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摘要 

生物或醫學影像處理的計算機方法改進了診斷或研究工作的效能。在這篇論文裡，

我們發展了一些計算機演算法，並且發展了解決問題的工具。這些問題包括:從CR影像

裡的格狀假像(Grid Artifact)消除，電泳圖像(Gel Electrophoresis)的自動比對，斑點( ELISA 

Spot)影像的自動分析，及從血管造影影片(Cine Angiogram)中截取冠動脈樹(Coronary 

Arterial Tree)等。  

數位影像更容易儲存及傳送，不過，他們也包含了假像(Artifact)，例如格狀假像和

不均勻的照明造成的假像。這些假像是既有(Inheritance)的問題。格狀假像和網紋圖案是

使用Grid所引起的。 CR的取像平板(Imaging Plate)在X射線曝光期間會使用Grid來除去

不想要的散射(Scatter) 。當使用顯示器來顯示所取得的影像時，格狀假像或網紋圖案

(Moire)的假像就可能會出現。當影像被顯示在一台低解析度的電腦螢幕上時，將使得格

狀假像或網紋圖案更加嚴重。因此當影像的判讀必須用普通的電腦螢幕來達成時，這將

成為一個大問題。在這篇論文裡，我們詳細探討這些假像造成的原因。研究顯示這些假

像的頻率可以從DICOM標籤(Tag)及GRID的規格等訊息直接計算獲得。因此這些假像也

就可以從頻率領域來去除。因為被除去的頻率，與解剖結構無關，所以處理過的影像比

未處理前更加清楚。此外不均勻照明也造成另一種假像，不均勻照明將造成在物體上的
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光線不均勻，這使得在影像處理時，做門檻(Threshold)運算會有問題。因此除去這些照

明的不均勻變化是有必要的。影像上的不均勻照明變化，在頻率領域上，是由低頻部分

所組成。因此我們設計了一個濾波器來消除這些變化。影像在除去格狀假像及不均勻照

明後，將更容易切割(Segmentation)。此外我們也提出切割的方法來切割消除假像之後的

影像，如電泳影像和斑點影像等。我們也顯示，對取像時受污染的影像做去除假像的前

處理(Preprocessing)，有助於之後的影像處理工作。  

消除CR影像的假像，使得影像更加清楚有助於醫療診斷。電泳圖像及斑點影像的

自動比對分析，減少生物學家的苦工，增進他們的研究效能。冠狀動脈樹的萃取，提供

了分析動脈疾病很有用訊息。 
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ABSTRACT 

Computer methods for medical or biomedical images processing improve the 

performance of the diagnosis or research work. In this dissertation, we developed computer 

algorithms and implemented tools to solve specific problems. These problems include 

removing grid artifacts from Computed Radiograph (CR) images, comparing the lanes in Gel 

Electrophoresis images, analyzing the ELISA spots images, and extracting the coronary 

arterial tree from cine angiogram. 

Digital CR images are easier to store and transfer from one place to another.  However, 

CR images contain grid artifacts and moiré pattern that are the inheritance problems due to the 

using of grids to remove scattering. In this dissertation, the causes of these artifacts are 

investigated in detail.  We show that the frequencies of these artifacts are fixed and can be 

estimated from the DICOM tags and grid specification. The artifacts can then be removed in 

the frequency domain. Because the removed frequency does not relate to the anatomical 

structure, the resulting images are clearer than before.  

Variable illumination is another kind of artifacts. Variable illumination artifact occurs 
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when the ELISA Spots images were taken. This artifact causes a problem that the intensity 

threshold cannot be applied. In this dissertation, we design a filter to eliminate such variation. 

A sequence of image processing techniques is than applied to segment the ELISA spots. A 

tool was implemented based on the algorithm. This work helps to save biologist efforts in 

analyzing the ELISA spots image.   

Grid artifacts also occur in Gel Electrophoresis image. Gel Electrophoresis is an 

important tool in biology research area. To identify the same lane pattern is the goal. In this 

dissertation, we remove the artifacts before segmentation process are applied. We then convert 

a lane into the position vector for comparison. The presented method could reach 97% 

accuracy and thus save research effort of the biologist.  

The last work we studied was to segment the coronary arterial tree from cine angiogram. 

The artifacts were the backgrounds such as ribs and lung texture. We proposed to eliminate 

the backgrounds in time direction. Matched filter and wavelet techniques were than applied to 

segment the arterial tree. GVF snake is than applied to calculate the width of the vessel. The 

segmented arterial tree is fairly complete and the calculated width is accurate.  
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CHAPTER 1  

INTRODUCTION 

 

Computer methods for medical or biomedical images analysis are helpful for diagnosis 

or researches in biomedical area.  In this dissertation, we design computer methods for 

different applications. We have: 

1. Designed and implemented a tool for artifacts removal in computed radiograph (CR) 

image, 

2. Designed and implemented a tool for comparing lanes in gel electrophoresis images, 

3. Designed and implemented a tool for analyzing the ELISA spot images, 

4. Designed an algorithm to extract the coronary arterial tree from cine angiogram.  

There are grid artifacts in CR image. The artifacts are contaminated in the imaging system. 

The grid artifacts could be a more serious problem when displaying the images in a 

low-resolution computer terminal. We carefully studied the causes of the artifact and design 

an algorithm to eliminate the artifacts.  

Gel electrophoresis is an important tool in the area of biology research. An image 

consists of 7 to 10 "lanes". Each lane is a fragment of DNA that represented as several 

"bands". Two lanes (DNA fragments) are considered the same if these two lanes have the 

same pattern. Biologists using this tool could have hundreds of images and they are looking 

for the identical lanes from the images. We developed a tool that converts a lane into a 

"position vector". A position vector is a set of integers representing the location of the band in 

the lane. Comparing the lane becomes comparing the position vector.  

ELISA spot assay is also an important tool in the research area of biology. The 

experiment ends up with analyzing an image. The image is a color image that containing spots 

in it. Biologist needs to calculate the number of the spots, the mean and the standard deviation 
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of the spots. This is a tedious and time-consuming task. We have developed a tool to 

accurately obtain the required statistics for the biologist. 

Coronary artery narrowing is one of the major heart diseases that cause death of the 

human. Angiogram is still the most important tool for the diagnosis of the narrowing of the 

vessel. It is important to segment the vessel from the image and estimate the width of the 

vessel. In this work, we propose to eliminate the background by using the temporal 

information available in cine angiogram. Followed by a sequence of steps, we can accurately 

compute the width of the vessel.  

In this dissertation, we report that factors in images formation step are important to the 

image-processing step. In CR image and gel electrophoresis images formation, grids were 

used to remove scattering effect. In ELISA spot image, illumination changes over the images 

because the light source could not be in the top of the sample. Removing these factors could 

achieve the best segmentation results. We also repot that "cocktail approach" could reach the 

best processing results.  

In the rest of this chapter, the motivations are first introduced in Section 1. In Section 2, 

we shall review the previous researches in these areas. In Section 3, we present the overview 

of the proposed methods.  The organization of this dissertation is stated in Section 4. 

 

1. MOTIVATION 

Very often, there are artifacts in the medical or biology system which are caused in the 

very beginning of the imaging system. Grid artifact appeared in Computed radiography (CR) 

and biology images are an example. Computed radiography (CR) has many advantages such 

as filmless operations, efficiency and convenience. Furthermore, it is easier to integrate with 

the picture archiving and communication systems (PACS). Another important advantage is 

that CR images generally have wider dynamic range than conventional screen film. 
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Unfortunately, grid artifacts and moiré pattern artifacts may be present in CR images. These 

artifacts become a more serious problem when displaying CR images on a computer monitor 

for softcopy diagnosis.  Using a grid with higher frequency or a Potter-Bucky grid (i.e., a 

moving grid, Bucky for short) can reduce occurrence but not guarantee elimination of these 

artifacts. 

Another artifacts example is the Gel electrophoresis (GE) in DNA or protein related 

research. GE image also contains grid artifact and needs to be remove like CR image for the 

purpose of application of the computer method. Gel electrophoresis (GE) was developed as a 

means for resolving biological macromolecules, such as DNA, RNA, and protein molecules 

[24]. There are several different types of GE based on their resolution ranges. One major 

application of GE is to separate DNA molecules from 0.5 kbp to approximately 10 Mbp. GE 

is an invaluable tool for gene and genomic analysis and it is routinely used in many 

applications, such as gene identification, isolation, and purification. GE is used in various 

fields like biology, molecular biology, biochemistry, biotechnology, medicine and clinical 

diagnosis. 

The third research topic of this dissertation is the segmentation of the ELISA 

(Enzyme-Linked Immuno-sorbent Assay) Spot Assay image.  The ELISA Spot Assay is a 

method widely used by immunologists to enumerate cytokine-producing cells within a 

specific cell population.  The ELISA results are presented in an image containing numerous 

colored spots. The ELISA Spot Assay is designed to detect cells that produce cytokines.  

Cytokines are proteins readily secreted by immune cells upon stimulation by the antigens they 

recognize or by mitogens.  The experimental steps are described as follows.  Test wells are 

coated with anti-cytokine antibody (capturing antibody) before the cells are added.  A certain 

number of cells and antigen are added to the pre-coated wells.  During incubation, the cells 

are stimulated to secrete cytokine.  The precoated antibody captures the secreted cytokine.  
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After washing, a biotinylated secondary anti-cytokine antibody (detecting antibody that 

recognizes different epitopes on the cytokine from the capturing antibody) and enzyme-avidin 

complex are added in sequence.  A color reaction (red in this case) specific to 

cytokine-secreting cells occurs as a result of this enzymatic reaction.  Each red spot 

represents one cytokine-secreting cell. To analyze ELISA Spot Assay results, immunologists 

must know the numbers of spots, the distribution and size of the spots, and the mean and 

standard deviation of the spot sizes.  Because these spots can number in the hundreds in each 

70 mm diameter well, counting the spots is labor-intensive work even when one uses a 

dissecting microscope.  To overcome this problem, a computer method, that helps 

immunologists calculate the important spot statistical values, is needed. 

The forth research topic of this dissertation is the Extraction of Coronary Arterial Tree 

Using Cine X-Ray Angiograms. Coronary angiography is still the most common modality for 

physicians to assess the severity of vessel narrowing or stenosis during percutaneous coronary 

intervention procedure.  Accurate quantitative analysis of coronary arteries in digital 

angiographic images is valuable and important to clinical needs.  Computer-assisted 

extraction of a set of major arteries or the entire coronary arterial tree from two-dimensional 

(2-D) angiograms is regarded as a crucial process.  Once the vessels are identified, additional 

techniques may be applied to obtain quantitative information including severity of stenosis, 

three-dimensional representation of the vascular tree, motion analysis of the coronary arteries, 

or blood-flow analysis 

 

2. RELATED STUDIES 

In this section, we review some related techniques. 

2.1 Literature Review of Grid Artifacts Elimination in Computed Radiographic Images 

In a study by Cesar, et al., [1] the authors presented a detailed discussion that focused on 
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some artifacts that were caused by operator error.  However, there are other types of artifacts, 

such as grid artifacts and moiré patterns, that are not caused by operator error.  These 

artifacts are inherent problems with the CR imaging system.  A grid is used routinely during 

X-ray exposure to remove undesired scattered X-rays.  When the CR image plate is exposed 

with a grid and displayed on a computer monitor, interference or moiré pattern artifacts appear. 

The grid artifacts and moiré patterns are much more pronounced when the images are 

displayed on a computer monitor which resolution is lower than the images’. 

Previous similar works can be found in several other grid pattern studies [2, 3, 4, 5]. A 

similar problem in designing a film scanner was studied by Wang and Huang [2].  The 

objective of the study was to minimize the aliasing artifacts while converting a film into 

digital form.  In another study by Barski and Wang [3], a method consisting of grid 

frequency detection and adaptive grid suppression was proposed. The grid artifact frequency 

was detected in the frequency domain after a 1D Fourier Transform.  The artifact 

suppression was achieved by designing appropriate blur kernels in the spatial domain. The 

artifact frequency in 95.8% of the cases could be correctly detected.  However, some images 

that did not contain grid artifacts were identified incorrectly as containing artifact frequencies. 

Since a grid artifact is a periodical signal, it cannot be effectively removed by applying simple 

blur kernels in the spatial domain.  Moreover, applying blur kernels to reduce grid artifacts 

also blurs the image itself.  In a grid artifact study by Belykh and Cornelius [4], the same 

method used Barski and Wang [3] was used to detect grid frequency.  A notch filter [6] in the 

frequency domain was used to suppress the grid textures.  Unfortunately, using a notch filter 

causes rippling or ringing effects. Sasada, et al [5], used a method similar to that by Barski 

and Wang [3] to locate the artifact frequency. The wavelet approach was than employed to 

remove grid artifacts.  None of these studies evaluated any observers’ performance after the 

grid artifacts were removed.  
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2.2 Literature Review of Spot Segmentation 

Previous related woks can be found in [39-40]. In [39], an automatic method for particle 

detection from electron micrographs was proposed.  Distance transform and the Voronoi 

diagram were used for detection of critical features as well as for accurate location of particles 

from the images or micrographs. The method could only find fixed size disks. In our case, 

size of spots is not fixed. In [41], an automatic circular decomposition algorithm applied to 

blood cells image was proposed. The method used polygonal approximation, curve 

segmentation, circle modeling, circle adapting, and circle merging to find various sizes of 

circles. The method needed edge detection as the first step for preprocessing. Unfortunately, 

in most of the cases, spots do not have obvious edge. In [42], automatic particle detection 

through efficient Hough transforms was proposed. The method could find various size circles. 

Nevertheless, this method also needed edge detection before the Hough transform can be 

applied. In [40] a clustering-based method for particle detection is proposed. This method 

used a clustering-based method based on the gravitation to classify discrete points into a 

particle. It worked quite well for detecting particles from images with very low SNR. Before 

running the clustering algorithm, intensity thresholding is required. Since the boundaries for 

the spots are not clear, an appropriate threshold value is hard to determine. 

