

剖析與加速三種具有字串比對之內容安全應用

Profiling and Accelerating String Matching Algorithms in

Three Content Security Applications

研 究 生： 李志祥

指導教授： 林盈達 教授

1

剖析與加速三種具有字串比對之內容安全應用

Profiling and Accelerating String Matching Algorithms in
Three Content Security Applications

研 究 生： 李志祥 Student : Zhi-Xiang Li

指導教授： 林盈達 Advisor : Dr. Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學 系

碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2005

HsinChu, Taiwan, Republic of China

中華民國九十四年六月

2

剖析與加速三種具有字串比對之內容安全應用

學生：李志祥 指導教授：林盈達

國立交通大學資訊科學研究所

摘要

網路內容安全已經成為網際網路中重要的議題。在內容處理中，字串比對演

算法效率的必要性也漸漸被證實。字串比對演算法的效能主要受到樣本的個數、

最短特徵值的長度與特徵值所組成的字元集而有所影響。這份研究將復審與剖析

一些典型的演算法來了解各種演算法適合在什麼情況下使用。Aho-Corasick 演算

法適合使用在特徵值最短的長度為 1 的時候，Modified-WM 演算法適合使用在

特徵值最短的長度為 2 且樣本個數小於 1,000 的情況下，FNPw2 則適合使用在特

徵值最短的長度為 2 且樣本個數大於 1,000 的情況下，特徵值最短的長度為 3 的

時候則適合使用 Modified-WM 演算法，特徵值大於等於 4 的時候則適合使用

2-gram BG+演算法。接著，各種有效率的演算法皆實作到開放原始碼套件中，以

便觀察在實際應用上效能的差異。如果字串比對處理在總執行時間的比例重的

話，效能上則有很大的改善。如在 ClamAV 的實驗中，新的方法在效能上提升了

5 倍以上。另外，將會餵真實的資料與人造的資料到這些套件中，讓它們處理。

以便觀察這些套件處理真實資料與人造資料效能上的差異。由於字元集分布的影

響，它們處理真實資料所需的時間會比處理人造資料來的長。最後，這份研究亦

觀察出在字串比對演算法中的一些實際設計議題。

Keywords: 字串比對，演算法，內容安全

I

Profiling and Accelerating String Matching

Algorithms in Three Content Security Applications

Student: Zhi-Xiang Li Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao-Tung University

Abstract

Network content security has become a critical issue of the Internet. It is shown

that the efficiency of string matching algorithms is essential to content processing.

The performance of a string matching algorithm is sensitive to the number of

patterns, the minimum length of the signature and the character set that the

signatures are composed of. This work reviews and profiles some typical algorithms

to understand which algorithm is suitable in which situation. The AC algorithm is

suitable for LSP=1, the Modified-WM algorithm is suitable for LSP =2 when the

pattern set size is smaller than 1,000, the FNPw2 algorithm is suitable for LSP=2

when the pattern set size is larger than 1,000, the Modified-WM algorithm is suitable

for LSP=3 and the BG+ algorithm is suitable for LSP≥4. Then, these algorithms are

implemented on open-source content security applications to observe the

performance in practice. The performance improvement is significant if the

percentage of string matching processing on total execution time is great. For

example, the novel method is five times faster than the original method on the

experiment of ClamAV. In addition, these applications are fed with the real and

synthetic data. The differences of performance between the real and synthetic data

are also compared. The execution time for processing the real data is longer than that

II

for processing the synthetic data due to the character set distribution. Finally, the

practical design issues for string matching are also observed in this work.

Keywords: string matching, pattern matching, algorithm, content security
III

CONTENTS

CHAPTER 1 INTRODUCTION.. 1

CHAPTER 2 RELATED WORKS .. 3

2.1 TYPICAL ALGORITHMS .. 3
2.1.1 Automaton-based.. 4
2.1.2 Heuristic-based... 4
2.1.3 Hashing-based.. 6
2.1.4 Bit-parallelism-based ... 6

2.2 SELECTED PACKAGES .. 7
2.2.1 ClamAV .. 7
2.2.2 DansGuardian.. 8
2.2.3 Snort ... 9

CHAPTER 3 PRACTICAL DESIGN ISSUES ... 10

3.1 VERIFICATION APPROACH ... 10
3.1.1 Propose the CRKBT Algorithm.. 10
3.1.2 Experiments.. 12
3.1.3 Analysis... 14

3.2 HASH FUNCTION .. 15

CHAPTER 4 PROFILING ALGORITHMS .. 17

4.1 EXTERNAL PROFILING ... 17
4.1.1 Experiments with Earlier Algorithms.. 17
4.1.2 Experiments with Novel Algorithms .. 18

4.2 INTERNAL PROFILING .. 19
4.2.1 Shift Distance ... 19
4.2.2 Potential Matching... 20
4.2.3 Memory Accesses ... 21

4.3 PROFILING SUMMARY .. 25

CHAPTER 5 EXPERIMENTS ON REAL APPLICATIONS ... 28

5.1 IMPLEMENTATIONS IN THREE PACKAGES .. 28
5.1.1 ClamAV .. 28
5.1.2 DansGuardian.. 29
5.1.3 Snort ... 29

5.2 BENCHMARKING .. 29
5.2.1 ClamAV .. 29

5.2.1.1 Benchmarking Methodology ..29

 IV

5.2.1.2 Benchmarking Results ..29
5.2.2 DansGuardian.. 30

5.2.2.1 Benchmarking Methodology ..30
5.2.2.2 Benchmarking Results ..30

5.2.3 Snort ... 31
5.2.3.1 Benchmarking Methodology ..31
5.2.3.2 Benchmarking Results ..32

5.3 REAL DATA VS. SYNTHETIC DATA.. 32
5.3.1 ClamAV .. 33
5.3.2 DansGuardian.. 33
5.3.3 Snort ... 33

CHAPTER 6 CONCLUSIONS .. 35

 V

LIST OF FIGURES
FIGURE 1: THE RKBT ALGORITHM VS. THE CLASSIFIED RKBT ALGORITHM .. 11
FIGURE 2: THE RKBT ALGORITHM VS. THE CRKBT ALGORITHM.. 12
FIGURE 3: THE 2-GRAM SOG ALGORITHM VS. THE 2-GRAM SOG+ ALGORITHM.. 13
FIGURE 4: THE 2-GRAM BG ALGORITHM VS. THE 2-GRAM BG+ ALGORITHM ... 13
FIGURE 5 EARLIER ALGORITHMS BENCHMARKING RESULTS ... 17
FIGURE 6 NOVEL ALGORITHM BENCHMARKING RESULTS .. 18
FIGURE 7 THE SHIFT DISTANCE PROFILING.. 19
FIGURE 8 THE POTENTIAL MATCHING PROFILING... 20
FIGURE 9 RKBT VS. CRKBT .. 21
FIGURE 10 WU-MANBER VS. MODIFIED-WM .. 22
FIGURE 11 BG+ VS. SOG+... 22
FIGURE 12 THE NUMBER OF MEMORY ACCESSES .. 23
FIGURE 13 THE NUMBER OF L2 CACHE MISSES ... 23
FIGURE 14 THE SIZE OF MEMORY USAGE... 24
FIGURE 15 THE PROFILING RESULT OF LSP=1 .. 25
FIGURE 16 THE PROFILING RESULT OF LSP=2 .. 26
FIGURE 17 THE PROFILING RESULT OF LSP=3 .. 26
FIGURE 18 THE PROFILING SUMMARY ... 27
FIGURE 19 THE PROFILING SUMMARY ... 28
FIGURE 20 THE BENCHMARKING RESULTS FOR CLAMAV PACKAGE .. 30
FIGURE 21 THE BENCHMARK RESULTS FOR DANSGUARDIAN PACKAGE .. 31
FIGURE 22 THE BENCHMARKING RESULT FOR SNORT PACKAGE .. 32

