(Grid Artifact) (Gel Electrophoresis)
Spot) (Cine -Angiogram)
Arteria Tree)
(Artifact)
(Inheritance)
Grid CR (Imaging Plate) X
(Scatter)
(Moire)

DICOM  (Tag) GRID

CR
(ELISA

(Coronary

Grid



(Threshold)

(Segmentation)

(Preprocessing)

CR




| mage Artifacts Removal and Segmentation

Applied to Biomedical I mages

Student: Chih-Yang Lin Advisor: Dr. Yu-Tai Ching
Department of Computer and Information Science,
College of Electrical Engineering and Computer Science

National Chiao Tung University

ABSTRACT

Computer methods for medical 1 or -biomedical images processing improve the
performance of the diagnosis or-research work. In this dissertation, we developed computer
algorithms and implemented tools to solve specific problems. These problems include
removing grid artifacts from Computed Radiograph (CR) images, comparing the lanes in Gel
Electrophoresis images, analyzing the ELISA spots images, and extracting the coronary
arterial tree from cine angiogram.

Digital CR images are easier to store and transfer from one place to another. However,
CR images contain grid artifacts and moiré pattern that are the inheritance problems due to the
using of grids to remove scattering. In this dissertation, the causes of these artifacts are
investigated in detail. We show that the frequencies of these artifacts are fixed and can be
estimated from the DICOM tags and grid specification. The artifacts can then be removed in
the frequency domain. Because the removed frequency does not relate to the anatomical
structure, the resulting images are clearer than before.

Variable illumination is another kind of artifacts. Variable illumination artifact occurs



when the ELISA Spots images were taken. This artifact causes a problem that the intensity
threshold cannot be applied. In this dissertation, we design a filter to eliminate such variation.
A sequence of image processing techniques is than applied to segment the ELISA spots. A
tool was implemented based on the algorithm. This work helps to save biologist efforts in
analyzing the ELISA spotsimage.

Grid artifacts also occur in Gel Electrophoresis image. Gel Electrophoresis is an
important tool in biology research area. To identify the same lane pattern is the goal. In this
dissertation, we remove the artifacts before segmentation process are applied. We then convert
a lane into the position vector for comparison. The presented method could reach 97%
accuracy and thus save research effort of the biologist.

The last work we studied was to segment the coronary arterial tree from cine angiogram.
The artifacts were the backgrounds:such as ribsand lung texture. We proposed to eliminate
the backgrounds in time direction. Matched filter and wavelet techniques were than applied to
segment the arterial tree. GVF snake isthan-applied to calculate the width of the vessel. The

segmented arterial treeisfairly complete and the cal culated width is accurate.
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CHAPTER 1

INTRODUCTION

Computer methods for medical or biomedical images analysis are helpful for diagnosis
or researches in biomedical area. In this dissertation, we design computer methods for
different applications. We have:

1. Designed and implemented a tool for artifacts removal in computed radiograph (CR)
Image,

2. Designed and implemented a tool for comparing lanesin gel electrophoresis images,

3. Designed and implemented atool for analyzing the ELISA spot images,

4. Designed an algorithm to extract the coronary arterial tree from cine angiogram.

There are grid artifacts in CR image; The artifacts are contaminated in the imaging system.
The grid artifacts could be a:zmore serigus problem when displaying the images in a
low-resolution computer terminal’-We carefully studied the causes of the artifact and design
an algorithm to eliminate the artifacts.

Gel electrophoresis is an important tool in the area of biology research. An image
consists of 7 to 10 "lanes'. Each lane is a fragment of DNA that represented as severa
"bands'. Two lanes (DNA fragments) are considered the same if these two lanes have the
same pattern. Biologists using this tool could have hundreds of images and they are looking
for the identical lanes from the images. We developed a tool that converts a lane into a
"position vector". A position vector is a set of integers representing the location of the band in
the lane. Comparing the lane becomes comparing the position vector.

ELISA spot assay is also an important tool in the research area of biology. The
experiment ends up with analyzing an image. The image is a color image that containing spots

in it. Biologist needs to calculate the number of the spots, the mean and the standard deviation



of the spots. This is a tedious and time-consuming task. We have developed a tool to
accurately obtain the required statistics for the biologist.

Coronary artery narrowing is one of the major heart diseases that cause death of the
human. Angiogram is still the most important tool for the diagnosis of the narrowing of the
vessdl. It is important to segment the vessel from the image and estimate the width of the
vessdl. In this work, we propose to eliminate the background by using the temporal
information available in cine angiogram. Followed by a sequence of steps, we can accurately
compute the width of the vessal.

In this dissertation, we report that factors in images formation step are important to the
image-processing step. In CR image and gel electrophoresis images formation, grids were
used to remove scattering effect. In ELISA spot image, illumination changes over the images
because the light source could not bein the top of the sample. Removing these factors could
achieve the best segmentation results. \We also-repot that "cocktail approach” could reach the
best processing resullts.

In the rest of this chapter, the mativationsare first introduced in Section 1. In Section 2,
we shall review the previous researches in these areas. In Section 3, we present the overview

of the proposed methods. The organization of this dissertation is stated in Section 4.

1. MOTIVATION
Very often, there are artifacts in the medical or biology system which are caused in the
very beginning of the imaging system. Grid artifact appeared in Computed radiography (CR)
and biology images are an example. Computed radiography (CR) has many advantages such
as filmless operations, efficiency and convenience. Furthermore, it is easier to integrate with
the picture archiving and communication systems (PACS). Another important advantage is

that CR images generally have wider dynamic range than conventional screen film.



Unfortunately, grid artifacts and moiré pattern artifacts may be present in CR images. These
artifacts become a more serious problem when displaying CR images on a computer monitor
for softcopy diagnosis. Using a grid with higher frequency or a Potter-Bucky grid (i.e., a
moving grid, Bucky for short) can reduce occurrence but not guarantee elimination of these
artifacts.

Another artifacts example is the Gel electrophoresis (GE) in DNA or protein related
research. GE image also contains grid artifact and needs to be remove like CR image for the
purpose of application of the computer method. Gel electrophoresis (GE) was developed as a
means for resolving biological macromolecules, such as DNA, RNA, and protein molecules
[24]. There are several different types of GE based on their resolution ranges. One major
application of GE isto separate DNA molecules from 0.5 kbp to approximately 10 Mbp. GE
is an invauable tool for gene and genomic ‘analysis and it is routinely used in many
applications, such as gene identification, isolation, and purification. GE is used in various
fields like biology, molecular biology; ‘biochemistry, biotechnology, medicine and clinical
diagnosis.

The third research topic of this dissertation is the segmentation of the ELISA
(Enzyme-Linked Immuno-sorbent Assay) Spot Assay image. The ELISA Spot Assay is a
method widely used by immunologists to enumerate cytokine-producing cells within a
specific cell population. The ELISA results are presented in an image containing numMerous
colored spots. The ELISA Spot Assay is designed to detect cells that produce cytokines.
Cytokines are proteins readily secreted by immune cells upon stimulation by the antigens they
recognize or by mitogens. The experimental steps are described as follows. Test wells are
coated with anti-cytokine antibody (capturing antibody) before the cells are added. A certain
number of cells and antigen are added to the pre-coated wells. During incubation, the cells

are stimulated to secrete cytokine. The precoated antibody captures the secreted cytokine.



After washing, a biotinylated secondary anti-cytokine antibody (detecting antibody that
recognizes different epitopes on the cytokine from the capturing antibody) and enzyme-avidin
complex are added in sequence. A color reaction (red in this case) specific to
cytokine-secreting cells occurs as a result of this enzymatic reaction. Each red spot
represents one cytokine-secreting cell. To analyze ELISA Spot Assay results, immunologists
must know the numbers of spots, the distribution and size of the spots, and the mean and
standard deviation of the spot sizes. Because these spots can number in the hundreds in each
70 mm diameter well, counting the spots is labor-intensive work even when one uses a
dissecting microscope. To overcome this problem, a computer method, that helps
immunol ogists cal cul ate the important spot statistical values, is needed.

The forth research topic of this dissertation is the Extraction of Coronary Arterial Tree
Using Cine X-Ray Angiograms. Coronary angiography is still the most common modality for
physicians to assess the severity of vessel narrowing or stenosis during percutaneous coronary
intervention procedure. Accurate quantitative analysis of coronary arteries in digital
angiographic images is vauable "and. important to clinical needs. Computer-assisted
extraction of a set of mgjor arteries or the entire coronary arterial tree from two-dimensional
(2-D) angiograms is regarded as a crucial process. Once the vessels are identified, additional
techniques may be applied to obtain quantitative information including severity of stenosis,
three-dimensional representation of the vascular tree, motion analysis of the coronary arteries,

or blood-flow analysis

2. RELATED STUDIES
In this section, we review some related techniques.
2.1 Literature Review of Grid Artifacts Elimination in Computed Radiographic Images

In a study by Cesar, et a., [1] the authors presented a detailed discussion that focused on



some artifacts that were caused by operator error. However, there are other types of artifacts,
such as grid artifacts and moiré patterns, that are not caused by operator error. These
artifacts are inherent problems with the CR imaging system. A grid is used routinely during
X-ray exposure to remove undesired scattered X-rays. When the CR image plate is exposed
with agrid and displayed on a computer monitor, interference or moiré pattern artifacts appear.
The grid artifacts and moiré patterns are much more pronounced when the images are
displayed on a computer monitor which resolution is lower than the images'.

Previous similar works can be found in several other grid pattern studies [2, 3, 4, 5]. A
similar problem in designing a film scanner was studied by Wang and Huang [2]. The
objective of the study was to minimize the aliasing artifacts while converting a film into
digital form. In another study by Barski and Wang [3], a method consisting of grid
frequency detection and adaptive grid suppression-was proposed. The grid artifact frequency
was detected in the frequency domain 'after a 1D Fourier Transform. The artifact
suppression was achieved by designing appropriate blur kernels in the spatial domain. The
artifact frequency in 95.8% of the cases.could.be correctly detected. However, some images
that did not contain grid artifacts were identified incorrectly as containing artifact frequencies.
Since agrid artifact is a periodical signal, it cannot be effectively removed by applying simple
blur kernels in the spatial domain. Moreover, applying blur kernels to reduce grid artifacts
also blurs the image itself. In a grid artifact study by Belykh and Cornelius [4], the same
method used Barski and Wang [3] was used to detect grid frequency. A notch filter [6] in the
frequency domain was used to suppress the grid textures. Unfortunately, using a notch filter
causes rippling or ringing effects. Sasada, et al [5], used a method similar to that by Barski
and Wang [3] to locate the artifact frequency. The wavelet approach was than employed to
remove grid artifacts. None of these studies evaluated any observers performance after the

grid artifacts were removed.



2.2 Literature Review of Spot Segmentation

Previous related woks can be found in [39-40]. In [39], an automatic method for particle
detection from electron micrographs was proposed. Distance transform and the Voronoi
diagram were used for detection of critical features aswell as for accurate location of particles
from the images or micrographs. The method could only find fixed size disks. In our case,
size of spots is not fixed. In [41], an automatic circular decomposition algorithm applied to
blood cells image was proposed. The method used polygonal approximation, curve
segmentation, circle modeling, circle adapting, and circle merging to find various sizes of
circles. The method needed edge detection as the first step for preprocessing. Unfortunately,
in most of the cases, spots do not have obvious edge. In [42], automatic particle detection
through efficient Hough transformswas proposed. The method could find various size circles.
Nevertheless, this method also -needed edge detection before the Hough transform can be
applied. In [40] a clustering-based method-for particle detection is proposed. This method
used a clustering-based method based-on the gravitation to classify discrete points into a
particle. It worked quite well for detecting particles from images with very low SNR. Before
running the clustering algorithm, intensity thresholding is required. Since the boundaries for
the spots are not clear, an appropriate threshold value is hard to determine.
2.3 Literature Review of Extraction of Coronary Arterial Tree

Traditional signal-based edge detection algorithms [69-75] were unable to effectively or
accurately detect the desired structures. The existing methods specific to vessel extraction
can be categorized into (i) model-based [76-78] (ii) tracking-based [79-81], (iii)
classifier-based [82], and (iv) filter-based [83-85] techniques. In model-based methods, the
coronary arteria treeis produced based on a pre-defined coronary artery model in the form of

a “graph” structure. In tracking-based methods, the process proceeds with an initia



start-of-search location followed by an automatic tracking process by exploiting the spatial
continuity of the vessel's centerline, orientation, diameter, and density. In classifier-based
methods, a clustering algorithm is employed with properly preprocessed data to differentiate
vessdl or non-vessel regions.  In filter-based methods, the coronary arteries are enhanced and

located so that they can be subsequently detected in the image.

3. OVERVIEW OF THE PROPOSED METHODS
In this dissertation, we first study the grid artifacts formation and elimination. We
proposed an automatic method to compare the lanes in Gel Electrophoresis (GE) images and
propose a computer method for ELISA spot assay analysis. An efficient and robust method for
identification of coronary arteries and evaluation of the severity of the stenosis on the routine
X-ray angiograms are also proposed. The following subsections briefly introduce these

methods.

3.1 Grid Artifacts Elimination in Computed Radiographic I mages

We studied the formation of the artifacts. We show that the grid artifacts correspond to a
narrow band of frequency in the frequency domain. The frequency can be predetermined,
accurately located and thus removed from the frequency domain.
3.2An Automatic Method to ComparetheLanesin Gel Electrophoresis (GE) | mages

We present a computer method designed to compare the lanes and identify identical lanes.
This segmentation method, developed using many image-processing techniques, is applied to
extract the lanes and bands in GE images. The lanes are then converted into “position vectors”
that describe the positions of the bands. This method can accurately identify identical lanes,

helping biologists to identify the identical lanes from many lanes with much less effort.



