

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

三 維 中 國 水 墨 畫 之 快 速 合 成 演 算 法

A Fast Algorithm for the Synthesis of

3D Chinese Ink Paintings

研 究 生：林俊男

指導教授：施仁忠 教授

中 華 民 國 九 十 四 年 八 月

三維中國水墨畫之快速合成演算法

研究生: 林俊男 指導教授: 施仁忠 教授

國立交通大學資訊科學系

摘 要

 水墨畫在中國傳統文化藝術中是具有相當悠久歷史的一項藝術，使用墨與水

調和出各種不同濃淡的墨色，用墨色表現出的明暗對比來描繪出一幅景物。在現

今已經發展出來的許多模擬中國水墨畫的技術中，我們可以看到許多不錯的結

果。但是因為演算法以及硬體的限制，執行速度不夠快，所以在某些應用程式上

鮮少被使用到。本篇論文研究的重點，便是改善水墨畫效果產生的運算速度。在

本篇論文中，我們使用硬體語言來撰寫，利用 GPU 來運算，將不同的影像技術加

入模擬程式中，最後將系統產生的結果利用渲染的技術，建立一個自動產生水墨

畫效果的即時互動式系統。

 I

A Fast Algorithm for the Synthesis of

3D Chinese Ink Paintings

Student: Chun-Nan Lin Advisor: Dr. Zen-Chung Shih

Institute of Computer and Information Science

National Chiao-Tung University

ABSTRACT

 The ink painting is an art with long history in Chinese culture. By mixing water

and ink properly, we can obtain different concentrations to show the contrast of an

object. Several techniques focused on simulating Chinese ink paintings can yield good

results. But they can not have good efficiency when used in some applications

because of the limitation in hardware and algorithm. In this thesis, the major

contribution is to improve the performance of synthesizing the Chinese ink styles. We

use each random particle which is generated in 3D scene to draw billboard and use

High-Level Shader Language (HLSL) to write our program code which is running in

the GPU. We build a system which puts different image space techniques in shader

program and mix them to generate a scene in Chinese ink painting style automatically.

 II

Acknowledgements

First of all, I would like to show my gratitude to my advisor, Prof. Zen-Chung

Shih for his patience and guidance. Also, I am grateful to all the members in

Computer Graphics and Virtual Reality Laboratory for their useful suggestion and

encouragement in these days.

I want to dedicate the achievement of this work to my family. Without their

support, I couldn’t fully focus on my study.

