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Abstract—Diagnosis is an essential subject for the reliability of a multiprocessor system. Under the comparison diagnosis model,

Sengupta and Dahbura proposed a polynomial-time algorithm with time complexity OðN5Þ to identify all the faulty processors for a

given syndrome in a system with N processors. In this paper, we present a novel idea on system diagnosis called node diagnosability.

The node diagnosability can be viewed as a local strategy toward system diagnosability. There is a strong relationship between the

node diagnosability and the traditional diagnosability. For this local sense, we focus more on a single processor and require only

identifying the status of this particular processor correctly. Under the comparison diagnosis model, we propose a sufficient condition to

determine the node diagnosability of a given processor. Furthermore, we propose a useful local structure called an extended star to

guarantee the node diagnosability and provide an efficient algorithm to determine the faulty or fault-free status of each processor

based on this structure. For a multiprocessor system with total number of processors N, the time complexity of our algorithm to

diagnose a given processor is OðlogNÞ and that to diagnose all the faulty processors is OðN logNÞ under the comparison model,

provided that there is an extended star structure at each processor and that the time for looking up the testing result of a comparator in

the syndrome table is constant.

Index Terms—Fault diagnosis, comparison diagnosis model, MM* diagnosis model, node diagnosability, extended star structure,

diagnosis algorithm.

Ç

1 INTRODUCTION

RECENTLY, high-speed multiprocessor systems have be-
come more and more popular in computer technology.

The reliability of the processors in a system is significant
since even a few faulty processors may cause the system
failure. Whenever processors are found faulty, we should
replace the faulty ones with fault-free ones to maintain the
reliability of the system. Identifying all the faulty proces-
sors of a system is called diagnosis of the system. The
maximum number of faulty processors that can be ensured
to be identified is called the diagnosability of the system. A
system G is t-diagnosable if all the faulty processors can
be precisely pointed out given that the number of faulty
processors is at most t. The maximum number t for which
G is t-diagnosable is called the diagnosability of G.

Multiprocessor systems consist of processors and com-
munication links between the processors. Practically, most
multiprocessor systems are based on an underlying bus
structure or fabric and perfectly feasible for a central test
controller (an independent processor acting as a controller)
to check each processor in the system. In such a scheme,
the central controller itself can be tested externally. Several
relevant papers are selected in the following, concerning the
network-on-chip (NoC) issue: Pande et al. [14] developed an

evaluation methodology to compare the performance and
characteristics of a variety of NoC topologies; Bartic et al. [2]
presented an NoC design, which is suitable for building
networks with irregular topologies.

Throughout this paper, each processor in a system is
presented as a node, and a single edge between two arbitrary
nodes represents the communication bus or fabric. A
diagnosis testing signal is supposed to be delivered from
one node to another node through the communication bus
at one time. A system performs system-level diagnosis by
making each processor act as a tester to test each of the
directly connected ones, and such a scheme contains no
central test controller instead. All assumptions are given in
order to be consistent with the classic comparison diagnosis
model proposed by Maeng and Malek [12].

Several well-known approaches on diagnosis have been
developed. One major approach, called the PMC diagnosis
model, was first proposed by Preparata et al. [15]. It performs
diagnosis by sending a test signal from a processor to another
linked one and getting a returning response in the reverse
direction. According to the collective testing results, the
faulty or fault-free status of all processors in a system can be
identified. Following the PMC model, Dahbura and Masson
[4] proposed a diagnosis algorithm with time complexity
OðN2:5Þ to identify all the faulty processors in a system with
N processors. Another major diagnosis approach is called
the comparison model, which was proposed by Maeng and
Malek [12], [13]. In this model, the diagnosis is performed by
simultaneously sending two identical signals from a pro-
cessor to two other linked ones and comparing the responses.
Under the comparison model, Sengupta and Dahbura [16]
discussed some characterizations of a t-diagnosable system
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and gave a polynomial-time algorithm with time complexity
OðN5Þ to diagnose a system of N processors.

Following the diagnosis models above, most previous
studies focused on the diagnosis ability of a system in a
global sense but ignored some local systematic details. A
system is t-diagnosable if all the faulty processors can be
identified whenever the number of faulty processors is at
most t. However, it is possible to correctly point out all the
faulty processors in a t-diagnosable system when the number
of faulty processors is greater than t. For example, consider
two hypercube systems Qm and Qn, which are m-
diagnosable and n-diagnosable [17], respectively, where m
and n are integers, and m� n. A new system can be
generated by integrating these two systems with few
communication links in some way, and such a way may
cause the diagnosability of the new system to become n.
However, the strong diagnosis ability of some part of the
entire system, the part of the original m-diagnosable
subsystem Qm, is ignored. Thus, if only considering the
global status, we lose some local details of the system. See
Fig. 1 for an illustration.

In some circumstances, however, we are only concerned
about some substructure of a multiprocessor system, which
is implementable in very large-scale integration (VLSI). For
example, such a substructure can be a ring structure or a
path structure. If all processors in such a substructure can be
guaranteed to be fault free, the procedure is still workable
even though a few processors in some other part of the
system are faulty. Thus, the local substructure of a system is
more critical than the global status of the entire system.

In this paper, we present a novel idea on system diagnosis,
which we call node diagnosability. The node diagnosability
can be viewed as a local strategy toward system diagnosa-
bility. There is a strong relationship between the node
diagnosability and the traditional one. For this local sense,
we focus more on a single processor and require only
identifying the status of this particular processor correctly.
More specifically, every processor in a system has its own
node diagnosability. Under the comparison diagnosis mod-
el, we propose a sufficient condition to determine the node
diagnosability of a given processor x. On the basis of this
sufficient condition, we propose a useful local structure
called an extended star at processor x to guarantee its node
diagnosability. Along this way, we have an efficient
algorithm to determine the faulty or fault-free status of each
processor based on the extended star structure. For most
practical multiprocessor systems, the number of links
connecting to each processor is in the order of logN , where
N is the total number of processors. The time complexity of
our algorithm to diagnose a given processor is bounded by
OðlogNÞ and that to diagnose all the faulty processors in a
system with N processors is bounded by OðN logNÞ under

the comparison model, provided that there is an extended
star structure at each processor and that the time for looking
up the testing result of a comparator in the syndrome table is
constant. In general, the time complexity of our algorithm
can be represented as OðN�Þ, where � is the maximum
degree of a processor in the N-processor system.

