S}
y
4
>|_
i

I
2
Y
;K‘

B RBEFF IR N FE 2R
Profiling and Accelerating String Matching Algorithms in

Three Content Security.Applications

Foyo4 o FEM

fgor T HEE K

FEREBA+ONFARA

ST R Z B TR HI N FE A

Profiling and Accelerating String Matching Algorithms in
Three Content Security Applications

MogoA Ll FEE Student : Zhi-Xiang Li
hEERR D HEL Advisor : Dr. Ying-Dar Lin

A Thesis
Submitted to Institute of Computer and Information Science
College of Electrical Engineering and Computer Science
National Chiao Tung. University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer and Information Science
June 2005

HsinChu, Taiwan, Republic of China

dEARL e &

IFTEAE LG F RV HLP X 2R

G Y T R R
Bz 2« FFMp R A

&

PRAFE RS EE I RERRY LR AR AR FAILY 0 %
ERonf e B ML BB E R o F B W HIR 2 gt A B X I A i e

BERACEE R A BB A T A kA F R PR AT R F BN
- A HEE R R B A AAF Y R & At BRT & * o Aho-Corasick j# ¥
E LY AEAE R EnE B Lol pEiz c Modified-WM j# 52 &1 * A

PacE b wanh B 5 27 kAR5 1000 s ™ o FNPW2 R i & @ * A dF

k)
w
\3‘

M manh B 5 2 F thd e~ 38 1,000 o iR o FHE BCEaE R G

pFiE R & % Modified-WM g 5 2 > Hagie < » 83 4 chpfig g & @ #
2-gramBGH+F B 2 o 42 F > LG LT OFEZ YR FIE R BERY o1
TRZFLEFERY P2 PL R ook TP VAL RPN FER G0 b

ooty PR s e d o 4o ClamAV (0 f S ¢ 0 ATehs 3 Bk PR

Keywords: sf'f//f%%?f’ ETET* ﬁ’/ﬁf’%?

Profiling and Accelerating String Matching

Algorithms in Three Content Security Applications

Student: Zhi-Xiang Li Advisor: Dr. Ying-Dar Lin
Department of Computer and Information Science

National Chiao-Tung University

Abstract

Network content security has become a critical issue of the Internet. It is shown
that the efficiency of string matching algorithms is essential to content processing.
The performance of a string matching, algorithm is sensitive to the number of
patterns, the minimum length: of the signature. and the character set that the
signatures are composed of. This'work reviews and-profiles some typical algorithms
to understand which algorithm-is. suitable-in-which situation. The AC algorithm is
suitable for LSP=1, the Modified-WM algorithm is suitable for LSP =2 when the
pattern set size is smaller than 1,000, the FNPwz2 algorithm is suitable for LSP=2
when the pattern set size is larger than 1,000, the Modified-WM algorithm is suitable
for LSP=3 and the BG+ algorithm is suitable for LSP>4. Then, these algorithms are
implemented on open-source content security applications to observe the
performance in practice. The performance improvement is significant if the
percentage of string matching processing on total execution time is great. For
example, the novel method is five times faster than the original method on the
experiment of ClamAV. In addition, these applications are fed with the real and
synthetic data. The differences of performance between the real and synthetic data

are also compared. The execution time for processing the real data is longer than that

for processing the synthetic data due to the character set distribution. Finally, the

practical design issues for string matching are also observed in this work.

Keywords: string matching, pattern matching, algorithm, content security

CONTENTS

CHAPTER 1 INTRODUGCTIONottt sttt sr ettt n et n bbb e e e nnenne e 1
CHAPTER 2 RELATED WORKS ...ttt r bbb e an e 3
2.1 TYPICAL ALGORITHMS ...iiiiiiuieitiarestt sttt sttt sh et ss et ne b bt e bkt e b s e e e b b e ab bt bt et e e e esn e e e ar e renne s 3
2.1.0 AUTOMALON-DASEA.....c.eeeiieiietiite ettt r ekt bbb ekt b ettt b et eb e r e e b e r e b ane e 4

2.1.2 HEUTISHIC-DASEA. ...t are e 4

2.1.3 HASNING-DASEA.......ceeieiciie ettt bbbt b e b e bt bt et e et e n e et b bt 6

2.1.4 Bit-paralleliSM-DASEAc..ooiiiiiiiiiiiee ettt bbbt n et e b e 6

2.2 SELECTED PACKAGEScittiuiiiieitias sttt sttt ettt sh ekt h ket ne bbbtk h e s e e e b bt ab bt bt e b e et e e e arenreane 7

2. 2.1 CLAMAV ..ottt bttt bbbt b e £ oAb e o4t e b e AR e bt eE £ e Re e Rt e eR e bt e be bt b e Rt e R e et et e ebenes 7

2.2.2 DANSGUAITIANeveieiiiteieti ittt et h etk h etk h ekt e bbbt e bt et e e b et ek e er e e ebeare e ebeane e 8

2.2.3 SINONT 1.t 9
CHAPTER 3 PRACTICAL DESIGN ISSUES ..ottt 10
3.1 VERIFICATION APPROACHcoutttitiitt ittt ettt sh skt sbe et e bbbttt s e e e bbbt bbb e e naeen e re e 10
3.1.1 Propose the CRKBT AlgOrithmiiii . . i e 10

3 1.2 EXPEIIMENTS.ivieiieeieueefiuaiee s rrresshad rnhbevnn tae s s sa a8 e eeeeseeseesbesbesbesseesee e enbesaesbesbesbeebeaneeneeseenbeseesneas 12

BN IR Vo =1\ VTIOR8 o A RSO OU PSR URURUUTTURRT 14

3.2 HASH FUNCTION .ot b B ettt it it et an bbbttt e bt an ettt et e e nnenn e re e 15
CHAPTER 4 PROFILING ALGORITHIMS.........cooioiiifeaii et 17
4.1 EXTERNAL PROFILING ...ttt ittt sttt sh bbbttt h ekt ne e an bbbt nnean e renne s 17
4.1.1 Experiments with Earlier AIGOrtNMS.........couiiiiiii e 17

4.1.2 Experiments With NOvel AlGOrithmMS ... s 18

4.2 INTERNAL PROFILING ...ttt sr ettt bttt h bbb na e an bbbt et nnean e nne s 19
4.2.1 SITEDISTANCE ...ttt et b et b et b bbbt bbbt e b ekt bt e bt e r e e eb e b nn b e ane e 19

4.2.2 POtENTIAl MACHINGe it bttt b e bbbt n e e bbb e 20

4.2.3 IVIEIMIOTY ACCESSESetteteeuteeuteattesteesteesbeesbe e et saeeaaeeeae e abe e bt es bt es b e eb e e eb e e nbe e eEe e ke e Reeeaeeebeeabeenbeanbeenbennbenreens 21

4.3 PROFILING SUMMARYttitiitiiiieateittas sttt ss st she st sht et e et s et e btk e bt b e e e e ne e ar s b e sb e e b e et e e e e anenrenne s 25
CHAPTER 5 EXPERIMENTS ON REAL APPLICATIONS ..ot 28
5.1 IMPLEMENTATIONS IN THREE PACKAGESeittittittitisteitiatieeere st sr st sbe st sn et sne st an e 28
BLLL CIAMAV .ttt bt bbb R b et e b e e bt e b e e b e e b e eh £ et e Rt e eeeeb e e b e bt eb e et e nb et e nbenbe b 28

5.1.2 DANSGUAITIAN ..ottt sttt sttt r et bbbt b e bbbt b e bt bbb bt b n e 29

B L3 SIONT e et 29

5.2 BENCHMARKINGctittitietieitesie st ss etttk e st bbb b e et e bRt b b e b e s e e e bRt eh b bt et e e e nnean e re e 29
B.2.L CIAMAV ..ttt bbbt bR ek et e e b e e bt e b e e R e eb £ et eR b e eeeeb e e b e ebe e bt e neenb et e nbenbeane s 29
5.2.1.1 Benchmarking MethodOIOgYcovciiiiiiiiiiicce sttt ae e s enaene s 29

