

國 立 交 通 大 學

資訊科學系

碩 士 論 文

一個事先計算輻射傳輸為基礎的

即時全域照度演算法

A Real-Time Global Illumination Algorithm based on

Pre-Computed Radiance Transfer

研 究 生：陳志豪

指導教授：施仁忠 教授

中 華 民 國 九 十 四 年 六 月

一 個 事 先 計 算 輻 射 傳 輸 為 基 礎 的 即 時 全 域 照 度 演 算 法

A Real-Time Global Illumination Algorithm based on
Pre-Computed Radiance Transfer

研 究 生：陳志豪 Student：Chin-Hao Chen

指導教授：施仁忠 Advisor：Zen-Chung Shih

國 立 交 通 大 學
資 訊 科 學 系
碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 I

一個事先計算輻射傳輸為基礎的即時全域照度演算法

研究生: 陳志豪 指導教授: 施仁忠 教授

國立交通大學資訊科學系

摘 要

在全域照明當中，我們可以使用事先計算輻射傳輸函數，來儲存光線照明的果。由於事

先計算輻射傳輸函數的資料量龐大，光線照明的效果並不能即時的描繪出來。在過去的研究

中，利用分類的概念來事先計算輻射傳輸函數資料的壓縮，來加速描繪光線照明效果的效率。

但是資料分類會導致了多邊形重繪的問題。多邊形重繪會直接的降低描繪的效率。在本論文

當中，我們利用了位置一致性來減少多邊形重繪。另外我們也提出了一個選擇分類為超分類

的演算法來減少多邊形重繪。

 II

A real-time global illumination algorithm based on

pre-computed radiance transfer

Student: Chin-Hao Chen Advisor: Dr. Zen-Chung Shih

Department of Computer and Information Science

National Chiao-Tung University

ABSTRACT

In global illumination, we can use Pre-computed Radiance Transfer (PRT) Function to store

the lighting effects. Since the required storage for the values of PRT Function is huge, the result of

lighting can not be rendered in real-time. In Peter-Pike Sloan‘s research, they compress the required

storage by clustering PRT data to accelerate the rendering performance. But clustering data may

result the polygon overdraw problem. Polygon overdraw will decrease the rendering performance

directly. In this thesis, we apply the Geometry Coherence to reduce overdraw. Besides, we also

introduce a cluster selection algorithm for super-cluster to decrease triangle overdraws.

 III

Acknowledgements

First of all, I would like to express much respect to my advisor, Prof. Zen-Chung Shih. I

greatly appreciate his patient and guidance. Moreover, I want to dedicate the achievement of this

work to my family. They encouraged me and gave me support during these days. Besides, I am

grateful to all members in Computer Graphics and Virtual Reality Laboratory for their help in these

days. I deeply treasure the friendship among us. Last, many thanks are gave to all other people who

have ever helped me on my research.

 IV

Contents
ABSTRACT (in Chinese)………………………………………………………..……………….... I

ABSTRACT (in English).………………………………………………………….…………….....II

Acknowledgements ..III
Contents ..IV
List of Tables..V
List of Figures...VI
Chapter 1 Introduction ..1

1.1 Motivation...1
1.2 Overviews..3
1.3 Thesis Organization ...4

Chapter 2 Related Works ..5
2.1 Illumination methods ...5
2.2 Survey of PRT Extensions ...7
2.3 PRT approximation methods ..8
2.4 PRT compress method ...9

Chapter 3 System overview ...10
3.1 Pre-computed process ..10

3.1.1 PRT computation module... 12
3.1.2 LBG clustering module... 14
3.1.3 PCA compressing module... 16

3.2 Rendering process ..17
Chapter 4 Triangles Overdraw Reduction...21

4.1 The triangles overdraw problem ..21
4.2 The geometry coherence ..25
4.3 The clusters selection algorithm ...27

Chapter 5 Experimental Results ...30
Chapter 6 Conclusions and Future Works...46
References ...48

 V

List of Tables
Table 5.1: The models comparisons………………………………………………………………..32

Table 5.2: Dino model, 64 clusters, α=0.05. …………………………………………………….....33

Table 5.3: The “Dino” model, 256 clusters, α=0.05... ……………………………………………..35

Table 5.4: The “Dino” model, 128 clusters, α=0.05... ……………………………………………..36

Table 5.5: The “Dino” model, 192 clusters, α=0.05. ……………………………………………....36

Table 5.6: The “Horse” model, 64 clusters, α=0.05... ……………………………………………..37

Table 5.7: The “Horse” model, 256 clusters, α=0.05.. …………………………………………….38

Table 5.8: The “Horse” model, 128 clusters, α=0.05... ……………………………………………39

Table 5.9: The “Horse” model, 192 clusters, α=0.05... ……………………………………………39

Table 5.10: The “Horse” model, 64 clusters, α=0.05... ……………………………………………40

Table 5.11: The “Horse” model, 256 clusters, α=0.05... ……………………………..……………41

Table 5.12: The “Horse” model, 128 clusters, α=0.05.... …………………………….……………42

Table 5.13: The “Horse” model, 192 clusters, α=0.05.... …………………………….……………43

Table 5.14: The “Bunny” model, 256 clusters, α=0.05... …………………………….……………43

Table 5.15: The “Bunny” model, 64 clusters, α=0.05.... ……………………………..……………44

Table 5.16: The “Bunny” model, 128 clusters, α=0.05... …………………………….……………44

Table 5.17: The “Bunny” model, 192 clusters, α=0.05... …………………………….……………44

 VI

List of Figures
Figure 1.1: Radiance Transfer at point p from source radiance to transferred incident radiance to
 exit radiance…………………………………………………………………………….2

