
 1

一個獨特的閘道器架構用來管理使用動態連接

埠的點對點連線

A Novel Gateway Architecture for Managing Dynamic Port

Peer-to-Peer Traffic

研 究 生：蔡孟甫

指導教授：林盈達 教授

 2

一個獨特的閘道器架構用來管理使用動態連接埠的點對點連線

A Novel Gateway Architecture for Managing Dynamic Port
Peer-to-Peer traffic

研 究 生： 蔡孟甫 Student : Meng-Fu Tsai

指導教授： 林盈達 Advisor : Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2005

HsinChu, Taiwan, Republic of China

中華民國九十四年六月

 3

 4

A Novel Gateway Architecture for Managing

Dynamic Port Peer-to-Peer Traffic

Student: Meng-Fu Tsai Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

Nation Chiao Tung University

Abstract

Conventional port-redirect proxy architecture can not manage peer-to-peer (P2P)

traffic which might run over dynamic ports instead of fixed well-known ports. We

propose a novel gateway architecture for five management objectives: (1) connection

classification of P2P applications, (2) filtering undesirable P2P traffic, (3) virus

scanning on P2P shared files, (4) filtering and auditing of chatting messages and

transferred files and (5) bandwidth control of the P2P traffic. This architecture

performs connection classification and complex content management in the kernel

and user space, respectively. The packets of identified connections are queued in the

kernel. There are two packet queues in the kernel. A multi-threaded proxy program

cooperates with the kernel to manipulate packets in theses two packet queues

synchronously to solve the packet out-of-order problem and the head-of-line blocking

problem. The external benchmarking reveals that the throughput of this architecture

can achieve 84.83 Mb/s. But if enable the virus scanning function, the throughput

decreases to 20.52 Mb/s. The internal benchmarking reveals that the time spent on

virus scanning is 200 ~ 800 times than other steps. Comparing with port-redirect

proxy, the impact of connection classification and redirection is about 40Mb/s.

Keywords: peer-to-peer, out-of-order, head-of-line, content filtering, proxy

 5

Contents
List of Figures...6

List of Tables...6

Chapter 1 Introduction..7

2.1 Related Works ..10
2.2 Problem Statement...11
2.3 P2P and IM Applications Overview ...11

Chapter 3 System Architecture Design ..13

3.1 Solution Ideas ...13
3.2 In-kernel Connection Classification and Marking13
3.3 In-kernel Packet Queuing and Redirect Mechanism14
3.4 In-daemon Packet Pre-processing ..15
3.5 In-daemon Application Protocol Processing..16

3.5.1 Filtering and Auditing of Chatting Messages and Transferred
Files..16
3.5.2 Virus Scanning for Shared Files ..17

3.6 Final Proxy Architecture Design...18

Chapter 4 System Implementation...22

4.1 Selected OS and Packages ...22
4.2 System Implementation Details ..22

4.2.1 Application filtering and bandwidth control22
4.2.2 ip_queue and libipq ..23
4.2.3 Multi-threaded proxy ...23

Chapter 5 Performance Evaluation ...26

5.1 Benchmarking Environment...26
5.2 Throughput and CPU Utilization ...26
5.3 Internal Benchmarking ...29
5.4 Buffer Size...30
5.5 Comparison with Conventional Proxy Architecture31

Chapter 6 Conclusions and Future Research..33

References...35

 6

List of Figures
FIGURE 1: PACKET QUEUING AND REDIRECT MECHANISM...14
FIGURE 2: HEAD-OF-LINE BLOCKING PROBLEM ..18
FIGURE 3: THE FLOW CHART OF MAIN THREAD ...19
FIGURE 4: THE FLOW CHART OF AN APPLICATION THREAD. ..20
FIGURE 5: SYSTEM IMPLEMENTATION ARCHITECTURE ...24
FIGURE 6: BENCHMARKING ENVIRONMENT ...26
FIGURE 7: MAXIMUM THROUGHPUT ..28
FIGURE 8: CPU UTILIZATION ...29
FIGURE 9: INTERNAL BENCHMARK RESULT ..30
FIGURE 10: THROUGHPUT INFLUENCE WITH DIFFERENT BUFFER SIZE ...31
FIGURE 11: MAXIMUM THROUGHPUT OF P2P PROXY AND PORT REDIRECT METHOD32
FIGURE 12: KERNEL CPU UTILIZATION OF P2P PROXY AND PORT REDIRECT METHOD.....................32

List of Tables
TABLE 1: THE CHARACTERISTICS OF P2P AND IM APPLICATIONS...12
TABLE 2: MANAGEMENT OBJECTIVES FOR EACH APPLICATION PROTOCOL12
TABLE 3: THE DIFFERENCE IN PROXY ARCHITECTURE ..21
TABLE 4: SELECTED PACKAGES AND MODULES ..22

 7

Chapter 1 Introduction
Over the last few years, peer-to-peer (P2P) file sharing has grown astonishingly

in the Internet. System administrators used to manage Internet traffic by identifying it

according to fixed well-known port numbers. The management includes blocking

traffic of specific applications or redirecting the connections to the proxy that

performs various kinds of content filtering such as virus scanning. Nonetheless, the

identification for P2P traffic is non-trivial because most P2P applications may use

dynamic ports, i.e. dynamically selected ports rather than fixed well-known ports.