5.2.1.2 BENChMAIKING RESUILScoeiiiiiiiieicce sttt e bbb e et ereebeetesaesbesean 29

5.2.2 DANSGUAITIAN ..ottt ettt bbbtk b ettt bbbt b e bbbt bbb n e 30
5.2.2.1 Benchmarking MethodOIOgYccvoiiiiiiiiicicce sttt sa e e naene s 30
5.2.2.2 BENChMAIKING RESUILScooiviiiiiicicce ettt et st b e e et eseebeetesaesbeneen 30

52,3 SINONT e b et r e 31
5.2.3.1 Benchmarking MethodOIOgYccvciiiiiiiiiiic ettt ae e naene s 31
5.2.3.2 BENChMArKING RESUILScoeiviiiiiiiccce ettt st et se et reebeetestesbenan 32

5.3 REAL DATAVS. SYNTHETIC DATA ..ottt s 32

B.3.L CIAMAV ..otttk bbbt b bbb £ b b £ b b £ b h R bRt e bbb bRt b b et b et nn et 33

5.3.2 DANSGUAITIANeviiieiiiteieeiesie ettt ettt btttk bbbttt bbbtk bbbt et r et b n e 33

5,33 SINONT e bt r e 33

CHAPTER 6 CONCLUSIONS ..ottt 35

LIST OF FIGURES

FIGURE 1: THE RKBT ALGORITHM VS. THE CLASSIFIED RKBT ALGORITHMcoviiiiiniinie s 11
FIGURE 2: THE RKBT ALGORITHM VS. THE CRKBT ALGORITHM ..ottt 12
FIGURE 3: THE 2-GRAM SOG ALGORITHM VS. THE 2-GRAM SOG+ ALGORITHM....c.ooiiiiririiiiieieieeneesrenie s 13
FIGURE 4: THE 2-GRAM BG ALGORITHM VS. THE 2-GRAM BG+ ALGORITHMooiviiiiiirinieniieieeee e 13
FIGURE 5 EARLIER ALGORITHMS BENCHMARKING RESULTSccuviiiiiiiiiriniesiceieeeere s anea 17
FIGURE 6 NOVEL ALGORITHM BENCHMARKING RESULTSctiuiiiiiiiiinie e 18
FIGURE 7 THE SHIFT DISTANCE PROFILINGccttiuteiieititestt sttt sr sttt sn et nnean et aneas 19
FIGURE 8 THE POTENTIAL MATCHING PROFILING.......coittitiitiiitiiieiieniesrenie sttt sne st sne st seean e anen 20
FIGURE O RKBT VS. CRIKBT ...ttt bttt st b e nb ettt es et e st nbeenbeeeeaneas 21
FIGURE 10 WU-MANBER VS. MODIFIED-WIMcoiiiiiiiiiiiiisecee e 22
FIGURE 11 BG VS. SOG ... cuiiiiiiitieiiee ittt sttt ettt ettt sttt be e ste et se e sbe e sbe e bt et e enbees b e st eesbeenbeenbeeeeaneas 22
FIGURE 12 THE NUMBER OF MEMORY ACCESSESeeiviitittitiateitiasieeirestesrestesieesessesse st snessesnessessssssesssanensesnens 23
FIGURE 13 THE NUMBER OF L2 CACHE MISSESceiiiiitiitt sttt sttt sn et nneanenneanea 23
FIGURE 14 THE SIZE OF MEMORY USAGEutitttttiuiaiieitiarestessessesieessessess et sre st b sseeeese st ane st snessesseessesesanensesnens 24
FIGURE 15 THE PROFILING RESULT OF LSP S L i il iiiss cov ettt 25
FIGURE 16 THE PROFILING RESULT OF LISP=2 ... e n i et 26
FIGURE 17 THE PROFILING RESULT OF LR =3 i m i it e 26
FIGURE 18 THE PROFILING SUMMARY ... ttutsussscafieisesuasrestesst ttameressessensesssasessessessessessesssanessessesesssessesssanensesnens 27
FIGURE 19 THE PROFILING SUMMARY-:. 1. ... tsii0is [t des 1o i 4t e esveseessesaearessesseeseeseessesssanesnesnessesseennenesanensesneas 28
FIGURE 20 THE BENCHMARKING RESULTS FOR CLAMAW-PACKAGEueitiieiiieiieiere sttt anens 30
FIGURE 21 THE BENCHMARK RESULTS FOR DANSGUARDIAN PACKAGEcccviuieiiiiireniesresie e sne e 31
FIGURE 22 THE BENCHMARKING RESULT FOR SNORT PACKAGEc.vtitiitiirisieiiieieeiere st sne e anesnesnens 32
LIST OF TABLES
TABLE 1: CLASSIFICATION OF TYPICAL ALGORITHMSoouiiiiiiirisiesiietiee et sr sttt sre st sneane s 4
TABLE 2: SELECTED OPEN-SOURCE PACKAGEScutitietiiiiresiiasisie sttt sessse st sne st st assesee st sne s s eneeseesnesneanennes 7
TABLE 3: THE PROFILING RESULT FOR SOME DIFFERENT HASH FUNCTIONSccuviviiireniearcsieseeee e 16

VI

Chapter 1 Introduction

A growing number of intrusions, worms, viruses and inappropriate Web pages
spread all over the Internet. Detecting and filtering them require content classification
at the application layer, as opposed to traditional packet classification at the network
and transport layers. Content classification requires string matching for designated
signatures. Unlike traditional packet classification, which looks for fields of fixed
lengths and at fixed positions, the position and the length of the matching signature
are unknown before hand. Thus content signature matching is usually more elaborate
than packet classification. In addition, string matching is reported a bottleneck for
network content applications [1-5]. Consequently, the efficiency of the string
matching algorithm is critical to content processing.

No existing string matching. algorithms™ ¢an scan signatures of various
characteristics more efficient :than all the others. For example, the Wu-Manber
algorithm [6] is inefficient for a huge.pattern-set [7]. Furthermore, content security
applications have signatures of different characteristics. For example, the anti-virus
applications have a large number of signatures, and the intrusion detection systems
have short patterns of one or two characters. This work investigates the types of
signatures in these content security applications and the type that each string matching
algorithm can scan most efficiently, and hence the most efficient algorithm is derived
for each application.

The efficiency of six typical string matching algorithms are profiled for signature
sets varying in sizes, the minimum length of the signatures and the character set that
the signatures are composed of. Sample sets of both synthetic and real signatures are
studied to see if there are deviations in the profiling results for both cases. The edges

and limitations of each algorithm are better understood after the profiling. The

impacts on performance of memory and cache accesses are also measured
quantitatively.

These algorithms are also implemented on three open source packages of content
security: ClamAV [8] for anti-virus, DansGuardian [9] for content filtering and Snort
[10] for Network Intrusion Detection System (NIDS). The performance is
benchmarked to see if the gain in the actual environment is significant after the
implementation.

In addition, this work also proposes a classified RKBT (Rabin-Karp with binary
search and two-level hashing) to enhance the performance of the original RKBT
algorithm [11, 12] for a huge signature set. The RKBT algorithm can serve as the
verification algorithm after a potential match in some string matching algorithms [7]
and hence its performance is essential in these algorithms. The contributions of this
work are summarized as follows:

e Finding out the most efficient algorithm.for each application of content security
and telling why.

e Proposing the Classified RKBT algorithm to enhance the performance of the
original RKBT algorithm.

e Comparing the performance for synthetic and real data in these algorithms.