2.3 Literature Review of Extraction of Coronary Arterial Tree 

Traditional signal-based edge detection algorithms [69-75] were unable to effectively or 

accurately detect the desired structures.  The existing methods specific to vessel extraction 

can be categorized into (i) model-based [76-78] (ii) tracking-based [79-81], (iii) 

classifier-based [82], and (iv) filter-based [83-85] techniques.  In model-based methods, the 

coronary arterial tree is produced based on a pre-defined coronary artery model in the form of 

a “graph” structure.  In tracking-based methods, the process proceeds with an initial 
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start-of-search location followed by an automatic tracking process by exploiting the spatial 

continuity of the vessel's centerline, orientation, diameter, and density.  In classifier-based 

methods, a clustering algorithm is employed with properly preprocessed data to differentiate 

vessel or non-vessel regions.  In filter-based methods, the coronary arteries are enhanced and 

located so that they can be subsequently detected in the image. 

 

3. OVERVIEW OF THE PROPOSED METHODS 

In this dissertation, we first study the grid artifacts formation and elimination. We 

proposed an automatic method to compare the lanes in Gel Electrophoresis (GE) images and 

propose a computer method for ELISA spot assay analysis. An efficient and robust method for 

identification of coronary arteries and evaluation of the severity of the stenosis on the routine 

X-ray angiograms are also proposed. The following subsections briefly introduce these 

methods. 

 

3.1 Grid Artifacts Elimination in Computed Radiographic Images 

We studied the formation of the artifacts. We show that the grid artifacts correspond to a 

narrow band of frequency in the frequency domain. The frequency can be predetermined, 

accurately located and thus removed from the frequency domain. 

3.2 An Automatic Method to Compare the Lanes in Gel Electrophoresis (GE) Images 

We present a computer method designed to compare the lanes and identify identical lanes. 

This segmentation method, developed using many image-processing techniques, is applied to 

extract the lanes and bands in GE images. The lanes are then converted into “position vectors” 

that describe the positions of the bands. This method can accurately identify identical lanes, 

helping biologists to identify the identical lanes from many lanes with much less effort. 
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3.3 A Computer Method for ELISA Spot Assay Analysis 

We present a method to identify the spots in the image and report on important statistics 

regarding the spots in the image.  The proposed method employs color analysis in the CIE 

L*u*v* color space and matched filter technique.  The system is trained to obtain a standard 

color for the spots and calculate the color differences between the spots and background in the 

L*u*v* space.  Matched filters are then used to remove noise and enhance the spots in the 

color difference map.  Intensity thresholding is applied to obtain a binary image in which the 

pixels in the spots have a gray scale of 1 while the gray scale of the other pixels is depicted as 

0. 

3.4 Extraction of Coronary Arterial Tree Using Cine X-Ray Angiograms 

The proposed method consists of two major stages: (a) signal-based image segmentation 

and (b) vessel feature extraction. The 3D Fourier and 3D Wavelet transforms are first 

employed to reduce the background and noisy structures in the images.  Afterwards, a set of 

matched filters was applied to enhance the coronary arteries in the images.  At the end, 

clustering analysis, histogram technique, and size filtering were utilized to obtain a binary 

image that consists of the final segmented coronary arterial tree.  To extract vessel features 

in terms of vessel centerline and diameter, a gradient vector-flow based snake algorithm is 

applied to determine the medial axis of a vessel followed by the calculations of vessel 

boundaries and width associated with the detected medial axis. 

 

4. DISSERTATION ORGANIZATION 

In the remainder of the dissertation, “A Study of Grid Artifacts Formation and 

Elimination in Computed Radiographic Images” is presented in Chapter 2. “An Automatic 

Method to Compare the Lanes in Gel Electrophoresis (GE) Images” is proposed in Chapter 3. 

In Chapter 4, we propose “A Computer Method for ELISA Spot Assay Analysis”. “Extraction 
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of Coronary Arterial Tree Using Cine X-Ray Angiograms” is proposed in Chapter 5.  Finally, 

the conclusions and suggestions for future works appear in Chapter 6. 
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CHAPTER 2  

A Study of Grid Artifacts Formation and Elimination in 

Computed Radiographic Images   

 

Computed radiography (CR) has many advantages such as filmless operations, efficiency 

and convenience. Furthermore, it is easier to integrate with the picture archiving and 

communication systems (PACS). Another important advantage is that CR images generally 

have wider dynamic range than conventional screen film. Unfortunately, grid artifacts and 

moiré pattern artifacts may be present in CR images. These artifacts become a more serious 

problem when displaying CR images on a monitor for softcopy diagnosis if the monitor does 

not have high enough resolution. Using a grid with higher frequency or a Potter-Bucky grid 

(i.e., a moving grid, Bucky for short) can reduce occurrence but not guarantee elimination of 

these artifacts. In this chaper, the formation of the artifacts is studied. We show that the grid 

artifacts correspond to a narrow band of frequency in the frequency domain. The frequency 

can be determined, accurately located and thus removed from the frequency domain. The 

Free-Response Receiver Operating Characteristic (FROC) experiment was performed to 

evaluate the performance of the observers when the artifacts are removal. The results show 

that observers can achieve perfect performance regardless of the presence of artifacts when 

full size images are available. However, if a reduced image size is required, the observers’ 

performance is improved when the artifacts are removed. Comparing the results obtained 

from the proposed method against the results obtained using previous computer methods. Our 

method can achieve better image quality.  
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1. INTRODUCTION 

The PACS system has become a hospital standard.  In a PACS system, the clinical 

images are presented in digital form.  Digital images are easier to store and transfer from one 

place to another.  However, they also contain artifacts.  In a study by Cesar, et al., [1] the 

authors presented a detailed discussion that focused on some artifacts that were caused by 

operator error.  However, there are other types of artifacts, such as grid artifacts and moiré 

patterns, that are not caused by operator error.  These artifacts are inherent problems with the 

CR imaging system.  A grid is used routinely during X-ray exposure to remove undesired 

scattered X-rays.  When the CR image plate is exposed with a grid and displayed on a 

computer monitor, interference or moiré pattern artifacts appear. The grid artifacts and moiré 

patterns are much more pronounced when the images are displayed on a computer monitor 

which resolution is lower than the images’. 

Previous similar works can be found in several other grid pattern studies [2, 3, 4, 5]. A 

similar problem in designing a film scanner was studied by Wang and Huang [2].  The 

objective of the study was to minimize the aliasing artifacts while converting a film into 

digital form.  In another study by Barski and Wang [3], a method consisting of grid 

frequency detection and adaptive grid suppression was proposed. The grid artifact frequency 

was detected in the frequency domain after a 1D Fourier Transform.  The artifact 

suppression was achieved by designing appropriate blur kernels in the spatial domain. The 

artifact frequency in 95.8% of the cases could be correctly detected.  However, some images 

that did not contain grid artifacts were identified incorrectly as containing artifact frequencies. 

Since a grid artifact is a periodical signal, it cannot be effectively removed by applying simple 

blur kernels in the spatial domain.  Moreover, applying blur kernels to reduce grid artifacts 

also blurs the image itself.  In a grid artifact study by Belykh and Cornelius [4], the same 

method used Barski and Wang [3] was used to detect grid frequency.  A notch filter [6] in the 
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frequency domain was used to suppress the grid textures.  Unfortunately, using a notch filter 

causes rippling or ringing effects. Sasada, et al [5], used a method similar to that by Barski 

and Wang [3] to locate the artifact frequency. The wavelet approach was than employed to 

remove grid artifacts.  None of these studies evaluated any observers’ performance after the 

grid artifacts were removed.  

In this chapter, the causes of grid artifacts are investigated in detail.  We show that the 

artifact frequency can be estimated directly from the DICOM tag and grid specifications.  

The frequency can be accurately located in the frequency domain. Finally, a band-stop 

Gaussian filter is designed to remove the frequency.  The FROC test [7] is used to evaluate 

the observers’ performance when the grid artifacts are removed.  The results show that 

observers could achieve perfect performance when full size images were available, regardless 

of whether the artifacts were removed.  But when the image sizes are reduced, removing the 

grid artifacts improves the observers’ performance. 

 

2. THEORY 

There are two major X-ray scattering effects, Rayleigh scattering and Compton 

scattering, that affect the quality of an X-ray image [7].  Scattering is a very complex 

phenomenon.  A grid is employed to eliminate or reduce scattering. In Fig. 2-1, both the 

collimator and the grid serve to limit the scattered photons from striking the imaging plate.  

Using the grid improves the sharpness of the CR images. 

A variety of X-ray grids are available [8].  Different grids produce different grid 

textures in the image plate.  These grid textures can be vertical stripes, horizontal stripes, or 

a combination of the two, as shown in Fig. 2-2. In this chapter, only the case of vertical stripes 

is discussed. The other two cases are similar. 
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Xray Light Source

Patient (Object) Grid Imaging Plate

Scatte
r

Collimator

 

Fig. 2-1. An X-ray imaging system. The X-ray passes through the patient and is collimated by 

the grid to eliminate the scattering effect. 

 

       

 (a) (b)  (c) 

Fig. 2-2. (a) Vertical grid artifacts. (b) Horizontal grid artifacts. (c) Crisscross grid artifacts. 

 

A CR image is recorded by an imaging plate coated with photostimulated storage 

phosphors [9-12].  When the coating is exposed to X-rays, the electrons in the phosphor 

crystals are excited and trapped in a semi-stable, higher-energy state.  To read this energy 
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state, a plate reader scans the imaging plate using a laser beam [9].  The laser energy releases 

the trapped electrons, causing emitted visible light that is captured and converted into pixels 

in the digital image.  Suppose that there are vertical stripes recorded in the image plate, and 

the vertical stripes are sampled by sampling signal ),( vug s . Interference between the two 

signals occurs.   

There are two points on the path from the image formation to the display in a raster 

device at which artifacts occur.  The first point is demonstrated by sampling the image plate 

containing grid texture patterns by using a plate reader.  We show that the artifacts are either 

the grid texture itself or the interference between the grid texture and the plate reader 

sampling signal.  The second point is demonstrated by outputting an image containing 

artifacts to a raster output device.  In this situation, the artifacts are sampled by the pixels of 

the output device again, so that more serious artifacts are produced.   

Fig. 2-3 shows some important grid parameters related to the interference between the 

two signals.  The grid frequency, denoted as fgrid, is expressed as the number of lines per 

centimeter (or per inch).  Tgrid is the distance between consecutive vertical stripes. Thus Tgrid 

= 1/fgrid.  As the frequency becomes higher, the grids become thinner and there is less grid 

texture obtrusion in the image.  Most of the grids have an fgrid between 80 and 152 lines per 

inch.  Two less important parameters to this work are the space between the lead stripes, d 

and the thickness of lead, s. Note that dsTgrid += . 
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h

Lead Stripe Aluminum Interspacer
Tgrid

Tgrid (mm per line) = 1/fgrid (lines per mm) 

Grid Ratio = h/d
d

Thickness of Lead
s

 

Fig. 2-3. This figure shows the cross section of a grid, and some grid specifications related to 

this work. 

 

Given a 2D signal ),( yxhg  in an XY-coordinate system, the signal is sampled by a grid 

function ),( vug s in the UV-coordinate system. Consider the case in which ),( yxhg  consists 

of vertical stripes in the XY-coordinates.  Depending on the angle, θ , between the XY- and 

UV- coordinate systems, there are two cases.  The first case is that the XY-coordinate 

coincides with the UV-coordinate, i.e., θ =0.  The second case involves a nonzero angle θ  

between the XY-coordinates and the UV-coordinates (Fig. 2-4).  
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Fig. 2-4. There is an angleθ between the sampling signal (UV-coordinate) and the grid 

(XY-coordinate).  

 

2.1 Case 1, 0=θ  

If the XY-coordinate coincides with the UV-coordinate, only the sampling signal along a 

horizontal line is considered.  Along a horizontal sampling line, the vertical stripe signal is a 

square wave, as shown in Fig. 2-5.  Let the 1D square wave be denoted hg(x).  Recall that 

gridT is the period of hg(x), and d and s are, respectively, the space between the lead stripes and 

the thickness of lead.  We have )()( xhTxh ggridg =+ and 


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Fig. 2-5. Along a horizontal scan line, the vertical stripe signal is a square wave. 

 

The periodical square wave can be expanded using the Fourier expansion [13], shown in 

the following equation: 
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The Fourier coefficients obtained by the integration are 

 

1    ,0

2
sin

1

2

2

2

0

≥=

=

=

−

ib

T

xi

i
a

T

d
a

i

d

dgrid
i

grid

π
π

. (2) 

All of ii baa  and , ,0 are constants. Thus, the Fourier expansion for hg(x) can be rewritten as  
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)(xhg  can be separated into a DC (Direct Current) term, a fundamental wave and infinite 

harmonics.  In Eq. (3), the first term, 
gridT

d
, is the DC term. The second term is the 

fundamental wave, )(
1

xhg  = )2cos(1 gridxfa π . Note that the magnitude of )(
1

xhg is 1a  and 

the frequency of )(
1

xhg  is 
1gf = gridf . All of the following terms are the harmonics, 

denoted ∞= ,...,2),( mxh
mg

. The frequency of each harmonic term )(xh
mg  is denoted as

mgf . 

These harmonics have a higher frequency but a lower magnitude than the fundamental wave.   

Let the sampling grid function ),( vug s  have a sampling frequency sf on a horizontal 

line.  According to the Nyquist Sampling Theorem, if 

 
igs ff 2≥ , ∞= ,...,1i , (4) 

then 
igf can be reconstructed without aliasing.  Otherwise, aliasing occurs.  In Fig. 2-6, 

igf is plotted as a thin curve.  The bold dots are the samples obtained based on the image 

plate sampling frequency, fs.  Since fs does not satisfy the Nyquist Sampling Theorem, low 

frequency aliasing occurs (the wave plotted as a bold curve).   

 

Fig. 2-6. A low frequency aliasing occurs (the wave plotted as a bold curve) 

 

Let
ialiasedf denote the aliasing frequency.  

ialiasedf  can be obtained using Eq. (5) [14], 
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where k1 and k2 are integers and must be chosen to meet one of the inequalities in Eq. (6), 
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If the sampling frequency, sf , is very close to
igf , according to Eqs. (4)-(6), 

ialiasedf  is a 

low frequency signal that has a much lower frequency than 
igf .  Because human eyes are 

sensitive to low frequency signals, the artifacts are easily seen on a monitor.  This 

phenomenon explains why the grid artifacts occur especially when the images are taken from 

high-resolution machines.  If sf meets the Nyquist Sampling Theorem, then the grid textures 

in the image plate can be fully reconstructed.   

