
在藝術影像中作資料隱藏之研究

Data Hiding in Art Images

研 究 生：洪世結 Student：Shi-Chei Hung

指導教授：蔡文祥 Advisor：Wen-Hsiang Tsai

國 立 交 通 大 學

資 訊 科 學 研 究 所

碩 士 論 文

A Thesis
Submitted to Department of Computer and Information Science

College of Electrical Engineering and Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

藝術化影像上的資訊隱藏

研究生: 洪世結 指導教授: 蔡文祥 博士

國立交通大學資訊科學系

摘要

藝術化影像(Art Images)是一種透過原始圖檔所產生出來的非相片般擬實

(non-photorealistic)的影像。而馬賽克影像(Mosaic-Effect Images)則是藝術畫

影像的一種，它由許多的幾何元件所構成，例如:磁磚、小圖和玻璃。在本論文

中，我們研究了兩種馬賽克影像的產生與資訊隱藏技術。這兩種不同類型的馬賽

克影像分別是磁磚畫與玻璃畫，前者是由許多大小、形狀相同的瓷磚組成，後者

則是由不同形狀與大小的玻璃組成。在磁磚畫中，我們找到了三種可供資訊隱藏

的屬性，分別是磁磚的旋轉角度、大小和材質。依據各個屬性的特性，我們將浮

水印隱藏於磁磚的旋轉角度之中，以達到版權保護的目的。將秘密資訊隱藏於磁

磚的大小之中以達到祕密傳輸的目的。最後將驗證資訊藏於磁磚的材質之中以達

到影像與隱藏資訊完整性驗證的目的。由於此三種資訊隱藏的技術彼此獨立，所

以使用者可以同時將這三種資料隱藏於磁磚畫中。在玻璃畫中，我們利用每片玻

璃在生成時的樹狀資料結構(Tree Structure)來達到資訊隱藏的目的。我們利用

的是樹的節點(Node)數目來作資訊隱藏，透過控制數的節點的數量，我們可以隱

藏數個位元於其中。同樣的，我們也將此資訊隱藏的技術應用於玻璃畫的版權保

護、秘密傳輸和影像完整性驗證。而對於各種不同的應用，我們會對資訊隱藏的

流程作少許的修改。在本論文中，我們會對於磁磚畫和玻璃畫影像的生成和資訊

隱藏提出完整的系統與流程，並透過實驗結果來證明此系統的實用性。

i

Data Hiding in Art Images

Student: Shi-Chei Hung Advisor: Dr. Wen-Hsiang Tsai

Department of Computer and Information Science

National Chiao Tung University

ABSTRACT

An art image is a non-photorealistic image created from a given image. A

mosaic-effect image is a type of art image composed of geometric elements such as

small images, tiles, and glass pieces. Two types of mosaic-effect images are

investigated in this study, namely, tile mosaic images and stained glass images.

Methods for automatic generation of these types of images and data hiding in them

are proposed. In tile mosaic images, the tiles are squares of identical sizes, and are

arranged regularly. Three different tile features, namely, orientation, size, and texture,

are utilized for data hiding in the proposed methods. The orientations of tiles are used

for copyright protection. The sizes of tiles are used for covert communication. And the

textures of tiles are used for image authentication. A complete system to create tile

mosaic images is also proposed, which may be employed to hide three kinds of data

sequentially. In stained glass images, glass regions are generated by randomly

sprinkled seeds and a region growing technique. Only one feature is used for data

hiding in stained glass images, that is, the number of nodes of a tree constructed for

pixel grouping in a glass region. A method for creating stained glass images and a

system of three complete processes for watermarking, secret communication, and

image authentication using the above-mentioned feature are also proposed.

Experimental results show the feasibility of the proposed methods and systems.

ii

ACKNOWLEDGEMENTS

The author is in hearty appreciation of the continuous guidance, discussions,

support, and encouragement received from his advisor, Dr. Wen-Hsiang Tsai, not only

in the development of this thesis, but also in every aspect of his personal growth.

Thanks are due to Mr. Chih-Jen Wu, Mr. Tsung-Yuan Liu, Mr. Shi-Yi Wu, Mr.

Ming-Che Chen, Mr. Lien-Yi Weng and Mr. Yuei-Cheng Chuang for their valuable

discussions, suggestions, and encouragement. Appreciation is also given to the

colleagues of the Computer Vision Laboratory in the Department of Computer and

Information Science at National Chiao Tung University for their suggestions and help

during his thesis study.

Finally, the author also extends his profound thanks to his family for their lasting

love, care, and encouragement. He dedicates this dissertation to his parents.

iii

CONTENTS
ABSTRACT(in Chinese) .. i

ABSTRACT(in English).. ii

ACKNOWLEDGEMENTS ... iii

CONTENTS... iv

LIST OF FIGURES ... vii

Chapter 1 Introduction ..1
1.1 Motivation..1
1.2 Review of Related Works ..2

1.2.1 Previous Studies on Art Images ..2
1.2.2 Previous Studies on Tile Mosaics ...4
1.2.3 Previous Studies on Stained Glasses...5
1.2.4 Previous Studies on Data Hiding ..6
1.2.5 Previous Studies on Image Mosaics ...7

1.3 Overview of Proposed Methods...7
1.3.1 Definitions of Terms ...7
1.3.2 Brief Descriptions of Proposed Methods for Tile Mosaic Images......9
1.3.3 Brief Descriptions of Proposed Methods for Stained Glass Images.11
1.3.4 Contributions...12

1.4 Thesis Organization ...13

Chapter 2 A New Tile Mosaic Image Creation Method for
Information Hiding ..14

2.1 Introduction..14
2.2 Review of Traditional Tile Mosaic Image Creation Process15
2.3 Proposed Tile Mosaic Image Creation Process..19

2.3.1 Scheme of Creation Process..19
2.3.2 Use of Linear Regression Technique for Line Fitting.......................21
2.3.3 Creation of Visual Effects in Tiles for Information Hiding22
2.3.4 Experimental Results and Discussions ...23

Chapter 3 Three Methods for Data Hiding in Tile Mosaic Images .25
3.1 Introduction..25

3.1.1 Properties of Tile Orientations ..25

iv

3.1.2 Properties of Tile Sizes ...26
3.1.3 Properties of Tile Textures ..26
3.1.4 Concepts of Proposed Data Embedding and Extraction Techniques 27

3.2 Proposed Tile Feature Detection Techniques...29
3.2.1 Tile Scanning ..30
3.2.2 Tile Region Detection ...32
3.2.3 Tile Boundary Detection...36
3.2.4 Tile Feature Detection...37

3.3 Proposed Watermarking Method by Tile Orientation Modification40
3.3.1 Core Concept ..41
3.3.2 Data Embedding Process ..42
3.3.3 Data Extraction Process ..45
3.3.4 Experimental Results ..46

3.4 Proposed Secret Hiding Method by Tile Size Modification48
3.4.1 Core Concepts...48
3.4.2 Data Embedding Process ..49
3.4.3 Data Extraction Process ..51
3.4.4 Experimental Results ..52

3.5 Proposed Authentication Method by Tile Texture Modification54
3.5.1 Core Concepts...54
3.5.2 Authentication Signal Embedding Process.......................................58
3.5.3 Authentication Signal Extraction Process...59
3.5.4 Applications for Image Verification..62
3.5.5 Applications for Secret Verification..62
3.5.6 Experimental Results ..62

Chapter 4 A Stained Glass Image Creation Method for Information
Hiding ..68

4.1 Introduction..68
4.2 Review of Traditional Stained Glass Image Creation Process...................69
4.3 Proposed Stained Glass Image Creation Process.......................................70

4.3.1 Scheme of Creation Process..70
4.3.2 Preprocessing of Input Images..71
4.3.3 Tree Structure of Glass Regions and Region Growing Process........72
4.3.4 Glass Region Gap Filling Process...81

4.4 Experimental Results and Discussions ..83

Chapter 5 Data Hiding in Stained Glass Images and Applications .85
5.1 Introduction..85

v

5.1.1 Concepts behind Proposed Technique ..85
5.1.2 Concepts behind Proposed Data Embedding and Extraction

Techniques ..86
5.2 Glass Feature Detection Process..88
5.3 Data Hiding by Glass Boundary Cracking...92
5.4 Application to Secret Hiding ...95

5.4.1 Data Embedding Process ..95
5.4.2 Data Extraction Process ..96
5.4.3 Experimental Results and Summary...96

5.5 Application to Watermarking for Copyright Protection97
5.5.1 Data Embedding Process ..97
5.5.2 Data Extraction Process ..99
5.5.3 Experimental Results and Summary...100

5.6 Application to Authentication of Images ...100
5.6.1 Authentication Signal Embedding Process.....................................100
5.6.2 Authentication Signal Extraction Process.......................................103
5.6.3 Experimental Results and Summary...103

Chapter 6 Conclusions and Suggestions for Future Works107
6.1 Conclusions..107
6.2 Suggestions for Future Works..109

References ……………………………………………………………111

vi

LIST OF FIGURES
Fig. 1.1 An oil painting created by Hertzmann [2, 3]. (a) A source picture. (b) The final
oil painting. ...2
Fig. 1.2 Samples of art images listed in Hertzmann [1]. (a) An image created by a
trial-and-error painterly rendering algorithm described in Hertzmann [4]. (b) An image
created by interactive painterly rendering process from Haeberli [5]. (c) An image
created by a stippling algorithm from Secord [6] (d) Pen-and-ink illustration of a
smooth surface, from Hertzmann and Zorin [7]. (e) A tile mosaic image from Hausner
[8]. (f) An image computed by a trial-and-error algorithm from Haeberli [5].3
Fig. 1.3 Tile mosaic art work and images. (a) Detail from “Sea Creatures”, National
Museum of Naples, 1st century B. C. (b) An image mosaic created by Adobe
Photoshop. (c) An image mosaic created by Haeberli’s method.5
Fig. 1.4 Stained glass window and images. (a) Detail of The Crucifixion, St. James
Church, Staveley, UK by Neil Ralley [23]. (b)(c) Some results of Mould’s method. ..6
Fig. 1.5 Image mosaics created by Lin and Tsai [21, 22]. (a) An image mosaic of Lena.
(b) An image mosaic of Albert Einstein. (c) An image mosaic of the campus of
National Chaio Tung University, Taiwan..9
Fig. 1.6 Proposed framework of data hiding in a tile mosaic image.10
Fig. 1.7 Proposed framework of data extraction from a tile mosaic images.11
Fig. 1.8 Proposed framework of data hiding in a stained glass image.........................12
Fig. 1.9 Proposed framework of data extraction from a stained glass image.12
Fig. 2.1 Voronoi diagrams from [8]. (a) A voronoi diagram. (b) A centroidal voronoi
diagram. ..15
Fig. 2.2 Some intermediate images and a tile mosaic image created by Hausner [8]. (a)
The original Taiji image. (b) The direction field of (a). (c) Sprinkled seeds and the
corresponding voronoi diagram. (d) A centroidal voronoi diagram of (a) after 20
iterations. (e) A centroidal voronoi diagram of (a) after 20 iterations with edge
avoidance. (f) The final tile mosaic image..18
Fig. 2.3 Illustration of minimum distance between neighboring tiles.20
Fig. 2.4 3x3 Sobel mask...20
Fig. 2.5 Flowchart of proposed line fitting procedure for the aligning vector.............21
Fig. 2.6. Tiles with visual effects. (a) Tiles without texture effect. (b) Tiles with texture
effect. (c) Tiles without border and texture effect...22
Fig. 2.7 Tile mosaic image creation. (a) A tile mosaic image created by Hausner’s
creation process [8]. (b) A tile mosaic image created by proposed creation process..23
Fig. 2.8 Some created tile mosaic images. (a) A tile mosaic image of the word “Taiwan”.
(b) A tile mosaic image with a painting of Monet as input. (c) A tile mosaic image with

vii

a painting of Van Gogh as input..24
Fig. 3.1 Properties of tile orientations..25
Fig. 3.2 Effective range of θ. ...26
Fig. 3.3 Flowchart of data hiding in a tile mosaic image...28
Fig. 3.4. Flowchart of data extraction from a tile mosaic image.28
Fig. 3.5 Proposed tile feature detection process. ...31
Fig. 3.6 Finding grid lines with local maximum accumulations.32
Fig. 3.7 Tile region detection. (a) A tile region map with erroneous points at the left. (b)
a detected tile boundary with an erroneous apex at the left. (c) a detected tile boundary
with accurate apexes. ..33
Fig. 3.8 Removing erroneous corners of adjacent tiles (a) A tile region map. (b) Scan
from the left grid edge for minimum accumulation value. (c) Details of a tile region
map after error corner elimination. ...34
Fig. 3.9 Experimental results of tile boundary detection. (a) A result without utilizing
step 2 of algorithm 3.1.2. (b) A result with utilizing step 2 of algorithm 3.1.2.35
Fig. 3.10 Illustrations of boundary detection. (a) Rotated tile with the four detected lists;
(b) rotated tile with the detected four apexes and tile boundary; (c) non-rotated tile with
the four lists; (d) non-rotated tile with the detected four apexes and tile boundary....38

Fig. 3.11 Tile orientation detection ..39
Fig. 3.12 Data hiding by tile orientation modification. (a) Two adjacent tiles. (b) Tiles
with bit 0 embedded in Tilei+1. (c) Data hiding strategy. ..43
Fig. 3.13 Watermark embedding process...45
Fig. 3.14 Watermark extraction process...46
Fig. 3.15 Experimental results. (a) A Taiji image; (b) a tile mosaic image of Taiji
without watermark embedded; (c) a tile mosaic image with watermark (e) embedded;
(d) a damaged image of (c), (e) an input watermark; (f) a watermark extracted from (c);
(g) a watermark extracted from (c) with a wrong key; (h) a watermark extracted from
(d)..47
Fig. 3.16 Data hiding by tile size modification. (a) Concept of data embedding. (b) Data
of data extraction...49
Fig. 3.17 Secret message embedding process..51
Fig. 3.18 Secret message extraction process..52
Fig. 3.19 Experimental results. (a) A tile mosaic image without secret message
embedded. (b) a tile mosaic image with secret message embedded, (c) Some details of
(b), (d) The secret message extracted from (b), (e) The secret message extracted from
(b) with a wrong key. ..53

Fig. 3.20 Data hiding by tile texture modification...55
Fig. 3.21 Authentication signal embedding process ..60

viii

Fig. 3.22 Tile mosaic image verification process ..61
Fig. 3.23 Experimental results. (a) A tile mosaic image without data embedded. (b) A
tile mosaic image with a watermark, a secret message and authentication signals
embedded. (c) Some details of (a). (d) Some details of (b). (e) A watermark extracted
from (b). (f) A secret message extracted from (b). (g) Verification result of (b). (h) A
copy of (b) with some damaged tiles. (i) A verification result of (h). (j) A watermark
extracted from (i). (k) A secret message extracted from (i).64
Fig. 4.1 Some intermediate images and stained glass images created by Mould [13]. (a)
An original image Gretzky. (b) Segmented regions of (a). (c) Region boundaries of (b).
(d) Smoothed region boundaries of (b). (e) Associated stained glass image. (e) Another
stained glass image with different background from (e)...70
Fig. 4.2 Proposed stained glass image creation process. ...71
Fig. 4.3 Preprocessing of an original image. (a) The original image, (b) A quantized
image of (a). (c) A filtered image of (b). (d) A voting filter of size 11x1174
Fig. 4.4 Tree structure of glass regions. (a) A tree of a glass region; (b), (c), (d) and (e)
An example of Steps 2 and 3 in Algorithm 4.1; (g) Figure descriptions.77
Fig. 4.5 Proposed region growing process. (a) A version of linking the leaf nodes. (b) A
version of searching the last expanding nodes. (c) Figure descriptions.80
Fig. 4.6 Illustration of gap filling process..82
Fig. 4.7 Experimental results. (a) An original image. (b) A stained glass image of (a).
...83
Fig. 4.8 Some experimental results..84
Fig. 5.1 An example of removing nodes for data hiding. (a) A glass region copied from
Fig. 4.4(b). (b) A glass region with data embedded. ...86
Fig. 5.2 Proposed data embedding process. ...87
Fig. 5.3 Proposed data extraction process..88
Fig. 5.4 Proposed glass feature detection process..89
Fig. 5.5 Detection result of a stained glass image..91
Fig. 5.6 Core concept of data hiding in stained glass images.93
Fig. 5.7 Illustration of acquiring effective trees in data embedding and extraction
process...95
Fig. 5.8 Experimental results of secret hiding in stained glass image. (a) A stained glass
image without hidden data. (b) A stained glass image with secret message embedded.
(c) Details of (a). (d) Details of (b). (e) The secret message extracted from (b). (f) The
extraction result of (b) with a wrong key. ...98
Fig. 5.9 Experimental results of watermarking a stained glass image. (a) A stained glass
image with watermark, (c), embedded. (b) A damaged image of (a). (c) An input
watermark. (d) A watermark extracted from (a). (e) A watermark extracted from (a)

ix

with a wrong key. (f) A watermark extracted from (b). ..101
Fig. 5.10 Experimental results of authentication. (a) A stained glass image with
authentication signals embedded. (b) An authentication image of (a)......................104
Fig. 5.11 A damaged image of Fig. 5.10 (a)...105
Fig. 5.12 An authentication image of Fig. 5.11..106

x

Chapter 1
Introduction

1.1 Motivation
In recent years, people often show themselves on the networks. More and more

people have their own web sites, web logs (blogs), web albums, guest books, etc.