LIST OF TABLES
TABLE 1: CLASSIFICATION OF TYPICAL ALGORITHMS .. 4
TABLE 2: SELECTED OPEN-SOURCE PACKAGES ... 7
TABLE 3: THE PROFILING RESULT FOR SOME DIFFERENT HASH FUNCTIONS .. 16

 VI

Chapter 1 Introduction
 A growing number of intrusions, worms, viruses and inappropriate Web pages

spread all over the Internet. Detecting and filtering them require content classification

at the application layer, as opposed to traditional packet classification at the network

and transport layers. Content classification requires string matching for designated

signatures. Unlike traditional packet classification, which looks for fields of fixed

lengths and at fixed positions, the position and the length of the matching signature

are unknown before hand. Thus content signature matching is usually more elaborate

than packet classification. In addition, string matching is reported a bottleneck for

network content applications [1-5]. Consequently, the efficiency of the string

matching algorithm is critical to content processing.

No existing string matching algorithms can scan signatures of various

characteristics more efficient than all the others. For example, the Wu-Manber

algorithm [6] is inefficient for a huge pattern set [7]. Furthermore, content security

applications have signatures of different characteristics. For example, the anti-virus

applications have a large number of signatures, and the intrusion detection systems

have short patterns of one or two characters. This work investigates the types of

signatures in these content security applications and the type that each string matching

algorithm can scan most efficiently, and hence the most efficient algorithm is derived

for each application.

The efficiency of six typical string matching algorithms are profiled for signature

sets varying in sizes, the minimum length of the signatures and the character set that

the signatures are composed of. Sample sets of both synthetic and real signatures are

studied to see if there are deviations in the profiling results for both cases. The edges

and limitations of each algorithm are better understood after the profiling. The

 1

impacts on performance of memory and cache accesses are also measured

quantitatively.

These algorithms are also implemented on three open source packages of content

security: ClamAV [8] for anti-virus, DansGuardian [9] for content filtering and Snort

[10] for Network Intrusion Detection System (NIDS). The performance is

benchmarked to see if the gain in the actual environment is significant after the

implementation.

In addition, this work also proposes a classified RKBT (Rabin-Karp with binary

search and two-level hashing) to enhance the performance of the original RKBT

algorithm [11, 12] for a huge signature set. The RKBT algorithm can serve as the

verification algorithm after a potential match in some string matching algorithms [7]

and hence its performance is essential in these algorithms. The contributions of this

work are summarized as follows:

 Finding out the most efficient algorithm for each application of content security

and telling why.

 Proposing the Classified RKBT algorithm to enhance the performance of the

original RKBT algorithm.

 Comparing the performance for synthetic and real data in these algorithms.

The rest of this work is organized as follows. Chapter 2 reviews six typical

algorithms and three selected packages. Chapter 3 discusses the practical design

issues, such as the verification algorithm and the hash function. Chapter 4 shows the

profiling results and identifies the most efficient algorithms for each situation. The

performance gain on real packages is demonstrated in Chapter 5. Chapter 6 concludes

the study.

 2

Chapter 2 Related Works

2.1 Typical Algorithms

 The string matching problem is to find all the occurrences of a string p, called the

pattern, in the text T=t1t2t3…tn on the same alphabet, where n is the length of the text.

Multiple string matching is to find the appearance of a string pi in a set of strings P=

{p1, p2…, pr} in the same manner as a single string. This research focuses on exact

string matching because the majority of the content security applications must use it

to find out the signatures.

A number of string matching algorithms have been proposed for exact string

matching. They are usually grouped into three general approaches, prefix searching,

suffix searching and factor searching, depending on the way the pattern is searched

for in the text [13, 14]. However, this work categorizes the algorithms into four major

approaches according to the data structure that drives the matching to emphasize on

the evolution. These categories are automaton-based, heuristic-based, hashing-based

and bit-parallelism-based. An automaton-based algorithm tracks the partial match of

the pattern prefixes in the text. A heuristic-based algorithm relies on one or two

heuristic function to finish looking up the shift distance. The shift distance of 0

indicates a possible match, so a verification algorithm follows to verify. A

hashing-based algorithm checks a possible appearance of the patterns by hashing a

block of characters in the text and compares the hash value with those from hashing

the blocks in the patterns. A bit-parallelism-based algorithm takes advantage of the

parallelism of the bit operations inside a computer word to simulate the operation of a

finite automaton [15]. Table 1 compares some typical algorithms in these four

categories.

 3

TABLE 1: Classification of typical algorithms

Algorithms Approach Time
Complexity

Search
Type

Multiple
Pattern

Key Ideas

Aho-Corasick Linear Prefix Yes Finite automaton

Optimized-AC

Automaton-based

 Linear Prefix Yes Full matrix or Sparse matrix

Boyer-Moore Sub-linear Suffix No Bad character, Good suffix

Horspool Sub-linear Suffix No Bad character

Set-wise BMH Sub-linear Suffix Yes Bad character

Wu-Manber Sub-linear Suffix Yes Shift and hash Table

Modified-WM

Heuristic-based

Sub-linear Suffix Yes Change table size and hash function

Rabin-Karp Linear Prefix No Hash function

RKBT Linear Prefix Yes Two-level hash, Binary search

FNP

Hashing-based

Sub-linear Prefix Yes Skip distance table

SOG Linear Prefix Yes Bit-parallelism, q-gram

BG

Bit-parallelism-based

 Sub-linear Factor Yes Bit-parallelism, q-gram

2.1.1 Automaton-based

 The Aho-Corasick (AC) algorithm [16] was proposed for multi-pattern matching.

It uses the data structure of a finite automaton that accepts all strings in the pattern set.

The automaton is fed the input characters one by one in the text and tracks partially

matched patterns. The time complexity is O(n). However, a large pattern set demands

large memory space for the transition table. It can be slower in case of a large pattern

set because of the worse cache locality in accessing the transition table.

 The derived algorithm, Optimized-AC algorithm [17], was proposed to reduce

the memory requirement by compressing the transition table with the structure of a

full matrix or a sparse matrix. The running time of the Optimized-AC algorithm is

faster than the standard AC algorithm due to its better cache locality.