The rest of this work is organized as follows. Chapter 2 reviews six typical
algorithms and three selected packages. Chapter 3 discusses the practical design
issues, such as the verification algorithm and the hash function. Chapter 4 shows the
profiling results and identifies the most efficient algorithms for each situation. The
performance gain on real packages is demonstrated in Chapter 5. Chapter 6 concludes

the study.

Chapter 2 Related Works

2.1 Typical Algorithms

The string matching problem is to find all the occurrences of a string p, called the
pattern, in the text T=tyt,ts...t, on the same alphabet, where n is the length of the text.
Multiple string matching is to find the appearance of a string p' in a set of strings P=
{p*, p°..., p'} in the same manner as a single string. This research focuses on exact
string matching because the majority of the content security applications must use it
to find out the signatures.

A number of string matching algorithms have been proposed for exact string
matching. They are usually grouped into three general approaches, prefix searching,
suffix searching and factor searching; depending on the way the pattern is searched
for in the text [13, 14]. However, this work categorizes the algorithms into four major
approaches according to the data structure that drives the matching to emphasize on
the evolution. These categories are.automaton-based, heuristic-based, hashing-based
and bit-parallelism-based. An automaton-based algorithm tracks the partial match of
the pattern prefixes in the text. A heuristic-based algorithm relies on one or two
heuristic function to finish looking up the shift distance. The shift distance of 0
indicates a possible match, so a verification algorithm follows to verify. A
hashing-based algorithm checks a possible appearance of the patterns by hashing a
block of characters in the text and compares the hash value with those from hashing
the blocks in the patterns. A bit-parallelism-based algorithm takes advantage of the
parallelism of the bit operations inside a computer word to simulate the operation of a
finite automaton [15]. Table 1 compares some typical algorithms in these four

categories.

TABLE 1: Classification of typical algorithms

Algorithms Approach Time Search | Multiple Key ldeas
Complexity | Type Pattern

Aho-Corasick | Automaton-based Linear Prefix Yes Finite automaton
Optimized-AC Linear Prefix Yes Full matrix or Sparse matrix
Boyer-Moore Heuristic-based Sub-linear Suffix No Bad character, Good suffix
Horspool Sub-linear Suffix No Bad character
Set-wise BMH Sub-linear Suffix Yes Bad character
Wu-Manber Sub-linear Suffix Yes Shift and hash Table
Modified-WM Sub-linear Suffix Yes Change table size and hash function
Rabin-Karp Hashing-based Linear Prefix No Hash function
RKBT Linear Prefix Yes Two-level hash, Binary search
FNP Sub-linear Prefix Yes Skip distance table
SOG Bit-parallelism-based | Linear Prefix Yes Bit-parallelism, g-gram
BG Sub-linear Factor Yes Bit-parallelism, g-gram

2.1.1 Automaton-based

The Aho-Corasick (AC) algarithm [16].was proposed for multi-pattern matching.
It uses the data structure of a finite; automaton that accepts all strings in the pattern set.
The automaton is fed the input characterstone by one in the text and tracks partially
matched patterns. The time complexity is:O(n). However, a large pattern set demands
large memory space for the transition table. It can be slower in case of a large pattern
set because of the worse cache locality in accessing the transition table.

The derived algorithm, Optimized-AC algorithm [17], was proposed to reduce
the memory requirement by compressing the transition table with the structure of a
full matrix or a sparse matrix. The running time of the Optimized-AC algorithm is
faster than the standard AC algorithm due to its better cache locality.
2.1.2 Heuristic-based

The Boyer-Moore (BM) algorithm [18] is extensively used due to its efficiency
in single-pattern matching. It uses two heuristic functions, bad-character function and

good-suffix function, to reduce the number of character comparisons by skipping over

characters that cannot be a match. The shift distance of the search window is the
maximum of shift distances indexed from the two heuristics. The time complexity is
sub-linear of O(n/m) on the average.

Horspool proposed the Boyer-Moore-Horspool (BMH) algorithm [19] that uses
only the bad character function and is shown to be more efficient than the BM
algorithm in practice, because the BMH algorithm is faster than the BM algorithm in
each iteration. Furthermore, this algorithm is also a single-pattern matching algorithm.
The Set-Wise BMH algorithm [3] extends the BMH algorithm to handle multiple
patterns.

The Wu-Manber (WM) algorithm [6], a variation of the Set-Wise BMH
algorithm, was proposed for multi-pattern matching. It is based on the similar
heuristic function of the BMH algorithm to butld'the shift table and hashes the block
of B characters in the suffix of the search window for-the shift distance, where B is the
size of the hash block, so its-time.complexity can be sub-linear on the average.
However, the performance of the WM algorithm depends considerably on the length
of the shortest pattern (denoted as LSP), because the maximum shift distance equals
m-B+1, where m is the length of the shortest pattern and B is the size of the hash
block.

The derived algorithm, Modified-WM algorithm [17], was proposed by the Snort
team leader, Marc Norton. It is based on the implementation of the Agrep package
[20], which is written by the author of the WM algorithm. It changes the size of hash
table from 8,192 to 65,535 and accomplishes the purpose grouping all patterns with
the same hash value, which is not implemented in the Agrep package. The
performance of the Modified-WM algorithm is more efficient than that of the WM
algorithm [17]. It is also proved that the performance of all string matching algorithms

is sensitive to the tuning of the hash table in practice.

5

2.1.3 Hashing-based

The Rabin-Karp (RK) algorithm [11] is designed to handle single-pattern
matching with less memory. Hash values for the patterns are calculated and saved
during the preprocessing stage. Then, matching can be done by calculating the hash
value for each m-character string of the text and comparing it with the hash value,
where m is the length of the pattern. If the hash values are the same, the pattern is
compared with the specific position of the text. In order to cope with large pattern sets,
the RK algorithm with binary search was proposed. In addition, Muth and Manber use
two-level hashing to enhance the performance of the RK method (denoted as RKBT)
[12].

The FNP algorithm [21] also uses hashing method to accelerate the pattern
matching. It is designed particularly for the pattern set in which the length of the
shortest pattern is extremely short,.say 2 or 3. It .keeps the average shift distance as
close to B as possible by considering.the-characters within the block of B characters,
namely prefix sliding window, to determine the best shift distance. The shift distances
are recorded in a skip distance table that is similar to the shift table in the WM
algorithm for indexing during the search. Like the WM algorithm, the verification for
a true match follows if a partial match within the search window is found.

2.1.4 Bit-parallelism-based

The Shift-Or (SOR) algorithm [22] and Backward Nondeterministic Dawg
Matching (BNDM) algorithm [11] were proposed for the single-pattern matching with
bit-parallelism. The SOG and BG algorithms [7] extend the SOR and BNDM
algorithms for the multi-pattern matching. Multiple patterns are thought of as a single
pattern, and hence the same position of characters in each pattern is grouped into the
same class. A class is processed instead of a character, so the bit-parallelism for

matching a single pattern can be applied to multiple patterns. They use g-grams to

6

reduce the possibility that the g-gram characters in the text appear in one of the
patterns in the pattern set so that fewer verifications are required. These algorithms

use the RKBT algorithm to accelerate the verification of whether a true match occurs.

2.2 Selected Packages

We select open source packages for observation and experiments in the profiling
because the source code is available. Table 2 lists the number of patterns, the maximal
pattern length, the minimal pattern length and all supported algorithms in three
open-source packages for each network content security application. It is also
recognized that whether all patterns are classified into different group and the single
group is searched for during the searching stage. In addition, the character set
distribution for all patterns is also observed. As to detailed description about the
searching stage for all packages, we explain-asfollows.