The rest of this paper is organized as follows: Section 2
provides preliminaries and necessary background for
diagnosing a system. Section 3 introduces the concepts of
node diagnosability and provides a sufficient condition to check
whether a system is t-diagnosable at a given processor. The
extended star local structure for guaranteeing a processor’s
node diagnosability is also introduced in this section. In
Section 4, we propose an efficient algorithm to determine the
faulty or fault-free status of a given processor. Finally, some
applications are discussed in Section 5, and our conclusions
are given in Section 6.

2 PRELIMINARIES

The topology of a multiprocessor system can be modeled as
an undirected graph G ¼ ðV ;EÞ, where V represents the set
of all processors, and E represents the set of all connecting
links between the processors.

Under the comparison model [12], [13], also called the MM
model, the system diagnosis is performed by a specific
testing procedure. For each processor w, which has two
distinct links to two other processors u and v, the diagnosis
can be performed by simultaneously sending two identical
signals from w to u and from w to v and then comparing
their returning responses in the reverse direction. Further-
more, in the MM* model [16], it is assumed that a comparison
is performed by each processor for each pair of distinct
connected neighbors. Throughout this paper, all discussions
are based on the MM* model, the complete version of the
MM model.

This diagnosis-by-comparison strategy can be modeled
as a labeled multigraph M ¼ ðV ;CÞ, called a comparison
graph, where V represents the set of all processors same as
that in G and C represents the set of labeled edges. For each
labeled edge ðu; vÞw 2 C, w is a label on the edge, which
means that processors u and v are being compared by a
comparator, the processor w.

In order to be consistent with the MM model, several
assumptions are needed [16]:

1. All faults are permanent.
2. A faulty processor produces incorrect output for

each of its given testing tasks.
3. The output of a comparison performed by a faulty

processor is unreliable.
4. Two faulty processors with the same input do not

produce the same output.

The output on a labeled edge ðu; vÞw 2 C is denoted by
rððu; vÞwÞ, which represents the comparison result of w for
the two responses from u and v. An agreement is denoted
by rððu; vÞwÞ ¼ 0, whereas a disagreement is denoted by
rððu; vÞwÞ ¼ 1. Since the comparator processor itself might
be faulty or not, the testing result might be unreliable. For
this reason, some conclusions are made: if rððu; vÞwÞ ¼ 1, at
least one member of fu; v; wg is faulty, or if rððu; vÞwÞ ¼ 0
and w is known to be fault free, both u and v are fault free.
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n-diagnosable subsystem and an m-diagnosable subsystem.



After the completion of testing on each comparator in a
system, the collection of all testing results can be defined as
a function � : C ! f0; 1g and referred to be a syndrome of
the diagnosis. For a given syndrome �, a subset of nodes
F � V ðGÞ is consistent with � if the syndrome � can be
produced from the situation that all nodes in F are faulty
and all nodes in V � F are fault free. Let �F denote the set of
syndromes that are consistent with F , that is, the collection
of all possible syndromes that can be produced if F is the
faulty set.

Notice that for a syndrome �, there might be more than
one faulty subset of V that are consistent with �. A system
is defined to be diagnosable if, for every syndrome �, a
unique set of nodes F � V is consistent with it. In addition,
we call a system t-diagnosable if the system is diagnosable as
long as the number of faulty processors is at most t. The
maximum number t for a system to be t-diagnosable is
called the diagnosability of the system. Two distinct subsets
of nodes F1, F2 � V are distinguishable if and only if
�F1
\ �F1

¼ �; otherwise, F1 and F2 are indistinguishable.
The following is a useful characterization, proposed by

Sengupta and Dahbura [16], for the distinguishability of two
sets of nodes under the comparison model. The symmetric
difference of two sets A and B is defined as the set A�B ¼
ðA [BÞ � ðA \BÞ.
Lemma 1 [16]. For every two distinct subsets of nodes F1 and F2,

that is, F1 6¼ F2 and F1, F2 � V , ðF1; F2Þ is a distinguishable
pair if and only if at least one of the following conditions is
satisfied (as illustrated in Fig. 2):

1. 9 u, w 2 V � F1 � F2 and 9 v 2 F1�F2 such that
ðu; vÞw 2 C.

2. 9 u, v 2 F1 � F2 and 9 w 2 V � F1 � F2 such that
ðu; vÞw 2 C.

3. 9 u, v 2 F2 � F1 and 9 w 2 V � F1 � F2 such that
ðu; vÞw 2 C.

The detailed proof of this lemma was demonstrated by
Sengupta and Dahbura [16]. For the completeness of this
paper, we sketch the proof briefly. If one of the three
conditions holds, the distinguishability is absolutely deter-
mined:

i. Suppose condition 1 is satisfied. If v 2 F1 � F2, then
rððu; vÞwÞ ¼ 0 for each �ðF2Þ, and rððu; vÞwÞ ¼ 1 for
each �ðF1Þ. Similarly, if v2F2�F1, then rððu; vÞwÞ¼0
for each �ðF1Þ, and rððu; vÞwÞ ¼ 1 for each �ðF2Þ.
Either case implies that �ðF1Þ \ �ðF2Þ ¼ �.

ii. Suppose condition 2 is satisfied. Then, rððu; vÞwÞ ¼ 0
for each �ðF2Þ, and rððu; vÞwÞ ¼ 1 for each �ðF1Þ,
which lead to �ðF1Þ \ �ðF2Þ ¼ �.

iii. Suppose condition 3 is satisfied, a similar argument
is used as in condition 2.

