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應用公平佇列方法 

在網路通道閘道器上之請求排程 

 

學生：曹樂淇        指導教授：林盈逹 

國立交通大學資訊科學研究所 

 

摘要 

對 ISP 的客戶而言，當對外的連線網路成為網路瓶頸時，最常見的因應之道是

在使用者端的閘道器上採用公平佇列的方法。然而，當網路同時有過多的下載行為

時，會使得對外連線網路的下行鏈結成為瓶頸，此時在使用者端的閘道器上使用公

平佇列並不能解決此一問題。這是因為下載的回應是在 ISP 端的閘道器上形成佇

列，而不是在使用者端的閘道器上形成佇列。針對這樣子的情形，可以對使用者端

閘道器上的請求佇列做排程來管理 ISP 端閘道器上的回應佇列。故本論文先陳述二

個使用公平佇列方法來實踐請求排程時會遇到的問題，分别是釋放請求的時機以及

順序。而後提出一個基於公平佇列方法的請求排程，其中包含了請求型式的公平佇

列與視窗服務速率控制器。前者藉著依從一般化的行程共享精神來達成加權的頻寛

使用比例與頻寛共享。後者藉由控制共存的回應數量來達成高頻寛使用率並且降低

回應延遲時間。透過模擬與實驗的結果，顯示出各個類別間的公平指數分別為 0.89

與 0.87，回應延遲時間則是分別降低了 23.44%與 30%。此外，同樣是讓頻寬使用率

達到滿載，對中央處理器的負擔而言，得到控制的共存回應數量會比無限制的回應

數量要來得少，如此大約可省下 1/4 的處理耗費。 

 

關鍵字：請求排程、網路通道閘道器、公平佇列



 III

 

Request Scheduling 

with the Fair Queuing Discipline at Access Gateway 
 

 Student: Le-Chi Tsao Advisor: Dr. Ying-Dar Lin 

Department of Computer and Information Science 

National Chiao Tung University 
 

Abstract 

For ISP’s customers, when the access link becomes the bottleneck to connect with the 

Internet, a fair queuing (FQ) discipline deployed at a user-side access gateway is the present 

solution. However, deploying a FQ discipline at a user-side gateway cannot handle the case 

when the downlink is the bottleneck, which may results from exceeding concurrent 

responses in downloading. In the case, responses are queued at the ISP-side, not the user-side, 

gateway. A solution is scheduling the requests at the user-side gateway to manage the 

responses queued in the ISP-side gateway. This works first reveal that scheduling requests 

relying on the fair queuing discipline has two problems in terms of the sending timing and 

the ordering of requests. Next, we propose a fair-queuing based request scheduling (FQRS) 

method, consisting of a request-based fair queuing (RFQ) discipline and a window-based 

service-rate control (WRC) mechanism. RFQ approximates the generalized processor 

sharing (GPS) model to provide weighted fairness and bandwidth sharing between classes. 

WRC controls the number of concurrent responses over the downlink to provide almost full 

bandwidth utilization and reduces the user-perceived latency. The results in simulation and 

field trial demonstrate FQRS provides short-term fairness in 0.89 and 0.87 respectively while 

reduces 23.44% and 30% of user-perceived latency separately. Besides, FQRS saves 1/4 of 

CPU loading with the same throughput comparing to the one no FQRS is implemented.  

Keywords: request scheduling, access gateway, fair queuing 
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Chapter 1 Introduction 

Currently, numerous enterprises connect to the Internet to exchange data by the 

access link of ISP. Generally speaking, ISPs are willing to invest money in expanding 

the backbone bandwidth to provide their customers better service. However, to 

minimize costs, their customers often delay upgrading the bandwidth of the access 

link, causing it becomes the potential bottleneck to access the Internet. 

For enterprise users, to provide differentiated service for important connections 

through the access link, the common solution is scheduling packets with fair queuing 

disciplines at their access gateway. Unfortunately, the solution fails when the 

downlink is the bottleneck. In this case, packets are queued at the ISP-side edge router, 

not at the user-side gateway, for traversing the bottlenecked access link. Scheduling 

packets at a user-side access gateway is useless because the packets have passed the 

bottleneck.  

This work aims to demonstrate that scheduling requests, instead of packets, at the 

access gateway can solve the mentioned failed case of packet scheduling. The 

bandwidth of downlink can be managed by controlling the releasing of uplink 

requests. Such a solution is based on that most applications running over the Internet 

are client-server model, i.e. request/response model, such as HTTP, FTP, and E-mail. 

Request scheduling is used in some recent studies to provide Web QoS [4]. These 

studies provided QoS services on a single Web server [5-7], caching proxies [9, 10] 

and server farms [11-13]. No published studies discussed how to design request 

scheduling at the access gateway. Two of our previous works, Web BM [14] and RQS 

[15], have targeted the similar object. However, both of them may be hard to 

implement due to their complexities.  
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First, we identify two problems occurring in scheduling request with the fair 

queuing disciplines. One concerns the timing of releasing requests and the other 

concerns the determination of the next released request. Subsequently, we propose a 

Fair-Queuing based Request Scheduling (FQRS) method, consisting of a 

Request-based Fair Queuing (RFQ) discipline and a window-based service-rate 

controler (WRC). The RFQ discipline provides weighted fairness and bandwidth 

sharing as other FQ disciplines since it is also based on the Generalized Processor 

Sharing model [1]. The WRC keeps the downlink at high utilization, but not in 

congestion. The WRC achieves the goal by monitoring the utilization and controlling 

the number of outstanding responses. A response is denoted as outstanding if its 

corresponding request is sent out, but the response has not been fully received. 