2.1.2 Heuristic-based

 The Boyer-Moore (BM) algorithm [18] is extensively used due to its efficiency

in single-pattern matching. It uses two heuristic functions, bad-character function and

good-suffix function, to reduce the number of character comparisons by skipping over

 4

characters that cannot be a match. The shift distance of the search window is the

maximum of shift distances indexed from the two heuristics. The time complexity is

sub-linear of O(n/m) on the average.

 Horspool proposed the Boyer-Moore-Horspool (BMH) algorithm [19] that uses

only the bad character function and is shown to be more efficient than the BM

algorithm in practice, because the BMH algorithm is faster than the BM algorithm in

each iteration. Furthermore, this algorithm is also a single-pattern matching algorithm.

The Set-Wise BMH algorithm [3] extends the BMH algorithm to handle multiple

patterns.

 The Wu-Manber (WM) algorithm [6], a variation of the Set-Wise BMH

algorithm, was proposed for multi-pattern matching. It is based on the similar

heuristic function of the BMH algorithm to build the shift table and hashes the block

of B characters in the suffix of the search window for the shift distance, where B is the

size of the hash block, so its time complexity can be sub-linear on the average.

However, the performance of the WM algorithm depends considerably on the length

of the shortest pattern (denoted as LSP), because the maximum shift distance equals

m–B+1, where m is the length of the shortest pattern and B is the size of the hash

block.

 The derived algorithm, Modified-WM algorithm [17], was proposed by the Snort

team leader, Marc Norton. It is based on the implementation of the Agrep package

[20], which is written by the author of the WM algorithm. It changes the size of hash

table from 8,192 to 65,535 and accomplishes the purpose grouping all patterns with

the same hash value, which is not implemented in the Agrep package. The

performance of the Modified-WM algorithm is more efficient than that of the WM

algorithm [17]. It is also proved that the performance of all string matching algorithms

is sensitive to the tuning of the hash table in practice.

 5

2.1.3 Hashing-based

 The Rabin-Karp (RK) algorithm [11] is designed to handle single-pattern

matching with less memory. Hash values for the patterns are calculated and saved

during the preprocessing stage. Then, matching can be done by calculating the hash

value for each m-character string of the text and comparing it with the hash value,

where m is the length of the pattern. If the hash values are the same, the pattern is

compared with the specific position of the text. In order to cope with large pattern sets,

the RK algorithm with binary search was proposed. In addition, Muth and Manber use

two-level hashing to enhance the performance of the RK method (denoted as RKBT)

[12].

 The FNP algorithm [21] also uses hashing method to accelerate the pattern

matching. It is designed particularly for the pattern set in which the length of the

shortest pattern is extremely short, say 2 or 3. It keeps the average shift distance as

close to B as possible by considering the characters within the block of B characters,

namely prefix sliding window, to determine the best shift distance. The shift distances

are recorded in a skip distance table that is similar to the shift table in the WM

algorithm for indexing during the search. Like the WM algorithm, the verification for

a true match follows if a partial match within the search window is found.

2.1.4 Bit-parallelism-based

 The Shift-Or (SOR) algorithm [22] and Backward Nondeterministic Dawg

Matching (BNDM) algorithm [11] were proposed for the single-pattern matching with

bit-parallelism. The SOG and BG algorithms [7] extend the SOR and BNDM

algorithms for the multi-pattern matching. Multiple patterns are thought of as a single

pattern, and hence the same position of characters in each pattern is grouped into the

same class. A class is processed instead of a character, so the bit-parallelism for

matching a single pattern can be applied to multiple patterns. They use q-grams to

 6

reduce the possibility that the q-gram characters in the text appear in one of the

patterns in the pattern set so that fewer verifications are required. These algorithms

use the RKBT algorithm to accelerate the verification of whether a true match occurs.

2.2 Selected Packages

We select open source packages for observation and experiments in the profiling

because the source code is available. Table 2 lists the number of patterns, the maximal

pattern length, the minimal pattern length and all supported algorithms in three

open-source packages for each network content security application. It is also

recognized that whether all patterns are classified into different group and the single

group is searched for during the searching stage. In addition, the character set

distribution for all patterns is also observed. As to detailed description about the

searching stage for all packages, we explain as follows.

 TABLE 2: Selected open-source packages

Application Packages Version Algorithms Number of
Patterns

Classified Pattern
Length

Char. Set
Distribution

Anti-Virus ClamAV 0.85 Aho-Corasick

Wu-Manber

26467 No 10~210 Type 1

Content-Filter DansGuardian 2.8.0.4 Horspool

DFA

5867 No 2~64 Type 2

IDS/IPS Snort 2.3.3 AC-std

AC-Full

AC-Sparse

AC-Banded

AC-SB

Modified-WM

LowMemTrie

Patterns for all

groups: 14295

Total rules:

2246

Yes

173 groups

Max group

size: 1174

Min group

size: 12

1~107 Type 1

Type1 : close to uniform distribution
Type2 : biased to English character set

2.2.1 ClamAV

 ClamAV is an open-source anti-virus package. It contains two types of virus

patterns: a basic pattern is a simple sequence of characters that identify a virus, and a

multi-part pattern is composed of more than one basic sub-pattern. First, basic

 7

patterns are scanned by a multi-pattern matching algorithm, the WM algorithm. This

type of virus patterns occupies 93% of total patterns. If no virus is found in this stage,

it then handles the multi-part patterns. The type of the multi-part patterns occupies 5%

of total patterns. All sub-patterns of a multi-part pattern must match so as to find a

virus. This part is scanned by the extended AC algorithm, a trie with two levels [23],

because the AC algorithm could handle regular expressions. During preprocessing, all

sub-patterns beginning with the same prefix are stored in a linked list under the

appropriate trie leaf node. In the searching stage, it is fed with input characters one by

one in the text in order to transform the state. If a leaf node is encountered, all patterns

inside the linked list are checked using sequential string comparisons. This process

keeps until the last input character is read, or a match is found. If a match is found, it

will check all parts constructed by a candidate multi-part pattern to verify whether a

true match occurs or not. If a match is not found, it will use the message digest to find

out whether the text is malicious tool or not. This is the whole searching method for

the ClamAV package.

2.2.2 DansGuardian

 DansGuardian is an open-source content filtering package. It uses content

keywords classified in the configuration files to find out whether the content is

inappropriate content or not. All content keywords are searched once during the

scanning period, because the content can not be classified into the correct group

before the matching. Further, the BMH algorithm and a deterministic finite automata

(DFA) algorithm are implemented for the searching. They are implemented as follows.

During preprocessing, it builds a big array to simulate a matrix in order to set up a

whole DFA, called the graph data by its author. All content keywords go through the

processing of the graph data to avoid repetition. Then it searches the graph data to

find out the nodes with fewer than 12 branches and deletes them from the graph data.