On the contrary, if none of the three conditions holds. We
consider a syndrome such that for each ðu; vÞw 2 C, the
comparison result can be classified to the following nine
situations [16]:

i. If u, v, w 2 V � F1 � F2, then rððu; vÞwÞ ¼ 0.
ii. If w 2 V � F1 � F2 and u, v 2 F1, then rððu; vÞwÞ ¼ 1.
iii. If w 2 V �F1�F2 and u, v2F2, then rððu; vÞwÞ¼1.
iv. If w2V �F1�F2, u2F1, and v2F2, then rððu; vÞwÞ¼1.
v. If w 2 F1 � F2, v 2 V � F2 and u 2 V � F1 � F2, then

rððu; vÞwÞ ¼ 0.
vi. If w 2 F2 � F1, v 2 V � F1, and u 2 V � F1 � F2, then

rððu; vÞwÞ ¼ 0.
vii. If w2F1 � F2 and u 2 F2, then for all v, rððu; vÞwÞ ¼ 1.
viii. If w2F2 � F1 and u 2 F1, then for all v, rððu; vÞwÞ ¼ 1.
ix. Other arbitrary comparison results.

Then, the syndrome above belongs to �ðF1Þ \ �ðF2Þ,
and therefore, F1 and F2 are indistinguishable. For
example, if w 2 V � F1 � F2, u 2 F1 \ F2, and v 2 F1 � F2,
then rððu; vÞwÞ ¼ 1 whenever the faulty set of nodes is
either F1 or F2. In such a circumstance, pair ðF1; F2Þ
cannot be distinguished only with such few information.

Let G ¼ ðV ;EÞ be a graph and let M ¼ ðV ;CÞ be the
comparison graph of G. Define the order graph [16] of a
node u 2 V to be a digraph Gu ¼ ðXu; YuÞ, where
Xu ¼ fv j either ðu; vÞ 2 E or ðu; vÞw 2 C for some wg, a n d
Yu ¼ fðv; wÞ j v; w 2 Xu and ðu; vÞw 2 Cg.

A node cover of G is a subset of nodes Q � V such that
every edge of E has at least one end node inQ. A node cover
with the minimum cardinality is called a minimum node cover.
For a given node u 2 V , the order of u is defined as the
cardinality of a minimum node cover of Gu. For a subset
of nodes U � V , define T ðG;UÞ to be the set fvjðu; vÞw2C
and u;w2U and v2V � Ug. Next is a characterization pro-
posed by Sengupta and Dahbura, which gives a sufficient
condition for a system being t-diagnosable.

Lemma 2 [16]. A systemGðV ;EÞwithN nodes is t-diagnosable if

1. N � 2tþ 1,
2. each node has order at least t, and
3. for each U � V such that j U j ¼ N � 2tþ p and

0 � p � t� 1, j T ðG;UÞ j > p.

In the rest of this paper, we present our novel concept of
node diagnosability under the comparison diagnosis model
and discuss some properties of it.

3 NODE DIAGNOSABILITY

There were some studies on system diagnosability of
some well-known networks under the comparison model.
For example, Wang [17], [18] presented that the diagno-
sability of an n-dimensional hypercube Qn is n for n � 5
and the diagnosability of an n-dimensional enhanced
hypercube is nþ 1 for n � 6. Fan [8], [9] showed that the
diagnosability of an n-dimensional crossed cube is n and
the diagnosability of an n-dimensional Möbius cube is n
for n � 4. Lai et al. [11] proposed that the diagnosability
of the matching composition network is n for n � 4.

As we observe, the traditional system diagnosability
describes the global status of a system. The purpose of this
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subsets of nodes.



paper for considering the node diagnosability is to keep the
local connective detail of a system that we might neglect. For
example, for any two integers m and n with m >> n � 4, the
diagnosability of two hypercube systems Qm and Qn is m
and n [17], [11], respectively. Combining these two systems
with few communication links in some way may cause
the diagnosability of the new topology to become n. In this
situation, the strong diagnosis ability of some part of the
entire system, the substructureQm, is ignored. Therefore, the
need of keeping local information of each node is concerned.

In the previous studies on diagnosis, most results
focused on the diagnosis ability of a system in a global
sense: a system is t-diagnosable if all the faulty nodes can be
identified given that there are at most t faulty nodes. In
contrast to the global sense, we emphasize more on a single
node x in a local sense: we require only identifying the
status of one particular node correctly. More specifically, if
x belongs to a set of faulty nodes, we must correctly identify
x to be faulty, or x is identified to be fault free if x is indeed
fault free. In other words, we are only concerned about the
status of the node x.

We now introduce the concept of a system being
t-diagnosable at a given node.

Definition 1. A system GðV ;EÞ is t-diagnosable at node
x 2 V ðGÞ if given a test syndrome �F produced by the system
under the presence of a set of faulty nodes F containing node x
with jF j � t, every set of faulty nodesF 0 consistent with �F and
jF 0j � t must also contain node x.

An equivalent way of stating the above definition is
given below.

Proposition 1. A system GðV ;EÞ is t-diagnosable at node
x 2 V ðGÞ if for each pair of distinct sets, F1, F2 � V ðGÞ such
that F1 6¼ F2, jF1j, jF2j � t, and x 2 F1�F2, ðF1; F2Þ is a
distinguishable pair.

Then, we define the node diagnosability of a given node as
follows:

Definition 2. The node diagnosability tlðxÞ of a node
x 2 V ðGÞ in a system GðV ;EÞ is defined to be the maximum
number of t for G being t-diagnosable at x, that is,
tlðxÞ ¼ maxft j G is t-diagnosable at xg.
The concept of a system being t-diagnosable at a node is

consistent with the traditional concept of a system being
t-diagnosable in the global sense. The relationship between
these two is given as follows:

Proposition 2. A system GðV ;EÞ is t-diagnosable if and only if
G is t-diagnosable at every node.