They exchange any interesting things with others all over the world through these

media. Digital image is the most popular format transferred through these media.

They may be used for decorations or as photos on these media. No matter what digital

images are used for, people do often make digital images look more artistic before

publishing them. We name this kind of digital images art images. However, when we

publish art images on networks, people can duplicate or tamper them easily. Thus, the

issues of copyright protection and authentication of art images must be taken into

consideration more seriously. Many researches about art image creation and data

hiding have been carried out. But rare of them can integrate the two topics of art

image creation and copyright protection into one single approach. If we want to create

an art image to decorate our web sties and don’t expect this image to be modified and

downloaded without our permission, additional watermarking algorithms need to be

performed after a creation process. This extra procedure of watermarking seems too

complicated to a common user. Therefore, it is desired to investigate art image

creation processes which are integrated with data hiding techniques. It is hoped to

hide watermarks and authentication signals as soon as an art image is created. The

copyright and integrity of the art image can thus be protected easily. Furthermore, it is

also desired to conduct secret communication by similar techniques.

In this study, we will deal with two different formats of art images. One is tile

1

mosaic image and the other is stained glass image. Each of them will be introduced in

the next section. We will propose processes for creation of them and achieve the data

hiding propose by utilizing their image features.

1.2 Review of Related Works

1.2.1 Previous Studies on Art Images

Many researches investigated the problem of how to create art images in recent

years. Hertzmann [1] surveys the ideas of creating art images. He defined automatic

approaches to creating non-photorealistic imagery by placing discrete elements such

as paint strokes and stipples, and called them stroke-based rendering (SBR). Here we

define art images as the final products of SBR. Hertzmann [1] also surveyed many

SBR algorithms and styles such as painting, pen-and-ink drawing, tile mosaics,

stippling and streamline visualization. Although there are plenty algorithms of SBR,

one important goal of these algorithms is to make art images look like some other

types of images such as oil painting. Fig. 1.1 shows an example of oil painting from

[2] and [3]. Fig. 1.1(a) is the source picture and Fig. 1.1(b) is the final oil painting.

Some other samples of art images are shown in Fig. 1.2.

(a) (b)
Fig. 1.1 An oil painting created by Hertzmann [2, 3]. (a) A source picture. (b) The final

oil painting.

2

(b)

(a)

(c)

(d)

(e)

(f)

Fig. 1.2 Samples of art images listed in Hertzmann [1]. (a) An image created by a
trial-and-error painterly rendering algorithm described in Hertzmann [4]. (b)
An image created by interactive painterly rendering process from Haeberli
[5]. (c) An image created by a stippling algorithm from Secord [6] (d)
Pen-and-ink illustration of a smooth surface, from Hertzmann and Zorin [7].
(e) A tile mosaic image from Hausner [8]. (f) An image computed by a
trial-and-error algorithm from Haeberli [5].

3

In this study, we will focus on mosaic-effect images. A mosaic-effect image is a

type of art images composed of geometric elements such as small images, tiles, and

glass pieces. These elements may or may not have identical shapes or sizes. We will

aim at creating mosaic-effect images composed of non-overlapping elements. With

non-overlapping elements, hidden data can be extracted so that we can achieve the

goal of data hiding. Two types of mosaic-effect images are investigated in this study.

They are tile mosaic images and stained glasses images, as shown in Fig. 1.2(e) and

Fig. 1.2(f), respectively.

1.2.2 Previous Studies on Tile Mosaics

Tile mosaics are surface decorations composed of numerous small tiles, which

are often of similar shapes or sizes, but in different colors. Tile mosaics appeared in

Greek and Roman times over 2000 years ago, and are still widely used today. Fig.

1.3(a) shows an example of a tile mosaic artwork. Creating tile mosaic images by

computing is a new research topic in recent years. Adobe PhotoShop provides a filter

to create mosaic-effect images, but it does so merely by reducing the resolution of an

input image, as shown in Fig. 1.3(b). Haeberli [5] used voronoi diagrams to create

mosaic-effect images by placing tile sites randomly and filling the voronoi regions, as

shown in Fig. 1.3(c). However, Haeberli’s method does not attempt to follow the edge

features in the image and the tiles all have different shapes. Hausner [8] proposed a

method to create tile mosaic images by utilizing centroidal voronoi diagrams, as

shown in Fig. 1.2(e). In Hausner [8], the method proposed by Hoff [9] is extended to

draw a voronoi diagram efficiently, and Lloyd’s algorithm [10] was utilized to

produce centroidal voronoi diagrams by moving each seed to the centroid of its

voronoi region. Hausner’s method will be described with more details in Chapter 2.

4

(a) (b)

(c)

Fig. 1.3 Tile mosaic art work and images. (a) Detail from “Sea Creatures”, National
Museum of Naples, 1st century B. C. (b) An image mosaic created by Adobe
Photoshop. (c) An image mosaic created by Haeberli’s method.

1.2.3 Previous Studies on Stained Glasses

Stained glass windows are composed of glass pieces, which are of different

shapes, colors, and sizes. According to the investigation results by Armitage and

Osborne in [11, 12], stained glass windows first appeared in the 7th century, had

heyday at the 16th century, and still being built today. Fig. 1.4(a) shows the detail of a

stained glass window. Although creating mosaic-effect images is a new research topic

in recent years, little attention has been paid to the historical successor to the mosaic,

the stained glass image. Mould [13] proposed an algorithm for stained glass image

creation. He started with an initial segmentation of a source image by the image

processing system, EDISON, proposed in [14, 15, 16]. Then he used erosion and

dilation operators [17, 18] to manipulate and smooth the initial segmented regions.

Finally, he applied a displacement map representing imperfections in the glass and

applied leading between tile boundaries. Fig. 1.4(b) and (c) are some results of

Mould’s method.

5

(b)

(a)

(c)
Fig. 1.4 Stained glass window and images. (a) Detail of The Crucifixion, St. James

Church, Staveley, UK by Neil Ralley [23]. (b)(c) Some results of Mould’s
method.

1.2.4 Previous Studies on Data Hiding

The research on data hiding aims to embed information imperceptibly into a given

media. Data hiding in images is mostly cultivated on the weaknesses of the human

visual system, for example, by changing the least significant bits of the pixels of a cover

image to embed information [19]. The information embedded in an image can be used

to protect the copyright of the image, verify the authenticity of the image, and convey a

secret message in the image, and so on.

Data hiding in images is a popular research topic in recent years. Researches on

this topic can be classified into three approaches, namely, the spatial-domain approach,

the frequency-domain approach, and the combination of the first two [20]. No matter

what classifications they belong to, most of these researches are based on pixelwise or

blockwise operations and few image features are used in these researches. In this

6

study, data hiding methods correspond to individual features of art images will be

proposed. We will focus on two types of mosaic-effect images, that is, tile mosaic

image and stained glass image, along with their creation processes. Unlike the

traditional methods of data hiding in images, we will hide data in the orientations,

sizes, and textures of tile mosaic images and hide data by slight glass cracking in

stained glass images. All the details will be discussed in the following Chapters.

1.2.5 Previous Studies on Image Mosaics

Image mosaics (or photomosaics) are another common format of mosaic-effect

image. An image mosaic is composed of a large number of small images, called tile

images. When viewing the resulting image mosaic from a distance, the grid tile images

combine to yield an impressive integrated painting. Fig. 1.5 shows some examples of

image mosaics. Image mosaics are good examples which prove that data can be

embedded into individual features of art images. Lin and Tsai [21, 22] proposed a

method to hide information in image mosaics by manipulating the four borders and the

histogram of a tile image.

1.3 Overview of Proposed Methods

1.3.1 Definitions of Terms

Before describing the proposed methods, some definitions of terms used in this

thesis are introduced as follows.

1. Original image: An original image is an image chosen to produce a tile mosaic

image or a stained glass image.

2. Art image: An art image is a non-photorealistic image created from an original

image. In this thesis an art image may be a tile mosaic image or a stained glass

7

image.

3. Creation process: A creation process will create an art image from an original

image.

4. Embedding process: An embedding process is a process to embed data in an art

image.

5. Extraction process: An extraction process is a process to extract hidden data

from an art image.

6. Tile mosaic image: A tile mosaic image is an image composed of numerous small

tiles, which are often of similar shapes or sizes, but in different colors. The

orientations of the tiles align with the nearby edges of the original image.

7. Aligning vector. An aligning vector is derived by the edge points within a

computing range of a tile in a tile mosaic image. It is used to re-orient the tile so

that the tile can align the nearby edges.

8. Stained glass image: A stained glass image is an image composed of glass pieces,

which are of different shapes, colors, and sizes. The glass pieces reveal the edges

of the original image. And there exist leading between glass pieces.

9. Leading: The black and thin area between glass pieces.

10. Authentication signal: An authentication signal is embedded into an image. It is

fragile such that any alteration to the image can be detected.

11. Authentication image: An authentication image is obtained by making certain

indication marks in the cover image after checking the embedded authentication

signals. By the indication marks, people are aware of which parts of the cover

image have been tampered.

8

(a)

(b)

(c)

Fig. 1.5 Image mosaics created by Lin and Tsai [21, 22]. (a) An image mosaic of Lena.
(b) An image mosaic of Albert Einstein. (c) An image mosaic of the campus of
National Chaio Tung University, Taiwan.

1.3.2 Brief Descriptions of Proposed Methods for

Tile Mosaic Images

The proposed framework of data hiding in a tile mosaic image is shown in Fig.

1.6. First, we create a tile mosaic image by a creation process proposed in this study,

which will be discussed in Chapter 2. Then we apply a data embedding process by
9

utilizing a secret key for protecting the embedded data. Before the embedding process,

we will transform the given data into a bit sequence. The given data may be a

watermark, secret information, or authentication signals. Each of them will be

embedded into different tile features. Due to the different features we choose for

embedding the different types of given data, we can embed them simultaneously. Of

course, not all of the three types of the given data need to be embedded at the same

time in all applications. We can embed only one or two of them as needed. A detailed

description will be given in Chapter 3.

The proposed framework of data extraction from a tile mosaic image is shown in

Fig. 1.7. First, we apply a tile feature detection process proposed in this study, which

will be discussed in Section 3.2. Then we can extract the embedded data by utilizing

the proposed data extraction process and a secret key. The data embedding and

extraction process will be discussed in Section 3.3 through Section 3.5.

Fig. 1.6 Proposed framework of data hiding in a tile mosaic image.

10

Proposed data extraction process

Tile mosaic
image

Proposed tile feature
detection process

Key
Embedded data

Fig. 1.7 Proposed framework of data extraction from a tile mosaic images.

1.3.3 Brief Descriptions of Proposed Methods for

Stained Glass Images

The proposed framework of data hiding in a stained glass image, which is shown

in Fig. 1.8, is similar to the one of a tile mosaic image. But there are two differences

between them. The first is that only one feature is used for data hiding in a stained

glass image. So, only one kind of data can be embedded at a time (i.e., only one of a

watermark, a secret message, and a set of authentication signals can be embedded).

The second difference is that we utilize a secret key for protecting embedded data

while we create a stained glass image. In other words, the secret key is utilized when

the data is to be embedded in a tile mosaic image.

11

Fig. 1.8 Proposed framework of data hiding in a stained glass image.

The data extraction process is simply an inverse version of the data hiding

process as shown in Fig. 1.9.

Fig. 1.9 Proposed framework of data extraction from a stained glass image.

1.3.4 Contributions

Some major contributions of this study are listed as follows.

1. A method to create tile mosaic images made of square and non-overlapping tiles

is proposed.

2. A method to hide data in the orientation, size and texture of a tile in a tile mosaic
12

image is proposed.

3. A method to detect the orientation, size, and texture of a tile in a tile mosaic

image is proposed.

4. Methods to embed watermarks, secret information and authentication signals

respectively into the orientations, sizes, and textures of the tiles in a tile mosaic

image are proposed.

5. A method to create stained glass images is proposed.

6. A method to hide data in the tree structures of glass regions is proposed.

7. A method to detect the tree structures of glass regions is proposed.

8. Methods to embed a watermark, a secret message, or a set of authentication

signals one at a time into a stained glass image are proposed.

1.4 Thesis Organization
This thesis is organized as follows. In Chapter 2, the proposed system of tile

mosaic image creation for data hiding is described. In Chapter 3, the proposed data

hiding methods by utilizing the three features of tiles will be introduced. The three

corresponding applications (i.e. watermarking, secret communication and

authentication) and the proposed tile feature detection process are also discussed in

Chapter 3. In Chapter 4, the proposed stained glass image creation method is

described. The proposed tree structure and region growing techniques of glass regions

are also be discussed. Chapter 5 describes the proposed data hiding method by glass

cracking and three applications. The proposed glass feature detection process is also

described. Conclusions of our works as well as discussions on future works are

included in Chapter 6.

13

Chapter 2
A New Tile Mosaic Image Creation
Method for Information Hiding

2.1 Introduction
In this chapter we will discuss how to create a tile mosaic image automatically

with an image as input. A crucial issue of tile mosaic image creation is how to make the

edges in the tile mosaic image clear. There are two concepts in dealing with this issue,

that is, tile rotation and edge avoidance. The former is to rotate the tiles to align with

the nearby edges in the input image. The latter is to prevent the tiles from straddling the

edges by moving the tiles away from the edges, that is, by what we call tile

displacement. By applying these two concepts, no edge will overlap the tiles. In

Section 2.2, we will give a brief description of one traditional tile mosaic image

creation procedure which includes these two concepts. This method was proposed by

Hausner [8].

However, in order to achieve the purpose of information hiding, we will propose a

simpler method for tile mosaic creation. The proposed creation process results in no

overlapping tiles and the tiles will be positioned in regular grids. We will utilize the

linear regression technique for line fitting to derive the aligning vector, which is used

to re-orient the tile so that the tile can align the nearby edges. Furthermore, without

tile displacement and overlapping, tile features such as orientation, size, and texture

can be detected much easier. We name the process tile feature detection process and

will give detailed descriptions in Chapter 3. In Section 2.3, the proposed tile mosaic

14

image creation process for the information hiding purpose will be described in detail.

Finally, some experimental results will be presented in Section 2.4.

2.2 Review of Traditional Tile Mosaic
Image Creation Process

Before we introduce the whole process of tile mosaic image creation, we will

review the concepts of voronoi diagram and centroidal voronoi diagram. First, a set of

randomly generated seeds is given on a plane. A voronoi diagram is a graph that

divides the plane into several regions (called voronoi regions), such that all points

within a region is closest to its associated seed [8]. Fig. 2.1 (a) shows a number of

randomly generated seeds and the corresponding voronoi diagram. To generate a

centroidal voronoi diagram, we just move each seed to the centroid of its voronoi region

and re-compute the voronoi diagram. Fig. 2.1(b) shows a centroidal voronoi diagram

after several iterations.

