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Abstract 

Conventional port-redirect proxy architecture can not manage peer-to-peer (P2P) 

traffic which might run over dynamic ports instead of fixed well-known ports. We 

propose a novel gateway architecture for five management objectives: (1) connection 

classification of P2P applications, (2) filtering undesirable P2P traffic, (3) virus 

scanning on P2P shared files, (4) filtering and auditing of chatting messages and 

transferred files and (5) bandwidth control of the P2P traffic. This architecture 

performs connection classification and complex content management in the kernel 

and user space, respectively. The packets of identified connections are queued in the 

kernel. There are two packet queues in the kernel. A multi-threaded proxy program 

cooperates with the kernel to manipulate packets in theses two packet queues 

synchronously to solve the packet out-of-order problem and the head-of-line blocking 

problem. The external benchmarking reveals that the throughput of this architecture 

can achieve 84.83 Mb/s. But if enable the virus scanning function, the throughput 

decreases to 20.52 Mb/s. The internal benchmarking reveals that the time spent on 

virus scanning is 200 ~ 800 times than other steps. Comparing with port-redirect 

proxy, the impact of connection classification and redirection is about 40Mb/s. 

Keywords: peer-to-peer, out-of-order, head-of-line, content filtering, proxy 
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Chapter 1 Introduction 
Over the last few years, peer-to-peer (P2P) file sharing has grown astonishingly 

in the Internet. System administrators used to manage Internet traffic by identifying it 

according to fixed well-known port numbers. The management includes blocking 

traffic of specific applications or redirecting the connections to the proxy that 

performs various kinds of content filtering such as virus scanning. Nonetheless, the 

identification for P2P traffic is non-trivial because most P2P applications may use 

dynamic ports, i.e. dynamically selected ports rather than fixed well-known ports.  

The P2P traffic can be identified either by examining packet payloads [1] or 

analyzing the connection pattern at the transport layer [2] . Both approaches demand a 

connection to be established between two peers before the identification. But for P2P 

management, how to redirect the connection from the kernel to an application proxy 

to perform content filtering after the connection has been established is rarely 

addressed in both research and industry fields to the best of our knowledge. 

This work designs a novel gateway architecture to manage P2P traffic. The 

management objectives in the architecture cover (1) connection classification, or 

identification of P2P applications, (2) filtering undesirable P2P applications, (3) virus 

scanning for P2P shared files, (4) filtering and auditing of chatting messages and 

transferred files and (5) bandwidth control of the P2P traffic. 

The L7-filter [3] serves as a connection classifier that identifies P2P applications 

according to the signatures in the application-layer messages. The identification is 

executed in the kernel space because it is a simple signature matching from the first 

few bytes. Objectives (2) and (5) follow immediately by referring to the identification 

results. However, Objectives (3) and (4) typically involve more complex content 

processing and filtering from data assembled from packets; thus they are better 
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executed in the user space. The latter requires connection redirection from the kernel 

to the user space. This work designs a new mechanism to address this problem in the 

software architecture.  

A connection is marked after being classified. Only the packets of the marked 

connection are queued in the kernel. The queued packets are then duplicated to the 

user space, where the proxy program performs the necessary content filtering to 

decide whether to pass or drop the packets in the kernel queue. Because the proxy 

receives raw packets from the kernel, there might be packet out-of-order problem and 

the proxy should perform TCP reassembly. Since the proxy handles queued packets 

sequentially, the time-consuming content filtering may causes head-of-line blocking 

in the kernel queue, where the packets of other connections are queued behind the 

packet being examined in the proxy. This work thus proposes a mechanism which 

uses two packet queues to handle the foregoing situations. The entire mechanism of 

this architecture is called P2P Proxy Mechanism and the proxy program is called P2P 

Proxy.  

P2P Proxy Mechanism is implemented in Linux kernel 2.6.8. A modified queue 

handler, ip_queue, queues the packets with two packet queues and then the library 

libipq [4] are modified to let the proxy manipulate packets in theses two kernel 

queues. The proxy is multi-threaded. The main thread handles packet arrivals, and the 

others handle specific application protocols and perform content filtering.  