Proof. We prove the necessary condition first. Suppose
that there exists a node y 2 V ðGÞ such that G is not
t-diagnosable at y. By Proposition 1, there exists an
indistinguishable pair ðF1; F2Þ with jFij � t, i ¼ 1 and 2,
and y 2 F1�F2. This contradicts that G is t-diagnosable.
Next, we prove the sufficiency. Suppose G is not
t-diagnosable. Then, there exists an indistinguishable pair
ðF1; F2Þwith jFij � t, i ¼ 1 and 2. Pick any node y inF1�F2;
the system is not t-diagnosable at yby Proposition 1, which
is a contradiction. tu

Proposition 3. The diagnosability tðGÞ of a system GðV ;EÞ is
equal to the minimum value among the node diagnosability of
every node in G, that is, tðGÞ ¼ minftlðxÞ j x 2 V ðGÞg.

Proof. The result follows trivially from Definition 2 and
Proposition 2. tu

From Propositions 2 and 3, the relationship between the
traditional diagnosability and the node diagnosability was
pointed out. Through this concept, the system diagnosa-
bility can be determined by testing the node diagnosability
of each node. Especially in some well-known regular
networks, the diagnosability can be easily identified because
of the system symmetry. For example, in some graphs like
hypercubes, cube-connected cycles, or complete graphs, the
system diagnosability and the node diagnosability of each
node in the system are the same, and such a result can be
applied in other applications.

Now, we need some definitions for further discussion.
For any set of nodes U � V ðGÞ, G½U � denotes the subgraph
of G induced by the node subset U . Let H be a subgraph of
G and v be a node in H; degHðvÞ denotes the degree of v
in subgraph H. For a given set of nodes S � V ðGÞ, we use
G� S to denote the induced subgraph G½V ðGÞ � S�. Let S
be a set of nodes and x be a node not in S; we use Cx;S to
denote the connected component that x belongs to in G� S.

In the following, we propose a sufficient condition for
verifying whether a system G is t-diagnosable at a given
node x.

Theorem 1. A system GðV ;EÞ is t-diagnosable at a given node
x 2 V ðGÞ if for every set of nodes S � V ðGÞ, jSj ¼ p,
0 � p � t� 1, and x =2 S, the cardinality of every node cover
including x of the component Cx;S is at least 2ðt� pÞ þ 1.

Proof. We prove it using contradiction. Suppose system G
is not t-diagnosable at node x. According to Proposition
1, there exists an indistinguishable pair of distinct node
set ðF1; F2Þ with jF1j � t, jF2j � t, and x 2 F1�F2. Let S
be the intersection of node sets F1 and F2; then, the
cardinality of S is less than or equal to t� 1. (Otherwise,
if jSj ¼ t, then F1 ¼ F2.) According to the condition that
x =2 S and 0 � jSj � t� 1, the cardinality of every node
cover including x of the component Cx;S is at least
2ðt� pÞ þ 1. Comparing this number with jF1�F2j �
2ðt� pÞ and x 2 F1�F2, we get the fact that F1�F2

cannot be a node cover of Cx;S . In other words, at least
one member (a node) of the node cover of Cx;S is outside
F1�F2 (and also outside S according to the definition of
component Cx;S). Consequently, by the property of node
cover, there exists an edge e ¼ ðu; vÞ in Cx;S but outside
F1�F2. Since edge e, nodes u and v, and node x belong to
the same connected component Cx;S , there is a path
leading from edge e to node x through set F1 (as shown
in Fig. 3a) or F2 (as shown in Fig. 3b). Then, by
condition 1 of Lemma 1, ðF1; F2Þ is a distinguishable pair.
This is a contradiction, and the result follows. tu
Under the comparison model, Sengupta and Dahbura [16]

proposed a polynomial-time algorithm with time complexity
OðN5Þ to identify all the faulty nodes from a given syndrome,
where N is the total number of nodes. In this paper, we
present another algorithm using the concept of node
diagnosability and a specific systematic structure, called the
extended star structure, to diagnose all the faulty nodes. Our
algorithm has time complexity OðN logNÞ in some well-
known multiprocessor systems or interconnection networks.
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Let us introduce a structure first.

Definition 3. Let x be a node in a graph GðV ;EÞ with
degGðxÞ � n. Define Hðx;nÞ to be a subgraph of G of order n
at node x, where the set of nodes is fxg [ fvi1; vi2 j 1 � i � ng
and the set of edges is fðx; vi1Þ; ðvi1; vi2Þ j 1 � i � ng. (Fig. 4
depicts the structure.)

We notice that the term “order” is used in two different
places: one is the order of a node x, orderðxÞ, and the other
is the order of the substructure defined here.

Proposition 4. Let GðV ;EÞ be a graph and x be a node in G. The
order of x is at least n if G contains a subgraph Hðx;nÞ of
order n at node x.

Proposition 5. Let GðV ;EÞ be a graph without cycles of length
three and x be a node in G. G contains a subgraph Hðx;nÞ of
order n at node x if the order of x is at least n.

Proof. Let S1 and S2 be two sets of nodes with a distance of
one and two to the node x, respectively. Since G contains
no cycles of length three, there is no edge with both ends in
S1. Therefore, the order graph of x forms a bipartite graph
with the partition ðS1; S2Þ. Because the node x has order at
least n, which means that the cardinality of a minimum
node cover of the order graph ofx is at leastn. By a classical
theorem of König [5] and Egerváry [6], the cardinality of
a minimum node cover of a bipartite graph equals the
maximum size of a matching in the bipartite graph. Then,
there is a matching between S1 and S2 with the maximum
size n. Consequently, G contains a subgraph Hðx;nÞ of
order n at node x. tu
The above two propositions state that the order of nodex is

at leastn if and only if the system contains a subgraphHðx;nÞ
of order n at x. It implies that if the node diagnosability of
node x isn, thenG contains a subgraphHðx;nÞ at x, provided
that G has no cycles of length three. However, having the
substructure Hðx;nÞ at x, it does not necessarily guarantee
that the node diagnosability of node x is at least n.

