
國 立 交 通 大 學

資訊科學系

碩 士 論 文

應用公平佇列方法

在網路通道閘道器上之請求排程

Request Scheduling
with the Fair Queuing Discipline at Access Gateway

研 究 生：曹樂淇

指導教授：林盈達 教授

中 華 民 國 九 十 三 年 六 月

 I

應用公平佇列方法在網路通道閘道器上之請求排程

Scheduling Requests
with the Fair Queuing Discipline at Access Gateway

研 究 生：曹樂淇 Student：Le-Chi Tsao

指導教授：林盈達 Advisor：Dr. Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學系

碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science
College of Electrical Engineering and Computer Science

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master

in

Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 II

應用公平佇列方法

在網路通道閘道器上之請求排程

學生：曹樂淇 指導教授：林盈逹

國立交通大學資訊科學研究所

摘要

對 ISP 的客戶而言，當對外的連線網路成為網路瓶頸時，最常見的因應之道是

在使用者端的閘道器上採用公平佇列的方法。然而，當網路同時有過多的下載行為

時，會使得對外連線網路的下行鏈結成為瓶頸，此時在使用者端的閘道器上使用公

平佇列並不能解決此一問題。這是因為下載的回應是在 ISP 端的閘道器上形成佇

列，而不是在使用者端的閘道器上形成佇列。針對這樣子的情形，可以對使用者端

閘道器上的請求佇列做排程來管理 ISP 端閘道器上的回應佇列。故本論文先陳述二

個使用公平佇列方法來實踐請求排程時會遇到的問題，分别是釋放請求的時機以及

順序。而後提出一個基於公平佇列方法的請求排程，其中包含了請求型式的公平佇

列與視窗服務速率控制器。前者藉著依從一般化的行程共享精神來達成加權的頻寛

使用比例與頻寛共享。後者藉由控制共存的回應數量來達成高頻寛使用率並且降低

回應延遲時間。透過模擬與實驗的結果，顯示出各個類別間的公平指數分別為 0.89

與 0.87，回應延遲時間則是分別降低了 23.44%與 30%。此外，同樣是讓頻寬使用率

達到滿載，對中央處理器的負擔而言，得到控制的共存回應數量會比無限制的回應

數量要來得少，如此大約可省下 1/4 的處理耗費。

關鍵字：請求排程、網路通道閘道器、公平佇列

 III

Request Scheduling

with the Fair Queuing Discipline at Access Gateway

 Student: Le-Chi Tsao Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao Tung University

Abstract

For ISP’s customers, when the access link becomes the bottleneck to connect with the

Internet, a fair queuing (FQ) discipline deployed at a user-side access gateway is the present

solution. However, deploying a FQ discipline at a user-side gateway cannot handle the case

when the downlink is the bottleneck, which may results from exceeding concurrent

responses in downloading. In the case, responses are queued at the ISP-side, not the user-side,

gateway. A solution is scheduling the requests at the user-side gateway to manage the

responses queued in the ISP-side gateway. This works first reveal that scheduling requests

relying on the fair queuing discipline has two problems in terms of the sending timing and

the ordering of requests. Next, we propose a fair-queuing based request scheduling (FQRS)

method, consisting of a request-based fair queuing (RFQ) discipline and a window-based

service-rate control (WRC) mechanism. RFQ approximates the generalized processor

sharing (GPS) model to provide weighted fairness and bandwidth sharing between classes.

WRC controls the number of concurrent responses over the downlink to provide almost full

bandwidth utilization and reduces the user-perceived latency. The results in simulation and

field trial demonstrate FQRS provides short-term fairness in 0.89 and 0.87 respectively while

reduces 23.44% and 30% of user-perceived latency separately. Besides, FQRS saves 1/4 of

CPU loading with the same throughput comparing to the one no FQRS is implemented.

Keywords: request scheduling, access gateway, fair queuing

 IV

Contents

CHAPTER 1 INTRODUCTION ..1

CHAPTER 2 SCHEDULING REQUESTS WITH FAIR QUEUING DISCIPLINES3

2.1 THE TIMING OF RELEASING REQUESTS...3
2.2 THE DETERMINATION OF THE NEXT REQUEST ..4

CHAPTER 3 FAIR-QUEUING BASED REQUEST SCHEDULING DISCIPLINE7

3.1 OVERVIEW OF FQRS...7
3.2 REQUEST-BASED FAIR QUEUING (RFQ)..8
3.3 WINDOW-BASED SERVICE RATE CONTROLLER (WRC)... 11
3.4 EXAMPLES ..13
3.5 DISCUSSIONS FOR EXCEPTIVE CASES..15

CHAPTER 4 SIMULATION RESULTS ...18

4.1 TOPOLOGY..18
4.2 WEIGHTED FAIRNESS AND SHARING ...19
4.3 LOWER AVERAGE LATENCY ..20
4.4 ADJUSTMENT OF WINDOW SIZE..22
4.5 CHOICE OF F AND UMAX ...23

CHAPTER 5 IMPLEMENTATION ..25

5.1 ARCHITECTURE...25
5.2 FIELD TRIAL ...27

CHAPTER 6 CONCLUSIONS AND FUTURE WORKS..30

REFERENCES..32

 V

List of Figures
FIG.1 THE TYPICAL TOPOLOGY TO ACCESS THE INTERNET AND THE INTERNAL ARCHITECTURE OF

FAIR-QUEUING BASED REQUEST SCHEDULING (FQRS)...7
FIG. 1 PROCEDURES OF THE RFQ...9
FIG. 3 PROCEDURE OF WINDOW-BASED SERVICE-RATE CONTROLLER...13
FIG. 4 EXAMPLE FOR FQRS IN HANDLING BACKLOGGED TRAFFIC...14
FIG. 5 EXAMPLE FOR FQRS IN HANDLING REQUESTS WHICH MEET AN EMPTY CLASS QUEUE. THE ACCD IS

RESET AS THE MINIMUM AMONG ALL OTHER ACC COUNTERS ..15
FIG. 6 TWO POTENTIAL INTEGRATED ARCHITECTURES FOR HANDLING THE NETWORK WHEN EXCEPTIVE