Figure 3.1: Pre-computed process flow chart………………………………………………………11

Figure 3.2: The pseudo code of LBG algorithm…………………………………………………....14

Figure 3.3: The rendering process flow chart………………………………………………………18

Figure 4.1: The overdraw mesh...22

Figure 4.2: Mesh Partitions...23

Figure 4.3: Triangles overdraw. ...23

Figure 4.4: Accumulated mesh result. ..24

Figure 4.5: The Geometry Coherence example... ...26

Figure 4.6: The clusters selecting algorithm for super-clusters.. ..28

Figure 4.7: An example of clusters selection.. ...29

Figure 5.1 (a): The “Dino” model..... ...31

Figure 5.1 (a): The “Horse” model..... ..31

Figure 5.1 (a): The “Bunny” model..... ...32

Figure 5.2: The “Dino” model comparisons, 64 clusters………………………………………......34

Figure 5.3: The “Dino” model comparisons, 256 clusters... …………………………………........35

Figure 5.4: The “Horse” model comparisons, 64 clusters... ………………………………….........37

Figure 5.5: The “Horse” model comparisons, 256 clusters.. …………………………………........38

 VII

Figure 5.6: The “Horse” model comparisons, 64 clusters... ………………………………….........40

Figure 5.7: The “Horse” model comparisons, 256 clusters.. …………………………………........41

Figure 5.8: The “Bunny” model comparisons, 256 clusters ……..………………………………...43

Figure 5.9: The “Horse” model with environment lighting... ………………………………….......43

Figure 5.10: The “Dino” model with environment lighting... …………………………………......45

 1

Chapter 1
Introduction

In global illumination, it is a challenge to render the global light transport in

real-time, especially when the light source is an area light source which needs to

integrate over many samples to get the lighting effects. Traditional global illumination

methods, such as ray tracing [26], radiosity [4], and photon mapping [9], are too

expensive for real-time applications.

1.1 Motivation

Sloan et al. [22] introduced the pre-computed radiance transfer (PRT) algorithm

to store the lighting effects, such as shadowing and inter-reflection. For example, the

point p, as shown in Figure 1.1. Source radiance is from the infinite spherical

environment map. Transferred incident radiance equals to the source radiance but

increased by inter-reflection and decreased by shadow. Exiting radiance is resulted

from that the bi-directional reflectance distribution function (BRDF) times the

 2

transferred incident radiance. For each vertex in the entire scene, the PRT function is

measured and stored in the pre-process.

Figure 1.1: Radiance Transfer at point p from source radiance
to transferred incident radiance to exit radiance.

Sloan et al. [22] also project the radiance transfer function of each vertex to

spherical harmonic (SH) basis. The projected coefficients of each vertex form a vector,

called the PRT vector. The source radiance (spherical environment map) is also

projected to the SH basis. Similarly, the projected coefficients of source radiance form

a vector, called the lighting vector. When rendering, we only need to calculate the dot

product of PRT vector and lighting vector for each vertex. For example, a diffuse

object is considered and used the order 6 SH basis. It means that only the dot product

of two 36D vectors is calculated for each vertex in the whole scene. Although the

 3

PRT algorithm increases the rendering speed, it does not render the scene

interactively. It is because that the computation of rendering is still large.

Sloan et al. [21] introduced the clustered principle component analysis (CPCA)

algorithm to improve the PRT algorithm. The main idea is to cluster the data. The

PRT vectors of the whole scene are clustered into several clusters and then apply the

principle component analysis (PCA) to compress every cluster. The principle

component analysis is a traditional method in statistics. When rendering object, they

only need to calculate the weighted sum of the product of principle transfer vectors

and lighting vector. The computation of rendering object is decreased. The rendering

speed is increased.

1.2 Overviews

Although Sloan et al. [21] improved the rendering speed for PRT based

illumination, but they also arose the overdraw problem. The overdraw problem means

that some triangles will draw over one time when rendering object. This problem will

decrease the rendering speed directly.

In this thesis, our objective is to increase the rendering speed by decreasing

polygon overdraw. We describe two techniques to decrease the polygon overdraw.

 4

First, we introduce the geometry coherence. It is used when we cluster the PRT

vectors. Second, we propose a clusters selection algorithm for super-cluster.

1.3 Thesis Organization

This thesis is organized as follows. In chapter 2, we review the previous related

researches in global illumination, pre-computed radiance transfer, and principle

component analysis. In chapter 3, we introduce our propose system for compression

the PRT vectors and rendering based on CPCA method. In chapter 4, we introduce the

geometry coherence and the cluster selection algorithm for super-cluster to reduce the

triangle overdraws. In chapter 5, we demonstrate the implementation results and

compare to the original CPCA method. Finally, conclusions and future work are given

in chapter 6.

 5

Chapter 2
Related Works

In this chapter, we are going to discuss some related researches. First in section

2.1, we survey several illumination methods proposed in the past ten years. In section

2.2, we review researches which extend the concept of traditional PRT method. In

section 2.3, we discuss researches about approximating the radiance transfer metric.

Finally in section 2.4, we talk about researches in computer graphics using principle

component analysis.

2.1 Illumination methods

There are various techniques proposed to encapsulate and capture the global

illumination effects. Levoy and Hanrahan [12] proposed the light field rendering

method. The light field records radiance samples in a set of images. The set of images

are used for rendering views from arbitrary camera positions.

 6

Gortler et al. [5] proposed a similar image-based rendering technique to record

and capture the appearance of objects, which is called the lumigraph technique.

Besides, there are some extended researches about the previous two techniques, such

as Chen et al. [1], Miller et al. [17], and Wood et al. [27]. However, these techniques

only support the static lighting environments when render objects. It means that

although they can support arbitrary views but they should fix the lighting statement of

objects when rendering.

Sloan et al. [22] proposed the pre-computed radiance transfer (PRT) method

which captures and records the lighting effects, such as self-shadow and

self-inter-reflection, in dynamic lighting environment. By using spherical harmonic

(SH) basis to represent the radiance transfer function and lighting function, it can

render a scene by dot products. For non-diffuse objects, they need to calculate dot

product of radiance transfer matrices and lighting vector. For diffuse objects, they

only need to calculate the dot product of radiance transfer vectors and lighting vector.