(a)

(b)

Fig. 2.1 Voronoi diagrams from [8]. (a) A voronoi diagram. (b) A centroidal voronoi
diagram.

15

Now, we will present the tile mosaic creation process proposed by Hausner [8] by

utilizing the voronoi diagram and a direction field. A direction field is a collection of

vectors, each of which is perpendicular to an edge found in the input image.

The whole process is briefly described in Algorithm 2.1. Initially, for the use of

edge avoidance and tile rotation, Hausner [8] derived the direction field D of the

original image I. Then he sprinkled seeds randomly and computed the corresponding

voronoi diagram. Hoff [9] presented a method (first proposed by Haeberli [5]) that can

be extended to draw a voronoi diagram efficiently. In Steps 4 and 5, Hausner utilized

Lloyd’s algorithm [10] to produce the centroidal voronoi diagram by moving each seed

to the centroid of its voronoi region. In Step 6, for edge avoidance, Hausner moved the

seeds away from the edges in the directions specified in D and then run Steps 3 through

6 iteratively. Finally, he generated tiles which are located at the seeds’ position and

rotated to the directions that specified in D in Step 6.

Algorithm 2.1: Traditional tile mosaic image creation process.

Input: an original image T.

Output: a tile mosaic image M.

Steps:

Step 1 Derive the direction field D of T.

Step 2 Sprinkle seeds randomly on a two-dimensional plane.

Step 3 Compute the voronoi diagram of the sprinkled seeds.

Step 4 Compute the centroid of each voronoi region.

Step 5 Move each seed to the centroid of its voronoi region.

Step 6 Move the seeds away from the edges.

Step 7 Repeat Steps 3 through 6 in specified iterations.

Step 8 Generate tiles which are located at the seeds’ position and rotated to the

16

directions derived in Step 1.

Step 9 Paint the generated tiles on M.

Fig. 2.2 shows some intermediate images and the final tile mosaic image created

by Hausner [8]. Fig. 2.2(a) is a Taiji image taken as an input and Fig. 2.2(b) is the

corresponding direction field. Fig. 2.2(c) shows a number of randomly generated seeds

and the corresponding voronoi diagram. Fig. 2.2(d) shows the centroidal voronoi

diagram after twenty iterations without edge avoidance. Fig. 2.2(e) shows the

centroidal voronoi diagram after twenty iterations with edge avoidance. Fig. 2.2(f)

shows the final tile mosaic image of Fig. 2.2(a).

The method proposed by Hausner [8] looks perfect for tile mosaic image creation.

However, there are some weaknesses in Hausner’s method for data hiding applications.

First, we can observe that some tiles overlap each other in Fig. 2.2(f). Overlapping tiles

will cause loss of embedded information and make the tile feature detection work much

more complicated. Second, the positions of the tiles are changed. Displaced tiles will

disturb the data embedding sequence of the tiles. In Section 2.3, we will propose a new

method to create tile mosaic images that are suitable for data hiding. In the proposed

method, tiles are squares of identical sizes, and are arranged regularly in the image.

17

(a)

(b)

(c)

(d)

(e) (f)

Fig. 2.2 Some intermediate images and a tile mosaic image created by Hausner [8]. (a)
The original Taiji image. (b) The direction field of (a). (c) Sprinkled seeds and
the corresponding voronoi diagram. (d) A centroidal voronoi diagram of (a)
after 20 iterations. (e) A centroidal voronoi diagram of (a) after 20 iterations
with edge avoidance. (f) The final tile mosaic image.

18

2.3 Proposed Tile Mosaic Image
Creation Process

2.3.1 Scheme of Creation Process

The proposed tile mosaic creation process is based on Hausner’s method [8]. The

enhancement in the process allows simple detection of tile features so that the

embedded information can be extracted. The proposed creation process results in

non-overlapping tiles positioned in regular grids. The overall process is described as an

algorithm below.

Algorithm 2.2: Proposed tile mosaic creation process for data hiding.

Input: an original image T and a tile size.

Output: a tile mosaic image M.

Steps:

Step 1 Compute an appropriate inter-tile distance for the input tile size and

create accordingly initial upright tiles in M with a chessboard

arrangement.

Step 2 Find edges in T by the Sobel operator and threshold the resulting

edge-value image into an edge-point image E.

Step 3 For each initial tile L in M, collect a sufficient number of edge points

around L and line-fit them to get a tile aligning vector V.

Step 4 Rotate L according to the direction of V and fill L with the color of the

corresponding tile region center in the original image T.

19

In Step 1, we compute the inter-tile distance to prevent tiles from overlapping for

all possible tile rotation angles, and create a tessellation of upright square tiles in the

output image. Let the tile size be X, which is the length of one side of a square shape, as

shown in Fig. 2.3. We keep the minimum distance between adjacent tiles to be at least

2 X, so that no matter how the tiles are rotated, there will be no overlapping.

45°

X

X
2
2

X2

Fig. 2.3 Illustration of minimum distance between neighboring tiles.

In order to rotate the tiles to approximate T suitably, we need the edge

information of T. For this purpose, in Step 2 we apply the 3×3 Sobel operator (as

shown in Fig. 2.4) to T and threshold the result into a binary edge-point image.

-1 -2 -1

0 0 0

1 2 1

-1 0 1

-2 0 2

-1 0 1

Fig. 2.4 3x3 Sobel mask

After obtaining the edge points of T, we take first in Step 3 an initial neighborhood

range of L and count the number of edge points within the range. We then keep

enlarging the neighborhood range until a pre-determined number of edge points are

collected. Finally, we fit the collected edge-points by a line which is then taken as the

aligning vector for L. The flowchart of collecting edge points within a neighborhood

20

range is shown in Fig. 2.5. We will review the utilized linear regression technique for

line fitting in Section 2.3.2.

Fig. 2.5 Flowchart of proposed line fitting procedure for the aligning vector.

After getting the aligning vectors, we rotate the tiles so that their sides are in line

with the aligning vectors and fill in each rotated tile the color at the corresponding

region center in the original input image T, as described in Step 4.

2.3.2 Use of Linear Regression Technique for Line

Fitting

In this section, we will review the linear regression technique for line-fitting a set

of edge points within a neighborhood range. Assume that there are n edge points

within the neighborhood range. Let Pi(xi, yi) denote the edge point (where 0<i<n), and

 denote the formula of the fitted line. In the formula, stands for the xbby 10 += 1b

21

orientation of the fitted line and stands for the line position. They can be

computed as follows:

0b

∑ ∑

∑ ∑ ∑

= =

= = =

⎟
⎠

⎞
⎜
⎝

⎛
−

−
=

n

i

n

i
ii

n

i

n

i

n

i
iiii

xxn

yxyxn
b

1

2

1

2

1 1 1
1 , xbyb 10 −=

Because we take the orientation of the line as the aligning vector, only b1 is

computed in our process.

2.3.3 Creation of Visual Effects in Tiles for

Information Hiding

There are two visual effects to be handled in our creation process. The first is tile

texture and the other is tile border. Here, tile texture means the noise within a tile. The

tile border, as implied by the name, is the border of a tile. Both of them can affect our

feeling of sight while seeing a tile mosaic image. Fig. 2.6 shows tiles with and without

these two effects.

(a)

(b)

(c)
Fig. 2.6. Tiles with visual effects. (a) Tiles without texture effect. (b) Tiles with texture

effect. (c) Tiles without border and texture effect.

22

2.3.4 Experimental Results and Discussions

In this chapter we reviewed a traditional tile mosaic image creation process and

proposed a new approach of it. Fig. 2.7 shows the tile mosaic images created by these

two methods.

(a) (b)
Fig. 2.7 Tile mosaic image creation. (a) A tile mosaic image created by Hausner’s

creation process [8]. (b) A tile mosaic image created by proposed creation
process.

As seen from the examples shown in Fig. 2.7, our creation process creates looser

tiles than those created by Hausner [8]. With looser arrangements of tiles, we can

guarantee that there will be no overlapping tile. Furthermore, we notice that the tiles in

Fig. 2.7(b) just rotate at where they are in the chessboard grid without any displacement,

so that we can get the tile positions easily. With these two features different from those

of Hausner’s method, information embedding and extraction become possible and easy,

and will be introduced in the next chapter. Some other tile mosaic images created by

the proposed method is shown in Fig. 2.8.

23

(a)

(b)

(c)
Fig. 2.8 Some created tile mosaic images. (a) A tile mosaic image of the word

“Taiwan”. (b) A tile mosaic image with a painting of Monet as input. (c) A
tile mosaic image with a painting of Van Gogh as input.

24

Chapter 3
Three Methods for Data Hiding in
Tile Mosaic Images

3.1 Introduction
As we mentioned in Chapter 1, we embed data into certain image features of a

host art image. We will introduce how to hide data in the orientations, sizes, and

textures of tile mosaic images in this chapter. Of course, the tile feature detection

process will also be discussed.

3.1.1 Properties of Tile Orientations

The properties of tile angles are illustrated in Fig. 3.1 where we can see that a tile

rotated through an angle of θ has the same rotation effect as through an angle of θ+90o.

Thus, the effective range of rotation angles may be limited to be 0 ≦ θ < 90o. Fig. 3.2

shows the effective range of θ. We paint it with darker blue (i.e., the second quadrant)

in Fig. 3.2.

Fig. 3.1 Properties of tile orientations.

25

Fig. 3.2 Effective range of θ.

3.1.2 Properties of Tile Sizes

In Section 3.4, an application of data hiding by tile size modification will be

described. We will utilize the number of pixels (i.e., tile pixel number, TPN) within a

tile instead of the edge length to stand for the tile size. Because TPN can provide us

more precise information about tile size than edge length can do. All the details about

data hiding by tile size modification and its application will be discussed in Section

3.4.

3.1.3 Properties of Tile Textures

Data hiding by tile texture modification is another interesting way of hiding data

in a tile mosaic image. Here, tile texture means the noise within a tile. As discussed in

Section 2.3.3, tile texture can affect our sense of sight while seeing a tile mosaic

image. The way we utilize tile texture for data hiding is to modify the noise ratio. The

term, noise ratio, means the ratio of noise pixels within a tile. By detecting the noise

ratio, we can get the data hidden in a tile.

We will limit the range of noise ratio, Nr, from 0 to 0.5, that is, .

The reason for confining the noise ratio to be smaller than 0.5 is described as follows.

5.00 ≤≤ Nr

26

When processing data extraction, in each RGB channel of a tile, we try to find two

different values of colors (one is the original tile color and the other is the noise color).

We then compute the corresponding ratios of these two values and view the one

which has the lower ratio as the noise color and view the higher one as the original

tile color. So, in the data embedding process, if we add noise pixels with ratio greater

than 0.5, we will view the noise pixels as original tile pixels. In such a condition, we

will extract data erroneously.

3.1.4 Concepts of Proposed Data Embedding and

Extraction Techniques

In this section, we will give an overall concept and the flowcharts of data hiding

in tile mosaic images after having a glance at the three tile features. As shown in Fig.

3.3, initially we apply the tile mosaic image creation process proposed in Section 2.3,

and embed data by modifying the three features (i.e., orientation, size, and texture).

Note that we can sequentially embed data into the three features. First, we embed a

watermark by modifying the tile orientations. Second, we embed a secret message by

tile size modification. Finally, we generate authentication signals and embed them by

tile texture modification. By authentication signals, we can verify the integrity of a

tile mosaic image together with the embedded data. Of course, not all of the three

types of the given data need to be embedded at the same time in all applications. We

can embed only one or two of them as needed. All the details of the procedures for

embedding the three types of features will be discussed in detail in Sections 3.3, 3.4,

and 3.5. The way we extract the embedded data from a tile mosaic image is simply the

inverse of how we embed it. Fig 3.4 shows a flowchart of extracting data from a tile

mosaic image. Initially, we apply the proposed tile feature detection process to extract

27

the tile features and then derive the embedded messages by analyzing the extracted

features.

Fig. 3.3 Flowchart of data hiding in a tile mosaic image.

Fig. 3.4. Flowchart of data extraction from a tile mosaic image.

28

3.2 Proposed Tile Feature Detection
Techniques

Before introducing the proposed data hiding method, we first introduce the

proposed tile feature detection method. As shown in Algorithm 3.1 and Fig. 3.5, first

we derive the approximate tile positions by tile scanning. After tile scanning, we can

get a two-dimensional array of grids, and in each grid there is a tile. We will have a

detailed discussion about tile scanning in Section 3.2.1. Second, we apply a tile region

detection process to each of the grids to derive a tile region map which indicates

whether the pixels in a grid belong to the associated tile or not. We will discuss the

tile region detection process in detail in Section 3.2.2. In Step 3, in order to derive the

tile orientations, we need the four apexes of each tile. We apply the proposed tile

boundary detection algorithm to achieve that purpose. And the details will be

described in Section 3.2.3.

With the four apexes and the tile region map of a tile, we can get the tile

orientation To, the tile size (i.e., the number of the tile pixels), TPN and the tile noise

ratio Tnr. Furthermore, we can get the average of TPN which is denoted by TPNavg

by testing whether the detected boundary is rectangular. If not, it means that there is

something wrong with the tile. When calculating the value of TPNavg, we need to

skip the non-rectangular tiles. By doing so, we can derive a value of TPNavg with

higher accuracy. All the details will be discussed in Section 3.2.4.

Algorithm 3.1: Tile feature detection process

Input: a tile mosaic image M.

Output: tile orientation To, the number of tile pixels TPN, average TPN values,

TPNavg, tile noise ratio Tnr.

29

Steps:

Step 1 Derive tile positions by tile scanning.

Step 2 For each tile perform the following steps.

2.1 Derive the tile region map by tile region detection.

2.2 Derive the four apexes by tile boundary detection.

2.3 Get the tile orientation, To, by the four apexes.

2.4 Detect the tile noise ratio, Tnr, by the tile region map.

2.5 Get the number of tile pixels, TPN, by the tile region map

2.6 Check if the detected boundary is rectangular.

if it is rectangular, then accumulate the value of TPN.

Step 3 Compute the value TPNavg by the accumulation TPN value calculated

in Step 2.6.

3.2.1 Tile Scanning

In Step 1 of Algorithm 3.1, we derive the tile positions by tile scanning. The result

is a two-dimensional array of grids, and in each grid there is a tile. In this step, we

compute first the horizontal and vertical projections of the background pixels (i.e., the

non-tile pixels) of the input image M, as illustrated in Fig. 3.6. We then search the

accumulation values of the projections for local maxima. The scan lines with local

maximum accumulation values are taken as the desired grid lines, shown as white lines

in Fig. 3.6. With accumulation histograms, we can see clearly in the figure the

correspondence between the local maximum accumulation values and the grid lines.

The algorithm of tile scanning is shown in Algorithm 3.2.

30

Fig. 3.5 Proposed tile feature detection process.

Algorithm 3.2: Proposed tile scanning process

Input: a tile mosaic image M

Output: two-dimensional grids

Steps:

Step 1 Compute the horizontal and vertical projections of the background pixels in M.

Step 2 If the accumulation value is local maximum, output this scan line as a

grid line.

31

Fig. 3.6 Finding grid lines with local maximum accumulations.

3.2.2 Tile Region Detection

 After obtaining the approximate positions and ranges of the tiles by tile scanning,

we determine the tile regions for further analysis in Step 2.1 of Algorithm 3.1. We use a

region growing technique to create a tile region map, Mp, and remove the untouched

pixels in the growing process from the tile region map. In more details, it is mentioned

first that the two-dimensional grids derived in the previous section only provide the

approximate ranges of the tiles. As a result, given a grid G, the corners of the tiles of the

neighboring grids of G may intrude into G, in touch with the tile in G. An example is

32

shown in Fig. 3.7(a) where this type of intrusion takes place on the left-hand side of the

grid. Such touching will result in an error as shown in Fig. 3.7(b) after we perform tile

boundary detection in Step 2.2 of Algorithm 3.1. The way we detect such erroneous

corners is to scan each grid from the grid edges to the grid center, and search for the

local minimum accumulation values of the projections of the tile pixels. We then

remove such erroneous corners of adjacent tiles before we detect the tile boundary. The

result will then be more accurate, as shown in Fig. 3.7(c). The details of tile region

detection are described in Algorithm 3.3.