 8

These content keywords are classified into another group because they have the same

prefix and have no more than 12 keywords. They are searched with the BMH

algorithm one by one in the searching stage in order to avoid coping with the nodes

with fewer branches. Then it continues to search all content keywords with the graph

data. Finally, it checks all searched keywords to decide whether the content is

inappropriate or not. This is the filtering approach for the DansGuardian package. In

addition, its configuration also supports the force quick search method. If the

forcequicksearch flag is enabled, all content keywords are searched with the BMH

algorithm one by one.

2.2.3 Snort

 Snort is a popular open-source package for network intrusion detection. As

opposed to other packages, it uses the packet header to classify all rules. During

run-time it uses a two-stage architecture to inspect data and find the matching rules.

The first stage quickly identifies potential match rules based on the packet header. The

next stage uses the Modified-WM algorithm by default. If a potential match is found,

Snort queues the match and inspects until all packet matches are located. When the

inspection is finished and needs to validate the rest of the rule, it runs into the second

stage. The inspection of the second stage performs a complete rule inspection to test

the rest of the rule using the standard parameterized rule processing. If a complete

rule match has been found, it inserts the rule into the event queue. Finally, it processes

the event queue and selects a single event for logging. This is a complete inspection

manner. Moreover, the hybrid method is also proposed based on the size of the set in

order to enhance the performance of content inspection [3]. The hybrid method is the

BMH algorithm when coping with the sets of size 1, the Set-wise BMH when coping

with the sets of sizes between 2 and 100, and the AC algorithm when coping with the

sizes larger than 100.

 9

Chapter 3 Practical Design Issues
 Besides the algorithm itself, the implementation can impact the performance

significantly. This chapter focuses on the practical design issues in the implementation.

Some existing algorithms, such as the SOG and BG algorithms, have to use the

verification algorithm to verify the potential match. The RKBT algorithm can serve

the purpose. The RKBT algorithm could be inefficient for a huge pattern set. A

Classified RKBT (CRKBT) is proposed to boost its performance. In addition, a

number of the existing algorithms rely on hashing during the searching process. We

will discuss various ways proposed by some existing algorithms to understand how to

choose the most efficient one.

3.1 Verification Approach

3.1.1 Propose the CRKBT Algorithm

The SOG and BG algorithms are proposed to handle a large pattern set [7], and

rely on the RKBT algorithm to verify if the potential match occurs. The performance

of the RKBT algorithm could be significant if a number of potential matches are

found during the scanning. The operation of the RKBT algorithm is illustrated on

Figure 1. At pre-processing time, the sorted 32 bit hash table is constructed from the

first hash values of the patterns. Each pattern is divided into consecutive blocks of

four characters, and each block is treated as a four-byte integer, i.e. 32 bits. If the

pattern length is not a multiple of four, the last block is padded with bytes of zero

values. The first hash value is defined by xor’ing these blocks of integers. The second

hash is calculated from the first one by xor’ing together the lower 16 bits and the

upper 16 bits. A 216 bitmap is built from the second hash values. The i’th bit is one, if

there is at least one pattern with i as its second hash value, and zero, otherwise.

Suppose the second hash value of the search window is i. At searching time, the

 10

bitmap is checked. If the i’th bit in the bitmap is zero, no true match can occur and the

verification fails. When the corresponding bit of the second hash value is one, say the

2345’th bit on Figure 1, the 32 bit hash table is searched with binary search. If a first

hash value is found, the characters of the pattern with that value is compared with

those in the search windows one by one to check if a true match occurs. Otherwise,

the verification fails.

FIGURE 1: the RKBT algorithm vs. the Classified RKBT algorithm

bit is set to 1 on the bitm

As the number of pattern grows huge, say 100,000 patterns, the probability that a

ap will be closer to 1, and consequently searching the first

hash table is almost un-avoided. The size of the first hash table is equal to the pattern

set size, and so the search is slow. A classified approach, namely the CRKBT

algorithm, is proposed to improve the original RKBT algorithm. The CRKBT

algorithm also used two-level hashing and binary search. The CRKBT algorithm uses

the pointer table instead of the bitmap. The i’th pointer points to a sorted array, which

is constructed at least one pattern with i as the second hash value, and point to NULL,

if no pattern has i as the second hash value. At searching time, the pointer table is

checked. If the corresponding pointer of the second hash value is not NULL, the

RKBT method

32bit
32bit
32bit
32bit

0

1

0

1

32bit 32bit 32bit32bit 32bit 32bit

Classified RKBT method

2 12 Binary search Binary search

1

32bit 32bit 32bit32bit
2345

2345

First hash value

Bitmap of the second hash

NULLNULL

Pointer table

 11

sorted array that the pointer points to is searched with binary search. The search scope

is reduced to a small subset of the patterns that have the same second hash value, and

so the binary search can be much faster. The improvement and analysis are presented

below.

3.1.2 Experiments

KBT algorithms are benchmarked as follows. The text of 32 The RKBT and CR

MB is randomly generated from the alphabet of 256 characters. The patterns are

generated from the same alphabet and the length of the shortest pattern is 8. Both the

text and the patterns reside in the main memory in the beginning. The tests run on a

computer with a 2.8 GHz Pentium 4 processor, 1 GB of memory and 512 kB cache.

The algorithms are written in C, compiled with the gcc compiler, and running on

Linux 2.6.5.

0

2

4

6

8

10

12

14

16

18

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k # of pat.

se
co

nd
s

RKBT
CRKBT

FIGURE 2: the RKBT algorithm vs. the CRKBT algorithm

Figure lgorithms.

Whe

 2 shows the experimental results from benchmarking both a

n the number of patterns is small, the execution time of both algorithms is very

close, because possible matches are unlikely to happen and few chances of binary

search in the first hash table are needed. As the number of patterns increases gradually,

 12

the chances of binary search also increase. Because the search scope of binary search

in the CRKBT algorithm are smaller than that of the RKBT algorithm, the benefit of

the CRKBT algorithm becomes significant and so the CRKBT algorithm is faster than

the RKBT algorithm. The CRKBT algorithm can be four times faster than the RKBT

algorithm when the number of pattern grows to 100,000 patterns. Therefore, the

CRKBT algorithm is suitable for huge pattern sets.

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k # of pat.

se
co

nd
s 2-gram SOG

2-gram SOG+
3-gram SOG

FIGURE 3: the 2-gram SOG algorithm vs. the 2-gram SOG+ algorith m

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k # of pat.

se
co

nd
s 2-gram BG

2-gram BG+
3-gram BG

FIGURE 4: the 2-gram BG algorithm vs. the 2-gram BG+ algorithm

 13

 W o the

e between the RKBT and CRKBT algorithms is the binary search in

 ….. (1)

 ….. (2)

e implement the CRKBT algorithm instead of the RKBT algorithm int

SOG and BG algorithms, denoted as the SOG+ and BG+ algorithms. Figure 3 and 4

show the performance of the SOG and BG algorithms are also improved. For instance,

the BG+ algorithm is twice faster than the BG algorithm when the number of pattern

grows to 100,000 patterns. The efficiency of both algorithms will be significantly

improved as the number of potential matches increases.