TABLE 2: Selected open-source packages

Application | Packages |Versiond Algorithms[{-Number of | Classified | Pattern| Char. Set
Patterns Length | Distribution
Anti-Virus ClamAvV 0.85 Aho-Corasick 26467 No 10~210 Type 1
Wu-Manber
Content-Filter |DansGuardian |2.8.0.4 |Horspool 5867 No 2~64 Type 2
DFA
IDS/IPS Snort 2.3.3 AC-std Patterns for all|Yes 1~107 Type 1
AC-Full groups: 14295 (173 groups
AC-Sparse Total rules: |Max group
AC-Banded 2246 size: 1174
AC-SB Min group
Modified-WM size: 12
LowMemTrie

Typel : close to uniform distribution
Type2 : biased to English character set

2.2.1 ClamAvV

ClamAV is an open-source anti-virus package. It contains two types of virus
patterns: a basic pattern is a simple sequence of characters that identify a virus, and a

multi-part pattern is composed of more than one basic sub-pattern. First, basic

7

patterns are scanned by a multi-pattern matching algorithm, the WM algorithm. This
type of virus patterns occupies 93% of total patterns. If no virus is found in this stage,
it then handles the multi-part patterns. The type of the multi-part patterns occupies 5%
of total patterns. All sub-patterns of a multi-part pattern must match so as to find a
virus. This part is scanned by the extended AC algorithm, a trie with two levels [23],
because the AC algorithm could handle regular expressions. During preprocessing, all
sub-patterns beginning with the same prefix are stored in a linked list under the
appropriate trie leaf node. In the searching stage, it is fed with input characters one by
one in the text in order to transform the state. If a leaf node is encountered, all patterns
inside the linked list are checked using sequential string comparisons. This process
keeps until the last input character is read, or a match is found. If a match is found, it
will check all parts constructed by'a candidate multi-part pattern to verify whether a
true match occurs or not. If a match.is not found, it will use the message digest to find
out whether the text is malicious tool-or-not.-This is the whole searching method for
the ClamAV package.
2.2.2 DansGuardian

DansGuardian is an open-source content filtering package. It uses content
keywords classified in the configuration files to find out whether the content is
inappropriate content or not. All content keywords are searched once during the
scanning period, because the content can not be classified into the correct group
before the matching. Further, the BMH algorithm and a deterministic finite automata
(DFA) algorithm are implemented for the searching. They are implemented as follows.
During preprocessing, it builds a big array to simulate a matrix in order to set up a
whole DFA, called the graph data by its author. All content keywords go through the
processing of the graph data to avoid repetition. Then it searches the graph data to

find out the nodes with fewer than 12 branches and deletes them from the graph data.

8

These content keywords are classified into another group because they have the same
prefix and have no more than 12 keywords. They are searched with the BMH
algorithm one by one in the searching stage in order to avoid coping with the nodes
with fewer branches. Then it continues to search all content keywords with the graph
data. Finally, it checks all searched keywords to decide whether the content is
inappropriate or not. This is the filtering approach for the DansGuardian package. In
addition, its configuration also supports the force quick search method. If the
forcequicksearch flag is enabled, all content keywords are searched with the BMH
algorithm one by one.
2.2.3 Snort

Snort is a popular open-source package for network intrusion detection. As
opposed to other packages, it uses the packet header to classify all rules. During
run-time it uses a two-stage arehitecture to inspect data and find the matching rules.
The first stage quickly identifies-potential-match. rules based on the packet header. The
next stage uses the Modified-WM algerithm by default. If a potential match is found,
Snort queues the match and inspects until all packet matches are located. When the
inspection is finished and needs to validate the rest of the rule, it runs into the second
stage. The inspection of the second stage performs a complete rule inspection to test
the rest of the rule using the standard parameterized rule processing. If a complete
rule match has been found, it inserts the rule into the event queue. Finally, it processes
the event queue and selects a single event for logging. This is a complete inspection
manner. Moreover, the hybrid method is also proposed based on the size of the set in
order to enhance the performance of content inspection [3]. The hybrid method is the
BMH algorithm when coping with the sets of size 1, the Set-wise BMH when coping
with the sets of sizes between 2 and 100, and the AC algorithm when coping with the

sizes larger than 100.

Chapter 3 Practical Design Issues

Besides the algorithm itself, the implementation can impact the performance
significantly. This chapter focuses on the practical design issues in the implementation.
Some existing algorithms, such as the SOG and BG algorithms, have to use the
verification algorithm to verify the potential match. The RKBT algorithm can serve
the purpose. The RKBT algorithm could be inefficient for a huge pattern set. A
Classified RKBT (CRKBT) is proposed to boost its performance. In addition, a
number of the existing algorithms rely on hashing during the searching process. We
will discuss various ways proposed by some existing algorithms to understand how to

choose the most efficient one.

3.1 Verification Approach

3.1.1 Propose the CRKBT:Algorithm

The SOG and BG algorithms are proposed to handle a large pattern set [7], and
rely on the RKBT algorithm to verify if the potential match occurs. The performance
of the RKBT algorithm could be significant if a number of potential matches are
found during the scanning. The operation of the RKBT algorithm is illustrated on
Figure 1. At pre-processing time, the sorted 32 bit hash table is constructed from the
first hash values of the patterns. Each pattern is divided into consecutive blocks of
four characters, and each block is treated as a four-byte integer, i.e. 32 bits. If the
pattern length is not a multiple of four, the last block is padded with bytes of zero
values. The first hash value is defined by xor’ing these blocks of integers. The second
hash is calculated from the first one by xor’ing together the lower 16 bits and the
upper 16 bits. A 2*° bitmap is built from the second hash values. The i’th bit is one, if
there is at least one pattern with i as its second hash value, and zero, otherwise.

Suppose the second hash value of the search window is i. At searching time, the

10

bitmap is checked. If the i’th bit in the bitmap is zero, no true match can occur and the
verification fails. When the corresponding bit of the second hash value is one, say the
2345°th bit on Figure 1, the 32 bit hash table is searched with binary search. If a first
hash value is found, the characters of the pattern with that value is compared with
those in the search windows one by one to check if a true match occurs. Otherwise,

the verification fails.

RKBT method Classified RKBT method

1

2 Binary search Binary search

32bit 7 : . .
7 S 1) 23451 | 32bit|| 32bit|| 32bit
1

2345
—7 | 32bit|| 32bit

0 — o]

First hash value

Bitmap of the secand hagh Pointer table

FIGURE 1: the RKBT algorithm vs. the Classified RKBT algorithm

As the number of pattern grows huge, say 100,000 patterns, the probability that a
bit is set to 1 on the bitmap will be closer to 1, and consequently searching the first
hash table is almost un-avoided. The size of the first hash table is equal to the pattern
set size, and so the search is slow. A classified approach, namely the CRKBT
algorithm, is proposed to improve the original RKBT algorithm. The CRKBT
algorithm also used two-level hashing and binary search. The CRKBT algorithm uses
the pointer table instead of the bitmap. The i’th pointer points to a sorted array, which
is constructed at least one pattern with i as the second hash value, and point to NULL,
if no pattern has i as the second hash value. At searching time, the pointer table is

checked. If the corresponding pointer of the second hash value is not NULL, the

11

sorted array that the pointer points to is searched with binary search. The search scope
is reduced to a small subset of the patterns that have the same second hash value, and
so the binary search can be much faster. The improvement and analysis are presented
below.
3.1.2 Experiments

The RKBT and CRKBT algorithms are benchmarked as follows. The text of 32
MB is randomly generated from the alphabet of 256 characters. The patterns are
generated from the same alphabet and the length of the shortest pattern is 8. Both the
text and the patterns reside in the main memory in the beginning. The tests run on a
computer with a 2.8 GHz Pentium 4 processor, 1 GB of memory and 512 kB cache.
The algorithms are written in C, compiled with the gcc compiler, and running on

Linux 2.6.5.