 III

Contents

ABSTRACT (IN CHINESE)…………………………………………………………I

ABSTRACT (IN ENGLISH)…………………………………………………………II

ACKNOWLEDGEMENTS……………………………………………...…………III

CONTENTS…………………………………………………………………………IV

LIST OF TABLES…………………………………………………………………..VI

LIST OF FIGURES………………………………………………………………..VII

CHAPTER 1 INTRODUCTION………………………………………………...1

 1.1 MOTIVATION……………………………………………………………….1

 1.2 OVERVIEW………………………………………………………………….2

CHAPTER 2 RELATED WORKS………………………………………………6

2.1 PAINTERLY RENDERING USING PARTICLES………………………….6

 2.2 INK DIFFUSION…………………………………………………………….8

 2.3 SHADER PROGRAMMING……………………………………………...9

CHAPTER 3 THE RENDERING……………………………………………10

 3.1 PREPROCESSING…………………………………………………………11

 3.2 EXTRACTING 3D INFORMATION……………………………………...13

 3.3 PARTICLES CULLING AND PARTICLE DENSITY…………………….14

 3.4 DRAW BILLBOARDS...…………………………………………………...16

 3.4.1 Billboard Size……………………….……………………………..17

 IV

 3.4.2 Billboard Orientation………………………………………………..18

 3.4.3 Brush Stroke………………………….……………………………...19

 3.4.4 Multiple Passes for Particle Rendering……………………………..20

 3.5 SILHOUETTE GENERATION……………………………………………21

 3.6 INK DIFFUSION………………………………………………………...…22

CHAPTER 4 IMPLENENTATION RESULTS………………………………24

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS…………………….34

REFERENCE……………………………………………………………………….36

 V

List of Tables

Table 4.1: Performance measurements……………………………………………...33

 VI

List of Figures

Figure 1.1: System flow chart…………………..……………………….……...…….3

Figure 3.1: Particles distribution with different density ...………………………...12

Figure 3.2: The fifteen thresholds for quantization. ……………………….………14

Figure 3.3: The equation of actual number of particles …………………………….16

Figure 3.4: Particle size with different mPartSize……………………….…………..18

Figure 3.5: Rotating billboard.…………………..………………………….……….19

Figure 3.6: Different Brush texture.……………………..…………………...……...20

Figure 3.7: Order of eight neighbor directions…………………………….………21

Figure 3.8 The capillary phenomenon..…………………………………………….22

Figure 3.9 The real ink diffusion effect..…………………………………….………22

Figure 4.1: Intermediate results of the rendering...…………………………...……..26

Figure 4.2: Sparrow with silhouette edges.…………………………………...…...27

Figure 4.3: Different View of Sparrow……………………………………….……...28

Figure 4.4: Aqua1 without silhouette edges.………………...…………….………...29

 VII

Figure 4.5: Aqua2 without silhouette edges.………....…………………….………..30

Figure 4.6: Different view of Aqua2………………………………………..……..31

Figure 4.7: Willow with silhouette edges………………………………...………..32

 VIII

Chapter 1

Introduction

1.1 Motivation

In some computer-related applications such as computer games or virtual

environment, they are rarely rendered in Chinese visual styles because the rendering

of the Chinese ink painting is hard to reach real-time performance. In the past, several

studies that focused on Chinese ink painting yield good results. Although these results

have good quality and giving us a deep impression, their performance is not good

enough. In general, if we want to enhance the performance, we need to lose some

quality of the results or upgrade our computer hardware. In order to improve the

rendering performance, we propose a method that automatically synthesizes the

Chinese ink painting style from a 3D model by using GPU. Users can freely navigate

around the scene in the Chinese painting styles interactively.

 1

1.2 Overview

Chinese ink paintings typically consist of simple strokes that convey the “deep

feeling” of artist but not just color filling or pattern placing. Synthesizing the style of

the Chinese ink painting is not at all trivial. Such paintings typically use brushes and

ink, and value the expression of the artistic conception far beyond precisely

conveying the appearance of the painted subjects. A painter communicates her frame

of mind to the viewers by blending the effects of brushes and ink.

The main goal of this thesis is to render the 3D object with Chinese ink painting

style. In the past, several methods which simulate Chinese ink paintings are almost

implemented in software that is relying on the computing power of CPU. For this

purpose, we use the hardware accelerated method, that is writing shader programs

which execute on the GPU (Graphics Processing Unit) by means of HLSL instead of

assembly or any high-level language. Shader replaces a portion of the fixed function

pipeline. We can obtain a huge amount of flexibility in graphical effects that we can

achieve. First we use the geometric information of 3D model to generate particles.

Then, draw billboards and silhouette. Apply ink Diffusion to result and use image

filter for post process. The flow chart of our proposed system is shown in Figure 1.1.

The function of each part is described as follows:

 2

3D Model

Tessellation

Draw Silhouette

Particle Backface Culling

Blurred Image Filter

Display
Final Image

Changing
View

Run Time

Ink Diffusion

Normal image

Color image

Particles Generation

3D Information Extraction

Draw Billboard

Geometry
information

2D
Image
Space

3D
Object
Space

Figure 1.1: System flow chart

 3

（1） Tessellation：Geometric primitives, including points, lines, triangles, and

polygons, are referenced in the vertex data with index buffers.

（2） Particles Generation：Generate random particles from each face in the 3D

model. Each particle also has a random color value.

（3） 3D Information Extraction：We use DirectX to render 3D model with vertices,

edges, faces and light sources. Output color image, normal image, position

image in one pass or three pass (depend on hardware).

（4） Particle Backface Culling：Clipping, back face culling, attribute evaluation,

and rasterization are applied to the transformed particles.

（5） Draw Billboard：Each billboard is a brush texture. We draw a billboard for

each particle by using the color image for reference texture map. Depth buffer

is applied to each particle.