TRAFFIC COEXISTS ...17
FIG. 7 SIMULATION TOPOLOGY FOR THREE CLASSES WITH SERVICE RATIO 4:2:118
FIG. 8 BANDWIDTH USAGE OF THREE CLASSES WITH SERVICE RATIO 4:2:1 IN FOUR PHASES20
FIG. 9 USER-PERCEIVED LATENCY COMPARISON BY DECOMPOSING TIME FACTORS: QUEUING TIME

AND TRANSMISSION TIME 21
FIG. 10 THE SIZE OF WMAX IS STEADY IN CASE OF INSUFFICIENT TRAFFIC. ...23
FIG. 11 VARIATIONS OF USER-PERCEIVED LATENCY, QUEUING TIME, AND THE NUMBER OF PACKETS

QUEUED IN ISP-SIDE ROUTER UNDER VARIOUS UMAX...24
FIG. 12 THE TRANSACTION FLOW IN SQUID. THE COMPONENTS OF FQRS ARE SHAPE IN DOUBLE

RECTANGLES. DOTTED RINGS CIRCLE THE DATA STRUCTURES..26
FIG. 13 TEST BED FOR FIELD TRIAL IN SQUID ...27

 VI

List of Tables
TABLE 1 THE FUNCTIONS OF TRANSACTION FLOW FUNCTIONS IN SQUID...26
TABLE 2 USER-PERCEIVED LATENCY COMPARISONS. FQRS SQUID SPENDS ADDITIONAL QUEUING TIME. 28
TABLE 3 COMPARISON BETWEEN FQRS AND THE ORIGINAL SQUID IN PERCENTAGE OF CPU TIME..........28

 1

Chapter 1 Introduction

Currently, numerous enterprises connect to the Internet to exchange data by the

access link of ISP. Generally speaking, ISPs are willing to invest money in expanding

the backbone bandwidth to provide their customers better service. However, to

minimize costs, their customers often delay upgrading the bandwidth of the access

link, causing it becomes the potential bottleneck to access the Internet.

For enterprise users, to provide differentiated service for important connections

through the access link, the common solution is scheduling packets with fair queuing

disciplines at their access gateway. Unfortunately, the solution fails when the

downlink is the bottleneck. In this case, packets are queued at the ISP-side edge router,

not at the user-side gateway, for traversing the bottlenecked access link. Scheduling

packets at a user-side access gateway is useless because the packets have passed the

bottleneck.

This work aims to demonstrate that scheduling requests, instead of packets, at the

access gateway can solve the mentioned failed case of packet scheduling. The

bandwidth of downlink can be managed by controlling the releasing of uplink

requests. Such a solution is based on that most applications running over the Internet

are client-server model, i.e. request/response model, such as HTTP, FTP, and E-mail.

Request scheduling is used in some recent studies to provide Web QoS [4]. These

studies provided QoS services on a single Web server [5-7], caching proxies [9, 10]

and server farms [11-13]. No published studies discussed how to design request

scheduling at the access gateway. Two of our previous works, Web BM [14] and RQS

[15], have targeted the similar object. However, both of them may be hard to

implement due to their complexities.

 2

First, we identify two problems occurring in scheduling request with the fair

queuing disciplines. One concerns the timing of releasing requests and the other

concerns the determination of the next released request. Subsequently, we propose a

Fair-Queuing based Request Scheduling (FQRS) method, consisting of a

Request-based Fair Queuing (RFQ) discipline and a window-based service-rate

controler (WRC). The RFQ discipline provides weighted fairness and bandwidth

sharing as other FQ disciplines since it is also based on the Generalized Processor

Sharing model [1]. The WRC keeps the downlink at high utilization, but not in

congestion. The WRC achieves the goal by monitoring the utilization and controlling

the number of outstanding responses. A response is denoted as outstanding if its

corresponding request is sent out, but the response has not been fully received.

The fairness provided by FQRS may degrade with the increase of the arrival

traffic not triggered by custom side requests. The other challenging case is that

receiving an extreme-long response in the fixed rate equal to the downlink bandwidth,

where the fixed rate means that the response is carried by non-congestion-aware

protocol, like UDP. Obviously, except the malicious attacks, this challenging case

does not occur in the Internet. Further discussions are given in the end of Chapter 3.

The remainder of the paper is organized as follows. Chapter 2 identifies the two

problems occurring in scheduling requests with the fair queuing discipline. Also, the

ideas in our previous works, Web BM and RQS, for handling these problems are

briefed. Chapter 3 proposes the FQRS algorithm, consisting of the RFQ and the WRC,

and discusses its potential fairness degradation in two cases. Chapter 4 verifies our

algorithm on providing weighted fairness and bandwidth sharing while shortening the

transmission time of responses. Chapter 5 demonstrates the effect of the FQRS

through field trail, where the FQRS is implemented in Squid [16], an open-source

web proxy package. Chapter 6 gives the conclusion and future works.

 3

Chapter 2 Scheduling Requests with Fair Queuing

Disciplines

FQ disciplines approximate the GPS model can schedule packets well. However,

as mentioned below, two problems may occur in request scheduling by FQ disciplines.

The user traffic handled in a request scheduling includes the uplink requests and

downlink responses, not just the downlink packets.

2.1 The Timing of Releasing Requests

2.1.1 Problem Statement

The FQ disciplines send the next packet when the last packet has been

transmitted. The bandwidth of a bottlenecked link is totally consumed by the

scheduled packets themselves. That is, the packet transmission monopolizes the link

bandwidth. Therefore, once a packet is selected from a queue by a scheduling

discipline, it is transmitted in the rate equal to the capacity of this link.

However, the request scheduling cannot send the next request following the last

request right away. The bandwidth of bottlenecked downlink is consumed by the

responses, rather than scheduled requests. Sending requests one-by-one results in too

heavy concurrent outstanding responses because the response is usually much larger

than the request and a response transmission does not monopolize the downlink

bandwidth. Too many concurrent outstanding responses cause the downlink in a

serious congested condition.

On the other hand, it is not appropriate in request scheduling that no request is

allowed to be sent until the preceding request gets its response completely. When a

request is scheduled, the bandwidth of the bottlenecked downlink is not consumed

 4

immediately until the corresponding response returns. Obviously, sending the next

request until receiving the whole preceding response would waste the bandwidth of

downlink, causing low bandwidth utilization.