18

14 /
12

10 7 / ——RKBT
8 —B— CRKBT

seconds

o
100 L

200
500
1k
2k
5k

of pat.

100k

FIGURE 2: the RKBT algorithm vs. the CRKBT algorithm
Figure 2 shows the experimental results from benchmarking both algorithms.
When the number of patterns is small, the execution time of both algorithms is very
close, because possible matches are unlikely to happen and few chances of binary

search in the first hash table are needed. As the number of patterns increases gradually,

12

the chances of binary search also increase. Because the search scope of binary search
in the CRKBT algorithm are smaller than that of the RKBT algorithm, the benefit of
the CRKBT algorithm becomes significant and so the CRKBT algorithm is faster than
the RKBT algorithm. The CRKBT algorithm can be four times faster than the RKBT
algorithm when the number of pattern grows to 100,000 patterns. Therefore, the

CRKBT algorithm is suitable for huge pattern sets.

3.6
32 | f
2.8 /
2.4 f
"é 2 l —&— 2-gram SOG
§ / —— 2-gram SOG+
7 16 — —3-gram SOG
12
0.8 F
04
0 Il Il Il Il Il Il Il Il Il
S 8 8 ¥ ¥ ¥ & & & 32 # of pat.
— [9\] n — N n a

FIGURE 3: the 2-gram SOG algorithm vs. the 2-gram SOG+ algorithm

36 ?

28 |

24 3 ——2-gram BG
—— 2-gram BG+
— —3-gram BG

seconds
N
I
L

1.6
12 ¢
08 |

04 r
og.ﬁ_.ﬁ_.—*tgkzhd:il;

100
200
500

FIGURE 4: the 2-gram BG algorithm vs. the 2-gram BG+ algorithm

13

We implement the CRKBT algorithm instead of the RKBT algorithm into the
SOG and BG algorithms, denoted as the SOG+ and BG+ algorithms. Figure 3 and 4
show the performance of the SOG and BG algorithms are also improved. For instance,
the BG+ algorithm is twice faster than the BG algorithm when the number of pattern
grows to 100,000 patterns. The efficiency of both algorithms will be significantly
improved as the number of potential matches increases.

3.1.3 Analysis

The difference between the RKBT and CRKBT algorithms is the binary search in
the first hash table. The number of memory accesses is essential in this stage. Suppose
the number of pattern is r. The number of memory accesses in each algorithm is
estimated in Formala (1) and (2) below respectively.

The RKBT algorithm

I 1-— 1
{p Tog(;) gr2 rrJr (GSSZ)GX
>
A T < (1)
The CRKBT algorithm
r
pxlog,(1+)+ (- p)x1
65536 T <65536
log,(1+——),r > 65536
02(65536))

When the RKBT algorithm is running into searching stage, it checks the second hash
table first. Suppose the probability that the corresponding bit of the second hash value
is set to one is p. If the bit is set to one, the binary search on the first hash table is

followed. The expected number of memory accesses is px log,r. Otherwise, that is

(1— p)><1. The expected number of memory accesses in both conditions is

P x Iogzr+(1— IO)><1. When the number of pattern is larger than 65,536 patterns, the

number of memory accesses is log,r. So Formula (1) is derived. The difference

14

between the RKBT and CRKBT algorithms is search scope, and consequently the

expected number of memory accesses on the CRKBT algorithm is log [1+ 65536}
2

The expected number of memory accesses for the CRKBT algorithm is written in

Formula (2). However, log (1+ 65;36] is much smaller than log,r in the RKBT
2

algorithm. Therefore, the CRKBT algorithm is more efficient than the RKBT

algorithm.

3.2 Hash Function

Many algorithms need using hash function to enhance the performance. For
example, the RKBT algorithm uses the hash value to find out the potential matching
and the Wu-Manber algorithm uses the hash table to index the shift distance. It is thus
clear that the hash method is a critical component:for string matching algorithm. This
section will discuss the selection of the hash function:

There are four implementations-of-the.same hash functions, but they can be
translated into different machine codes: They.are enumerated as follows:

char str="abcdefgh”;

(1) *(unsigned short *)str

(2) (unsigned short)(*(unsigned int *)str)

(3) ((*(str+1))<<8) | *str

(4) ((*(str+1))<<8) + *str

We want to know what hash function is best choice for the multi-pattern
matching algorithm. Thus, we profile the performance with these hash functions
under a situation, calculating the hash value plus using the hash value to look up the
hash table.

TABLE 3 lists the profiling result which is running 5,000 times to parse the 32

MB text and getting from the total execution time. The execution time listed in

15

TABLE 3 is not the same with each other. The type of the first and second hash
function has the similar execution time and is faster than that of the other ones,
because the first two methods have the fewer memory accesses than the others.
According to this observation, we can figure out the multi-pattern matching algorithm
using the first and second hash function would get good performance than that using
the other ones. But the SPARC architecture can not use the first two methods to
calculate the hash value, because the address of an integer should be a multiple of the
integer size. The third and fourth hash functions are the only choices in this

architecture.

TABLE 3: the profiling result for some different hash functions

Index Hash function Time (sec)

@ *(unsigned short *)str 1516.829 sec
2 (unsigned short)(*(unsigned: int-*)str) 1516.903 sec
3) ((*(str+1))<<8) | *str 1585.203 sec
4) ((*(str+1))<<8) + *str 1584.982 sec

16

Chapter 4 Profiling Algorith

mSs

This chapter compares the typical algorithms surveyed in section 2.1 in

accordance with external profiling and internal profiling. According to the profiling

results, we can conclude which algorithm is suitable on what situation.

4.1 External Profiling

The benchmarking environment is the same as that in section 3.1.2. We first

implement some earlier algorithms, the AC and WM algorithm, and some novel

algorithms, the BG and SOG algorithms, and test them to get average time over 1,000

runs using the same text and patterns. Moreover, the implementation of the WM

algorithm refers to that of the Agrep package and the WM algorithm discussed below

generally points at the implementation'of the Agrep package.

4.1.1 Experiments with Earlier Algorithms

18
7
17
16 d
: /
13 /
12
mll /
EI / »
S 8 / /]
8 A
7 /—*
6 -4
; A
4 1S4
2 V.S
1 i
0 () o o X X X‘X

—&— Aho-Corasick
—i— Optimized-AC
— — Wu-Manber
—< Modified-WM
—X¥— Classified RKBT

of pat.

FIGURE 5 Earlier Algorithms Benchmarking Results

A number of multi-pattern matching algorithms were proposed after 1975. The

AC and WM algorithms were famous ones for this string matching research area. Also

the WM algorithm had been proved that it has good performance under small pattern

17

sets [7, 13]. After, the Snort research team had proposed the Optimized-AC and
Modified-WM algorithms, which are different from the original algorithms due to the
variable tuning, to enhance the performance [17]. So we compare them in this section
to understand which algorithm is more efficient than the others

Figure 5 shows the benchmarking results which are tested with LSP=8. We also
compare with the CRKBT algorithm proposed in section 3.1.1. This experiment
demonstrates that the Modified-WM algorithm is more efficient than the others when
the pattern set size is smaller than 20,000. However, when the pattern set size is
greater than 20,000, the CRKBT algorithm is the most efficient. The Modified-WM
algorithm and CRKBT algorithm are the fastest ones, so we select these two
algorithms as traditional algorithms and compare them with two novel algorithms, the
BG+ and SOG+ algorithms.