 7

2.2 Survey of PRT Extensions

Up to now, there are various PRT extensions proposed. Lehtinen and Kautz [11]

compress the PRT raw data by principle component analysis (PCA) to increase the

rendering performance. Sloan et al. [21] proposed the clustered principle component

analysis (CPCA) method. First, they cluster the PRT raw data into several clusters

before compressing. It can decrease the variance of the radiance transfer matrices.

Next, they used the PCA to compress the data of each cluster. Thus, the required

storage is decreased and the rendering performance is increased.

Besides, Sloan et al. [23] also proposed another technique, bi-scale radiance

transfer, to improve the rendering quality of the PRT data. They modeled the radiance

transfer functions at two scales. The first, macro-scale, captures the global light

transport and measures the ordinary PRT technique. The second, meso-scale, modeled

a better structure of the surface using 4D radiance transfer texture (RTT). They also

project RTTs to SH basis, but differ from bidirectional texture functions (BTFs)

proposed by Dana et al. [3].

 8

2.3 PRT approximation methods

In traditional PRT methods, they applied the SH basis to approximate the

radiance transfer function. But there are some related works using wavelet basis to

approximate radiance transfer function instead of using SH basis. Liu et al. [14]

proposed a PRT-based method. They factored the glossy BRDF into purely

view-dependent part and purely light-dependent part. The radiance transfer matrices

are transformed onto the wavelet basis and compressed by CPCA method similarly.

Ng et al. [18] also projected the radiance transfer function to wavelet basis. But

they select a subset of the wavelet basis for rendering the current frame. Furthermore,

Ng et al. [19] extended their concept into the triple product wavelet integrals for

relighting scenes. The triple product includes the incident lighting, visibility, and the

BRDF functions.

Unlike the SH basis projected methods, the wavelet basis projected methods can

handle the high-frequency lighting. But they still can not archive the real-time

rendering performance on current graphic hardware. Their rendering performance is

below 7 FPS for median-size models.

 9

2.4 PRT compress method

The principle component analysis [10] (PCA) method is a traditional method in

statistics. PCA is also used in computer graphics in some researches such like James

et al. [8], Matusik et al. [15], Vasilescu et al. [24], and Wood et al. [27].

PCA can find the major components of the high dimensional sample data and

transform the sample data into low dimensional data set. In this thesis, we also apply

the PCA to approximate the radiance transfer matrices.

 10

Chapter 3

System overview

Our system consists of two major processes, one is the pre-computed process and

the other is rendering process. The input of pre-computed process is a 3D model.

After the pre-computed process, the outputs are the principle component of radiance

transfer matrices. The principle component of radiance transfer matrices is also one of

the inputs of rendering process. After the rendering process, the lighting transport

results of the 3D model are displayed on the screen. In this chapter, we will discuss

these two processes individually.

3.1 Pre-computed process

The pre-computed process consists of three modules; the PRT computation

module, LBG clustering module, and PCA compressing module. Figure 3.1 shows the

flow chart of the pre-computed process.

 11

Figure 3.1: Pre-computed process flow chart

A 3D model is the input of the pre-computed process. The outputs of the PRT

computation module are the PRT vector of each vertex. The PRT vector of each

vertex is given by projecting the radiance transfer matrix to the SH basis domain. The

PRT vectors of all vertices form the inputs of the LBG cluster module. The LBG

cluster module classifies the inputs into several clusters. After LBG cluster module,

for every cluster, we apply the PCA compressing module to compress the data. The

 12

output compressed data is saved for rendering process. We will describe the three

modules in the following.

3.1.1 PRT computation module

The PRT computation of radiance transfer matrices is proposed by Sloan et al.

[22]. They separated the measurement process into two passes: the shadow pass and

the light transport pass. The shadow pass measures the direct shadow effect. The light

transport pass measures the lighting effects, such as reflections and transmissions.

First, in the shadow pass, we get the visibility map pV for each vertex. The

visibility map is measured by setting view position at vertex p and render mesh into

the cubic map. Next, sample the visibility map in direction sd. sd only needs the

directions around the vertex normal above the hemi-sphere. The shadow transfer

matrix is measured by integrating all directions above the hemi-sphere. The equation

is shown below Equation 1.

0

, 0

() () () ()
p

m m
p ij p l l

s S s n

M V s y s y s ds′
′

∈ • ≥

= ∫ (1)

0
ijp)(M is an element of the shadow transfer matrix in row i of column j. The

matrix element index is given by m, l, m’, and l’, where “i” equals to l(l+1)+m+1 and

 13

“j” equals to l’(l’+1)+m’+1. (s)ym
l means that the m-th projected SH coefficient of

order l in direction s. np is the normal of the vertex p.

Before measuring light transport pass, we need to project BRDF to SH basis

domain. Westin et al. [25] proposed a Monte Carlo technique to compute the BRDF

matrix, B. The z-axis is the vertex normal and the y-axis is the tangent vector of the

vertex. Then we project the BRDF matrix to SH basis.

In the visibility map, there are three situations: entirely shadowed, entirely

un-shadowed, and partially shadowed. When measuring light transport pass, we only

need to measure the directions which are partially shadowed. We update the transfer

matrix from 0
ijp)(M iteratively, as shown below Equation 2 and 3.

∫
∈

+=
Ss

p
m
l

1-b
ijp

b
ijp (s)ds(s)IRVp(s))y-(1)(M)(M (2)

(){ }∑
=

=
2l"

1k

m"
l"kj

1-b
qqp (-s)y)(B)(MR(s)IR (3)

b
ijp)(M is the final radiance transfer matrix of vertex p. “q” is the hitting point of

sample ray from vertex p to another triangle in direction s. (B)Rq denotes the rotated

BRDF matrix where the coordinate is aligned the local coordinate of the vertex. If the

object does not consider the light transmission effect, we only need to integrate over

the hemi-sphere. ”b” is a user defined value which is the maximum number of

 14

iterations for measuring radiance transfer matrix.