We now propose a substructure at node x, called an
extended star, which can guarantee the node diagnosability
of node x.

Definition 4. Let x be a node in a graph GðV ;EÞ. For
n � degGðxÞ, an extended star ESðx;nÞ of order n at
node x is defined as ESðx;nÞ ¼ ðV ðx;nÞ; Eðx;nÞÞ, where
the set of nodes V ðx;nÞ¼fxg [ fvij j 1 � i � n; 1 � j � 4g,
and the set of edges Eðx;nÞ ¼ fðx; vk1Þ; ðvk1; vk2Þ; ðvk2; vk3Þ;
ðvk3; vk4Þ j 1 � k � ng. (See Fig. 5 for an illustration.)

We say that there is an extended star structureESðx;nÞ � G
at node x ifG contains an extended starESðx;nÞ of order n at
node x as a subgraph. Note that in the definition of the
extended star, each node and each edge can occur only once in
this structure. In other words, the problem of setting up the
extended star structure turns into the problem of finding
n node-disjoint paths of length four (3 hops) with dedicated
starting nodes. In addition, such a problem can be done
offline by the systematic structure of most well-known
multiprocessor systems.

Theorem 2. Let x be a node in a system GðV ;EÞ. The node
diagnosability of x is at least n if there exists an extended star
ESðx;nÞ � G at x.

Proof. We use Theorem 1 to prove this result. First, we
define lk ¼ ðvk1; vk2; vk3; vk4Þ to be a quadruple of four
consecutive nodes for any k, 1 � k � n, with respect to
ESðx;nÞ. We note that lk is a path of length three.
Accordingly, the cardinality of a node cover of each lk is
at least two. Let S � V ðGÞ be a set of nodes in G with
jSj ¼ p, 0 � p � n� 1, and x =2 S. After deleting S from
V ðGÞ, there are at least ðn� pÞ complete lk’s still
remaining in ESðx;nÞ, where the word “complete”
means that all vk1, vk2, vk3, and vk4 of an lk have not
been deleted in G� S. Thus, the cardinality of a node
cover including x of the connected component Cx;S is
at least 1þ 2ðn� pÞ. Therefore, the system G with
an extended star ESðx;nÞ is n-diagnosable at x by
Theorem 1. By Definition 2, the node diagnosability of x
is at least n, that is, tlðxÞ � n. tu

Proposition 6. Let x be a node in a system GðV ;EÞ with
degGðxÞ ¼ n. The node diagnosability of x is at most n.

By Theorem 2 and Proposition 6, we have the following
result.

Theorem 3. Let x be a node in a system GðV ;EÞ with
degGðxÞ ¼ n. The node diagnosability of x is n if there exists
an extended star ESðx;nÞ � G at x.

We observe that for an extended star structure, if the
set of nodes is of the form V ðx;nÞ ¼ fxg [ fvij j 1 � i � n;
1 � j � 3g and the set of edges is of the form Eðx;nÞ ¼
fðx; vk1Þ; ðvk1; vk2Þ; ðvk2; vk3Þ j 1 � k � ng, the node diagno-
sability n of node x cannot be guaranteed simply by this
kind of substructure. For example, let F1 be the set of
nodes fx; v11; v12; v13g with jF1j ¼ 4 and F2 be the set of

CHIANG AND TAN: USING NODE DIAGNOSABILITY TO DETERMINE t-DIAGNOSABILITY UNDER THE COMPARISON DIAGNOSIS MODEL 255

Fig. 4. Subgraph Hðx;nÞ of G of order n at node x.

Fig. 5. Extended star structure ESðx;nÞ.
Fig. 3. Illustration of the proof of Theorem 1—at least one edge lies in

Cx;S � F1�F2.



nodes fvk2 j 1 � k � ng with jF2j ¼ n (as shown in Fig. 6);
ðF1; F2Þ is not a distinguishable pair according to Lemma
1 unless there are other edges or nodes. Thus, the node
diagnosability of x cannot be guaranteed to be n.

In most multiprocessor systems or interconnection net-
works, an extended star substructure at a given processor
does exist. For example, in the well-known multiprocessor
systems such as the hypercube, the crossed cube [7], the
twisted cube [10], the Möbius cube [3], the star [1], the
mesh, and other hypercubelike graphs, an extended star
at a given processor can be carefully found because of the
regular recursive construction, as long as the dimension n
is suitably large. Based on this specific structure, a fault
diagnosis algorithm is introduced in the next section.

4 A DIAGNOSIS ALGORITHM

Given an extended star structure at a node, we shall present
a diagnosis algorithm to determine whether this node is
faulty or not for a given syndrome under the comparison
model. As stated in Theorem 3, the node diagnosability of a
node can be determined by the neighboring nodes (proces-
sors) around it. Intuitively, a node’s faulty/fault-free status
should also be determined by the comparison outputs of the
nodes surrounding it, and Theorem 4 provides an algorithm
for performing such procedure.

LetESðx;nÞ be an extended star at a given node x in V ðGÞ;
the diagnosing signals are sent back and forth inside
ESðx;nÞ. Since there are communication links between x
and vk1, vk1 and vk2, vk2 and vk3, and vk3 and vk4, for all
1 � k � n, vk1, vk2, and vk3 can be the comparators of the
comparison model. After the comparison test, each com-
parator has a testing result denoted by 0 (1, respectively)
representing the agreement (disagreement, respectively).
Given an extended star ESðx;nÞ at a node x, we define rk ¼
ðr1; r2; r3Þ to be the testing result of an ordered triple
ðvk1; vk2; vk3Þ with respect to ESðx;nÞ, where r1 is the
comparison result of vk1 for the two responses from x and
vk2, r2 is the comparison result of vk2 for the two responses
from vk1 and vk3, and r3 is the comparison result of vk3 for the
two responses from vk2 and vk4. Then, rk can be in one of the
eight different states, which are rð0Þ ¼ ð0; 0; 0Þ, rð1Þ¼ð0; 0; 1Þ,
rð2Þ ¼ ð0; 1; 0Þ, rð3Þ ¼ ð0; 1; 1Þ, rð4Þ ¼ ð1; 0; 0Þ, rð5Þ ¼ ð1; 0; 1Þ,
rð6Þ ¼ ð1; 1; 0Þ, and rð7Þ ¼ ð1; 1; 1Þ. Let RðiÞ be the set of the
collection of all rðiÞ, for all 0 � i � 7. Obviously, the
summation of the cardinality of Rð0Þ to Rð7Þ is n, that is,P7