The above discussion is valid when there is grid texture in the image plate.  The 

presence of a grid texture depends on the Point Spread Function (PSF) [15] of the imaging 

system.  In a system with poor PSF, the grid texture is blurred such that the grid artifacts are 

not visible.  Thus, the image sharpness is not improved.    

When a CR image is acquired using a grid that is perfectly aligned with the image plate 

reader, there are the following cases.   

1. There are no visible artifacts.  This occurs if the PSF response of the system is poor.  

However, this is not the desired approach for removing the grid texture. 

2. There are grid textures in the image plate.  Let the grid artifacts frequency be
it

f .  There 

are two sub-cases, 

a. fs satisfies the Nyquist Sampling Theorem, thus the grid artifacts are the grid 

textures in the image plate. In this case 
it

f is equal to 
igf . 
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b. fs does not satisfy the Nyquist Sampling Theorem.  In this case
it

f is equal to 

ialiasedf .  

 

2.2 Case 2, 0≠θ , The Moiré Pattern  

If there is an angle between the XY-coordinates and the UV-coordinates, there is an 

artifact called the moiré effect (Fig. 2-7). Many physicians have learned from experience that 

the grid orientation determines the moiré pattern [16]. The following discussions explain this 

phenomenon. 

The vertical stripes ),( yxhg  in the XY-coordinate perpendicular to the X-axis with period 

T can be presented as Eq. (7), 

 ).,(),( yTxhyxh gridgg +=  (7) 

),( yxhg  is sampled using the sampling signal ),( vug s  in the UV-coordinate system.  

),( vug s  is a set of grids formed by lines perpendicular to the U-axis.  These vertical stripes 

in the UV-coordinate system have a period Ts. It can be written as 

 ),(),( vugvTug sss =+ . (8) 

Let the angle between the XY- and UV- coordinate systems be θ , as shown in Fig. 2-7.  

Points in the XY-coordinate system and UV-coordinate system can be related using the 

transformation 
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The phases of any point in both coordinate systems are given as 
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Using Eq. (9), Eq. (10) is rewritten in the form  
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The loci of the points for a particular phase difference φ∆ is given by 
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T=ε .  The condition for the points to have the same phase in both coordinate 

systems is 
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Combining Eqs. (11) and (12) yields 

 
)sin(

)
)sin(

)cos(1
(

θε
ε

θε
θε snT

uv +−−= . (13) 

u

v

x

y

θ

TsTs

Tm

Tm

Sampling Grid

ψ

θ

Moiré

),( yxh
ig

),( yxh
im

),( vugs

Ts
gridT

gridT gridT

 

Fig. 2-7. Moiré pattern caused by two periodical functions. 

 

Eq. (13) is a line with slope ))sin(/())cos(1( θεθε−− .  The set of dashed lines shown in 
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Fig. 2-7 is the moiré pattern.  Observe that the slope ))sin(/())cos(1( θεθε−−  is a 

significantly large number for a very small angle θ.  Fig. 2-8 shows that even a small angle, 

θ , causes a very large moiré pattern angle.  Furthermore, the frequency of the moiré pattern 

can be obtained using Eq. (5).  As discussed previously, this frequency is much lower than 

the frequency of the vertical stripe or the sampling frequency.  Thus, the moiré pattern is 

perceptually clear. 

    

(a)          (b)         (c)          (d) 

    

(e)          (f)          (g)          (h) 

Fig. 2-8. A change in an angle θ  from 0° to 2° will cause the stripe angle in the moiré 

pattern to change from 0° to 24°. 

 

2.3 Displaying an Image Containing Artifacts on a Monitor 

A typical clinical-grade monitor has a resolution of approximately 2560 by 2048 pixels 

[17]. The resolution of CR images could be higher than a monitor’s. For example, the 

resolution of the image shown in Fig. 2-9 is 3062 by 3730 pixels. It is necessary to reduce the 

size of a high-resolution CR image to allow it to fit on a monitor.  Suppose there are grid 

artifacts in the image.  Sampling the artifacts by the low-resolution monitor pixels, according 

to Eqs. (5) and (6), produces lower frequency artifacts.   
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3. METHODS 

There are two traditional methods used to remove artifacts [18-19].  The first uses a 

grid with a high enough frequency to blur the artifacts.  The second method uses a Bucky to 

blur the grid artifacts.  

The grid artifacts can be eliminated by increasing the grid frequency so that the grid 

becomes invisible under the sampling frequency of the plate reader.  Unfortunately, the grid 

frequency cannot be increased indefinitely.  Another method for grid artifact removal is by 

using a Bucky.  A grid that moves quickly during CR image production is called a Bucky.  

If the exposure time is long enough and the Bucky speed is high enough, the grid artifacts are 

blurred or even removed completely. A detail discussion of the effect of the Bucky can be 

found in the Appendix. However, the movement speed is limited by the mechanical structure.  

Therefore, using a Bucky can reduce, but cannot guarantee the elimination of artifacts. 

In this section, a simple method to remove the artifacts is presented.  Recall that the 

artifacts are produced at two points on the image producing path:  

1. The first point is achieved by sampling the grid texture in the image plate.   

2. The second point is ahieved by sampling the image containing grid artifacts by using an 

output device.   

If the cause in the first point can be removed, then all the artifacts are removed.  Artifact 

removal consists of three major steps: (1) estimating the artifact frequency, (2) accurately 

locating that frequency, and (3) removing the frequency using a Gaussian band-stop filter in 

the frequency domain.   

 

3.1 Estimating the Artifact Frequency 

The sampling frequency sf  is recorded in DICOM tag (0018:1164) [20-22]. In DICOM 
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standard, this tag is the “Imager Pixel Spacing”, Ts, that is 
sf

1
.  The grid frequency fgrid is 

available from the grid specification. Thus the fundamental wave and harmonics,
igh , and their 

frequencies,
igf , are obtained using Eq. (3).  Let the frequencies of the artifacts be denoted as 

1 , ≥if
it

.  1 , ≥if
it

 is estimated using the following rules: 

1. Sampling frequency fs satisfies the Nyquist Sampling Theorem, i.e., 1 ,2 ≥≥ iff
igs .  

Since the grid can be totally reconstructed, the estimated aliased frequency 
it

f  is equal to 

igf .  

2. Sampling frequency fs does not satisfy the Nyquist Sampling Theorem, i.e., 
igs ff 2< .  

The estimated aliased frequency 
it

f  is obtained using Eqs. (5) and (6).   

 

3.2 Locating the Frequency 
it

f : 

Let Ir(x,y), 10 −≤≤ Mx  and 10 −≤≤ Ny , be an image containing grid artifacts. Let lr(x) 

be a row of Ir(x,y).  The 1D discrete Fourier transformation pairs for x-axis are  
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The spectrum is 

 5.0* ))()(()( uLuLuL rrr ⋅= , (16) 

where “*” means conjugate. 

We assume the power of the grid artifact has a Gaussian distribution (Eq. (17)) in the 

spectrum:  
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By estimating µ and σ  of the Gaussian distribution, we can construct the band-stop 

Gaussian filter, )(uB . The reason for choosing a Gaussian filter is that the Fourier transform 

of a Gaussian function is a Gaussian function. Using a Gaussian filter will not produce ripple 

effect. To design an accurate band-stop Gaussian filter, µ  should be equal to
it

f . But due to 

the imperfections that sometimes result during the manufacturing of the grid or the grid is not 

perfectly aligned, there could be a small deviation. The accurate mean is obtained by 

calculating the mean of the interval from 
it

f -(
it

f /10) to 
it

f +(
it

f /10) in the spectrum.  The 

standard deviation, σ , is also computed from the interval when the accurate mean is located. 

The image in Fig. 2-9 (a) contains grid artifacts.  The 1D Fourier transform in x direction is 

shown in Fig. 2-9 (d).   Fig. 2-9 (d) shows the power spectrum after taking a logarithmic 

operation.  The circle shown in Fig. 2-9 (d) is the frequency of the grid artifacts.   

 

3.3 Remove the Frequency: 

Since the harmonics have a higher frequency but a much lower magnitude than the 

fundamental wave, the effect of harmonics is small and can be ignored. In this study, only the 

fundamental wave is removed. It is removed by using Gaussian band-stop filter for each row 

in the image as shown in Eq. (18),  

 MueuB
u

...1   ,
2

1

2

1
)(

2

2

2
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=−=
−−
σ

µ

πσπσ
. (18) 

The accurate mean and standard deviation are substituted into Eq. (18) to construct the 

Gaussian band-stop filter )(uB .  We multiply )(uLr  by )(uB  to obtain )(uLr′  shown in 

Eq. (19),.   

 MuuBuLuL rr ...1   ),()()( =⋅=′ . (19) 
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Taking the 1D inverse Fourier transform (Eq. (15)) of )(uLr′  , we obtain a grid texture free 

row, )(xlr′ . We apply the process stated above for each row in Ir(x,y) to obtain an image, 

),( yxIr′ . ),( yxIr′  is free of grid artifacts, as shown in Fig. 2-9 (f).  

 

4. RESULTS 

Both clinical and phantom images were used to evaluate the proposed method.  Fig. 2-9 

(a) shows an image of a mammography quality control phantom (Art No. 6652348, Phantom 

No. C104, Fuji, Japan).  The image resolution is 3062 by 3730 pixels.  A 40 lines/cm grid 

was used while acquiring the image.  The sampling rate was 8.77193 pixels/mm (0.114 

mm/pixel).  Thus, 
1gf is 4 lines/mm (40 lines/cm) and fs is 8.77193 pixels/mm.  Since 

1
2 gs ff > , the sampling frequency satisfies the Nyquist Sampling Theorem.  Therefore, the 

grid textures in the image plate can be reconstructed and the grid artifact frequency is 4 

lines/mm.  Since the sampling frequency is fs = 8.77193 lines/mm, the grid artifact frequency 

is estimated to be 0.461 of the sampling frequency, as shown in Fig. 2-9 (d).  By applying 

the Gaussian Filter, the artifact frequency is removed.  Fig. 2-9 (b) shows a selected region 

in Fig. 2-9 (a) in the original resolution.  Fig. 2-9 (c) shows the image in which the artifact is 

eliminated.  Fig. 2-9 (e) shows a zoomed out image of the mammography phantom image in 

Fig. 2-9 (a).  The resolution was scaled down from 3062 by 3730 pixels to 540 by 658.  The 

moiré pattern is significant.  Fig. 2-9 (f) shows an image in which the artifact was eliminated 

by applying the proposed method.   

Fig. 2-10 (a) is a CR chest image with resolution 2048 by 2494 pixels.  A 3.3 lines/mm 

(
1gf = 85 lines/inches) grid was used while acquiring the image.  The sampling frequency, fs, 

is 5.8 pixels/mm.  This case does not satisfy the Nyquist Sampling Theorem (
1

2 gs ff < ).  

The artifact frequency faliased = kfs –
1gf = 2.59 (lines/mm), where k=1.  Since the sampling 
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frequency is fs = 5.8 lines/mm, the estimated frequency of the artifact appears to be 0.45 of the 

sampling frequency (Fig. 2-10 (d)).  Fig. 2-10 (b) shows a selected region in Fig. 2-10 (a) in 

the original resolution.  Fig. 2-10 (c) is an image in which the artifact was removed. 

Fig. 2-10 (e) shows the spectrum after the grid artifacts were removed. 

In order to compare the proposed method against the previous computer methods for 

artifact removal, we used an image containing three characters as shown in Fig. 2-11 (a). 

Although these are not clinical images, using geometric shaped characters is the best way to 

demonstrate the effect of the applied methods. Fig. 2-11. (a) is the original image containing 

grid artifacts. Fig. 2-11. (b) shows the grid artifacts removed using the proposed method. Fig. 

2-11 (c) shows the grid artifacts removed using the blur kernel proposed by Barski [3].  

When compared to the result obtained by the proposed method, the sharp edges in Fig. 2-10 (c) 

are blurred. Grid artifacts in Fig. 2-11 (d) were removed using a notch filter proposed by 

Belykh [4]. Although the sharp edges are preserved, there are ripples after the artifacts are 

removed.   
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(a) 3062 x 3730 pixels 
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(b) Selected area from (a), showing grid artifacts. 

 

 

(c) Selected area from (a), with grid artifacts removed. 
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(d) 1D Fourier transform of the image in (a).  Grid artifact frequency indicated by the circle. 

 

(e) The spectrum after grid artifacts removed. 

 

(f) 540 x 648 pixels
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(g) 540 x 648 pixels, with grid artifact removed. 

Fig. 2-9. (a) Mammography Quality Control Phantom (Phantom No.C104, Fuji, Japan) image 

with grid artifacts.  (b) A selected region in (a) is shown in the original resolution.  The 

artifacts are easily seen.  (c) The same region, with grid artifacts eliminated.  Note that 

many details such as the vertical stripes can be clearly distinguished.  (d) The spectrum of a 

1D Fourier transform of the image shown in (a). The y-axis is logarithmic.  The frequency of 

the grid artifact is highlighted with a circle. (e) The spectrum after grid artifacts are removed. 
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(f) An image of the Mammography Quality Control Phantom scaled down 17% to a resolution 

of 540 by 658 pixels.  It shows a very serious artifact (the moiré pattern).  (g) The moiré 

pattern was eliminated using the proposed method. 

 

 

(a) 2048 x 2494 pixels 
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(b) Selected area from (a), enlarged. It contains fine vertical stripes. 

 

(c) Selected area from (a), with grid artifacts removed. 
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(d) 1D Fourier transform of the image in (a).  Grid artifact frequency indicated by the circle. 

 

(e) The spectrum after grid artifacts are removed.  

 

Fig. 2-10. (a) A patient with left lower lobe consolidation due to pneumonia. Grid pattern can 

be seen on CR chest image (b) The portion that is highlighted in white in (a). (c) The grid 

pattern was removed using the proposed method. (d) The spectrum of a 1D Fourier transform 

of the image shown in (a). The y-axis is logarithmic.  The frequency of the grid artifact is 

highlighted with a circle. (e) The spectrum after grid artifacts are removed. 
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(a) 

                         

(b) 
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(c) 

 

(d) 
Fig. 2-11 . (a) The original image with grid textures. (b) The grid textures were removed using 

the proposed method. (c) The grid textures were removed using the blur kernel proposed by 

Barski. (d) The grid pattern was removed using a notch filter proposed by Belykh. 
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4.1 FROC Study 

A study was designed to evaluate observers’ performance in the detection of detailed 

structures in images before and after grid artifact removal.  Physicians were asked to 

determine the presence of microcalcification in a portion of the mammography quality control 

phantom (C104, Fuji, Japan), shown in Fig. 2-12. The phantom images were taken with a grid, 

under three conditions. 