 In this work, we want to answer the following questions: (1) What is the 

overhead of P2P Proxy Mechanism compared with that of the simple port-redirect 

architecture? (2) What is the main bottleneck of this system? (3) What is the 

difference of performance between P2P Proxy Mechanism and virus scanning? 

 The rest of this work is organized as follows. Chapter 2 surveys present P2P 

applications and lists our management objects. Chapter 3 presents our ideas and 
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system architecture. The implementation details, including the selected packages and 

thread implementation details are illustrated in Chapter 4. Chapter 5 discusses the 

performance of our system. We conclude the study in Chapter 6.
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Chapter 2 Survey and Problem Statement 

2.1 Related Works 

 Research about P2P traffic mostly emphasizes on connection classification to 

date. Lots of them only consider the traffic on fixed port [5] [6] [7] . Recent works try 

to identify P2P traffic which uses dynamic ports. Two major approaches are 

examining the bit strings in the packet payloads [1] and analyzing the P2P flows at the 

transport layer according to the connection patterns of P2P Network [2] . Both 

demand a connection to be established between two peers before the identification. 

The former can identify the P2P protocol by matching its signatures, but it can do that 

only if the signatures are known. The latter can identify unknown P2P traffic, but it 

cannot decide immediately whether this connection is some P2P since it needs the 

statistics of flows for a while. This method cannot point out exactly what application 

the connection belongs to.  

 Some open source packages, such as L7-filter [3] and IPP2P [8] , are also 

developed to identify P2P traffic. They are both classifiers that inspect the packet 

payload in the Linux Netfilter [9] subsystem. The L7-filter uses Netfilter’s 

connection-tracking module and only checks the first eight packets for the application 

data when a connection is established. If the application data matches the signature, it 

marks the entire connection as identified by the connection-tracking module. Wile 

IPP2P checks every packet, this is because it does not adopt connection-tracking 

module. The other difference is that the signatures of IPP2P are hard-coded but 

L7-filter can load signatures from files. Therefore, inspecting fewer packets and 

dynamically loading signatures gives L7-filter higher performance and better 

scalability than P2PADM. This work presents a complete architecture integrated with 

the L7 filter for various kinds of P2P management objectives. 
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For proxy architecture research, there are some research for improving proxy 

performance, little research has been done on topic development in improvement of 

TCP splicing for application proxy performance with kernel support[10] [11] . There 

is also study in reducing overheads to minimize system costs [12]  

2.2 Problem Statement 

 After P2P connection classification, blocking undesirable applications and 

bandwidth control on specific applications can be enforced, which all are done within 

the kernel. However, there is still no content management processing for the P2P 

traffic. The difficulty is how to redirect the connection from the kernel to an 

application proxy to perform content filtering after the connection has been 

established and classified in the kernel. Way to solve this problem and what kinds of 

management objectives can be reached are described in this work. 

2.3 P2P and IM Applications Overview 

Popular P2P applications include eDonkey[13] , BitTorrent [14] , FastTrack[15]  

Gnutella[16] , etc. Besides, file transfer in the Instant Messenger (IM), say MSN[17] , 

also works in the P2P mode. Most P2P applications use dynamic ports to circumvent 

filtering firewalls. Table 1 summarizes the characteristics of these applications. 

These P2P applications have two modes when transferring files. One is 

sequential transfer, which means a peer receives a file sequentially from another peer. 

The other is segmented transfer, which means that the segments of a file can be 

received out-of-order. System administrators may want to scan the transferred file for 

viruses and record what files are transferred. The data cannot be segmented 

out-of-order or encrypted in order to perform virus-scanning or recording. According 

to Table 1, these two actions can only be done for FastTrack, MSNFTP and Gnutella. 

If the file name is visible, filtering the file name which contains specific keyword is 
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possible. Enterprises may not want employees to leak out confidential information by 

a chatting system like the IM. Therefore, filtering the sensitive keywords or recording 

the message is needed. Table 2 lists the possible management objectives for each 

application protocol. The proposed architecture intends to implement these 

management objectives. 