3.1.3 Analysis

 The differenc

the first hash table. The number of memory accesses is essential in this stage. Suppose

the number of pattern is r. The number of memory accesses in each algorithm is

estimated in Formala (1) and (2) below respectively.

 The RKBT algorithm

 The CRKBT algorithm

When the RKBT algorithm is running into searching stage, it checks the second hash

table first. Suppose the probability that the corresponding bit of the second hash value

is set to one is p. If the bit is set to one, the binary search on the first hash table is

followed. The expected number of memory accesses is p × r2log . Otherwise, that is

() 11 ×− p . The expected number of memory accesses in both conditions is

() 11 ×− p . When the number of pattern is larger than 65,536 patterns, the

nu accesses is r2log . So Formula (1) is derived. The difference

p × r2log +

mber of m

65536,
65536,2

≤⎨ >
r

rr

emory

1)1(log2⎧ ×−+× prp
log⎩

65536,
65536),

65536
1(log

1)1()
65536

1(log

2

2
≤

⎪
⎪
⎩

⎪

>+

×−+
r

rr

pp⎪
⎨

⎧ +×
r

 14

between the RKBT and CRKBT rithms is search scope, and consequently the

expected number of memory accesses on the CRKBT algorithm is

 algo

⎟
⎞

⎜
⎛ +1log r .

The expected number of memory accesses for the CRKBT algori n

Formula (2). However,

⎠⎝ 655362

thm is written i

⎟
⎞

⎜
⎛ +1log r is much smaller than r2log in the RKBT

algorithm. Therefore, th rithm is more efficient than the RKBT

algorithm.

3.2 Hash

⎠⎝ 655362

e CRKBT algo

 Function

d using hash function to enhance the performance. For

sh functio they can be

ans

)str

gned int *)str)

hash function is best choice for the multi-pattern

matc

 3 lists the profiling result which is running 5,000 times to parse the 32

MB

 Many algorithms nee

example, the RKBT algorithm uses the hash value to find out the potential matching

and the Wu-Manber algorithm uses the hash table to index the shift distance. It is thus

clear that the hash method is a critical component for string matching algorithm. This

section will discuss the selection of the hash function.

 There are four implementations of the same ha ns, but

tr lated into different machine codes. They are enumerated as follows:

char str=”abcdefgh”;

(1) *(unsigned short *

(2) (unsigned short)(*(unsi

(3) ((*(str+1))<<8) | *str

(4) ((*(str+1))<<8) + *str

We want to know what

hing algorithm. Thus, we profile the performance with these hash functions

under a situation, calculating the hash value plus using the hash value to look up the

hash table.

TABLE

text and getting from the total execution time. The execution time listed in

 15

TABLE 3 is not the same with each other. The type of the first and second hash

function has the similar execution time and is faster than that of the other ones,

because the first two methods have the fewer memory accesses than the others.

According to this observation, we can figure out the multi-pattern matching algorithm

using the first and second hash function would get good performance than that using

the other ones. But the SPARC architecture can not use the first two methods to

calculate the hash value, because the address of an integer should be a multiple of the

integer size. The third and fourth hash functions are the only choices in this

architecture.

TABLE 3: the profiling result for some different hash functions

 In (sec) dex Hash function Time

 (1) *(unsigned short * 1)str 516.829 sec

 (2) (unsigned short)(*(unsigned int *)str) 1516.903 sec

 (3) ((*(str+1))<<8) | *str 1585.203 sec

 (4) ((*(str+1))<<8) + *str 1584.982 sec

 16

Chapter 4 Profiling Algorithms
 This chapter compares the typical algorithms surveyed in section 2.1 in

accordance with external profiling and internal profiling. According to the profiling

results, we can conclude which algorithm is suitable on what situation.

4.1 External Profiling

 The benchmarking environment is the same as that in section 3.1.2. We first

implement some earlier algorithms, the AC and WM algorithm, and some novel

algorithms, the BG and SOG algorithms, and test them to get average time over 1,000

runs using the same text and patterns. Moreover, the implementation of the WM

algorithm refers to that of the Agrep package and the WM algorithm discussed below

generally points at the implementation of the Agrep package.

4.1.1 Experiments with Earlier Algorithms

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.

se
co

nd
s

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
Classified RKBT

FIGURE 5 Earlier Algorithms Benchmarking Results

A number of multi-pattern matching algorithms were proposed after 1975. The

AC and WM algorithms were famous ones for this string matching research area. Also

the WM algorithm had been proved that it has good performance under small pattern

 17

sets [7, 13]. After, the Snort research team had proposed the Optimized-AC and

Modified-WM algorithms, which are different from the original algorithms due to the

variable tuning, to enhance the performance [17]. So we compare them in this section

to understand which algorithm is more efficient than the others

 Figure 5 shows the benchmarking results which are tested with LSP=8. We also

compare with the CRKBT algorithm proposed in section 3.1.1. This experiment

demonstrates that the Modified-WM algorithm is more efficient than the others when

the pattern set size is smaller than 20,000. However, when the pattern set size is

greater than 20,000, the CRKBT algorithm is the most efficient. The Modified-WM

algorithm and CRKBT algorithm are the fastest ones, so we select these two

algorithms as traditional algorithms and compare them with two novel algorithms, the

BG+ and SOG+ algorithms.

4.1.2 Experiments with Novel Algorithms

0
1
2
3
4
5
6
7
8
9

10
11
12

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.

se
co

nd
s

Modified-WM
Classified RKBT
2-gram SOG+
2-gram BG+
3-gram SOG
3-gram BG

FIGURE 6 Novel Algorithm Benchmarking Results

 Figure 6 shows the benchmarking results which are also tested with LSP=8. We

can find out the traditional algorithms are less efficient than the others. The 2-gram

BG+ algorithm is the fastest one than the others when the pattern set size is smaller

 18

than 50,000. As the pattern set size is greater than 50,000, the 3-gram BG+ algorithm

is the fastest one.

In the experiments of earlier and novel algorithms, we can conclude the BG+

algorithm is the more efficient algorithm than the others for LSP=8. As to verify the

benchmarking results, we will do internal profiling later.

4.2 Internal Profiling

 After the external profiling, we can know what algorithm is the most efficient.

But some results need to verify. For example, why does the BG+ algorithm has good

efficiency and the Modified-WM algorithm is more efficient than the WM algorithm?

We will go through the internal profiling so as to answer the questions. The shift

distance, the potential matching and the memory accesses of each algorithm are

profiling as follows.

4.2.1 Shift Distance

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.

ch
ar

.

Wu-Manber
Modified-WM
2-gram BG
3-gram BG

FIGURE 7 the Shift Distance Profiling

 Both the WM and BG+ algorithms are the sub-linear ones. The WM algorithm

uses the shift table to record the shift value. The BG+ algorithm also uses the B table

plus the bit-parallelism method to calculate the shift value, where the B table keeps

 19

whether each character of all patterns occurs or not. So we will profile the shift

distance in order to justify the prior results.