The P2P traffic can be identified either by examining packet payloads [1] or

analyzing the connection pattern at the transport layer [2] . Both approaches demand a

connection to be established between two peers before the identification. But for P2P

management, how to redirect the connection from the kernel to an application proxy

to perform content filtering after the connection has been established is rarely

addressed in both research and industry fields to the best of our knowledge.

This work designs a novel gateway architecture to manage P2P traffic. The

management objectives in the architecture cover (1) connection classification, or

identification of P2P applications, (2) filtering undesirable P2P applications, (3) virus

scanning for P2P shared files, (4) filtering and auditing of chatting messages and

transferred files and (5) bandwidth control of the P2P traffic.

The L7-filter [3] serves as a connection classifier that identifies P2P applications

according to the signatures in the application-layer messages. The identification is

executed in the kernel space because it is a simple signature matching from the first

few bytes. Objectives (2) and (5) follow immediately by referring to the identification

results. However, Objectives (3) and (4) typically involve more complex content

processing and filtering from data assembled from packets; thus they are better

 8

executed in the user space. The latter requires connection redirection from the kernel

to the user space. This work designs a new mechanism to address this problem in the

software architecture.

A connection is marked after being classified. Only the packets of the marked

connection are queued in the kernel. The queued packets are then duplicated to the

user space, where the proxy program performs the necessary content filtering to

decide whether to pass or drop the packets in the kernel queue. Because the proxy

receives raw packets from the kernel, there might be packet out-of-order problem and

the proxy should perform TCP reassembly. Since the proxy handles queued packets

sequentially, the time-consuming content filtering may causes head-of-line blocking

in the kernel queue, where the packets of other connections are queued behind the

packet being examined in the proxy. This work thus proposes a mechanism which

uses two packet queues to handle the foregoing situations. The entire mechanism of

this architecture is called P2P Proxy Mechanism and the proxy program is called P2P

Proxy.

P2P Proxy Mechanism is implemented in Linux kernel 2.6.8. A modified queue

handler, ip_queue, queues the packets with two packet queues and then the library

libipq [4] are modified to let the proxy manipulate packets in theses two kernel

queues. The proxy is multi-threaded. The main thread handles packet arrivals, and the

others handle specific application protocols and perform content filtering.

 In this work, we want to answer the following questions: (1) What is the

overhead of P2P Proxy Mechanism compared with that of the simple port-redirect

architecture? (2) What is the main bottleneck of this system? (3) What is the

difference of performance between P2P Proxy Mechanism and virus scanning?

 The rest of this work is organized as follows. Chapter 2 surveys present P2P

applications and lists our management objects. Chapter 3 presents our ideas and

 9

system architecture. The implementation details, including the selected packages and

thread implementation details are illustrated in Chapter 4. Chapter 5 discusses the

performance of our system. We conclude the study in Chapter 6.

 10

Chapter 2 Survey and Problem Statement

2.1 Related Works

 Research about P2P traffic mostly emphasizes on connection classification to

date. Lots of them only consider the traffic on fixed port [5] [6] [7] . Recent works try

to identify P2P traffic which uses dynamic ports. Two major approaches are

examining the bit strings in the packet payloads [1] and analyzing the P2P flows at the

transport layer according to the connection patterns of P2P Network [2] . Both

demand a connection to be established between two peers before the identification.

The former can identify the P2P protocol by matching its signatures, but it can do that

only if the signatures are known. The latter can identify unknown P2P traffic, but it

cannot decide immediately whether this connection is some P2P since it needs the

statistics of flows for a while. This method cannot point out exactly what application

the connection belongs to.

 Some open source packages, such as L7-filter [3] and IPP2P [8] , are also

developed to identify P2P traffic. They are both classifiers that inspect the packet

payload in the Linux Netfilter [9] subsystem. The L7-filter uses Netfilter’s

connection-tracking module and only checks the first eight packets for the application

data when a connection is established. If the application data matches the signature, it

marks the entire connection as identified by the connection-tracking module. Wile

IPP2P checks every packet, this is because it does not adopt connection-tracking

module. The other difference is that the signatures of IPP2P are hard-coded but

L7-filter can load signatures from files. Therefore, inspecting fewer packets and

dynamically loading signatures gives L7-filter higher performance and better

scalability than P2PADM. This work presents a complete architecture integrated with

the L7 filter for various kinds of P2P management objectives.

 11

For proxy architecture research, there are some research for improving proxy

performance, little research has been done on topic development in improvement of

TCP splicing for application proxy performance with kernel support[10] [11] . There

is also study in reducing overheads to minimize system costs [12]

2.2 Problem Statement

 After P2P connection classification, blocking undesirable applications and

bandwidth control on specific applications can be enforced, which all are done within

the kernel. However, there is still no content management processing for the P2P

traffic. The difficulty is how to redirect the connection from the kernel to an

application proxy to perform content filtering after the connection has been

established and classified in the kernel. Way to solve this problem and what kinds of

management objectives can be reached are described in this work.