（6） Draw Silhouette：Find the silhouette edges using normal map of the reference

texture image.

（7） Ink Diffusion：Simulate the motion of ink on the rice paper.

（8） Image Filter：Use blurred image filter or blend with the color image to produce

final image.

 4

1.3 Thesis Organization

This thesis is organized as follows. In chapter 2, we review the related works in

non-photorealistic rendering. We describe techniques and algorithms for ink painting

in chapter 3. We show implementation in chapter 4, including the performance data.

Then we make discussion on these results. Finally, chapter 5 concludes this work and

addresses some future works.

 5

Chapter 2

Related Works

2.1 Painterly Rendering using particles

Haeberli [6] described a system for creating painterly images by using brush

strokes which obtain their attributes (position, color, size, etc.) from reference pictures

containing photographic or rendered images. The use of reference pictures simplifies

the creation of artistic images and allows fast and direct control of the process.

The brush strokes of Haeberli’s system are placed in screen space, which is

sufficient for still images but leads to a “shower door” effect in animated sequences.

In Meier’s system [13], this problem is addressed by using particles to control the

placement of brush strokes. The particles are rendered using 2D textures which are

first sorted by the distance to the user and then blended with each other.

In photorealistic rendering, particle systems can be used to synthesize complex

 6

natural phenomenons like water or fire using simple geometric structures. Reeves and

Blau [15] proposed a technique using particle systems to create complex objects like

trees. Kaplan et al. [9] utilizes particle systems in a way similar to Meier, but uses

so-called geograftals instead of bitmaps to create brush strokes.

Meier’s system was already converted into a real-time system by Drone et al. [2].

This system is designed to run even on previous hardwares without vertex and pixel

shaders. In addition, the strokes are depth sorted in each frame. Although this results

in an excellent image quality, it has additional impact on the rendering speed.

Michael and Daniel [7] extend Meier’s system and introduce several

optimizations to achieve a performance suitable for real-time applications. The

amount of particles is dynamically changed to achieve an optimal trade-off between

screen coverage and rendering speed. In addition, a manual depth test carried out by

the graphics hardware allows the brush strokes to be blended on the screen without

depth sorting the particles. The transfer of a great deal of calculations from the CPU

to the GPU results in a higher speed than is accomplished in Drone’s system, while

the user-defined creation of reference pictures allows more flexibility. By making

some modifications and extensions to Michael and Daniel‘s system, we can improve

the rendering speed of Chinese ink painting. Detailed rendering algorithm will be

 7

discussed in chapter 3.

2.2 Ink Diffusion

The special effect of ink diffusion is produced by the incredible absorbency of

Hsuan paper. Ink diffusion is widely used in Chinese ink painting and it is also what

differentiates Chinese ink painting from Western painting. A technique proposed by

Lee [10] efficiently rendered oriental black ink paintings with realistic diffusion

effects. The system proposed by Lee can simulate ink diffusion based on a variety of

paper types and ink properties. However, there has been no mechanism presented

about the simulation of blending effects of two or more strokes. Small [16] proposed a

parallel approach to predict the motion of pigment and water on the paper, which

computes the status in each paper cell repeatedly to achieve realistic diffusion effects.

A more sophisticated paper model was proposed by Curtis and Anderson [1]. With a

more complex shallow water simulation, they can simulate realistic diffusion effects

of watercolor. Sheng-Wen Huang et al. [8] proposed a physically-based ink diffusion

model by simulating the interaction among water particles, carbon particles and paper.

This model is the major reference for the ink diffusion simulation in this thesis. By

implementing Huang’s model, we can achieve the requirement for an interactive

system.

 8

2.3 Shader Programming

The constant progress of shader language makes us more convenient to use

powerful GPU capability. So we may transfer a great deal of calculations from the

CPU to the GPU. By using High-level shader language, which is a C++ like language,

instead of assembly language makes less confusion to write a shader program. In

“Shader X2

 “[3], many tips and tricks help us to understand how to design and write

an effect file whatever you want, such as lighting, shadow, geometry transformation,

and image space filter. In “GPU Gems” [4], it also contains shader program which

involves basic and advanced rendering techniques or combination of two or more.