The fairness provided by FQRS may degrade with the increase of the arrival 

traffic not triggered by custom side requests. The other challenging case is that 

receiving an extreme-long response in the fixed rate equal to the downlink bandwidth, 

where the fixed rate means that the response is carried by non-congestion-aware 

protocol, like UDP. Obviously, except the malicious attacks, this challenging case 

does not occur in the Internet. Further discussions are given in the end of Chapter 3. 

The remainder of the paper is organized as follows. Chapter 2 identifies the two 

problems occurring in scheduling requests with the fair queuing discipline. Also, the 

ideas in our previous works, Web BM and RQS, for handling these problems are 

briefed. Chapter 3 proposes the FQRS algorithm, consisting of the RFQ and the WRC, 

and discusses its potential fairness degradation in two cases. Chapter 4 verifies our 

algorithm on providing weighted fairness and bandwidth sharing while shortening the 

transmission time of responses. Chapter 5 demonstrates the effect of the FQRS 

through field trail, where the FQRS is implemented in Squid [16], an open-source 

web proxy package. Chapter 6 gives the conclusion and future works.  
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Chapter 2 Scheduling Requests with Fair Queuing 

Disciplines 

FQ disciplines approximate the GPS model can schedule packets well. However, 

as mentioned below, two problems may occur in request scheduling by FQ disciplines. 

The user traffic handled in a request scheduling includes the uplink requests and 

downlink responses, not just the downlink packets. 

2.1 The Timing of Releasing Requests 

2.1.1 Problem Statement 

The FQ disciplines send the next packet when the last packet has been 

transmitted. The bandwidth of a bottlenecked link is totally consumed by the 

scheduled packets themselves. That is, the packet transmission monopolizes the link 

bandwidth. Therefore, once a packet is selected from a queue by a scheduling 

discipline, it is transmitted in the rate equal to the capacity of this link.  

However, the request scheduling cannot send the next request following the last 

request right away. The bandwidth of bottlenecked downlink is consumed by the 

responses, rather than scheduled requests. Sending requests one-by-one results in too 

heavy concurrent outstanding responses because the response is usually much larger 

than the request and a response transmission does not monopolize the downlink 

bandwidth. Too many concurrent outstanding responses cause the downlink in a 

serious congested condition.  

On the other hand, it is not appropriate in request scheduling that no request is 

allowed to be sent until the preceding request gets its response completely. When a 

request is scheduled, the bandwidth of the bottlenecked downlink is not consumed 
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immediately until the corresponding response returns. Obviously, sending the next 

request until receiving the whole preceding response would waste the bandwidth of 

downlink, causing low bandwidth utilization.  

2.1.2 Potential Solution 

Obviously, appropriate outstanding responses are necessary in scheduling request 

with FQ disciplines. The request scheduler WebBM, our previous work, allocates the 

bandwidth among responses precisely to avoid the link from waste and congestion. 

For not wasting, WebBM releases next request in advance so that its response can 

exploit the idle bandwidth as soon as the preceding response finishes. For not 

congestion, WebBM only releases the request whose bandwidth requirement of 

response fits the coming idle bandwidth.  

To forecast when and how many idle bandwidth there is, WebBM needs the 

information about the rate and the finish time of each response transmission. To 

decide which request is the next and its advanced releasing time, WebBM needs the 

potential bandwidth requirement, and the time between releasing a request and 

receiving the first packet of its corresponding response. Although the required 

information can be abtained from historical statistics, inaccurate information may 

affect the access link utilization. Besides, no historical data exists in the initial state, 

and thus WebBM may encounter great difficulties in an open environment.  

2.2 The Determination of the Next Request 

2.2.1 Problem Statement 

Due to the rule of approximating GPS, the FQ disciplines tend to select the 

packet that would complete service first in the fluid GPS model as the next packet. 

Since packets are transmitted in a full capacity of link, the calculation of the potential 

service completion time only involves two known parameters, packet arrival time and 
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packet size. Thus, the potential service completion time can be easily calculated when 

a packet arrives. For two packets arriving at the same time, the packet size decides the 

order of service completion time. A smaller packet finishes service earlier. 

However, for request scheduling, the service completion time of a transaction is 

unknown. The response size of a transaction is unknown until the first packet of the 

returning response is got. At that time, the size of a response can be extracted from the 

application header of this packet. Moreover, a response may not be transmitted in a 

constant rate. For this reason, request scheduling cannot serve requests simply by the 

order of service completion time to provide fairness. Hence, the determination of 

which request will be scheduled as the next is the second problem. 