2.1.2 Potential Solution

Obviously, appropriate outstanding responses are necessary in scheduling request

with FQ disciplines. The request scheduler WebBM, our previous work, allocates the

bandwidth among responses precisely to avoid the link from waste and congestion.

For not wasting, WebBM releases next request in advance so that its response can

exploit the idle bandwidth as soon as the preceding response finishes. For not

congestion, WebBM only releases the request whose bandwidth requirement of

response fits the coming idle bandwidth.

To forecast when and how many idle bandwidth there is, WebBM needs the

information about the rate and the finish time of each response transmission. To

decide which request is the next and its advanced releasing time, WebBM needs the

potential bandwidth requirement, and the time between releasing a request and

receiving the first packet of its corresponding response. Although the required

information can be abtained from historical statistics, inaccurate information may

affect the access link utilization. Besides, no historical data exists in the initial state,

and thus WebBM may encounter great difficulties in an open environment.

2.2 The Determination of the Next Request

2.2.1 Problem Statement

Due to the rule of approximating GPS, the FQ disciplines tend to select the

packet that would complete service first in the fluid GPS model as the next packet.

Since packets are transmitted in a full capacity of link, the calculation of the potential

service completion time only involves two known parameters, packet arrival time and

 5

packet size. Thus, the potential service completion time can be easily calculated when

a packet arrives. For two packets arriving at the same time, the packet size decides the

order of service completion time. A smaller packet finishes service earlier.

However, for request scheduling, the service completion time of a transaction is

unknown. The response size of a transaction is unknown until the first packet of the

returning response is got. At that time, the size of a response can be extracted from the

application header of this packet. Moreover, a response may not be transmitted in a

constant rate. For this reason, request scheduling cannot serve requests simply by the

order of service completion time to provide fairness. Hence, the determination of

which request will be scheduled as the next is the second problem.

2.2.2 Potential Solution

The RQS [15], another our previous work, had the same four goals as this work:

proportional fairness, bandwidth sharing, congestion reduction, and fully link

utilization. It merged the algorithm from WebBM to estimate the timing of releasing

next request and a selection discipline derived from the Deficit Round Robin (DRR)

[17], which is one of packet-based fair queuing algorithms. DRR provides fairness by

proportional quantum in bytes among classes. Class queues are served in a

round-robin manner. The quantum of each class’s deficit counter stands for the

allowed service amount, i.e. the total length of packets can be transmitted in each

round.

RQS measures fairness by counting the size of received responses size. Thus, the

quantum of one class stands for the size of responses allowed to be received in one

round. When planning to send a request, RQS selects the first request from a queue

which is in turn meanwhile owns sufficient quantum for the given corresponding

response size. If the quantum is insufficient, the deficit counter of this queue saves the

remaining quantum for use in the next round. The scheduler then serves the next class

 6

queue.

The selection discipline used in RQS is designed under the assumption that the

size of a response is always given as the request arrives. Inaccurate response size may

degrade the fairness between classes. Actually, the response size is unknown when the

request arrives, and it is extracted until the first response packet is received in most

case. For this problem, RQS has a compensation mechanism to prevent the unfairness

resulted from inaccurate estimation of response size at scheduling. Once the obtained

real size is different from the estimated one, the corresponding deficit counter is

compensated with the difference in size in that round.

 7

Chapter 3 Fair-Queuing based Request Scheduling

Discipline

The chapter proposes a Fair-Queuing based Request Scheduling (FQRS)

discipline. It is expected to provide proportional fairness, sharing resource, full

bandwidth utilization, and short transmission latency.

3.1 Overview of FQRS

Fig.1 The typical topology to access the Internet and the internal architecture of

 fair-queuing based request scheduling (FQRS).

Figure 1 is a typical network topology that an enterprise accesses the Internet

services. Requests sent from clients go through the access gateway and the uplink of

the access link to remote servers, and the corresponding responses answered by the

 8

remote servers return to clients through the downlink of the access link and the access

gateway. The FQRS discipline is deployed at the user-side access gateway. The FQRS

consists of request-based fair queuing (RFQ) and window-based service-rate

controller (WRC). The former decides which request is the next one while the latter

determines the timing to release requests. The request scheduler in RFQ makes the

decision by referring the ACC counters. The ACC adjuster maintains the ACC

counters and the request receiver in RFQ executes the enqueueing process when

requests arrive.

3.2 Request-based Fair Queuing (RFQ)

3.2.1 ACC Counter and Next Request Selection

Each ACC counter accumulates the received normalized service of each class.

Assume a class receives S bytes responses from beginning. Then, the normalized

service of this class is the value which is S divided by the weight of this class.

Every time invoked by WRC, the request scheduler sends out the HOL

(head-of-line) request from the class which has the minimum ACC counter. Under the

assumption that all classes have backlogged requests, a class with smaller ACC value

represents that it received less service than other classes at present. Thus, it is

reasonable that selecting a request from this class will achieve the fairness between

classes.

On the other hand, to avoid one class from occupying all resource after a long

idle period, its ACC counter is updated to the minimal values among other ACC

counters when a request arrives. Without the update, the ACC counter of this class

may be far smaller than other ACC counters, causing that no request can be selected

from other classes for a long time. Basically, the RFQ follows the concept in the fair

queuing service disciplines that the class using the idle bandwidth should not be

 9

punished.

3.2.2 Basic Procedures

Fig. 1 Procedures of the RFQ

Fig.2 (a), (b), and (c) list the pseudo codes of the three components in RFQ. The

request scheduler picks the class queue with the minimum ACC counter and sends the

HOL request in that queue out. After that, the window size is increased by one to

denote one more outstanding response.

As shown in Fig. 1, the ACC adjuster, pointed by two arrows, represents that it is

invoked in two cases. First, it is invoked when WRC receives a response of any class.

The length of the response would be added to the ACC counter of the corresponding

class. Second, it is invoked when traffic is infused to an empty class queue. In the

case, the ACC counter would be reset as the minimum value among other ACC

counters.