2.3 P2P and IM Applications Overview

Popular P2P applications include eDonkey[13] , BitTorrent [14] , FastTrack[15]

Gnutella[16] , etc. Besides, file transfer in the Instant Messenger (IM), say MSN[17] ,

also works in the P2P mode. Most P2P applications use dynamic ports to circumvent

filtering firewalls. Table 1 summarizes the characteristics of these applications.

These P2P applications have two modes when transferring files. One is

sequential transfer, which means a peer receives a file sequentially from another peer.

The other is segmented transfer, which means that the segments of a file can be

received out-of-order. System administrators may want to scan the transferred file for

viruses and record what files are transferred. The data cannot be segmented

out-of-order or encrypted in order to perform virus-scanning or recording. According

to Table 1, these two actions can only be done for FastTrack, MSNFTP and Gnutella.

If the file name is visible, filtering the file name which contains specific keyword is

 12

possible. Enterprises may not want employees to leak out confidential information by

a chatting system like the IM. Therefore, filtering the sensitive keywords or recording

the message is needed. Table 2 lists the possible management objectives for each

application protocol. The proposed architecture intends to implement these

management objectives.

Table 1: The characteristics of P2P and IM applications.
 Application Protocol FastTrack eDonkey BitTorrent Gnutella MSN MSNFTP*

Is file transfer sequential? Yes No No Yes N/A Yes

Protocol message

encryption

Yes No No No No No

Data transfer encryption No No No No No No

Can use dynamic port? Yes Yes Yes No No Yes

File name visibility? Maybe No Yes Yes Yes No

Default ports 1214 4661-4665 6881-6889 6346-6347 1863 No default

*MSNFTP is a file transfer protocol of MSN. N/A = not available

Table 2: Management objectives for each application protocol
 Application Protocol FastTrack eDonkey BitTorrent Gnutella MSN MSNFTP

Connection classification O O O O O O

Filtering undesirable applications O O O O O O

Virus scanning O X X O N/A O

Filtering and auditing of chatting

messages and transferred files

O X X O O O

Bandwidth control O O O O O O

 13

Chapter 3 System Architecture Design

3.1 Solution Ideas

Because P2P connection classification needs to examine application messages,

the TCP connection between two peers must be established first. However,

conventional port redirection method can not be applied to a connection already

established. But since all packets between two peers must pass through our gateway, it

is possible to perform content management by handling these packets. We want the

kernel to get the packets and then cooperate with the proxy for further processing.

This work proposes a novel architecture to enable classification as well as

management on these P2P traffic. The steps can be high level described as follows: (1)

Use the L7-filter to perform connection classification and marking. (2) Queue the

packets in the kernel and wait the verdict from the user-space proxy. (3) The proxy

handles packet classification and out-of-order packets. (4) The proxy decides the

verdict according to the management objectives. (5) The proxy solves the head-of-line

blocking and virus signature segmentation.

3.2 In-kernel Connection Classification and Marking

 We adopt the L7-filter to perform connection classification in kernel. It collects

at most the first eight packets to reassemble an application message and do signature

matching. If the connection is identified by the L7-filter, it will be marked by a

predefined application number. The kernel can filter the undesirable applications and

do bandwidth control according to this predefined application number. Complex

content filtering functions such as virus scanning should be processed in the user

space. How to redirect packets to the user space is described in section 3.3. But the

L7-filter needs to collect enough data to perform signature matching for connection

classification. It collects the application data of first eight packets into a buffer. After

 14

successful matching, the first few packets might have already passed. These packets

may contain important protocol information such as the file name or the file size. And

the proxy, however, may need this information to take the corresponding action. To

solve this problem, after successful matching, a specific packet is created in the kernel

and the application data collected by the L7-filter will be inserted to this packet. This

specific packet will only be passed to the proxy rather than being transmitted out.

When the proxy gets this specific packet, it will not lose any application data in the

previous packets.

3.3 In-kernel Packet Queuing and Redirect Mechanism

 In kernel, two packet queues Q1 and Q2 are created to manage the P2P traffic.

All packets identified by the L7-filter are queued in Q1. Those unidentified packets

are just passing through or processed by the filtering firewall. Then the queued

packets are copied to the user space and waits for the verdict of the proxy. The proxy

processes and sets verdict for those packets queued in Q1 sequentially. The verdict

from the proxy may be ACCEPT, DROP or QUEUE. ACCEPT will let the packet pass

and DROP will drop the packet. If the packet can not be decided to be passed or

dropped at that time, the verdict QUEUE will be set and the packet will be moved

from Q1 to Q2. How to handle the packets in Q2 and move them back to Q1 will be

described in later sections. Figure 1 illustrates this mechanism. How proxy makes the

verdict is described in section 3.4 and 3.5.