2.2.2 Potential Solution 

The RQS [15], another our previous work, had the same four goals as this work: 

proportional fairness, bandwidth sharing, congestion reduction, and fully link 

utilization. It merged the algorithm from WebBM to estimate the timing of releasing 

next request and a selection discipline derived from the Deficit Round Robin (DRR) 

[17], which is one of packet-based fair queuing algorithms. DRR provides fairness by 

proportional quantum in bytes among classes. Class queues are served in a 

round-robin manner. The quantum of each class’s deficit counter stands for the 

allowed service amount, i.e. the total length of packets can be transmitted in each 

round. 

RQS measures fairness by counting the size of received responses size. Thus, the 

quantum of one class stands for the size of responses allowed to be received in one 

round. When planning to send a request, RQS selects the first request from a queue 

which is in turn meanwhile owns sufficient quantum for the given corresponding 

response size. If the quantum is insufficient, the deficit counter of this queue saves the 

remaining quantum for use in the next round. The scheduler then serves the next class 
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queue.  

The selection discipline used in RQS is designed under the assumption that the 

size of a response is always given as the request arrives. Inaccurate response size may 

degrade the fairness between classes. Actually, the response size is unknown when the 

request arrives, and it is extracted until the first response packet is received in most 

case. For this problem, RQS has a compensation mechanism to prevent the unfairness 

resulted from inaccurate estimation of response size at scheduling. Once the obtained 

real size is different from the estimated one, the corresponding deficit counter is 

compensated with the difference in size in that round. 
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Chapter 3 Fair-Queuing based Request Scheduling 

Discipline 

The chapter proposes a Fair-Queuing based Request Scheduling (FQRS) 

discipline. It is expected to provide proportional fairness, sharing resource, full 

bandwidth utilization, and short transmission latency.  

3.1 Overview of FQRS 

 
Fig.1 The typical topology to access the Internet and the internal architecture of 

 fair-queuing based request scheduling (FQRS).  

Figure 1 is a typical network topology that an enterprise accesses the Internet 

services. Requests sent from clients go through the access gateway and the uplink of 

the access link to remote servers, and the corresponding responses answered by the 
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remote servers return to clients through the downlink of the access link and the access 

gateway. The FQRS discipline is deployed at the user-side access gateway. The FQRS 

consists of request-based fair queuing (RFQ) and window-based service-rate 

controller (WRC). The former decides which request is the next one while the latter 

determines the timing to release requests. The request scheduler in RFQ makes the 

decision by referring the ACC counters. The ACC adjuster maintains the ACC 

counters and the request receiver in RFQ executes the enqueueing process when 

requests arrive.  

3.2 Request-based Fair Queuing (RFQ) 

3.2.1 ACC Counter and Next Request Selection 

Each ACC counter accumulates the received normalized service of each class. 

Assume a class receives S bytes responses from beginning. Then, the normalized 

service of this class is the value which is S divided by the weight of this class. 

Every time invoked by WRC, the request scheduler sends out the HOL 

(head-of-line) request from the class which has the minimum ACC counter. Under the 

assumption that all classes have backlogged requests, a class with smaller ACC value 

represents that it received less service than other classes at present. Thus, it is 

reasonable that selecting a request from this class will achieve the fairness between 

classes. 

On the other hand, to avoid one class from occupying all resource after a long 

idle period, its ACC counter is updated to the minimal values among other ACC 

counters when a request arrives. Without the update, the ACC counter of this class 

may be far smaller than other ACC counters, causing that no request can be selected 

from other classes for a long time. Basically, the RFQ follows the concept in the fair 

queuing service disciplines that the class using the idle bandwidth should not be 
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punished. 

3.2.2 Basic Procedures 

 

Fig. 1 Procedures of the RFQ 

Fig.2 (a), (b), and (c) list the pseudo codes of the three components in RFQ. The 

request scheduler picks the class queue with the minimum ACC counter and sends the 

HOL request in that queue out. After that, the window size is increased by one to 

denote one more outstanding response. 

As shown in Fig. 1, the ACC adjuster, pointed by two arrows, represents that it is 

invoked in two cases. First, it is invoked when WRC receives a response of any class. 

The length of the response would be added to the ACC counter of the corresponding 

class. Second, it is invoked when traffic is infused to an empty class queue. In the 

case, the ACC counter would be reset as the minimum value among other ACC 

counters.  

Scheduler 
if (Qno = GetMinAccQ() != Null) { 
 SendHeadReq(Qno) 
 W++ 
} 

 (a) Procedure of request scheduler
AccAdj 
if (TypeRsp) 
  ACCQno += len / WTQno 
if (TypeReq) 
  ACCQno = GetMinAcc() 

 (b) Procedure of ACC Adjuster

 (c) Procedure of request receiver

ReqRcv 
req = Rcv() 
Qno = Classfy(req) 
if ( Empty(Qno) ) 
 AccAdj(TypeReq, Qno) 
ENQUEUE(req) 
if (W == 0) 
 Scheduler() 
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The request receiver classifies and enqueues all incoming requests. If the arrival 

request is classified to an empty queue, the request receiver informs the ACC adjuster 

to reset the ACC counter of this idle class. If the system is idle, that is, no responses 

are outstanding, the request receiver actively asks the request scheduler to release the 

coming request immediately. The variable W would be introduced in section 3.3.  