Table 1: The characteristics of P2P and IM applications. 
 Application Protocol FastTrack eDonkey BitTorrent Gnutella MSN MSNFTP*

Is file transfer sequential? Yes No No Yes N/A Yes 

Protocol message 

encryption 

Yes No No No No No 

Data transfer encryption No No No No No No 

Can use dynamic port? Yes Yes Yes No No Yes 

File name visibility? Maybe No Yes Yes Yes No 

Default ports 1214 4661-4665 6881-6889 6346-6347 1863 No default

*MSNFTP is a file transfer protocol of MSN. N/A = not available 

 

Table 2: Management objectives for each application protocol 
 Application Protocol FastTrack eDonkey BitTorrent Gnutella MSN MSNFTP

Connection classification O O O O O O 

Filtering undesirable applications O O O O O O 

Virus scanning O X X O N/A O 

Filtering and auditing of chatting 

messages and transferred files 

O X X O O O 

Bandwidth control O O O O O O 
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Chapter 3 System Architecture Design 

3.1 Solution Ideas 

Because P2P connection classification needs to examine application messages, 

the TCP connection between two peers must be established first. However, 

conventional port redirection method can not be applied to a connection already 

established. But since all packets between two peers must pass through our gateway, it 

is possible to perform content management by handling these packets. We want the 

kernel to get the packets and then cooperate with the proxy for further processing. 

This work proposes a novel architecture to enable classification as well as 

management on these P2P traffic. The steps can be high level described as follows: (1) 

Use the L7-filter to perform connection classification and marking. (2) Queue the 

packets in the kernel and wait the verdict from the user-space proxy. (3) The proxy 

handles packet classification and out-of-order packets. (4) The proxy decides the 

verdict according to the management objectives. (5) The proxy solves the head-of-line 

blocking and virus signature segmentation. 

3.2 In-kernel Connection Classification and Marking 

 We adopt the L7-filter to perform connection classification in kernel. It collects 

at most the first eight packets to reassemble an application message and do signature 

matching. If the connection is identified by the L7-filter, it will be marked by a 

predefined application number. The kernel can filter the undesirable applications and 

do bandwidth control according to this predefined application number. Complex 

content filtering functions such as virus scanning should be processed in the user 

space. How to redirect packets to the user space is described in section 3.3. But the 

L7-filter needs to collect enough data to perform signature matching for connection 

classification. It collects the application data of first eight packets into a buffer. After 
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successful matching, the first few packets might have already passed. These packets 

may contain important protocol information such as the file name or the file size. And 

the proxy, however, may need this information to take the corresponding action. To 

solve this problem, after successful matching, a specific packet is created in the kernel 

and the application data collected by the L7-filter will be inserted to this packet. This 

specific packet will only be passed to the proxy rather than being transmitted out. 

When the proxy gets this specific packet, it will not lose any application data in the 

previous packets. 

3.3 In-kernel Packet Queuing and Redirect Mechanism 

 In kernel, two packet queues Q1 and Q2 are created to manage the P2P traffic. 

All packets identified by the L7-filter are queued in Q1. Those unidentified packets 

are just passing through or processed by the filtering firewall. Then the queued 

packets are copied to the user space and waits for the verdict of the proxy. The proxy 

processes and sets verdict for those packets queued in Q1 sequentially. The verdict 

from the proxy may be ACCEPT, DROP or QUEUE. ACCEPT will let the packet pass 

and DROP will drop the packet. If the packet can not be decided to be passed or 

dropped at that time, the verdict QUEUE will be set and the packet will be moved 

from Q1 to Q2. How to handle the packets in Q2 and move them back to Q1 will be 

described in later sections. Figure 1 illustrates this mechanism. How proxy makes the 

verdict is described in section 3.4 and 3.5. 

Q
U

EU
E

 
Figure 1: Packet queuing and redirect mechanism 



 15

3.4 In-daemon Packet Pre-processing 

 When the proxy gets the packet from Q1, three tasks must be done before 

handling the specific application protocol. First the packet checksum is examined. If 

the checksum is in error, the proxy does not process this packet and just tells the 

kernel to pass this packet instead of dropping this packet. This is because the 

connection reliability is the responsibility of two peers, not this gateway. The second 

is packet classification, i.e. identify what connection this packet belongs to, and the 

third is handling out-of-order packets. The former is needed because the kernel only 

uses one queue to queue the packets of all marked connections, which means that this 

queue contains packets of various connections. Therefore, the proxy needs to identify 

which connection a packet belongs to. Packet classification is performed based on the 

five tuples, i.e., Source IP address, source port, destination IP address, destination port 

and protocol identifier. 