Our system renders a 3D scene efficiently by using the rendering technique which is

almost written by shader program.

 9

Chapter 3

The Rendering

The rendering process of our proposed algorithm consists of seven steps. Except

steps 1, 3 and 6, we use shader language to implement the algorithm as follows：

1. A preprocess to generate 3D particles on polygonal meshes.

2. Extract 3D information of the 3D scene, which will be used in next two steps.

3. Find particles in back face and adjust particle density.

4. Draw billboard for each particle in screen space.

5. Generate silhouettes from reference normal map in image space.

6. Apply ink diffusion effect.

7. Use image filter to modify the intermediate result.

 10

3.1 Preprocessing

In the preprocessing step, we generate particles for the polygonal objects in 3D

scene. These particles will be used later to place the brush strokes. All particles are

located inside the triangles of the polygonal mesh. Depending on the area of a triangle

and a user-defined density, a certain number of particles are generated in each triangle.

The number of particles in each triangle is determined by the area of triangle and

particle density as follows：

N = Area x Density

We can significantly accelerate the preprocessing step by carefully determining

the density of the brush strokes. If the density is too high, a tremendous amount of

particles is created, which has negative effects on performance and memory usage.

 11

Figure 3.1: Particles distribution with different density

Furthermore, we also calculate the ratio for each triangle by using triangle’s area.

areatriangleMax
areatrianglecurrentratio

__
__

= , Max_triangle_area is the triangle with the largest

area in the polygonal objects of the 3D scene. With this parameter, we could adjust

particle size by their triangle area in the fourth step. To get a more natural result, we

 12

also use random number from 0.0 to 1.0 to generate color variation for each particle

and store it. This will be used in determining the color of brush stroke.

3.2 Extracting 3D Information

DirectX has its own mesh file format for 3D object — *.x. We convert the 3D

model file format to DirectX file format. Then we render the 3D model with Gouraud

shading by using shader program. By using the function of multiple rendertarget in

DirectX, we could output the information image to texture. With this method, we can

get two textures include color image and normal image. Color image will be used in

sec 3.4 as reference texture map and normal image will be used in sec 3.5 to generate

silhouette edges.

Before output the color image, we quantize all pixels in the interior area into

fifteenth color levels. Color ranging from pure black to pure white is distributed from

0.0 to 1.0. From the color distribution histogram as shown in the top of Figure 3.2, we

set fourteen thresholds for color quantization: 0.25, 0.3, 0.35, 0.4, 0.433, 0.466, 0.5,

0.525, 0.55, 0.575, 0.6, 0.633, 0.666, 0.7. A pixel located at any place in color

distribution histogram will be quantized to a relative threshold color value. The color

mapping table is also shown in the bottom of Figure 3.2

 13

Color Range 0.0~0.25 0.25~0.3 0.3~0.35 0.35~0.4

Quantization 0.25 0.3 0.35 0.4

0.4~0.433 0.433~0.466 0.466~0.5 0.5~0.525 0.525~0.55 0.55~0.575 0.575~0.6

0.433 0.466 0.5 0.525 0.55 0.575 0.6

0.6~0.633 0.633~0.666 0.666~0.7 0.7~1.0

0.633 0.666 0.7 0.8

 Figure 3.2: The fifteen thresholds for quantization

3.3 Particles Culling and Particle Density

Before the billboards are rendered, typical optimization steps, such as backface

culling and clipping should be performed. This can save a lot of processing time.

Although the remainder of these particles after culling is visible, we don’t need to

 14

draw all of them. The actual number depends on the distance of the camera to each

surface and the size of the brush strokes.

3.3.1 Particles Culling

For performance enhancement, we only calculate one particle in each triangle

instead of all the particles. If this particle is visible, then the whole particles in this

triangle are visible. To determine a particle is visible or not, we calculate the dot

product of the normal vector and vector from eye to particle in world space.

3.3.2 Desired Particle Density

After the backface culling, we also need to control the number of particles that

will be rendered in screen space. Because the actual area of each triangle in screen

space is not the same as in object space, we calculate the ratio of triangle area in

screen space to triangle area in object space for each triangle. Then the actual number

of particles of each triangle which will be rendered at run-time can be obtained

according to the following equation：

 15

N ： number of particles in preprocess step.

actualN ：the actual number of particles will be rendered.