3.2.3 Mapping to Packet-based GPS 

In packet-based fair queuing disciplines, each packet is tagged with timestamps. 

Let i
fT  be the finish timestamp of the ith packet of flow f, i

fV  be the virtual time 

when it arrives, and i
fL  and fφ  denote its length and the weight of flow f, 

respectively. i
fT  is defined as follows: 

 { }1max ,
i
fi i i

f f f
f

L
T T V

φ
−= +  (1) 

where 0
fT  ＝ 0 and 0i ≥ . Several maintenance of i

fV  were discussed, such as that 

in SCFQ [2] and SFQ [3]. 

In the RFQ, only the HOL request of each queue is tagged with accumulated 

received normalized response size of that class as timestamp when responses or 

requests are received. Let i
kACC  be the accumulated received normalized response 

size for class k before the (i+1)th request is released. The virtual time i
kV  herein is 

defined as the minimum value of all other classes’ ACC counters meanwhile the 

request meets an empty class queue when it arrives, or else it is defined as zero. 

Suppose the number of classes is m,  

 { }1,max −= i
k

i
k

i
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{ }
)3(0
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else
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In packet-based fair queuing disciplines, the HOL packet of a queue with 

minimum finish timestamp is selected as the next. It means that the packet could 

complete service soon can be served first. In other words, the one asking least 

resource gains service before others. In FQR, the HOL request of a class with 

minimum accumulated received response size is served as the next. It means the class 

having consumed least resource can be served earlier.  

3.3 Window-based Service Rate Controller (WRC) 

The WRC component adjusts the number of concurrent outstanding responses by 

measuring the bandwidth utilization of the link, denoted by U. As shown in Fig. 1, the 

variable W is used to record the number of outstanding responses at present. The 

variable Wmax represents the maximum number of outstanding responses allowed by 

WRC. 

3.3.1. The Measurement of Utilization 

The utilization U is acquired through dividing the received response in bytes by 

the duration of recomputing interval. How to define the interval is a major issue. 

Defining a fixed interval is simple, but the value of the interval is hard to given. Too 

short interval may not reflect the average of U and may lead Wmax to be adjusted 

frequently. On the contrary, too long interval may lead the link into low utilization 

since Wmax is changed slowly and cannot immediately reflect the low utilization. 

Compared to the fixed interval, this work computes U in a variant interval. The 

interval is defined as the period that F×Wmax ending events of response transmission 

occur, where F is a constant and its value is not sensitive for the resulted utilization, 

as shown in the simulation later. By such a definition, the recomputing interval is 

dependent with the response size and the maximum number of concurrent outstanding 

responses.  
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3.3.2 Window-based Outstanding-response Control 

WRC uses a window-based mechanism to adjust the number of outstanding 

responses. When U is lower than the expected utilization, denoted as Umax, Wmax 

would be increased to release more requests so that more concurrent outstanding 

responses can exploit the bandwidth and then raise the utilization U. On the contrary, 

when U is higher than Umax, Wmax would be decreased so that fewer outstanding 

responses compete for the bandwidth.  

Assume that WRC has backlogged requests. The adjusting rule used in WRC is 

simple and shown as follows. 

( )
( )





>−=

<+=
+

+

maxmax
1

max

maxmax
1

max

1

1

UUWW

UUWW
iii

iii

 (4) 

where iWmax  is the maximum concurrent outstanding responses allowed in the i-th 

interval and 10
max =W  while iU  represents the bandwidth utilization computed in 

the i-th interval. Notably, the rules only applied when W=Wmax. When W<Wmax, it is 

wrong to expect the raise of U by increasing Wmax.  

In order to quickly boost U at beginning, a fast-start mechanism is used on 

adjusting Wmax. Wmax is doubled every interval when U is less than half of Umax. Until 

U is greater than half of Umax, WRC begins to use the above rule. 

3.3.3. Basic Procedure 

The pseudo code of the WRC is listed in Fig. 3. When WRC receives any part of 

a response, it verifies the class this response belongs to, and invokes the ACC adjuster 

to update that class’s ACC counter. Once the received data includes the last packet of 

a response, W would be decreased by one to imply a request is fully answered. If now 

is the end of a recomputing interval, the utilization U is re-computed. The next step 

after adjusting Wmax is invoking the request scheduler to release requests as more as 
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possible, till Wmax requests have been sent or no more request can be send. 

 

Fig. 3 Procedure of window-based service-rate controller 

3.4 Examples 

 This section gives two examples displaying the scheduling behavior in FQRS. 

3.4.1 Backlogged Traffic 

Traffic of a class is backlogged at time t if some requests are queued at this 

class’s queue. Fig. 4 shows an example of backlogged traffic. Consider the case that 

three classes compete for the bandwidth of the bottlenecked link. The ratio of their 

service weights is 4:2:1. 