Q
U

EU
E

Figure 1: Packet queuing and redirect mechanism

 15

3.4 In-daemon Packet Pre-processing

 When the proxy gets the packet from Q1, three tasks must be done before

handling the specific application protocol. First the packet checksum is examined. If

the checksum is in error, the proxy does not process this packet and just tells the

kernel to pass this packet instead of dropping this packet. This is because the

connection reliability is the responsibility of two peers, not this gateway. The second

is packet classification, i.e. identify what connection this packet belongs to, and the

third is handling out-of-order packets. The former is needed because the kernel only

uses one queue to queue the packets of all marked connections, which means that this

queue contains packets of various connections. Therefore, the proxy needs to identify

which connection a packet belongs to. Packet classification is performed based on the

five tuples, i.e., Source IP address, source port, destination IP address, destination port

and protocol identifier.

After packet classification, packets may still be out-of-order. This is because the

redirected packets do not pass through the TCP stack. To handle this problem, the

proxy calculates the next correct sequence number in advance and checks the

sequence number of the handled packet. If the sequence number of the packet is less

then the correct sequence number, this means that it is a duplicated packet and is just

passed without any processing. If the sequence number of the packet is larger than the

correct sequence number, this means the packet should wait until the appearances of

all packets with the sequence number smaller than this one. Therefore, we do not

process this packet and tell the kernel to move this packet from Q1 to Q2. If the

sequence number of the packet is just correct, this packet is processed and the

out-or-order packets in Q2, if any, will be moved to Q1. The packet out-of-order

problem is solved in this way.

 16

 We only take care of the packet ordering problem instead of implementing the

entire TCP stack. This is because the TCP reliability, again, is the responsibility of two

peers. Peers should handle packet checksum error and duplicated packets. If there are

lost packets, the peer should retransmit them. What we care is only the contiguous

application data. Therefore, if the packet out-of-order problem is solved, then the TCP

reassembly is trivial.

3.5 In-daemon Application Protocol Processing

 After getting the packet with the correct sequence number, the last thing to do is

to handle the application protocol. Processing which application protocol is according

the packet mark number. There are two common management objectives to achieve.

The first is filtering and auditing of the chatting messages and transferred file. The

second is virus scanning on shared files. Other management objectives may exist, but

are not addressed here. Since our management objectives mostly are related to file

transfer, we observe the procedure of content processing for file transfer. In our

observation, a connection has three states when transferring file: (1) Initial state:

waiting for the file transfer request and response, (2) Receiving state: receiving the

transferred data, (3) Processing state: The proxy performs the content filtering on the

receiving data. Theses three connection states will be used in the later sections.

3.5.1 Filtering and Auditing of Chatting Messages and Transferred

Files.

 After the pre-processing tasks, the packet is checked based on the corresponding

application protocol to examine if the chatting message or file transfer request

contains the specific keywords. If a specific keyword is found, the proxy tells the

kernel to drop the packet and send the RST packet to the source peer to break down

the connection. Otherwise the proxy tells the kernel to pass this packet and recording

 17

the chatting message or transferred file name. If this packet is a file transfer request

and there is no specific keyword in the file name, the connection is marked to the

receiving state. For the packets coming later, we just record the transferred data

segments into a file and do virus scanning until the file transfer is completed.

3.5.2 Virus Scanning for Shared Files

For virus scanning, a buffer is allocated for each connection. Instead of doing

virus scanning for each packet, virus scanning is only performed when enough data

has been collected. There are two reasons. First, a virus signature might appear

across the boundary of two consecutive data segments or it could be longer than a

single segment. Second, the overhead of calling the virus scanning function is huge,

too many virus scans on small segments size is inefficient. Hence, when the proxy

gets a packet, first it checks if the buffer is full or if this is the last data segment of

the transferred file. If neither one happens, the data segment in the packet payload is

saved into the buffer. Then the proxy tells the kernel to pass this packet. If any

foregoing situation happens, the proxy performs virus scanning on the buffer. If the

virus is found, the proxy tells the kernel to drop this packet and send the RST packet

to the peer to break down the connection. Dropping this packet can ruin the whole

file. If no virus found, we clean the buffer and also let the packet pass.

The above method has two problems described as follows: the first is the

head-of-line blocking and the other is the segmented virus signature. Two

mechanisms are proposed to avoid these problems.

Head-of-line blocking

The head-of-line blocking happens because virus scanning is time-consuming.

Other packets queued in Q1 can not be handled until virus scanning on its buffer is

finished. This will limit the throughput of the entire system. Figure 2(a) shows the

packet processing time of this situation. To solve this problem, when virus scanning

 18

is needed, the connection is marked to the processing state and another thread is

called to perform virus scanning. Then the proxy tells the kernel to move subsequent

packet arrivals of this connection from Q1 to Q2. Therefore we can immediately

handle the packets of other connections in Q1. When virus scanning is finished, if

virus is found, all queued packets of this connection in Q2 will be dropped,

otherwise theses queued packets are moved back from Q2 to Q1. By this mechanism,

the head-of-line blocking problem is avoided. Figure 2 (b) shows the packet

processing time without handling head-of-ling blocking. Obviously, (b) achieves

better concurrency between connections.