Scheduler
if (Qno = GetMinAccQ() != Null) {
 SendHeadReq(Qno)
 W++
}

 (a) Procedure of request scheduler
AccAdj
if (TypeRsp)
 ACCQno += len / WTQno
if (TypeReq)
 ACCQno = GetMinAcc()

 (b) Procedure of ACC Adjuster

 (c) Procedure of request receiver

ReqRcv
req = Rcv()
Qno = Classfy(req)
if (Empty(Qno))
 AccAdj(TypeReq, Qno)
ENQUEUE(req)
if (W == 0)
 Scheduler()

 10

The request receiver classifies and enqueues all incoming requests. If the arrival

request is classified to an empty queue, the request receiver informs the ACC adjuster

to reset the ACC counter of this idle class. If the system is idle, that is, no responses

are outstanding, the request receiver actively asks the request scheduler to release the

coming request immediately. The variable W would be introduced in section 3.3.

3.2.3 Mapping to Packet-based GPS

In packet-based fair queuing disciplines, each packet is tagged with timestamps.

Let i
fT be the finish timestamp of the ith packet of flow f, i

fV be the virtual time

when it arrives, and i
fL and fφ denote its length and the weight of flow f,

respectively. i
fT is defined as follows:

 { }1max ,
i
fi i i

f f f
f

L
T T V

φ
−= + (1)

where 0
fT ＝ 0 and 0i ≥ . Several maintenance of i

fV were discussed, such as that

in SCFQ [2] and SFQ [3].

In the RFQ, only the HOL request of each queue is tagged with accumulated

received normalized response size of that class as timestamp when responses or

requests are received. Let i
kACC be the accumulated received normalized response

size for class k before the (i+1)th request is released. The virtual time i
kV herein is

defined as the minimum value of all other classes’ ACC counters meanwhile the

request meets an empty class queue when it arrives, or else it is defined as zero.

Suppose the number of classes is m,

 { }1,max −= i
k

i
k

i
k ACCVACC (2)

{ }
)3(0

,,,,,,min 111

else
caserevivingifACCACCACCACCV i

m
i
k

i
k

ii
k

=
= +− LL

 11

In packet-based fair queuing disciplines, the HOL packet of a queue with

minimum finish timestamp is selected as the next. It means that the packet could

complete service soon can be served first. In other words, the one asking least

resource gains service before others. In FQR, the HOL request of a class with

minimum accumulated received response size is served as the next. It means the class

having consumed least resource can be served earlier.

3.3 Window-based Service Rate Controller (WRC)

The WRC component adjusts the number of concurrent outstanding responses by

measuring the bandwidth utilization of the link, denoted by U. As shown in Fig. 1, the

variable W is used to record the number of outstanding responses at present. The

variable Wmax represents the maximum number of outstanding responses allowed by

WRC.

3.3.1. The Measurement of Utilization

The utilization U is acquired through dividing the received response in bytes by

the duration of recomputing interval. How to define the interval is a major issue.

Defining a fixed interval is simple, but the value of the interval is hard to given. Too

short interval may not reflect the average of U and may lead Wmax to be adjusted

frequently. On the contrary, too long interval may lead the link into low utilization

since Wmax is changed slowly and cannot immediately reflect the low utilization.

Compared to the fixed interval, this work computes U in a variant interval. The

interval is defined as the period that F×Wmax ending events of response transmission

occur, where F is a constant and its value is not sensitive for the resulted utilization,

as shown in the simulation later. By such a definition, the recomputing interval is

dependent with the response size and the maximum number of concurrent outstanding

responses.

 12

3.3.2 Window-based Outstanding-response Control

WRC uses a window-based mechanism to adjust the number of outstanding

responses. When U is lower than the expected utilization, denoted as Umax, Wmax

would be increased to release more requests so that more concurrent outstanding

responses can exploit the bandwidth and then raise the utilization U. On the contrary,

when U is higher than Umax, Wmax would be decreased so that fewer outstanding

responses compete for the bandwidth.

Assume that WRC has backlogged requests. The adjusting rule used in WRC is

simple and shown as follows.

()
()





>−=

<+=
+

+

maxmax
1

max

maxmax
1

max

1

1

UUWW

UUWW
iii

iii

 (4)

where iWmax is the maximum concurrent outstanding responses allowed in the i-th

interval and 10
max =W while iU represents the bandwidth utilization computed in

the i-th interval. Notably, the rules only applied when W=Wmax. When W<Wmax, it is

wrong to expect the raise of U by increasing Wmax.

In order to quickly boost U at beginning, a fast-start mechanism is used on

adjusting Wmax. Wmax is doubled every interval when U is less than half of Umax. Until

U is greater than half of Umax, WRC begins to use the above rule.

3.3.3. Basic Procedure

The pseudo code of the WRC is listed in Fig. 3. When WRC receives any part of

a response, it verifies the class this response belongs to, and invokes the ACC adjuster

to update that class’s ACC counter. Once the received data includes the last packet of

a response, W would be decreased by one to imply a request is fully answered. If now

is the end of a recomputing interval, the utilization U is re-computed. The next step

after adjusting Wmax is invoking the request scheduler to release requests as more as

 13

possible, till Wmax requests have been sent or no more request can be send.

Fig. 3 Procedure of window-based service-rate controller

3.4 Examples

 This section gives two examples displaying the scheduling behavior in FQRS.

3.4.1 Backlogged Traffic

Traffic of a class is backlogged at time t if some requests are queued at this

class’s queue. Fig. 4 shows an example of backlogged traffic. Consider the case that

three classes compete for the bandwidth of the bottlenecked link. The ratio of their

service weights is 4:2:1.

 As shown in Fig. 4(a), at time 0, the values of all three ACC counters are 0.

Some requests have already arrived. Also, three requests, A1, B1, and C1, have been

sent out from QA, QB, and QC, respectively. Suppose the size of the window is three

(Wmax = 3). Hence, all slots of the window are occupied by the three outstanding

responses A1, B1, and C1.