  As shown in Fig. 4(a), at time 0, the values of all three ACC counters are 0. 

Some requests have already arrived. Also, three requests, A1, B1, and C1, have been 

sent out from QA, QB, and QC, respectively. Suppose the size of the window is three 

(Wmax = 3). Hence, all slots of the window are occupied by the three outstanding 

responses A1, B1, and C1. 

As shown in Fig. 4(b), when the first 20-byte response corresponding to the 

request A1 returns, the ACC counter of class A (ACCA) is calculated as 20/4, and a 

slot of the window is freed. After that, the scheduler selects next class queue with 

WRC 
rsp = Rcv() 
Qno = VerifyQ(rsp) 
len = Size(rsp) 
AccAdj(TypeRsp, Qno, len) 
if ( LastPkt(rsp) ) { 
  W -- 
  rcvd_rsp++  
  if ( rcvd_rsp == F×Wmax ) { 
  ComputeUtil() 
  AdjustMaxWin() 

} 
 while ( (W < Wmax) && (backlogged) ) 
  Scheduler() 
} 
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minimum ACC counter to serve, i.e. QB. The HOL request B2 of QB occupies the 

freed slot of the window and is sent out now. Next, as shown in Fig. 4(c), the response 

corresponding to the request B1 returns. A slot of the window is freed again and 

ACCB is updated as 20/2. The HOL request of QC, C2, is scheduled. 

 

  

Fig. 4 Example for FQRS in handling backlogged traffic. 

3.4.2 Traffic from a Reviving Class 

Traffic of a class is reviving at time t meanwhile some requests arrive to an 

empty class queue. Fig. 5 illustrates an example of reviving traffic. Assume 3 class 

queues, QA, QB, and QC, have backlogged traffic, and the QD is empty for a while. The 

ratio of their service weights is 4:2:1:1. 

(a). Initial Status 

(b). The snapshot when response A1 returns 

(c). The snapshot when response B1 returns 
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As shown in Fig. 5(a), at time t, the values of the four ACC counters are 5, 10, 10, 

and 0, respectively. Suppose the request D1 belonging to QD arrives at the time a little 

later than time t. After the D1 enters the QD, ACCD is set as 5, the minimum of all 

other ACC counters. Then, as shown in Fig. 5(b), once a response, for example, the 

10-byte response corresponding to the request B2 returns, QD can be served instantly. 

That is, D1 is the next request to be sent out as soon as a slot of the window is free. 

 
Fig. 5 Example for FQRS in handling requests which meet an empty class queue. The 

ACCD is reset as the minimum among all other ACC counters 

3.5 Discussions for Exceptive Cases 
The FQRS is designed under the assumption that all uplink traffic is requests and 

downlink traffic is responses. Also, all responses are triggered by the FQRS-released 

requests. However, the exceptive traffic does coexist with the assumed traffic on the 

real network environment. The exceptive traffic is classified into three types for 

conveniently discussion. 

(a). D1 arrives in empty queue Q4

(b). The snapshot when response B2 returns
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3.5.1 Downlink exceptive traffic belonging to some classes 

The first type of traffic means the exceptive traffic that can be classified into the 

pre-defined user classes. For example, POP3 mail traffic for someone host in Classi. 

The traffic may still be the downlink responses, but their requests are not recognized 

by the implementation of FQRS. It is possible since only the web request is 

recognizable for the present implementation of FQRS. 

FQRS regards these exceptive packets as the received service of classes. When 

the packets not triggered by an (recognized) request arrive from the Internet, their 

sizes are accumulated into the AC of the class which the packets belong to, as other 

response packets triggered by requests. For example, if a Classi host receives a crowd 

of such packets from the Internet, the sizes of packets would be accumulated into ACi. 

The additional increased value in ACi because of these unexpected packets brings the 

less requests can be sent out from the Classi by FQRS.  

3.5.2 Downlink exceptive traffic not belonging to any class 

Exceptive traffic not belonging to any class may include requests from outside 

network for the responses provided by the intranet servers, or the malicious attacks. 

The former case is possible for the enterprises having web servers for their customers. 

The exceptive traffic contributed from such request is small usually, compared with 

other responses traffic running on the downlink. The latter case may rudely and fully 

fill the downlink, resulting in the failure for all transmissions. However, the latter case 

is a security problem and out of the scope of this work. 

This exceptive traffic is considered by the WRC in FQRS as other assumed 

response traffic, when WRC monitors the utilization of the downlink to adjust Wmax. 

More ratio of exceptive traffic may only bring a smaller Wmax. That is, WRC may 

think such a small Wmax is enough to fully utilize the downlink bandwidth. Fairness 

between classes is not affected in this case. 
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3.5.3 Uplink exceptive traffic 

 The traffic may include uplink responses and traffic actively sent from the 

internal hosts. If this traffic turns the uplink to a bottleneck, a traditional FQ discipline 

at the access gateway is suggested first. FQRS and the uplink FQ discipline could be 

coexist well, as shown in Fig. 6(a). Also, if the fairness of uplink is not a concern, 

FQRS + Priority Queues would be a simple solution, as shown in Fig. 6(b). The 

solution gives the request traffic high priority since they are smaller than responses 

usually. 