3.3 A Computer Method for ELISA Spot Assay Analysis

We present a method to identify the spots in the image and report on important statistics
regarding the spots in the image. The proposed method employs color analysis in the CIE
L'u'v color space and matched filter technique. The system is trained to obtain a standard
color for the spots and calculate the color differences between the spots and background in the
L'u'v space. Matched filters are then used to remove noise and enhance the spots in the
color difference map. Intensity thresholding is applied to obtain a binary image in which the
pixelsin the spots have a gray scale of 1 while the gray scale of the other pixelsis depicted as
0.
3.4 Extraction of Coronary Arterial Tree Using Cine X-Ray Angiograms

The proposed method consists of two major stages. (a) signal-based image segmentation
and (b) vessel feature extraction.«The 3D Fourier and 3D Wavelet transforms are first
employed to reduce the background.and noisy.structures in the images. Afterwards, a set of
matched filters was applied to enhance the-coronary arteries in the images. At the end,
clustering analysis, histogram technique, and-size filtering were utilized to obtain a binary
image that consists of the final segmented coronary arteria tree. To extract vessel features
in terms of vessel centerline and diameter, a gradient vector-flow based snake algorithm is
applied to determine the medial axis of a vessel followed by the calculations of vessel

boundaries and width associated with the detected medial axis.

4. DISSERTATION ORGANIZATION
In the remainder of the dissertation, “A Study of Grid Artifacts Formation and
Elimination in Computed Radiographic Images’ is presented in Chapter 2. “An Automatic
Method to Compare the Lanes in Gel Electrophoresis (GE) Images’ is proposed in Chapter 3.

In Chapter 4, we propose “A Computer Method for ELISA Spot Assay Analysis’. “Extraction



of Coronary Arterial Tree Using Cine X-Ray Angiograms’ is proposed in Chapter 5. Finaly,

the conclusions and suggestions for future works appear in Chapter 6.



CHAPTER 2
A Sudy of Grid Artifacts Formation and Elimination in

Computed Radiographic | mages

Computed radiography (CR) has many advantages such as filmless operations, efficiency
and convenience. Furthermore, it is easier to integrate with the picture archiving and
communication systems (PACS). Another important advantage is that CR images generally
have wider dynamic range than conventional screen film. Unfortunately, grid artifacts and
moiré pattern artifacts may be present in CR images. These artifacts become a more serious
problem when displaying CR images on a monitor for softcopy diagnosis if the monitor does
not have high enough resolution. Using a grid with higher frequency or a Potter-Bucky grid
(i.e.,, amoving grid, Bucky for short)' can reduce occurrence but not guarantee elimination of
these artifacts. In this chaper, the formation-of-the artifacts is studied. We show that the grid
artifacts correspond to a narrow band of frequency in the frequency domain. The frequency
can be determined, accurately located and thus removed from the frequency domain. The
Free-Response Receiver Operating Characteristic (FROC) experiment was performed to
evauate the performance of the observers when the artifacts are removal. The results show
that observers can achieve perfect performance regardiess of the presence of artifacts when
full size images are available. However, if a reduced image size is required, the observers
performance is improved when the artifacts are removed. Comparing the results obtained
from the proposed method against the results obtained using previous computer methods. Our

method can achieve better image quality.
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1. INTRODUCTION

The PACS system has become a hospital standard. In a PACS system, the clinica
images are presented in digital form. Digital images are easier to store and transfer from one
place to another. However, they also contain artifacts. In a study by Cesar, et d., [1] the
authors presented a detailed discussion that focused on some artifacts that were caused by
operator error. However, there are other types of artifacts, such as grid artifacts and moiré
patterns, that are not caused by operator error.  These artifacts are inherent problems with the
CR imaging system. A grid is used routinely during X-ray exposure to remove undesired
scattered X-rays. When the CR image plate is exposed with a grid and displayed on a
computer monitor, interference or moiré pattern artifacts appear. The grid artifacts and moiré
patterns are much more pronounced when the images are displayed on a computer monitor
which resolution is lower than the images'.

Previous similar works can-be found in several other grid pattern studies [2, 3, 4, 5]. A
similar problem in designing a-film:scanner-was studied by Wang and Huang [2]. The
objective of the study was to minimize.the aliasing artifacts while converting a film into
digital form. In another study by Barski and Wang [3], a method consisting of grid
frequency detection and adaptive grid suppression was proposed. The grid artifact frequency
was detected in the frequency domain after a 1D Fourier Transform. The artifact
suppression was achieved by designing appropriate blur kernels in the spatial domain. The
artifact frequency in 95.8% of the cases could be correctly detected. However, some images
that did not contain grid artifacts were identified incorrectly as containing artifact frequencies.
Since agrid artifact isa periodical signal, it cannot be effectively removed by applying simple
blur kernels in the spatial domain. Moreover, applying blur kernels to reduce grid artifacts
also blurs the image itself. In a grid artifact study by Belykh and Cornelius [4], the same

method used Barski and Wang [3] was used to detect grid frequency. A notch filter [6] in the
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frequency domain was used to suppress the grid textures. Unfortunately, using a notch filter
causes rippling or ringing effects. Sasada, et a [5], used a method similar to that by Barski
and Wang [3] to locate the artifact frequency. The wavelet approach was than employed to
remove grid artifacts. None of these studies evaluated any observers performance after the
grid artifacts were removed.

In this chapter, the causes of grid artifacts are investigated in detail. We show that the
artifact frequency can be estimated directly from the DICOM tag and grid specifications.
The frequency can be accurately located in the frequency domain. Finally, a band-stop
Gaussian filter is designed to remove the frequency. The FROC test [7] is used to evauate
the observers performance when the grid artifacts are removed. The results show that
observers could achieve perfect performance when full size images were available, regardless
of whether the artifacts were removed. But when the image sizes are reduced, removing the

grid artifacts improves the observers. performance.

2. THEORY

There are two major X-ray scattering effects, Rayleigh scattering and Compton
scattering, that affect the quality of an X-ray image [7]. Scattering is a very complex
phenomenon. A grid is employed to eliminate or reduce scattering. In Fig. 2-1, both the
collimator and the grid serve to limit the scattered photons from striking the imaging plate.
Using the grid improves the sharpness of the CR images.

A variety of X-ray grids are available [8]. Different grids produce different grid
textures in the image plate. These grid textures can be vertical stripes, horizontal stripes, or
a combination of the two, as shown in Fig. 2-2. In this chapter, only the case of vertical stripes

is discussed. The other two cases are similar.
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Xréy Light Source

ZHITAA

Patient (Object) ig Imaging Plate

Fig. 2-1. An X-ray imaging system. The X-ray.passes through the patient and is collimated by

the grid-to eliminate'the scattering effect.

(@ (b) (©

Fig. 2-2. (a) Vertical grid artifacts. (b) Horizonta grid artifacts. (c) Crisscross grid artifacts.

A CR image is recorded by an imaging plate coated with photostimulated storage
phosphors [9-12]. When the coating is exposed to X-rays, the electrons in the phosphor

crystals are excited and trapped in a semi-stable, higher-energy state. To read this energy
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state, a plate reader scans the imaging plate using alaser beam [9]. Thelaser energy releases
the trapped electrons, causing emitted visible light that is captured and converted into pixels
in the digital image. Suppose that there are vertical stripes recorded in the image plate, and

the vertical stripes are sampled by sampling signal g, (u, v) . Interference between the two

signals occurs.

There are two points on the path from the image formation to the display in a raster
device at which artifacts occur. The first point is demonstrated by sampling the image plate
containing grid texture patterns by using a plate reader. We show that the artifacts are either
the grid texture itself or the interference between the grid texture and the plate reader
sampling signal. The second point is demonstrated by outputting an image containing
artifacts to a raster output device. In this situation, the artifacts are sampled by the pixels of
the output device again, so that mare serious artifacts are produced.

Fig. 2-3 shows some important grid parametersrelated to the interference between the
two signals. The grid frequency,. denoted-as fgiq, IS expressed as the number of lines per
centimeter (or per inch). Tgiq IS the distance between consecutive vertical stripes. Thus Tyig
= Ufgia. As the frequency becomes higher, the grids become thinner and there is less grid
texture obtrusion in theimage. Most of the grids have an fyiq between 80 and 152 lines per
inch. Two less important parameters to this work are the space between the lead stripes, d

and the thickness of lead, s. NotethatT ., =s+d .

grid
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Tgria (Mm per line) = 1/fy;, (lines per mm)

Lead Strlpe Alumlnum Interspacer
gnd

1 IIIII‘“
|

\S\ d
Thickness of Lead

Grid Ratio = h/d

Fig. 2-3. Thisfigure shows the cross section of a grid, and some grid specifications related to

this work.

Given a 2D signa hy(x,y) in an:XY-coordinate system, the signal is sampled by a grid
functiong (u, v) in the UV-coordinate system. Consider the case in which h (x,y) consists

of vertical stripes in the XY-coordinates; —Depending on the angle, &, between the XY- and
UV- coordinate systems, there are‘two.cases.. The first case is that the XY-coordinate
coincides with the UV-coordinate, i.e., 6=0. The second case involves a nonzero angle &

between the XY-coordinates and the UV-coordinates (Fig. 2-4).
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Fig. 2-4. There is an angle& between the:sampling signal (UV-coordinate) and the grid

< ofetoordinate).

21Casel, =0

e

If the XY-coordinate coincides with the UV-coordinate, only the sampling signal along a
horizontal lineis considered. Along a horizontal sampling line, the vertical stripe signal isa
square wave, as shown in Fig. 2-5. Let the 1D square wave be denoted hy(x). Recall that

Tyiq isthe period of hy(X), and d and s are, respectively, the space between the lead stripes and

the thickness of lead. We have h, (X+Tg4) =hy(X) and
-d<x<d
hg (X) = {1’ 52 d : d d d s
0, -3-2<X<—3 OF 5<X<3+3
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Fig. 2-5. Along a horizonta scan line, the vertical stripe signal is a square wave.

The periodical square wave can be expanded using the Fourier expansion [13], shown in

the following equation:

2i 7K 2i 7K

hy (X) =@, +_ (ac0s +b sin——), where
i=1 Tgrid grid
1
3 = [£ 0, () dx
grid”_— 2
27 1 2i X
8 =2 L h, (X)Cos——dx. D
grid 112 grid
b =2 [ h,(sin 2A7K iy,
T -1 .
grid grid
The Fourier coefficients obtained by the integration are
Q= 2d
° Tgrid
d
H 2
a =—Lan2®" @
17T Tyig| d
2
b =0 i=1

All of a,,a;,andb are constants. Thus, the Fourier expansion for hy(x) can be rewritten as
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4+ (a cos(2irnf,y,). 3

grid i=1

h, () =<

h,(X) can be separated into a DC (Direct Current) term, a fundamental wave and infinite

harmonics. In Eq. (3), the first term, i is the DC term. The second term is the
grid

fundamental wave, h, (x) = a, cos(27xf ;). Note that the magnitude of h, (x)is a and
the frequency of h,(x) is f, =f,,. All of the following terms are the harmonics,
denoted h, (X),m=2,.,c. The frequency of each harmonic term h, (x) isdenoted as f, .

These harmonics have a higher frequency but alower magnitude than the fundamental wave.

Let the sampling grid function g.(u,v) have a sampling frequency f,on a horizontal
line. According to the Nyquist Sampling, Theorem, if
22fgi' i =1.0,00, (4
then f, can be reconstructed without, aliasing. Otherwise, aliasing occurs. In Fig. 2-6,
fy is plotted as a thin curve. The beld dots arethe samples obtained based on the image

plate sampling frequency, fs.  Since fs does not satisfy the Nyquist Sampling Theorem, low

frequency aliasing occurs (the wave plotted as a bold curve).

Fig. 2-6. A low frequency aliasing occurs (the wave plotted as a bold curve)

Let f,.eq denotethealiasing frequency.  f,.., Can be obtained using Eq. (5) [14],
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fiases, = t fgi , (5
' fg -k, f,

where k; and k; are integers and must be chosen to meet one of the inequalitiesin Eq. (6),

1
(kl _E) fs < fg| < klfs
L ©
k2 fs < fg| < (k2 +E) fs

If the sampling frequency, f., isvery close to fy according to Egs. (4)-(6), fiiaeq 1SQ
low frequency signal that has a much lower frequency than fy - Because human eyes are

sensitive to low frequency signals, the artifacts are easily seen on a monitor. This
phenomenon explains why the grid artifacts occur especially when the images are taken from

high-resolution machines. If f_ meets the Nyquist'Sampling Theorem, then the grid textures

in the image plate can be fully reconstructed.

The above discussion is valid when“there is-grid texture in the image plate. The
presence of a grid texture depends on the Point Spread Function (PSF) [15] of the imaging
system. In asystem with poor PSF, the grid texture is blurred such that the grid artifacts are
not visible. Thus, the image sharpnessis not improved.

When a CR image is acquired using a grid that is perfectly aligned with the image plate
reader, there are the following cases.
1. There are no visible artifacts. This occurs if the PSF response of the system is poor.
However, thisis not the desired approach for removing the grid texture.

2. There are grid texturesin theimage plate.  Let the grid artifacts frequency be f, . There

are two sub-cases,

a. fs satisfies the Nyquist Sampling Theorem, thus the grid artifacts are the grid

texturesin theimage plate. Inthiscase f, isequal to fy -
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b. fs does not satisfy the Nyquist Sampling Theorem. In this case f, is equal to

falia%d, .