 Figure 7 shows the profiling results of the average shift distance. According to

the results of the average shift distance, we can find out the average shift distance of

the WM algorithm is close to one character when the pattern set size between 5,000

and 100,000. So the WM algorithm is not suitable for huge pattern sets. The average

shift distance of the Modified-WM algorithm is greater than that of the WM algorithm.

This result easily proves the Modified-WM algorithm is more efficient than the WM

algorithm. In addition, it is clearly proved that the 2-gram BG+ algorithm is more

efficiency when the pattern set size is smaller than 20,000 and the 3-gram BG+

algorithm has larger shift distance than 2-gram BG+ algorithm while the pattern set

size between 20,000 and 100,000.

4.2.2 Potential Matching

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.

pe
rc

en
ta

ge

RKBT
Wu-manber
Modified-WM
2-gram SOG
2-gram BG

FIGURE 8 the Potential Matching Profiling

 Some algorithms are filtering ones that need the verification algorithm to check

whether the potential match is a true match or not. As the number of potential matches

increase, the string matching performance will decrease and the verification become a

bottleneck. The number of the potential matches will be profiled in each filtering

 20

algorithm in this section.

 Figure 8 shows the percentage of the potential matching for all filtering

algorithms. The result shows the potential matching of the Modified-WM algorithm is

less than that of the WM algorithm. This result proves the Modified-WM algorithm is

more efficient than the WM algorithm, too. In addition, the thing that the potential

matching of the WM algorithm increases fast also proves the WM algorithm is less

efficiency while the pattern set size is more than 10,000. Finally, it is also proved that

the BG+ algorithm is more efficient than the Modified-WM algorithm.

4.2.3 Memory Accesses

 It is insufficient to explain the results in accordance with the results of the shift

distance and the potential matching. For example, why does the CRKBT algorithm is

the fastest one than the others as the pattern set size is more than 50,000 in figure 5?

This section will profile the number of memory accesses to prove it.

0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

7000000000

8000000000

9000000000

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.

m
em

or
y

ac
ce

ss

RKBT
CRKBT

FIGURE 9 RKBT vs. CRKBT

 21

0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

7000000000

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k # of pat.

m
em

or
y

ac
ce

ss

Wu-manber
Modified-WM

FIGURE 10 Wu-Manber vs. Modified-WM

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

900000000

1000000000

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.

m
em

or
y

ac
ce

ss

2-gram SOG

2-gram BG

2-gram SOG+

2-gram BG+

3-gram SOG

3-gram BG

FIGURE 11 BG+ vs. SOG+

 Figure 9, 10 and 11 show the results of the number of total memory accesses from

program level profiled from Valgrind [24]. The memory accesses of these three

figures are the same as well as the results of the external profiling, because the

properties of these three types of algorithms are the same. For example, the RKBT

and CRKBT algorithms have the same hash function, hash table size and cache miss

rate. In addition, it is also proved here again that the CRKBT algorithm is more

efficient than the RKBT algorithm.

 22

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

900000000

1000000000

1100000000

1200000000

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.

m
em

or
y

ac
ce

ss CRKBT
Modified-WM
Aho-Corasick
2-gram BG+

FIGURE 12 the number of memory accesses

 When the algorithms of different properties are compared with each other, the

results are not the same as above under the huge pattern sets. Because huge pattern

sets can bring about many verifications and the cache miss rate are not similar to each

other. This result can be observed on figure 12.

0

20000000

40000000

60000000

80000000

100000000

120000000

10k 20k 50k 100k

of pat.

th
e

nu
m

be
r o

f c
ac

he
 m

is
se

Aho-Corasick
2-gram BG+
Modified-WM
CRKBT

FIGURE 13 the number of L2 cache misses

 The number of memory accesses from the program level is insufficient to justify

the prior results. Because the penalty of L2 cache misses dominate the total

 23

performance. For this reason, we profile the number of L2 cache misses to verify the

exceptional results.

 Figure 13 shows the number of L2 cache misses for the CRKBT algorithm is less

than that for the Modified-WM algorithm and the number of L2 cache misses for the

2-gram BG+ algorithm is the least. According with these results, we can easily prove

the prior results, include that the CRKBT algorithm is more efficient than the

Modified-MW algorithm as the pattern set size is larger than 50,000. In addition, it is

also proved again that the 2-gram BG+ algorithm has best efficiency under huge

pattern sets.

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

100 200 500 1k 2k 5k 10k 20k 50k 100k

of patterns

th
e

si
ze

 o
f m

em
or

y
us

ag
e

(k
by

te
s)

CRKBT
Modified-WM
2-gram BG+
AC
Optimized-AC

FIGURE 14 the size of memory usage

 In addition to profiling the number of total memory accesses, figure 14 shows the

size of memory usage for all algorithms. Under the small pattern sets, the CRKBT

algorithm uses less memory for building the preprocessing table. The Modified-WM

algorithm uses fixed size of memory for building shift table and hash table. The type

of the AC algorithms uses large memory space as the pattern sets increasing. However,

the Optimized-AC algorithm is more complexity for building deterministic finite

automata when the pattern set is large than 10,000. So this area can not provide the

 24

profiling results.

4.3 Profiling Summary

 The external and internal profiling demonstrates that the 2-gram BG+ algorithm

is the most efficient for LSP=8 with the pattern set size smaller than 50,000 and the

3-gram BG+ algorithm is the more efficient for LSP=8 with the pattern set size

between 50,000 and 100,000. In addition, we also profile the length of the shortest

pattern between 1 and 7. The rank of efficiency for LSP between 4 and 7 are the same

as that for LSP=8. But the rank of efficiency for LSP between 1 and 3 are not the

same as well as before. Figure 15, 16 and 17 show the Aho-Corasick, FNPw2 and

Modified-WM algorithms are the fastest algorithm for LSP=1, 2 and 3, respectively.

The profiling results are summarized in figure 18.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 20 50 10
0

20
0

of pat.

se
co

nd
s

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
FNPw2

LSP=1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 20 50 10
0

20
0

of pat.

se
co

nd
s

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
FNPw2

LSP=1

FIGURE 15 the profiling result of LSP=1

 25

0

2

4

6

8

10

12

14

16

18

20

22

24

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

of pat.

se
co

nd
s

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
FNPw2

LSP=2

0

2

4

6

8

10

12

14

16

18

20

22

24

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

of pat.

se
co

nd
s

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
FNPw2

LSP=2

FIGURE 16 the profiling result of LSP=2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.

se
co

nd
s

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
FNPw2

LSP=3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

of pat.

se
co

nd
s

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
FNPw2

LSP=3

FIGURE 17 the profiling result of LSP=3

 26

pattern length

of pat.