 
Fig. 6 Two potential integrated architectures for handling the network when exceptive 

traffic coexists 
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Chapter 4 Simulation Results 

This chapter verifies the effects of the FQRS through simulation by ns-2 [18] in 

terms of the proportional fairness and sharing, user-perceived latency, the relationship 

between the access link utilization and value of Wmax, and the choice of F and Umax. 

4.1 Topology 

The HTTP/Cache class in ns-2 acts as a web proxy cache, and sits between 

clients and web servers. It intercepts the requests sent from clients and forwards them 

to the remote servers if the requested data is not cached yet. Therefore, this work 

disables the cache function in HTTP/Cache and implements FQRS in the class. 

 

Fig. 7 Simulation topology for three classes with service ratio 4:2:1 

Figure 7 shows the topology used in the simulation. The FQRS gateway provides 

three classes, Class1, Class2, and Class3, with the service ratio 4:2:1. Each class 

involves three clients and all clients connect to remote web servers through the FQRS 

gateway. The link between the FQRS gateway and every client is 10Mbps with 2 ms 

propagation delay. The access link connecting the FQRS gateway and the ISP router is 

configured as 2Mbps capacity with 10ms propagation delay. The ISP router connects 
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to twelve servers with twelve independent links. These servers are grouped into two 

server farms, each involving six servers. The two farms represent overseas servers and 

domestic servers. Links to these servers have a uniform distribution, as shown in Fig. 

7. By the statistics from the real Internet [19], the web page size is a 

lognormal-distributed random variable X with ln(X)=9.357 and σ=1.318. The 

average response size is 27,656 bytes.  

4.2 Weighted Fairness and Sharing 

We demonstrate that FQRS provides proportional bandwidth between classes and 

the idle bandwidth can be shared by active classes. Four phases are included in the 

simulation and the duration of each phase is 200 seconds. In the first phase, all of the 

three classes have backlogged requests. In the next two phases, Class1 and Class2 

stops requesting separately, and then both of them have backlogged requests again in 

the last phase. 

Fig. 8(a) depicts the throughput of each class in every recomputing interval over 

the 800 seconds. Fig. 8(b) shows the average throughput in each phase. During the 

first phase, the three classes get proportional bandwidth in the service ratio 4:2:1. We 

measure the short-term fairness of service ratio among classes through fairness index 

[22]. The fairness index, defined as ∑
=
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the sending rates of competing flows and K is the number of sampling, in this phase is 

0.89. In the second phase, the idle bandwidth freed by Class1 is shared by Class2 and 

Class3 proportionally. Both of the bandwidth obtained by Class2 and Class3 increase 

in this phase, and the usage ratio between them is still 2:1. After Class2 stopping 

requesting in the third phase, Class3 occupies all bandwidth until the end of this phase. 

During the second and the third phase Class 1 and Class 2 still obtain a bit of 

bandwidth separately due to their unfinished transactions. Once all idle classes have 
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requests again in the last phase, the three classes obtain the bandwidth in the expected 

proportion, 4:2:1, again. Compare the total bandwidth usage in the first phase and the 

fourth phase, and the one in the first phase is lower because it costs time to raise the 

bandwidth utilization in the initial state.   

 
Fig. 8 bandwidth usage of three classes with service ratio 4:2:1 in four phases 

4.3 Lower Average Latency 

When a FQRS gateway is deployed, the user-perceived latency can be 
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decomposed into transmission time and queuing time. The transmission time is 

defined as the time spent on transmitting both of requests and responses between the 

FQRS gateway and remote servers. The queuing time represents the time when the 

request is queued in the FQRS gateway. The time in transmitting packets between 

clients and the FQRS gateway is small and can be ignored. Besides, server answering 

time is always zero in ns-2. 

 
Fig. 9 User-perceived latency comparison by decomposing time factors: queuing   

time and transmission time 

The simulation scenario here is the same as that used in the first phase in section 

4.1. Fig. 9 illustrates the decomposition of user-perceived latency for the three classes, 

the average latency among all classes, and the latency if no FQRS is deployed, 

denoted as non-FQRS. First, by comparing the left three bars, the different 

user-perceived latencies are experienced by the three classes. They have different 

queuing time in FQRS since they have different weights.  

Second, by comparing the right two bars, the average latency (6.76 secs) in 

FQRS is shorter than that in non-FQRS (8.83 secs) by 23.44%. It is because the 

average transmission time in FQRS (1.5 secs) is far shorter than that in non-FQRS 

(8.83 secs). The transmission time in FQRS is reduced as a result of reasonable 
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number of concurrent outstanding responses. Section 4.5 with Fig. 11 would further 

support the hypothesis. 

4.4 Adjustment of Window Size  

This section observes the relationship between access link utilization and the 

value of Wmax. Clients in the three classes send requests in the 600-second duration 

except the middle 200 seconds. During the middle 200 seconds, clients in Class1 and 

Class2 stop sending requests. That comes out insufficient requests so that the FQRS 

gateway may have no request to send out.   