2.2Case2, %0, TheMoiréPattern

If there is an angle between the XY-coordinates and the UV-coordinates, there is an
artifact called the moiré effect (Fig. 2-7). Many physicians have learned from experience that
the grid orientation determines the moiré pattern [16]. The following discussions explain this

phenomenon.

The vertica stripesh, (%, y) in the XY-coordinate perpendicular to the X-axis with period
T can be presented as Eq. (7),

hy (Xay) =hy(X+ Ty, Y). (7)
h,(x,y) is sampled using the-sampling ‘signal 'g.(u,v) in the UV-coordinate system.
0.(u,v) isaset of grids formed-by linesperpendicular to the U-axis. These vertical stripes

in the UV-coordinate system have a period Te It can be written as
g, (U+T,,v) = gg(u,v). ()
Let the angle between the XY- and UV- coordinate systems be &, as shown in Fig. 2-7.

Points in the XY-coordinate system and UV-coordinate system can be related using the

et

The phases of any point in both coordinate systems are given as

transformation

X u
= andCU =_, 10
Igrid ) Is ( )

Using Eg. (9), Eg. (10) isrewritten in the form
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and @ = ucos(6) —vsin(6) .
T T,

grid s

¢:

Theloci of the points for a particular phase differenceA¢ is given by

u _cos(@)u-sin(@)v
T T !

s S

&

Ap= (11)

T - . . .
where £ =—=—. The condition for the points to have the same phase in both coordinate
grid

systemsis
A¢g=n, n0{0,£1,%2,..}. (12
Combining Egs. (11) and (12) yields

_ _(1— scos(H))u N aT,

= : — (13)
£sin(o) £sin(@)

Sampling Grid
v
h, (%, y) g.(u,v)
N \ \ /
BN B ®E' ®m B =
)/\@ = = _ = = =
E B\ m o mlE = om
m l)-'\g”d m m m m
T, im
mlgim m BT ETETm
E = = @ E = m
E = = l\\l = =
W = =Thm m m =
E = E mE-. = _ I
E = E = @ m
E m E m_--0 m
7NN -
SRR T - R
m /!,/I' E ! = Ny,
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Fig. 2-7. Moiré pattern caused by two periodical functions.

Eqg. (13) is aline with dlope —(1-&cos(6))/(esin(f)). The set of dashed lines shown in
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Fig. 2-7 is the moiré pattern. Observe that the dope - (1-&cos(8))/(esin(B))

significantly large number for avery small angle 6 . Fig. 2-8 shows that even asmall angle,
6, causes a very large moiré pattern angle.  Furthermore, the frequency of the moiré pattern
can be obtained using Eg. (5). As discussed previoudly, this frequency is much lower than
the frequency of the vertical stripe or the sampling frequency. Thus, the moiré pattern is

perceptually clear.

o 1Lk

Fig. 2-8. A changeinan angle 6 from 0° to 2° will cause the stripe angle in the moiré

(€)

pattern to change from 0° to 24°.

2.3 Displaying an Image Containing Artifactson a Monitor

A typical clinical-grade monitor has a resolution of approximately 2560 by 2048 pixels
[17]. The resolution of CR images could be higher than a monitor's. For example, the
resolution of the image shown in Fig. 2-9 is 3062 by 3730 pixels. It is necessary to reduce the
size of a high-resolution CR image to alow it to fit on a monitor. Suppose there are grid
artifactsin theimage. Sampling the artifacts by the low-resolution monitor pixels, according

to Egs. (5) and (6), produces lower frequency artifacts.

22



3. METHODS

There are two traditional methods used to remove artifacts [18-19]. The first uses a
grid with a high enough frequency to blur the artifacts. The second method uses a Bucky to
blur the grid artifacts.

The grid artifacts can be eliminated by increasing the grid frequency so that the grid
becomes invisible under the sampling frequency of the plate reader. Unfortunately, the grid
frequency cannot be increased indefinitely. Another method for grid artifact removal is by
using a Bucky. A grid that moves quickly during CR image production is called a Bucky.
If the exposure time is long enough and the Bucky speed is high enough, the grid artifacts are
blurred or even removed completely. A detail discussion of the effect of the Bucky can be
found in the Appendix. However, theé movement speed is limited by the mechanical structure.
Therefore, using a Bucky can reduce, but cannoet guarantee the elimination of artifacts.

In this section, a ssmple method. to-remove the artifacts is presented. Recall that the
artifacts are produced at two points on the image producing path:

1. Thefirst point is achieved by sampling the grid texture in the image plate.

2. The second point is ahieved by sampling the image containing grid artifacts by using an
output device.

If the cause in the first point can be removed, then al the artifacts are removed. Artifact

removal consists of three magor steps. (1) estimating the artifact frequency, (2) accurately

locating that frequency, and (3) removing the frequency using a Gaussian band-stop filter in

the frequency domain.

3.1 Estimating the Artifact Frequency

The sampling frequency f, isrecorded in DICOM tag (0018:1164) [20-22]. In DICOM
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standard, this tag is the “Imager Pixel Spacing”, T, that is fi The grid frequency fgiqis

S

available from the grid specification. Thus the fundamental wave and harmonics, h, - and their

frequencies, f,.are obtained using Eq. (3). Let the frequencies of the artifacts be denoted as

f.,i=1. f_,i>1 isestimated using thefollowing rules:

t

1. Sampling frequency fs satisfies the Nyquist Sampling Theorem, i.e, f 2 2f ,i>1.

Since the grid can be totally reconstructed, the estimated aliased frequency f isequal to
f, -

2. Sampling frequency fs does not satisfy the Nyquist Sampling Theorem, i.e,, f, <2f_ .

The estimated aliased frequency f_ isobtained using Egs. (5) and (6).

3.2 Locating the Frequency  f
Let I,(xy), 0sx<M -1 and Osy<N=1,bean1mage containing grid artifacts. Let |,(x)

bearow of I,(x,y). The 1D discrete Fourier transformation pairs for x-axis are

Lr(u):hflr(x)e‘jzm/M,OSUS M -1, and (14)
k=0
I,(x):MZ_:lLr(u)ejz”“/M, 0<x<M -1. (15)
k=0
The spectrum is
L, (u)] = (L, (W) O (u)™, (16)

where“*” means conjugate.
We assume the power of the grid artifact has a Gaussian distribution (Eg. (17)) in the

spectrum:
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~(u-p)?
e 20" (17)

1
G(u)—am

By estimating pando of the Gaussian distribution, we can construct the band-stop
Gaussian filter, B(u). The reason for choosing a Gaussian filter is that the Fourier transform

of a Gaussian function is a Gaussian function. Using a Gaussian filter will not produce ripple

effect. To design an accurate band-stop Gaussian filter, x should be equal to f, . But dueto

the imperfections that sometimes result during the manufacturing of the grid or the grid is not
perfectly aligned, there could be a small deviation. The accurate mean is obtained by

caculating the mean of theinterval from f -(f, /10) to f, +( f, /10) in the spectrum. The

standard deviation, o, isaso computed from the interval when the accurate mean is located.
Theimage in Fig. 2-9 (a) contains grickartifacts:. The 1D Fourier transform in x direction is
shown in Fig. 2-9 (d). Fig. 29 (d) shows the power spectrum after taking a logarithmic

operation. The circle shown in:Fig. 2-9 (d) is the frequency of the grid artifacts.

3.3 Remove the Frequency:

Since the harmonics have a higher frequency but a much lower magnitude than the
fundamental wave, the effect of harmonicsis small and can be ignored. In this study, only the
fundamental wave is removed. It is removed by using Gaussian band-stop filter for each row

in the image as shown in Eq. (18),

1 ) 1 e-(u-ﬂ)2
ON2IT ON2IT ’

The accurate mean and standard deviation are substituted into Eg. (18) to construct the

B(u) = u=1.M. (18)
Gaussian band-stop filter B(u). We multiply L, (u) by B(u) to obtain L (u) shown in
Eqg. (29)..

L/ (u) =L, (u)Bu), u=1..M . (29)
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Taking the 1D inverse Fourier transform (Eq. (15)) of L, (u) , we obtain a grid texture free
row, |/ (X). We apply the process stated above for each row in I,(x,y) to obtain an image,

(X y). I/(xy) isfreeof grid artifacts, as shown in Fig. 2-9 (f).

4. RESULTS
Both clinical and phantom images were used to evaluate the proposed method. Fig. 2-9
(@) shows an image of a mammography quality control phantom (Art No. 6652348, Phantom
No. C104, Fuji, Japan). The image resolution is 3062 by 3730 pixels. A 40 lines/cm grid
was used while acquiring the image. The sampling rate was 8.77193 pixels/mm (0.114

mm/pixel). Thus, f; is 4 linessmm (40 lines’em) and fs is 8.77193 pixelsmm. Since
fs>2f, , the sampling frequency setisfies the Nyquist Sampling Theorem.  Therefore, the

grid textures in the image plate*can be reconstructed and the grid artifact frequency is 4
lines'mm.  Since the sampling frequency-isfs = 8.77193 linessmm, the grid artifact frequency
is estimated to be 0.461 of the sampling frequency; as shown in Fig. 2-9 (d). By applying
the Gaussian Filter, the artifact frequency is removed. Fig. 2-9 (b) shows a selected region
inFig. 2-9 (a) in the original resolution. Fig. 2-9 (¢) shows the image in which the artifact is
eliminated. Fig. 2-9 (e) shows a zoomed out image of the mammography phantom image in
Fig. 2-9 (a). The resolution was scaled down from 3062 by 3730 pixelsto 540 by 658. The
moiré pattern is significant.  Fig. 2-9 (f) shows an image in which the artifact was eliminated
by applying the proposed method.

Fig. 2-10 (@) is a CR chest image with resolution 2048 by 2494 pixels. A 3.3 linesmm

( f,, =85 lineslinches) grid was used while acquiring theimage.  The sampling frequency, fs,
is 5.8 pixelssmm.  This case does not satisfy the Nyquist Sampling Theorem ( f, <2f_ ).

The artifact frequency faiased = kfs — f, = 2.59 (lines’/mm), where k=1. Since the sampling
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frequency isfs = 5.8 lines’mm, the estimated frequency of the artifact appears to be 0.45 of the
sampling frequency (Fig. 2-10 (d)). Fig. 2-10 (b) shows a selected region in Fig. 2-10 (@) in
the original resolution. Fig. 2-10 (c) isan image in which the artifact was removed.

Fig. 2-10 (e) shows the spectrum after the grid artifacts were removed.

In order to compare the proposed method against the previous computer methods for
artifact removal, we used an image containing three characters as shown in Fig. 2-11 (a).
Although these are not clinical images, using geometric shaped characters is the best way to
demonstrate the effect of the applied methods. Fig. 2-11. (a) is the original image containing
grid artifacts. Fig. 2-11. (b) shows the grid artifacts removed using the proposed method. Fig.
2-11 (c) shows the grid artifacts removed using the blur kernel proposed by Barski [3].
When compared to the result obtained by the proposed method, the sharp edgesin Fig. 2-10 ()
are blurred. Grid artifacts in Fig. 2-11 (d) were removed using a notch filter proposed by
Belykh [4]. Although the sharp-edges are preserved,-there are ripples after the artifacts are

removed.
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(b) Selected areafrom (&), showing grid artifacts.

(c) Selected areafrom (@), with grid artifacts removed.

oo ol 02 03 04 05

29




(d) 1D Fourier transform of theimagein (a). Grid artifact frequency indicated by the circle.

!

“*Wwwwwwmwmwﬂww

. . . . 1 - . A . . 1 . . . | I— N— . I
oo o 02 03 04 05

(e) The spectrum after grid artifacts removed.
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(f) 540 x 648 pixels
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(g) 540 x 648 pixes, with grid artifact removed.

Fig. 2-9. () Mammography Quality Control Phantom (Phantom No.C104, Fuji, Japan) image
with grid artifacts. (b) A selected region in (@) is shown in the original resolution. The
artifacts are easily seen. (c) The same region, with grid artifacts eliminated. Note that
many details such as the vertical stripes can be clearly distinguished. (d) The spectrum of a
1D Fourier transform of the image shown in (). The y-axisislogarithmic. The frequency of

the grid artifact is highlighted with a circle. (€) The spectrum after grid artifacts are removed.
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(f) Animage of the Mammaography Quality Control Phantom scaled down 17% to aresolution
of 540 by 658 pixels. It shows a very serious artifact (the moiré pattern). (g) The moiré

pattern was eliminated using the proposed method.

(8) 2048 x 2494 pixels
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(b) Selected area from (), enlargeds It contains fine vertical stripes.

(c) Selected areafrom (@), with grid artifacts removed.
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(d) 1D Fourier transform of theimagein (a). Grid artifact frequency indicated by the circle.
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(e) The spectrum after:grid artifacts are removed.

Fig. 2-10. (a) A patient with left lower:lobe consolidation due to pneumonia. Grid pattern can
be seen on CR chest image (b) The portion that is highlighted in whitein (a). (c) The grid
pattern was removed using the proposed method. (d) The spectrum of a 1D Fourier transform
of theimage shown in (a). The y-axisislogarithmic. The frequency of the grid artifact is

highlighted with acircle. (€) The spectrum after grid artifacts are removed.
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Fig. 2-11 . (a) The original image with grid textures. (b) The grid textures were removed using

the proposed method. (c) The grid textures were removed using the blur kernel proposed by

Barski. (d) The grid pattern was removed using a notch filter proposed by Belykh.
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4.1 FROC Study

A study was designed to evaluate observers performance in the detection of detailed
structures in images before and after grid artifact removal. Physicians were asked to
determine the presence of microcalcification in a portion of the mammography quality control
phantom (C104, Fuji, Japan), shown in Fig. 2-12. The phantom images were taken with a grid,
under three conditions.