1 2 3 4 5 6 7 8

5k

200

500

1k

2k

100

10k

20k

50k

100k

C=256

2-gram BG+

3-gram BG+

A
ho

-C
or

as
ic

k

M
od

ifi
ed

W
M

9 10

FN
Pw

2
A

ho
-C

or
as

ic
k

FIGURE 18 the profiling summary

 27

Chapter 5 Experiments on Real Applications

5.1 Implementations in three packages

pattern length

of pat.

1 2 3 4 5 6 7 8

5k

200

500

1k

2k

100

10k

20k

50k

100k

C=256

2-gram BG+

3-gram BG+

Anti-VirusAnti-Virus

A
ho

-C
or

as
ic

k

M
od

ifi
ed

W
M

9 10

FN
Pw

2
A

ho
-C

or
as

ic
k

IDSIDS

CFCF

FIGURE 19 the profiling summary

 Figure 19 concludes which package is located on which position and suits for

which algorithm by means of the profiling results in chapter 4 and survey in chapter 2.

The detailed description about the implementation of the real package is explained as

follows.

5.1.1 ClamAV

 The LSP of exact matching patterns in ClamAV is 10 and the pattern set size is

more than 30,000. We implement the 2-gram BG+ algorithm instead of the WM

algorithm to handle exact matching, i.e. basic patterns described in chapter 2. If the

pattern set size is more than 65,535, we can change from the 2-gram BG+ algorithm

to the 3-gram BG+ algorithm to enhance the efficiency. In addition, we keep to using

the AC algorithm to handle regular expression, i.e. multi-part patterns mentioned in

chapter 2.

 28

5.1.2 DansGuardian

 According to our observation, there are 25 content keywords scanned with the

BMH algorithm one by one. If the forcequicksearch flag is enabled, all patterns are

processed with the BMH algorithm, which requires to scanning the text as many times

as the number of patterns. We implement the multi-pattern matching algorithm, the

Modified-WM algorithm, to handle the short patterns, the LSP between 2 and 3, and

also use the 2-gram BG+ algorithm to handle the long patterns, equal to or longer than

4 characters.

5.1.3 Snort

 The Snort package uses the packet header to group all patterns. The LSP of every

group is not the same. We use the hybrid method instead of the default method, the

Modified-WM algorithm. If the LSP is equal to 1, we select the AC algorithm. If the

LSP is larger than 1, we also select the Modified-WM algorithm.

5.2 Benchmarking

5.2.1 ClamAV

5.2.1.1 Benchmarking Methodology

We select 10 files for file size between 32 KB and 16 MB from Windows

execution files. These files are scanned by original virus scan engine and modified

virus scan engine. Then we can measure the execution time to understand whether the

novel method is more efficient than the old one or not.

5.2.1.2 Benchmarking Results

 29

0

5

10

15

20

25

30

32
K

b

64
K

b

12
8K

b

25
6K

b

51
2K

b

1M
b

2M
b

4M
b

8M
b

16
M

b file size

se
co

nd
s random + old

random + new
real + old
real + new

FIGURE 20 the benchmarking results for ClamAV package

 Figure 20 shows the benchmarking results. As the file size is increasing, the

difference in scanning time between the novel and old methods will become greater.

For example, the novel method is five times faster than the old one while the file size

is 16 Mbytes. The reason comes from that the percentage of string matching in the

entire processing is increasing while the file size is increasing. According to these

results, we can justify that the novel method is more efficient than the old method.

5.2.2 DansGuardian

5.2.2.1 Benchmarking Methodology

 We only modify the section of the content filtering in DansGuardian package.

Because we know the processing time of content filtering occupies 90% of the total

execution time after our internal profiling. As to benchmarking content filtering, we

use the wget tool [25] to mirror a Web site, the RFC Web site [26]. The RFC Web site

contains more than 8,000 files, including HTML files and TXT files. The formats of

these two types of files are scanned with DansGuardian’s content filtering. This

benchmarking method can see the difference between the novel and old methods.

5.2.2.2 Benchmarking Results

 30

714

292

1708

867

388

2128

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

synthetic data
(C=26)

synthetic data
(C=256)

real data

se
co

nd
s

new algorithm
old algorithm

FIGURE 21 the benchmark results for DansGuardian package

 Figure 21 shows the old method needs 2128 seconds to mirror the entire site and

the new method just needs 1708 seconds to finish it. The efficiency of content

filtering in DansGuardian package enhances 20% of total execution time. It does not

arrive at significant improvement, because the property of content filtering needs to

find all content keywords out and the verification algorithm can not use binary search

to find a single keyword out. We use linear search instead of binary search to search

all potential matches which have the same hash value. But the performance of content

filtering also improves after implementing the new method into the DansGuardian

package.

5.2.3 Snort

5.2.3.1 Benchmarking Methodology

 The proportion of HTTP traffic accounts for great quantity under general

network. More peer-to-peer protocols also use HTTP traffic as control messages. We

select HTTP traffic for the experiments in our verification process. The benchmarking

method is similar to that of the DansGuardian package. We use the wget client to

mirror all RFC files from Web server across the inspection of the Snort package. In

addition, the Snort package runs under the inline mode by means of the capability of

 31

the Iptables [27] so as to understand the capability of the Snort package on intrusion

prevention manner.

5.2.3.2 Benchmarking Results

29
.3

34
8

56
.2

45
4

4
8

.6
1

2
1

2
7

.0
0

6
7

5
0

.9
7

9

2
7

.6
6

5
4

0
5

10
15
20
25
30
35
40
45
50
55
60

1-client 5-client

th
ro

u
gh

pu
t (

M
bi

ts
/s

)

Directly Access Http
Server
Snort + Default
Algorithm(MWM)
Snort + New Algorithm

FIGURE 22 the benchmarking result for Snort package

 Figure 22 shows the benchmarking result. First, we use a single client to mirror

the entire RFC files. The performance of the Snort inspection can not come to

significant improvement. After these benchmarking, we use five clients instead of a

single client to mirror it. The performance of the Snort package is improved and more

efficient than before with the last method. But the performance of the Snort package

can not reach significant improvement, because the new version of the Snort package

only inspects the HTTP header instead of HTTP header plus HTTP body [28].

5.3 Real Data vs. Synthetic Data

 In profiling stage, all experimental data are synthetic data. In past experiment,

the algorithm benchmarks also use synthetic data for the experiments to find out

whether the algorithm is more efficient than the others or not. But the property of

processing data in real applications is not the same as well as synthetic data. In this

section, we will observe the difference between real data and synthetic data from three

 32

content applications.

5.3.1 ClamAV

 In benchmarking stage, we also generate synthetic data of the same size as the

real files to observe the difference between real data and synthetic data. Figure 20

shows the processing time of the ClamAV package in real data and synthetic data are

similar to each other. Because the ClamAV package scans the entire text to find the

virus out and the character set distribution generated in all virus signatures is close to

uniform distribution.

5.3.2 DansGuardian

 We generate synthetic Web pages for external benchmarking. Except the content

of the pages, the file size and the file names of every file are the same as all RFC files.