SA ：area of triangle in screen space.

OA ：area of triangle in object space.
Q：a multiplier to control actual number.
R：the ratio of triangle area in screen space to triangle area in object
 space.

 R
O

S

A
A

= .

 actualN = N * R * Q
 if actualN > N then actualN = N

Figure 3.3: The equation of actual number of particles

3.4 Draw Billboards

This step is the most expensive one. Each particle is rendered by billboard.

Thousands of brush strokes have to be rendered simultaneously, which can be

accomplished by programming the graphics card directly (using the vertex and pixel

shaders), and by several other optimizations. The resulting image is composed of a

large amount of billboards which represent different strokes. In the previous step, the

optimizations are executed and the remainders of the particles are all visible.

 16

3.4.1 Billboard Size

Before rendering the billboard for each particle, we need calculating the

billboard size on screen space. To determine the final size of billboard, we have two

parameters — ratio and distance. In the section 3.1, we calculate the ratio of the

triangle’s area to the largest triangle’s area in the polygonal objects of the 3D scene

for each triangle surface in 3D model in world space. Then we use the distance from

the particle to the viewer as our second parameter. So the billboard size for each

particle is calculated below：

mPartSizeratioviewertodistS ∗∗= __ ,

where mPartSize is user-defined parameter to adjust final size of particle. The

billboard is a rectangle whose width to height is 1：4.

 17

 (a) mPartSize = 1.0 (b)mPartSize = 1.5

(c) mPartSize = 2.0

Figure 3.4: Particle size with different mPartSize

3.4.2 Billboard Orientation

To make our results more variation, we rotate the billboard with the angle θ

depend on its normal vector. First we transform the normal vector into screen space

and project it into XY plane. Then calculate the angle θ between it and the Y-axis

in screen space. Finally we can rotate the billboard with the angle θ clockwise. As

shown in Figure 3.5.

 18

(0,1,0)

N

XY plane

N: the normal vector after transformed
into screen space and projected into
XY plane.

θ

Original Billboard Billboard after rotation angle θ

θ

Figure 3.5: Rotating billboard

3.4.3 Brush Stroke

The color of each brush stroke is computed by accessing the color reference

texture which is generated from extraction of 3D information. So we need texture

coordinate to lookup this texture. For this purpose, the screen space position of the

particle is needed that describes the coordinates which are used to access the reference

pictures. The screen coordinates are calculated in the vertex program and

subsequently scaled and biased to be in the range (0.0~1.0) that is needed for texture

 19

access. The coordinate u and v are calculated as below.

() 5.05.0/ +∗= wxu , () 5.05.0/ +∗−= wyv

The color of the reference image at that position is then used as color for the billboard

(and consequently for the brush stroke, after multiplying with the brush texture). By

the way, we have five brush texture patterns which can be used in the billboard as

shown in Figure 3.6.

In the preprocessing step, we stored a slight color variation for each particle. It

will be added here. This results in images that are natural, since the colors of a real

painting are rarely mixed perfectly.

Figure 3.6: Different Brush texture

3.4.4 Multiple Passes for Particle Rendering

Now we can render all visible particles (billboards) with the reference image and

brush texture. Michael and Daniel‘s system [7] render all particle in one pass. To get a

more layered and smooth result, we use a rendering technique with nine passes for

drawing billboard. This means each particle will be rendered nine times. Except the

 20

first pass, the next eight passes we will give all particles offset and direction. Thus

each particle will move to one of the eight neighbor direction in order, as shown in

Figure 3.7.

0

1
2

3

4 5

6
7

8

Figure 3.7: Order of eight neighbor directions

3.5 Silhouette Generation

To enhance our result before diffusion, we add silhouette on our image after

rendering billboard. In order to generate the silhouette, we use the normal map to

calculate it. For each pixel in normal map, we calculate the dot product with four

neighbor pixel’s value and sum up. Then set a threshold, if the value is greater than it,

this pixel is silhouette edge point. However, some model is not suitable for adding

silhouette. So we will determine it depending on circumstances.