Figure 2: Head-of-line blocking problem

Segmented virus signature

Because each time only a block of the entire transferred file is scanned, it is

possible that a virus signature may be segmented into two data blocks. To solve this

problem, when the virus scanning finishes, the tail data of length S will be kept in

the buffer instead of cleaning the entire buffer, where S is the max length of virus

signatures. The subsequent data segments are appended to the buffer. By this

mechanism, we can still detect segmented virus signatures.

3.6 Final Proxy Architecture Design

 19

 We integrate all the above the ideas into a complete proxy. The entire mechanism

is called P2P Proxy Mechanism. In summary, the kernel queues the packets of the

classified connections. In the proxy, there is a main thread to get packets from Q1 in

the kernel and perform the pre-processing tasks. We must keep in mind that Q1

contains the packets of various connections which we want to manage and the proxy

uses the application number marked on the packet to identify which application this

packets belongs to. Then the main thread calls a specific application thread to handle

the tasks related to the application protocol according to the application number

mentioned previously. Each application thread is responsible for a specific connection.

Figure 3 illustrates the entire flow chart of the main thread. After performing the

pre-processing tasks described in section 3.4, the main thread checks the connection

state. If the connection state is in the processing state, it needs to solve the

head-of-line blocking problem. Otherwise it calls the specific application thread to

handle the packet.

Figure 3: The flow chart of main thread

 20

Figure 4 illustrates the entire flow chart of an application thread. The application

thread handles the application protocol and decides to pass or drop the packet. If it

needs to perform time-consuming content filtering, such as virus scanning, it should

mark this connection in processing state and set the verdict to QUEUE. Then the main

thread will star to process the next packet. This will avoid the head-of-line blocking.

How we implement this system is described in Chapter 4.

Figure 4: The flow chart of an application thread.

 Table 3 lists the differences between the architectures of a conventional proxy

and our P2P proxy. Four major differences are (1) the connection classification

method, (2) the traffic redirection mechanism, (3) whether proxy handles packet

reassembly itself and (4)

 21

Table 3: The difference in proxy architecture

 Conventional proxy P2P Proxy

Connection classification By port number By application signature

Traffic redirection Two connections set up

between the proxy program

and either end of peer

Only one connection between the two

peers. The proxy interferes the

connection and captures the packets to

the user space for verdict.

Whether to handle

reassembly itself

Reassembled from the

TCP/IP stack

Reassembly itself, and then analyze the

reassembled data

Synchronization between

proxy and the kernel

None Use two packet queues in the kernel to

synchronize.

 22

Chapter 4 System Implementation

4.1 Selected OS and Packages

 P2P Proxy Mechanism is implemented on Linux 2.6.5 and the proxy program is

called P2P Proxy. The reason of selecting Linux as our platform is because that

L7-filter depends on Netfilter that can only run on Linux. The selected packages,

libraries and module are listed in Table 3. How we patch ip_queue and libipq are

described in section 4.2.2. And how we implement P2P Proxy is described in section

4.2.3.

Table 4: Selected packages and modules

Name Type Description Pacthes

L7-filter Match module of
Netfiler

Perform connection classification After signature matching,
send a specific packet to user
space program

ip_queue Kernel module of
Linux

Packet queuing handler Another packet queue is
added

Libipq Library Let user-space programs to get
packets from the queue in
in_queue and set verdict of packets

Add a function to control two
packet queues in ip_queue

Libclamav Library Virus scanning engine of
ClamAV[18]

None

TC Package Used for bandwidth control None

4.2 System Implementation Details

The following sections describe the implementation details of this system. We

develop our system by integrating the foregoing packages and modifying some of

them.

4.2.1 Application filtering and bandwidth control

 The L7-filter is used to identify the specific application traffic that we want to

manage. The identified application traffic is marked by Netfilter with a predefined

application number. This number is recorded in the sk_buff, which is the data

 23

structure used to represent the packet in Linux. According to this number, filtering an

undesirable application can be enforced by using Netfilter to drop the packets with the

specific number. Bandwidth control is also based on this application number. We

configure TC to classify traffic according to this number. Each application number

represents a traffic class and the connections of the same application number belong

to the same class. Each class only occupies the limited bandwidth.

4.2.2 ip_queue and libipq

 To perform more complex content filter in the user space, modifying ip_queue

and libipq are needed to let the user-space proxy to communicate with the kernel. In

this work, there are tight communications between the kernel and the proxy. The

kernel module ip_queue and the library libipq are modified to let the proxy control

packets in the kernel. The original ip_quque is a queue handler with only one queue to

queue packets and the original libipq is a library for the proxy to set verdict to the

packets queued in the ip_queue module. Another queue is added to ip_queue in our

modification and libipq is also modified to control packets between these two queues.

These two components are modified and the proxy uses them to control packets.

4.2.3 Multi-threaded Proxy

 P2P Proxy is multi-threaded. First, this system is to run on an embedded gateway.

