of the 4th International

Conference/Exhibition on High Performance Computing in the Asa-Pacific

32

Region, vol.2, pp. 747-750, May 2000.

[9] Y. Lu, T. Abdelzaher, C. Lu, and G Tao, “An Adaptive Control Framework for
QoS Guarantees and its Application to Differentiated Caching Services,”
Proceedings of the 10th International Workshop on Quality of Service, May
2002.

[10] W. Leinberger, G Karypis, and V. Kumar, “Job Scheduling in the presence of
Multiple Resource Requirements”, Proceedings of the 7th International
Conference on High Performance Networking and Computing, Apr.1999.

[11] W. Leinberger, G Karypis, and V. Kumar, “Load Balancing Across
Near-Homogeneous Multi-Resource Servers’, Proceedings of the 9th
Heterogeneous Computing Wbrkshop, pp. 60-71, May 2000.

[12] C. Lee, J. Lehoczky, D. Siewiorek, R. Rakumar and J. Hansen, “A Scalable
Solution to the Multi-Resource QoS Prablem,” Proceedings of the 20th IEEE
Real-Time Systems Symposium, Dec..1999.

[13] M. E. Crovella, R. Frangioso ‘and-M. Harchol-Balter, “Connection Scheduling in
Web Servers” Proceedings of the 1999 USENIX Symposium on Internet
Technologies and System, Oct. 1999.

[14] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster Reserves: A Mechanism for
Resource Management in Cluster-based Network Servers,” Proceedings of the
S GMETRICS Conference on Measurement and Modeling of Computer Systems,
pp. 90-101, Jun. 2000.

[15] E. Casalicchio and M. Colajanni, “A Client-Aware Dispatching Algorithm for
Web Clusters Providing Multiple Services,” Proceedings of the 10th
International World Wide Web Conference, pp. 535-544, May 2001.

[16] M. Shreedhar and G Varghese, “Efficient Fair Queuing Using Deficit Round-

Robin,” IEEE/ACM Transaction on Networking, vol. 4, issue 3, pp. 375-385, Jun.

33

1996.

[17] X. Chen, P. Mohapatra, and H. Chen, “An Admission Control Scheme for
Predictable Server Response Time for Web Accesses,” Proceedings of the 10th
World Wide Web Conference, pp. 545-554, May 2001.

[18] K. Li, and S. Jamin, “A Measure-Based Admission Control Web
server,“ Proceedings of the 9th Annual Joint Conference of the IEEE Computer
and Communications Societies, vol. 2, pp. 651-659, Mar. 2002.

[19] L. Cherkasova and P. Phaal, “Session-Based Admission Control: A Mechanism
for Peak Load Management of Commercial Web Sites,” |IEEE Transactions on
Computers, vol. 51, issue 6, pp. 669-685, Jun. 2002.

[20] S. Elnikety, J. Treacy, E. Nahum, and W. Zwaenepol, “A Method for Transparent
Admission Control and Request Scheduling in E-Commerce Web Sites,”
Proceedings of the 13th International Ybrld Wide Web Conference, pp. 276-286,
May 2004.

[21] N. Bhatti and R. Friedrich, “Web_ Server Support for Tiered Services,” |EEE
Network, vol. 13, issue 5, pp. 64-71, Sep. 1999.

[22] V. Kanodia and E. W. Knightyly, “Ensuring Latency Targets in Multiclass Web
Servers,” |EEE Transaction on Parallel and Distributed Systems, vol. 14, no. 1,

pp. 84-93, Jan. 2003.