 21

3.6 Ink Diffusion

Ink diffusion is caused by the capillary action of water between fibers and the

gradient of the quantity of water in paper cells. In Figure 3.5, a thin tube is placed in a

container filled with water with one end in the water and the other end in the air. The

liquid will rise inside the tube and the liquid surface inside the tube is higher than the

surface of the outside water. This phenomenon can also be observed in the ink

diffusion in paper. The typical paper is composed of fibers which are positioned in

random position and random direction in which small holes and spaces between fibers

act as thin capillary tubes for carrying water away from the initial area, and create

diffusion, as shown in Figure 3.6.

Figure 3.8 The capillary phenomenon. Figure 3.9 The real ink diffusion effect.

In this thesis, we implement Huang’s [8] physically-based model of ink diffusion

for the process of ink diffusion. Then we apply this model for the intermediate result

generated in the previous step.

After the process of ink diffusion by using physical-based model, we get a

 22

Chinese ink style image. However some small sharp part maybe happen, we apply a

simple 3x3 blurred image filter. Some other image filter could be used here, such as

blending, Gaussian blur.

 23

Chapter 4

Implementation Results

In this chapter, the implementation and results are presented. Our system is

implemented in C++ language and The DirectX Software Development Kit on PC

with P4 3.4GHz CPU, 2048 MB RAM and 6600GT.

Figure 4.1 is the system flow chart. The input is a 3D object model and then

luminance image is constructed. Quantize the luminance image and output as

reference color image. Draw billboard depending on reference color image and adding

silhouette edges. Finally ink diffusion and image filter are applied to synthesize the

final results. Figure 4.2 to 4.5 are the synthesized results of Chinese ink painting. The

upper image of each figure is the luminance image after shading and lower image is

the synthesized results.

Table 4.1 is the performance measurements of our system. The resolution of the

image size is 640 x 480. The first column refers to the Figure. The second column is

the numbers of faces of the 3D object model and the third column is the number of

particles. The fourth column is the FPS(frame per second) without applying ink

 24

diffusion. The fifth column displays the computation time of ink diffusion.

 25

Gray Luminance Image

Color Quantization

Drawing Billboards

Adding Silhouette edges

Ink diffusion and 3x3
blurred image filter

Input 3D model

Figure 4.1: Intermediate results of the rendering.

 26

Figure 4.2: Sparrow with silhouette edges

 27

Figure 4.3: Different View of Sparrow

 28

Figure 4.4: Aqua1 without silhouette edges

 29

Figure 4.5: Aqua2 without silhouette edges

 30

Figure 4.6: Different view of Aqua2

 31

Figure 4.7: Willow with silhouette edges

 32

 # Faces # Particles FPS

without Diffusion

Ink Diffusion Time

(sec)

Figure 4.1 9353 219010 18 0.4922

Figure 4.2 6464 30708 36 0.3575

Figure 4.4 1890 8423 54 0.3471

Figure 4.5 2498 108912 33 0.4390

Figure 4.7 4046 209207 27 0.3703

Table 4.1: Performance measurements

 33

Chapter 5

Conclusions and Future Works

In this thesis, we propose a system for interactive synthesis of Chinese ink

painting. A specific 3D object model is drawn automatically with billboards and

silhouettes. Then we apply ink diffusion and image filter to intermediate result.

Besides, users can navigate around the scene with different viewing directions. The

proposed rendering technique involves several fundamental parts: particles generation;

3D information extraction; backface culling; drawing billboards; applying physical

model of ink diffusion. The results of this thesis can be applied to computer games or

virtual reality applications.

However, there are still some issues left to be studied in the future.

(1) The particle generation method in this thesis is a simple random distribution

algorithm. We could improve it to distribute the particles more equally and then

get performance enhancement.

(2) Thousands of texture strokes have its own direction, but the final synthesized

 34

result is lack of sense of stroke direction. How to improve the algorithm will be

an important work.

(3) A few recent studies have addressed real-time rendering. So far, the framework

for graphics hardware is fit for photo realistic rendering. In this thesis, the

computation time in ink diffusion is too expensive to reach real-time

performance. How to use hardware capability to resolve time consuming jobs of

ink diffusion simulation will be a challenge work in the future.