1. Images were taken using an Agfa ADC CR system. The image resolution was 3062 by
3730 pixels and the image size was 35 cm by 43 cm.

2. Images were taken using an AgfaADC CR system. The image resol ution was 2048 by
2494 pixels and the image size was 35 cm by 43 cm.

3. Images were taken using a Fuji 5502D CR system. The image resolution was 2000 by
2510 pixels and the image size was 20 cm by 25 cm.

In al three cases, 0-degree, 90-degree and 180-degree rotations of the images were
performed. Thus, nine radiographs were obtained.  The proposed method was then applied to
each radiograph to remove the grid artifacts, resulting in an additional nine images.

Fig. 2-12. The portion of the mammography quality control phantom used to evaluate

observers performance.

Two board-certified radiologists blinded to the distribution and number of
microcalcifications evaluated all eighteen images in random order. Observers were asked to
determine the presence of microcalcifications according to a scale of four levels of confidence:
1, probably absent; 2, indeterminate; 3, probably present; 4, definitely present. Because the
moiré pattern increases if we display the images on a low-resolution monitor, we also
performed another evaluation when the image resolution was reduced to 80% of the original
size. The image size reduction method was implemented by taking the averaged intensities of
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neighboring pixels of a sampled point to form one pixel in the reduced size image. Another
board-certified radiologist, also blinded to the distribution and number of microcalcifications,
evaluated these images again.

The Free-Response Receiver Operating Characteristic (FROC) [7] curves were drawn based
on the results obtained. The FROC curve describes the tradeoff between the
“Microcalcification Localization Fraction” and the “False Positive per Image’. The former
is defined as the probability of a microcalcification to be specified, and the latter is defined as
the mean number of times a noise was classified as a microcalcification. In the FROC
experiment, the observers gave their level of confidence on the presence of
microcalcifications for different candidate’s regions. We then plotted the discrete FROC
curve by setting different thresholds to the confidence levels, i.e., the candidate was
considered to contain microcal cifications only when the confidence level was higher than the
threshold. The resulting curves are as shown in Figs. 2-13 and 2-14. As shown in Fig.
2-13, we conclude that observers could:achieve perfect performance without any false
positives, regardless of the presence of.grid-artifacts, when the full sized images were
available. Fig. 2-14 shows that when only reduced-size images were available, observers
could achieve better performance when the grid lines were removed.

Original Size FROC C Grid
rigina 1Ze urve Grid Removed

1 —o —O
c 9O
S5 00@8 - ----m-m e mmm e
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S2o7fp---—-----"""""
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=3
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Fig. 2-13. The FROC curves for the observers studying the original image size. Observers

could achieve perfect performance regardless of the presence of the grid lines.
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Fig. 2-14. The FROC curves for observers studying reduced-sizeimages. The performance

is better when the grid lines are removed.

5. CONCLUSIONSAND DI SCUSSION

In this chapter, the formation of grid-artifacts in CR images was studied in detail. An
automatic method was then presented to remove the grid artifacts. The method was
implemented on a PC with a Pentium 4 (2 GHz) CPU running the Windows 2000 operating
system. The total execution time for images with different resolutions of 1760 by 2140,
2000 by 2510, and 3520 by 4280 pixelstook 10, 12, and 24 seconds, respectively.

Although the grid artifacts can be removed by using a Bucky or a higher frequency grid,
there are limitations to these two methods. For example, there are cases in which
radiographic images are acquired when a Bucky is not accessible. In addition, as the grid
frequency increases, there is relatively more grid material to absorb radiation. This situation
requires that the patient be exposed to a higher dose of radiation [23]. Using the proposed

method, these problems are overcome, and images that are free of grid artifacts are obtained.
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Compared to the results obtained by the methods of Barski and Wang [3] and Belykh and
Cornelius [4], the proposed method neither produces ripple artifacts nor blurs the image.
The proposed method achieves much better results. An important question is that whether
the proposed method improves the accuracy of diagnosis. Rigorous experiments should be

doneto clarify this point. A problem with the proposed method is the computing time required.

Future studies will investigate methods to reduce the computing time.
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CHAPTER 3

An Automatic M ethod to Comparethe Lanesin Gel Electrophoresis (GE)

I mages

Gel Electrophoresis (GE) is an important tool in genomic analysis. GE results are
presented in images. Each image contains several vertical lanes. Each lane consists of several
horizontal bands. Two lanes are identical if the relative positions of the bands are the same.
We present a computer method designed to compare the lanes and identify identical lanes.
This segmentation method, developed using many image-processing techniques, is applied to
extract the lanes and bands in GE images. The lanes are then converted into “position vectors’
that describe the positions of the bands: This method can accurately identify identical lanes,
helping biologists to identify the identical lanes from many lanes with much less effort.

1. INTRODUCTION

Gel electrophoresis (GE) was. developed.as a means for resolving biological
macromolecules, such as DNA, RNA, and protein molecules [24]. There are several different
types of GE based on their resolution ranges. One major application of GE isto separate DNA
molecules from 0.5 kbp to approximately 10 Mbp. GE is an invaluable tool for gene and
genomic analysis and it is routinely used in many applications, such as gene identification,
isolation, and purification. GE is used in various fields like biology, molecular biology,
biochemistry, biotechnology, medicine and clinical diagnosis.

This technique produces images that consist of several vertical lanes. Each lane contains a
number of horizontal bands. The positions of the horizontal bands represent the molecular
weights of the bands. Two subjects are the same if their lanes have the same pattern. The goal
of this work was to design a computer method that automatically identifies lanes with the

same pattern among many lanes.
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Previous work regarding the study of this problem can be found in [25]. In [25], the lanes
in a GE image were first ssgmented and converted into a chain code representation. The lane
comparison was carried performed by calculating the longest common subsequence (LCS) in
two chain codes. The similarity between the lanes was represented by two times the LCS
length over the total length of the two chain codes. Two lanes are similar if the result is close
to one. This method did not segment the bands in each lane so it could not produce an exact
comparison result. It could only eliminate those very different lanes and reduce the number of
lanes to be compared. Another disadvantage is that it employed a dynamic programming
technique to calculate the LCS for two chain codes. The computation time was thus long.

In this chapter, we present a method that can accurately identify identical lanes. In the
proposed method, the bands and lanes are segmented and then converted into a “position
vector” that indicates the positions of the bands. Two lanes that have the same position vectors
are considered having the same-pattern. In this task, accurate lane and band segmentation is
crucia to the later comparison step.

Lane and band segmentation is difficult due to'the quality of the GE images. There are many
factors, such as the applied voltage, field strength, pulse time, reorientation angle, agarose
type, concentration and buffer chamber temperature. All of these factors affect the image
quality and the patterns in the lanes [26-27]. The images acquired in our system have a
grid-texture in the background that contaminates the imaging system. All of these factors
make the segmentation task difficult.

The segmentation method presented in this chapter consists of several steps. Thefirst stepis
the preprocessing step that removes the grid-texture artifacts. The background is then
removed so that the bands in the images are enhanced. In the next step, the bands and the lane
containing the bands in the image are extracted. The positions of the bands are then

normalized and converted into a position vectors. Lane comparison then becomes a
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comparison of lane position vectors. The proposed method is described in Section 2. The
results are shown in Section 3.
2.METHOD

2.1 Background Removal

There are two tasks in the background removal step. The first is the grid-texture removal. As
mentioned previoudly, the grid-texture is contaminated from the imaging system. Fig. 3-1
shows a typical GE image acquisition system. Because the bands and lanes in gel are not
visible under visible light, the gel box is illuminated using a fluorescent UV light source.
There is a grid located between the gel box and the CCD camera, as shown in Fig. 3-2. The
grid is used to collimate the light to prevent scattering. The grid improves the sharpness of the
GE images by trapping most of the scattered light. Unfortunately the grid also causes

grid-texture artifacts in the GE image, as shownin Fig. 3-3 (a) and (b).
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Fig. 3-1. Theimaging system, there is a grid between the CCD camera and the gel box.
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Fig. 3-2. The grid collimates the light.

The grid-texture has a fixed frequency in the frequency domain so that it can be easily

removed from the frequency domain.:Let £ (x;y), O0<x<M -1 and 0<y< N -1, denote

an M by N GE image. The 1-D discrete Fourier transformation pairs are defined as

M-1
F(uy) =) f(xye'”™™ 0<x<M-10<sy<N-1,and (20)
x=0
M-1 '
f(xy)=D Fuye* 0susM-1,0sysN-1 (21)
u=0

The 1-D Fourier transform (Eq. (20)) to f(x,y) isapplied in directionx to obtain F(u,y) in
the frequency domain. Its power spectrum is shown in Fig. 3-4 (a). In this figure a
double-sided spectrum was used. The left half is the complex conjugate reflection of the right
half. The grid-texture in the spatial domain is transformed into a specific frequency that
causes observabl e peaks on both sides within the red line pairs (Fig. 3-4 (a)). The power of the

peak frequencies is many times that of the other frequencies except for those near the DC



term.
We apply the method propose in Chapter 2 to obtain a grid-texture freeimage, f,(X,y).

Figs 3-4 (a), (b), (c), and (d) show the spectrum and histogram before and after removing
the grid-texture frequency. The resulting image f, (X, y) is clean and free of grid-texture as

shown in Figs 3-3. (c) and (d).
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Fig. 3-3. (a) Original image. (b) Zoom in an area of the original image. (c) After removing the

grid. (d) The same zoom in area with the grid-texture removed.
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(d)

Fig. 3-4. (a) The spectrum of f(x,y). There are two peaks within the two pairs of red lines. The

gray scaleislogarithmic for visualization purposes. (b) Histogram of f(x,y) (c) Spectrum after
eliminating the grid-texture frequency. The gray scaleis also logarithmic. (d) Histogram after

eliminating the grid-texture.

The second task in background:removal is:t0 set the intensities of those pixels not on the
bands to zero. These background pixels-generally have lower intensity than the pixels on the
bands. In Fig. 3-4 (d), the threshold:is set asthe closest gray-level corresponding to the
minimum probability between the maxima of two normal distributions, which results in
minimum error segmentation. An optimal threshold can be solved in [28]. The result after

background removal is shown in Fig. 3-5.
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Fig. 3-5-An image after background removal.

2.2 Lanes and Bands I dentification
Some observable properties of bands and lanes are presented before presenting the
proposed method.
1. The bands close to the top are wider than those close to the bottom of the image.
2. The intensity of the band closest to the bottom is higher than that of the bands closest to the
top.
3. The shape of the band is a concave downward curve.
4. The bands on different lanes may have different shapes.
5. The shapes of the bands on the same lanes are similar.
6. Consecutive bands in alane could be very close in shape.

7. A band could break into several fragments due to noise.
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The method for segmenting bands and lanes was designed based on the properties stated
above. Band and lane segmentation consists of several steps. The first step is to enhance the
bands. The skeleton for each band is then found. Lane segmentation is based on the band
skeletons.

The bands are enhanced using the matched filter technique [29-31]. The intensity
profile along the vertical line (y-direction) passing through a lane is observed in designing a
matched filter (Fig. 3-6). A band profile is bell-shaped and can be approximated using a
Gaussian distribution in the y direction, as shown in Eq. (22),

_y2

D(y)=e?" -ow<y<oo, (22)

Fig. 3-6. Theintensity profile of the scan line for alane

A 1-D matched filter can be designed to detect the bands because the profile follows a

Gaussian distribution.

Because the bands are concave downward curves a 2-D matched filter shown in Eqg. (23) is

needed.

> d d
D(x,y)=e¥" - _ 9 < X< d, . (23)

Two parameters, the width, d,, and the height, d, for the match filter must be determined.
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In determining the width, d,, the bands are not perfectly straight linesand d, should not be

as wide as the length of the bands. The response of a matched filter to aband is small, making

the bands difficult to identify. In our experiment, d,=5 is the best value identifying the bands.

The height, d,, of the matched filter depends on the variance, o?, in Eq. (23). After

ys
analyzing 350 images (more than 3000 lanes), we concluded that ¢ varies depending on the
location of the band. The bands that are closer to the bottom side have a smaller variance. A
traditional matched filter is time-invariant, i.e.,, o isaconstant. In the case of differento, a
time-variant matched filter is needed. Because the bands that are closer to the bottom side
haveasmallero, and o increases as the bands are closer to the top of the image, we set o
asalinear function of y, as shown in Eq. (24),

g=1+c*ty IN, (24)
where y is the distance between the band and the bottom side of the lane. For a small o, the

Gaussian quickly drops to zero; so d, “is'small. Conversely, for a large o the Gaussian
slowly becomes zero, so d, is large.We used the method in [32] to determine d, from a

given variance. The height is between —(40+3)/2<y<(40+3)/2. Based on the above

discussions, the matched filter is shown in Eq. (25),

o d d, d d

D(x,y)=e?" -ZT<y<- L —X<x<X,

) 2 y 2 2 2
o=1+c*y, /N, (25)

where d,=(40+3)/2,and d,=5.

Images convolved with the matched filter have enhanced bands. The result after applying
the matched filtersis shown in Fig. 3-7.
A 2-D convolution operation needs large computing time. The performance can be improved

using the convolution theory. The convolution is an associative operation. Thus, the filter
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kernel h can be divided into two 1-D kernels
h=h*h,. (26)
It can be shown that
F(f*(h*hy))=F(f)IF(h*h)=F(f)IF(h)F(h)=F((f*h)*h,), (27)

where F denotes the Fourier transform, and ‘*’ denotes the convolution.