A multi-process architecture would occupy too many system resources. Second, the

internal process communication (IPC) can be reduced. This is due to the shared

memory space between threads. Those shared data can be access directly without

redundant IPC.

Figure 5 illustrates the complete implementation architecture. The main thread

receives queued packets from Q1. Each application module uses a thread pool to

handle application protocol. The main thread and all application modules share the

data space. The following items are recorded in the shared data space.

 24

1. The configuration of each application, such as which functions should be

turned on and the keywords that should be filtered.

2. A connection hash table to save information of the application to which

each connection belongs. The information recorded for each connection

includes next sequence number, current state and buffer usage information.

Kernel

User Space
Application 1 module
1. handle protocol
2. filtering and auditing
3. virus scan

libipq

TCP/IP Stack

2. Packet classfication

3. Handle TCP Sequence Packet Handler

Session Session Session

Application 1 Data

Session Session Session

Application 2 Data

Application 2 module

L7-Filter
Q1 is for queuing marked packets

Q2 for user space problem
controling

Data access
Thread

Packet of App 1

Queue

Libary

Packet of App 2

Packets Packets

‧‧‧ ‧‧‧ Buffer

1. handle protocol
2. filtering and auditing
3. virus scan

‧‧‧

‧‧

1. Check checksum

Figure 5: System implementation architecture

When the main thread uses libipq to get the packets identified by L7-filter, it

performs the packet preprocessing tasks described in section 3.4. To improve the

performance, we use the socket pair to calculate the hash value to find the correct

connection in the connection hash table. After packet preprocessing, the main thread

updates connection information such as the sequence number, virus scan buffer and

state. Then it calls a thread from the corresponding application-specific thread pool to

handle the application protocol. The flow chart in section 3.6 describes the procedure

in this application thread. Since main thread and the application threads both access

the shared data space, a mutex lock mechanism must be implemented to avoid the

 25

race condition. In this work, three application modules are implemented: HTTP,

FastTrack and MSN.

 26

Chapter 5 Performance Evaluation

5.1 Benchmarking Environment

In this chapter, we perform various benchmarks on this system. Our system is

installed on a PC with Pentium!!! 1G CPU, 512MB SDRAM and 20GB hard disk.

Figure 6 illustrates the benchmark environment. In this environment, there are two

HTTP clients and three Web servers. Each client creates one hundred threads and each

thread downloads a 2MB files from theses three Web servers. This means that these

two clients download totally 4GB data from the Web Servers through our system.

1000Mb Swtich
Gateway

Pentium III 1G Hz
512MB RAM

Web Server
P4 2.8G Hz

512 MB RAM
AMD Althon 2600+

512 MB RAM

Web Servers Gateway
Clients

Figure 6: Benchmarking environment

There are two reasons why we use HTTP traffic instead of real P2P traffic to

benchmark our system. First and the most important reason is that there are no such

benchmark tools which can generate P2P traffic. The second is that many P2P

applications like FastTrack and Gnutella use HTTP protocol to transfer files.

Therefore, using HTTP traffic to simulate P2P traffic is acceptable.

5.2 Throughput and CPU Utilization

 Throughput and CPU utilization are two important performance measures of a

gateway system. Our system integrates many components. The following

configurations are compared to understand the impact on performance from each

 27

component.

(1) NAT: System with pure NAT function.

(2) NAT+libipq: Besides NAT, every packet is queued in the kernel and duplicated to

the proxy. The proxy just tells the kernel to pass the packets without any further

processing.

(3) NAT+libipq+L7: Besides NAT+libipq, L7-filter is enabled with 20 rules. The

entire process is similar to NAT+libipq. The only difference is that only HTTP are

processed. This configuration is used to assess the performance impact of

L7-filter.

(4) P2P Proxy + Filter: P2P Proxy is our system, which integrates NAT+libipq+L7

and implements the system described in Chapter 4. This configuration enables

filtering transferred files according to the file name.

(5) P2P Proxy + Log File: P2P Proxy with the auditing function on transferred files. It

records the transferred files into the file system.

(6) P2P Proxy + Virus Scan: P2P Proxy with the virus scanning function on

transferred files.

(7) P2P Proxy + Filter + Log File + Virus Scan: P2P Proxy with all the above

functions enabled.

 Figure 7 and 8 show the throughput and CPU utilization, respectively, under all

configurations. Figure 8 also plots the entire CPU usage but also shows the CPU

usage of the kernel. In a gigabit network environment, pure NAT can reach the

throughput about 280.04Mb/s. However, NAT+libipq reduce the throughput to

159.37Mb/s and the CPU has been fully used. This means copying packets from the

kernel to the user space is a significant overhead. If the L7-filter is turned on, the

throughput decreases obviously to 91.34Mbps and the CPU utilization most spent in

the kernel. Enable filtering function does not influence the throughput too much. This

 28

is because the HTTP protocol is simple. But for those complex application protocols

like MSN which need more processing, such as base64 [19] encoding and decoding,

we believe that the influence on performance would be more obvious. The auditing

functions does not influence the throughput much either. This result surprises us

because what we believe is that the file access may cause large overhead. Therefore,

we test the disk speed and the result shows that the speed of disk can reach 472Mb/s

under sequential writing. This speed is much higher than the maximum throughput of

our system, which explains why the influence is marginal. If virus scanning is enabled,

the throughput decreases dramatically to 20.52Mbps and the proxy dominates about

70% of CPU utilization. Both L7-filter and virus scanning influence the throughput

apparently and the key part of both is string matching. Hence, string matching is

considered as the major bottleneck of this system.