1. Images were taken using an Agfa ADC CR system. The image resolution was 3062 by 

3730 pixels and the image size was 35 cm by 43 cm.  

2. Images were taken using an Agfa ADC CR system. The image resolution was 2048 by 

2494 pixels and the image size was 35 cm by 43 cm.  

3. Images were taken using a Fuji 5502D CR system. The image resolution was 2000 by 

2510 pixels and the image size was 20 cm by 25 cm. 

In all three cases, 0-degree, 90-degree and 180-degree rotations of the images were 

performed. Thus, nine radiographs were obtained.  The proposed method was then applied to 

each radiograph to remove the grid artifacts, resulting in an additional nine images.  

 

 

Fig. 2-12. The portion of the mammography quality control phantom used to evaluate 

observers’ performance. 

 

Two board-certified radiologists blinded to the distribution and number of 

microcalcifications evaluated all eighteen images in random order.  Observers were asked to 

determine the presence of microcalcifications according to a scale of four levels of confidence: 

1, probably absent; 2, indeterminate; 3, probably present; 4, definitely present.  Because the 

moiré pattern increases if we display the images on a low-resolution monitor, we also 

performed another evaluation when the image resolution was reduced to 80% of the original 

size. The image size reduction method was implemented by taking the averaged intensities of 
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neighboring pixels of a sampled point to form one pixel in the reduced size image. Another 

board-certified radiologist, also blinded to the distribution and number of microcalcifications, 

evaluated these images again.  

 

The Free-Response Receiver Operating Characteristic (FROC) [7] curves were drawn based 

on the results obtained.  The FROC curve describes the tradeoff between the 

“Microcalcification Localization Fraction” and the “False Positive per Image”.  The former 

is defined as the probability of a microcalcification to be specified, and the latter is defined as 

the mean number of times a noise was classified as a microcalcification. In the FROC 

experiment, the observers gave their level of confidence on the presence of 

microcalcifications for different candidate’s regions.  We then plotted the discrete FROC 

curve by setting different thresholds to the confidence levels, i.e., the candidate was 

considered to contain microcalcifications only when the confidence level was higher than the 

threshold.  The resulting curves are as shown in Figs. 2-13 and 2-14.  As shown in Fig. 

2-13, we conclude that observers could achieve perfect performance without any false 

positives, regardless of the presence of grid artifacts, when the full sized images were 

available.  Fig. 2-14 shows that when only reduced-size images were available, observers 

could achieve better performance when the grid lines were removed.  

 

Original Size FROC Curve

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

FP per Image

M
ic

ro
ca

lc
ifi

ca
tio

n
Lo

ca
liz

at
io

n 
F

ra
ct

io
n

Grid

Grid Removed

 
 

Fig. 2-13. The FROC curves for the observers studying the original image size. Observers 

could achieve perfect performance regardless of the presence of the grid lines. 
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DownSample FROC Curve
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Fig. 2-14. The FROC curves for observers studying reduced-size images.  The performance 

is better when the grid lines are removed. 

 

 

5. CONCLUSIONS AND DISCUSSION 

 

In this chapter, the formation of grid artifacts in CR images was studied in detail.  An 

automatic method was then presented to remove the grid artifacts.  The method was 

implemented on a PC with a Pentium 4 (2 GHz) CPU running the Windows 2000 operating 

system.  The total execution time for images with different resolutions of 1760 by 2140, 

2000 by 2510, and 3520 by 4280 pixels took 10, 12, and 24 seconds, respectively. 

Although the grid artifacts can be removed by using a Bucky or a higher frequency grid, 

there are limitations to these two methods.  For example, there are cases in which 

radiographic images are acquired when a Bucky is not accessible.  In addition, as the grid 

frequency increases, there is relatively more grid material to absorb radiation.  This situation 

requires that the patient be exposed to a higher dose of radiation [23].  Using the proposed 

method, these problems are overcome, and images that are free of grid artifacts are obtained. 
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Compared to the results obtained by the methods of Barski and Wang [3] and Belykh and 

Cornelius [4], the proposed method neither produces ripple artifacts nor blurs the image.  

The proposed method achieves much better results.  An important question is that whether 

the proposed method improves the accuracy of diagnosis. Rigorous experiments should be 

done to clarify this point. A problem with the proposed method is the computing time required. 

Future studies will investigate methods to reduce the computing time.   
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CHAPTER 3  

An Automatic Method to Compare the Lanes in Gel Electrophoresis (GE) 

Images 

 

Gel Electrophoresis (GE) is an important tool in genomic analysis.  GE results are 

presented in images. Each image contains several vertical lanes. Each lane consists of several 

horizontal bands.  Two lanes are identical if the relative positions of the bands are the same. 

We present a computer method designed to compare the lanes and identify identical lanes. 

This segmentation method, developed using many image-processing techniques, is applied to 

extract the lanes and bands in GE images. The lanes are then converted into “position vectors” 

that describe the positions of the bands. This method can accurately identify identical lanes, 

helping biologists to identify the identical lanes from many lanes with much less effort.  

1. INTRODUCTION 

Gel electrophoresis (GE) was developed as a means for resolving biological 

macromolecules, such as DNA, RNA, and protein molecules [24]. There are several different 

types of GE based on their resolution ranges. One major application of GE is to separate DNA 

molecules from 0.5 kbp to approximately 10 Mbp. GE is an invaluable tool for gene and 

genomic analysis and it is routinely used in many applications, such as gene identification, 

isolation, and purification. GE is used in various fields like biology, molecular biology, 

biochemistry, biotechnology, medicine and clinical diagnosis.  

This technique produces images that consist of several vertical lanes. Each lane contains a 

number of horizontal bands. The positions of the horizontal bands represent the molecular 

weights of the bands. Two subjects are the same if their lanes have the same pattern. The goal 

of this work was to design a computer method that automatically identifies lanes with the 

same pattern among many lanes.  
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Previous work regarding the study of this problem can be found in [25]. In [25], the lanes 

in a GE image were first segmented and converted into a chain code representation. The lane 

comparison was carried performed by calculating the longest common subsequence (LCS) in 

two chain codes. The similarity between the lanes was represented by two times the LCS 

length over the total length of the two chain codes. Two lanes are similar if the result is close 

to one. This method did not segment the bands in each lane so it could not produce an exact 

comparison result. It could only eliminate those very different lanes and reduce the number of 

lanes to be compared. Another disadvantage is that it employed a dynamic programming 

technique to calculate the LCS for two chain codes. The computation time was thus long.  

In this chapter, we present a method that can accurately identify identical lanes. In the 

proposed method, the bands and lanes are segmented and then converted into a “position 

vector” that indicates the positions of the bands. Two lanes that have the same position vectors 

are considered having the same pattern. In this task, accurate lane and band segmentation is 

crucial to the later comparison step.  

Lane and band segmentation is difficult due to the quality of the GE images. There are many 

factors, such as the applied voltage, field strength, pulse time, reorientation angle, agarose 

type, concentration and buffer chamber temperature. All of these factors affect the image 

quality and the patterns in the lanes [26-27]. The images acquired in our system have a 

grid-texture in the background that contaminates the imaging system. All of these factors 

make the segmentation task difficult.  

The segmentation method presented in this chapter consists of several steps. The first step is 

the preprocessing step that removes the grid-texture artifacts. The background is then 

removed so that the bands in the images are enhanced. In the next step, the bands and the lane 

containing the bands in the image are extracted. The positions of the bands are then 

normalized and converted into a position vectors. Lane comparison then becomes a 
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comparison of lane position vectors. The proposed method is described in Section 2. The 

results are shown in Section 3.   

2. METHOD 

2.1 Background Removal 

There are two tasks in the background removal step. The first is the grid-texture removal. As 

mentioned previously, the grid-texture is contaminated from the imaging system. Fig. 3-1 

shows a typical GE image acquisition system. Because the bands and lanes in gel are not 

visible under visible light, the gel box is illuminated using a fluorescent UV light source. 

There is a grid located between the gel box and the CCD camera, as shown in Fig. 3-2. The 

grid is used to collimate the light to prevent scattering. The grid improves the sharpness of the 

GE images by trapping most of the scattered light. Unfortunately the grid also causes 

grid-texture artifacts in the GE image, as shown in Fig. 3-3 (a) and (b).  

 

Grid
CCD

Projector

UV Light

Gel Box

 

Fig. 3-1. The imaging system, there is a grid between the CCD camera and the gel box.  
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Illuminating Light

Gel Box Grid CCD

Scatter

 

Fig. 3-2. The grid collimates the light. 

 

The grid-texture has a fixed frequency in the frequency domain so that it can be easily 

removed from the frequency domain. Let ),( yxf , 10 −≤≤ Mx  and 10 −≤≤ Ny , denote 

an M by N GE image. The 1-D discrete Fourier transformation pairs are defined as 

 10,10 ),(),(
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/2 −≤≤−≤≤= ∑
−

=

− NyMxeyxfyuF
M

x

Mkuj π , and (20) 
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u
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The 1-D Fourier transform (Eq. (20)) to ),( yxf  is applied in direction x  to obtain F(u,y) in 

the frequency domain. Its power spectrum is shown in Fig. 3-4 (a). In this figure a 

double-sided spectrum was used. The left half is the complex conjugate reflection of the right 

half. The grid-texture in the spatial domain is transformed into a specific frequency that 

causes observable peaks on both sides within the red line pairs (Fig. 3-4 (a)). The power of the 

peak frequencies is many times that of the other frequencies except for those near the DC 
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term. 

We apply the method propose in Chapter 2 to obtain a grid-texture free image, ),(2 yxf .  

  Figs 3-4 (a), (b), (c), and (d) show the spectrum and histogram before and after removing 

the grid-texture frequency. The resulting image ),(2 yxf is clean and free of grid-texture as 

shown in Figs 3-3. (c) and (d).  

    

(a) 

  

(b) 
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(c) 

 

(d) 

Fig. 3-3. (a) Original image. (b) Zoom in an area of the original image. (c) After removing the 

grid. (d) The same zoom in area with the grid-texture removed. 
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(a) 

 

(b) 

  

(c) 
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(d) 

Fig. 3-4. (a) The spectrum of f(x,y). There are two peaks within the two pairs of red lines. The 

gray scale is logarithmic for visualization purposes. (b) Histogram of f(x,y) (c) Spectrum after 

eliminating the grid-texture frequency. The gray scale is also logarithmic. (d) Histogram after 

eliminating the grid-texture. 

 

The second task in background removal is to set the intensities of those pixels not on the 

bands to zero. These background pixels generally have lower intensity than the pixels on the 

bands. In Fig. 3-4 (d), the threshold is set as the closest gray-level corresponding to the 

minimum probability between the maxima of two normal distributions, which results in 

minimum error segmentation. An optimal threshold can be solved in [28]. The result after 

background removal is shown in Fig. 3-5.  
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Fig. 3-5. An image after background removal. 

 

2.2 Lanes and Bands Identification 

Some observable properties of bands and lanes are presented before presenting the 

proposed method.   

1. The bands close to the top are wider than those close to the bottom of the image.  

2. The intensity of the band closest to the bottom is higher than that of the bands closest to the 

top.  

3. The shape of the band is a concave downward curve.  

4. The bands on different lanes may have different shapes. 

5. The shapes of the bands on the same lanes are similar. 

6. Consecutive bands in a lane could be very close in shape. 

7. A band could break into several fragments due to noise. 
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The method for segmenting bands and lanes was designed based on the properties stated 

above. Band and lane segmentation consists of several steps. The first step is to enhance the 

bands. The skeleton for each band is then found.  Lane segmentation is based on the band 

skeletons.  

The bands are enhanced using the matched filter technique [29-31].  The intensity 

profile along the vertical line (y-direction) passing through a lane is observed in designing a 

matched filter (Fig. 3-6).  A band profile is bell-shaped and can be approximated using a 

Gaussian distribution in the y direction, as shown in Eq. (22),   
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Fig. 3-6. The intensity profile of the scan line for a lane 

 

A 1-D matched filter can be designed to detect the bands because the profile follows a 

Gaussian distribution.  

Because the bands are concave downward curves a 2-D matched filter shown in Eq. (23) is 

needed. 
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Two parameters, the width, xd , and the height, yd , for the match filter must be determined. 
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In determining the width, xd , the bands are not perfectly straight lines and xd  should not be 

as wide as the length of the bands. The response of a matched filter to a band is small, making 

the bands difficult to identify. In our experiment, xd =5 is the best value identifying the bands. 

The height, yd , of the matched filter depends on the variance, 2σ , in Eq. (23). After 

analyzing 350 images (more than 3000 lanes), we concluded that σ  varies depending on the 

location of the band. The bands that are closer to the bottom side have a smaller variance. A 

traditional matched filter is time-invariant, i.e., σ  is a constant. In the case of differentσ , a 

time-variant matched filter is needed. Because the bands that are closer to the bottom side 

have a smallerσ , and σ  increases as the bands are closer to the top of the image, we set σ  

as a linear function of y, as shown in Eq. (24), 

 Nyc /*1+=σ ,  (24) 

where y is the distance between the band and the bottom side of the lane. For a smallσ , the 

Gaussian quickly drops to zero, so yd  is small. Conversely, for a large σ  the Gaussian 

slowly becomes zero, so yd  is large. We used the method in [32] to determine yd  from a 

given variance. The height is between 2/)34(2/)34( +≤≤+− σσ y .  Based on the above 

discussions, the matched filter is shown in Eq. (25), 
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where yd = 2/)34( +σ , and xd =5.   

Images convolved with the matched filter have enhanced bands.  The result after applying 

the matched filters is shown in Fig. 3-7. 

A 2-D convolution operation needs large computing time. The performance can be improved 

using the convolution theory. The convolution is an associative operation. Thus, the filter 
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kernel h can be divided into two 1-D kernels  

 yx hhh *= . (26) 

It can be shown that  

 )*)*(()()()()*()())*(*( yxyxyxyx hhfFhFhFfFhhFfFhhfF =⋅⋅=⋅= , (27) 

where F denotes the Fourier transform, and ‘*’ denotes the convolution. 