After packet classification, packets may still be out-of-order. This is because the 

redirected packets do not pass through the TCP stack. To handle this problem, the 

proxy calculates the next correct sequence number in advance and checks the 

sequence number of the handled packet. If the sequence number of the packet is less 

then the correct sequence number, this means that it is a duplicated packet and is just 

passed without any processing. If the sequence number of the packet is larger than the 

correct sequence number, this means the packet should wait until the appearances of 

all packets with the sequence number smaller than this one. Therefore, we do not 

process this packet and tell the kernel to move this packet from Q1 to Q2. If the 

sequence number of the packet is just correct, this packet is processed and the 

out-or-order packets in Q2, if any, will be moved to Q1. The packet out-of-order 

problem is solved in this way. 
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 We only take care of the packet ordering problem instead of implementing the 

entire TCP stack. This is because the TCP reliability, again, is the responsibility of two 

peers. Peers should handle packet checksum error and duplicated packets. If there are 

lost packets, the peer should retransmit them. What we care is only the contiguous 

application data. Therefore, if the packet out-of-order problem is solved, then the TCP 

reassembly is trivial. 

3.5 In-daemon Application Protocol Processing 

 After getting the packet with the correct sequence number, the last thing to do is 

to handle the application protocol. Processing which application protocol is according 

the packet mark number. There are two common management objectives to achieve. 

The first is filtering and auditing of the chatting messages and transferred file. The 

second is virus scanning on shared files. Other management objectives may exist, but 

are not addressed here. Since our management objectives mostly are related to file 

transfer, we observe the procedure of content processing for file transfer. In our 

observation, a connection has three states when transferring file: (1) Initial state: 

waiting for the file transfer request and response, (2) Receiving state: receiving the 

transferred data, (3) Processing state: The proxy performs the content filtering on the 

receiving data. Theses three connection states will be used in the later sections. 

3.5.1 Filtering and Auditing of Chatting Messages and Transferred 

Files. 

 After the pre-processing tasks, the packet is checked based on the corresponding 

application protocol to examine if the chatting message or file transfer request 

contains the specific keywords. If a specific keyword is found, the proxy tells the 

kernel to drop the packet and send the RST packet to the source peer to break down 

the connection. Otherwise the proxy tells the kernel to pass this packet and recording 
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the chatting message or transferred file name. If this packet is a file transfer request 

and there is no specific keyword in the file name, the connection is marked to the 

receiving state. For the packets coming later, we just record the transferred data 

segments into a file and do virus scanning until the file transfer is completed.  

3.5.2 Virus Scanning for Shared Files 

For virus scanning, a buffer is allocated for each connection. Instead of doing 

virus scanning for each packet, virus scanning is only performed when enough data 

has been collected. There are two reasons. First, a virus signature might appear 

across the boundary of two consecutive data segments or it could be longer than a 

single segment. Second, the overhead of calling the virus scanning function is huge, 

too many virus scans on small segments size is inefficient. Hence, when the proxy 

gets a packet, first it checks if the buffer is full or if this is the last data segment of 

the transferred file. If neither one happens, the data segment in the packet payload is 

saved into the buffer. Then the proxy tells the kernel to pass this packet. If any 

foregoing situation happens, the proxy performs virus scanning on the buffer. If the 

virus is found, the proxy tells the kernel to drop this packet and send the RST packet 

to the peer to break down the connection. Dropping this packet can ruin the whole 

file. If no virus found, we clean the buffer and also let the packet pass. 

The above method has two problems described as follows: the first is the 

head-of-line blocking and the other is the segmented virus signature. Two 

mechanisms are proposed to avoid these problems. 

Head-of-line blocking 

The head-of-line blocking happens because virus scanning is time-consuming.  