3.1.2 LBG clustering module

The PRT computation module measures the radiance transfer matrix of each

vertex and projects to the SH basis. The inputs of the LBG clustering module are the

projected coefficients. The projected coefficients of each vertex are called the PRT

vector. For all vectors, we cluster the data using the LBG algorithm [13]. The LBG

clustering algorithm is also called k-means clustering algorithm [20], where “k”

means the data will be clustered into k clusters. The pseudo code of LBG algorithm is

shown in Figure 3.2.

Figure 3.2: The pseudo code of LBG algorithm

Step 0: Initial pass:
 For each cluster, randomly give the mean value.
Step 1: Cluster pass:
 For each vector, find the nearest cluster by calculating distance of mean.
Step 2: Update pass:
 For each cluster, update the mean by average the vectors which belong to the
 cluster.
Step 3: Check pass:
 Summation the total energy of all vertices Ei
 Compare to the total energy of the last iteration Ei-1

 If the converged ratio small than a pre-given threshold, then cluster done;
 Else jump to the step 1 and do next iteration.

 15

The total energy of all vertices Ei is defined as following Equation 4. The “i”

means i-th iteration. The distance of mean is the Gaussian distance.

∑
∈

=

=

vertex allv
v

2
v

d Ei

||Mean-V||d
v

 (4)

The converged ratio is defined in Equation 5. When the ratio is less than a user

defined threshold, the LBG clustering algorithm is done. In our system, another

converged state is occurred when the total energy function equals to zero. It may

occur when all data is the same.

∞=
=

0

1-ii1-i

E
)/EE-(ER

 (5)

The traditional LBG algorithm initializes means by randomly sampled values. It

may take unnecessary iterations to converge the state. So, in our system, we first scan

all vertices to find the hyper-box of all data. The idea of hype-box is similar to the

bounding box, where the difference is that the dimension of hyper-box is greater than

3. Then we randomly pick up several points in hyper-box as initial cluster means.

Furthermore, the LBG algorithm may result another problem, called “Null

Cluster”, even though the state converged. The “Null Cluster” means that no data

belongs to this cluster after clustering algorithm done. It is because that we pick up

 16

points randomly. To solve this in our system, we will find a cluster, which includes

more data than any other clusters, when the null cluster occurred. Then we divide the

data into two clusters. The total energy is surely less than the original energy. The

“Null Cluster Avoidance” is still applied until there are none “Null Cluster”. After

LBG clustering module, the original data are partitioned into several clusters.

3.1.3 PCA compressing module

After LBG clustering module, we apply PCA to each cluster. The PCA

compressing module will analyze the data and find the principle components. The

number of principle components is given by user. In practice, we often use 8 or 12

principle components for each cluster. After PCA for each cluster, we will get the

principle components for a cluster and get the weighting coefficients vector for each

vertex in the cluster. In rendering time, we will reconstruct the PRT vectors by

weighting coefficients vector and principle components. The equation is shown as

following Equation 6.

∑ ⋅+≈
j

jpjkp BwMR (6)

The “Rp” is the approximated PRT vector of vertex p. The distortion of the “Rp”

and the PRT vector is effected by the number of the principle components. The more

 17

number of the principle components the less approximating distortion. The “Mk” is

the mean of the cluster. The “wpj” is the weighting coefficients vector of vertex p. The

“Bj” is the principle components of the cluster. For the vertices in each cluster, “Mk”

and “Bj” is the same. For each vertex, it only need restore “wpj” and which cluster it

belongs to.

After this module, the required storage is decreased. The required storage of the

PRT vectors is (NumberOfVertice * VectorSize). After the PCA compressing module,

the required storage is (NumberOfVertice * NumberOfPC + NumberOfCluster *

(NumberOfPC +1)* VectorSize).

3.2 Rendering process

In this section, we describe the rendering process. The flow chart of rendering

process is shown as Figure 3.3.

 18

Figure 3.3: The rendering process flow chart

There are also three components in this process. The inputs of the process are

lighting vector and principle component matrices. The lighting vector is obtain by

projecting the light source, environment lighting or several light sources, to the SH

basis domain. The principle component matrices is obtained by the pre-computed

process. In this process, we will calculate the lighting effect for each vertex.

 19

Before calculating the dot product of vectors and lighting vector, we need to

rotate the light vector. It is because that the lighting environment is dynamic. The

environment can be rotated arbitrarily. Since the light source came from infinite, the

movement of environment need not concern. Although we can re-project light source

to SH basis again when the lighting environment changed, but it takes expensive

computation for rendering. Ivanic et al. [6][7] proposed a method to rotate the SH

coefficients in the SH domain. The computation cost is less than re-projecting lighting

vector to SH basis. We also apply their method in our system.

After pre-computed process, we get the principle components of clusters and the

weighting vectors of all vertices. In the original PRT, we need to calculate the dot

product of the PRT vectors and lighting vector to get the lighting effect. After

compression, we only need to calculate the dot product of the principle components

and the lighting vector, and weighted summation by weighting vector. The equation is

shown as follows: Equation 7.

∑

∑
•⋅+•≈•⇒

⋅+≈

j
jpjkp

j
jpjkp

LBwLM LR

BwM R
 (7)

In our system, we calculate the dot product Mk‧L and Bj‧L in CPU and the

weighting summation in GPU using fragment shader. We use the new features of the

 20

fragment shader model 3.0 and do per-vertex computation. The principle component

metric are placed in the hardware float constant registers. The weighting vector of

each vertex is placed as the input of the shader. We use the High Level Shading

Language (HLSL) to utilize the shader to compute the weighted summation. The

other points on the mesh surface except mesh vertices will shade by hardware

interpolation.