Fig. 10 reveals the relation between the access link utilization and the value of 

Wmax. The utilization of access link stays around 0.95 as the expected Umax in the first 

and last 200-second periods because of sufficient arrival requests.  

In the 200th~400th sec, the utilization falls apparently due to the insufficient 

arrival traffic, and the value of Wmax is constant. It is in vain to raise the value of Wmax 

when the incoming requests are too few to occupy all window slots. Therefore the 

value of Wmax keeps steady as described in equation 4. Because of insufficient arrival 

requests, there are often some window slots are free. Once the last packet of a 

response returns, queued requests can be scheduled out as more as possible until no 

more requests can be sent or no more window slot is available. That is why the value 

of W in Fig. 10 varies with a wide range during the 200th~400th sec.  
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Fig. 10 The size of Wmax is steady in case of insufficient traffic. 

 

4.5 Choice of F and Umax   

This section examines the choice of F and Umax, two parameters can be 

configured by administrators. This examination starts with the effect of F, and then on 

the effect of Umax. 

1) Effect of F: According to the examination on the effect of F between 1 and 16 

when Umax is assigned to 0.8, 0.9, 0.95, and 0.99, the bandwidth utilization is not 

susceptible to the value of F. When the value of F is smaller than 16, the degree of 

bandwidth utilization can reach 95% of expected Umax, even though Umax is high as 

99%. From this examination, it is suggested that value of F is set between 4 and 8 

because they can come out best bandwidth utilization with respect to the expected 

Umax. 

2) Effect of Umax: Fig. 11 depicts the user-perceived latency, the queuing time 

spent in FQRS, and the number of queued packet at the ISP-side router when Umax is 

assigned to 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and 0.99 while F is assigned to 4. As 

Umax increases, the user-perceived latency and the queuing time reduce meanwhile the 

number of packets queued in ISP router rises. Raising Umax follows shorter 

user-perceived latency, because more responses can be transmitted concurrent and the 

bandwidth can be utilized more. However, the raise also causes packets to be queued 

in ISP router because of less free bandwidth for eliminating the queued packets as 

Umax is high. From observation of Fig. 11, the value of Umax is suggested to be set 

between 90% and 95%.  
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Fig. 11 Variations of user-perceived latency, queuing time, and the number of packets 

queued in ISP-side router under various Umax 
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Chapter 5 Implementation 

We implement FQRS in Squid [16], which is an open source package of web 

proxy cache, and perform field trial in an open network environment.  

5.1 Architecture 

Fig. 12 illustrates the transaction flow in Squid, and Table 1 lists the functions 

used in the transaction flow. Data structures are displayed in dotted circles. The data 

structure ConnStateData maintains the status of a connection. It is built when 

httpAccept() accepts a new connection from a client. The two data structures 

clientHttpRequest and request_t keep a request’s status. They are established when 

clientReqdRequest() parses a request. After verifying access right and checking cache, 

Squid starts to forward this request to remote server by the procedure 

clientProcessRequest() according the request’s HTTP method.  

The three components of FQRS, request receiver (FQRS_ReqRcv()) , request 

scheduler (FQRS_Scheduler()) and ACC adjuster (FQRS_AccAdj()), are shaped in 

double rectangles in Fig. 12. They are implemented after cache checking and before 

forwarding. For each class, FQRS in Squid uses a link list to maintain its arrival 

requests, as shown in the dotted circle A. 

When the response returns in httpReadReply(), the FQRS component WRC 

(FQRS_WRC()) updates the value of the corresponding ACC counter, and refreshes 

the maximum allowed concurrent outstanding responses if needed. Once the 

responses finishes, fwdComplete() forwards the response to the client who requested 

it. 
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Fig. 12 The transaction flow in Squid. The components of FQRS are shape in double 

rectangles. Dotted rings circle the data structures 

Table 1 The Functions of transaction flow functions in Squid 
Function Name Function Description 

httpAccept (sock, void *) Accept a new connection on HTTP socket 

clientReadRequest (fd, ConnStateData*) Parse received HTTP request 

clientAccessCheck (clientHttpRequest *) Verify client’s access right 

clientCheckNoCache (clientHttpRequest *) Check if forced to never cache 

FQRS_ReqRcv(srv_ip, clientHttpRequest *) Classify request, adjust ACC value 

FQRS_AccAdj() Adjust ACC counters 

FQRS_Scheduler() Schedule a request out 

clientProcessRequest(clientHttpRequest *) Verify connection method 

clientProcessMiss(clientHttpRequest *) Prepare to fetch the object due to cache miss  

fwdStart(fd, request_t *) Start to forward the request to remote server 

fwdConnectStart(fwdState) Establish connection to remote server 

fwdDispatch(fwdState) Dispatch according to protocol type 

httpStart(fwdState) Start HTTP action 

httpSendRequest(httpState) Write request to remote server 
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httpReadReply() Read reply 

FQRS_WRC() Controlling the sending rate of requests 

fwdComplete() Forward the response to the whom asks it 

5.2 Field Trial 

Fig. 13 illustrates the test bed for evaluating the FQRS in Squid. Avalanche [20] 

is an application-layer traffic generator. It emulates the behaviors of multiple clients 

and sends requests to the web server in the Internet. Avalanche imports a URL list, 

which is a historical URL record logged by an enterprise in a couple of days.  