Other packets queued in Q1 can not be handled until virus scanning on its buffer is 

finished. This will limit the throughput of the entire system. Figure 2(a) shows the 

packet processing time of this situation. To solve this problem, when virus scanning 
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is needed, the connection is marked to the processing state and another thread is 

called to perform virus scanning. Then the proxy tells the kernel to move subsequent 

packet arrivals of this connection from Q1 to Q2. Therefore we can immediately 

handle the packets of other connections in Q1. When virus scanning is finished, if 

virus is found, all queued packets of this connection in Q2 will be dropped, 

otherwise theses queued packets are moved back from Q2 to Q1. By this mechanism, 

the head-of-line blocking problem is avoided. Figure 2 (b) shows the packet 

processing time without handling head-of-ling blocking. Obviously, (b) achieves 

better concurrency between connections. 

 

Figure 2: Head-of-line blocking problem 

Segmented virus signature 

Because each time only a block of the entire transferred file is scanned, it is 

possible that a virus signature may be segmented into two data blocks. To solve this 

problem, when the virus scanning finishes, the tail data of length S will be kept in 

the buffer instead of cleaning the entire buffer, where S is the max length of virus 

signatures. The subsequent data segments are appended to the buffer. By this 

mechanism, we can still detect segmented virus signatures. 

3.6 Final Proxy Architecture Design 
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 We integrate all the above the ideas into a complete proxy. The entire mechanism 

is called P2P Proxy Mechanism. In summary, the kernel queues the packets of the 

classified connections. In the proxy, there is a main thread to get packets from Q1 in 

the kernel and perform the pre-processing tasks. We must keep in mind that Q1 

contains the packets of various connections which we want to manage and the proxy 

uses the application number marked on the packet to identify which application this 

packets belongs to. Then the main thread calls a specific application thread to handle 

the tasks related to the application protocol according to the application number 

mentioned previously. Each application thread is responsible for a specific connection. 

Figure 3 illustrates the entire flow chart of the main thread. After performing the 

pre-processing tasks described in section 3.4, the main thread checks the connection 

state. If the connection state is in the processing state, it needs to solve the 

head-of-line blocking problem. Otherwise it calls the specific application thread to 

handle the packet.  

 
Figure 3: The flow chart of main thread 
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Figure 4 illustrates the entire flow chart of an application thread. The application 

thread handles the application protocol and decides to pass or drop the packet. If it 

needs to perform time-consuming content filtering, such as virus scanning, it should 

mark this connection in processing state and set the verdict to QUEUE. Then the main 

thread will star to process the next packet. This will avoid the head-of-line blocking. 

How we implement this system is described in Chapter 4. 

 
Figure 4: The flow chart of an application thread. 

  

 Table 3 lists the differences between the architectures of a conventional proxy 

and our P2P proxy. Four major differences are (1) the connection classification 

method, (2) the traffic redirection mechanism, (3) whether proxy handles packet 

reassembly itself and (4)  
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Table 3: The difference in proxy architecture 

 Conventional proxy P2P Proxy 

Connection classification By port number By application signature 

Traffic redirection Two connections set up 

between the proxy program 

and either end of peer 

Only one connection between the two 

peers. The proxy interferes the 

connection and captures the packets to 

the user space for verdict. 

Whether to handle 

reassembly itself 

Reassembled from the 

TCP/IP stack 

Reassembly itself, and then analyze the 

reassembled data 

Synchronization between 

proxy and the kernel 

None Use two packet queues in the kernel to 

synchronize. 
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Chapter 4 System Implementation 

4.1 Selected OS and Packages 

 P2P Proxy Mechanism is implemented on Linux 2.6.5 and the proxy program is 

called P2P Proxy. The reason of selecting Linux as our platform is because that 

L7-filter depends on Netfilter that can only run on Linux. The selected packages, 

libraries and module are listed in Table 3. How we patch ip_queue and libipq are 

described in section 4.2.2. And how we implement P2P Proxy is described in section 

4.2.3. 