 21

Chapter 4

Triangles Overdraw Reduction

In this chapter, we discuss the triangles overdraw problem and introduce two

methods to reduce it. First in Section 4.1, we introduce the triangles overdraw

problem. In Section 4.2, we apply the Geometry Coherence to decrease the triangles

overdraw. In Section 4.3, we introduce a cluster selection algorithm for super-cluster

to reduce triangles overdraw.

4.1 The triangles overdraw problem

The triangles overdraw problem means that triangles are drawn over more than

one time when rendering. This problem is occurred as a result of the current graphic

hardware restriction. Recalling in Chapter 3, we cluster the PRT vectors into several

clusters and place the principle components into the graphic card registers. If the

number of clusters is large enough, the registers requirement of all principle

components may be larger than the number of graphic hardware registers. Therefore

 22

the objects are not rendered in one pass. Some triangles could be rendered in the

second or third passes. For example, the modern graphic hardware equips with 256

float4 registers (i.e. float4 register equals 4 float registers). If we use order 6 SH basis

for glossy objects, 8 principle components per cluster. The PRT vectors are classified

into 60 clusters. The requirement of registers is ((6*6)*(8+1)*60)/4, i.e. 4860, float4

registers is larger than 256 float4 registers.

In our system, we will split the mesh into several partitions by distribution of

clusters. When rendering, we accumulate all rendering result of partitions to get the

final result. For example in Figure 4.1, the mesh is divided into three clusters and

represented by three colors, red, blue, and green respectively.

Figure 4.1: The overdraw mesh

 23

The mesh will be split into three partitions, as shown in Figure 4.2.

Figure 4.2: Mesh Partitions

When rendering vertices of triangles in a cluster, there are two situations

occurred. One is the vertex belong to current cluster. We will calculate the lighting

effect of the vertex. The other is the vertex belong to another cluster. We will set the

output lighting effect result to zero (i.e. black color). After all clusters are rendered,

all vertices lighting effect are calculated. The triangles overdraw occurs. Figure 4.3

shows all triangles overdraw of the example mesh.

Figure 4.3: Triangles overdraw.

 24

There are three situations of triangle overdraw. First, the triangle overdraws

equals to one, it means that the vertices of triangle belong to the same cluster. Second,

the triangle overdraws equal to two, it means that the vertices of the triangle belong to

two clusters. The triangle will be drawn in two times. Third, the triangle overdraws

equals to three, it means that the vertices of the triangle belong to three clusters, and

the triangle will draw in three times. The accumulated result is shown in Figure 4.4.

Figure 4.4: Accumulated mesh result

In our system, we apply alpha blending function in graphic card to accumulate

the result of partitions. We measure the “average triangle overdraws” in our system to

represent the triangles overdraw instead of total rendering triangles. The average

triangles overdraw equals to divide the total triangles rendered by total triangles of the

objects. The equation is as following.

triangles ojbects Total
triangles rendered Total ODAvg = (8)

 25

In the result, we compare the rendering speed by listing the average triangles

overdraw and frames per second (FPS). The average triangles overdraw will affect the

rendering speed directly.

4.2 The geometry coherence

In Chapter 3, we cluster the PRT vectors by calculating the Gaussian distances

between the PRT vector and mean vectors of clusters. Some vertices may cluster into

a clusters but not close in 3D space. It will increase the extra triangle overdraws. The

geometry coherence is an idea to reduce the extra triangle overdraws. The main

concept of geometry coherence is that” When the vertices are closer, the PRT vectors

are similar”. In our system, we add the geometry coherence in the LBG clustering

algorithm module. When clustering the PRT vectors, we not only calculate the

Gaussian distances of vectors but also calculate the Gaussian distances of positions.

For example in Figure 4.5, the purple point is the data point we want to cluster.

The red points are in one cluster and blue points are in another cluster.

 26

Figure 4.5: The Geometry Coherence example

In our system, we cluster the data by calculating the Gaussian distances of PRT

vector plus the Gaussian distances of position vector. The equation is shown as

following.

jjiij ceGeoCoherenmean-V E ⋅+= α
v

 (9)

The “i” means point i-th and the “j” means the j-th cluster. “α” is a user given

value to control the effect of geometry coherence. The “GeoCoherence” is defined as

finding the minimum distance of the data and the points in a cluster. The equation is

shown as following.

 }P-P{min ceGeoCoheren kij cluster k pointj

vv

∈∀
= (10)

After applying the geometry coherence when clustering, the triangles overdraw

is reduced.

 27

4.3 The clusters selection algorithm

Sloan et al. [21] introduces the idea of super-clusters to reduce the triangles

overdraw. But they don’t give a proper method for selecting the clusters for

super-clusters. In the following, we discuss a clusters selection algorithm for

super-clusters.

In the Section 4.1, we discuss the reason of triangles overdraw. Although we can

not place all clusters in one pass, but we can place partial clusters of all in one pass.

Recalling the example in Section 4.1, if we want to place all clusters into registers, we

need 4860 float4 registers. The registers requirement of one cluster is 81 float4

registers. So we can place 256/81, 3 clusters in one pass rendering. This is the main

concept of super-clusters. Our goal is to establish an algorithm to select clusters for a

super-cluster. This will reduce the triangle overdraw again.

The pseudo code of our algorithm is shown in following Figure 4.6.

 28

Figure 4.6: The clusters selecting algorithm for super-clusters

In step 3, “merge the cluster” does not mean merge the principle component data

of two clusters. It means that we will concern both triangle overdraw reduction effect

in the next time selecting another cluster, i.e. Step 2.