(a) (b) (c)

Fig. 3.7 Tile region detection. (a) A tile region map with erroneous points at the left. (b)
a detected tile boundary with an erroneous apex at the left. (c) a detected tile
boundary with accurate apexes.

Algorithm 3.3: Tile region detection process

Input: a grid G.

Output: a tile region map Mp.

Steps:

Step 1 Compute the central point, C, of G.

Step 2 Choose C as the starting point. Apply a region growing technique on C

for deriving Mp.

Step 3 Scan Mp from the grid edges to the grid center, and search for the local

minimum accumulation values of the projections of the tile pixels.
33

Step 4 Remove tile pixels, which are outer than the scan lines found in Step3,

from MP.

Step 5 Output the tile region map Mp.

Fig. 3.8 is an illustration of Steps 3 and 4 of Algorithm 3.3. In Fig. 3.8(b), the

green lines A, B, and C are the scan lines of the left grid edge. C is the scan line of the

local minimum accumulation value. In Fig. 3.8(c), we can see that the erroneous

corner is removed by removing the pixels which are outer than scan line C.

After deriving the tile region map, MP, we can detect the tile boundary of each

tile by the proposed tile boundary detection process. Fig. 3.9 shows some

experimental results of tile boundary detection. Fig. 3.9(a) is the result of tile

boundary detection without utilizing Steps 3 and 4 in Algorithm 3.3 when deriving

MP. Fig. 3.9(b) is the result with the two steps conducted. It’s clear that if we apply

the two steps to the tile region map, we can get more accurate result in tile boundary

detection.

(a)
Fig. 3.8 Removing erroneous corners of adjacent tiles (a) A tile region map. (b) Scan

from the left grid edge for minimum accumulation value. (c) Details of a tile
region map after error corner elimination.

34

 (b) (c)
Fig. 3.8 Removing erroneous corners of adjacent tiles (a) A tile region map. (b) Scan

from the left grid edge for minimum accumulation value. (c) Details of a tile
region map after error corner elimination(continued).

(a) (b)

Fig. 3.9 Experimental results of tile boundary detection. (a) A result without utilizing
step 2 of algorithm 3.1.2. (b) A result with utilizing step 2 of algorithm
3.1.2.

35

3.2.3 Tile Boundary Detection

 The next step of tile feature detection is the tile boundary detection process, as

described in Step 2.2 of Algorithm 3.1. By this process, we can derive the four apexes

of a tile. The orientation of the tiles can then be computed easily from these four apexes.

Algorithm 3.4 presents the proposed tile boundary detection process.

Algorithm 3.4: Tile boundary detection process.

Input: a tile region map, Mp.

Output: the four apexes of each tile, n, e, s and w, respectively, and the number

of the tile pixels, TPN.

Steps:

Step 1 Perform a raster scan of the tile region map, get the lists of the highest,

rightmost, lowest, and leftmost tile pixels, and denote them by N, E, S

and W, respectively.

Step 2 Compute the number of tile pixels, TPN, in the tile region map, and the

approximate tile size in pixels, Ts, by the formula Ts = TPN .

Step 3 Compute the centroid of the tile region map and denote it by C(cenX,

cenY).

Step 4 For each tile L, check if L is rotated or not in the following way:

if the number of pixels in at least two of N, E, S, and W are larger than

Ts − 3, then

4.1 regard the tile as non-rotated and compute the four apexes as

n(cenX − Ts/2,cenY − Ts/2), e(cenX + Ts/2, cenY − Ts/2), s(cenX +

Ts/2, cenY + Ts/2) and w(cenX − Ts/2, cenY + Ts/2); otherwise,

4.2 regard the tile as rotated and choose from N, E, S, and W the

pixels which are farthest from the centroid, C(cenX, cenY), as the
36

four apexes.

Step 5 Output the four apexes of L.

In the first step, we scan the tile region map horizontally and vertically to get the

four lists of the outmost tile pixels, N, E, S, and W. As shown in Fig. 3.10(a) and (c), the

hollow rectangles are the detected four lists. In Step 2 we compute the approximate tile

size. In Step 3, we compute the centroid of the white pixels in the region map. In Step 4,

we determine whether the tile is rotated or not by checking if there are at least two lists

whose sizes are larger than Ts − 3. It can be figured out that if the tile is not rotated, then

there will be a sufficient number of vertically or horizontally aligned pixels, collected

into N, E, S, and W. And we take this number to be Ts − 3 according to our experimental

experience, which provides the best accuracy. As shown in Fig. 3.10(a) and (b), if the

tile is rotated, we derive the four apexes by Step 4.1; otherwise, we derive the four

apexes by Step 4.2, as shown in Fig. 3.10(c) and (d). In Fig. 3.10(b) and (d), the solid

squares are the chosen four apexes, which are denoted by n, e, s and w, respectively, and

the blue quadrangles are the detected tile boundaries.

3.2.4 Tile Feature Detection

After deriving the tile region map and the four apexes of each tile, we can now

compute the remaining tile features. The detection processes are described as follows.

A. Tile Orientation Detection

The way we detect the tile orientation, θ, is to compute the directions of the four

boundaries derived from the tile boundary detection process. As shown in Fig. 3.11, we

compute the tile orientation by θwn = arctan(∆Y/∆X), and the other three tile

orientations θne, θes, θsw similarly. In order to determine the tile orientation with more

37

accuracy, the directions of the four boundaries are averaged as the desired result, that is,

the final tile orientation θ is obtained by the formula: θ = (θwn + θne + θes + θsw)/4.

Fig. 3.10 Illustrations of boundary detection. (a) Rotated tile with the four detected
lists; (b) rotated tile with the detected four apexes and tile boundary; (c)
non-rotated tile with the four lists; (d) non-rotated tile with the detected four
apexes and tile boundary.

38

Fig. 3.11 Tile orientation detection

B. Tile Size Detection

As mentioned in Section 3.1.2, for more accuracy information of tile sizes, we

utilize the number of the tile pixels, TPN, instead of the tile size, Ts. In fact, the value of

TPN is computed in Step 2 of Algorithm 3.4 while we process tile boundary detection.

Note that TPN is the number of white pixels in the tile region map derived from the tile

region detection process.

C. Average Tile Size Detection

As implied by the name, the average tile size, TPNavg, is the average of all the

values of TPN in a tile mosaic image. To compute the average value of TPN is simple,

but we have to notice if the tile has been damaged or not. If a tile has been damaged, the

detected value of TPN will be an enormous error. So, in order to keep TPNavg from

being affected by damaged tiles, we must ignore the TPN which are computed from

damaged tiles. In other word, we compute the value of TPNavg by averaging the values

of TPN of all tiles except the damaged ones.

The way we check whether a tile has been damaged or not is to check the

directions of the four boundaries (i.e., θwn, θne, θes, and θsw), which are derived in the
39

tile boundary detection process. If there is any adjacent boundary pair whose

directions differ in an amount greater than 10o, we judge the associated tile as a

damaged tile.

D. Tile Texture Detection

By consulting a tile region map derived from the tile region detection process, we

can compute the noise ratio, Nr, of a tile. All the details of tile texture detection have

been discussed in section 3.1.3. Note that, we compute the noise ratios in the RGB

channels individually. That is, we will have three noise ratios of each R, G and B

channel after tile texture detection process.

3.3 Proposed Watermarking Method by
Tile Orientation Modification

We have described the details of tile feature detection in tile mosaic images in the

previous sections. In this section, we will describe the proposed technique for data

hiding in tile mosaic images, and an application, watermarking, for copyright

protection of images. The tile feature we utilize for data hiding is tile orientation. We

use the idea of slight modification of tile orientations to achieve our purpose of hiding

data in tile mosaic images. Due to the characteristic of tile orientation detection, errors

may occur when we conduct tile orientation detection. Most of the errors are smaller

than 3o, but it may still result in bit errors in the result of data extraction. Although the

bit error rate is low (around 2 or 3 error bits in 700 tiles), it can cause some damages in

the extracted data. In the case of Big5 text, for example, one error bit can destroy a

character containing 16 bits. There are two ways for solving this problem. The first is to

enlarge the degree of tile orientation modification, but it will cause the tiles to rotate

farther away from their original alignments in positions and so damage more of the
40

edges of the tile mosaic image. The second way is to enlarge the size of the tiles, but this

will cause more loss of the details of the original image. Thus there is a tradeoff

between bit accuracy and aesthetic appearance of the tile mosaic image. However, in

the application of watermarking we will do nothing about it. The error bits are still there

and will cause salt-and-pepper noise in the extracted watermark, but the watermark can

still be recognized visually under the condition of two or three erroneous pixels.

Furthermore, we can apply certain more effective data extraction skills like the voting

strategy to reduce the salt-and-pepper noise in the extracted watermark. The proposed

process of data hiding by tile orientation modification is described in the following.

3.3.1 Core Concept

The core concept of data hiding by tile orientation modification is illustrated in

Fig. 11. In principle, we hide data by encoding the angle between the orientations of

every two adjacent tiles. Assume the orientation of Tilei to be θi and that of Tilei+1 to

be θi+1. By modifying θi+1, we can adjust the absolute value of the difference θi – θi+1

for data hiding. More specifically, as shown in Fig. 3.12(a) and (c) with a right angle

which centers on θi, we divide the right angle into several sectors (four in the figure),

and divide each sector into several sub-sectors, with each sub-sector representing a

specific bit code. The number of sub-sectors, RN, in each sector is based on the

number of bits, bitN, we want to embed in the sector. That is, RN = 2bitN. When the

value of bitN is one, there are two sub-sectors in each sector, representing bit codes 0

and 1, respectively. When bitN equals two, RN will be four, and the four sub-sectors

in a sector represent bit pair codes 00, 01, 10, and 11, respectively.

Assume now that we want to embed a bit 0 into Tilei+1. Since θi+1 falls in the

sub-sector which represents bit 1, we have to adjust θi+1 to fall in the sub-sector which

represents bit 0 by rotating Tilei+1 through a certain angle. As shown in Fig. 3.12(c),
41

the closest sub-sector which represents bit 0 is the right one. So we adjust θi+1 to align

it with the center of that sub-sector to get the new angle of θi+1′. In Fig. 3.12(c), the

red dashed arrow is the θi+1′ with bit 0 embedded. On the other hand, if we want to

embed a bit 1 into Tilei+1, since θi+1 falls in the sub-sector which represents bit 1, we

just adjust θi+1 to align with the center of the sub-sector. By doing so, we can have

more accuracy in the later process of data extraction. If θi+1 initially does not fall in

the right angle which centers on θi, we will adjust θi+1 by adding or subtracting 90o to

make θi+1 fall in the right angle. As described in Section 3.1.1, this operation will not

affect the orientation of a tile.

We can see that the average angle of tile rotations for data hiding is half of the

span angle of a sector. By increasing the number of sectors (reducing the span angles

of sectors), the degree of tile re-orientation can be reduced, but this will cause more

errors when performing tile orientation detection in data extraction. On the contrary,

we can reduce the number of sectors to increase the accuracy of tile orientation

detection, but this will cause the tiles to be rotated farther away from their original

alignments, causing the edges in the image to be damaged more seriously.

3.3.2 Data Embedding Process

The procedure of embedding a watermark into a tile mosaic image is shown in

Fig. 3.13 and described in Algorithm 3.5 below.

42

(a)

(b)

(c)

Fig. 3.12 Data hiding by tile orientation modification. (a) Two adjacent tiles. (b) Tiles
with bit 0 embedded in Tilei+1. (c) Data hiding strategy.

Algorithm 3.5: Watermarking in a tile mosaic image.

Input: a tile mosaic image M, a watermark image W, and a key K.

Output: a tile mosaic image with the watermark embedded.

Steps:

Step 1 Link the tiles in M into a 1-D sequence Tile0, Tile1, …, Tilem by a raster

scan of the tiles.

Step 2 Resize the input watermark image W into 25×25 pixels and transform it

into a bit sequence B = B0, B1, …, Bn.

Step 3 Generate a sequence of sub-sector code mappings, CM = CM0, CM1, …,

CMm-1, by the input key K.

Step 4 For each adjacent tile pair Tilei and Tilei+1, embed Bi into M by

43

modifying the orientation θi+1 of Tilei+1 according to the code mapping

CMi.

Step 5 If the embedding capacity, m − 1, is larger than the length of the bit

sequence B, embed B repeatedly by Step 4 until the embedding

capacity is exhausted.

In the first step of the above algorithm, we link the tiles into a 1-D sequence.

Then, in Step 2 we resize the input watermark image into an image of 25×25 pixels

and transform it into a bit sequence B. Before modifying the orientations of the tiles,

we decide in Step 3 what code mappings the sub-sectors will represent in the

subsequent data embedding. The result is a sequence of code mappings, CM. As

shown in Fig. 3.12(c), the code mapping CMi for the right angle (used by a tile Tilei),

as seen from the center to the two sides, is (0, 1). The alternative choice is (1, 0). We

generate the code mappings in CM randomly for all the tiles by the input key for the

purpose of protecting the embedded data. After generating the sequence CM, for each

adjacent tile pair Tilei and Tilei+1, we embed Bi by modifying the orientation of Tilei+1,

i.e., by enlarging or reducing the magnitude of θi+1 , based on the corresponding CMi

as described in the last section.

According to the above way of data embedding, assume that there are m tiles in a

tile mosaic image, then only m − 1 bits can be embedded. And that is why the

sequence of CM is of the size of m − 1. So, if the embedding capacity, m − 1, is

smaller than the length of the bit sequence, n, some bits will be discarded due to the

insufficiency of tiles to embed data. On the other hand, if m − 1 is larger than n, we

will embed the bit sequence repeatedly for additional robustness.

44

Fig. 3.13 Watermark embedding process.

3.3.3 Data Extraction Process

The watermark extraction process is simply an inverse version of the embedding

process. A flowchart of the watermark extraction process is shown in Fig. 3.14. First,

we derive the tile orientations, θ0, θ1, …, θm, of the tiles by the tile feature detection

process, as mentioned in Section 3, and generate the sequence CM of code mappings

by an input key. Then, by utilizing CM and the tile orientations, we extract the

embedded watermark. In more details, for each adjacent tile pair Tilei and Tilei+1 with

orientations θi and θi+1, we create a right angle which centers on θi and find the

sub-sector where θi+1 falls. In this way we can get the corresponding bit code Bi by

looking up the corresponding code mapping CMi in CM. If the extracted bit sequence

is larger than 25×25, we apply a voting strategy to recover the watermark with more

robustness.

45

Fig. 3.14 Watermark extraction process.

3.3.4 Experimental Results

The proposed method was tested on a series of images. Some experimental

results are shown in this section. In Fig. 3.15, (a) and (e) are an input image and a

watermark, respectively, (b) is a tile mosaic image of (a) without the watermark

embedded, and (c) is a tile mosaic image of (a) with the watermark (e) embedded.

Because the tiles of (c) have been rotated slightly for embedding the watermark (e), (c)

is a little bit more distorted than (b), but still acceptable. If we hide more bits in each

tile, the generated tile mosaic image will be more distorted than (c). Fig. 3.15(f) is the

watermark extracted from (c). Because we resize the watermark before embedding it,

Fig. 3.15(f) is a scaled-down version of Fig. 3.15(e). Fig. 3.15(g) is the watermark

extracted from Fig. 3.15(c) with a wrong key. From Fig. 3.15(g), we can see that the

watermark cannot be extracted with a wrong key. Fig. 3.15(d) is a damaged image of

Fig. 3.15(c) with a mark on it, and Fig. 3.15(h) is the extracted watermark from Fig.

3.15(d). From Fig. 3.15(d) and Fig. 3.15(h), we can see that the watermark can still be

recognized even subject to a certain degree of damaging.
46

(a) (b)

(c) (d)

 (e) (f) (g) (h)

Fig. 3.15 Experimental results. (a) A Taiji image; (b) a tile mosaic image of Taiji without
watermark embedded; (c) a tile mosaic image with watermark (e) embedded; (d) a
damaged image of (c), (e) an input watermark; (f) a watermark extracted from (c); (g)
a watermark extracted from (c) with a wrong key; (h) a watermark extracted from (d).