Table 4: Selected packages and modules 

Name Type Description Pacthes 

L7-filter Match module of 
Netfiler 

Perform connection classification After signature matching, 
send a specific packet to user 
space program 

ip_queue Kernel module of 
Linux 

Packet queuing handler Another packet queue is 
added 

Libipq Library Let user-space programs to get 
packets from the queue in 
in_queue and set verdict of packets

Add a function to control two 
packet queues in ip_queue 

Libclamav Library Virus scanning engine of 
ClamAV[18]  

None 

TC Package Used for bandwidth control None 

4.2 System Implementation Details 

The following sections describe the implementation details of this system. We 

develop our system by integrating the foregoing packages and modifying some of 

them.  

4.2.1 Application filtering and bandwidth control 

 The L7-filter is used to identify the specific application traffic that we want to 

manage. The identified application traffic is marked by Netfilter with a predefined 

application number. This number is recorded in the sk_buff, which is the data 
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structure used to represent the packet in Linux. According to this number, filtering an 

undesirable application can be enforced by using Netfilter to drop the packets with the 

specific number. Bandwidth control is also based on this application number. We 

configure TC to classify traffic according to this number. Each application number 

represents a traffic class and the connections of the same application number belong 

to the same class. Each class only occupies the limited bandwidth.  

4.2.2 ip_queue and libipq 

 To perform more complex content filter in the user space, modifying ip_queue 

and libipq are needed to let the user-space proxy to communicate with the kernel. In 

this work, there are tight communications between the kernel and the proxy. The 

kernel module ip_queue and the library libipq are modified to let the proxy control 

packets in the kernel. The original ip_quque is a queue handler with only one queue to 

queue packets and the original libipq is a library for the proxy to set verdict to the 

packets queued in the ip_queue module. Another queue is added to ip_queue in our 

modification and libipq is also modified to control packets between these two queues. 

These two components are modified and the proxy uses them to control packets. 

4.2.3 Multi-threaded Proxy 

 P2P Proxy is multi-threaded. First, this system is to run on an embedded gateway. 

A multi-process architecture would occupy too many system resources. Second, the 

internal process communication (IPC) can be reduced. This is due to the shared 

memory space between threads. Those shared data can be access directly without 

redundant IPC.  

Figure 5 illustrates the complete implementation architecture. The main thread 

receives queued packets from Q1. Each application module uses a thread pool to 

handle application protocol. The main thread and all application modules share the 

data space. The following items are recorded in the shared data space. 
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1. The configuration of each application, such as which functions should be 

turned on and the keywords that should be filtered. 

2. A connection hash table to save information of the application to which 

each connection belongs. The information recorded for each connection 

includes next sequence number, current state and buffer usage information. 

Kernel

User Space
Application 1 module
1. handle protocol
2. filtering and auditing
3. virus scan

libipq

TCP/IP Stack

2. Packet classfication

3. Handle TCP Sequence Packet Handler

Session Session Session

Application 1 Data

Session Session Session

Application 2 Data

Application 2 module

L7-Filter
Q1 is for queuing marked packets

Q2 for user space problem 
controling

Data access
Thread

Packet of App 1

Queue

Libary

Packet of App 2

Packets Packets

‧‧‧ ‧‧‧ Buffer

1. handle protocol
2. filtering and auditing
3. virus scan

‧‧‧

‧‧

1. Check checksum

 
Figure 5: System implementation architecture 

When the main thread uses libipq to get the packets identified by L7-filter, it 

performs the packet preprocessing tasks described in section 3.4. To improve the 

performance, we use the socket pair to calculate the hash value to find the correct 

connection in the connection hash table. After packet preprocessing, the main thread 

updates connection information such as the sequence number, virus scan buffer and 

state. Then it calls a thread from the corresponding application-specific thread pool to 

handle the application protocol. The flow chart in section 3.6 describes the procedure 

in this application thread. Since main thread and the application threads both access 

the shared data space, a mutex lock mechanism must be implemented to avoid the 
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race condition. In this work, three application modules are implemented: HTTP, 

FastTrack and MSN. 
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Chapter 5 Performance Evaluation 

5.1 Benchmarking Environment 

In this chapter, we perform various benchmarks on this system. Our system is 

installed on a PC with Pentium!!! 1G CPU, 512MB SDRAM and 20GB hard disk. 