For example, in Figure 4.7, every circle represents a cluster. The intersection of

two circles means the reduced triangle overdraws when they are selected into the

same super-cluster. First, we select the red cluster as the initial cluster. Next, we select

the green cluster and merge these two clusters to form a super-cluster C. The reason is

that the green cluster can reduce 8 triangle overdraws which is greater than any other

clusters. Next, we select the purple cluster and merge into C. We do not select blue

Step 1: Find the cluster which has the most data and put in cluster C.

Step 2: Find the cluster which can reduce the most triangles overdraws of cluster C.

Step 3: Merge the cluster selected by step 2 into cluster C.

Step 4: If all clusters are selected, then exit.

 Else if the registers are full, then go to step 1 and empty the cluster C.

 Else go to step 2 to find next cluster.

 29

cluster because the purple cluster will reduce more triangle overdraws. So, the

“merge” means merging the triangle overdraw reduction effects when we select

another cluster into a super-cluster in the next iteration.

Figure 4.7: An example of clusters selection

 30

Chapter 5

Experimental Results

In this chapter, we demonstrate experimental results of our purposed approach.

Our system is implemented in C++ language and DirectX 9.0c [16]. It is working on a

Pentium IV 3.4GHz CPU and an NVIDIA GeForce 6800GT graphic card.

In the testing examples, we compare our results with two previous methods

which are the original CPCA method and the CPCA triangle overdraws reduced

method. The resolution of image size is 1280 × 948 pixels. All the testing models are

shown in the Figure 5.1. Table 5.1 shows the details of these models. The first row

refers to the number of vertices of them. The second row refers to the number of

polygons of them. The third row refers to the number of principle components we

apply in the following experimental results. The fourth row refers to the total PRT

data size before compression.

 31

Figure 5.1 (a): The “Dino” model

Figure 5.1 (b): The “Horse” model

 32

Figure 5.1(c): The “Bunny” model

 Dino Horse Bunny
Vertices 23984 19851 34834
Triangles 47904 39698 69451

of Principle
Components

8 8 8

PRT Data Size 355 MB 294 MB 516 MB

Table 5.1: The models comparisons

 33

In the following tables, the first column refers to the methods. The second

column refers to the clustering time in LBG algorithm module. The third column

refers to the average triangles overdraw. The last column refers to the frames per

second (FPS). The fifth column refers to the average squared error (SE).

First, the measurement of the “Dino” model is shown as follows. The material is

applying Phong BRDF model. Table 5.2 shows the comparison with the other

methods where the number of clusters is 64. Figure 5.2 shows the rendering result.

Figure 5.2 (a) shows the uncompressed rendered result. Figure 5.2 (b) shows the

rendered result of the original CPCA method without applying triangle overdraws

reduction. Figure 5.2 (c) shows the result with applying triangle overdraws reduction.

Figure 5.2 (d) shows the rendered result which applies our method.

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 3 m 53 sec 1.427584 27.57 0.033846
CPCA overdraw red. 5 m 42 sec 1.383141 28.12 0.032895

Our method 2 m 18 sec 1.309619 32.37 0.047968

Table 5.2: Dino model, 64 clusters, α=0.05

 34

(a): uncompressed result (b): original CPCA method

(c): CPCA triangles overdraw red. (d): our method

Figure 5.2: The “Dino” model comparisons, 64 clusters

Table 5.3 shows the results that the number of clusters is 256. Figure 5.3

demonstrates the rendering results of methods. We change both the view and lighting

directions.

 35

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 27 m 4 s 1.733425 22.93 0.005371
CPCA overdraw red. 27 m 27 s 1.646063 24.43 0.006344

Our method 7 m 31 s 1.404810 30.52 0.012216

Table 5.3: The “Dino” model, 256 clusters, α=0.05

(a): Uncompressed result

(b): Original CPCA method

(c): CPCA triangles overdraw red.

(d): Our method

Figure 5.3: The “Dino” model comparisons, 256 clusters

 36

Similarly the result for 128 and 192 clusters are shown in Tables 5.4 and 5.5

respectively.

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 12 m 38 s 1.556363 26.58 0.014452
CPCA overdraw red. 12 m 17 s 1.505114 27.15 0.014756

Our method 4 m 10 s 1.359051 31.91 0.027246

Table 5.4: The “Dino” model, 128 clusters, α=0.05

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 15 m 15 s 1.637316 24.62 0.007938
CPCA overdraw red. 19 m 46 s 1.593019 25.60 0.008764

Our method 4 m 55 s 1.382953 30.89 0.017335

Table 5.5: The “Dino” model, 192 clusters, α=0.05

Next example is a “Horse” model. The material is applying the Phong BRDF

model. Table 5.6 shows the comparing results, where the number of clusters is 64.

Figure 5.4 displays the rendering results.

 37

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 3 m 46 s 1.510882 27.70 0.029795
CPCA overdraw red. 4 m 19 s 1.449997 29.38 0.029944

Our method 5 m 44 s 1.417578 30.51 0.029789
CPCA overdraw red.

+ Our method
4 m 30 s 1.344148 32.11 0.030263

Table 5.6: The “Horse” model, 64 clusters, α=0.05

(a): Uncompressed result

(b): Original CPCA method

(c): CPCA triangles overdraw red.

(d): Our method

Figure 5.4: The “Horse” model comparisons, 64 clusters

Then we increase the number of clusters to 256. The comparing results are

shown in Table 5.7 and the rendering results are shown in Figure 5.5.

 38

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 16 m 1.825407 25.18 0.006340
CPCA overdraw red. 16 m 56 s 1.724545 27.70 0.007333

Our method 20 m 17 s 1.632803 30.03 0.006301
CPCA overdraw red.

+ Our method
13 m 40 s 1.574815 32.54 0.007226

Table 5.7: The “Horse” model, 256 clusters, α=0.05

(a): Uncompressed result

(b): Original CPCA method

(c): CPCA triangles overdraw red.

(d): Our method

Figure 5.5: The “Horse” model comparisons, 256 clusters

For 128 and 192 clusters the comparisons are shown in Tables 5.8 and 5.9.