In other words, instead of applying the entire kernel h, we apply two 1-D kernelsh, andh, . If

the size of the filter kernel his K, by Ky, and the number of pixelsin animageis M by N, the

2-D kernel application h needs K K /MN multiplications. When applying two 1-D kernels
h.andh, separately requires (K, +K MN multiplications. Thus the computational load

can be enormously reduced by splitting a 2-D convolution kernel to two 1-D kernels.
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Fig. 3-7. The result from applying the matched filters.
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In the images obtained by applying the matched filter the bands close to the top are lighter
than the bands close to the bottom. To compensate for this variation, a factor of 5 was used to

equalize the pixel intensity. The equalization function is shown in Eq. (28):

f(xy)= f(x,y)[—ll%[i’oﬂ, Oxy=0..N-1, (29)

The method for extracting the bands in the images after the matched filter application is
explained in the following step. Given avertical line passing through a lane, the profile along
that vertical line is shown in Fig. 3-8. The center of a band corresponds to a peak on the
profile, i.e., the center of aband can be found by determining the local maxima (peaks) on the
profile. The intensity threshold is not applicable because the peaks do not have the same
height. The watershed algorithm [33-34] was used to segment the peaks.

This method is explained using an example. Considering the case shown in Fig. 3-9, there are
two objects separated by a peak.: To determine the peak that separates the two objects, the
image threshold is initially acquired using-alow gray level to segment the two objects. The
threshold is then gradually increased, like filling‘water into a container, one gray level at a
time. The regions in the object expand as the threshold increases. Because two objects are not
allowed to merge, a peak is determined when two objects touch and the final boundaries
between adjacent objects are obtained. The process terminates when the threshold reaches the
largest gray-level.

The watershed al gorithm was used to find the centers of the bandsin alane. After applying Eq.
(29), the 1-D watershed algorithm is applied to all of the vertical scan linesin theimage. A set
of connected peaks is then obtained. Among all of these connected components, most are at
the center of the bands while some are just noise. A size filter with a proper threshold is then
applied to remove the smaller connected components that are generally noise. The resulting

image is a binary image, as shown in Fig. 3-10. Fig. 3-10 shows “broken bands’ highlighted
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in the red circles. These broken bands will be recovered when the lanes are converted into

position vectors.

Fig. 3-8. Theintensity profile of alane scan line after filter matching

-— Object 1 Object 2

Fig. 3-9. The watershed algorithm.



Fig. 3-10. Result from applying the 1-D watershed segmentation algorithm to Fig. 3-7. The

break-points are highlighted in the red circles.

In the following the lanes are extracted from the previous obtained segmented bands. To

segment the lanes, three parameters are set, TH,,, TH, ,and TH TH o isthe smallest

Lane *

possible number of bands in a lane. This parameter is set to remove empty lanes from the

image. TH,, is aparameter that represents the largest possible number of bands in a lane.

The parameter TH defines the smallest lane width.

Lane
Fig.3-10 is projected into the x-axis first to obtain Fig.3-11 (a). The high-rising portion
along the curve of the projection corresponds to alane. To segment the lanes, we start with the

threshold TH /. This threshold corresponds to a horizontal liney=TH,, that cuts the curve

into several connected components formed by the high-rising parts. A connected component is
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considered a lane if the width of the connected component is greater thanTH The

Lane *
number of lanes obtained is then counted using this given threshold. The threshold is
increased and the steps iterated until the threshold reachesTH,, . The number of lanes

obtained is counted each time. The threshold that maximizes the number of lanes is the best
threshold.

To determine the top and bottom lane boundaries, the points in Fig. 3-10 are projected
horizontally to obtain Fig. 3-11 (b). A threshold is set in which the left most and right most
peaks satisfy the thresholds on the top and bottom sides. The lane segmentation result is

shown in Fig.3-12.

(b)

Fig. 3-11. (a) Vertical projection of the pointsin Fig. 3-10. (b) Horizontal projection of the

pointsin Fig. 3-10.

56



2.3 Calculate the Lane Position Vectdrs

On each segmented lane the bands are converted into horizontal line segments. The
location vector that describes the location of the bands in this lane is then established. Since
there are broken bands, the “break-points’ on the band are determined first. The bands are
then recovered by connecting the break points. A recovered band should be similar to its
original shape. Since we know that the shapes of the bands in alane are similar, the “average
shape” of the bands in alane can be calculated. A weighted directed graph can then be created
from the average shape. Recovering the bands becomes a problem of finding the shortest path
in the graph.
To determine the break points, all of the pixels on the lanes are scanned using eight 3 by 3

masks, as shown in Fig. 3-13. If the region covered by the mask is identica to one of the
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masks, we say that the pixel in the center is an end point.

Fig. 3-13. The end point detection masks.
Since the bands in a lane have similar shapes, a mask containing binary values is used to
present the “average shape’ of the bandssin-a-dane: The method for calculating the average
shapeis stated in the following.

Suppose that there are n vertical lines passingthrough alane. |.,i =1,...,n, areused to denote

these n vertical lines from left toright. Let™ S be the set of intersection points of |, and the

skeletons of the bands. Consider a pair of neighboring points, p and g, in a band, p in
Sand gin S,,. Since the skeleton is 1 point wide, ﬁ points to one of the following
directions, northeast, east, and southeast. The “average direction” from the pointsin S to
thepointsin S,, isdetermined using the majority of the directions from the pointsin S to

the pointsin S,,. The skeleton of the average shape is the sequence of points determined

by the sequence of major directions. A skeleton of the average shape of the bandsin alaneis
shownin Fig. 3-14. (8). The dilation operation was applied to the skeleton in Fig. 3-14 (a) to
obtain the average shape shown in Fig. 3-14 (b). The average shape serves as a template mask

for scanning the pixelsin the lane. If an even number of break pointsis covered by the mask,
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the dynamic programming technique is used to determine the best path to connect the two

break points.

(b)
Fig. 3-14. (a) Skeleton of aband. (b) Dilation of (a).

Suppose that s and t are the break-points in S ‘and in S, to be connected, i<j. Let V,,

k=i+1,...,j-1, be the set of points on |, covered by the template mask. A weighted directed

graph G= (V,E) is then constructed. \.is the set of vertices corresponding to the points in the
sets V., k=i+1,...,j-1. E isthe set of edgesthat is the union of the following three sets of

edges,

{<svvOV.},
{<vt>vOV_},and (29)

(Vg Vioaa > <Vipa Vipna > <Vipam Vipng 1 Vixy iStheyth vertexdnV, andp =i +1....,j -3

There are weights on the vertices. The weight of a vertex is the inverse of the intensity of its
corresponding pixel in the image after the matched filter enhancement (Fig. 3-7). Given the
weighted directed graph G, we can find the shortest path from sto t [35]. Connecting sand t
using the shortest path recoversthe broken band. Theresult is shownin Fig. 3-15.

Each band is finally converted into a horizontal line segment that passes through the middie

point of a recovered band. The result is shown in Figs. 3-16 and 3-17. The position of the
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horizontal line segment is regarded as the position of the band. The position vector of alane

is also obtained.

Fig. 3-15. Broken band result from recovering and removing the areas that are not in the

lanes.
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Fig. 3-17. The result is shown superimposed on the original image.
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2.4 Position Vectors Nor malization

Since there are many factors that affect the relative position between bands and the
height of the lane, the position vectors of two identical lanes in different images can be very
different. Before lanes can be compared, the position vectors of the lanes must be normalized.
There are two parameters that need to be estimated for position vectors normalization, the
“offset”, 0, and the “scaling factor”, s. The offset and scaling factors for the jth lane in the

ithimagearedenoted o, and s .

Since the “Marker” and the “Vector” are common in al images, either the Marker or the
Vector can be used to calibrate s and 0. In general, the Marker isidentical in al imagesand is
the first lane in each image. Furthermore, the Marker generally serves as a reference to justify
the variations between two images. The Marker was used to normalize the position vectors

between images in this work. The calculated--0; ‘ahd s are then used to normalize the other

lanesin theimagei. The last lanein an tmage is called the Vector. All of the lanes contain
the subjects in the Vector except the Marker. The Vector subjects were used to normalize the
lanes within a GE image in this work.

Since the subjects and their Marker molecular weights are known, the position vector of the
Marker can be easily obtained. The position vector of the Marker was normalized in the
ranged of 0 to 999 so that the bottom and top side are set at 0 and 999, respectively. We used

\Y to denote the normalized Marker.

Marker
For aposition vector v , the operations + and * are defined as  follows.

1. Letobeaconstant, v +o=<b, +0,b, +0,...,b, +0>.

2. Letsbeaconstant, v *s=<b *sb,*s,...,b, *s>.

Let the ith Vector be denotedv; and the jth band in the ith lane be denoted b . Given two

Vectors v, andv,, two bands b, and b, are matched if |d | is less than a given

*.2))
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threshold where d,, ,, isthe distance between b, and b, . A best matchfor v, andv,is

obtained using an offset o, such that the number of the matched bands of v, andv,+o is

maximized and the sum of the differences d, ,,is minimized. If scaling is alowed, the

best match for v, andv, is determined as o and s such that the number of matched bands
for v, andv,*s+o are maximized and the sum of the differences is minimized. To determine

the best possible combination of s and o, a brute force approach was used that evaluates all
possible combinations of sand o. sisareal number ranging between 1000/N and 3000/N (N is
the number of pixels in the y-direction). The interval is ‘0.01'. o is a set of real numbers
between -500 and 500. The interval is 1. Recall that, bands close to the top have a larger
variance than bands close to the bottom. The tolerance for a match varies according to the

position of the bands. The following error tolerance function was used to define the threshold,

th=th, +W *12'—50. (30)

The error tolerance varies from top to bottom and ranges from thy to thy+W. We used 14
and 15 for thy and W respectively in our experiment.

Given anormalized V., andv; the first lane (the Marker) in ith image, finding the best

match between v andv; determines the scaling factors and the offset o . These

Marker
factors are applied to normalize al other position vectors in this image. Since there are
small variations between the lanes in the same image, the Vector (the last lane) was used to
fine-tune the lane normalization in the same image. The normalization procedure is the same
as the one mentioned previously except that the ranges for s and o are smaller. The
normalized position vectors are ready for lane comparison. Two lanes are identical if and only

if all of the bandsin one lane have a corresponding match in another lane.
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3. RESULTS

Four sets of test data were used in our experiment. Each set of data contained 47, 47,

131 and 140 images. Each image consisted of about 8 or 9 lanes and there were about 15
bands on each lane including the Vector. These images are the PAGE images used to resolve
fragments with sizes less than 20 kb. The subjects are cDNA fragments of fungal genes from
an experiment using differential display as the screening method.
The band and lane segmentation results were shown in the previous section. In this section,
the vector removal results are presented first. The lane and band segmentation result using a
PFGE with E. coli genomic sample image is also presented. The lane comparison result is
presented |ast.

The Vector shown in the last lane is common to all other lanes. Removing the Vectors
from al of the lanes produces a new fane that contains only the subjects of interest. The
threshold defined in Eq. (30) isused to identify the bands in a lane belonging to the Vector.
Three Vector removal results are shown in-Fig.-3-18. After the Vector is removed only a very

few bands are |eft. The resulting image makes the comparison job easier.
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Fig. 3-18. Three vector remo:\iéﬂh r&d}ltsshgm using a green bar superimposed onto the
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"7 eriginal-image.
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The proposed method was also applied to a PFGE image. This kind of image has a
different appearance. The image was obtained from an E.coli genomic study experiment.
The set of images is shown in Figs. 3-19 (a) to (f). Fig. 3-19 (&) shows the original image. In
(b), the image was obtained by applying a time-variant matched filter. The watershed
algorithm was applied to image (b) to obtain (c). The final segmented bands and lanes are
shown in (d). Fig. 3-19 (e) shows the result from superimposing the segmented results onto

the original image.
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- SR

¥ 3
from applying the 1-D watershed ség@%@gglélﬁorithm to (b). (d) Fina Segmented Bands

and Lanes. (e) The result is shown superimposed onto the original image.
The main goal of thiswork was to identify identical lanes. After comparing al pairs, our

method generates a report, shown in Fig. 3-20. In this report, the identical pairs are listed

and the number of differences between the lanesis also shown.
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less than O differenc(es) :
1-5,2-3,3-6,
2-8,3-8,

less than 1 differenc(es) :

1-2 @ 3-3-1,

1-4 @ 3-3=1,3-4=1,

1-5 @ 2-3=0,3-6=0,

1-6 @ 3-5-1,

2-3 @ 1-5=0,3-6=0,

2-4 @ 2-8=1,3-2=1,3-3=1,3-4=1,3-8=1,
2-6 @ 3-2=1,3-8=1,

2-7 @ 2-8=1,3-8=1,

2-8 @ 2-4=1,2-7=1,3-5=1,3-8=0,

3-2 @ 2-4=1,2-6=1,
3-3@1-2=1,1-4=1,2-4=1,3-5=1,

34 @ 1-4=1,2-4=1,

3-5 @ 1-6=1,2-8=1,3-3=1,3-8=1,

3-6 @ 1-5=0,2-3=0,

3-8 @ 2-4=1,2-6=132:7=41,2-8=0,3-5=1,

Fig.3-20. A report generated by the proposed method

In Fig. 3-20, “i-j” means the'jth lane in image i. The report shows that “1-5”, “2-3",
and “3-6" are exactly the same and “2-8" and “3-8" areasoidentical. “1-2@ 3-3=1" means
that there is one different band between “1-2" and “3-3". “1-4@3-3=1,3-4=1" means that
there is one different band between the pairs “1-4” and “3-3”, “1-4” and “3-4".