As shown in Fig. 4(b), when the first 20-byte response corresponding to the

request A1 returns, the ACC counter of class A (ACCA) is calculated as 20/4, and a

slot of the window is freed. After that, the scheduler selects next class queue with

WRC
rsp = Rcv()
Qno = VerifyQ(rsp)
len = Size(rsp)
AccAdj(TypeRsp, Qno, len)
if (LastPkt(rsp)) {
 W --
 rcvd_rsp++
 if (rcvd_rsp == F×Wmax) {
 ComputeUtil()
 AdjustMaxWin()

}
 while ((W < Wmax) && (backlogged))
 Scheduler()
}

 14

minimum ACC counter to serve, i.e. QB. The HOL request B2 of QB occupies the

freed slot of the window and is sent out now. Next, as shown in Fig. 4(c), the response

corresponding to the request B1 returns. A slot of the window is freed again and

ACCB is updated as 20/2. The HOL request of QC, C2, is scheduled.

Fig. 4 Example for FQRS in handling backlogged traffic.

3.4.2 Traffic from a Reviving Class

Traffic of a class is reviving at time t meanwhile some requests arrive to an

empty class queue. Fig. 5 illustrates an example of reviving traffic. Assume 3 class

queues, QA, QB, and QC, have backlogged traffic, and the QD is empty for a while. The

ratio of their service weights is 4:2:1:1.

(a). Initial Status

(b). The snapshot when response A1 returns

(c). The snapshot when response B1 returns

 15

As shown in Fig. 5(a), at time t, the values of the four ACC counters are 5, 10, 10,

and 0, respectively. Suppose the request D1 belonging to QD arrives at the time a little

later than time t. After the D1 enters the QD, ACCD is set as 5, the minimum of all

other ACC counters. Then, as shown in Fig. 5(b), once a response, for example, the

10-byte response corresponding to the request B2 returns, QD can be served instantly.

That is, D1 is the next request to be sent out as soon as a slot of the window is free.

Fig. 5 Example for FQRS in handling requests which meet an empty class queue. The

ACCD is reset as the minimum among all other ACC counters

3.5 Discussions for Exceptive Cases
The FQRS is designed under the assumption that all uplink traffic is requests and

downlink traffic is responses. Also, all responses are triggered by the FQRS-released

requests. However, the exceptive traffic does coexist with the assumed traffic on the

real network environment. The exceptive traffic is classified into three types for

conveniently discussion.

(a). D1 arrives in empty queue Q4

(b). The snapshot when response B2 returns

 16

3.5.1 Downlink exceptive traffic belonging to some classes

The first type of traffic means the exceptive traffic that can be classified into the

pre-defined user classes. For example, POP3 mail traffic for someone host in Classi.

The traffic may still be the downlink responses, but their requests are not recognized

by the implementation of FQRS. It is possible since only the web request is

recognizable for the present implementation of FQRS.

FQRS regards these exceptive packets as the received service of classes. When

the packets not triggered by an (recognized) request arrive from the Internet, their

sizes are accumulated into the AC of the class which the packets belong to, as other

response packets triggered by requests. For example, if a Classi host receives a crowd

of such packets from the Internet, the sizes of packets would be accumulated into ACi.

The additional increased value in ACi because of these unexpected packets brings the

less requests can be sent out from the Classi by FQRS.

3.5.2 Downlink exceptive traffic not belonging to any class

Exceptive traffic not belonging to any class may include requests from outside

network for the responses provided by the intranet servers, or the malicious attacks.

The former case is possible for the enterprises having web servers for their customers.

The exceptive traffic contributed from such request is small usually, compared with

other responses traffic running on the downlink. The latter case may rudely and fully

fill the downlink, resulting in the failure for all transmissions. However, the latter case

is a security problem and out of the scope of this work.

This exceptive traffic is considered by the WRC in FQRS as other assumed

response traffic, when WRC monitors the utilization of the downlink to adjust Wmax.

More ratio of exceptive traffic may only bring a smaller Wmax. That is, WRC may

think such a small Wmax is enough to fully utilize the downlink bandwidth. Fairness

between classes is not affected in this case.

 17

3.5.3 Uplink exceptive traffic

 The traffic may include uplink responses and traffic actively sent from the

internal hosts. If this traffic turns the uplink to a bottleneck, a traditional FQ discipline

at the access gateway is suggested first. FQRS and the uplink FQ discipline could be

coexist well, as shown in Fig. 6(a). Also, if the fairness of uplink is not a concern,

FQRS + Priority Queues would be a simple solution, as shown in Fig. 6(b). The

solution gives the request traffic high priority since they are smaller than responses

usually.

Fig. 6 Two potential integrated architectures for handling the network when exceptive

traffic coexists

S
w’

w
w

C

Request downlink
traffic

uplink
traffic

PKT-FQ

w

FQRS

S
w’

w
w

C

Request downlink
traffic

uplink
traffic

PKT-FQ

w

FQRS

P
REQ

FQRS

downlink
traffic

uplink
traffic H

L

REQ

N

Y
N

Y
P

H

L

P
REQ

FQRS

downlink
traffic

uplink
traffic H

L

REQ

N

Y
N

Y
P

H

L

(a) The architecture for managing the bottlenecked uplink

(b) The architecture for network without uplink QoS

 18

Chapter 4 Simulation Results

This chapter verifies the effects of the FQRS through simulation by ns-2 [18] in

terms of the proportional fairness and sharing, user-perceived latency, the relationship

between the access link utilization and value of Wmax, and the choice of F and Umax.

4.1 Topology

The HTTP/Cache class in ns-2 acts as a web proxy cache, and sits between

clients and web servers. It intercepts the requests sent from clients and forwards them

to the remote servers if the requested data is not cached yet. Therefore, this work

disables the cache function in HTTP/Cache and implements FQRS in the class.

Fig. 7 Simulation topology for three classes with service ratio 4:2:1

Figure 7 shows the topology used in the simulation. The FQRS gateway provides

three classes, Class1, Class2, and Class3, with the service ratio 4:2:1. Each class

involves three clients and all clients connect to remote web servers through the FQRS

gateway. The link between the FQRS gateway and every client is 10Mbps with 2 ms

propagation delay. The access link connecting the FQRS gateway and the ISP router is

configured as 2Mbps capacity with 10ms propagation delay. The ISP router connects

 19

to twelve servers with twelve independent links. These servers are grouped into two

server farms, each involving six servers. The two farms represent overseas servers and

domestic servers. Links to these servers have a uniform distribution, as shown in Fig.