i¼0 jRðiÞj ¼ n.
Let x be a node in a system. Suppose that the degree of x

is n and suppose that there is an extended star ESðx;nÞ at x.
Then, the node diagnosability of x is n, which means that

we may not be able to identify all the faulty nodes if the

number of faulty nodes in ESðx;nÞ is nþ 1 or more.

Therefore, we assume that the number of faulty nodes is at

most n. Under this assumption, we have an efficient

algorithm to determine whether node x is faulty or not.

Theorem 4. Let x be a node with degree n in a system GðV ;EÞ.
Suppose that there is an extended star ESðx;nÞ � G at x.

Define rk ¼ ðr1; r2; r3Þ to be the testing result of ðvk1; vk2; vk3Þ
with respect to ESðx;nÞ. Then, rk can be in one of the eight

states (as illustrated in Fig. 7): rð0Þ ¼ ð0; 0; 0Þ, rð1Þ¼ð0; 0; 1Þ,
rð2Þ¼ð0; 1; 0Þ, rð3Þ¼ð0; 1; 1Þ, rð4Þ¼ð1; 0; 0Þ, rð5Þ¼ð1; 0; 1Þ,
rð6Þ ¼ ð1; 1; 0Þ, and rð7Þ ¼ ð1; 1; 1Þ.

Let RðiÞ be the set of the collection of all rðiÞ and jRðiÞj be

the cardinality of RðiÞ. Then, under the assumption that the

number of faulty nodes is at most n

i. x is fault free if jRð0Þj � jRð4Þj, or
ii. x is faulty if jRð0Þj < jRð4Þj.

Proof. Let lk ¼ ðvk1; vk2; vk3; vk4Þ be an ordered quadruple,

1 � k � n, with respect to ESðx;nÞ. We prove the first

part of this theorem by contradiction. Suppose that the

number of faulty nodes in ESðx;nÞ is at most n and

suppose that x is faulty; the counting of all the other

faulty nodes is given as follows:

. For those lk with result rð0Þ, there are at least
three faulty nodes, which are vk1, vk2, and vk3.

. For those lk with result rð1Þ, there are at least two
faulty nodes, which are vk1 and vk2.

. For those lk with result rð2Þ, there is at least one
faulty node, which is vk1.

. For those lk with result rð3Þ, there are at least two
faulty nodes, which are vk1 and one of vk2, vk3, and
vk4 since the output of vk3 is a disagreement.

. For those lk with result rð4Þ, the number of faulty
nodes is uncertain.

. For those lk with result rð5Þ, there is at least one
faulty node, which is one of vk2, vk3, and vk4 since
the output of vk3 is a disagreement.

. For those lk with result rð6Þ, there is at least one
faulty node, which is one of vk1, vk2, and vk3 since
the output of vk2 is a disagreement.

. For those lk with result rð7Þ, there is at least one
faulty node, which is one of vk2, vk3, and vk4 since
the output of vk3 is a disagreement.

Thus, the number of faulty nodes is at least 1þ 3jRð0Þj þ
2jRð1Þj þ jRð2Þj þ 2jRð3Þj þ jRð5Þj þ jRð6Þj þ jRð7Þj ¼
�7
i¼0jRðiÞj þ ð1þ 2jRð0Þj þ jRð1Þj þ jRð3Þj � jRð4ÞjÞ.

256 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 1, JANUARY 2009

Fig. 6. An example of an indistinguishable pair in an incomplete
extended star structure with only the set of nodes fxg [ fvij j 1 � i � n;
1 � j � 3g and the set of edges fðx; vk1Þ; ðvk1; vk2Þ; ðvk2; vk3Þ j 1 � k � ng. Fig. 7. Eight different output states for Theorem 4.



By the assumption that jRð0Þj � jRð4Þj, the number of
faulty nodes is strictly more than �7

i¼0jRðiÞj, which is

equal to n. This contradicts to the assumption that the

number of faulty nodes inESðx;nÞ is at most n. Therefore,

x is fault free.
Now, we prove the second part of this theorem.

Suppose that the number of faulty nodes in ESðx;nÞ is at
most n and suppose that x is fault free; the counting of all
the other faulty nodes given is as follows:

. For those lk with result rð0Þ, the number of faulty
nodes is uncertain.

. For those lk with result rð1Þ, there is at least one
faulty node, which is one of vk2, vk3, and vk4 since
the output of vk3 is a disagreement.

. For those lk with result rð2Þ, there is at least one
faulty node, which is one of vk1, vk2, and vk3 since
the output of vk2 is a disagreement.

. For those lk with result rð3Þ, there is at least one
faulty node, which is one of vk1, vk2, and vk3 since
the output of vk2 is a disagreement.

. For those lk with result rð4Þ, there are at least two
faulty nodes for the reasons that 1) if vk1 is faulty,
vk2 must be faulty since the comparison result of
vk2 is wrong, or 2) if vk1 is fault free, vk2 must be
faulty, and vk3 must be faulty too.

. For those lk with result rð5Þ, there is at least one
faulty node, which is one of vk1 and vk2 since the
output of vk1 is a disagreement.

. For those lk with result rð6Þ, there is at least one
faulty node, which is one of vk1 and vk2 since the
output of vk1 is a disagreement.

. For those lk with result rð7Þ, there is at least one
faulty node, which is one of vk1 and vk2 since the
output of vk1 is a disagreement.