47

3.4 Proposed Secret Hiding Method by
Tile Size Modification

In this section, we will propose a method for hiding a secret message into a tile

mosaic image by tile size modification. In order to avoid tile overlapping, the way we

modify the tile sizes is shrinking them instead of magnifying them. By shrinking tiles,

we can hide bits into the tiles. Since the degree of tile shrinking is slight, we can not

tell the size differences among tiles by naked eyes. Furthermore, we utilize the

number of tile pixels, TPN, instead of the tile sizes. By utilizing TPN, we can detect

tile sizes with better accuracy during data extraction.

3.4.1 Core Concepts
The core concept of data hiding by tile size modification is shown in Fig. 3.16.

Assume that we want to embed a bit code, Bi, into Tilei. As shown in Fig. 3.16(a), by

checking the input key, we can know whether we need to shrink this tile or not. If the

answer is ‘Yes’, we will shrink the tile size, Tsi, of Tilei by the formula, Tsi′ = Tsi - Dec

where the parameter, Dec, is a predefined value standing for the degree of tile

shrinking.

In the data extracting process as shown in Fig. 3.16(b), for each , we will

check whether TPN

iTile

i is smaller than TPNavg or not. By the checking result, we can

recognize whether this tile has been shrunk or not. If TPNi is smaller than TPNavg, we

will view Tilei as a shrunk tile. Otherwise, we will view Tilei as a non-shrunk tile.

Finally, we can get the embedded bit code, Bi, by the checking result and the input key

In order to keep high detection accuracy, we have to adjust the value of DEC

while the value of Ts varies. The relation between DEC and Ts is shown as follows:

48

⎥⎥
⎤

⎢⎢
⎡=
30
TsDec

By varying the value of Dec by the previous formula, detection results without bit

errors can be yielded if the value of Ts is larger than or equal to eight.

Key

Shrink this tile?

Shrink the tile size by

Concept of data embedding

Yes

Bi Tilei

Tsi' = Tsi - Dec

(a) (b)

Fig. 3.16 Data hiding by tile size modification. (a) Concept of data embedding. (b)
Data of data extraction.

3.4.2 Data Embedding Process

The procedure of secret hiding in a tile mosaic image is shown in Fig. 3.17 and

described in Algorithm 3.6 below.

Algorithm 3.6: Secret hiding in a tile mosaic image.

Input: a tile mosaic image M, a secret message Mes, tile size shrinking degree

Dec, and a key K.

Output: a tile mosaic image with secret message embedded.

Steps:

Step 1 Link the tiles in M into a 1-D sequence Tile0, Tile1, …, Tilem by a raster

scan of the tiles.
49

Step 2 Transform Mes into a bit sequence B = B0, B1, …, Bn, with ending

pattern appended in the rear of B.

Step 3 Generate a sequence of code mappings, CM = CM0, CM1, …, CMn, by

the input key K.

Step 4 For each Bi, decide whether to shrink Tilei or not by checking CMi. If so,

shrink Tilei by the formula: Tsi′ = Tsi - Dec.

Step 5 If m is larger than n, shrink half of the rest tiles (i.e., Tilei, where

n+1≦i 0) by the same formula in Step 4.≦

Initially, we transform the secret message into a bit sequence, B, and append an

ending pattern (sixteen successive 0s) at the end of B, that is, Bi = 0 if n−16<i≦n.

By the ending pattern, we can determine where the message ends in a sequence of

extracted bits in the detection process. Furthermore, in Step 2, we check the capacity

(including the ending pattern) of M and truncate the data out of the capacity in Mes.

So, the size of B is not greater than the size of the tile sequence after appending the

ending pattern. In Step 3, as what we do in Algorithm 3.5, we generate a sequence of

code mapping, CM. In this application, a code map, CMi, is used for deciding whether

to shrink Tilei or not when embedding Bi into Tilei. In Step 4, we then embed Bi in Tilei

by checking CMi. Finally, in order to keep the value of TPNavg to be
2

2
⎟
⎠
⎞

⎜
⎝
⎛ −

DecTs

approximately, so that, a better detection accuracy can be achieved, we need to shrink

half of the rest tiles by the formula used in Step 4.

50

Fig. 3.17 Secret message embedding process

3.4.3 Data Extraction Process

The secret message extraction process is also an inverse of the embedding

process. A flowchart of the secret message extraction process is shown in Fig. 3.18.

First, we derive the tile pixel numbers, TPN0, TPN1, …, TPNm, of the tiles and their

average ,TPNavg , by the tile feature detection process, and generate the CM sequence

by an input key. Then, for each TPNi, we extract a bit Bi according to CMi, by

checking whether TPNi is larger thanTPNavg or not. In the following step, we search

B for the ending pattern (16 successive 0s) and truncate the redundant bits at the rear

51

of B. Finally, we transform the bit sequence into text format, and then the embedded

secret message is thus extracted.

Fig. 3.18 Secret message extraction process

3.4.4 Experimental Results
Some experimental results are shown in Fig. 3.19. Fig. 3.19(a) is a tile mosaic

image of TaiJi without secret information embedded. Fig. 3.19(b) is a tile mosaic

image with the secret message, “大毛有ㄧ件事情我直到今天才有勇氣向你提起，那

就是我愛你!!,” embedded. Fig. 3.19(c) presents some details in (b). We can not

figure out exactly which tiles have been shrunk, because the degree we shrank a tile is

only one bit wide in Fig. 3.19(b). Fig. 3.19(d) is the secret information extracted from

(b). We can find out that there is no error bits within it even though we apply no data

recovery technique on the extracted data. Fig. 3.19(e) is the secret information
52

extracted from (b) with a wrong key. So, Fig. 3.19(e) shows the secret information is

protected by the key properly.

(a) (b)

 (c)

 (d)

 (e)

Fig. 3.19 Experimental results. (a) A tile mosaic image without secret message embedded. (b) a
tile mosaic image with secret message embedded, (c) Some details of (b), (d) The
secret message extracted from (b), (e) The secret message extracted from (b) with a
wrong key.

53

3.5 Proposed Authentication Method by
Tile Texture Modification

In this section we will propose a tile mosaic image authentication method by tile

texture modification. We will propose first a hash function which transforms the tile

features of a tile into three binary bits. We then hide the three bits into the RGB

channels by adding noise (modifying tile textures of each RGB channels) into a tile.

The reason for embedding authentication signals into tile textures is due to the high

capacity contained in the tile textures. For each tile, the capacity of tile texture is three

bits, however, the capacities of tile orientation and tile size are only one bit. Although

we can embed more than one bit into tile orientations and tile sizes, it will cause more

loss of the details of the original image. In the case of using three-bit authentication

signals, there is a probability of 1/8 that we may miss to find out a tampered tile that has

been modified. In the case of using one-bit authentication signal, the probability is
2
1

which makes the authentication process impractical. So, in order to make the

authentication process more practical, tile textures are chosen as the host feature for

hiding the authentication signals.

3.5.1 Core Concepts

As we mentioned in Section 3.1.3, in this study we define tile texture as noise

pixels in tiles. By adding noise pixels in the R, G, and B channels we can achieve the

goal of data hiding. In order to have high detection accuracy in the tile texture

detection process, we embed only one bit into each of the R, G, and B channels. The

core concept of data hiding in tile texture is similar to the concepts of data hiding in

tile orientation, as shown in Fig. 3.20.

54

The range of noise ratio, , is limited to be within 0 to 0.5, that is,

. The reason for confining noise ratios to be under 0.5 has been discussed

in Section 3.1.3. In order to verify whether the authentication signals have been

embedded or not, we retain

Nr

5.00 ≤≤ Nr

05.00 ≤≤ Nr as the rate base. If the value of of a

tile is under the condition

Nr

05.00 ≤≤ Nr , we will determine that no authentication

signal is embedded in the tile. So, the effective rate range of is

and will be divided into two sub-ranges, one representing code 0 and the other code 1.

Nr 5.0.050 ≤≤ Nr

Fig. 3.20 Data hiding by tile texture modification

As shown in Fig. 3.20, for each color channel of a tile, if we want to embed code

0 we will add noise with ratio 0.1625. On the other hand, if we want to embed code 1

the noise ratio will be 0.3875.

Before we embed bit codes into the tile textures, we have to transform the tile

features into a three-bit code for each single tile. And then, we embed each bit of the

code into one of the color channel. We propose hash functions to do that. The hash

functions and the associated parameters are defined as follows. Let the tile color be

denoted as Tc, the tile size as Ts, and the tile orientation as To. Denote the number of

55

sectors defined as Fig. 3.12(c) as BN, the number of sub-sectors defined as Fig. 3.12(c)

as RN. Define three terms as follows:

(1013 mod... blueTcgreenTcredTcRGBhash ××=) …………………………………(1)

=Sizehash The bit code embedded by tile size modification………….....................(2)

AQL
ToORIhash = , where

2
2 RNBNAQL ××

= …………………………….…….….(3)

Then the hash function is defined as follows:

Hash = ((RGBhash+1)×(Sizehash+1)×(ORIhash+1)×Random(key)) mod 23……….(4)

There are three tile features that we are going to authenticate. They are tile color,

tile size and tile orientation which we denote by Tc, Ts and To, respectively. First, we

compute the hash value of Tc by taking a product of the values of the R, G, and B

channels of Tc, as shown in Formula (1). Then we compute the remainder of dividing

the product by 1013. 1013 is an arbitrarily chosen prime number. We denote the

hashing value of Tc by RGBhash.

Second, the hash value of Ts is simply the bit code embedded by the proposed

tile size modification method. (As mentioned above, we hide secret messages by tile

size modification) If no secret message is embedded by a user, we will embed a text,

“no data embedded,” to indicate that there is no data embedded in this tile mosaic

image, and then shrink 50% of the rest tiles as what we do in Section 3.4.2. So, no

matter the user has embedded a secret message or not, the tile size, Ts, of each tile will

represent a corresponding bit code. The bit code may be part of a text embedded by a

user or part of the text “no data embedded”. Even though the tile is shrunk as the rest

tiles in the proposed secret hiding process, the size of this tile will also represent a

corresponding bit code by utilizing a secret key. In this condition, the corresponding

56

bit codes are composed of arbitrary bits. The hash value of Ts is simply the

corresponding bit code. We denote the hashing value of Ts by Sizehash.

The way we hash a tile orientation is to divide the effective range of tile

orientations (i.e., from 0o through 90o) into several sectors. Unlike what we do in

watermarking, we do not divide a sector into sub-sectors. The hash value of a tile

orientation, To, is the serial number of the sector where To falls. As we mentioned in

Section 3.3, there may be some bit errors when detecting tile orientations. In

watermarking, we can ignore the salt-and-paper noise caused by the detection errors.

But in the application of authentication, we do not want any authentication error to

take place. So, the number of sectors is half of the number of sub-sectors we used in

watermarking. In other words, the span of the sector we use in authentication is a

double of the span of the sub-sectors in watermarking. By enlarging the span of each

sector, we can eliminate the errors that may occur in the detection process. The

number of sub-sectors used in watermarking is RNBN ××2 . Thus, the number of

sectors used in authentication is
2

2 RNBN ×× and will be denoted by AQL. Finally,

the hashing value of tile orientation which we denote by ORIhash is
AQL
To , as shown

in Formula (3).

In the final step, we transform the three hashing values into a three-bit code by

Formula (4). As shown in (4), we apply the modulus operation with the modulo of

The hashing value will thus be shrunk into three bits by the modulus operation. Then

we embed the three bits by adding noise into the R, G and B channels in a tile. As an

example, if we want to embed a code 0 into the R channel of a tile, we add noise with

rate 0.1625 into the R channel as shown in Fig. 3.20. Unlike the proposed

watermarking method, we do not generate code maps with a secret key to indicate

what code a sub-range represents. In watermarking, a secret key is used for generating

32 .

57

the code maps. In authentication, we apply a secret key in generating bit codes by the

hash functions (i.e., by Formula (4)). In Formula (4), we use a random number

generator with a secret key (i.e., Random(key)) as a seed, for protecting the embedded

authentication signals. The function, Random(key), will generate two totally different

sequences of numbers, if these sequence are generated by two different key values.

The authentication signal embedding and extraction processes will be described in the

following two sections. The code map we used in authentication is defined in Fig.

3.20 and will not be changed.

3.5.2 Authentication Signal Embedding Process

The procedure of embedding authentication signals in a tile mosaic image is

shown in Fig. 3.21 and described in Algorithm 3.7 below. After linking the tiles into

an 1-D sequence, we transform the three tile features into a sequence of bit codes B =

B0, B1, …, Bm. Each bit code, Bi, contains three bits, namely, Bi = Bi2 Bi1 Bi0. In Step 3,

for each Bij, we look up the code map defined in Fig. 3.20 for the corresponding noise

ratio Rij. Finally, we add noise into the R, G and B channels by the corresponding

noise ratios. For example, if we want to embed noise pixels in the R channel of a tile,

Tilei, with a noise ratio, Ri0, first, we pick pixels randomly within Tilei as noise pixels

with a picking ratio of Ri0. We then increase or decrease the intensities of all the

picked pixels in the R channel. We randomly make the decision of generating noise by

increasing or decreasing the intensities of the picked pixels. At the end, the

authentication signals are embedded into the tile texture of Tilei.

Algorithm 3.7: Authentication signals generation and embedding process.

Input: a tile mosaic image M, and a key K.

Output: a tile mosaic image with authentication signals embedded.

Steps:
58

Step 1 Link the tiles in M into a 1-D sequence Tile0, Tile1, …, Tilem by a raster

scan of the tiles.

Step 2 Generate a sequence of authentication signals B = B0, B1, …, Bm, by the

hashing functions proposed in the last section. Each Bi in B contains

three bits, which is denoted by: Bi = Bi2 Bi1 Bi0.

Step 3 Generate a sequence of sets of noise ratios R = R0, R1, …, Rm, by

looking up the code map defined in Fig. 3.20. Each Ri in R contains

three different ratios, which is denoted by: Ri = {Ri2, Ri1, Ri0}.

Step 4 For each Tilei embed Bi into M by the following steps.

4.1 Embed Bi0 into Tilei by adding noise into the R channel with

noise ratio Ri0.

4.2 Embed Bi1 into Tilei by adding noise into the G channel with

noise ratio Ri1.

4.3 Embed Bi2 into Tilei by adding noise into the B channel with

noise ratio Ri2.

3.5.3 Authentication Signal Extraction Process

The proposed authentication method is shown in Fig. 3.22. After the proposed

tile feature detection process is completed, we can derive the tile map (i.e., Mpi) and

the three tile features Tc, Ts and To of each tile. We can also detect whether the tile is a

rectangle or not by the average tile size detection process discussed in Section 3.2.4.C.

If the tile is not a rectangle, it indicates that the tile has been damaged, and the

verification process of this tile is terminated. On the other hand, if the tile is a

rectangle, we apply further a verification process on this tile. The further verification

process is described as follows.

59

Fig. 3.21 Authentication signal embedding process

First, we get the hashing value, which we denote by Bi, by the hash functions

listed in section 3.5.1. Second, for each R, G, or B channel of a tile, pixels have two

different intensities (one is the original tile color and the other the noise color). We

then accumulate the number of pixels of the two different intensity values and view

the one having lower accumulation value as the noise color. The ratio of pixels of the

noise color is what we call noise ratio. After deriving the three noise ratios in the R, G

and B channel, we look up the code map as defined in Fig. 3.20 for the corresponding

60

three bits. In the following, we compose the three bits into a code, bi. Finally, we

compare Bi and bi. If they are of the same value, we claim that the tile has not been

modified. If they are with different values, we instead claim that the tile has been

modified. After applying the authentication process on all the tiles, we will have an

authentication image of the input tile mosaic image as a result of authentication.

Fig. 3.22 Tile mosaic image verification process

61

3.5.4 Applications for Image Verification

As discussed in previous sections, we can verify the integrity of tile color, tile

size, tile angle, and tile texture by the proposed tile mosaic image authentication

system. In order to eliminate the errors caused by the tile feature detection process.