A software tool based on the proposed method was developed. This system also provides
a way to graphically display the differences. One can use a mouse to select a lane. The
software system will show the differences between the other lanes and the selected lane in the
images. The matched bands are shown with green bars. The bands that do not match are
shown with a violet X over the bands. If there are bands on the selected lane that do not
appear in the other lanes, these bands are shown by ablue bar. InFig. 3-21lane5inimage 1
isselected. Lane 5 in theimage 1 is highlighted with a bold yellow rectangle. We can see that

“1-5",%2-3", and “3-6" are exactly the same.
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A screen shot of the developed software system is shown in Fig. 3-22. We verified the
results using human comparisons. The correctness was above 97%. This method was
implemented on a PC with a Pentium 111 (800 MHz) CPU running on the Windows 2000
operating system. The overall execution time for a 640x480 image took less than 8 seconds.
If there are 140 images (about 1200 lanes), the total computing time is less than 19 minutes.
The time needed for comparing the position vectors can be ignored and a report can be
generated in seconds. This system will help biologists save great effort in comparing PFGE

images.
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Fig. 3-21. The software system shows the differences between the selected lane and the other
lanes in the images. (a) Using the mouse to select lane 5. (b) Lane 3isidentical tolane5in (a).

(c) Lane6isasoidentica tolane5in (a)
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Fig. 3-22. A screen shot from the devel oped software system.
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CHAPTER 4

A Computer Method for EL1SA Spot Assay Analysis

The ELISA (Enzyme-Linked Immuno-sorbent Assay) Spot Assay is a method widely
used by immunologists to enumerate cytokine-producing cells within a specific cell
population. The ELISA results are presented in an image containing numerous colored spots.
We present a method to identify the spots in the image and report on important statistics
regarding the spots in the image. The proposed method employs color analysis in the CIE
L'u'v color space and matched filter technique. The system is trained to obtain a standard
color for the spots and calculate the color differences between the spots and background in the
L'u'v space. Matched filters are then uised to.remove noise and enhance the spots in the
color differece map. Intensity thresholding.is applied to obtain a binary image in which the
pixelsin the spots have agray scale of 1 while the gray scale of the other pixelsis depicted as
0. A software system is implemented based on this method to help immunologists analyze

the results obtained from the ELISA Spot Assay.

1. INTRODUCTION

The ELISA Spot Assay is designed to detect cells that produce cytokines [36]-[38].
Cytokines are proteins readily secreted by immune cells upon stimulation by the antigens they
recognize or by mitogens. The experimental steps are described as follows. Test wells are
coated with anti-cytokine antibody (capturing antibody) before the cells are added. A certain
number of cells and antigen are added to the pre-coated wells. During incubation the cells
are stimulated to secrete cytokine. The precoated antibody captures the secreted cytokine.
After washing, a biotinylated secondary anti-cytokine antibody (detecting antibody that

recognizes different epitopes on the cytokine from the capturing antibody) and enzyme-avidin
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complex are added in sequence. A color reaction (red in this case) specific to
cytokine-secreting cells occurs as a result of this enzymatic reaction. Each red spot
represents one cytokine-secreting cell.

To analyze ELISA Spot Assay results, immunologists must know the numbers of spots,
the distribution and size of the spots, and the mean and standard deviation of the spot sizes.
Because these spots can number in the hundreds in each 70 mm diameter well, counting the
spotsis labor intensive work even when one uses a dissecting microscope.  To overcome this
problem, a computer method, that hel ps immunologists cal culate the important spot statistical
values, is needed.

Previous related woks can be found in [39-40]. In [39], an automatic method for particle
detection from electron micrographs was proposed. Distance transform and the Voronoi
diagram were used for detection of eritical featuresaswell as for accurate location of particles
from the images or micrographs. The method-could only find fixed size disks. In our case,
size of spots is not fixed. In [41], antautomatic-circular decomposition algorithm applied to
blood cells image was proposed: The method used polygonal approximation, curve
segmentation, circle modeling, circle adapting, and circle merging to find various sizes of
circles. The method needed edge detection as the first step for preprocessing. Unfortunately,
in most of the cases, spots do not have obvious edge. In [42], automatic particle detection
through efficient Hough transforms was proposed. The method could find various size circles.
But this method also needed edge detection before the Hough transform can be applied. In [40]
a clustering-based method for particle detection is proposed. This method used a
clustering-based method based on the gravitation to classify discrete points into a particle. It
worked quite well for detecting particles from images with very low SNR. Before running the
clustering algorithm, intensity thresholding is required. Since the boundaries for the spots are

not clear, an appropriate threshold value is hard to determine.
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In this chapter, we present a method for ELISA spot assay anaysis. The proposed
method employs techniques that include illumination variation elimination, color analysis in
the CIE L'u'v' color space, and matched filter to enhance the spots in the image. After the
preprocessing steps, intensity thresholding can effectly segment the spots in the image.

In this chapter, the proposed method is presented in Section 2. In Section 3, we briefly
describe the software developed for this method. The results are shown in Section 4 and the
conclusions arein Section 5.

2.METHOD

The most fundamental task involves segmenting the red spots in the well. The
proposed segmentation method was designed based on color analysis and the matched filter
technique. Thereare5 stepsin the proposed method. Thefirst step isimage preprocessing.
Because a light source cannot be placed on the tap.of the well, the illumination is not evenly
distributed over the well surface. The preprocessing-step eliminates illumination variations.
The second step involves color space.conversion. | The objective is to determine a uniform
color space to linearize the perceptibility.of color differences. The third step has two stages.
The training stage involves training the system to recognize the color of the spots. In the
recognition stage, a color difference map of the image is calculated according to the standard
spot color. The fourth step applies a matched filter to identify the spots and remove the
undesired noise in the color difference map. Intensity thresholding is then applied to obtain
a binary image in which the pixels in the spots are depicted as 1 while the other pixels are
depicted as 0. The pseudo code steps of our proposed method are shown in Fig. 4-1.

Find Spots(lmage 1) //Determ ne the spots in |Inage |;
{
Elimnate illum nation variation;

Col or space conversion;
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If (I is obtained fromnew experinent)

Train the systemto establish a standard col or;
Comput e the col or difference map;

Enhance the spots using a nmatched filter;

Identify the spots in inmage |;

Fig. 4-1. The pseudo code for the proposed method

2.1 Variable [llumination Removal
Variable illumination causes problems when the intensity threshold is applied. It is
necessary to remove these illumination variations. Let f(xy), 0sx<M -1 and

0<y<N-1,denote an M by N spot image. f(x,y) is the product of the reflectance r(x,y)

and the illumination i(x,y) [43] asshown in Eq: (31),
fFxy)=iy)r(xy) . (31)

Suppose that the illumination is notievenly distributed over an image. The variation in
illumination over the image consists of alow frequency component in the frequency domain.
Elimination of illumination variation is carried out using the following steps. We first use a
logarithmic operation on both sides of Eq. (31) to obtain Eq. (32). Note that, the right hand

side of Eq. (31) istransformed from multiplication to addition.
Inf(xy)=Ini(x,y)+Inr(xvy). (32
Wethentransfer In f(x,y) into thefrequency domain,

M-1N-1 Xxm yn]

NEmn =YY Inf(xy)e W~ (33)

x=0 y=0
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In the frequency domain, a high-pass filter is employed to suppress the low frequency
components. We then add a compensation operation back into the image to compensate for
the suppressed signa.  The high-pass filter, shown in Eq. (34), suppresses the low
frequencies and enhances the high frequencies so that the variation in the illumination can be

reduced while the edges are sharpened.

H(w,,w,) = ! +A. (39

1+ e—s( w2 +w -awy)

Theresponse of H(w,,w,)and its cross-section are shown in Fig. 4-2.

H(w,,0,) H(r)
My
w, r
r
@ (b)

Fig. 4-2 (@) The high-pass filter spectrum. (b) A cross-section of the high-passfilter asa
function of the polar angle and frequency.  Inthesefigures r = \[w, +w, , 1, =1/(1+e™),
andr, =1+ A.

Because the spot edges contain high frequency information and the illumination

variations usualy contain very low frequency information, if the cutoff frequency

of H(w,,w,) is not too high, we can preserve the edge information and remove the
illumination variation. We used 0.1 f; as the cutoff frequency where fs is the sampling

frequency. In Eq. (35), w, is the cutoff frequency and A is the compensation.
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Compensation is required because the high-pass filter removed the low frequencies including
theDCterm. Aisautomatically estimated by

1

A=1-——o-.

(35)

Applying the high passfilter (Eq. (34)) to InF(m,n) is presented in Eq (36)
InF (m,n) =H(mM,n)InF(m,n), (36)
where F (m,n) denotes the filtered image in frequency domain.

Theinverse Fourier transform is then applied, as shown in Eq. (37).

M-1N- . Xm yn
27 [—+=—
H[M N]

Inf, (X, y) 320>nF (mn)e

=0 y=

LN

(37)

x

Using an exponential operation restores the filtered signal.

2.2 Color Space Conversion

The spots are extracted based on the differences between the colors of the spots and the
background. A proper color space must be chosen before we can calculate the difference
between colors. Over 40 color difference formulas were used before the CIE (Commission
Internationale de I’ Eclairage) recommended two standard color difference formulas, i.e., the
CIE L'a’b and the CIE L'u’v for surface and lighting industries [44]. These two color
difference formulas provide uniform color space. WechosetheL'u'v' space[45]. Because
video cameras use RGB representation for colors, we converted the color representation from
the RGB spaceintothe L'u'v space[45].  Before the coordinatesinthe L'u'v space can be
obtained, the representation from the RGB space must be converted into the XYZ space using

Eq. (38).
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X7 [0.412453 0.357580 0.180423 TR
Y |=|0.412453 0.357580 0.180423 | G |. (38)
Z | |0.019334 0.119193 0.950227 | B

TheL'u'v isbased directly onthe CIE XYZ. Thenon-linear relationsfor L™, u’, v, X, Y, and

Z are given below:

116()** ~16 if - >0.008856
* Yn le
L = : (39
v Y

u =130 (u —-u,)

V' =130 (V -V,) (“0)

In Eq. (40), (Xn, Yn, Zy) is the reference whitein CIE XYZ. u’, v, u_,and v, aregivenin

the following equations,

Je 4X
(X +15Y +32)
oY ’
(X+15Y +32)

(41)

. 4%,
"7 (X, +15Y, +32,)
QY

n

V' =
"7 (X, +15Y, +3Z,)

The daylight standard Dgs [44] was used as the reference illuminant.  The non-linear
relationship for Y is intended to mimic the logarithmic response of the eyes. The converted

imagein color space L u'v isdenoted f (X, y) .y -

2.3 Train the System and Obtain an I mage of the Color Differences
To train the system to recognize a standard spot color, a user interface method is used to

select an area A(xy) in the spot. Suppose there are N pixels in A(x)y), the standard color

80



(41, , 1) isobtained using the equations shown in Eq. (42).

1= AXY) )N
My = QL AXY))IN (42)
M = QL AXY), )N

The difference between the two measured colors in the CIE color difference formulais given
by

AE, = ((AL)* +(Au’)? +(Av')*)*°. (43)
Given an image f(X,Y)... and a standard color (4., ., 4 ), we can use Eq. (43), to
obtain a color difference map, Af(x,y). Af(x,y) is a gray scale image in which the

differences betweenthe f(x,y)... and(u, 4,4 ) aeshown.

2.4 Matched Filter for Spots Segmentation
We used the matched filters [46]-[49] “t‘o enhance the spots in the color difference
mapAf (x,y). Asshownin Fig. 4-3, theshapeofaspotin Af (x,y) isroughly acircle and

its gray-level profile of the cross section follows the Gaussian distribution.

(a)

250
200
150
100

50

(b)
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Fig. 4-3 (a) A portion of the color difference map. The white line denotes a cross section. (b)
The gray-level profiles of the cross sectionin (a). The x-coordinate denotes the pixels along

the cross section. The y-coordinate denotes the gray-level. .

Indeed, the intensity profile of a spot nearly follows a 2-D Gaussian intensity distribution
[53] asshownin Eq. (44)
g,(xy)=e ) =" (44)
In EQ. (44), r isthe radia distance measured from the center of aspot. If we define R as the
radius at which the intensity drops to a half of its maximum value, we can rewrite the spot
profile function as
0,(x, ) ST = =), (45)
Eqg. (45) can be smplified to obtain Eg. (46):
gy(xy)y =20 (46)
To obtain a zero mean filter, g,(X,Y) rissubtracted by m, the mean of the filter, as shown in
Eq. (47),
g(x,¥) =g, (x y) ~m=2""0" —m, (47)
Because the radii of different spots vary, we employed a set of different sized matched
filters. Theradii of the spots range between 4 and 16 pixels. We therefore used pixel sizes
4, 8, 12 and 16 astheradii to design the kernels of the matched filers.  Fig. 4-4 shows two of
the four matched filter kernels.  After applying the matched filters to Af (x, y) , most of noise

can be removed and the spots are enhanced.
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(b)

Fig. 4-4. 2-D matched filters used in our proposed method. The radius sizeis (a) 4, and (b) 8.

2.5 Computethe Binary Image

We set athreshold value for the resulting images.  The threshold is determined either by
the minimum error thresholding method [50] or by user intervening to decide a good
threshold value. A binary image, in which the gray level for the pixels in the spots is
depicted as 1 and the other pixels are depicted as 0, is obtained. The important statistical
values are then derived from this binary image.