280.04

159.37

91.34 84.83
71.5

20.54 18.83

0

50

100

150

200

250

300

N
A

T

N
A

T
+

li
bi

pq

N
A

T
+

L
7+

li
bi

pq

P
2P

P
ro

xy
 +

F
IL

T
E

R

P
2P

P
ro

xy
 +

L
og

 F
il

e

P
2P

P
ro

xy
 +

V
ir

us
 S

ca
n

P
2P

P
ro

xy
 +

V
ir

us
+

L
og

F
IL

E
+

F
il

te
r

T
hr

ou
gh

pu
t

(M
b/

s)

Figure 7: Maximum Throughput

 29

0
10
20
30
40
50
60
70
80
90

100

N
A

T

N
A

T
+

li
bi

pq

N
A

T
+

L
7+

li
bi

pq

P
2P

P
ro

xy
 +

F
IL

T
E

R

P
2P

P
ro

xy
 +

L
og

 F
il

e

P
2P

P
ro

xy
 +

V
ir

us
 S

ca
n

P
2P

P
ro

xy
 +

V
ir

us
+

L
og

F
IL

E
+

F
il

te
r

C
P

U
 U

ti
li

za
ti

on
(%

)

Kernel CPU Utilization Total CPU Utilization

Figure 8: CPU Utilization

5.3 Internal Benchmarking

To further identify the bottlenecks of this system, we examine the execution time

of each step in the entire packet processing flow with all functions turned on.

Measuring execution time is performed by calculating the difference of time-stamps

taken by the gettimeofday() system call before and after the code segments. Figure 9

(a) and (b) illustrate the basic packet processing steps with handling and without

handling the head-of-line blocking problem. In the basic case where head-of-line

might happen, M1 to M9 are processed sequentially. Handling the head-of-line

blocking increases the throughput by a marginal 2Mb/s. Why the improving of

throughput is marginal is because M7 dominates the throughput. In our observation,

under our benchmarking environment, most connections are needed to perform virus

scanning simultaneously. This means most packets are needed to wait the finish of

virus scanning and only fewer packets can be processed during the period of virus

scanning. Figure 9(c) presents the execution time in percentage. The result confirms

that virus scanning is the key bottleneck since the time spent on virus scan is 200~800

times of other steps.

 30

Figure 9: Internal benchmark result

5.4 Buffer Size

 In this system, a buffer is allocated for each connection and virus scanning is

only performed when the buffer is full. A small buffer takes less time to perform virus

scanning, but it needs to be scanned frequently at the cost of calling more function

calls. We evaluate the benchmark on throughput, in Figure 10, with buffer size form

1KB to 120KB to find out the best buffer size. Figure 10 shows the throughput with

various buffer sizes. Choosing the small buffer size will involve too many virus

scanning function calls. This will increase the system overhead and decrease the

throughput. However, choosing a big buffer size will occupy too much memory and

increase the packet queuing time when performing virus scanning. This may let the

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M1: Copy packet from kernel to user space (30ms)

M2: Check checksum (8ms)

M3: Packet classification (5ms)

M4: Handle TCP sequence problem (20ms)

M5: Handle HTTP Protocol (30ms)

M6: Maintain virus buffer (6ms)

M7: Virus scan 20K (6306ms)

M8: Log file (30ms)

M9: Proxy sets verdict (7ms)

(a)

(c)

M1

M
3 M4 M5 M

6

M8

M
9

M
2

M7

M1

M
3

M
2 M4

M
9 M1

M
3 M4 M5

M
9

M
2

M
6

Kernel

P2PADM

Thread

Connection 1 Connection 1 Connection 2

M7

(b)

 31

sending think that TCP congestion happens and slow down the transmission.

Therefore, considering the memory size and the throughput, buffer size 20KB~40Kb

is considered the best choice herein.

10

12

14

16

18

20

22

1K 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K 110K 120K

Buffer Size (Bytes)

T
hr

ou
gh

pu
t M

b/
s

Figure 10: Throughput influence with different buffer size

5.5 Comparison with Conventional Proxy Architecture

 This work also implements a simple HTTP proxy which uses the port redirection

method to perform the same content management objectives like P2P Proxy. The only

difference between P2P Proxy and this HTTP proxy is the traffic redirection

mechanism. Theses two systems are compared, in Figure 11 and Figure 12, with

functions turned on individually. Why the figure 12 only shows the kernel CPU

utilization is because the CPU has been fully used on each situation. The port

redirection method has higher throughput than P2P Proxy. Except virus scanning, the

difference in throughput is about 40Mb/s, mostly due to connection classification. But

if virus scanning is enabled, the difference is tiny. This means that the overhead of

virus scanning is far larger than the connection classification. We suggest using port

redirection method to manage fixed-port traffic and apply our mechanism to handle

dynamic-port traffic.