7. By the statistics from the real Internet [19], the web page size is a

lognormal-distributed random variable X with ln(X)=9.357 and σ=1.318. The

average response size is 27,656 bytes.

4.2 Weighted Fairness and Sharing

We demonstrate that FQRS provides proportional bandwidth between classes and

the idle bandwidth can be shared by active classes. Four phases are included in the

simulation and the duration of each phase is 200 seconds. In the first phase, all of the

three classes have backlogged requests. In the next two phases, Class1 and Class2

stops requesting separately, and then both of them have backlogged requests again in

the last phase.

Fig. 8(a) depicts the throughput of each class in every recomputing interval over

the 800 seconds. Fig. 8(b) shows the average throughput in each phase. During the

first phase, the three classes get proportional bandwidth in the service ratio 4:2:1. We

measure the short-term fairness of service ratio among classes through fairness index

[22]. The fairness index, defined as ∑
=

K

i
ix

1

2)(∕ ∑
=

K

i
ixK

1

2)(where ∑
=

K

i
ix

1
 represents

the sending rates of competing flows and K is the number of sampling, in this phase is

0.89. In the second phase, the idle bandwidth freed by Class1 is shared by Class2 and

Class3 proportionally. Both of the bandwidth obtained by Class2 and Class3 increase

in this phase, and the usage ratio between them is still 2:1. After Class2 stopping

requesting in the third phase, Class3 occupies all bandwidth until the end of this phase.

During the second and the third phase Class 1 and Class 2 still obtain a bit of

bandwidth separately due to their unfinished transactions. Once all idle classes have

 20

requests again in the last phase, the three classes obtain the bandwidth in the expected

proportion, 4:2:1, again. Compare the total bandwidth usage in the first phase and the

fourth phase, and the one in the first phase is lower because it costs time to raise the

bandwidth utilization in the initial state.

Fig. 8 bandwidth usage of three classes with service ratio 4:2:1 in four phases

4.3 Lower Average Latency

When a FQRS gateway is deployed, the user-perceived latency can be

(a) Bandwidth usage of three classes depicted every account interval

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 Phase

kbps

Class 1
Class 2
Class 3
All

0

400

800

1200

1600

2000

0 100 200 300 400 500 600 700 800
Timeline

kbps

BW of class 1

BW of class 2

BW of class 2

(b) Average bandwidth usage of three classes in four phases

 21

decomposed into transmission time and queuing time. The transmission time is

defined as the time spent on transmitting both of requests and responses between the

FQRS gateway and remote servers. The queuing time represents the time when the

request is queued in the FQRS gateway. The time in transmitting packets between

clients and the FQRS gateway is small and can be ignored. Besides, server answering

time is always zero in ns-2.

Fig. 9 User-perceived latency comparison by decomposing time factors: queuing

time and transmission time

The simulation scenario here is the same as that used in the first phase in section

4.1. Fig. 9 illustrates the decomposition of user-perceived latency for the three classes,

the average latency among all classes, and the latency if no FQRS is deployed,

denoted as non-FQRS. First, by comparing the left three bars, the different

user-perceived latencies are experienced by the three classes. They have different

queuing time in FQRS since they have different weights.

Second, by comparing the right two bars, the average latency (6.76 secs) in

FQRS is shorter than that in non-FQRS (8.83 secs) by 23.44%. It is because the

average transmission time in FQRS (1.5 secs) is far shorter than that in non-FQRS

(8.83 secs). The transmission time in FQRS is reduced as a result of reasonable

2.95

6.78

11.91

5.33
1.34

1.68

1.50

1.51

8.83

0

4

8

12

16

20

Time (sec)

transmission time

queuing time

Class 1 Class 2 Class 3 Average Non-FQRS

 22

number of concurrent outstanding responses. Section 4.5 with Fig. 11 would further

support the hypothesis.

4.4 Adjustment of Window Size

This section observes the relationship between access link utilization and the

value of Wmax. Clients in the three classes send requests in the 600-second duration

except the middle 200 seconds. During the middle 200 seconds, clients in Class1 and

Class2 stop sending requests. That comes out insufficient requests so that the FQRS

gateway may have no request to send out.

Fig. 10 reveals the relation between the access link utilization and the value of

Wmax. The utilization of access link stays around 0.95 as the expected Umax in the first

and last 200-second periods because of sufficient arrival requests.

In the 200th~400th sec, the utilization falls apparently due to the insufficient

arrival traffic, and the value of Wmax is constant. It is in vain to raise the value of Wmax

when the incoming requests are too few to occupy all window slots. Therefore the

value of Wmax keeps steady as described in equation 4. Because of insufficient arrival

requests, there are often some window slots are free. Once the last packet of a

response returns, queued requests can be scheduled out as more as possible until no

more requests can be sent or no more window slot is available. That is why the value

of W in Fig. 10 varies with a wide range during the 200th~400th sec.

0

4

8

12

16

20

0 100 200 300 400 500 600
Time line

window size

0

0.2

0.4

0.6

0.8

1

utilzation

Wmax
W
Utilization

 23

Fig. 10 The size of Wmax is steady in case of insufficient traffic.

4.5 Choice of F and Umax

This section examines the choice of F and Umax, two parameters can be

configured by administrators. This examination starts with the effect of F, and then on

the effect of Umax.

1) Effect of F: According to the examination on the effect of F between 1 and 16

when Umax is assigned to 0.8, 0.9, 0.95, and 0.99, the bandwidth utilization is not

susceptible to the value of F. When the value of F is smaller than 16, the degree of

bandwidth utilization can reach 95% of expected Umax, even though Umax is high as

99%. From this examination, it is suggested that value of F is set between 4 and 8

because they can come out best bandwidth utilization with respect to the expected

Umax.

2) Effect of Umax: Fig. 11 depicts the user-perceived latency, the queuing time

spent in FQRS, and the number of queued packet at the ISP-side router when Umax is

assigned to 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and 0.99 while F is assigned to 4. As

Umax increases, the user-perceived latency and the queuing time reduce meanwhile the

number of packets queued in ISP router rises. Raising Umax follows shorter

user-perceived latency, because more responses can be transmitted concurrent and the

bandwidth can be utilized more. However, the raise also causes packets to be queued

in ISP router because of less free bandwidth for eliminating the queued packets as

Umax is high. From observation of Fig. 11, the value of Umax is suggested to be set

between 90% and 95%.