Thus, the number of faulty nodes is at least jRð1Þj þ
jRð2Þj þ jRð3Þj þ 2jRð4Þj þ jRð5Þj þ jRð6Þj þ jRð7Þj ¼
�7
i¼0jRðiÞj þ ðjRð4Þj � jRð0ÞjÞ.

By the assumption that jRð0Þj < jRð4Þj, the number of
faulty nodes is larger than �7

n¼ijRðiÞj, which is equal to n.
This contradicts to the assumption that the number of
faulty nodes in ESðx;nÞ is at most n. Therefore, x is
faulty. tu

Roughly speaking, the collections of testing results Rð0Þ
and Rð4Þ, with respect to the extended star ESðx;nÞ found
at node x, dominate the faulty/fault-free status of x. We can
determine the faulty or fault-free status of a node by just
comparing the number of the testing results rð0Þ’s and rð4Þ’s
on an arbitrary extended star we found.

5 APPLICATIONS

In this section, we apply the concept of node diagnosability
and the proposed diagnosis algorithm to several well-known
multiprocessor systems and interconnection networks.

Among all well-known interconnection networks, the
hypercube is one of the most popular ones. Following the
structure of the hypercube, lots of similar networks had been
proposed, such as the crossed cube [7], the twisted cube [10],
and the Möbius cube [3]. We call the category of these
systems a cube family. For each cube in the cube family, an

n-dimensional cube can be constructed in recurrence from
two identical ðn� 1Þ-dimensional subcubes by adding a
perfect matching between the two subcubes. A different
perfect matching leads to a different cube. Because of the
recursive construction, an n-dimensional cube has 2n nodes
in it. Each node in the cube is usually represented by an n-bit
binary string. A binary string x of length n can be written as
x ¼ xnxn�1; . . . ; x2x1, where xi is 0 or 1, 1 � i � n.

For each node x in an n-dimensional hypercube, there are
n distinct nodes adjacent to it and with a 1-bit complement
to it. It is easy to find an extended star structure ESðx;nÞ at
x in an n-dimensional hypercube with n � 5 as follows:

For each node x ¼ xnxn�1; . . . ; x2x1, there are n nodes
adjacent to it, namely, xnxn�1; . . . ; x2x1, xnxn�1; . . . ;
x2x1; . . . ; and xnxn�1; . . . ; x2x1, where the overline denotes
the complement bit. Let vn;1; vn�1;1; . . . , and v1;1 be these
nodes, respectively. For each vk;1, vk;1 ¼ xnxn�1; . . . ;
xk; . . . ; x2x1, there are n nodes adjacent to it also. We can
find one of these nodes with the ðkþ 1Þðmod nÞth bit
complement to vk;1, for all 1�k�n, and name it vk;2. Then,
vk;2¼xnxn�1; . . . ; xkþ1xk; . . . ; x2x1. Moreover, we can find
vk;3 ¼ xnxn�1; . . . ; xkþ2xkþ1xk; . . . ; x2x1 and vk;4¼xnxn�1; . . . ;
xkþ3xkþ2xkþ1xk; . . . ; x2x1 in the same way, where the indices
are modulo n (Fig. 8).

All these nodes do not have the same address (string
bits) since the bit length is at least five. Thus, the procedure
described above provides an extended star ESðx;nÞ for
every node x in V ðQnÞ, for n � 5. Consequently, the node
diagnosability of each node x 2 V ðQnÞ is n, and the
diagnosability of Qn is n, for n � 5, which is the same
conclusion as that proposed by Wang [17]. Note that there
are more than one way for searching an extended star in a
hypercube.

As another example, we show that the star graph [1]
with a dimension of four or more contains an extended
star structure as a subgraph at each node . Let n be a
positive integer. The star graph of dimension n, denoted
by Sn, is a graph whose set of nodes consists of all
permutations of f1; 2; . . . ; ng. Each node is uniquely
assigned a label x1x2; . . . ; xn and is adjacent to the nodes
xix2; . . . ; xi�1x1xiþ1; . . . ; xn, for 2 � i � n, that is, nodes
obtained by a transposition of the first symbol with the
ith symbol of the node. Consequently, there are n! nodes
in an n-dimensional star graph, and each node has degree
n� 1. We can find an extended star structure ESðx;n� 1Þ
at a given node x in Sn with n � 5 as follows:
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Fig. 8. An extended star structure in an n-dimensional hypercube

with n � 5.



For each node x ¼ x1x2; . . . ; xn, there are n� 1 nodes
adjacent to it, namely, x2x1x3x4; . . . ; xn, x3x2x1x4; . . . ; xn;
. . . ; xix2x3x4; . . . ; xi�1x1xiþ1; . . . ; xn; . . . , a n d xnx2x3x4;
. . . ; xn�1x1. Let v2;1; v3;1; . . . ; vi;1; . . . ; and vn;1 be these
nodes, respectively. For convenience of description, we
say that two nodes are adjacent to each other with a ð1 iÞ
edge if one node can be obtained by a transposition of
the first symbol with the ith symbol of the other node.
Accordingly, x is adjacent to vk;1 with a ð1 kÞ edge, for all
2 � k � n. For each vk;1, there are ðn� 2Þ more nodes
adjacent to it except for x. We can choose one of these
adjacent nodes of vk;1 with a ð1 kþ 1Þ edge if 2 � k �
n� 1 and with a ð1 ððkþ 2Þmod nÞÞ edge if k ¼ n. Let vk;2
be these nodes, for all 2 � k � n, respectively. We
then find vk;3 as one of the adjacent nodes of vk;2 with
a ð1 kþ2Þ edge if 2 � k � n� 2 and with a ð1 ððkþ 3Þ
mod nÞÞ edge if n� 1 � k � n. Finally, we find vk;4 as one
of the adjacent nodes of vk;3 with a ð1 kþ 3Þ edge if 2 �
k � n� 3 and with a ð1 ððkþ 4Þmod nÞÞ edge if n� 2 �
k � n (Fig. 9).