In other words, instead of applying the entire kernel h, we apply two 1-D kernels xh and yh . If 

the size of the filter kernel h is Kx by Ky, and the number of pixels in an image is M by N, the 

2-D kernel application h needs MNKK yy  multiplications. When applying two 1-D kernels 

xh and yh  separately requires MNKK yx )( +  multiplications. Thus the computational load 

can be enormously reduced by splitting a 2-D convolution kernel to two 1-D kernels. 

 

Fig. 3-7. The result from applying the matched filters.  
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In the images obtained by applying the matched filter the bands close to the top are lighter 

than the bands close to the bottom. To compensate for this variation, a factor of 5 was used to 

equalize the pixel intensity. The equalization function is shown in Eq. (28):  

 1.-0...,     ,15),(),( Nyx
N

y
yxfyxfe =∀+⋅⋅=  (28) 

The method for extracting the bands in the images after the matched filter application is 

explained in the following step. Given a vertical line passing through a lane, the profile along 

that vertical line is shown in Fig.  3-8. The center of a band corresponds to a peak on the 

profile, i.e., the center of a band can be found by determining the local maxima (peaks) on the 

profile. The intensity threshold is not applicable because the peaks do not have the same 

height. The watershed algorithm [33-34] was used to segment the peaks.  

This method is explained using an example. Considering the case shown in Fig. 3-9, there are 

two objects separated by a peak. To determine the peak that separates the two objects, the 

image threshold is initially acquired using a low gray level to segment the two objects. The 

threshold is then gradually increased, like filling water into a container, one gray level at a 

time. The regions in the object expand as the threshold increases. Because two objects are not 

allowed to merge, a peak is determined when two objects touch and the final boundaries 

between adjacent objects are obtained. The process terminates when the threshold reaches the 

largest gray-level.  

The watershed algorithm was used to find the centers of the bands in a lane. After applying Eq. 

(29), the 1-D watershed algorithm is applied to all of the vertical scan lines in the image. A set 

of connected peaks is then obtained. Among all of these connected components, most are at 

the center of the bands while some are just noise. A size filter with a proper threshold is then 

applied to remove the smaller connected components that are generally noise. The resulting 

image is a binary image, as shown in Fig. 3-10. Fig. 3-10 shows “broken bands” highlighted 
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in the red circles. These broken bands will be recovered when the lanes are converted into 

position vectors.  

 

 

Fig. 3-8. The intensity profile of a lane scan line after filter matching 

 

Object 2Object 1

 

Fig. 3-9. The watershed algorithm. 
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Fig. 3-10. Result from applying the 1-D watershed segmentation algorithm to Fig. 3-7. The 

break-points are highlighted in the red circles. 

 

In the following the lanes are extracted from the previous obtained segmented bands. To 

segment the lanes, three parameters are set, LOTH , HITH , and LaneTH . LOTH  is the smallest 

possible number of bands in a lane. This parameter is set to remove empty lanes from the 

image. HITH  is a parameter that represents the largest possible number of bands in a lane. 

The parameter LaneTH  defines the smallest lane width.  

Fig.3-10 is projected into the x-axis first to obtain Fig.3-11 (a). The high-rising portion 

along the curve of the projection corresponds to a lane. To segment the lanes, we start with the 

threshold LOTH . This threshold corresponds to a horizontal line y= LOTH  that cuts the curve 

into several connected components formed by the high-rising parts. A connected component is 
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considered a lane if the width of the connected component is greater than LaneTH .  The 

number of lanes obtained is then counted using this given threshold. The threshold is 

increased and the steps iterated until the threshold reaches HITH . The number of lanes 

obtained is counted each time. The threshold that maximizes the number of lanes is the best 

threshold.   

To determine the top and bottom lane boundaries, the points in Fig. 3-10 are projected 

horizontally to obtain Fig. 3-11 (b). A threshold is set in which the left most and right most 

peaks satisfy the thresholds on the top and bottom sides. The lane segmentation result is 

shown in Fig.3-12.  

 

 

(a) 

 

(b) 

Fig. 3-11. (a) Vertical projection of the points in Fig. 3-10. (b) Horizontal projection of the 

points in Fig. 3-10. 
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Fig. 3-12. The result of segmentation of lanes. 

2.3 Calculate the Lane Position Vectors 

On each segmented lane the bands are converted into horizontal line segments. The 

location vector that describes the location of the bands in this lane is then established. Since 

there are broken bands, the “break-points” on the band are determined first. The bands are 

then recovered by connecting the break points. A recovered band should be similar to its 

original shape. Since we know that the shapes of the bands in a lane are similar, the “average 

shape” of the bands in a lane can be calculated. A weighted directed graph can then be created 

from the average shape. Recovering the bands becomes a problem of finding the shortest path 

in the graph.  

To determine the break points, all of the pixels on the lanes are scanned using eight 3 by 3 

masks, as shown in Fig. 3-13. If the region covered by the mask is identical to one of the 
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masks, we say that the pixel in the center is an end point. 
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Fig. 3-13. The end point detection masks.  

Since the bands in a lane have similar shapes, a mask containing binary values is used to 

present the “average shape” of the bands in a lane. The method for calculating the average 

shape is stated in the following.  

Suppose that there are n vertical lines passing through a lane. ,,...,1 , nili =  are used to denote 

these n vertical lines from left to right. Let iS  be the set of intersection points of il  and the 

skeletons of the bands. Consider a pair of neighboring points,  p and q, in a band,  p in 

iS and q in 1+iS . Since the skeleton is 1 point wide, qp,  points to one of the following 

directions, northeast, east, and southeast.  The “average direction” from the points in iS  to 

the points in 1+iS  is determined using the majority of the directions from the points in iS to 

the points in 1+iS .  The skeleton of the average shape is the sequence of points determined 

by the sequence of major directions. A skeleton of the average shape of the bands in a lane is 

shown in Fig. 3-14. (a).  The dilation operation was applied to the skeleton in Fig. 3-14 (a) to 

obtain the average shape shown in Fig. 3-14 (b). The average shape serves as a template mask 

for scanning the pixels in the lane. If an even number of break points is covered by the mask, 
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the dynamic programming technique is used to determine the best path to connect the two 

break points.  

 

(a) 

 

(b) 

Fig. 3-14. (a) Skeleton of a band. (b) Dilation of (a). 

Suppose that s and t are the break-points in iS  and in jS  to be connected, i<j.  Let kV , 

k=i+1,…,j-1, be the set of points on kl covered by the template mask. A weighted directed 

graph G= (V,E) is then constructed. V is the set of vertices corresponding to the points in the 

sets kV , k=i+1,…,j-1.  E is the set of edges that is the union of the following three sets of 

edges, 
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There are weights on the vertices. The weight of a vertex is the inverse of the intensity of its 

corresponding pixel in the image after the matched filter enhancement (Fig. 3-7). Given the 

weighted directed graph G, we can find the shortest path from s to t [35].  Connecting s and t 

using the shortest path recovers the broken band.  The result is shown in Fig. 3-15. 

Each band is finally converted into a horizontal line segment that passes through the middle 

point of a recovered band. The result is shown in Figs. 3-16 and 3-17. The position of the 
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horizontal line segment is regarded as the position of the band.  The position vector of a lane 

is also obtained. 

 

 

Fig. 3-15. Broken band result from recovering and removing the areas that are not in the 

lanes. 
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Fig. 3-16. Final segmented bands and lanes. 

 

Fig. 3-17. The result is shown superimposed on the original image. 
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2.4 Position Vectors Normalization 

Since there are many factors that affect the relative position between bands and the 

height of the lane, the position vectors of two identical lanes in different images can be very 

different. Before lanes can be compared, the position vectors of the lanes must be normalized. 

There are two parameters that need to be estimated for position vectors normalization, the 

“offset”, o, and the “scaling factor”, s.  The offset and scaling factors for the jth lane in the 

ith image are denoted 
jio  and 

jis .   

Since the “Marker” and the “Vector” are common in all images, either the Marker or the 

Vector can be used to calibrate s and o. In general, the Marker is identical in all images and is 

the first lane in each image. Furthermore, the Marker generally serves as a reference to justify 

the variations between two images. The Marker was used to normalize the position vectors 

between images in this work. The calculated io  and is are then used to normalize the other 

lanes in the image i.  The last lane in an image is called the Vector. All of the lanes contain 

the subjects in the Vector except the Marker. The Vector subjects were used to normalize the 

lanes within a GE image in this work.  

Since the subjects and their Marker molecular weights are known, the position vector of the 

Marker can be easily obtained. The position vector of the Marker was normalized in the 

ranged of 0 to 999 so that the bottom and top side are set at 0 and 999, respectively. We used 

Markerv  to denote the normalized Marker. 

For a position vector v , the operations + and * are defined as  follows.  

1. Let o be a constant, v +o=< obobob m +++ ,...,, 21 >.  

2. Let s be a constant, v *s=< sbsbsb m *,...,*,* 21 >. 

Let the ith Vector be denoted iv  and the jth band in the ith lane be denoted 
jib . Given two 

Vectors 1v  and 2v , two bands 
i

b1  and 
j

b2 are matched if | )2,1( ji
d | is less than a given 
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threshold where )2,1( ji
d  is the distance between 

i
b1 and 

j
b2 .  A best match for 1v  and 2v is 

obtained using an offset o, such that the number of the matched bands of 1v  and 2v +o is 

maximized and the sum of the differences )2,1( ji
d is minimized.  If scaling is allowed, the 

best match for 1v  and 2v  is determined as o and s such that the number of matched bands 

for 1v  and 2v *s+o are maximized and the sum of the differences is minimized. To determine 

the best possible combination of s and o, a brute force approach was used that evaluates all 

possible combinations of s and o. s is a real number ranging between 1000/N and 3000/N (N is 

the number of pixels in the y-direction). The interval is ‘0.01’. o is a set of real numbers 

between -500 and 500. The interval is 1.  Recall that, bands close to the top have a larger 

variance than bands close to the bottom. The tolerance for a match varies according to the 

position of the bands. The following error tolerance function was used to define the threshold, 

 
1000

* il

M

b
Wthth += . (30) 

The error tolerance varies from top to bottom and ranges from thM to thM+W.  We used 14 

and 15 for thM and W respectively in our experiment.  

Given a normalized Markerv  and
0i

v the first lane (the Marker) in ith image, finding the best 

match between Markerv  and
0i

v determines the scaling factor is  and the offset io . These 

factors are applied to normalize all other position vectors in this image.  Since there are 

small variations between the lanes in the same image, the Vector (the last lane) was used to 

fine-tune the lane normalization in the same image. The normalization procedure is the same 

as the one mentioned previously except that the ranges for s and o are smaller.  The 

normalized position vectors are ready for lane comparison. Two lanes are identical if and only 

if all of the bands in one lane have a corresponding match in another lane. 
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3. RESULTS 

Four sets of test data were used in our experiment.  Each set of data contained 47, 47, 

131 and 140 images.  Each image consisted of about 8 or 9 lanes and there were about 15 

bands on each lane including the Vector. These images are the PAGE images used to resolve 

fragments with sizes less than 20 kb. The subjects are cDNA fragments of fungal genes from 

an experiment using differential display as the screening method. 

The band and lane segmentation results were shown in the previous section.  In this section, 

the vector removal results are presented first.  The lane and band segmentation result using a 

PFGE with E. coli genomic sample image is also presented.  The lane comparison result is 

presented last.   

The Vector shown in the last lane is common to all other lanes.  Removing the Vectors 

from all of the lanes produces a new lane that contains only the subjects of interest.  The 

threshold defined in Eq. (30) is used to identify the bands in a lane belonging to the Vector.  

Three Vector removal results are shown in Fig. 3-18. After the Vector is removed only a very 

few bands are left. The resulting image makes the comparison job easier.   
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(a) 

 

(b) 
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(c) 

Fig. 3-18. Three vector removal results shown using a green bar superimposed onto the 

original image. 

 

The proposed method was also applied to a PFGE image. This kind of image has a 

different appearance.  The image was obtained from an E.coli genomic study experiment. 

The set of images is shown in Figs. 3-19 (a) to (f). Fig. 3-19 (a) shows the original image. In 

(b), the image was obtained by applying a time-variant matched filter. The watershed 

algorithm was applied to image (b) to obtain (c). The final segmented bands and lanes are 

shown in (d). Fig. 3-19 (e) shows the result from superimposing the segmented results onto 

the original image. 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Fig. 3-19. (a) Original Image (b) Result from applying a time-variant matched filter (c) Result 

from applying the 1-D watershed segmentation algorithm to (b). (d) Final Segmented Bands 

and Lanes. (e) The result is shown superimposed onto the original image. 

 

The main goal of this work was to identify identical lanes. After comparing all pairs, our 

method generates a report, shown in Fig. 3-20.  In this report, the identical pairs are listed 

and the number of differences between the lanes is also shown.  
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less than 0 differenc(es) : 
1-5,2-3,3-6, 
2-8,3-8, 

 
less than 1 differenc(es) : 
1-2 @ 3-3=1, 
1-4 @ 3-3=1,3-4=1, 
1-5 @ 2-3=0,3-6=0, 
1-6 @ 3-5=1, 
2-3 @ 1-5=0,3-6=0, 
2-4 @ 2-8=1,3-2=1,3-3=1,3-4=1,3-8=1, 
2-6 @ 3-2=1,3-8=1, 
2-7 @ 2-8=1,3-8=1, 
2-8 @ 2-4=1,2-7=1,3-5=1,3-8=0, 
3-2 @ 2-4=1,2-6=1, 
3-3 @ 1-2=1,1-4=1,2-4=1,3-5=1, 
3-4 @ 1-4=1,2-4=1, 
3-5 @ 1-6=1,2-8=1,3-3=1,3-8=1, 
3-6 @ 1-5=0,2-3=0, 
3-8 @ 2-4=1,2-6=1,2-7=1,2-8=0,3-5=1, 

 

Fig.3-20. A report generated by the proposed method 

 

In Fig. 3-20, “i-j” means the jth lane in image i.  The report shows that “1-5”, “2-3”, 

and “3-6” are exactly the same and “2-8” and “3-8” are also identical.  “1-2@ 3-3=1” means 

that there is one different band between “1-2” and “3-3”.  “1-4@3-3=1,3-4=1” means that 

there is one different band between the pairs “1-4” and “3-3”, “1-4” and “3-4”.   