 39

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 11 m 40 s 1.664971 26.75 0.014491
CPCA overdraw red. 7 m 46 s 1.599350 28.49 0.016006

Our method 15 m 58 s 1.506927 31.23 0.014509
CPCA overdraw red.

+ Our method
6 m 9 s 1.474205 32.47 0.015547

Table 5.8: The “Horse” model, 128 clusters, α=0.05

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 13 m 51 s 1.739609 25.43 0.009147
CPCA overdraw red. 12 m 46 s 1.673963 27.06 0.009875

Our method 17 m 57 s 1.570583 30.32 0.009132
CPCA overdraw red.

+ Our method
13 m 54 s 1.511764 31.16 0.010184

Table 5.9: The “Horse” model, 192 clusters, α=0.05

Next, we apply the Cook-Torrance BRDF model [2]. Table 5.10 shows the result

where the number of clusters is 64. Figure 5.6 shows the rendering results.

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 3 m 35 s 1.518691 27.75 0.258778
CPCA overdraw red. 4 m 18 s 1.469621 29.06 0.255928

Our method 5 m 19 s 1.408963 31.02 0.258831
CPCA overdraw red.

+ Our method
3 m 4 s 1.378961 31.59 0.259388

Table 5.10: The “Horse” model, 64 clusters, α=0.05

 40

(a): Uncompressed result

(b): Original CPCA method

(c): CPCA triangles overdraw red.

(d): Our method

Figure 5.6: The “Horse” model comparisons, 64 clusters

Next for 256 clusters, the results are shown in Table 5.11 and Figure 5.7.

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 14 m 23 s 1.799159 25.32 0.064937
CPCA overdraw red. 16 m 56 s 1.755126 26.41 0.069018

Our method 18 m 5 s 1.640612 30.01 0.064994
CPCA overdraw red.

+ Our method
19 m 17 s 1.592372 32.33 0.064323

Table 5.11: The “Horse” model, 256 clusters, α=0.05

 41

(a): Uncompressed result

(b): Original CPCA method

(c): CPCA triangles overdraw red.

(d): Our method

Figure 5.7: The “Horse” model comparisons, 256 clusters

For 128 and 192 clusters, Tables 5.12 and 5.13 show the results.

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 7 m 14 s 1.643282 26.64 0.136315
CPCA overdraw red. 8 m 9 s 1.608796 27.45 0.137434

Our method 10 m 21 s 1.519724 30.04 0.136325
CPCA overdraw red.

+ Our method
9 m 22 s 1.457983 31.62 0.136876

Table 5.12: The “Horse” model, 128 clusters, α=0.05

 42

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 10 m 48 s 1.729105 25.76 0.089433
CPCA overdraw red. 10 m 24 s 1.696131 26.58 0.093385

Our method 14 m 3 s 1.584186 30.01 0.089484
CPCA overdraw red.

+ Our method
12 m 4 s 1.560885 30.24 0.092139

Table 5.13: The “Horse” model, 192 clusters, α=0.05

Finally, we use the “Bunny” model for testing. We apply the Cook-Torrance

BRDF model. Table 5.14 shows the results for 256 clusters. Figure 5.8 shows the

rendering results.

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 26 m 49 s 1.529308 23.05 0.054466
CPCA overdraw red. 31 m 26 s 1.467294 24.45 0.058319

Our method 38 m 13 s 1.413759 25.89 0.054501
CPCA overdraw red.

+ Our method
34 m 47 s 1.378627 26.77 0.055894

Table 5.14: The “Bunny” model, 256 clusters, α=0.05

 43

(a): Uncompressed result

(b): Original CPCA method

(c): CPCA triangles overdraw red.

(d): Our method

Figure 5.8: The “Bunny” model comparisons, 256 clusters

Tables 5.15, 5.16, and 5.17 show the results of 64 clusters, 128 clusters, and 196

clusters.

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 5 m 40 s 1.305410 25.86 0.221043
CPCA overdraw red. 7 m 18 s 1.275172 26.67 0.224016

Our method 10 m 6 s 1.239781 27.72 0.221096
CPCA overdraw red.

+ Our method
7 m 14 s 1.207974 28.53 0.225144

Table 5.15: The “Bunny” model, 64 clusters, α=0.05

 44

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 12 m 46 s 1.412708 25.07 0.118658
CPCA overdraw red. 15 m 8 s 1.345726 26.65 0.117374

Our method 19 m 39 s 1.300917 27.61 0.118617
CPCA overdraw red.

+ Our method
17 m 17 s 1.285856 28.16 0.113184

Table 5.16: The “Bunny” model, 128 clusters, α=0.05

Clustering

time

 Average
triangles
overdraw

FPS
Average

SE

Original CPCA 22 m 19 s 1.471411 24.65 0.073271
CPCA overdraw red. 19 m 25 s 1.420354 25.89 0.076507

Our method 31 m 52 s 1.356309 27.49 0.073280
CPCA overdraw red.

+ Our method
22 m 35 s 1.337691 27.83 0.077189

Table 5.17: The “Bunny” model, 192 clusters, α=0.05

Next, we change the lighting condition to the environment lighting. We show the

rendering results in the following figures.

 45

Figure 5.9: The “Horse” model with environment lighting

Figure 5.10: The “Dino” model with environment lighting

 46

Chapter 6

Conclusions and Future Works

In this thesis, we propose two methods to reduce the triangles overdraw. One

considers Geometry Coherence and the other uses the clusters selection algorithm.

Geometry Coherence may reduce the triangle overdraws, but increase the average

square errors. Although the average square errors increase, the rendered images do not

differ very much perceptually.

The clusters selection algorithm may also reduce the triangle overdraws. The

number of clusters for a super-cluster will affect the number of reduced triangle

overdraws. When the number of clusters for a super-cluster is smaller, the number of

reduced triangle overdraws is smaller. Oppositely, when the number of clusters for a

super-cluster is larger, the number of reduced triangle overdraws is larger.