We have to have more tolerance of errors. If the error is above the defined tolerance,

we will claim that this tile has been modified. Because we embed only three bits into

a tile texture, it is
8
1 in probability that we may miss to detect a tile that has been

damaged. But in most cases damaged tiles are not in the shape of rectangles. And we

can always indicate a tile which is non-rectangular as being damaged. Some

experimental result is given in Section 3.5.6.

3.5.5 Applications for Secret Verification

Because we can verify the integrity of tile features, we can also verify the fidelity

of embedded data indirectly. An example is secret hiding in tile sizes. By verifying the

integrity of tile sizes in a tile mosaic image, we can also verify the fidelity of

embedded secret message. Although we can not indicate which word or character is

damaged, we can verify the fidelity of the whole secret message. Some experimental

result is given in Section 3.5.6.

3.5.6 Experimental Results

Some experimental results are shown in Fig. 3.23. In Fig. 3.23, (a) is a tile

mosaic image of Taiji without data embedded and (b) is a tile mosaic image with a

watermark, certain secret information, and authentication signals embedded. Fig.

3.23(c) and Fig. 3.23(d) are some details of Fig. 3.23(a) and (b), respectively. We can

62

see that some noise is added to (d) and that the tile angles and tile sizes of (d) have

slight difference from the ones of (c). Fig. 3.23(e) and (f) are the watermark and secret

information extracted from Fig. 3.23(b). Fig. 3.23(g) is the verification result of Fig.

3.23(b). In Fig. 3.23(g), we can see that all the tiles are bounded by green squares

which mean that the tiles are not modified. By Fig. 3.23(e), (f) and (g), we can see that

a watermark, a secret message, and authentication signals can be embedded in a tile

mosaic image simultaneously by utilizing the proposed methods. The experimental

results also show that the different types of embedded data will not interfere with one

another.

Fig. 3.23(h) is a copy of (b) with three groups of damaged tiles. We bound them

with yellow squares. The tile in square 1 is magnified and the tile in square 2 is

rotated. The four tiles in square 3 are copied from some other tiles. Furthermore, some

blue strokes are painted at the bottom-right corner of Fig. 3.23(h). Fig. 3.23(i) is the

authentication image of (h). The magenta quadrangles are the found damaged tiles. In

Fig. 3.23(i), we can see that the damaged tiles are found by our authentication process

correctly. In the bottom-right corner of (i), we can see that the magenta quadrangles

are not rectangular. So, we claim that these tiles are damaged without any further

verification process (i.e., without checking the embedded hash values). Fig. 3.23(j) is

a watermark extracted from (h). Since (h) has been damaged, some salt-and-pepper

noise appears on (j) but the watermark is still recognizable visually. Fig. 3.23(k) is the

secret information extracted from (h). Since (h) is damaged, there are some arbitrary

bits appear in (k).

Because some damaged tiles are found by the proposed authentication process,

the user can decide whether to believe the extracted secret message and watermark or

not by the authentication image shown in Fig. 3.23(i).

63

(a)

(b)

(c)

(d)

(e)

(f)
Fig. 3.23 Experimental results. (a) A tile mosaic image without data embedded. (b) A tile mosaic

image with a watermark, a secret message and authentication signals embedded. (c) Some
details of (a). (d) Some details of (b). (e) A watermark extracted from (b). (f) A secret
message extracted from (b). (g) Verification result of (b). (h) A copy of (b) with some
damaged tiles. (i) A verification result of (h). (j) A watermark extracted from (i). (k) A
secret message extracted from (i).

64

(g)
Fig. 3.23 Experimental results. (a) A tile mosaic image without data embedded. (b) A tile mosaic

image with a watermark, a secret message and authentication signals embedded. (c) Some
details of (a). (d) Some details of (b). (e) A watermark extracted from (b). (f) A secret
message extracted from (b). (g) Verification result of (b). (h) A copy of (b) with some
damaged tiles. (i) A verification result of (h). (j) A watermark extracted from (i). (k) A
secret message extracted from (i) (continued).

65

(h)
Fig. 3.23 Experimental results. (a) A tile mosaic image without data embedded. (b) A

tile mosaic image with a watermark, a secret message and authentication
signals embedded. (c) Some details of (a). (d) Some details of (b). (e) A
watermark extracted from (b). (f) A secret message extracted from (b). (g)
Verification result of (b). (h) A copy of (b) with some damaged tiles. (i) A
verification result of (h). (j) A watermark extracted from (i). (k) A secret
message extracted from (i) (continued).

66

(i)

 (j)

(k)
Fig. 3.23 Experimental results. (a) A tile mosaic image without data embedded. (b) A

tile mosaic image with a watermark, a secret message and authentication
signals embedded. (c) Some details of (a). (d) Some details of (b). (e) A
watermark extracted from (b). (f) A secret message extracted from (b). (g)
Verification result of (b). (h) A copy of (b) with some damaged tiles. (i) A
verification result of (h). (j) A watermark extracted from (i). (k) A secret
message extracted from (i) (continued).

67

Chapter 4
A Stained Glass Image Creation
Method for Information Hiding

4.1 Introduction
In this chapter, we will investigate another format of mosaic-effect image which

is named stained glass image. A stained glass image is composed of numerous glass

regions which are divided by black and thin gaps, which are named leading. In

Section 0, we will give a brief description of a traditional stained glass image creation

process proposed by Mould [13]. In Section 4.3, a new approach to automatic creation

of stained glass images from an input image for data hiding applications will be

proposed. These two creation processes both start from image segmentation of an

input image. However, the method proposed by Mould has no glass feature that can

be used for data hiding. On the other hand, there will be a glass feature utilized for

data hiding in the proposed method.

The proposed creation process is described as follows. First, we divide an input

image into several color regions. Then we apply region growing techniques to glass

regions. Each glass region will result in a glass piece in the final stained glass image.

After creating the glass regions, we apply a data hiding technique by slight glass

cracking to achieve the purpose of hiding data in the image. The details of data hiding

and the corresponding applications will be discussed in Chapter 5.

68

4.2 Review of Traditional Stained Glass
Image Creation Process

Before we propose the procedure of stained glass image creation, we will review

first a traditional creation process proposed by Mould [13]. The process is briefly

described in Algorithm 4.1 in the following.

Algorithm 4.1: a traditional tile mosaic image creation process.

Input: an original image I.

Output: a stained glass image T.

Steps:

Step 1 Segment I into several regions by the image processing system,

EDISON, proposed in [14, 15, 16].

Step 2 Use erosion and dilation operators proposed in [17, 18] to manipulate

and smooth the initial segmented regions (glass regions).

Step 3 Apply a displacement map representing imperfections in the glass

regions and apply leading between tile boundaries.

Mould’s method first segments the original image into several regions. As shown

in Fig. 4.1, (a) is an initial image Gretzky and (b) is the segmented regions of (a) after

applying Step 1. Fig. 4.1(c) is the region boundaries of Fig. 4.1(b). By applying Step 2,

we can get a smoothed version of Fig. 4.1(c) as shown in (d). Fig. 4.1(e) is the final

stained glass image by applying Step 3 on Fig. 4.1(d). And Fig. 4.1(e) is another

version of Fig. 4.1(e) whose background is different from that of Fig. 4.1(e).

69

(a)

(b)

(c)

(d)

(e)

(e)

Fig. 4.1 Some intermediate images and stained glass images created by Mould [13].
(a) An original image Gretzky. (b) Segmented regions of (a). (c) Region
boundaries of (b). (d) Smoothed region boundaries of (b). (e) Associated
stained glass image. (e) Another stained glass image with different
background from (e).

4.3 Proposed Stained Glass Image
Creation Process

4.3.1 Scheme of Creation Process

Fig. 4.2 shows the scheme of the proposed stained glass image creation process.

First, we quantize each pixel value of an input image into three bits, that is, one bit per

R, G and B channel of each single pixel. And then we filter off the noise appearing

during quantization by a voting filter. After applying the previous two steps, the input

image will be divided into several color regions. The previous two steps are what we

call preprocessing of an input image and will be discussed in detail in Section 4.3.2.

Second, we sprinkle seeds on the color regions and apply the proposed region
70

growing technique on each seed. A random number generator is used for seed

sprinkling. We will use a secret key as a seed of the random number generator, if we

want to embed data in the stained glass image. By the proposed region growing

technique, we will have glass regions grown from each of the sprinkled seeds. In

Section 4.3.3, a tree structure of glass regions and the proposed region growing

technique will be discussed. In the final step, we search for gaps which are of large

areas among created glass regions and fill the gaps with extra glass regions. We name

it glass region gap filling process and will discuss it in Section 4.3.4. Finally, a

stained glass image is created with glass color specified by the seed positions and the

input image.

Fig. 4.2 Proposed stained glass image creation process.

4.3.2 Preprocessing of Input Images

Before applying the region growing technique for glass region creation, we have
71

to apply some operations on the input image. They are quantization and filtering. As

shown in Fig. 4.3, (a) is an input image and (b) is the quantization result of (a). We

quantize Fig. 4.3(a) into three bits per pixel, that is, one bit per R, G and B channel of

each single pixel. In Fig. 4.3(b), we can see that these color regions are shattered and

not smooth. It will affect the results of region growing. So we have to smooth the

initial segmentation before applying the region growing technique. We apply a voting

filter to do that. Fig. 4.3(d) is the applied voting filter. For each pixel in (b), we

accumulate the numbers of pixel colors within a square which is centered at that pixel.

And then we set the color of that pixel as the color which has the maximum

accumulation value. Here the square size is 11*11. Fig. 4.3(c) is the result after

filtering. We can see the noise in Fig. 4.3(c) is removed. We name Fig. 4.3(c) a color

region image. After removing the noise, we can now apply the region growing

technique to these color regions.

4.3.3 Tree Structure of Glass Regions and Region

Growing Process

In this section, we describe the propose tree structure of glass regions for region

growing. The proposed tree structure is shown in Fig. 4.4(a). A tree node is either an

interior node or a leaf node. An interior node has child nodes and a leaf node does not.

We classify the tree nodes into two types, succeeding node and expanding node.

Expanding nodes are the first or last nodes in a node level. As shown in Fig. 4.4, we

bound expanding nodes by red borders and bound succeeding nodes by black borders.

As shown in Fig. 4.4(a), there will be two child nodes of an expanding node, if any.

One is an expanding node and the other is a succeeding node. On the other hand, a

succeeding node will have only a child node, if any. And the child node is also a

72

succeeding node.

A. Proposed Tree Growing Process

The proposed tree growing process is illustrated in

Algorithm 4.2. We will explain all the steps by taking Fig. 4.4 as an example. In

Fig. 4.4, a dashed green line represents a color region derived from Section 4.2.2.

Initially, we add two expanding nodes in L1 as the child nodes of the root, R, and set

them as interior nodes. In Step 2.1, we generate a child node, which is interior and a

succeeding node, for each of the interior nodes in Li (). And then in Step 2.1.1,

we discard the generated child nodes, which are out of bound, from L

2≥i

i and transfer the

associated parent nodes from an interior node to a leaf node. Fig. 4.4(b) and (c) is an

example of Step 2.1.1. As shown in Fig. 4.4(b), four succeeding nodes are produced in

Li+1. The right-most one is located in a color region different from where its parent

node is located. So, we regard this node as out of bound, discard it from its parent

node, and transfer its parent node from an interior node to a leaf node.

In Step 2.2, we generate a child node, which is interior and an expanding node,

for each interior node which is also an expanding node in Li. And then in Step 2.2.1,

we discard the generated child nodes, which are out of bound, from Li without

transferring the associated parent nodes from an interior node to a leaf node (unlike

what we do in Step 2.1.1). Fig. 4.4(d) and (e) is an example of Step 2.2.1. As shown in

Fig. 4.4(d), only one node is produced in Li+1. Because the right-most expanding node

in Li has been transferred into a leaf node in Step 2.1.1, we will not extend this node

any more. As shown in Fig. 4.4(e), the generated child node is located in a color

region different from where its parent node is located, so we discard it without

transferring its parent node to a leaf node.

73

(a)

(b)

(c)

(d)

Fig. 4.3 Preprocessing of an original image. (a) The original image, (b) A quantized
image of (a). (c) A filtered image of (b). (d) A voting filter of size 11x11

74

In this algorithm, Steps 2.1.2 and 2.2.2 are used for keeping the depth differences

of neighboring leaf nodes less than or equal to one. The reason for doing that is shown

in Fig. 4.4(f). In Fig. 4.4(f), the depth difference of the neighboring two leaf nodes is

four. The blue line in Fig. 4.4(f) is the edge defined by the two leaf nodes. We can see

that this edge overlaps another color region. It will result in overlapping glass regions

when the growing process terminates. That is why we have to keep the depth

differences of neighboring leaf nodes to be less than or equal to one by Step 2.1.2 and

2.2.2

Finally, in Step 2.3, we decide whether to terminate the growing process or not

by checking if there are child nodes generated in Steps 2.1 and 2.3. If the process

terminates, the derived tree will be part of a glass region in the stained glass image we

created.

Algorithm 4.2: Tree growing process

Input: a tree root R.

Output: a tree, GRT, which is grown from R.

Steps:

Step 1 Add two expanding nodes in L1 as the child nodes of R. Set the states of

them as interior nodes.

Step 2 For each node level Li, where i 2, ≧ perform the following steps:

2.1 For each interior node, Nint , in Li, generate a child node which

is interior and succeeding. Denote it by Cis.

2.1.1 Check whether Cis is out of bound by the following way:

if Nint and Cis are not in the same color region, regard Cis

as out of bound, and then

A discard Cis from Nint;

B trasfer Nint from an interior node to a leaf node.
75

2.1.2 If the depth of Cis is greater than the depth of its

neighboring sibling, then

A discard Cis from Nint;

B trasfer Nint from an interior node to a leaf node.

2.2 For each interior node which is also an expanding node, NintE,

generate diagonally a child node which is interior and expanding.

Denote it by Cie.

2.2.1 Check whether Cie is out of bound by the following way:

if NintE and Cie are not in the same color region, regard Cie

as out of bound, and then

discard Cie from NintE.

2.2.2 If the depth of Cie is greater than the depth of its

neighboring sibling, then

discard Cie from NintE.

2.3 Check whether the growing process is converged by the

following way:

if there are child nodes generated in Steps 2.1 and 2.2, then

2.3.1 regard GRT as non-converged, accumulate the value of i

by 1, and go back to the beginning of Step 2; otherwise,

2.3.2 regard GRT as converged, output GRT, and terminate the

growing process.

76

(a)

iL

1iL +

(b)

iL

1iL +

(c)

iL

1iL +

(d)

iL

1iL +

(e)

(f)

(g)

Fig. 4.4 Tree structure of glass regions. (a) A tree of a glass region; (b), (c), (d) and (e) An
example of Steps 2 and 3 in Algorithm 4.1; (g) Figure descriptions.

77

B. Proposed Region Growing Process for Glass Region

After preprocessing the original image, we derive a corresponding color region

image (as shown in Fig. 4.3(c)). We then sprinkle seeds on the color region image, and

start the region growing process for creating the glass regions. Note that each glass

region in a stained glass image represents a glass piece in a stained glass window.

Each seed will result in a glass region after applying the proposed region growing

process. The proposed region growing process is described as follows.

As shown in Fig. 4.5, first we root four trees in each seed, which is denoted by Nt,

Et, St, and Wt, respectively. We then grow the four trees in four directions, namely,

north, east, south, and west, respectively, by applying Algorithm 4.2. We will grow all

the trees of all seeds simultaneously level by level by Algorithm 4.2. After the tree

growing processes of these four trees terminate, we link the leaf nodes and the four

trees to form the boundary of the associated glass region. The links of the leaf nodes

are drawn by blue and the links of the trees are drawn by yellow in Fig. 4.5. We derive a

leaf node link simply by linking the adjacent leaf nodes of a tree. However, if we link

the four trees simply by linking the rightmost and leftmost leaf nodes of two adjacent

trees, the link of trees may be out of the color region. As shown in Fig. 4.5(a), the link

between Nt and Et is out of the color region, and it will result in overlapping glass

regions. In order to keep the generated glass regions from overlapping, we need to

search the first expanding nodes in the node expanding pass of the rightmost and

leftmost leaf nodes of a tree. A node expanding pass is an upward pass which starts

from a leaf node to the tree root. As shown in Fig. 4.5(b), starting from the leftmost

leaf node of Nt, we can find an expanding node behind two succeeding nodes in the

node expanding pass. By linking the first expanding nodes, the leftmost leaf node, and

the rightmost leaf node of two adjacent trees, we can derive a tree link within the

78

associated color region. As shown in Fig. 4.5(b), the tree link between Nt and Et is

bound into the color region by adding the expanding node searching pass into the tree

link.