A software tool based on the proposed method was developed. This system also provides 

a way to graphically display the differences.  One can use a mouse to select a lane.  The 

software system will show the differences between the other lanes and the selected lane in the 

images.  The matched bands are shown with green bars. The bands that do not match are 

shown with a violet X over the bands.  If there are bands on the selected lane that do not 

appear in the other lanes, these bands are shown by a blue bar.  In Fig. 3-21 lane 5 in image 1 

is selected. Lane 5 in the image 1 is highlighted with a bold yellow rectangle. We can see that 

“1-5”, “2-3”, and “3-6” are exactly the same.  
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A screen shot of the developed software system is shown in Fig. 3-22. We verified the 

results using human comparisons. The correctness was above 97%. This method was 

implemented on a PC with a Pentium III (800 MHz) CPU running on the Windows 2000 

operating system.  The overall execution time for a 640x480 image took less than 8 seconds.  

If there are 140 images (about 1200 lanes), the total computing time is less than 19 minutes. 

The time needed for comparing the position vectors can be ignored and a report can be 

generated in seconds. This system will help biologists save great effort in comparing PFGE 

images. 

 

 

(a) 
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(b) 

 

(c) 
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Fig. 3-21. The software system shows the differences between the selected lane and the other 

lanes in the images. (a) Using the mouse to select lane 5. (b) Lane 3 is identical to lane 5 in (a). 

(c) Lane 6 is also identical to lane 5 in (a) 

 

Fig. 3-22. A screen shot from the developed software system. 
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CHAPTER 4  

A Computer Method for ELISA Spot Assay Analysis 

 

The ELISA (Enzyme-Linked Immuno-sorbent Assay) Spot Assay is a method widely 

used by immunologists to enumerate cytokine-producing cells within a specific cell 

population.  The ELISA results are presented in an image containing numerous colored spots.  

We present a method to identify the spots in the image and report on important statistics 

regarding the spots in the image.  The proposed method employs color analysis in the CIE 

L*u*v* color space and matched filter technique.  The system is trained to obtain a standard 

color for the spots and calculate the color differences between the spots and background in the 

L*u*v* space.  Matched filters are then used to remove noise and enhance the spots in the 

color differece map.  Intensity thresholding is applied to obtain a binary image in which the 

pixels in the spots have a gray scale of 1 while the gray scale of the other pixels is depicted as 

0.  A software system is implemented based on this method to help immunologists analyze 

the results obtained from the ELISA Spot Assay. 

 

1. INTRODUCTION 

The ELISA Spot Assay is designed to detect cells that produce cytokines [36]-[38].  

Cytokines are proteins readily secreted by immune cells upon stimulation by the antigens they 

recognize or by mitogens.  The experimental steps are described as follows.  Test wells are 

coated with anti-cytokine antibody (capturing antibody) before the cells are added.  A certain 

number of cells and antigen are added to the pre-coated wells.  During incubation the cells 

are stimulated to secrete cytokine.  The precoated antibody captures the secreted cytokine.  

After washing, a biotinylated secondary anti-cytokine antibody (detecting antibody that 

recognizes different epitopes on the cytokine from the capturing antibody) and enzyme-avidin 
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complex are added in sequence.  A color reaction (red in this case) specific to 

cytokine-secreting cells occurs as a result of this enzymatic reaction.  Each red spot 

represents one cytokine-secreting cell. 

To analyze ELISA Spot Assay results, immunologists must know the numbers of spots, 

the distribution and size of the spots, and the mean and standard deviation of the spot sizes.  

Because these spots can number in the hundreds in each 70 mm diameter well, counting the 

spots is labor intensive work even when one uses a dissecting microscope.  To overcome this 

problem, a computer method, that helps immunologists calculate the important spot statistical 

values, is needed.  

Previous related woks can be found in [39-40]. In [39], an automatic method for particle 

detection from electron micrographs was proposed.  Distance transform and the Voronoi 

diagram were used for detection of critical features as well as for accurate location of particles 

from the images or micrographs. The method could only find fixed size disks. In our case, 

size of spots is not fixed. In [41], an automatic circular decomposition algorithm applied to 

blood cells image was proposed. The method used polygonal approximation, curve 

segmentation, circle modeling, circle adapting, and circle merging to find various sizes of 

circles. The method needed edge detection as the first step for preprocessing. Unfortunately, 

in most of the cases, spots do not have obvious edge. In [42], automatic particle detection 

through efficient Hough transforms was proposed. The method could find various size circles. 

But this method also needed edge detection before the Hough transform can be applied. In [40] 

a clustering-based method for particle detection is proposed. This method used a 

clustering-based method based on the gravitation to classify discrete points into a particle. It 

worked quite well for detecting particles from images with very low SNR. Before running the 

clustering algorithm, intensity thresholding is required. Since the boundaries for the spots are 

not clear, an appropriate threshold value is hard to determine. 
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In this chapter, we present a method for ELISA spot assay analysis. The proposed 

method employs techniques that include illumination variation elimination, color analysis in 

the CIE L*u*v* color space, and matched filter to enhance the spots in the image. After the 

preprocessing steps, intensity thresholding can effectly segment the spots in the image.   

In this chapter, the proposed method is presented in Section 2.  In Section 3, we briefly 

describe the software developed for this method.  The results are shown in Section 4 and the 

conclusions are in Section 5. 

2. METHOD 

The most fundamental task involves segmenting the red spots in the well.  The 

proposed segmentation method was designed based on color analysis and the matched filter 

technique.  There are 5 steps in the proposed method.  The first step is image preprocessing. 

Because a light source cannot be placed on the top of the well, the illumination is not evenly 

distributed over the well surface.  The preprocessing step eliminates illumination variations.  

The second step involves color space conversion.  The objective is to determine a uniform 

color space to linearize the perceptibility of color differences.  The third step has two stages. 

The training stage involves training the system to recognize the color of the spots. In the 

recognition stage, a color difference map of the image is calculated according to the standard 

spot color.  The fourth step applies a matched filter to identify the spots and remove the 

undesired noise in the color difference map.  Intensity thresholding is then applied to obtain 

a binary image in which the pixels in the spots are depicted as 1 while the other pixels are 

depicted as 0. The pseudo code steps of our proposed method are shown in Fig. 4-1. 

Find Spots(Image I) //Determine the spots in Image I; 

{ 

Eliminate illumination variation; 

Color space conversion; 
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If (I is obtained from new experiment) 

        Train the system to establish a standard color; 

Compute the color difference map; 

Enhance the spots using a matched filter; 

Identify the spots in image I; 

} 

Fig. 4-1. The pseudo code for the proposed method 

2.1 Variable Illumination Removal 

Variable illumination causes problems when the intensity threshold is applied.  It is 

necessary to remove these illumination variations.  Let f(x,y), 10 −≤≤ Mx  and 

10 −≤≤ Ny , denote an M by N spot image.  f(x,y) is the product of the reflectance r(x,y) 

and the illumination i(x,y) [43] as shown in Eq. (31), 

 ),(),(),( yxryxiyxf = . (31) 

Suppose that the illumination is not evenly distributed over an image.  The variation in 

illumination over the image consists of a low frequency component in the frequency domain.  

Elimination of illumination variation is carried out using the following steps.  We first use a 

logarithmic operation on both sides of Eq. (31) to obtain Eq. (32).  Note that, the right hand 

side of Eq. (31) is transformed from multiplication to addition.   

 ),(ln),(ln),(ln yxryxiyxf += . (32) 

We then transfer ),(ln yxf  into the frequency domain,  

 ∑∑
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In the frequency domain, a high-pass filter is employed to suppress the low frequency 

components.  We then add a compensation operation back into the image to compensate for 

the suppressed signal.   The high-pass filter, shown in Eq. (34), suppresses the low 

frequencies and enhances the high frequencies so that the variation in the illumination can be 

reduced while the edges are sharpened.   
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The response of ),( yxH ωω and its cross-section are shown in Fig. 4-2. 
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(a)                                     (b) 

Fig. 4-2 (a) The high-pass filter spectrum. (b) A cross-section of the high-pass filter as a 

function of the polar angle and frequency.  In these figures yxr ωω += , )1/(1 0sw
L er += , 

and ArH +=1 . 

Because the spot edges contain high frequency information and the illumination 

variations usually contain very low frequency information, if the cutoff frequency 

of ),( yxH ωω  is not too high, we can preserve the edge information and remove the 

illumination variation.  We used 0.1‧fs as the cutoff frequency where fs is the sampling 

frequency.  In Eq. (35), 0ω  is the cutoff frequency and A is the compensation.  
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Compensation is required because the high-pass filter removed the low frequencies including 

the DC term.  A is automatically estimated by 

 .
1

1
1 )( 0swe

A
+

−=  (35) 

Applying the high pass filter (Eq. (34)) to ),(ln nmF is presented in Eq (36) 

 ),(ln),(),(ln nmFnmHnmFi = , (36)  

where ),( nmFi  denotes the filtered image in frequency domain. 

The inverse Fourier transform is then applied, as shown in Eq. (37).   
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Using an exponential operation restores the filtered signal. 

2.2 Color Space Conversion 

The spots are extracted based on the differences between the colors of the spots and the 

background.  A proper color space must be chosen before we can calculate the difference 

between colors.  Over 40 color difference formulas were used before the CIE (Commission 

Internationale de I’Eclairage) recommended two standard color difference formulas, i.e., the 

CIE L*a*b* and the CIE L*u*v* for surface and lighting industries [44].  These two color 

difference formulas provide uniform color space.  We chose the L*u*v* space [45].  Because 

video cameras use RGB representation for colors, we converted the color representation from 

the RGB space into the L*u*v* space [45].   Before the coordinates in the L*u*v* space can be 

obtained, the representation from the RGB space must be converted into the XYZ space using 

Eq. (38). 
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The L*u*v* is based directly on the CIE XYZ.  The non-linear relations for L*, u*, v*, X, Y, and 

Z are given below: 

 










≤−

>−
=

008856.0if     16)(3.903

008856.0if    16)(116 3/1

*

nn

nn

Y

Y

Y

Y

Y

Y

Y

Y

L  , (39) 

 
)(13

)(13
''**

''**

n

n

vvLv

uuLu

−⋅=

−⋅=
. (40) 

In Eq. (40), (Xn, Yn, Zn) is the reference white in CIE XYZ.  'u , 'v , '
nu , and '

nv are given in 

the following equations, 
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The daylight standard D65 [44] was used as the reference illuminant.  The non-linear 

relationship for Y is intended to mimic the logarithmic response of the eyes.  The converted 

image in color space L*u*v* is denoted ***),( vuLyxf . 

 

2.3 Train the System and Obtain an Image of the Color Differences 

To train the system to recognize a standard spot color, a user interface method is used to 

select an area A(x,y) in the spot.  Suppose there are N pixels in A(x,y), the standard color 
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( *L
µ , *u

µ , *v
µ ) is obtained using the equations shown in Eq. (42).   
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The difference between the two measured colors in the CIE color difference formula is given 

by  

 5.02*2*2** ))()()(( vuLEuv ∆+∆+∆=∆ . (43) 

Given an image ***),( vuLyxf  and a standard color ( *L
µ , *u

µ , *v
µ ), we can use Eq. (43), to 

obtain a color difference map, ),( yxf∆ .  ),( yxf∆  is a gray scale image in which the 

differences between the ***),(
vuL

yxf   and ( *L
µ , *u

µ , *v
µ )  are shown. 

 

2.4 Matched Filter for Spots Segmentation 

We used the matched filters [46]-[49] to enhance the spots in the color difference 

map ),( yxf∆ .  As shown in Fig. 4-3, the shape of a spot in ),( yxf∆  is roughly a circle and 

its gray-level profile of the cross section follows the Gaussian distribution.    

 

 

(a) 

 

(b) 
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Fig. 4-3 (a) A portion of the color difference map. The white line denotes a cross section. (b) 

The gray-level profiles of the cross section in (a).  The x-coordinate denotes the pixels along 

the cross section. The y-coordinate denotes the gray-level. . 

 

Indeed, the intensity profile of a spot nearly follows a 2-D Gaussian intensity distribution 

[53] as shown in Eq. (44) 

 
222 )(

1 ),( ryx eeyxg −+− == . (44) 

In Eq. (44), r is the radial distance measured from the center of a spot.  If we define R as the 

radius at which the intensity drops to a half of its maximum value, we can rewrite the spot 

profile function as 

 )2ln()2ln()/(
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eeyxg Rr −
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Eq. (45) can be simplified to obtain Eq. (46): 

 
222 /)(

1 2),( Ryxyxg +−= . (46) 

To obtain a zero mean filter, ),(1 yxg  is subtracted by m, the mean of the filter, as shown in 

Eq. (47), 

 mmyxgyxg Ryx −=−= +− 222 /)(
1 2),(),( . (47) 

Because the radii of different spots vary, we employed a set of different sized matched 

filters.  The radii of the spots range between 4 and 16 pixels.  We therefore used pixel sizes 

4, 8, 12 and 16 as the radii to design the kernels of the matched filers.  Fig. 4-4 shows two of 

the four matched filter kernels.  After applying the matched filters to ),( yxf∆ , most of noise 

can be removed and the spots are enhanced. 
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(a) 

 

(b) 

Fig. 4-4. 2-D matched filters used in our proposed method. The radius size is (a) 4, and (b) 8. 

 

2.5 Compute the Binary Image 

We set a threshold value for the resulting images.  The threshold is determined either by 

the minimum error thresholding method [50] or by user intervening to decide a good 

threshold value.  A binary image, in which the gray level for the pixels in the spots is 

depicted as 1 and the other pixels are depicted as 0, is obtained.  The important statistical 

values are then derived from this binary image.   

Before calculating the statistical values, we first compute the well regions.  There are 

two reasons for computing the well regions.  The first is that the area outside of the well is 

unwanted.  Secondly, because we know that the well size is 7 mm, the pixel size can be 

derived from the segmented well region.  Thus we are able to know the true sizes of the 

spots.  We first convert the original image shown in Fig. 4-5 (a) into a gray-scale image and 
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apply the Sobel filter [52] to the gray-scale image.  An edge map is obtained (Fig. 4-5 (b)).  

Applying the randomized algorithm for circle detection [51] on the edge map computes the 

well shown in Fig. 4-5 (c).  The area outside the circle is removed to obtain the region inside 

the well, shown in Fig. 4-5 (d).  