Therefore, an extended star ESðx;n� 1Þ at every node
x 2 V ðSnÞ can be retrieved for n � 4. We note, however, that
for n ¼ 4, the construction strategy described above has to
be modified a little bit, since the construction strategy in the
last paragraph will cause all vk;4’s to be the same node, for
all 2 � k � n. We can choose vk;4 as one of the adjacent
nodes of vk;3 with a ð1 3Þ edge for k ¼ 2, a ð1 4Þ edge for
k ¼ 3, and a ð1 2Þ edge for k ¼ 4 as a modified strategy.
Therefore, for n � 4, the node diagnosability of each node
x 2 V ðSnÞ is n� 1, and the diagnosability of Sn is n� 1,
which is the same conclusion as that proposed by
Zheng et al. [20].

For most multiprocessor systems or interconnection net-
works, an extended star at a given node can be carefully
found, as long as the dimension n is suitably large. This
explains the fact that the node diagnosability of a given node
matches its degree in many cases.

As one more example, consider an m-dimensional
hypercube system Qm and an n-dimensional hypercube
system Qn, for m � n � 5. The node diagnosability of each
node in Qm (Qn, respectively) is m (n, respectively). Let u be
a node in Qm and v be a node in Qn. A new system can be
formed by adding an edge ðu; vÞ between Qm and Qn.
Applying the extended star structure, the node diagnosa-
bility of each node in Qm (Qn, respectively) remains m (n,
respectively) except for u (v, respectively), while the node

diagnosability of node u (v, respectively) increases to mþ 1
(nþ 1, respectively). Overall, the diagnosability of this new
system is n.

We now measure the time complexity to diagnose all the
faulty nodes in a system. For most of the practical systems
with N nodes, the degree of each node is in the order of
logN . For example, the n-dimensional hypercube Qn has
N ¼ 2n nodes, and the degree of each node is n, n ¼ logN ;
the n-dimensional star Sn has N ¼ n! nodes, and the degree
of each node is n� 1 ¼ OðnÞ ¼ OðlogN

lognÞ ¼ Oð
logN

log logNÞ. We
assume that a testing result of each comparator for each
pair of distinct neighbors with which it can communicate
directly is stored in a syndrome table. Given an extended star
structure ESðx;nÞ at a node x, assume that the time for
looking up the testing result of a comparator in the syndrome
table is constant c. Then, the time needed for determining the
faulty or fault-free status of node x is 3c logN ¼ OðlogNÞ.
Consequently, the total time for diagnosing all the faulty
nodes is OðN logNÞ.

As a result, for most practical multiprocessor systems,
especially some well-known symmetric and regular topol-
ogies like hypercube systems, the time for self-diagnosis is
OðN logNÞ, where N is the total number of processors in it.
On the other hand, the presented diagnosis algorithm is not
restricted to symmetric systems only. We can apply such a
method to diagnose a system node by node and, conse-
quently, to diagnose the whole system. In general, the time
complexity is OðN�Þ, where � is the maximum degree of a
node in this system.

The time complexityOðN logNÞ obtained here is based on
the symmetry of most recently practical multiprocessor
systems. Applying the traditional approach by Sengupta and
Dahbura [16] results in an initiate result of time complexity
OðN5Þ. However, under some constraints like symmetry or
regularity of the systems, using the classical approach may
result in a better computational complexity than OðN5Þ,
especially on some special cases of hypercubes or other well-
known topologies. A recent paper can be referred on this
issue; Yang and Tang [19] address the fault identification of
diagnosable multiprocessor systems under the MM* com-
parison model and present an OðN�3�Þ time diagnosis
algorithm for an N-node system, where � and � are the
maximum and minimum degrees of a node, respectively.

6 CONCLUSIONS

The issue of identifying all the faulty processors is
important in the design of interconnection networks or
multiprocessor systems, which is implementable in VLSI.
The process of identifying all the faulty processors is called
diagnosis of a system. Under the asymmetric comparison
diagnosis model, each processor acts as a comparator to test
each pair of adjacent two processors. Further, Sengupta and
Dahbura [16] proposed a polynomial-time algorithm with
time complexity OðN5Þ to diagnose a system with total
number N of processors. In some circumstances, it is not
necessary to judge the status of all processors but several
ones in some substructure of the system such as a ring
structure or a path structure.

In this paper, we proposed a novel idea on system
diagnosis called node diagnosability. Opposite to that of the
traditional diagnosability, the concept of node diagnosability
puts more focus on a single processor and requires only
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Fig. 9. An extended star structure in an n-dimensional star graph

with n � 5.



identifying the status of this particular processor correctly.
Estimating the node diagnosability of each processor in a
system also provides a new viewpoint for checking the
diagnosability of the whole system. Under the comparison
diagnosis model, we proposed a sufficient condition to
determine a given processor’s node diagnosability and an
efficient algorithm to determine whether a processor is
faulty based on the local syndrome of a given extended star
structure. All these concepts can be applied to many well-
known interconnection networks. For most practical multi-
processor systems, the number of links connecting to each
processor is in the order of logN , where N is the total
number of processors. The time complexity of our algo-
rithm to diagnose a given processor is OðlogNÞ, and that to
diagnose all the faulty processors in a system is OðN logNÞ.

Finally, we propose a research topic worth studying at
the end of this paper, which is the issue of the underlying
assumptions consistent with the comparison diagnosis
model. As referred to those assumptions, all faults are
permanent, and the comparison output performed by a
faulty processor is unreliable. However, in future technol-
ogies, it is likely that many faults will be transient or
nonpermanent, making fixed diagnosis strategies more
complex and violating the comparison diagnosis strategy
we are based on. Furthermore, a faulty processor may be
able to perform self-diagnosis and identify itself as faulty.
Therefore, violating each assumption of the comparison
model may lead to a different situation, and each of the
modifications will be an interesting problem for further
research.
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