Two points need to be noticed in the stained glass image creation process. First,

according to the proposed tree growing process, each glass region has a minimum size

of nine nodes, which is shown by pink squares in Fig. 4.5(a) and (b). In order to keep

the glass regions from overlapping, we have to keep the inter-seed distance at least

three nodes in magnitude. In this study, we let the distance between nodes to be two

pixels. So, the minimum inter-seed distance must be six pixels. The last point to be

noticed is that more than one seed may be located in a color region. In order to keep

the created glass from overlapping, we have to keep a global tree map which is use to

record whether a node position has been occupied by other trees or not. We will

transfer the parent node, which wants to extend a child node to an occupied node

position, from an interior node to a leaf node. The tree map will also be used in the

next section for the gap filling process.

79

(a)

(b)

(c)

Fig. 4.5 Proposed region growing process. (a) A version of linking the leaf nodes. (b) A
version of searching the last expanding nodes. (c) Figure descriptions.

80

4.3.4 Glass Region Gap Filling Process

At the beginning of the proposed glass growing process, we sprinkle seeds as

tree roots randomly. It will result in more than one seed sprinkled in a color region.

On the contrary, it might also happen that no seed is sprinkled in a color region,

causing some gaps among glass regions. So, we have to apply a further step for filling

these gaps. We name the step the gap filling process.

As shown in Fig. 4.6, the blue polygons are the glass regions grown by the

previous steps. Among the blue polygons are the gaps we need to fill. Initially, we

scan the tree map. If there is no tree node within a square range of size 15x15 pixels,

we put an additional seed at the center of that square and apply the proposed glass

region growing process on it. The yellow polygons in Fig. 4.6 are the additional glass

regions for filling the gaps.

In Chapter 5 we will propose a data hiding technique along with three

applications, namely, watermarking, secret communication, and image authentication.

The data is embedded in the glass region with randomly generated seeds. We will not

embed data into the glass regions which are used for gap filling except in the

application of image authentication.

81

Fig. 4.6 Illustration of gap filling process.

82

4.4 Experimental Results and
Discussions

Fig. 4.7 is an experimental result of applying the proposed stained glass

creation process to an original image. Fig. 4.7(a) is the original image and Fig. 4.7(b)

is the final stained glass image. We can find that the glasses in Fig. 4.7(b) do not

overlap each other. This characteristic is good for data embedding and extraction

process. Some other experimental results are shown in Fig. 4.8 Some experimental

results. In Fig. 4.8, the images in the first column are original images, the images in

the middle column are the stained glass images created by Mould’s method [13], and

the images in the last column are the stained glass images created by the proposed

methods. In Chapter 5, we will utilize a key for seed sprinkling, and the data hiding

technique and some applications will also be discussed.

(a)

Fig. 4.7 Experimental results.
(a) An original image.
(b) A stained glass
image of (a).

(b)

83

Fig. 4.8 Some experimental results.

84

Chapter 5
Data Hiding in Stained Glass Images
and Applications

5.1 Introduction
In this chapter, we will introduce a data hiding technique by utilizing the number

of tree nodes in a glass region. We will also discuss the three applications which are

introduced in Chapter 3. The feature detection process for stained glass images will

also be described.

5.1.1 Concepts behind Proposed Technique

The feature we utilize for data hiding in stained glass images is the number of

tree nodes in a tree of a glass region. By removing the deepest nodes we can hide data

in a stained glass image. However, it will result in cracks at the edges and corners of a

glass region, though still acceptable. As shown in Fig. 5.1(a), we remove the two

nodes which are the deepest nodes in tree Nt of this glass region. Fig. 5.1(b) is the

result of removing the two nodes. We can see the resulting cracks in the glass region

where the nodes are removed. There are four trees contained in a glass, but not all the

four trees can be used for data hiding. The number of nodes of a tree must be large

enough so that the data can be embedded by removing tree nodes. We name the trees

that can be used for data hiding effective trees. More details will be discussed in the

following sections and so will the glass feature detection process.

85

(a)

(b)

Fig. 5.1 An example of removing nodes for data hiding. (a) A glass region copied
from Fig. 4.4(b). (b) A glass region with data embedded.

5.1.2 Concepts behind Proposed Data Embedding

and Extraction Techniques

The overall concept of embedding data into a stained glass image is illustrated in

Fig. 5.2. Since only one glass feature is found for data hiding, only one of the three

applications can be embedded at a time. The three applications are watermarking,

secret communication, and image authentication. No matter what kind of data we

want to embed is, we first transform the input data into a bit sequence before the data

embedding process.

Unlike what we do in a tile mosaic image, the secret key used for protecting

embedded data is now utilized in the image creation process. In the creation process,

initially, we use a secret key as a seed of a random number generator, and then

generate a sequence of seeds randomly. Each of the generated seeds will be the root of

the four trees (i.e. Nt, Et, St and Wt) of a glass region. After the creation process, we

86

embed the bit sequence of the data by removing the deepest nodes of every single tree.

As mentioned before, the target tree must have an sufficiently large number of nodes,

so that the bits can be embedded. More details will be discussed in Section 5.3.1.

Fig. 5.2 Proposed data embedding process.

A flowchart of data extraction process in stained glass images is shown in Fig.

5.3. The secret key is applied in the glass feature detection process. In the glass

feature detection process, as what we do in the creation process, the secret key will be

used for seed generation. By using the same key as a seed of a random number

generator for seed generation, we can derive the same seed sequence as the one

derived in the creation process. We then apply the region growing process, which is

proposed in Section 4.3.3, on the seed sequence for deriving a sequence of glass

regions. Therefore, the two sequences of glass regions derived in the creation and

detection processes will be identical. By counting the number of nodes in each single

tree of the detected sequence of glass regions, the embedded bit sequence can be

extracted. So the embedded data will be derived by transforming the bit sequence into
87

a watermark image, a secret text, or an authentication image. The glass feature

detection process will be discussed with more details in Section 5.2. And the core

concepts of the data embedding and extraction process will be described in Section

5.3. The three applications will also be discussed is Sections 5.4, 5.5, and 5.6.

Fig. 5.3 Proposed data extraction process.

5.2 Glass Feature Detection Process
Before the data embedding and extraction process, we have to derive a sequence

of trees from a sequence of glass regions. Each glass region will have at most four

trees to be added into the tree sequence. In the data embedding process, we derive the

tree sequence from the glass regions which are created by the stained glass creation

process. On the other hand, if we want to extract data from a stained glass image,

glass regions are derived by the glass feature detection process. So it is clear that the

detection process is mainly to extract a sequence of glass regions, so that the

88

corresponding sequence of trees with data embedded can be derived. Finally, a

watermark, a secret message, or an authentication image can be extracted.

The entire glass feature detection process is shown in Fig. 5.4. As what we do in

the creation process, we first sprinkle seeds on the stained glass image (instead of a

color region image) by a secret key as the root of glass regions. Then we create a

sequence of glass regions by applying the region growing technique proposed in

Section 4.3.3. A sequence of glass regions will thus be derived. Finally, we pick the

trees which we have embedded data into. The method to judge whether data have

been embedded in a tree or not, will be discussed in Section 5.3.

Fig. 5.4 Proposed glass feature detection process.

Fig. 5.5 shows the detection result of a stained glass image. The white squares

are the seeds generated by the secret key which is the same as the one used in the

image creation process. Since the seed positions and the applied region growing

89

method are identical to the ones used in the creation process, an identical sequence of

glass regions is derived. The blue polygons in Fig. 5.5 are the detected boundaries of

the glass regions. We can see that they fit the glass regions very well. Thus, we can

extract the embedded data by picking up the trees, which we have embedded data into,

from these glass regions into a tree sequence. Although the detected boundaries fit the

glass regions well, some detection errors do come out. Take Fig. 5.5 as an example.

There are 400 glass regions in the stained glass image and we have embedded data in

1173 trees among these glass regions. Assume the tree sequence picked in the data

embedding process (i.e., the effective trees of data embedding) to be ET0, ET1, …, ETn

and the tree sequence picked in the data extraction process (i.e., the effective trees of

data extraction) to be DT0, DT1, …, DTn. We compute the detection error, diff, by the

formula:

diffi =│number of tree nodes in ETi – number of tree nodes in DTi│.

Table 5.1 is the error statistics of Fig. 5.5. As shown in Table 5.1, the values of diff are

mostly 0 and all the values are smaller than 1. So there are detection errors but they

are still acceptable. We can introduce error tolerance into the proposed data hiding

technique for eliminating the detection errors.

Table 5.1 error statistic of Fig. 5.5
Number of glass regions: 200, Number of effective trees: 481
diff Number of tree pairs Rate
0 478 0.9938
1 3 0.0062
2 0 0.0
3 0 0.0

total 481 1.0

90

Fig. 5.5 Detection result of a stained glass image.

91

5.3 Data Hiding by Glass Boundary
Cracking

The core concept of data hiding by tree node number modification is illustrated

in Fig. 5.6. Initially, we compute the remainder, REM, of dividing the tree node

number, TNN, by a divisor, DIV. The value of REM will thus range between 0 and

DIV-1 as shown in the following formula:

REM=TNN mod DIV , 0≦REM < DIV-1.

Then, we divide the range of REM into several sub-ranges. Each range will represent

a specific bit code. In the case of Fig. 5.6, the bit code contains two bits, so we divide

the range into four sub-ranges which represent 00, 01, 10 and 11, respectively. In

other words, the number of sub-ranges, NSR, is computed by the following formula:

NSR=2bitN,

where bitN is the number of bits we want to embed in an effective tree. Furthermore,

because each sub-range includes several REM values, tolerance of detection errors are

achieved. Take Fig. 5.6 as an example. Each sub-range includes three REM values. No

matter what the value of REM is (zero, one, or two), it means that we have embedded

bit code 00 in the associated effective tree. The three rest sub-ranges may be deduced

by analogy. Finally, the value of DIV can be computed as follows:

DIV= SSR*NSR,

where SSR is the number of REM values spanned by a sub-range.

So, the value of DIV in Fig. 5.6 is 1243 =× .

92

bitN=2, SSR=3, NSR=2bitN =22=4, DIV= SSR*NSR=3*4=12.
Fig. 5.6 Core concept of data hiding in stained glass images.

 After deciding the values of bitN and SSR, the data embedding and extraction

methods can be described as follows.

A. Data Embedding Process

If we want to embed a bit code into an effective tree, we adjust the value of REM

to be the center of the sub-range of REM which represents the bit code we want to

embed. Take Fig. 5.6 as an example, assume that the value of REM is nine and the bit

code we want to embed is 01. The sub-range representing bit code 01 is the second

one which centers on the REM value of four. So the number of nodes to remove from

the effective tree, NNR, for embedding bit code 01 is computed as follows:

NNR=∣REM – central value of target sub-range = 9 ∣ ∣ − 4 = 5.∣

By removing the deepest five nodes from the target effective tree, bit code 01 can be

embedded.

B. Data Extraction Process

The process of extracting data from an effective tree is simply to compute the

value of REM and find the sub-range where it falls. The corresponding bit code is the

one we want to extract.

C. Acquiring Effective Trees for Data Hiding

Before data embedding and extraction from a stained glass image, for each tree

of a glass region, we have to specify if we can embed data in it or if we can extract

93

data from it. In other words, we have to specify whether the trees are effective trees or

not.

In data embedding, an effective tree is one of sufficient tree nodes to be removed

for data hiding (i.e., the value of TNN of the tree must be large enough). In the

proposed data embedding process, we remove at most DIV-1 nodes from a target tree

and each tree in a glass region contains at least three nodes in the proposed creation

process. So an effect tree must contain at least DIV+3 nodes, so that a bit code can be

embedded in all cases. We name the minimum number of nodes in an effective tree

for data embedding, minimum tree size, and denote it by minTSE. To prevent glass

regions from being broken into tiny pieces, we let the value of minTSE be DIV*2+3

instead of DIV+3. So the way we acquire effective trees among glass regions is to

pick the trees whose number of nodes is larger than the specified value of minTSE.

In data extraction, because the value of minTSE is DIV*2+3 and we remove at

most DIV-1 nodes from a target tree for data embedding. The minimum number of

nodes in an effective tree for data extraction, which is denoted by minTSD, will thus

be DIV+3. In other words, if the value of TNN of a tree is larger than minTSD, we can

claim that there are data embedded in it. However, there is one more condition which

needs to take care before making such a claim. It is that, if there is a tree with its

number of node smaller than minTSE and larger than minTSD, as shown in the blue

area of Fig. 5.7, we will embed no data in the embedding process and will extract

some meaningless bit codes when doing data extraction. To prevent such a condition,

we reduce the value of TNN to minTSD by removing the deepest nodes of the target

tree while acquiring effective trees for data embedding. So, there will be no tree of

TNN values between minTSD and minTSE (i.e., the blue area in Fig. 5.7), after the

acquiring process for data embedding.

94

Fig. 5.7 Illustration of acquiring effective trees in data embedding and extraction

process.

5.4 Application to Secret Hiding
5.4.1 Data Embedding Process

The algorithm of embedding a secret message into a stained glass image is shown

in Algorithm 5.1. After the proposed creation process, in Step 2, we retrieve the four

trees (i.e. Nt, Et, St and Wt) from each of the generated glass regions into a sequence

RT. In Step 3, we acquire the effective trees by checking the TNN value. We then

embed the bit codes, which are derived in Step 1, into the effective trees until the

effective trees are exhausted. Finally, a stained glass image with secret information

embedded is created.

Algorithm 5.1: Embedding a secret message in a stained glass image.

Input: a sequence of stained glass region GR = GR0, GR1, …, GRn, and a secret

message M.

Output: a stained glass image with secret message embedded.

Steps:

Step 1 Append an ending pattern to M. Transform M into a sequence of bit

codes B =B0, B1, …, Bm. The number of bits contained in a bit code is

bitN.

Step 2 Retrieve the four trees from each GRi and concatenate them into a

95

sequence, RT = RT0, RT1, …, RT4n.

Step 3 Acquire a sequence of effect trees, ET = ET0, ET1, …, ETk, where k ≦ 4n,

from RT in the following way:

for each RTi in RT, if the value of TNNi is larger than the value of

minTSE, then

3.1 add the associated RTi into ET; otherwise, if the value of TNNi is

larger than minTSD and smaller than minTSE, then

3.2 remove the deepest nodes of RTi to make TNNi equal to the value

of minTSD.

Step 4 For each pair of Bi and ETi, compute the corresponding value of NNRi by

the formula, NNRi = ∣REMi – central value of target sub-range , and ∣

remove the deepest nodes from ETi with the amount of NNRi.

5.4.2 Data Extraction Process

The secret message extraction process is simply an inverse version of the

embedding process. First, we derive the glass regions, GR0, GR1, …, GRn, from the

stained glass detection process with a secret key as proposed in Section 5.2. And we

acquire next the effective trees, DT0, DT1, …, DTk, by checking whether TNNi is

larger than minTSE or not. We then find the corresponding bit code Bi by checking the

value of REMi. Finally, we transform the sequence of the extracted bit codes into text

format, and thus complete the extraction of the embedded message.

5.4.3 Experimental Results and Summary

Fig. 5.8 shows some experimental results of secret hiding in a stained glass image.

Fig. 5.8(a) and (b) are stained glass images without and with data embedded,

respectively. Fig. 5.8(c) and (d) are the details at the upper left corner of (a) and (c),

96

respectively. By comparing (c) and (d), we can find that the glass regions of (d) are

cracked slightly. Fig. 5.8(e) is a secret message extracted from (b). The message is

identical to the one we embedded. Fig. 5.8 (f) is the secret message extracted from (b)

with a wrong key. We can see that the text shown in Fig. 5.8 (f) is disordered and

meaningless. It proves that the key we applied in the proposed creation process really

works.