 24

Fig. 11 Variations of user-perceived latency, queuing time, and the number of packets

queued in ISP-side router under various Umax

0

2

4

6

8

10

12

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Umax

Time (sec)

0

10

20

30

40

50

60
queue length

Latency

Queuing Time

ISP packet queue length

 25

Chapter 5 Implementation

We implement FQRS in Squid [16], which is an open source package of web

proxy cache, and perform field trial in an open network environment.

5.1 Architecture

Fig. 12 illustrates the transaction flow in Squid, and Table 1 lists the functions

used in the transaction flow. Data structures are displayed in dotted circles. The data

structure ConnStateData maintains the status of a connection. It is built when

httpAccept() accepts a new connection from a client. The two data structures

clientHttpRequest and request_t keep a request’s status. They are established when

clientReqdRequest() parses a request. After verifying access right and checking cache,

Squid starts to forward this request to remote server by the procedure

clientProcessRequest() according the request’s HTTP method.

The three components of FQRS, request receiver (FQRS_ReqRcv()) , request

scheduler (FQRS_Scheduler()) and ACC adjuster (FQRS_AccAdj()), are shaped in

double rectangles in Fig. 12. They are implemented after cache checking and before

forwarding. For each class, FQRS in Squid uses a link list to maintain its arrival

requests, as shown in the dotted circle A.

When the response returns in httpReadReply(), the FQRS component WRC

(FQRS_WRC()) updates the value of the corresponding ACC counter, and refreshes

the maximum allowed concurrent outstanding responses if needed. Once the

responses finishes, fwdComplete() forwards the response to the client who requested

it.

 26

Fig. 12 The transaction flow in Squid. The components of FQRS are shape in double

rectangles. Dotted rings circle the data structures

Table 1 The Functions of transaction flow functions in Squid
Function Name Function Description

httpAccept (sock, void *) Accept a new connection on HTTP socket

clientReadRequest (fd, ConnStateData*) Parse received HTTP request

clientAccessCheck (clientHttpRequest *) Verify client’s access right

clientCheckNoCache (clientHttpRequest *) Check if forced to never cache

FQRS_ReqRcv(srv_ip, clientHttpRequest *) Classify request, adjust ACC value

FQRS_AccAdj() Adjust ACC counters

FQRS_Scheduler() Schedule a request out

clientProcessRequest(clientHttpRequest *) Verify connection method

clientProcessMiss(clientHttpRequest *) Prepare to fetch the object due to cache miss

fwdStart(fd, request_t *) Start to forward the request to remote server

fwdConnectStart(fwdState) Establish connection to remote server

fwdDispatch(fwdState) Dispatch according to protocol type

httpStart(fwdState) Start HTTP action

httpSendRequest(httpState) Write request to remote server

 27

httpReadReply() Read reply

FQRS_WRC() Controlling the sending rate of requests

fwdComplete() Forward the response to the whom asks it

5.2 Field Trial

Fig. 13 illustrates the test bed for evaluating the FQRS in Squid. Avalanche [20]

is an application-layer traffic generator. It emulates the behaviors of multiple clients

and sends requests to the web server in the Internet. Avalanche imports a URL list,

which is a historical URL record logged by an enterprise in a couple of days.

The access gateway installed with FQRS is configured as a transparent proxy

with iptables [21]. All HTTP requests destined to the port 80 are directed to the port

3128, the service port of Squid. A layer 3 switch is acts as the ISP-side router. The

bandwidth of the access link between the access gateway and the layer 3 switch is

limited to 2Mbps. As the configuration in simulation, three classes are provided with

service ratio 4:2:1. Notably, the cache function is disabled to avoid responses are got

from the local cache or remote caches. The effects of FQRS Squid are observed in

terms of weighted fairness, user-perceived latency, and CPU loading as follows.

Fig. 13 Test bed for field trial in Squid

1) Weighted Fairness: The amounts of bandwidth allocated to three classes for a

200-second test round are 1.03 Mbps, 0.52 Mbps, and 0.26 Mbps, respectively, when

backlogged requests are applied. It quite obeys the configured service ratio 4:2:1. The

 28

fairness index [22] measured here is 0.87.

2) User-Perceived Latency: Table 2 shows the per-request latency provided by

the original Squid, the FQRS Squid, and the no-Squid case. The no-Squid case

represents all packets are simply forwarded. First, we compare the former two cases.

The FQRS Squid reduces (1686-1174)/1686, or 30%, of the average user-perceived

latency in the original Squid case, although the user-perceived latency in FQRS

includes the additional queuing time, 515.5 ms. Next, by comparing the latter two

cases, we see the user-perceived latency in FQRS is much longer than the one in the

no-Squid case. It is believed the longer latency is resulted from the overloads of

user-space processing and TCP-connection interception. Appling the FQRS

framework in kernel space without additional overload is the future work.

Table 2 User-perceived latency comparisons. FQRS Squid spends additional queuing
time.

Items Original Squid FQRS Squid No Squid

User-Perceived Latency
(ms/request)

1686.1 1174.9
(includes queuing time 515.5)

473.7

3) CPU Loading: Table 3 shows the benchmark results on percentage of CPU

usage percentage in the FQRS Squid process and the original Squid process with

equal throughput. As expected, the CPU loading increases as the number of classes or

the access link bandwidth increases. Notably, the loading under the FQRS is always

lower than that under the original Squid. Under the original Squid, all requests are

released by the proxy immediately, bringing many concurrent transactions. However,

the appropriate number of concurrent transactions is allowed by FQRS. It is believed

that the number of concurrent transactions dominates the cost of CPU computing

under the same throughput.