Finally, we segment the spots.  Only the pixels in the well are considered.  We 

compute the connected components formed by the pixels having value 1 after thresholding in 

the well.  Each connected component is a spot.  The size of a connected component is the 

size of the spot.  The statistical values are then calculated.   

 

3. A SOFTWARE TOOL 

 

Based on the method stated above we implemented a software system that provides a 

friendly user interface for ELISA spot image analysis.  A user can easily set experimental 

parameters such as the well diameter and the spot template.  If the image intensity is too 

bright or too dark, the system provides window sliders to adjust the intensity and contrast.  

Because the colors of the spots vary between assays, the system provides a user interface 

method to establish the users’ own customized parameters.  Size-gated analysis (size filtering) 

enables a user to selectively count only the large spots. Other statistical analysis such as 

calculating the standard deviation and the mean are also provided. Fig. 4-6 shows a screenshot 

of our software system. 

 

4. RESULTS 

 

Several images were tested and the results obtained using the proposed method is 

presented in this section.  The input images were color images in BMP format of size 1600 



 85

by 1200 pixels, shown in the first row in Fig. 4-7.   The images in second row of Fig. 4-7 

show the color difference maps.  The results after applying the matched filtering are shown 

in the third row in Fig. 4-7.  The binary images after intensity thresholding are shown in the 

fourth row in Fig. 4-7.  The boundary points of the spots and the initial image are shown 

simultaneously in the fifth row in Fig. 4-7.  The well diameters in Fig. 4-7 (a), (b), and (c) 

are 7.0 mm. The numbers of spots and other statistical values such as the mean, standard 

deviation, and coefficient of variance are shown in Table 4-1. 

 

Table 4-1. The important statistical values. 

 
Well Diameter 

( mm) 

Number of 

Spots 
Mean ( 2mµ ) SD ( 2mµ ) CV 

Fig. 4-7 (a) 7.0 62 0.1023 0.1262 1.2339 

Fig. 4-7 (b) 7.0 70 0.1970 0.2120 1.0762 

Fig. 4-7 (c) 7.0 66 0.1989 0.2624 1.3188 

 

We evaluated the accuracy of the proposed computer method by comparing the number 

of spots identified by humans and the computer. Table 4-2 shows the results. A human could 

find more spots because humans can discern overlapping spots. The error rate was defined as 

the difference between the number of spots found over the spots identified by a human.  The 

error rates were less than 3% in our experiment. 

Table 4-2. Comparison of our inspection method and human. 

 
# of Spots 

by Our Method 

# of Spots 

by Human 

% of  

Error 

Fig. 4-7 (a) 62 63 1.5 % 

Fig. 4-7 (b) 70 71 1.4 % 
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Fig. 4-7 (c) 66 68 2.9 % 

 

The proposed methods were implemented on a PC with a Pentium 4(2.2 GHz) CPU 

running on Windows XP operating system.  The overall execution time for a 1600×1200 

pixels image took 5 seconds.   

 

5. CONCLUSIONS 

 

We presented a computer method for ELISA spot analysis in this chapter. The proposed 

method employs techniques such as color analysis and matched filtering to enhance the spots 

in the image. After preprocessing, intensity thresholding can effectively segment the spots. 

The experimental results showed that the error rate of the proposed method was less than 3%. 

This method can help immunologists to reduce time in analyzing the ELISA spot assay.  

Since the errors occur when there are overlapping spots, in order to improve the accuracy, to 

develop an intelligent method to separate the overlapping spots is our future work.   

 

 

(a)                       (b) 
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(c)                        (d)    

Fig. 4-5. (a) The original image. (b) Image after applying the Sobel filter. (c) After circle 

detection. (d) Remove the region outside the circle. 

 

Fig. 4-6. A screenshot of the software system. 
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(a)                         (b)                     (c)                   

Fig. 4-7. First row, the three tested images from the proposed method. Second row, the color 

difference maps. In these images, the pixles with less difference are shown in the brighter 

intensity. Third row, the results after applying the matched filters. The 4th row, the final results. 

The last row, the original images overlying the results obtained in the images shown in 4th . 
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CHAPTER 5  

Extraction of Coronary Arterial Tree Using Cine X-Ray 

Angiograms 

 

An efficient and robust method for identification of coronary arteries and evaluation of 

the severity of the stenosis on the routine X-ray angiograms is proposed. It is a challenging 

process to accurately identify coronary artery due to poor signal-to-noise ratio, vessel overlap, 

and superimposition with various anatomical structures such as ribs, spine, or heart chambers. 

The proposed method consists of two major stages: (a) signal-based image segmentation and 

(b) vessel feature extraction. The 3D Fourier and 3D Wavelet transforms are first employed to 

reduce the background and noisy structures in the images.  Afterwards, a set of matched 

filters was applied to enhance the coronary arteries in the images.  At the end, clustering 

analysis, histogram technique, and size filtering were utilized to obtain a binary image that 

consists of the final segmented coronary arterial tree.  To extract vessel features in terms of 

vessel centerline and diameter, a gradient vector-flow based snake algorithm is applied to 

determine the medial axis of a vessel followed by the calculations of vessel boundaries and 

width associated with the detected medial axis. 

 

1. INTRODUCTION 

 
Coronary angiography is still the most common modality for physicians to assess the 

severity of vessel narrowing or stenosis during percutaneous coronary intervention procedure.  

Accurate quantitative analysis of coronary arteries in digital angiographic images is valuable 

and important to clinical needs.  Computer-assisted extraction of a set of major arteries or 
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the entire coronary arterial tree from two-dimensional (2-D) angiograms is regarded as a 

crucial process.  Once the vessels are identified, additional techniques may be applied to 

obtain quantitative information including severity of stenosis, three-dimensional 

representation of the vascular tree, motion analysis of the coronary arteries, or blood-flow 

analysis [61-68].   

The major difficulty in automatic extraction of coronary arterial structures in angiogram lies 

in (1) low signal-to-noise ratio due to poor X-ray penetration, (2) vessel overlaps, and (3) 

superimposition of other tissues such as ribs, spine, or cardiac chambers.  Traditional 

signal-based edge detection algorithms [69-75] were unable to effectively or accurately detect 

the desired structures.  The existing methods specific to vessel extraction can be categorized 

into (i) model-based [76-78] (ii) tracking-based [79-81], (iii) classifier-based [82], and (iv) 

filter-based [83-85] techniques.  In model-based methods, the coronary arterial tree is 

produced based on a pre-defined coronary artery model in the form of a “graph” structure.  

In tracking-based methods, the process proceeds with an initial start-of-search location 

followed by an automatic tracking process by exploiting the spatial continuity of the vessel's 

centerline, orientation, diameter, and density.  In classifier-based methods, a clustering 

algorithm is employed with properly preprocessed data to differentiate vessel or non-vessel 

regions.  In filter-based methods, the coronary arteries are enhanced and located so that they 

can be subsequently detected in the image.  

The segmented vessel can then be used to facilitate quantitative coronary analysis such as the 

severity of stenosis in terms of length and diameter at the narrowing segment.  The width can 

be obtained by calculating the boundary of the vessel.  The other approach can be obtained 

by first calculating the medial axis of the artery then computing the width.  Both approaches 

need to segment the coronary artery first. 
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In this chapter, a technique is proposed to first automatically segment the coronary arteries 

from cine angiogram followed by accurate extraction of vessel features.  By use of the 

inherent nature of coronary cine angiography, the temporal information was incorporated to 

facilitate elimination of the background and noises.  Such a preprocessing in conjunction 

with the matched filter can greatly improve the results.  The proposed segmentation method 

consists of three major processes: (1) background and noise removal, (2) vessel enhancement, 

and (3) vessel identification.   

The identified vessel structures are represented as a set of pixels in a binary image. The 

Gradient Vector Flow (GVF) Snake is then employed to calculate the medial axis of the 

vessel followed by determination of vessel diameters.    

The details of proposed techniques are described in the next section.  Experimental results 

and accuracy evaluation are presented in Section 3 to demonstrate the robustness of the 

proposed techniques.   

2. METHODS 

Let T denote the number of frames in the cine angiograms during the cardiac cycle, i.e., the 

images acquired from end-diastole to end-systole and then back to end-diastole.   Each 

image is defined by the function ),,( tyxf , where 1,...,0 −= Tt with x and y denoting the 

two-dimensional (2-D) coordinates of a pixel in the given M by N image.  The proposed 

method consists of several steps.  Let ),,(1 tyxfi− and ),,( tyxfi  denote the respective input 

and output images for the intermediate process at the i-th step.  The original raw image is 

defined by ),,(0 tyxf . 

2.1 Background Removal 

A temporal Fourier analysis is employed to eliminate the stationary background and slowly 

moving objects in the cine-angiographic images. The Fourier transformation of an image 
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sequence may result in a single peak at a frequency of 0, i.e., a single direct current (DC) 

term, associated with stationary tissues [86].  Moreover, the band near the DC term 

corresponds to the slowly moving (due to respiration) objects in the image.  The stationary 

or slowly moving objects are commonly ribs, spine, lung, or other internal structures 

appearing as background in the image, and can be eliminated by use of a temporal Fourier 

transformation.  Given a sequence of T images ),,(0 tyxf , 10 −≤≤ Tt , the discrete 

Fourier transformation pairs are defined as 

 10    ),,(),,(
1

0

/2
00 −≤≤=∑

−
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− TketyxfkyxF
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t

Tktj π , (48) 

and 
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The temporal Fourier transform defined in Eq. ((48) is first applied to the image sequence 

followed by a high pass temporal filtering process )1(),,(  tekyxH β−−=  as follows  
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where β is a given constant that controls the size of the background to be removed.  The 

main effect of the high pass filter is to retrench the low-frequency terms.  After the inverse 

Fourier transformation defined in Eq. (49) is employed, a new sequence of images ),,(1 tyxf , 

10 −≤≤ Tt , is obtained in which the structures on the background (such as ribs and tissues) 

are suppressed.  If the value of β  is too large, only the stationary background will be 

removed.  Therefore, an appropriate β  is chosen to remove both the slowly moving 

structures as well as stationary background.  An appropriate β  is between 8 and 10. 
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2.2 Noise Removal 

The resultant images after the previous processing may contain some spikes or noise.  This is 

due to that the isolated noise cannot be detected and removed using the pure frequency 

domain based Fourier transforms.  To overcome this problem, a “temporal” wavelet 

transformation is used.  The definition of an ordinary Discrete Wavelet Transform (DWT) is 

summarized as follows and the details can be found in [87-89].   

Let ∑ −=
k

jkw
kelL )(ω  and ∑ −=

k

jkw
kehH )(ω  denote the respective low-pass and high-pass 

filters that satisfy the condition of orthogonality as shown in the following equation 

 1)()(
22 =+ ωω HL . (51) 

The DWT employs the pair of orthogonal high-pass and a low-pass filter to decompose an 

input signal into the high frequency and low frequency components in different resolutions 

according to the number of levels employed.  In the one-dimensional (1-D) case, a signal 

)(nx  is decomposed iteratively by applying the low-pass and the high-pass filters as shown 

in Fig. 5-1 (a). Let 0)( cnx = . 1 ..., ,0 , −= Lici  is decomposed into a low frequency 

component 1+ic  and a high frequency component 1+id .  Both 1+ic  and 1+id  are down 

sampled by 2 from ic .  The coefficients ,,...,1  , Lidi =  are called the DWT wavelet 

coefficients of x(n).  The signal x(n) can be reconstructed from its DWT coefficients as 

shown in Fig. 5-1 (b).  The reconstruction process is the inverse discrete wavelet transform 

(IDWT).   
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(b) 

Fig. 5-1. Multi-level wavelet (a) decomposition and (b) reconstruction for a 1-D case. 

A two-dimensional discrete wavelet transform and its inverse are the extension of the 

one-dimensional transform.  It is implemented by applying a one-dimensional DWT and 

IDWT along each of x and y coordinates.  In other words, we apply a low-pass filter and a 

high-pass filter along each of the two coordinates.  The original 2-D signal in the form of an 

image is then divided into four regions: 

1. LL: obtained by applying two low-pass filters on both coordinates,  
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2. HL and LH: obtained by applying high-pass filters on one coordinate and a low-pass filter 

on the other coordinate, and  

3. HH:  obtained by applying two high-pass filters on both coordinates.   

The LL component can be recursively decomposed by using the pair of low-pass and the 

high-pass filters to establish a k-stage discrete wavelet transform.  A 3-stage discrete wavelet 

transformation is defined as  

 10  , )),,((),,( 3 −≤≤= TttyxfDWTtyxW . (52) 

The first stage of the transform is to decompose the image into four equal size sub-images 

corresponding to the upper left (LL1), the upper right (HL1), the lower left (LH1), and the low 

right (HH1) regions.  In the second stage, LL1 is decomposed into four sub-images again.  

For the subsequent stage j, the upper left image (LLj-1) is further decomposed to four 

sub-images.  The typical example is illustrated in Fig. 5-2. 

 

LH1

HL1

HH1

LH2 HH2

HL2

LH3

LL3

HH3

HL3

 

Fig. 5-2. A 2-D 3-stage discrete wavelet transformation. 

In the proposed method, we applied a 3D 3-stage discrete wavelet transform (or a temporal 

wavelet transform).  Orthogonal low-pass and a high-pass filters were applied along x, y, and 

T (i.e., temporal)  to decompose the original image into 8 components, LLL1, LHL1, LLH1, 
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LHH1, HLL1, HHL1, HLH1, and HHH1.  Similar to that in the 2D case, the LLL component is 

recursively decomposed into 8 components as shown in Fig. 5-3. 

LHL1

HLL1

HHL1

LHL2 HHL2

HLL2LHL3

LLL3

HH3

HLL3

 

Fig. 5-3. A 3-D 3-stage discrete wavelet transformation. 