 47

Our proposed approaches increase the real-time performance of global illumination.

Our approaches can be applied to 3D games or virtual reality applications.

However, there are still some issues left for future research.

(1) There could be other coherences may enhance the performance further.

(2) The Geometry Coherence may increase the average squared error. We may

try another approach to control the average squared error.

(3) The LBG algorithm is a simple clustering method. We may try to find

another clustering algorithm to decrease the clustering time.

 48

References
[1] CHEN, W.-C., BOUGUET, Y.-V., CHU, M. H., AND GRZESZCZUK, R. 2002.

Light Field Mapping: Efficient Representation and Hardware Rendering of
Surface Light Fields. ACM Transactions on Graphics, 21(3), 447-456.

[2] COOK, R. AND TORRANCE, K. 1982. A Reflectance Model for Computer
Graphics. ACM Transactions on Graphics, 1(1), 7–24.

[3] DANA, K, VAN GINNEKEN, B, NAYAR, S, AND KOENDERINK, J. 1999.
Reflectance and Texture of Real World Surfaces. ACM Transactions on Graphics,
18(1), 1-34.

[4] GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND BATTAILE,
B. 1984. Modeling the Interaction of Light between Diffuse Surfaces.
Proceedings of SIGGRAPH ‘84, 213-222.

[5] GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. F.
1996. The Lumigraph. Proceedings of SIGGRAPH ‘96, 43-54.

[6] IVANIC, J. AND RUEDENBERG, K. 1996. Rotation Matrices for Real
Spherical Harmonics, Direct Determination by Recursion. Journal of Physical
Chemistry A, 100(15), 6342-6347.

[7] IVANIC, J. AND RUEDENBERG, K. 1998. Additions and Corrections:
Rotation Matrices for Real Spherical Harmonics. Journal of Physical Chemistry
A, 102(45), 9099-9100.

[8] JAMES, D. L. AND FATAHALIAN, K. 2003. Precomputing Interactive
Dynamic Deformable Scenes. ACM Transactions on Graphics, 22(3), 879- 887.

[9] JENSEN H. W. 1996. Global Illumination Using Photon Maps. Proceedings of
the Eurographics Workshop on Rendering '96, 21-30.

[10] JOLLIFFE, I. T. 2002. Principle Component Analysis, 2nd Edition.
Springer-Verlag.

 49

[11] LEHTINEN, J. AND KAUTZ, J. 2003. Matrix Radiance Transfer. Proceedings
of the ACM Symposium on Interactive 3D Graphics 2003, 59-64.

[12] LEVOY, M. AND HANRAHAN, P. 1996. Light Field Rendering. Proceedings
of SIGGRAPH ‘96, 31-41

[13] LINDE, Y., BUZO, A., AND GRAY, R. 1980. An Algorithm for Vector
Quantizer Design, IEEE Transactions on Communication, 28(1), 84-95.

[14] LIU, X., SLOAN, P.-K., SHUM, H.-Y., AND SNYDER, J. 2004. All-Frequency
Precomputed Radiance Transfer for Glossy Objects. Proceedings of the
Eurographics Symposium on Rendering 2004, 337-344.

[15] MATUSIK, W., PFISTER, H., NGAN, A., BEARDSLEY, P., ZIEGLER, R.,
AND MCMILLAN L. 2002. Image-Based 3D Photography using Opacity Hulls.
ACM Transactions on Graphics, 21(3), 427- 437.

[16] MICROSOFT. 2005. DirectX 9.0c SDK (April 2005).
http://www.microsoft.com/DirectX.

[17] MILLER, G., RUBIN, S., AND PONCELEN, D. 1998. Lazy Decompression of
Surface Light Fields for Pre-computed Global Illumination. Proceedings of the
Eurographics Workshop on Rendering ‘98, 281- 292.

[18] NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2003. All-Frequency
Shadows Using Non-Linear Wavelet Lighting Approximation. ACM
Transactions on Graphics, 22(3), 376-381.

[19] NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2004. Triple Product
Wavelet Integrals for All-Frequency Relighting. ACM Transactions on Graphics,
23(3), 477–487

[20] SELIM, S. Z. AND ISMAIL, M. A. 1984. K- Means-Type Algorithms: A
Generalized Convergence Theorem and Characterization of Local Optimality.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(1), 81-87.

 50

[21] SLOAN, P., HALL, J., HART, J., AND SNYDER, J. 2003. Clustered Principal
Components for Pre- computed Radiance Transfer. ACM Transactions on
Graphics, 22(3), 382-391.

[22] SLOAN, P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed Radiance
Transfer for Real-Time Rendering in Dynamic, Low-Frequency Lighting
Environments. ACM Transactions on Graphics, 21(3), 527-536.

[23] SLOAN, P., LIU, X., SHUM, H., AND SNYDER, J. 2003. Bi-Scale Radiance
Transfer. ACM Transactions on Graphics, 22(3), 370-375.

[24] VASILESCU, M. A. O. AND TERZOPOULOS, D. 2004. TensorTextures:
Multilinear Image-Based Rendering. ACM Transactions on Graphics, 23(3),
336-342.

[25] WESTIN, S., ARVO, J., AND TORRANCE, K. 1992. Predicting Reflectance
Functions from Complex Surfaces. Proceedings of SIGGRAPH ‘92, 255-264.

[26] WHITTED, T. 1980. An Improved Illumination Model for Shaded Display.
Communications of the ACM, 23(6), 343–349.

[27] WOOD, D., AZUMA, D., ALDINGER, K., CURLESS, B., DUCHAMP, T.,
SALESIN, D., AND STUETZLE, W. 2000. Surface Light Fields for 3D
Photography. Proceedings of SIGGRAPH 2000, 287- 296.