 35

Reference

[1] Cassidy J. Curtis, Sean E. Anderson, Jonathon. E. Seims, and Kurt W. Fleischer,

and David H. Salesin, “Computer-generated watercolor”, Proceedings of

SIGGRAPH 97, in Computer Graphics Proceedings, Annual Conference Series,

pp. 421-430, August 1997.

[2] DRONE, S., KRISHNAMACHARI, P., LAPAN, D., MICHAELS, J.,

SCHMIDT, D., AND SMITH, P. “Project aember: Real-time painterly

rendering of 3d scenery.” Tech. rep., UIUC ACM SIGGRAPH 2000, August.

[3] Wolfgang F. Engel, “Shader X2

 ” Shader Programming Tips & Tricks with

DirectX 9.

[4] Randima Fernando, “GPU Gems” Programming Techniques, Tips, and Tricks

for Real-Time Graphics.

[5] Qinglian Guo, Tosiyasu L. Kunii, “Modeling the Diffuse Paintings of ‘Sumie’”.

In: Kunii T (Ed.), Modeling in Computer Graphics (Proceedings of the IFIP

WG5.10). Berlin: Springer, 1991. Page 329~338.

[6] HAEBERLI, P. E. “Paint by numbers: Abstract image representations.” In

 36

Proceedings of SIGGRAPH 90, 207–214.

[7] Michael Haller, Daniel Sperl, “Real-Time Painterly Rendering for MR

Application”, Proceedings of the 2nd international conference on Computer

graphics and interactive techniques in Australasia and South East Asia 2004.

[8] Sheng-Wen Huang, Der-Lor Way, Zen-Chung Shih, “Physical-Based Model of

Ink Diffusion in Chinese Ink Paintings”, Journal of WSCG 2003.

[9] KAPLAN, M., GOOCH, B., AND COHEN, E. “Interactive artistic rendering. In

Proceedings of the first international symposium on Nonphotorealistic

animation and rendering,” ACM Press, 67–74. 2000

[10] Jintae Lee, “Simulating oriental black-ink painting”, IEEE Computer Graphics

& Applications 1999; 19(3): 74-81.

[11] Jintae Lee, “Diffusion rendering of black ink paintings using new paper and ink

models”, Computer & Graphics 25 (2001), Page 295~308.

[12] Frank D. Luna., Introduction to 3D GAME Programming with DirectX 9.0.

[13] MEIER, B. J. “Painterly rendering for animation.” In Proceedings of

SIGGRAPH 96, 477–484.

[14] Microsoft Direct X 9.0 SDK.

[15] REEVES, W. T., AND BLAU, R. “Approximate and probabilistic algorithms

for shading and rendering structured particle systems.” In SIGGRAPH 85

 37

Proceedings.

[16] David L Small, “Simulating Watercolor by Modeling Diffusion , Pigment and

Paper Fibers”, SPIE Proceedings, Vol. 1460, No. 15. San Jose, CA, 1990.

[17] Steve Strassmann, ”Hairy Brushes”, Proceedings of ACM SIGGRAPH 86, page

225-232.

[18] Theo G. M., Van De Ven, “Colloidal Hydrodynamics”, Colloid Science – A

Series of Monographs, Page 51~77.

[19] Der-Lor Way, Zen-Chung Shih, “The Synthesis of Rock Textures in Chinese

Landscape Painting,” Computer Graphics Forum, Vol.20, No.3, pp. C123-C131,

2001.

[20] Der-Lor Way, Yu-Ru Lin, Zen-Chung Shih, “The Synthesis of Trees in Chinese

Landscape Painting Using Silhouette and Texture Strokes,” Journal of WSCG,

Volume 10, Number3, pp. 499-507, 2002.

[21] Shan-Zan Weng, Zen-Chung Shih, Hsin-Yi Chiu, “The synthesis of Chinese Ink

Painting,” National Computing Symposium’99, page 461-468, 1999.

[22] Andrew Witkin, “Particle system Dynamics”, Physically Based Modeling

(SIGGRAPH 2001 COURSE NOTES), Page C1~C12.

 38