Since noise commonly manifests as fine-grained structures in the image, the wavelet 

transform provides a scale-based decomposition by which the noisy signals can be 

represented by the finer scaled wavelet coefficients.  In other words, LLL3   is the region 

most unlikely containing noise.  All the other 7 regions except 1LLL  in the first-stage 

wavelet transform likely contain noise.  Because the coefficients at such scales may possibly 

denote the edge information, a threshold should be carefully selected to remove the noise 

while the edge information can be maintained.  In the proposed method, each band except 

LLL3 has its own threshold.  The threshold, 0.5σ1, is selected based on the standard deviation 

σ1 of the band.  Finally, the inverse three-stage wavelet transform is applied to the image 

with the selected thresholds applied.  The resultant images can be obtained using the 

following equation:  

 10 )),,,((),,( 3
2 −≤≤= TttyxWIDWTtyxf . (53) 

By use of Eq. (53), the unwanted noise is removed but the local features of vessel structures 

are preserved.   
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2.3 Vessel Enhancement 

Matched filters with multiple sizes and orientations are employed to identify and enhance the 

contexts or gray scales of coronary arteries.  A matched filter is designed by assuming that 

the image background has constant intensity contaminated by white Gaussian noise [83].  

The blood vessel can be regarded as a series of rectangular segments.  By assuming the 

intensity profile of the arterial segments a Gaussian distribution, it can be written in the 

following equation:  

 
22 2/

1 1),( σxeyxg −−= , (54) 

where 2σ denotes the variance and σ is known as the standard deviation. Table 5-1 lists the 

values of a Gaussian distribution at several points. 

Table 5-1. Values of the Gaussian Function 

x 22 2/ σxe−  

0 1 

0.5σ  0.8825 

1.0σ  0.6065 

1.5σ  0.3247 

2.0σ  0.1353 

3.0σ  0.0111 

 

Since a Gaussian curve is infinite at the two ends, an appropriate range for the kernel 

designation is determined for computational efficiency.  As shown in Table 5-1, when X is 

equal to 3.0σ , 
22 2/ σxe−  is a small number (0.0111).  The cutting threshold at 3σ  was 

selected.  Since the arteries have different width (ranging from 2 to 18 pixels in the image), 

kernel sizes ranging from 1σ  to 6σ  were chosen for the employed matched filers.  In 

general, increasing the number of kernels yields better accuracy but more computational time 
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is required.   

The proposed matched filter consists of two parameters, orientation θ and sizeσ .  An 

angular resolution of °15  was used in the implementation.  Six matched filters with various 

widths ofσ  in each orientation were employed.  Fig. 5-4 shows a set of zero-degree 

matched filters with different values of σ .  The matched filters in the other orientation are 

obtained by applying the transformation 

  
cos  sin

sincos  






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=
θθ
θθ

θ
  

R . (55) 
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Fig. 5-4. Six matched filters (σ = 1, 2, …, and 6) with zero orientation. 

On the basis of twelve orientations and six sizes, 72 filters were defined and employed.  

Given an image ),,(2 tyxf , the maximum response from the matched filters is retained for 

each orientation.  Twelve images ),,,(2 tyxf θ , θ=0, 15, …, and °165 , are obtained to 

define a three-dimensional (3-D) space volume where the orientation is the third dimension.  

Let ),,( tyxfmo  denote the projection of these 12 images onto the xy-plane.  Both 

),,,(2 tyxf θ  and ),,( tyxfmo  are utilized to identify the vessel in the next step. 

2.4. Vessel Identification 
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The clustering analysis based on a stencil mask ),( yxS and the vessel continuity properties 

are applied to further refine the results of segmentation.  Note that ),,( tyxfmo is a gray scale 

image.  Given a threshold value ∆, a binary image ),( yxB is established according to Eq. 

(56).   

 yx
T...,,,tx,y,tf

yxB mo ,     
otherwise   1

1  1 0for   ,  ) )((max  if   0
),( ∀



 −=∆<

= , (56) 

The pixels of value 1 form connected components.  The area occupied by the largest 

connected components in ),( yxB forms the stencil mask, S(x,y), as shown in Fig. 5-9.  

S(x,y) is the area covered by the motion of coronary arterial structures.  Therefore, those 

connected components formed by ribs, tissues, and noise can be removed based on the stencil 

mask as the following equations: 

 tyx
yxStyxf

tyxf  ,,,      
 otherwise                              0

,1),( if   ),,,,(
),,,( 2

3 θ
θ

θ ∀


 =

=  (57) 

Afterwards, a series of processes are applied to identify the vessels. They are detailed in the 

following. 

1. A histogram analysis is applied to ),,,(3 tyxf θ  for determination of a threshold value ξ, 

which is used to separate coronary arterial structures from the background in each 

orientation. Let ),,,(4 tyxf θ  denote the image function after this process.   

2. If the intensity of a pixel ),( yxp  is greater than a given threshold ξ in three consecutive 

images at orientation θ , that pixel is a part of the artery.  Otherwise, its value is set to 

zero.  The resultant image is denoted by ),,,(5 tyxf θ .   
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3. Since arteries are structured connected in consecutive orientations, a 3-D 18-adjacency 

clustering analysis is applied to ),,,(5 tyxf θ .  A size filter is then applied to remove 

smaller connected components.  A new image function ),,,(6 tyxf θ  is obtained where 

the coronary arterial structures are maintained at each orientation.   

The final segmentations of coronary arterial structures are obtained after projection of 

),,,(6 tyxf θ  onto the xyt-plane for all the orientations. The final segmentations of coronary 

arterial structure is denoted ),,(7 tyxf . Two segmented results are shown in Fig. 5-12. 

 

2.5. Extraction of Vessel features 

The final goal is to calculate the width of the vessel. We use ),,(7 tyxf to determine the 

medial axis of the vessel first. We then calculate the width based on the medial axis.  Snake 

method was first proposed in 1987 as an image segmentation algorithm [90].  A snake, S → 

v(s) = (x(s) , y(s)), is associated with a cost function E.  E is written in the form  

 ∫ +=
1

0

))(())(( dssvEsvEE extint ,  (58) 

where Eint represents the internal energy of the snake due to bending, and Eext the external 

force that is derived from image features.  Eint serves to impose smoothness constraint on the 

snake.  Eext pushes or pulls the snake toward desired features such as edges.  Given an 

initial contour, the contour deforms under the control of the external and the internal forces.  

When the energy associated with the contour reaches the minimal, the contour is considered 

the best approximation of the boundary of the region of interest.   
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Xu and Prince proposed the Gradient Vector Flow (GVF) snake in 1998 [91]. In GVF snake, 

a vector field is created to serve as the external force.  The GVF field is defined to be a 

vector field p(x,y) = [g(x,y),h(x,y)] that minimize the energy  

 dxdyfpfhhgg yxyx

222222 )( ∇−∇++++= ∫∫µξ . (59) 

Using calculus of variations [91], it can be shown that the GVF field can be found by solving 

the following Euler equations: 

 0))(( 222 =+−−∇ yxx fffggµ , and  

 0))(( 222 =+−−∇ yxx fffhhµ ,   (60) 

where ▽2 is the Laplacian operator.  

Using GVF to server as external forces, we can move the snake to minimize the energy of the 

contour shown in Eq. (58).  The solution can be solved by using the greedy approach [92] or 

the finite difference method [90].   

 

The GVF field is generally obtained from an edge map. An important property of the vector 

flow is that a vector close to an edge points to the center of the edge.  The proposed medial 

axis finding algorithm is based on this property. 

The resulted arterial tree in ),,(7 tyxf  is a binary image.  The vectors in the GVF field 

created from ),,(7 tyxf  point to the medial axis of the vessel.  Given a polygonal path with 

two end points on the medial axis of a vessel (the initial snake), the vector flow pushes the 

polygonal path toward the center of the vessel.  When the snake converge to it minimum cost, 

we have the medial axis of the vessel.   

Given the medial axis < mppp ,...,, 21 >, let 
rl ii qq ,  be a line segment passing through ip  and 
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perpendicular to the polygonal path < mppp ,...,, 21 >. The two end points 
li

q  and 
ri

q  are 

respectively to the left and right of the polygonal path from 1p  to mp . The polygonal paths 

<
lll mppq ,...,, 21 > and <

rrr mppq ,...,, 21 > are approximations of the left and right boundaries of 

the vessel obtained from ),,(7 tyxf .  The accuracy of these boundaries can be further 

improved by applying the GVF snake method again.  The edge map is obtained by applying 

the canny edge operator followed by intensity thresholding.  The polygonal path 

<
lll mppq ,...,, 21 > and <

rrr mppq ,...,, 21 > serve as the initial snakes.  The resulted boundaries 

accurately present the true boundaries. The width of the vessel diameter is the distance along 

normal direction from centerline point to <
lll mppq ,...,, 21 > plus centerline point to 

<
rrr mppq ,...,, 21 >  

3. RESULTS 

 

Two cases are studied to demonstrate the results obtained using the proposed technique.  Fig. 

5-5 (a) and (b) show the cine angiograms of a left coronary artery (LCA) tree and a right 

coronary artery (RCA) tree.  Each sequence of X-ray angiograms consists of 30 images from 

end-diastole through end-systole then back to end-diastole.  Each image has the size of 512 

×512 pixels with 8-bit gray scales per pixel.  Fig. 5-6 shows one exemplar frame of the entire 

sequence in Fig. 5-5 (a).  Fig. 5-7 shows the result after background removal.  The results 

after applying the DWT de-noise process and applying the 72 matched filters are shown in 

Fig. 5-8.  The results after the stencil masking process are shown in Fig. 5-9 where only one 

connected component exists.  Fig. 5-10 shows the result of the projection onto the xyt-plane 

along θ -axis.  The final segmentation of moving coronary arterial structures is shown in 

Fig. 5-11.  In Fig. 5-13, we superimpose the boundaries of the results shown in Fig. 5-12 to 
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the original images.  As shown in Fig. 5-13, almost the whole arterial structures are 

extracted.   

The magnitude of the vector field created from Fig. 5-12 (b) is shown in Fig. 5-14.  The 

initial snake is provided by a user interface method. As shown in Fig. 5-15, the initial snake is 

given for finding the media axis of the vessel. Fig. 5-16 shows the media axis found by the 

GVF snake. We also provide a user interface method to trace the pixels on the media axis. 

The system computes the diameter of vessel in pixel where mouse select.  Fig. 5-16 shows 

the diameters for some selected points on the medial axis.   

 

4. CONCLUSION 

 

 In this chapter, we present an efficient and robust method for segmentation of coronary 

arteries from the cine angiogram in conjunction with GVF snake based method to extract the 

width of the artery in the angiographic image. The signal-based segmentation algorithm 

provides the initial results of identified coronary arterial tree.  The details of vessel features 

(e.g., lesion length and vessel narrowing) can be accurately calculated by the GVF snake 

method to facilitate coronary quantitative analysis.  

The proposed methods were implemented on a PC with a Pentium 4 (2.2 GHz) CPU running 

on Windows XP operating system.  The overall execution time for a sequence of 30 512×512 

pixels images took less than 3 minutes.. 
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Fig. 5-5. (a) The cine angiograms of a left coronary artery (LCA).  (b) The cine angiograms 

of a right coronary artery (RCA). 

 

 

 Fig. 5-6. The typical example of one frame in the cine angiograms of Fig. 5-5 (a). 
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Fig. 5-7. One of the resultant images after the background removal process. 

 

 

Fig. 5-8. The resultant image after applying the DWT de-noise process and applying the 

matched filter. 
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Fig. 5-9. The resultant binary image after the 2-D stencil masking process where the black 

pixel is denoted by zero and the white pixel is denoted by 1. 

 

    

    

     

Fig. 5-10. The projection onto xyt-plane along θ -axis 
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(a) LCA 

 

(b) RCA 

Fig. 5-11. The final segmentation results on a sequence of X-ray angiographic images on Fig. 

5-5. 
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(a) 

 

(b) 

Fig. 5-12. Two segmented results. (a) The last image in Fig. 5-11 (a). (b) The last image in Fig. 

5-11 (b). 
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(a) 

 

(b) 

Fig. 5-13. The original images are overlying the results obtained in Fig. 5-12. 
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Fig. 5-14. The magnitude of GVF in Fig. 5-12 (b) 
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Fig. 5-15. Initial snake for finding the medial axis of vessel. 

 

 

Fig. 5-16. The result of the centerline of vessel with widths for some selected points on the 

medial axis marked. 
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APPENDIX 

1. Grid Artifacts Removal Using Bucky 

To explain a Bucky can reduce the grid artifacts, considering a similar phenomenon, 

photograph degradation [54]-[60] caused by the relative motion between the camera and the 

scene.  There are a moving scene (the grid) and a fixed camera.  The grid image after 

degradation, denoted g(x,y), can be modeled using Eq. (61) 

 ∫ ∫ −−= '''''' ),(),(),( dydxyxIyyxxhyxg p , (61) 

where h(x,y) denotes the system response of the motion degradation. 

Fourier transforming both sides of Eq. (61), we obtain 

 ),(
~

),(),( vuIvuHvuG p= . (62) 

The total exposure at any point in the imaging plate can be obtained by integrating the 

instantaneous exposures over the time interval.  If )(tα  and )(tβ  are the displacement 

along the x and y directions, respectively, we have 

 ∫− −−=
2/

2/
))(),((),(

T

T p dttytxIyxg βα , (63) 

where T is the duration of the exposure. 

Fourier transforming both sides of Eq. (63), we obtain 
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Replacing the variables )(tx α−  with ξ  and )(ty β−  by η , Eq. (64) becomes  
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According to Eq. (62) and (65), the transfer function H(u,v) of this moving degradation is 

given by 
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 ∫−
+−=

2/

2/

))()((2),(
T

T

tvtuj dtevuH βαπ . (66) 

Suppose that the motion is uniform in the x-direction with velocity V, then  

 0)(  ,)( == tVtt βα . (67) 

Substituting Eq. (67) into Eq. (66), we obtain  

 )(sinc
sin

),( uVTT
uV

uVT
vuH ==

π
π

. (68) 

The PSF, h(x,y), is obtained by inverse Fourier transforming Eq. (68) into Eq. (69)  

 )/(rect
1

),(
2

VTx
TV

yxh ⋅= , (69) 

where rect(x) is given as 

 


 ≤

=
otherwise      0

/      1
)/(rect 2

1VTxfor
VTx . (70) 

Eq. (69) is actually a mean filter that has the effect of smoothing the grid artifacts.  The size 

of the mean filter kernel depends on rect(x/VT), i.e., for large exposure time (T) or fast Bucky 

movement speed (V) we obtain a large kernel.  If 

 gTVT ≥ , (71) 

the size of the kernel covers all Tg, the grid artifacts of Tg is blurred out completely.  
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