Table 3 Comparison between FQRS and the original Squid in percentage of CPU time

 29

Throughput

2 Mbps 10 Mbps

FQRS Squid with 10 Classes 22.4 28.17

FQRS Squid with 100 Classes 23.01 29.02

Original Squid 31.61 42.45

 30

Chapter 6 Conclusions and Future Works

This work reveals two problems occurring in scheduling requests with fair

queuing disciplines. First, the bandwidth of bottlenecked link is resumed by responses

instead of the scheduled requests. Besides, the bandwidth of bottlenecked link may be

exploited by multiple responses simultaneously. The releasing rate of requests has to

be designed well. Second, response size is varied and unavailable until the first packet

of the response returns while transmission rate of a response varies over time.

Therefore it is not workable to decide the releasing order by service completion time.

Based on the discussion of the two problems, a fair-queuing based request

scheduling (FQRS) discipline is proposed to manage the access link bandwidth at

user-side access gateway. To achieve high bandwidth utilization, FQRS adopts

window-based service-rate control (WRC) to determine the releasing rate of requests

and the number of concurrent outstanding responses. To perform proportional fairness

and bandwidth sharing, Request-based fair queuing (RFQ) in FQRS serves the class

queue according to the accumulated received normalized service amount in bytes of

each class.

The results in the simulation and the field trial of FQRS show the bandwidth

usage between classes conforms to the targeted ratio and the idle bandwidth is

proportionally shared by all active classes. The fairness index, which presents the

short-term fairness among classes, is 0.89 and 0.87 respectively. Besides, the FQRS

reduces 23.44% and 30% of user-perceived latency individually because the number

of concurrent transmissions is controlled, even this control may queue the requests in

the FQRS gateway. The examination on F of recomputing interval suggests a value

from 4 to 8 can reach best bandwidth utilization with respect to the expected

 31

utilization Umax, and the examination on Umax suggests a value from 90% to 95% can

come out shortest user-perceived latency.

Our future plans will start from formally proving on service fairness and further

investigating the abnormal case as described in section 3.5.3. After that, we will verify

the outcomes of FQRS when multiple applications coexist and when traffic not

triggered by inside requests is mixed. Besides, to reduce the overhead, implementing

FQRS on kernel space is required.

 32

References

[1] A. K. Parekh, R. G. Gallager, “A generalized Processor Sharing Approach
 to Flow Control in Integrated Services Networks: The Single-Node case,”
IEEE/ACM transactions on networking, pages 344-357, June 1993.

[2] J. Golestani, “A Self-Clocked Fair Queueing Scheme for Broadband
Applications,” In proceedings of the IEEE INFOCOM, Toronto, June 1994.

[3] P. Goyal, H. Vin, and H. Chen, “Start-Time Fair Queueing: A Scheduling
Algorithm for Integrated Services Packet Switching Networks,” Proceedings
of the ACM SIGCOMM, August 1996.

[4] M. Conti, M. Kumar, S. K. Das, and B. A. Shirazi, “Quality of Service Issues
in Internet Web Services,” IEEE Transactions on Computers, vol.51, no.6,
June 2002.

[5] R. Pandey, J. Fritz Barnes, and R. Fritz Barnes, “Supporting Quality of
Service in HTTP Servers,” Proceedings of the Seventeenth Annual ACM
Symposium on Principles of Distributed Computing, pp. 247-256, 1998.

[6] N. Bhatti, A. Bouch, A. Kuchinsky, “Integrating User-Perceived Quality into
Web Server Design,” Proceedings of the 9th International World Wide Web
Conference, 2000.

[7] L. Cherkasova and P. Phaa, “Session Based Admission Control: a Mechanism
for Web QoS,” Proceedings of the International Workshop on Quality of
Service, 1999.

[8] L. Eggert and J. Heidemann, “Application-Level Differentiated Services for
Web Servers,” World Wide Web Journal, vol. 3, issue 2, pp. 133-142, 1999.

[9] T. P. Kelly, S. Jamin, and J. MacKie-Mason, “Variable QoS from Shared Web
Caches: User-Centered Design and Value-Sensitive Replacement,”
Proceedings of IEEE Conference on Computer Communications, 2002.

[10] Y. Lu, T. Abdelzaher, C. Lu, and G. Tao, “An Adaptive Control Framework
for QoS Guarantees and its Application to Differentiated Caching Services,”
Proceedings of the International Workshop on Quality of Service, 2002.

[11] V. Cardellini, E. Casalicchio, M. Colajanni, and M. Mambelli, “Enhancing a
 Web-Server Cluster with Quality of Service Mechanisms,” Proceedings of
IEEE International Performance Computing and Communications
Conference, 2002.

[12] E. Casalicchio and M. Colajanni, “A Client-Aware Dispatching Algorithm for
Web Clusters Providing Multiple Services,” Proceedings of the 10th
International World Wide Web Conference, 2001.

 33

[13] C. Li, G. Peng, K. Gopalan, T. Chiuch, “Performance Guarantee for
Cluster-Based Internet Services,” State University of Stony Brook, May
2001.

[14] Y. H. Lin, Y. D. Lin, “Request Scheduling for Web QoS at Edge Devices,”
NCTU, June 2003.

[15] M. K. Ouyang, Y. D. Lin, “Request Scheduling for Differentiated QoS at
Access Gateway,” NCTU, June 2004.

[16] Squid Web Proxy Cache, http://www.squid-cache.org/.
[17] M. Shreedhar, and G. Varghese, “Efficient Fair Queuing Using Deficit

Round-Robin,” IEEE/ACM transactions on networking vol. 4, no. 3, June
1996.

[18] The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/.
[19] P. Barford and M. Crovella, “Generating Representative Web Workloads for

Network and Server Performance Evaluation,” ACM SIGMETRICS
Performance Evaluation Review, vol. 26, issue 1, pp. 151-160, June 1998.

[20] Avalanche, http://www.spirentcom.com/analysis/product_line.cfm?PL=32.
[21] The netfilter/iptables project, http://www.netfilter.org/.
[22] R. Jain, K. K. Ramarkrishnan, and D. M. Chiu, “Congestion avoidance in

computer networks with a connectionless network layer,” Tech. Rep.
DEC-TR-506, DEC, Aug, 1987.

[23] “DWSR: A New One-Way L7 Web Switch Architecture,” NCTU, 2004.
[24] J. M. Blanquer, B. Özden, “Fair Queuing for Aggregated Multiple Links,”

ACM SIGCOMM, August 2001.