Figure 6 illustrates the benchmark environment. In this environment, there are two 

HTTP clients and three Web servers. Each client creates one hundred threads and each 

thread downloads a 2MB files from theses three Web servers. This means that these 

two clients download totally 4GB data from the Web Servers through our system.  

1000Mb Swtich
Gateway

Pentium III 1G Hz
512MB RAM

Web Server
P4 2.8G Hz

512 MB RAM
AMD Althon 2600+

512 MB RAM

Web Servers Gateway
Clients

 
Figure 6: Benchmarking environment 

There are two reasons why we use HTTP traffic instead of real P2P traffic to 

benchmark our system. First and the most important reason is that there are no such 

benchmark tools which can generate P2P traffic. The second is that many P2P 

applications like FastTrack and Gnutella use HTTP protocol to transfer files. 

Therefore, using HTTP traffic to simulate P2P traffic is acceptable.  

 

5.2 Throughput and CPU Utilization  

 Throughput and CPU utilization are two important performance measures of a 

gateway system. Our system integrates many components. The following 

configurations are compared to understand the impact on performance from each 
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component. 

(1) NAT: System with pure NAT function. 

(2) NAT+libipq: Besides NAT, every packet is queued in the kernel and duplicated to 

the proxy. The proxy just tells the kernel to pass the packets without any further 

processing. 

(3) NAT+libipq+L7: Besides NAT+libipq, L7-filter is enabled with 20 rules. The 

entire process is similar to NAT+libipq. The only difference is that only HTTP are 

processed. This configuration is used to assess the performance impact of 

L7-filter. 

(4) P2P Proxy + Filter: P2P Proxy is our system, which integrates NAT+libipq+L7 

and implements the system described in Chapter 4. This configuration enables 

filtering transferred files according to the file name. 

(5) P2P Proxy + Log File: P2P Proxy with the auditing function on transferred files. It 

records the transferred files into the file system. 

(6) P2P Proxy + Virus Scan: P2P Proxy with the virus scanning function on 

transferred files. 

(7) P2P Proxy + Filter + Log File + Virus Scan: P2P Proxy with all the above 

functions enabled. 

 Figure 7 and 8 show the throughput and CPU utilization, respectively, under all 

configurations. Figure 8 also plots the entire CPU usage but also shows the CPU 

usage of the kernel. In a gigabit network environment, pure NAT can reach the 

throughput about 280.04Mb/s. However, NAT+libipq reduce the throughput to 

159.37Mb/s and the CPU has been fully used. This means copying packets from the 

kernel to the user space is a significant overhead. If the L7-filter is turned on, the 

throughput decreases obviously to 91.34Mbps and the CPU utilization most spent in 

the kernel. Enable filtering function does not influence the throughput too much. This 
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is because the HTTP protocol is simple. But for those complex application protocols 

like MSN which need more processing, such as base64 [19] encoding and decoding, 

we believe that the influence on performance would be more obvious. The auditing 

functions does not influence the throughput much either. This result surprises us 

because what we believe is that the file access may cause large overhead. Therefore, 

we test the disk speed and the result shows that the speed of disk can reach 472Mb/s 

under sequential writing. This speed is much higher than the maximum throughput of 

our system, which explains why the influence is marginal. If virus scanning is enabled, 

the throughput decreases dramatically to 20.52Mbps and the proxy dominates about 

70% of CPU utilization. Both L7-filter and virus scanning influence the throughput 

apparently and the key part of both is string matching. Hence, string matching is 

considered as the major bottleneck of this system. 
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Figure 7: Maximum Throughput 
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Figure 8: CPU Utilization 

 

5.3 Internal Benchmarking 

To further identify the bottlenecks of this system, we examine the execution time 

of each step in the entire packet processing flow with all functions turned on. 