4.1.2 Experiments with Novel Algorithms

12
11
10 /?
9
o | | |——Modified-wm
; / —8— Classified RKBT
é 6 / — — 2-gram SOG+
2 c / 2-gram BG+
A | P | |-¢3gramsoG
—8— 3-gram BG
3 f /
2 X v v X Zs ZS ZS ZS 7;!! X
: E‘ﬁg#ﬁéﬁ
0 = X X 4 SO e Ge—" w—— S| X
o o o x ~ x x ~ X # of pat.
o o o — N [Te) o o o o
— N [Te) - (V] [Te] 8

FIGURE 6 Novel Algorithm Benchmarking Results
Figure 6 shows the benchmarking results which are also tested with LSP=8. We
can find out the traditional algorithms are less efficient than the others. The 2-gram

BG+ algorithm is the fastest one than the others when the pattern set size is smaller

18

than 50,000. As the pattern set size is greater than 50,000, the 3-gram BG+ algorithm
is the fastest one.

In the experiments of earlier and novel algorithms, we can conclude the BG+
algorithm is the more efficient algorithm than the others for LSP=8. As to verify the

benchmarking results, we will do internal profiling later.

4.2 Internal Profiling

After the external profiling, we can know what algorithm is the most efficient.
But some results need to verify. For example, why does the BG+ algorithm has good
efficiency and the Modified-WM algorithm is more efficient than the WM algorithm?
We will go through the internal profiling so as to answer the questions. The shift
distance, the potential matching and the. .memory accesses of each algorithm are
profiling as follows.

4.2.1 Shift Distance

= 80
10 | e oy —
6.0 ~
5'0 y —&— \Wu-Manber
00 \ —B— Modified-WM
20 | \ — —2-gram BG
2.0 _|===3-gram BG
10 |
0.0 | | | | | | | | |

-SRI~ H= § # of pat.

FIGURE 7 the Shift Distance Profiling
Both the WM and BG+ algorithms are the sub-linear ones. The WM algorithm
uses the shift table to record the shift value. The BG+ algorithm also uses the B table

plus the bit-parallelism method to calculate the shift value, where the B table keeps

19

whether each character of all patterns occurs or not. So we will profile the shift
distance in order to justify the prior results.

Figure 7 shows the profiling results of the average shift distance. According to
the results of the average shift distance, we can find out the average shift distance of
the WM algorithm is close to one character when the pattern set size between 5,000
and 100,000. So the WM algorithm is not suitable for huge pattern sets. The average
shift distance of the Modified-WM algorithm is greater than that of the WM algorithm.
This result easily proves the Modified-WM algorithm is more efficient than the WM
algorithm. In addition, it is clearly proved that the 2-gram BG+ algorithm is more
efficiency when the pattern set size is smaller than 20,000 and the 3-gram BG+
algorithm has larger shift distance than 2-gram BG+ algorithm while the pattern set
size between 20,000 and 100,000.

4.2.2 Potential Matching

100%
90%
80%
70% r
60%
50%
40% r
30%
20%
10%

0%

——RKBT

—&— \Wu-manber

— — Modified-WM

——2-gram SOG
X—2-gram BG

percentage

of pat.

FIGURE 8 the Potential Matching Profiling
Some algorithms are filtering ones that need the verification algorithm to check
whether the potential match is a true match or not. As the number of potential matches
increase, the string matching performance will decrease and the verification become a

bottleneck. The number of the potential matches will be profiled in each filtering

20

algorithm in this section.

Figure 8 shows the percentage of the potential matching for all filtering
algorithms. The result shows the potential matching of the Modified-WM algorithm is
less than that of the WM algorithm. This result proves the Modified-WM algorithm is
more efficient than the WM algorithm, too. In addition, the thing that the potential
matching of the WM algorithm increases fast also proves the WM algorithm is less
efficiency while the pattern set size is more than 10,000. Finally, it is also proved that
the BG+ algorithm is more efficient than the Modified-WM algorithm.

4.2.3 Memory Accesses

It is insufficient to explain the results in accordance with the results of the shift
distance and the potential matching. For example, why does the CRKBT algorithm is
the fastest one than the others as the pattern set size is more than 50,000 in figure 5?

This section will profile the number.of memaory accesses to prove it.

9000000000

8000000000
7000000000 |
6000000000

w2 /
§ 5000000000 / ——RKBT
% 4000000000 / CRKEBT

3000000000 /

2000000000

1 L :: _-=

000000000 # of pat.
L I L L L L L L L

0

100
200
500
1k
2k
5k
10k
20k
50k
100k

FIGURE 9 RKBT vs. CRKBT

21

7000000000

6000000000 »

5000000000 |

4000000000 —&— \Wu-manber

3000000000 —— Modified-WM

memory access

2000000000 |

1000000000 :
0

X X X X N X X # of pat.
§ 8§ 8 * 8 3 3 8 8 8
FIGURE 10 Wu-Manber vs. Modified-WM
1000000000
900000000
800000000
& 700000000 —&—2-gram SOG
<
2 600000000 /|| —®—2-gram BG
g / — — 2-gram SOG+
2 500000000]
// ——<—2-gram BG+
400000000 - % - 3-gram SOG
300000000 - @ - 3-gram BG
200000000
100000000

0 # of pat.

FIGURE 11 BG+ vs. SOG+
Figure 9, 10 and 11 show the results of the number of total memory accesses from
program level profiled from Valgrind [24]. The memory accesses of these three
figures are the same as well as the results of the external profiling, because the
properties of these three types of algorithms are the same. For example, the RKBT
and CRKBT algorithms have the same hash function, hash table size and cache miss
rate. In addition, it is also proved here again that the CRKBT algorithm is more

efficient than the RKBT algorithm.

22

1200000000
1100000000 f
1000000000 /
900000000 /
| N
i 600000000 B Modified-WM
é 500000000 F — — Aho-Corasick
. —— 2-gram BG+
400000000 ¢
300000000 [= {
200000000 [L A A A 4 4 4 2
100000000 |- L, = /
0 LEeNe—mewewer e # of pat.
O O O ~x X X X ~x ~x X
S © © H «™w Im o o o o9
— N [Te) — ~ s 8

FIGURE 12 the number of memory accesses
When the algorithms of different properties are compared with each other, the
results are not the same as above under-the huge pattern sets. Because huge pattern
sets can bring about many verifications and the cache miss rate are not similar to each

other. This result can be observed on figure 12.

120000000
100000000 |- /
80000000

—&— Aho-Corasick

60000000 Pad 2-gram BG
— — Modified-WM

40000000 — - CRKBT
20000000 /‘//

/ / — # of pat.

the number of cache misse

FIGURE 13 the number of L2 cache misses
The number of memory accesses from the program level is insufficient to justify

the prior results. Because the penalty of L2 cache misses dominate the total

23

performance. For this reason, we profile the number of L2 cache misses to verify the
exceptional results.

Figure 13 shows the number of L2 cache misses for the CRKBT algorithm is less
than that for the Modified-WM algorithm and the number of L2 cache misses for the
2-gram BG+ algorithm is the least. According with these results, we can easily prove
the prior results, include that the CRKBT algorithm is more efficient than the
Modified-MW algorithm as the pattern set size is larger than 50,000. In addition, it is
also proved again that the 2-gram BG+ algorithm has best efficiency under huge

pattern sets.

1.00E+06

1.00E+05
—— CRKBT
—— Modified-WM
1.00E+04 —oT 2-gram BG+
—A— AC
—8— Optimized-AC

1.00E+03 |

the size of memory usage (kbytes)

1.00E+02
100 200 500 1k 2k 5k 10k 20k 50k 100k

of patterns

FIGURE 14 the size of memory usage
In addition to profiling the number of total memory accesses, figure 14 shows the
size of memory usage for all algorithms. Under the small pattern sets, the CRKBT
algorithm uses less memory for building the preprocessing table. The Modified-WM
algorithm uses fixed size of memory for building shift table and hash table. The type
of the AC algorithms uses large memory space as the pattern sets increasing. However,
the Optimized-AC algorithm is more complexity for building deterministic finite

automata when the pattern set is large than 10,000. So this area can not provide the

24

profiling results.