The access gateway installed with FQRS is configured as a transparent proxy 

with iptables [21]. All HTTP requests destined to the port 80 are directed to the port 

3128, the service port of Squid. A layer 3 switch is acts as the ISP-side router. The 

bandwidth of the access link between the access gateway and the layer 3 switch is 

limited to 2Mbps. As the configuration in simulation, three classes are provided with 

service ratio 4:2:1. Notably, the cache function is disabled to avoid responses are got 

from the local cache or remote caches. The effects of FQRS Squid are observed in 

terms of weighted fairness, user-perceived latency, and CPU loading as follows. 

 
Fig. 13 Test bed for field trial in Squid 

1) Weighted Fairness: The amounts of bandwidth allocated to three classes for a 

200-second test round are 1.03 Mbps, 0.52 Mbps, and 0.26 Mbps, respectively, when 

backlogged requests are applied. It quite obeys the configured service ratio 4:2:1. The 
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fairness index [22] measured here is 0.87. 

2) User-Perceived Latency: Table 2 shows the per-request latency provided by 

the original Squid, the FQRS Squid, and the no-Squid case. The no-Squid case 

represents all packets are simply forwarded. First, we compare the former two cases. 

The FQRS Squid reduces (1686-1174)/1686, or 30%, of the average user-perceived 

latency in the original Squid case, although the user-perceived latency in FQRS 

includes the additional queuing time, 515.5 ms. Next, by comparing the latter two 

cases, we see the user-perceived latency in FQRS is much longer than the one in the 

no-Squid case. It is believed the longer latency is resulted from the overloads of 

user-space processing and TCP-connection interception. Appling the FQRS 

framework in kernel space without additional overload is the future work.   

Table 2 User-perceived latency comparisons. FQRS Squid spends additional queuing 
time. 

Items Original Squid FQRS Squid No Squid

User-Perceived Latency 
(ms/request) 

1686.1 1174.9 
(includes queuing time 515.5) 

473.7 

3) CPU Loading: Table 3 shows the benchmark results on percentage of CPU 

usage percentage in the FQRS Squid process and the original Squid process with 

equal throughput. As expected, the CPU loading increases as the number of classes or 

the access link bandwidth increases. Notably, the loading under the FQRS is always 

lower than that under the original Squid. Under the original Squid, all requests are 

released by the proxy immediately, bringing many concurrent transactions. However, 

the appropriate number of concurrent transactions is allowed by FQRS. It is believed 

that the number of concurrent transactions dominates the cost of CPU computing 

under the same throughput.  

Table 3 Comparison between FQRS and the original Squid in percentage of CPU time 
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Throughput 
 

2 Mbps 10 Mbps 

FQRS Squid with 10 Classes 22.4 28.17 

FQRS Squid with 100 Classes 23.01 29.02 

Original Squid 31.61 42.45 
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Chapter 6 Conclusions and Future Works 

This work reveals two problems occurring in scheduling requests with fair 

queuing disciplines. First, the bandwidth of bottlenecked link is resumed by responses 

instead of the scheduled requests. Besides, the bandwidth of bottlenecked link may be 

exploited by multiple responses simultaneously. The releasing rate of requests has to 

be designed well. Second, response size is varied and unavailable until the first packet 

of the response returns while transmission rate of a response varies over time. 

Therefore it is not workable to decide the releasing order by service completion time.  

Based on the discussion of the two problems, a fair-queuing based request 

scheduling (FQRS) discipline is proposed to manage the access link bandwidth at 

user-side access gateway. To achieve high bandwidth utilization, FQRS adopts 

window-based service-rate control (WRC) to determine the releasing rate of requests 

and the number of concurrent outstanding responses. To perform proportional fairness 

and bandwidth sharing, Request-based fair queuing (RFQ) in FQRS serves the class 

queue according to the accumulated received normalized service amount in bytes of 

each class. 

The results in the simulation and the field trial of FQRS show the bandwidth 

usage between classes conforms to the targeted ratio and the idle bandwidth is 

proportionally shared by all active classes. The fairness index, which presents the 

short-term fairness among classes, is 0.89 and 0.87 respectively. Besides, the FQRS 

reduces 23.44% and 30% of user-perceived latency individually because the number 

of concurrent transmissions is controlled, even this control may queue the requests in 

the FQRS gateway. The examination on F of recomputing interval suggests a value 

from 4 to 8 can reach best bandwidth utilization with respect to the expected 
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utilization Umax, and the examination on Umax suggests a value from 90% to 95% can 

come out shortest user-perceived latency. 

Our future plans will start from formally proving on service fairness and further 

investigating the abnormal case as described in section 3.5.3. After that, we will verify 

the outcomes of FQRS when multiple applications coexist and when traffic not 

triggered by inside requests is mixed. Besides, to reduce the overhead, implementing 

FQRS on kernel space is required.  
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