5.5 Application to Watermarking for
Copyright Protection

5.5.1 Data Embedding Process

As shown in Algorithm 5.2, the proposed method for embedding a watermark is

similar to the one of embedding a secret message. The difference is that we transform

a watermark W into a bit sequence B =B0, B1, …, Bm, instead of transforming a secret

message. Furthermore, the number of glass regions created by the proposed creation

process equals the number of bit codes of B, namely, m. We denote the sequence of

glass regions by GR0, GR1, …, GRm. After acquiring the effective trees, ET = ET0,

ET1, …, ETk, we embed Bi into the effective trees which comes from GRi. Because we

pick from each glass region, GRi, at most four trees into ET, each bit code Bi will thus

be embedded at most four times into a glass region, GRi. The repetition of embedding

a bit code will result in additional robustness of the embedded watermark, W.

97

(a)

(b)

(c)

(d)

 (e)

(f)
Fig. 5.8 Experimental results of secret hiding in stained glass image. (a) A stained

glass image without hidden data. (b) A stained glass image with secret
message embedded. (c) Details of (a). (d) Details of (b). (e) The secret
message extracted from (b). (f) The extraction result of (b) with a wrong key.

98

Algorithm 5.2: Embedding a watermark in a stained glass image.

Input: a sequence of stained glass region GR = GR0, GR1, …, GRm, and a

watermark W.

Output: a stained glass image with watermark embedded.

Steps:

Step 1 Transform W into a sequence of bit codes B =B0, B1, …, Bm. The number

of bits contained in a bit code is bitN.

Step 2 Retrieve the four trees from each GRi and put them into a sequence, RT =

RT0, RT1, …, RT4n.

Step 3 Acquire a sequence of effect trees, ET = ET0, ET1, …, ETk, where k 4≦ n,

from RT in the following way:

for each RTi in RT, if the value of TNNi is larger than the value of

minTSE, then

3.1 add the associated RTi into ET; otherwise, if the value of TNNi is

larger than minTSD and smaller than minTSE, then

3.2 remove the deepest nodes of RTi to make TNNi equal to the value

of minTSD.

Step 4 Embed Bi into the effective trees which come from GRi by computing the

corresponding value of NNR and removing the deepest nodes with the

amount of NNR.

5.5.2 Data Extraction Process

The extraction process is also similar to the one of extracting a secret message.

The difference is that we apply the voting strategy on the effective trees coming from

the same glass regions which are derived from the detection process. By the voting

99

strategy, we can derive the bit code Bi embedded in a glass region, GRi. Finally, we

derive the embedded watermark, W, by transforming the extracted bit codes.

5.5.3 Experimental Results and Summary

Some experimental results are shown in this section. In Fig. 5.9, (c) is an input

watermark image, (a) is the resulting stained glass image with watermark (c)

embedded, and (b) is a damaged image of (a). Fig. 5.9(d) and (f) are the watermark

images extracted from Fig. 5.9(a) and (b), respectively. We can find that there are

some salt-and pepper noise in (f), but the watermark is still recognizable. From Fig.

5.9(f), we can see that the watermark can still be recognized under a certain degree of

damaging. Fig. 5.9(e) is a watermark extracted from (b) with a wrong key. From Fig.

5.9(e), we can see that the embedded watermark is protected properly by the secret

key.

5.6 Application to Authentication of
Images

5.6.1 Authentication Signal Embedding Process

The proposed method for embedding authentication signals is also similar to the

one of embedding a secret message. In order to verify the entire stained glass image,

we have to embed authentication signals in the glass regions created in the gap filling

process. Assume the sequence of glass regions to be GR = GR0, GR1, …, GRn,

GRn+1, … ,GRf , where the glass regions with serial numbers coming from n+1 to f

denote the glass regions created in the gap filling process. As shown in Algorithm 5.3,

we use a secret key as a seed of a random number generator in the creation process.

We denote the random number generator by a function Ran(x), and the range of the

100

generated number is 0 ≦ Ran(x) < x. In Step 2, we can generate a sequence of

authentication signals, S = S0, S1, …, Sn, Sn+1, … , Sf, by Ran(x). Finally, as we do in

watermarking, we embed Si into the effective trees which come from GRi. Like the

process of watermarking, each Si will be embedded at most four times in a glass

region RGi.

(a) (b)

(c) (d) (e) (f)

Fig. 5.9 Experimental results of watermarking a stained glass image. (a) A stained glass
image with watermark, (c), embedded. (b) A damaged image of (a). (c) An
input watermark. (d) A watermark extracted from (a). (e) A watermark
extracted from (a) with a wrong key. (f) A watermark extracted from (b).

101

Algorithm 5.3: Embedding authentication signals in a stained glass image.

Input: a sequence of stained glass region GR = GR0, GR1, …, GRn,

GRn+1, … ,GRf, a secret key K.

Output: a stained glass image with authentication signal embedded.

Steps:

Step 1 Use K as the seed of a random number generator, Ran(x).

Step 2 Compute a sequence of authentication signals, S = S0, S1, …, Sn, Sn+1, … ,

Sf by the formula:

RGBhash = (R × G × B) mod 1013.

Si = (RGBhash + Ran(K + RGBhash)) mod bitN.

where R, G and B are the RGB color channels of GRi, bitN is the bit

number of Si, and 1013 is a chosen prime number.

Step 3 Retrieve the four trees from each GRi into a sequence, RT = RT0, RT1, …,

RT4f.

Step 4 Acquire a sequence of effect trees, ET = ET0, ET1, …, ETkfrom RT,

where k ≦ 4n, in the following way:

for each RTi in RT, if the value of TNNi is larger than the value of

minTSE, then

4.1 add the associated RTi into ET; otherwise, if the value of TNNi is

larger than minTSD and smaller than minTSE, then

4.2 remove the deepest nodes of RTi to make TNNi equal to the value

of minTSD.

Step 5 Embed Si into the effective trees which come from GRi by computing the

corresponding value of NNR and removing the deepest nodes with the

amount of NNR.

102

5.6.2 Authentication Signal Extraction Process

To verify a stained glass image, we first compute a sequence of authentication

signals S = S0, S1, …, Sn, Sn+1, … , Sf of each glass region by utilizing the formula

described in Step 2 of Algorithm 5.3. To compute Sj where n< j ≦ f, we have to apply

the gap filling process after glass feature detection for deriving the glass region GRj.

Assume the authentication signals extracted from the effective trees to be P =P0,

P1, …, Pk, where k 4≦ f. If there is any signal p of P, which is extracted from an

effective tree of the glass region RGi, different from Si, we claim that the glass region

GRi is tampered with.

5.6.3 Experimental Results and Summary

Some experimental results are shown is this section. Fig. 5.10 (a) is a stained

glass image with authentication signals embedded. Fig. 5.10 (b) is the verification

result of (a). The blue polygons are the detected results which indicate that the

bounded glass regions are not tampered with. The polygons of darker blue are

detected in the detection process. The polygons of lighter blue are detected in the

additional gap filling process after the detection process. The white rectangles within

the polygons of darker blue are the seeds generated by a secret key. The white

rectangles within the polygons of lighter blue are the seeds generated in the gap filling

process.

Fig. 5.11 is a damaged image of Fig. 5.10 (a). We bound the glass regions which

are tampered with by a red rectangle. In the rectangle, the region color of the glass

region is modified. And some strokes are added in Fig. 5.11. Fig. 5.12 is the

verification result of Fig. 5.11. The red areas are found regions which have been

tampered with. By Fig. 5.11, we can see that the verification result can indicate the

changed areas properly.

103

(a)

(b)
Fig. 5.10 Experimental results of authentication. (a) A stained glass image with

authentication signals embedded. (b) An authentication image of (a).

104

Fig. 5.11 A damaged image of Fig. 5.10 (a).

105

Fig. 5.12 An authentication image of Fig. 5.11.

106

Chapter 6
Conclusions and Suggestions for
Future Works

6.1 Conclusions
In this study, we have proposed methods for art image creation and image data

hiding. These two topics are integrated into one which is then solved by a single

approach in the proposed methods, so that a common user can easily generate art

images and embed data in them. The embedded data may be a watermark, a secret

message, or some authentication signals. By embedding the given data, a user can

achieve the purposes of copyright protection, covert communication, and image

authentication, respectively or integrally. Unlike traditional image hiding techniques,

we hide data in the individual features of art images.

In this study, we investigated two different types of art images. They are tile

mosaic image and stained glass image, both of them being mosaic-effect images.

In tile mosaic images, we found three different types of image features into

which data can be embedded, namely, tile orientation, tile size, and tile texture. In the

case of utilizing tile orientations, some erroneous bits may be produced when

conducting the associated detection process. However, a watermark can still be

recognized visually under the condition of two or three erroneous pixels. In the case of

utilizing tile sizes, no bit error results in the detection process according to our

experimental results. Due to the high detection accuracy of using the tile size as a

feature, a secret message, which can tolerate no erroneous bit while being extracted

during the detection process, will be embedded into tile sizes. In the case of utilizing

tile textures, the method has the highest data embedding capacity among the uses of
107

the three tile features. So authentication signals, which need high embedding capacity

to lower the probability of missing to find out an attacked tile, will be embedded into

tile textures. In the proposed system, we can sequentially embed data into the three

features as needed.

In stained glass images, we use only one feature for data hiding, namely, the

number of tree nodes. So, only one kind of data can be embedded at a time, i.e., only

one of a watermark, a secret message, and a set of authentication signals can be

embedded. By removing the nodes of a tree contained in a glass region, we can

achieve the purpose of data hiding. However, the proposed method will yield slight

cracks at the edge of glass regions, but the result is still acceptable. Although only one

glass feature is utilized for data hiding, the data embedding process need only be

changed slightly for each of the three types of embedded data. In the case of

watermarking, since there may be at most four effective trees in a glass region, we

embed one bit code into a glass region. Because we embed bit codes repeatedly,

additional robustness can be achieved. In the case of secret communication, we embed

one bit code into one effective tree, so that the maximum hiding capacity can be

achieved. In the case of image authentication, authentication signals are embedded in

each glass region repeatedly, so the authentication results are more sensitive than tile

mosaic images.

According to our research, we can claim that if there is an image feature of an art

image that can be modified and detected, there will be a corresponding data hiding

technique. And the three applications of data hiding, copyright protection, covert

communication, and image authentication, can thus all be achieved.

108

6.2 Suggestions for Future Works
In this study, we have proposed some methods for creation of tile mosaic images

and stain glass images, as well as data hiding techniques for these two types of images.

The three applications of copyright protection, secret communication, and image

authentication are also be carried out by utilizing the proposed data hiding techniques.

However, there are still some interesting topics which are worth further study.

For tile mosaic images:

1. Creating tiles with different sizes or different shapes to make the tile

mosaic image look more appealing.

2. Moving the tiles away from the edges in the creation process and finding

methods to detect them.

3. Using more tile features such as tile position, tile border, etc. for

embedding more data into tile mosaic images.

4. Applying tile mosaic images on words or characters and geometric totems.

For stained glass images:

1. Creating smoother glass regions and leadings.

2. Revealing the edges by more complicated image analysis of an original

image.

3. Adding visual effects, such as burnish, texture, etc, onto the glass regions

to make the stained glass image look more appealing.

4. Using more glass features such as glass texture and glass color, for

embedding more data into tile mosaic images.

5. Enlarge the embedding capacity by applying more than 4 trees in a glass

region.

For all art images:

109

1. Extending the proposed techniques to other types of mosaic-effect images,

such as geometrics totems and wall papers.

2. Creating other types of art images and searching for the specific image

features for data hiding.

3. Data hiding in art images with overlapping strokes.

4. Keeping the image quality good after data hiding.

110

References
[1] A. Hertzmann, “A Survey of Stroke-Based Rendering,” IEEE Computer Graphics

and Applications, vol. 23, no. 4, issue 4, July-Aug. 2003, pp. 70-81.

[2] A. Hertzmann, “Painterly Rendering with Curved Brush Strokes of Multiple

Sizes,” Proceedings of SIGGRAPH 98, Orlando, Florida. July 1998, pp. 453-460.

[3] A. Hertzmann, “Fast Paint Texture,” Proceedings of the 2nd International

Symposium on Non-photorealistic Animation and Rendering, Annecy, France,

June 3-5, 2002. pp. 91-96, 161.

[4] A. Hertzmann, “Paint by Relaxation,” Proceedings of Computer Graphics

International 2001, Hong Kong, July 3-6 2001, pp. 47-54.

[5] P. E. Haeberli, “Paint by Numbers: Abstract Image Representations,” Proceedings

of SIGGRAPH 90, August 1990, pp. 207-214.

[6] A. Secord, “Non-Photorealistic Rendering with Small Primitives,” M. S. Thesis,

Department of Computer Science, Universary of British Columbia, Oct. 2002.

[7] A. Hertzmann and D. Zorin, “Illustrating Smooth Surfaces,” Proceddings of

Siggraph 2000, ACM Press, 2000, pp. 517-526.

[8] A. Hausner, “Simulating Decorative Mosaics,” Proceedings of SIGGRAPH 2001

New York, New York, USA, 2001, pp. 573-580.

[9] K. Hoff, J. Keyser, M. Lin, D. Manocha and T. Culver, “Fast Computation of

Generalized Voronoi Diagrams Using Graphics Hardware,” Proceedings of

SIGGRAPH 99, August 1999, pp. 277-286.

[10] S. P. Lloyd, “Least Square Quantization in PCM,” IEEE Transactions on

Information Theory, vol. IT-28, no. 2, March 1982, pp. 129-137.

[11] E. L. Armitage, “Stained Glass: History, Technology, and Practice,” Newton,

Charles T. Branford Company, 1959.

111

[12] J. Osborne, Stained Glass in England. Alan Sutton Publishing, Phoenix Mill,

1997.

[13] David Mould, “A Stained Glass Image Filter,” Proceedings of the 14th

Eurographics workshop on Rendering, Leuven, Belgium, 2003, pp. 20-25.

[14] C. Christoudias, B. Georgescu and P. Meer, “Synergism in low-level vision,”

International Conference on Pattern Recognition 4, 16 Aug. 2002, pp. 150-155.

[15] D. Comanicu and P. Meer, “Mean Shift: A Robust Approach Toward Feature

Space Analysis,” IEEE Trans. Pattern Anal. Machine Intell. 24, 4 May 2002, pp.

603-619.

[16] P. Meer and B. Georgescu, “Edge Detection with Embedded Confidence,” IEEE

Trans. Pattern Anal. Machine Intell. 23, 12 Dec. 2001, pp. 1351-1365.

[17] R. Arthur and J. Weeks, “Fundamentals of Electronic Image Processing,” SPIE

Optical Engineering Press, Bellingham,1996.

[18] L. Shapiro and G. Stockman, Computer Vision. Prentice-Hall, Upper Saddle River,

2001.

[19] D. C. Wu and W. H. Tsai, “A Steganographic Method for Images by Pixel-Value

Differencing,” Pattern Recognition Letters, Vol. 24, No. 9-10, 2003, pp.

1623-1636.

[20] Y. C. Chiu “A study on digital watermarking and authentication of images for

copyright protection and tampering detection,” M. S. Thesis, Department of

Computer and Information Science, National Chiao Tung University, Hsinchu,

Taiwan, Republic of China, June 2004..

[21] W. L. Ling “Data hiding in image mosaics,” M. S. Thesis, Department of

Computer and Information Science, National Chiao Tung University, Hsinchu,

Taiwan, Republic of China, June 2004.

[22] W. L. Lin and W. H. Tsai, “Data Hiding in Image Mosaics by Visible Boundary
112

Regions and Its Copyright Protection Application against Print-And-Scan

Attacks,” Proceedings of International Computer Symposium 2004, Taipei,

Taiwan, Dec. 15-17, 2004.

[23] http://christianity.about.com/library/weekly/aa032002e.htm, the Illuminated

Easter.

113