4.3 Profiling Summary

The external and internal profiling demonstrates that the 2-gram BG+ algorithm
is the most efficient for LSP=8 with the pattern set size smaller than 50,000 and the
3-gram BG+ algorithm is the more efficient for LSP=8 with the pattern set size
between 50,000 and 100,000. In addition, we also profile the length of the shortest
pattern between 1 and 7. The rank of efficiency for LSP between 4 and 7 are the same
as that for LSP=8. But the rank of efficiency for LSP between 1 and 3 are not the
same as well as before. Figure 15, 16 and 17 show the Aho-Corasick, FNPw2 and
Modified-WM algorithms are the fastest algorithm for LSP=1, 2 and 3, respectively.
The profiling results are summarized in figure 18.

LSP=1

18

16

14 /
/

12 —&— Aho-Corasick
1 —— Optimized-AC
— — Wu-Manber

seconds

—<— Modified-WM
0.6 / —¥— FNPw2
0.4 /A%
0.2 ;—_‘/’, # of pat.
0 Il Il Il
o o o o o
S I frs) S 2

FIGURE 15 the profiling result of LSP=1

25

LSP=2

—&— Aho-Corasick
—— Optimized-AC

— — Wu-Manber
—< Modified-WM
—K— FNPw2
of pat.
4 4 =~ =~ =~
g g 8 & & & &8 g &
FIGURE 16 the profiling result of LSP=2
18
17
16
15
14
13
12 —&— Aho-Corasick
4 %(1) —m— Optimized-AC
g 9 — — Wu-Manber
c8 —< Modified-WM
6 —¥— FNPw?2
5
4
3
2
1
0 # of pat.

f - R < A~ R
g8 § 8 & 8 & 38 g g 2

FIGURE 17 the profiling result of LSP=3

26

of pat.

100k
50k
20k
10k
5k
2k
1k
500
200
100

-

O-Corasicy

ARo —~ =)

C=256

3-gram BG+

2-gram BG+

[EEN

T T f T —
6 7 8 9 10 pattern length

FIGURE 18 the profiling summary

27

Chapter 5 Experiments on Real Applications
5.1 Implementations in three packages

C=256

of pat.

100k

50K R R Anti=Virusi=—

20k
10k

5k

K 2-gram BG+

1k

500
200
100

A B=HHIYA S 9 10 pattern length

FIGURE 19 theprofiling summary

Figure 19 concludes which“package is located on which position and suits for
which algorithm by means of the profiling results in chapter 4 and survey in chapter 2.
The detailed description about the implementation of the real package is explained as
follows.
5.1.1 ClamAVvV

The LSP of exact matching patterns in ClamAV is 10 and the pattern set size is
more than 30,000. We implement the 2-gram BG+ algorithm instead of the WM
algorithm to handle exact matching, i.e. basic patterns described in chapter 2. If the
pattern set size is more than 65,535, we can change from the 2-gram BG+ algorithm
to the 3-gram BG+ algorithm to enhance the efficiency. In addition, we keep to using
the AC algorithm to handle regular expression, i.e. multi-part patterns mentioned in

chapter 2.

28

5.1.2 DansGuardian

According to our observation, there are 25 content keywords scanned with the
BMH algorithm one by one. If the forcequicksearch flag is enabled, all patterns are
processed with the BMH algorithm, which requires to scanning the text as many times
as the number of patterns. We implement the multi-pattern matching algorithm, the
Modified-WM algorithm, to handle the short patterns, the LSP between 2 and 3, and
also use the 2-gram BG+ algorithm to handle the long patterns, equal to or longer than
4 characters.
5.1.3 Snort

The Snort package uses the packet header to group all patterns. The LSP of every
group is not the same. We use the hybrid method instead of the default method, the
Modified-WM algorithm. If the LSP'is equal to 1, we select the AC algorithm. If the

LSP is larger than 1, we also select.the Modified-WM algorithm.

5.2 Benchmarking

5.2.1 ClamAV
5.2.1.1 Benchmarking Methodology

We select 10 files for file size between 32 KB and 16 MB from Windows
execution files. These files are scanned by original virus scan engine and modified
virus scan engine. Then we can measure the execution time to understand whether the
novel method is more efficient than the old one or not.

5.2.1.2 Benchmarking Results

29

30

20 r —&— random + old
[%2]
2 —B— random + new
8 15
> — —real +old
w
——real + new
10 | /
5 /ﬂi
0 L e e e N e file size
o o) o)
R
o 3 Q 3 N — ~ < o ©
— N [Te}

FIGURE 20 the benchmarking results for ClamAV package

Figure 20 shows the benchmarking results. As the file size is increasing, the
difference in scanning time between the novel and old methods will become greater.
For example, the novel method is five times faster.than the old one while the file size
is 16 Mbytes. The reason comes from that the percentage of string matching in the
entire processing is increasing while the-file-size /is increasing. According to these
results, we can justify that the novel'method.is-more efficient than the old method.
5.2.2 DansGuardian
5.2.2.1 Benchmarking Methodology

We only modify the section of the content filtering in DansGuardian package.
Because we know the processing time of content filtering occupies 90% of the total
execution time after our internal profiling. As to benchmarking content filtering, we
use the wget tool [25] to mirror a Web site, the RFC Web site [26]. The RFC Web site
contains more than 8,000 files, including HTML files and TXT files. The formats of
these two types of files are scanned with DansGuardian’s content filtering. This
benchmarking method can see the difference between the novel and old methods.

5.2.2.2 Benchmarking Results

30

2400
2200
2000
1600
1400
1200 M old algorith
1000 867 old algorithm
800 714

600 —

w0 B 200 388
200 |

2128

@ new algorithm

seconds

synthetic data synthetic data real data
(C=26) (C=256)

FIGURE 21 the benchmark results for DansGuardian package

Figure 21 shows the old method needs 2128 seconds to mirror the entire site and
the new method just needs 1708 seconds to finish it. The efficiency of content
filtering in DansGuardian package‘enhances 20%:of total execution time. It does not
arrive at significant improvement, because the property of content filtering needs to
find all content keywords out and the.verification algorithm can not use binary search
to find a single keyword out. We use linear.search instead of binary search to search
all potential matches which have the same hash value. But the performance of content
filtering also improves after implementing the new method into the DansGuardian
package.
5.2.3 Snort
5.2.3.1 Benchmarking Methodology

The proportion of HTTP traffic accounts for great quantity under general
network. More peer-to-peer protocols also use HTTP traffic as control messages. We
select HTTP traffic for the experiments in our verification process. The benchmarking
method is similar to that of the DansGuardian package. We use the wget client to
mirror all RFC files from Web server across the inspection of the Snort package. In

addition, the Snort package runs under the inline mode by means of the capability of

31

the Iptables [27] so as to understand the capability of the Snort package on intrusion
prevention manner.

5.2.3.2 Benchmarking Results

60
55
50
45
40
35
30
25
20
15
10

5

0

Directly Access Http
Server

Snort + Default
Algorithm(MWM)
& Snort + New Algorithm

throughput (Mbits/s)

1-client 5-client

FIGURE 22 the benchmarking result for Snort package
Figure 22 shows the benchmarking result. First; we use a single client to mirror
the entire RFC files. The performance-of-the Sno‘rt inspection can not come to
significant improvement. After these benchmarking, we use five clients instead of a
single client to mirror it. The performance of the Snort package is improved and more
efficient than before with the last method. But the performance of the Snort package
can not reach significant improvement, because the new version of the Snort package

only inspects the HTTP header instead of HTTP header plus HTTP body [28].