Before calculating the statistical values, we first compute the well regions. There are
two reasons for computing the well regions. The first is that the area outside of the well is
unwanted. Secondly, because we know that the well size is 7 mm, the pixel size can be
derived from the segmented well region. Thus we are able to know the true sizes of the

spots.  We first convert the original image shown in Fig. 4-5 (@) into a gray-scale image and
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apply the Sobdl filter [52] to the gray-scale image. An edge map is obtained (Fig. 4-5 (b)).
Applying the randomized algorithm for circle detection [51] on the edge map computes the
well shown in Fig. 4-5 (c). The area outside the circle is removed to obtain the region inside
thewell, shownin Fig. 4-5 (d).

Finally, we segment the spots. Only the pixels in the well are considered. We
compute the connected components formed by the pixels having value 1 after thresholding in
the well. Each connected component is a spot. The size of a connected component is the

sizeof thespot. The statistical values are then cal cul ated.

3.ASOFTWARE TOOL

Based on the method stated above we implemented a software system that provides a
friendly user interface for ELISA spot image.analysis. A user can easily set experimental
parameters such as the well diameter. and-the-spot template. If the image intensity is too
bright or too dark, the system provides windew. sliders to adjust the intensity and contrast.
Because the colors of the spots vary between assays, the system provides a user interface
method to establish the users’ own customized parameters.  Size-gated analysis (size filtering)
enables a user to selectively count only the large spots. Other statistical analysis such as
calculating the standard deviation and the mean are also provided. Fig. 4-6 shows a screenshot

of our software system.

4. RESULTS

Several images were tested and the results obtained using the proposed method is

presented in this section.  The input images were color images in BMP format of size 1600



by 1200 pixels, shown in the first row in Fig. 4-7.  The images in second row of Fig. 4-7
show the color difference maps. The results after applying the matched filtering are shown
in the third row in Fig. 4-7. The binary images after intensity thresholding are shown in the
fourth row in Fig. 4-7. The boundary points of the spots and the initial image are shown
simultaneoudly in the fifth row in Fig. 4-7. The well diameters in Fig. 4-7 (a), (b), and (c)
are 7.0 mm. The numbers of spots and other statistical values such as the mean, standard

deviation, and coefficient of variance are shown in Table 4-1.

Table 4-1. The important statistical values.
WEell Diameter ~ Number of

Mean (#m?®)  SD (tm?) cv
(mm) Spots
Fig. 4-7 (a) 7.0 62 0.1023 0.1262 1.2339
Fig. 4-7 (b) 7.0 70 0.1970 0.2120 1.0762
Fig. 4-7 (c) 7.0 66 0.1989 0.2624 1.3188

We evaluated the accuracy of the proposed computer method by comparing the number
of spots identified by humans and the computer. Table 4-2 shows the results. A human could
find more spots because humans can discern overlapping spots. The error rate was defined as
the difference between the number of spots found over the spots identified by ahuman.  The
error rates were less than 3% in our experiment.

Table 4-2. Comparison of our inspection method and human.

# of Spots # of Spots % of

by Our Method by Human Error
Fig. 4-7 (3) 62 63 1.5 %
Fig. 4-7 (b) 70 71 1.4 %
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Fig. 4-7 () 66 68 2.9%

The proposed methods were implemented on a PC with a Pentium 4(2.2 GHz) CPU

running on Windows XP operating system. The overal execution time for a 1600x1200

pixelsimage took 5 seconds.

5. CONCLUSIONS

We presented a computer method for ELISA spot analysis in this chapter. The proposed
method employs techniques such as color analysis and matched filtering to enhance the spots
in the image. After preprocessing, intensity thresholding can effectively segment the spots.
The experimental results showed that the error rate of the proposed method was |ess than 3%.
This method can help immunologists to reduce time in analyzing the ELISA spot assay.
Since the errors occur when there are overlapping spots, in order to improve the accuracy, to

develop an intelligent method to separate the overl apping spotsis our future work.

@ (b)
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(© (d)

Fig. 4-5. (a) The original image. (b) Image after applying the Sobel filter. (c) After circle

detection. (d) Remove the region outside the circle.
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e e
Hisiizii Mean = 0.1023 (um2)
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CV =12330
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Clear Outside | Well Diameter=T.0 mnL

Fig. 4-6. A screenshot of the software system.
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@ (b) (©)

Fig. 4-7. First row, the three tested images from the proposed method. Second row, the color
difference maps. In these images, the pixles with less difference are shown in the brighter
intensity. Third row, the results after applying the matched filters. The 4™ row, the final results.

The last row, the origina images overlying the results obtained in the images shown in 4"
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CHAPTER5
Extraction of Coronary Arterial Tree Using Cine X-Ray

Angiograms

An efficient and robust method for identification of coronary arteries and evaluation of
the severity of the stenosis on the routine X-ray angiograms is proposed. It is a challenging
process to accurately identify coronary artery due to poor signal-to-noise ratio, vessel overlap,
and superimposition with various anatomical structures such as ribs, spine, or heart chambers.
The proposed method consists of two major stages: (a) signal-based image segmentation and
(b) vessel feature extraction. The 3D Fourier and 3D Wavelet transforms are first employed to
reduce the background and noisy structures in the images. Afterwards, a set of matched
filters was applied to enhance the corenary-arteriesin the images. At the end, clustering
analysis, histogram technique, and 'size filtering were utilized to obtain a binary image that
consists of the final segmented coronary arteria tree. To extract vessdl features in terms of
vessel centerline and diameter, a gradient vector-flow based snake algorithm is applied to
determine the medial axis of a vessel followed by the calculations of vessel boundaries and

width associated with the detected media axis.

1. INTRODUCTION

Coronary angiography is still the most common modality for physicians to assess the
severity of vessel narrowing or stenosis during percutaneous coronary intervention procedure.
Accurate guantitative analysis of coronary arteries in digital angiographic images is valuable

and important to clinical needs. Computer-assisted extraction of a set of major arteries or
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the entire coronary arterial tree from two-dimensiona (2-D) angiograms is regarded as a
crucia process. Once the vessels are identified, additional techniques may be applied to
obtain quantitative information including severity of stenosis, three-dimensional
representation of the vascular tree, motion analysis of the coronary arteries, or blood-flow

analysis [61-68].

The mgjor difficulty in automatic extraction of coronary arterial structures in angiogram lies
in (1) low signal-to-noise ratio due to poor X-ray penetration, (2) vessel overlaps, and (3)
superimposition of other tissues such as ribs, spine, or cardiac chambers. Traditiona
signal-based edge detection algorithms [69-75] were unable to effectively or accurately detect
the desired structures.  The existing methods specific to vessel extraction can be categorized
into (i) model-based [76-78] (ii) tracking-based [79-81], (iii) classifier-based [82], and (iv)
filter-based [83-85] techniques. . In model=based’ . methods, the coronary arterial tree is
produced based on a pre-defined coronary artery model in the form of a “graph” structure.
In tracking-based methods, theprocess proceeds with an initial start-of-search location
followed by an automatic tracking processby exploiting the spatial continuity of the vessel's
centerline, orientation, diameter, and density. In classifier-based methods, a clustering
algorithm is employed with properly preprocessed data to differentiate vessel or non-vessel
regions. In filter-based methods, the coronary arteries are enhanced and located so that they

can be subsequently detected in the image.

The segmented vessel can then be used to facilitate quantitative coronary analysis such as the
severity of stenosisin terms of length and diameter at the narrowing segment.  The width can
be obtained by calculating the boundary of the vessel. The other approach can be obtained
by first calculating the medial axis of the artery then computing the width.  Both approaches

need to segment the coronary artery first.
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In this chapter, a technique is proposed to first automatically segment the coronary arteries
from cine angiogram followed by accurate extraction of vessel features. By use of the
inherent nature of coronary cine angiography, the temporal information was incorporated to
facilitate elimination of the background and noises. Such a preprocessing in conjunction
with the matched filter can greatly improve the results. The proposed segmentation method
consists of three major processes: (1) background and noise removal, (2) vessel enhancement,

and (3) vessel identification.

The identified vessel structures are represented as a set of pixels in a binary image. The
Gradient Vector Flow (GVF) Snake is then employed to calculate the medial axis of the

vessel followed by determination of vessel diameters.

The details of proposed techniques are described in the next section. Experimental results
and accuracy evauation are presented in Section' 3 to demonstrate the robustness of the

proposed techniques.

2.METHODS
Let T denote the number of frames in the cine angiograms during the cardiac cycle, i.e., the
images acquired from end-diastole to end-systole and then back to end-diastole.  Each
image is defined by the function f(x,y,t), where t=0,...,T —1with x and y denoting the
two-dimensional (2-D) coordinates of a pixel in the given M by N image. The proposed
method consists of several steps. Let f,_ (X y,t)and f,(x,y,t) denote the respective input
and output images for the intermediate process at the i-th step. The original raw image is

defined by f,(x, y,t) .

2.1 Background Removal
A temporal Fourier analysis is employed to eliminate the stationary background and slowly

moving objects in the cine-angiographic images. The Fourier transformation of an image
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sequence may result in a single peak at a frequency of O, i.e., a single direct current (DC)
term, associated with stationary tissues [86]. Moreover, the band near the DC term
corresponds to the slowly moving (due to respiration) objects in the image. The stationary
or slowly moving objects are commonly ribs, spine, lung, or other internal structures
appearing as background in the image, and can be eliminated by use of a temporal Fourier

transformation.  Given a sequence of T images f,(x,y,t), 0<t<T-1, the discrete

Fourier transformation pairs are defined as

T-1
Fo(X ¥, K) =D fo(x, y,)e’™ T 0<k<T-1, (48)
t=0
and
T=1 :
fo(x, y,t) =) Foqysk)e?®™  0<t<T-1. (49)
k=0

The temporal Fourier transform=defined-in-Eg:+((48) is first applied to the image sequence
followed by a high pass temporal filteringprocess H(x,y,k) = (1-e*') asfollows

k whenk <%

T-k whenk>=T' (50)

F(x,y,k) = F(x vy, k)(1-€e""), 0sks<T-1t ={

where Sis a given constant that controls the size of the background to be removed. The
main effect of the high pass filter is to retrench the low-frequency terms. After the inverse
Fourier transformation defined in Eq. (49) is employed, a new sequence of images f,(x, y,t),
0<t<T -1, isobtained in which the structures on the background (such as ribs and tissues)
are suppressed. If the value of S is too large, only the stationary background will be
removed. Therefore, an appropriate £ is chosen to remove both the slowly moving

structures as well as stationary background. An appropriate 5 is between 8 and 10.
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2.2 Noise Removal

The resultant images after the previous processing may contain some spikes or noise. Thisis
due to that the isolated noise cannot be detected and removed using the pure frequency
domain based Fourier transforms. To overcome this problem, a “tempora” wavelet
transformation isused. The definition of an ordinary Discrete Wavelet Transform (DWT) is

summarized as follows and the details can be found in [87-89].
Let L(w)=) I, and H(w)=) he ™ denote the respective low-pass and high-pass
K K
filters that satisfy the condition of orthogonality as shown in the following equation
IL(@)[* +|H (@) =1. (51)

The DWT employs the pair of orthegonal high:pass and a low-pass filter to decompose an
input signal into the high frequency and low freguency components in different resolutions
according to the number of levels employed. -1n the one-dimensional (1-D) case, a signd

x(n) is decomposed iteratively by-applying the low-pass and the high-pass filters as shown
in Fig. 51 (a). Let x(n)=c,. ¢,i=0,..L-1 is decomposed into a low frequency
component c¢,, and a high frequency component d.,,. Both c,, and d, are down

sampled by 2 from c,. The coefficientsd,, i =1...,L, are caled the DWT wavelet

coefficients of x(n). The signal x(n) can be reconstructed from its DWT coefficients as
shown in Fig. 5-1 (b). The reconstruction process is the inverse discrete wavelet transform

(IDWT).
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(b)
Fig. 5-1. Multi-level wavelet (a) decomposition and (b) reconstruction for a 1-D case.

A two-dimensional discrete wavelet transform and its inverse are the extension of the
one-dimensiona transform. It is implemented by applying a one-dimensiona DWT and
IDWT aong each of x and y coordinates. In other words, we apply a low-pass filter and a
high-pass filter along each of the two coordinates. The original 2-D signal in the form of an

image is then divided into four regions:

1. LL: obtained by applying two low-pass filters on both coordinates,
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2. HL and LH: obtained by applying high-pass filters on one coordinate and a low-pass filter

on the other coordinate, and
3. HH: obtained by applying two high-pass filters on both coordinates.

The LL component can be recursively decomposed by using the pair of low-pass and the
high-pass filters to establish a k-stage discrete wavelet transform. A 3-stage discrete wavel et

transformation is defined as

W(X,y,t) = DWT3(f(x,y,t)), 0<t<T-1. (52)

The first stage of the transform is to decompose the image into four equal size sub-images
corresponding to the upper left (LL,), the upper right (HL,), the lower left (LH,), and the low
right (HH,) regions. In the second stage, Lk, ,is decomposed into four sub-images again.
For the subsequent stage j, the upper! left image(LL;.1) is further decomposed to four

sub-images. The typical example isillustrated in Fig:5-2.

LL, | HLg

HL,

LH, | HH,

LH, HH,

LH, HH,

Fig. 5-2. A 2-D 3-stage discrete wavel et transformation.

In the proposed method, we applied a 3D 3-stage discrete wavelet transform (or a temporal
wavelet transform).  Orthogonal low-pass and a high-pass filters were applied along x, y, and

T (i.e, tempora) to decompose the original image into 8 components, LLL; LHL; LLH;
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LHH;, HLL; HHL; HLH; and HHH;. Similar to that in the 2D case, the LLL component is

recursively decomposed into 8 components as shown in Fig. 5-3.

I e
LHLJHH

HLL,

LHL, | HHL,

LHL, HHL,

Fig. 5-3. A 3-D 3-stage discrete wavel et transformation.