Measuring execution time is performed by calculating the difference of time-stamps 

taken by the gettimeofday() system call before and after the code segments. Figure 9 

(a) and (b) illustrate the basic packet processing steps with handling and without 

handling the head-of-line blocking problem. In the basic case where head-of-line 

might happen, M1 to M9 are processed sequentially. Handling the head-of-line 

blocking increases the throughput by a marginal 2Mb/s. Why the improving of 

throughput is marginal is because M7 dominates the throughput. In our observation, 

under our benchmarking environment, most connections are needed to perform virus 

scanning simultaneously. This means most packets are needed to wait the finish of 

virus scanning and only fewer packets can be processed during the period of virus 

scanning. Figure 9(c) presents the execution time in percentage. The result confirms 

that virus scanning is the key bottleneck since the time spent on virus scan is 200~800 

times of other steps. 
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Figure 9: Internal benchmark result 

 

5.4 Buffer Size 

 In this system, a buffer is allocated for each connection and virus scanning is 

only performed when the buffer is full. A small buffer takes less time to perform virus 

scanning, but it needs to be scanned frequently at the cost of calling more function 

calls. We evaluate the benchmark on throughput, in Figure 10, with buffer size form 

1KB to 120KB to find out the best buffer size. Figure 10 shows the throughput with 

various buffer sizes. Choosing the small buffer size will involve too many virus 

scanning function calls. This will increase the system overhead and decrease the 

throughput. However, choosing a big buffer size will occupy too much memory and 

increase the packet queuing time when performing virus scanning. This may let the 
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sending think that TCP congestion happens and slow down the transmission. 

Therefore, considering the memory size and the throughput, buffer size 20KB~40Kb 

is considered the best choice herein. 
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Figure 10: Throughput influence with different buffer size 

  

5.5 Comparison with Conventional Proxy Architecture 

 This work also implements a simple HTTP proxy which uses the port redirection 

method to perform the same content management objectives like P2P Proxy. The only 

difference between P2P Proxy and this HTTP proxy is the traffic redirection 

mechanism. Theses two systems are compared, in Figure 11 and Figure 12, with 

functions turned on individually. Why the figure 12 only shows the kernel CPU 

utilization is because the CPU has been fully used on each situation. The port 

redirection method has higher throughput than P2P Proxy. Except virus scanning, the 

difference in throughput is about 40Mb/s, mostly due to connection classification. But 

if virus scanning is enabled, the difference is tiny. This means that the overhead of 

virus scanning is far larger than the connection classification. We suggest using port 

redirection method to manage fixed-port traffic and apply our mechanism to handle 

dynamic-port traffic.  
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Figure 11: Maximum throughput of P2P Proxy and port redirect method 
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Figure 12: Kernel CPU utilization of P2P Proxy and port redirect method 
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Chapter 6 Conclusions and Future Research 
 This work presents a novel gateway architecture for managing peer-to-peer 

traffic with dynamic ports. The main challenge in this system is how to redirect the 

already established connection from the kernel to the user space to perform complex 

content filtering. We propose a P2P Proxy Mechanism which uses two packet queues 

in the kernel and a multiple-threaded user-space proxy called P2P Proxy to solve this 

problem. P2P Proxy uses modified libipq to communicate with the kernel and control 

packets between these two packet queues. P2P Proxy also solves the out-of-order 

problem of TCP sequence, the head of line blocking problem and the segmented virus 

signature problem. 

 The external benchmarking results indicate that virus-scanning influences 

the performance most. With and without enabling virus-scanning, the throughput can 

achieve 20.52MB/s and 84.83Mb/s, respectively. From the internal benchmarking, we 

confirm that string matching is the key bottleneck of this system since the time spent 

on string matching is 200~800 times of other steps. Comparing with port-redirect 

proxy, the connection classification and redirection impact the throughput about 

40Mb/s and increase the CPU utilization too. For virus scanning, we also argue that 

considering memory size and throughput, the medium-size buffer size 20K-40K is 

suggested. 

Since the string matching of content processing is the main bottleneck, to scale 

up the process, the string matching operations can be offloaded to an accelerator or 

ASIC. After comparing with port-redirect proxy, we suggest to use hybrid architecture 

which integrates port-redirect proxy and our system to handle both fix-port traffic and 

dynamic-port traffic. But how to let these two architectures to cooperate well is still a 

challenge. Besides these, as we know, there are many attack traffic exist on the 
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Internet. What kinds of attack will impact our system and how to avoid them is still a 

problem. Our future work will focus on these issues. 
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