5.3 Real Data vs. Synthetic Data

In profiling stage, all experimental data are synthetic data. In past experiment,
the algorithm benchmarks also use synthetic data for the experiments to find out
whether the algorithm is more efficient than the others or not. But the property of
processing data in real applications is not the same as well as synthetic data. In this

section, we will observe the difference between real data and synthetic data from three

32

content applications.
5.3.1 ClamAV

In benchmarking stage, we also generate synthetic data of the same size as the
real files to observe the difference between real data and synthetic data. Figure 20
shows the processing time of the ClamAV package in real data and synthetic data are
similar to each other. Because the ClamAV package scans the entire text to find the
virus out and the character set distribution generated in all virus signatures is close to
uniform distribution.

5.3.2 DansGuardian

We generate synthetic Web pages for external benchmarking. Except the content
of the pages, the file size and the file names of every file are the same as all RFC files.
First, we generate data with character set of 256 characters and observe the difference
between real data and synthetic-data. The processing time for synthetic data is faster
than that for real data, because the character-set distribution of synthetic data is close
to uniform distribution and that of real-data biases to English character set.

We also generate data with character set of 26 characters and observe the results
again. The probability of potential matching is increasing and the processing time of
content inspection becomes 3 times slower than the prior experiment. But the total
potential matching for synthetic data is no more than real data; the processing time
has some difference between the synthetic data generated with character set of 26
characters and real data. It is also a reason that the probability of common keywords
that appear in real data is higher than they appear in synthetic data. For example, the
common keywords are ‘reference’, ‘issue’ and ‘chapter’. In addition, the property of
English word also affects the results.

5.3.3 Snort

The observation between real data and synthetic data can not carry out. Because

33

the inspection content in Snort package is restricted within the HTTP header. If we
generate synthetic data instead of the HTTP header, the communications between
HTTP client and HTTP server will disappear. So we give up the observation in this

package.

34

Chapter 6 Conclusions

In this research, some typical algorithms are reviewed and profiled to observe the
performance of the string matching algorithms under various conditions and provide
an insight of choosing the most efficient algorithm for designing content security
applications. The AC algorithm is suitable for LSP=1, the Modified-WM algorithm is
suitable for LSP =2 when the pattern set size is smaller than 1,000, the FNPw?2
algorithm is suitable for LSP=2 when the pattern set size is larger than 1,000, the
Modified-WM algorithm is suitable for LSP=3 and the BG+ algorithm is suitable for
LSP>4. In addition, these results are also justified by means of the experiments of the
real applications. Some applications have dramatically improved if the percentage of
string matching processing on total execution time is great. These results also help to
select an efficient algorithm to design a novel.application in the future.

Meanwhile, the CRKBT algorithm is proposed and it is justified that the CRKBT
algorithm is more efficient than'the RKBT-algorithm. The efficiency of the CRKBT
algorithm is four times faster than the RKBT algorithm for huge pattern sets.
Moreover, the BG+ and SOG+ algorithms that use it as the verification algorithm are
also twice faster than the original algorithm.

This work also observes that the difference of performance between the real and
synthetic data by means of the experiments of the real applications. The ClamAV
package is not sensitive to the synthetic data or the real data, because the character set
distribution is close to uniform distribution. But otherwise the application of content
filtering is sensitive to the real data or synthetic data, because all patterns in the
DansGuardian package is biased to English word. Moreover, it is observed that the
bottleneck in content filtering application is to verify all potential matches in order to

find out all matched content keywords, because the plenty of content keywords have

35

the same hash value.

Finally, the contributions of this work are summarized as follows: finding out the
most efficient algorithm for each application of content security and telling why,
proposing the CRKBT algorithm to enhance the performance of the original RKBT
algorithm and comparing the difference of performance between the real and synthetic

data in practice.

36

References

[1] S. Antonatos, K. G. Anagnostakis and E. P. Markatos, Generating Realistic
Workloads for Network Intrusion, WOSP 2004 ACM, January 2004.

[2] S. Antonatos, K. G. Anagnostakis and E. P. Markatos, Performance Analysis of
Content Matching Intrusion Detection Systems, Institute of Computer Science,
January 2004.

[3] M. Fisk and G. Varghese, Fast Content-Based Packet Handling for Intrusion
Detection, UCSD Technical Report CS2001-0670, 2001.

[4] C. W. Jan, Y. D. Lin and Y. C. Lai, An integrated proxy architecture for anti-virus,
anti-spam, intrusion detection and content filter, Computer and Information
Science, National Chiao-Tung University, June 2004.

[5] F. H. Huang, Y. D. Lin and Y..C. Lai,JAifast.accurate proxy for multi-language text
webpage classification, Computer and Information Science, National Chiao-Tung
University, June 2004.

[6] S. Wu and U. Manber, A Fast "Algorithm for Multi-pattern Searchin, Report
TR-94-17, Department of Computer Science, University of Arizona, 1994.

[7] J. Kytojoki, L. Salmela and J. Tarhio, Tuning String Matching for Huge Pattern
Sets, CPM 2003, LNCS 2676, pp. 211-224, 2003.

[8] ClamAV, http://www.clamav.net/ .

[9] DansGuardian, http://dansguardian.org/.

[10] Snort, http://www.snort.org/.

[11] R. Karp and M. Rabin, Efficient Randomized Pattern-Matching Algorithms, IBM
Journal of Research and Development 31, pp. 249-260, 1987.

[12] R. Muth and U. Manber, Approximate Multiple String Search, CPM 96,

Combinatorial Pattern Matching, Lecture Notes in Computer Science 1075,

37

pp.75-86, 1996.

[13] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings, Cambridge
University Press, 2002.

[14] L. Cleophas, B. W. Watson and G. Zwaan, A New Taxonomy of Sublinear
Keyword Pattern Matching Algorithms, Department of Mathematics and
Computer Science, Technische Universiteit Eindhoven, April 22, 2004.

[15] G. Navarro and M. Raffinot, Fast and Flexible String Matching by Combining
Bit-Parallelism and Suffix Automata, ACM Journal of Experimental Algorithms 5,
pp. 1-36, 2000.

[16] A. Aho and M. Corasick, Efficient String Matching: An Aid to Bibliographic
Search, Communications of the ACM 18, pp. 333-340, 1975.

[17] M. Norton, Optimizing.' Pattern Matching for Intrusion Detection,
http://www.snort.org/.

[18] R. Boyer and S. Moore, A-Fast:String-Searching Algorithm, Communications of
the ACM 20, pp. 762-772, 1977.

[19] N. Horspool, Practical Fast Searching in Strings, Software — Practice and
Experience 10 (1980), 501-506.

[20] S.Wu and U. Manber, Agrep — A Fast Approximate Pattern-Matching Tool. Proc.
Usenix Winter 1992 Technical Conference, 1992, 153-162.

[21] R. T. LIU, N. F. HUANG, C. H. CHEN and C. N. KAO, A Fast String-Matching
Algorithm for Network Processor-Based Intrusion Detection System, Transactions
on Embedded Computing Systems of the ACM, Vol. 3, No. 3, pp. 614-633, August
2004.

[22] R. Baeza-Yates and G. Gonnet, A New Approach to Text Searching,
Communications of ACM 35, pp.74-82, 1992.

[23] Y. Miretskiy, A.Das, Charles P. Wright and E. Zadok, Avfs: An On-Access

38

Anti-Virus File System, USENIX Security Symposium, 2004.
[24] Valgrind, http://valgrind.org/.
[25] Wget, http://www.gnu.org/software/wget/wget.html.
[26] RFC, http://asg.web.cmu.edu/rfc/rfc-index.html.
[27] Netfilter, http://www.netfilter.org/.
[28] M. Norton and D. Roelker, Snort 2.0 Protocol Flow Analyzer,

http://www.snort.org/docs/.

39