First, we generate data with character set of 256 characters and observe the difference

between real data and synthetic data. The processing time for synthetic data is faster

than that for real data, because the character set distribution of synthetic data is close

to uniform distribution and that of real data biases to English character set.

We also generate data with character set of 26 characters and observe the results

again. The probability of potential matching is increasing and the processing time of

content inspection becomes 3 times slower than the prior experiment. But the total

potential matching for synthetic data is no more than real data; the processing time

has some difference between the synthetic data generated with character set of 26

characters and real data. It is also a reason that the probability of common keywords

that appear in real data is higher than they appear in synthetic data. For example, the

common keywords are ‘reference’, ‘issue’ and ‘chapter’. In addition, the property of

English word also affects the results.

5.3.3 Snort

 The observation between real data and synthetic data can not carry out. Because

 33

the inspection content in Snort package is restricted within the HTTP header. If we

generate synthetic data instead of the HTTP header, the communications between

HTTP client and HTTP server will disappear. So we give up the observation in this

package.

 34

Chapter 6 Conclusions
 In this research, some typical algorithms are reviewed and profiled to observe the

performance of the string matching algorithms under various conditions and provide

an insight of choosing the most efficient algorithm for designing content security

applications. The AC algorithm is suitable for LSP=1, the Modified-WM algorithm is

suitable for LSP =2 when the pattern set size is smaller than 1,000, the FNPw2

algorithm is suitable for LSP=2 when the pattern set size is larger than 1,000, the

Modified-WM algorithm is suitable for LSP=3 and the BG+ algorithm is suitable for

LSP 4. In addition, these results are also justified by means of the experiments of the

real applications. Some applications have dramatically improved if the percentage of

string matching processing on total execution time is great. These results also help to

select an efficient algorithm to design a novel application in the future.

≥

Meanwhile, the CRKBT algorithm is proposed and it is justified that the CRKBT

algorithm is more efficient than the RKBT algorithm. The efficiency of the CRKBT

algorithm is four times faster than the RKBT algorithm for huge pattern sets.

Moreover, the BG+ and SOG+ algorithms that use it as the verification algorithm are

also twice faster than the original algorithm.

 This work also observes that the difference of performance between the real and

synthetic data by means of the experiments of the real applications. The ClamAV

package is not sensitive to the synthetic data or the real data, because the character set

distribution is close to uniform distribution. But otherwise the application of content

filtering is sensitive to the real data or synthetic data, because all patterns in the

DansGuardian package is biased to English word. Moreover, it is observed that the

bottleneck in content filtering application is to verify all potential matches in order to

find out all matched content keywords, because the plenty of content keywords have

 35

the same hash value.

 Finally, the contributions of this work are summarized as follows: finding out the

most efficient algorithm for each application of content security and telling why,

proposing the CRKBT algorithm to enhance the performance of the original RKBT

algorithm and comparing the difference of performance between the real and synthetic

data in practice.

 36

References
[1] S. Antonatos, K. G. Anagnostakis and E. P. Markatos, Generating Realistic

Workloads for Network Intrusion, WOSP 2004 ACM, January 2004.

[2] S. Antonatos, K. G. Anagnostakis and E. P. Markatos, Performance Analysis of

Content Matching Intrusion Detection Systems, Institute of Computer Science,

January 2004.

[3] M. Fisk and G. Varghese, Fast Content-Based Packet Handling for Intrusion

Detection, UCSD Technical Report CS2001-0670, 2001.

[4] C. W. Jan, Y. D. Lin and Y. C. Lai, An integrated proxy architecture for anti-virus,

anti-spam, intrusion detection and content filter, Computer and Information

Science, National Chiao-Tung University, June 2004.

[5] F. H. Huang, Y. D. Lin and Y. C. Lai, A fast accurate proxy for multi-language text

webpage classification, Computer and Information Science, National Chiao-Tung

University, June 2004.

[6] S. Wu and U. Manber, A Fast Algorithm for Multi-pattern Searchin, Report

TR-94-17, Department of Computer Science, University of Arizona, 1994.

[7] J. Kytojoki, L. Salmela and J. Tarhio, Tuning String Matching for Huge Pattern

Sets, CPM 2003, LNCS 2676, pp. 211-224, 2003.

[8] ClamAV, http://www.clamav.net/ .

[9] DansGuardian, http://dansguardian.org/.

[10] Snort, http://www.snort.org/.

[11] R. Karp and M. Rabin, Efficient Randomized Pattern-Matching Algorithms, IBM

Journal of Research and Development 31, pp. 249-260, 1987.

[12] R. Muth and U. Manber, Approximate Multiple String Search, CPM 96,

Combinatorial Pattern Matching, Lecture Notes in Computer Science 1075,

 37

pp.75-86, 1996.

[13] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings, Cambridge

University Press, 2002.

[14] L. Cleophas, B. W. Watson and G. Zwaan, A New Taxonomy of Sublinear

Keyword Pattern Matching Algorithms, Department of Mathematics and

Computer Science, Technische Universiteit Eindhoven, April 22, 2004.

[15] G. Navarro and M. Raffinot, Fast and Flexible String Matching by Combining

Bit-Parallelism and Suffix Automata, ACM Journal of Experimental Algorithms 5,

pp. 1-36, 2000.

[16] A. Aho and M. Corasick, Efficient String Matching: An Aid to Bibliographic

Search, Communications of the ACM 18, pp. 333-340, 1975.

[17] M. Norton, Optimizing Pattern Matching for Intrusion Detection,

http://www.snort.org/.

[18] R. Boyer and S. Moore, A Fast String Searching Algorithm, Communications of

the ACM 20, pp. 762-772, 1977.

[19] N. Horspool, Practical Fast Searching in Strings, Software – Practice and

Experience 10 (1980), 501-506.

[20] S.Wu and U. Manber, Agrep – A Fast Approximate Pattern-Matching Tool. Proc.

Usenix Winter 1992 Technical Conference, 1992, 153-162.

[21] R. T. LIU, N. F. HUANG, C. H. CHEN and C. N. KAO, A Fast String-Matching

Algorithm for Network Processor-Based Intrusion Detection System, Transactions

on Embedded Computing Systems of the ACM, Vol. 3, No. 3, pp. 614-633, August

2004.

[22] R. Baeza-Yates and G. Gonnet, A New Approach to Text Searching,

Communications of ACM 35, pp.74-82, 1992.

[23] Y. Miretskiy, A.Das, Charles P. Wright and E. Zadok, Avfs: An On-Access

 38

Anti-Virus File System, USENIX Security Symposium, 2004.

[24] Valgrind, http://valgrind.org/.

[25] Wget, http://www.gnu.org/software/wget/wget.html.

[26] RFC, http://asg.web.cmu.edu/rfc/rfc-index.html.

[27] Netfilter, http://www.netfilter.org/.

[28] M. Norton and D. Roelker, Snort 2.0 Protocol Flow Analyzer,

http://www.snort.org/docs/.

 39