Since noise commonly manifests as fine-grained structures in the image, the wavelet
transform provides a scale-based decomposition by which the noisy signals can be
represented by the finer scaled wavelet_coefficients. In other words, LLL3 is the region
most unlikely containing noise. ‘All the other 7 regions except LLL, in the first-stage
wavelet transform likely contain noise. " Because the coefficients at such scales may possibly
denote the edge information, a threshold should be carefully selected to remove the noise
while the edge information can be maintained. In the proposed method, each band except
LLL3 hasitsown threshold. The threshold, 0.504, is selected based on the standard deviation
o1 of the band. Finaly, the inverse three-stage wavelet transform is applied to the image
with the selected thresholds applied. The resultant images can be obtained using the

following equation:

f,(x y,t) = IDWT3(W(x,y,t1)),0<t<T -1, (53)

By use of Eq. (53), the unwanted noise is removed but the local features of vessel structures

are preserved.
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2.3Vesse Enhancement

Matched filters with multiple sizes and orientations are employed to identify and enhance the
contexts or gray scales of coronary arteries. A matched filter is designed by assuming that
the image background has constant intensity contaminated by white Gaussian noise [83].
The blood vessel can be regarded as a series of rectangular segments. By assuming the
intensity profile of the arterial segments a Gaussian distribution, it can be written in the

following equation:
g,(xy) =1-e™"*", (54)

whereg? denotes the variance and ¢ is known as the standard deviation. Table 5-1 lists the
values of a Gaussian distribution at several, points.

Table 5-1: Vauesiof the Gaussian Function

X e—x2/202

0 1
050 0.8825
1.00 0.6065
150 0.3247
200 0.1353
300 0.0111

Since a Gaussian curve is infinite at the two ends, an appropriate range for the kernel

designation is determined for computational efficiency. As shown in Table 5-1, when X is

equa to 3.00, €X'?* is a smal number (0.0111). The cutting threshold at 30 was
selected. Since the arteries have different width (ranging from 2 to 18 pixels in the image),
kernel sizes ranging from 10 to 60 were chosen for the employed matched filers. In

general, increasing the number of kernels yields better accuracy but more computational time
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isrequired.

An

The proposed matched filter consists of two parameters, orientation 8 and sizeo .

Six matched filters with various

angular resolution of 15° was used in the implementation.

widths of o in each orientation were employed. Fig. 5-4 shows a set of zero-degree

The matched filters in the other orientation are

matched filters with different values of o .

obtained by applying the transformation

(55)
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72 filters were defined and employed.

On the basis of twelve orientations and six Sizes

the maximum response from the matched filters is retained for

t)

Given an image f,(X,Y,

..., and 165°, are obtained to

15,

=0

Twelve images f,(x,y,6,t), 6

each orientation.

define a three-dimensional (3-D) space volume where the orientation is the third dimension.

Both

(x,y,t) denote the projection of these 12 images onto the xy-plane.

Let f

,Y,t) areutilized to identify the vessel in the next step.

(x

mo

1) and f

6

fZ(X’ y1

2.4. Vessdl | dentification
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The clustering analysis based on a stencil mask S(x, y) and the vessel continuity properties
are applied to further refine the results of segmentation. Notethat f,_ (X, Y,t) isagray scale
image. Given a threshold value A, a binary image B(X, y)is established according to Eq.
(56).

0 XYy, (56)

B(x, y) = 0 if max(f,(xyt))<Afort=01,..,T-1
7771 otherwise

The pixels of value 1 form connected components. The area occupied by the largest
connected components in B(x,y) forms the stencil mask, Sx,y), as shown in Fig. 5-9.
Sxy) is the area covered by the motion of coronary arterial structures. Therefore, those
connected components formed by ribs, tissues, and noise can be removed based on the stencil

mask as the following equations:

£, (Y, 60,0, if S(xy) =1

|:| Xl ) gl t 57
0 otherwise y (57

f3(x,y,6,1) :{

Afterwards, a series of processes are applied to identify the vessels. They are detailed in the

following.

1. A histogram analysis is applied to f,(x,y,6,t) for determination of a threshold value &,

which is used to separate coronary arterial structures from the background in each

orientation. Let f,(X,y,&,t) denote the image function after this process.

2. If the intensity of apixel p(x,y) isgreater than a given threshold ¢ in three consecutive

images at orientation &, that pixel is a part of the artery. Otherwise, its value is set to

zero. Theresultant imageis denoted by f.(x,y,6,t).
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3. Since arteries are structured connected in consecutive orientations, a 3-D 18-adjacency
clustering analysis is applied to f;(x,y,8,t). A size filter is then applied to remove
smaller connected components. A new image function fs(x,y,8,t) is obtained where

the coronary arterial structures are maintained at each orientation.

The final segmentations of coronary arterial structures are obtained after projection of

fs(X,y,6,t) onto the xyt-plane for all the orientations. The final segmentations of coronary

arterial structureisdenoted f,(x,y,t) . Two segmented results are shown in Fig. 5-12.

2.5. Extraction of Vessal features

The fina goal is to calculate thewidth of the vessel. We use f,(X,y,t)to determine the
media axis of the vessal first. We then calculate the width based on the medial axis. Snake
method was first proposed in 1987 as.an image segmentation algorithm [90]. A snake, S —

V(s) = (X(s) , Y(9)), is associated with acost function E.  E iswritten in the form
1
E = [E,(U(9) + B (V(9))ds, (58)
0

where Ej; represents the internal energy of the snake due to bending, and Ee the external
force that is derived from image features.  Ej,; Serves to impose smoothness constraint on the
snake. Eqq pushes or pulls the snake toward desired features such as edges. Given an
initial contour, the contour deforms under the control of the external and the internal forces.
When the energy associated with the contour reaches the minimal, the contour is considered

the best approximation of the boundary of the region of interest.
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Xu and Prince proposed the Gradient Vector Flow (GVF) snake in 1998 [91]. In GVF snake,
a vector field is created to serve as the external force. The GVF fidd is defined to be a

vector field p(x,y) = [g(X,y),h(X,y)] that minimize the energy
& = [[u(g? +g2 +hZ +h2) +|0f | p - Of | dxdy (59)

Using calculus of variations [91], it can be shown that the GVF field can be found by solving

the following Euler equations:
p1*g-(g-f)(f2+£7)=0,and
pO%h=(h=£,)(f2+£7)=0, (60)
where  ?isthe Laplacian operator.

Using GVF to server as external-forces, we can-move the snake to minimize the energy of the
contour shown in Eq. (58). The-solution can-be solved by using the greedy approach [92] or

the finite difference method [90].

The GVF field is generally obtained from an edge map. An important property of the vector
flow is that a vector close to an edge points to the center of the edge. The proposed media
axis finding algorithm is based on this property.

The resulted arteria tree in f,(x,y,t) is a binary image. The vectors in the GVF field

created from f,(X,y,t) point to the medial axis of the vessel. Given apolygonal path with

two end points on the medial axis of a vessel (the initial snake), the vector flow pushes the
polygonal path toward the center of thevessel. When the snake converge to it minimum cost,

we have the medial axis of the vessal.

Given the medial axis < p,, p,,..., p,,>, €t @ ,q bealine segment passing through p, and
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perpendicular to the polygona path <p,, p,,..., p,>. The two end points ¢ and ¢ are
respectively to the left and right of the polygonal path from p, to p,,. The polygona paths
<Gy s Py Py > @A <q, , P, -, Py, > @€ approximations of the left and right boundaries of

the vessel obtained from f,(Xx,y,t). The accuracy of these boundaries can be further
improved by applying the GVF snake method again. The edge map is obtained by applying
the canny edge operator followed by intensity thresholding. The polygona path

<0y s Py s+ Py > @A <0, P, -y Py, > SEFVE as the initial snakes.  The resulted boundaries

accurately present the true boundaries. The width of the vessel diameter is the distance along

normal direction from centerline point to <gq,,p, .., P, > plus centerline point to

<O s Pz sees Py >

3-RESULTS

Two cases are studied to demonstrate the results obtained using the proposed technique.  Fig.
5-5 (@) and (b) show the cine angiograms of ‘a left coronary artery (LCA) tree and a right
coronary artery (RCA) tree.  Each sequence of X-ray angiograms consists of 30 images from
end-diastole through end-systole then back to end-diastole. Each image has the size of 512

x512 pixels with 8-bit gray scales per pixel. Fig. 5-6 shows one exemplar frame of the entire

sequence in Fig. 5-5 (4). Fig. 5-7 shows the result after background removal. The results
after applying the DWT de-noise process and applying the 72 matched filters are shown in
Fig. 5-8. The results after the stencil masking process are shown in Fig. 5-9 where only one
connected component exists.  Fig. 5-10 shows the result of the projection onto the xyt-plane
aong @-axis. The final segmentation of moving coronary arterial structures is shown in

Fig. 5-11. In Fig. 5-13, we superimpose the boundaries of the results shown in Fig. 5-12 to
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the original images. As shown in Fig. 5-13, amost the whole arterial structures are

extracted.

The magnitude of the vector field created from Fig. 5-12 (b) is shown in Fig. 5-14. The
initial snakeis provided by auser interface method. As shown in Fig. 5-15, theinitia snakeis
given for finding the media axis of the vessel. Fig. 5-16 shows the media axis found by the
GVF snake. We aso provide a user interface method to trace the pixels on the media axis.
The system computes the diameter of vessel in pixel where mouse select. Fig. 5-16 shows

the diameters for some selected points on the medial axis.

4. CONCLUSION

In this chapter, we present an’efficient :and robust method for segmentation of coronary
arteries from the cine angiogram-in conjunction with GV F snake based method to extract the
width of the artery in the angiographic image. The signal-based segmentation algorithm
provides the initial results of identified coronary arterial tree. The details of vessel features
(e.g., lesion length and vessdl narrowing) can be accurately calculated by the GVF snake

method to facilitate coronary quantitative analysis.

The proposed methods were implemented on a PC with a Pentium 4 (2.2 GHz) CPU running

on Windows XP operating system. The overal execution time for a sequence of 30 512x512

pixelsimages took less than 3 minutes..
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o . . P ,.._rf;ﬂ
Fig. 5-5. (@) The cine angiograms of algft.coronary artery (LCA).  (b) The cine angiograms

of aright coronary artery (RCA).

Fig. 5-6. The typical example of one frame in the cine angiograms of Fig. 5-5 (a).
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Fig. 5-7. One of the resultant.images after the background removal process.

Fig. 5-8. The resultant image after applying the DWT de-noise process and applying the

matched filter.
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Fig. 5-9. The resultant binary image after the 2-D stencil masking process where the black

pixel is denoted by zero and the white pixel is denoted by 1.

Fig. 5-10. The projection onto xyt-plane dlong & -axis
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(b) RCA

Fig. 5-11. The final segmentation results on a sequence of X-ray angiographic images on Fig.

5-5.
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(b)

Fig. 5-12. Two segmented results. (a) The last imagein Fig. 5-11 (a). (b) Thelast imagein Fig.

5-11 (b).
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(b)

Fig. 5-13. The original images are overlying the results obtained in Fig. 5-12.
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Fig. 5-14. The magnitude of GVFin Fig. 5-12 (b)
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Fig. 5-16. The result of the centerline of vessel with widths for some selected points on the

media axis marked.
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APPENDIX

1. Grid Artifacts Removal Using Bucky
To explain a Bucky can reduce the grid artifacts, considering a ssimilar phenomenon,
photograph degradation [54]-[60] caused by the relative motion between the camera and the
scene. There are a moving scene (the grid) and a fixed camera. The grid image after
degradation, denoted g(x,y), can be modeled using Eq. (61)
g0 y) = [ [hx=x,y = y)I ,(x,y)axady , (61)
where h(x,y) denotes the system response of the motion degradation.
Fourier transforming both sides of Eq. (61), we obtain
G(u,v) = H (U1, (u,v). (62)
The total exposure at any point-in the imaging plate can be obtained by integrating the
instantaneous exposures over the time interval. ~ If ~a(t) and A(t) are the displacement

along the x and y directions, respectively, we have

T/2
g y) = [ 1, (x-a(t),y-Bt)dt, (63)
where T is the duration of the exposure.

Fourier transforming both sides of Eq. (63), we obtain
Guv) =[] j_TT’fZ |, (x=a(t),y - B(t)e ™ dtdxdy . (64)
Replacing thevariables x—a(t) with ¢ and y-£(t) by 7, Eq. (64) becomes

Gu) = || J'T’ 2| (&, p)eimeE ) griontua O g £y
-T2 P (65)
=1,(u,V) j‘_TT’ /Zze—izmua(twvﬁ(t»dt

According to Eg. (62) and (65), the transfer function H(u,v) of this moving degradation is

given by



H(uy) = [ grizmua oy, (66)
Suppose that the motion is uniform in the x-direction with velocity V, then
a(t) =wt, B(t)=0. (67)
Substituting Eq. (67) into Eg. (66), we obtain

_sSin7uvT

H(u,v) =Tsinc(uvT). (68)

The PSF, h(x,y), is obtained by inverse Fourier transforming Eq. (68) into Eq. (69)

h(x,y) = (rect(x/VT), 69
(x,y) VT (X/VT) (69)
where rect(X) is given as
1 for|x/VT|<i
rect(x/VT) = Jx _ | z, (70)
0+, otherwise

Eq. (69) is actually a mean filter that has the effect of smoothing the grid artifacts. The size
of the mean filter kernel depends on rect(X\/T), i.e., for large exposure time (T) or fast Bucky
movement speed (V) we obtain alarge kernel. |f

VT =T, (71)

the size of the kernel coversall Ty, the grid artifacts of Ty is blurred out completely.
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