 32

0

20

40

60

80

100

120

140

Forward only Filter Log Virus Scan Virus+Log

FILE+Filter

T
hr

ou
gh

pu
t

(M
b/

s)

P2P Proxy Port Redirect

Figure 11: Maximum throughput of P2P Proxy and port redirect method

0

10

20

30

40

50

60

70

80

90

100

Forward only Filter Log Virus Scan Virus+Log

FILE+Filter

K
er

ne
l

C
P

U
 U

ti
li

za
ti

on
%

P2P Proxy Port Redirect

Figure 12: Kernel CPU utilization of P2P Proxy and port redirect method

 33

Chapter 6 Conclusions and Future Research
 This work presents a novel gateway architecture for managing peer-to-peer

traffic with dynamic ports. The main challenge in this system is how to redirect the

already established connection from the kernel to the user space to perform complex

content filtering. We propose a P2P Proxy Mechanism which uses two packet queues

in the kernel and a multiple-threaded user-space proxy called P2P Proxy to solve this

problem. P2P Proxy uses modified libipq to communicate with the kernel and control

packets between these two packet queues. P2P Proxy also solves the out-of-order

problem of TCP sequence, the head of line blocking problem and the segmented virus

signature problem.

 The external benchmarking results indicate that virus-scanning influences

the performance most. With and without enabling virus-scanning, the throughput can

achieve 20.52MB/s and 84.83Mb/s, respectively. From the internal benchmarking, we

confirm that string matching is the key bottleneck of this system since the time spent

on string matching is 200~800 times of other steps. Comparing with port-redirect

proxy, the connection classification and redirection impact the throughput about

40Mb/s and increase the CPU utilization too. For virus scanning, we also argue that

considering memory size and throughput, the medium-size buffer size 20K-40K is

suggested.

Since the string matching of content processing is the main bottleneck, to scale

up the process, the string matching operations can be offloaded to an accelerator or

ASIC. After comparing with port-redirect proxy, we suggest to use hybrid architecture

which integrates port-redirect proxy and our system to handle both fix-port traffic and

dynamic-port traffic. But how to let these two architectures to cooperate well is still a

challenge. Besides these, as we know, there are many attack traffic exist on the

 34

Internet. What kinds of attack will impact our system and how to avoid them is still a

problem. Our future work will focus on these issues.

 35

References

[1] S. Sen, O. Spatscheck, and D. Wang. Accurate, Scalable In-Network

Identification of P2P Traffic Using Application Signatures. In Proceedings

International WWW Conference, New York, USA, 2004.

[2] Thomas karagiannis, Andre Broido, Michalis Faloutsos and Kc claffy. Transport

Layer Identification of P2P Traffic. In ACM. SIGCOMM/USENIX Internet

Measurement Conference (IMC 2004), Italy, October, 2004

[3] L7-filter. http://l7-filter.sourceforge.net/.

[4] Libipq. http://www.netfilter.org/documentation/FAQ/netfilter-faq-4.html

[5] A. Gerber, J. Houle, H. Nguyen, M. Roughan, and S. Sen. P2P The Gorilla in the

Cable. In National Cable & Telecommunications Association (NCTA) 2003

National Show, Chicago, IL, June 2003

[6] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy. An

Analysis of Internet Content Delivery Systems. In Proceedings of the 5th

Symposium on Operating Systems Design and Implementation, 2002.

[7] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks. In

Proceedings of ACM SIGCOMM Internet Measurement Workshop, Marseilles,

France, November 2002

[8] IPP2P. http://rnvs.informatik.uni-leipzig.de/ipp2p/index_en.html.

[9] Netfilter. http://www.netfilter.org/.

[10] O. Spatscheck, J, Hansen, J, Hartman, and L, Peterson, “Optimizing TCP

forwarder performance,”, Transactions on Networking, 8(2):146--157. IEEE;

ACM, April 2000.

[11] D. A. Maltz and P. Bhagwat, "TCP Splicing for Application Layer Proxy

Performance," IBM Research Report RC 21139, March 1998.

 36

[12] D. C. Schmidt, T. Harrison, and N. Pryce, "Thread-Specific Storage -- An Object

Behavioral Pattern for Accessing perThread State Efficiently," in The 4 Pattern

Languages of Programming Conference (Washington University technical report

#WUCS-97-34), September 1997.

[13] eDonkey. http://www.edonkey2000.com/.

[14] BitTorrent. http://bitconjurer.org/BitTorrent/.

[15] FastTrack. http://www.slyck.com/ft.php

[16] Guntella. http://www.gnutella.com/.

[17] MSN. http://www.msn.com/.

[18] ClamAV. http://www.clamav.net/

[19] Base64. http://www.ietf.org/rfc/rfc3548.txt?number=3548

