

國 立 交 通 大 學

資訊科學系

碩 士 論 文

以感知為基礎的非寫實描繪架構：

模擬映像派畫作

A Perceptually-Based NPR Framework for Synthesizing

Impressionist Paintings

研 究 生：祝琪

指導教授：施仁忠 教授

中 華 民 國 九 十 四 年 六 月

以感知為基礎的非寫實描繪架構：模擬映像派畫作

研究生: 祝琪 指導教授: 施仁忠 教授

國立交通大學資訊科學系

摘 要

 呈現畫家風格描繪演算法已經吸引很多學者的注意，不過，目前的演算法既不是

有系統的也不易評估。在這本論文中，我們提出了一種以感知為基礎用於呈現畫家風

格描繪演算法的非寫實描繪架構。這個架構由三個子系統組成︰原始物件映射系統、

描繪系統及畫作實作系統。原始物件映射系統負責各種場景物件(二維區域，一維曲線

和零維點)之間的映射；描繪系統負責將各種場景物件用畫家風格來描繪；畫作實作系

統給予真正的畫作物理模擬。每個子系統對映到 C++中的一個抽象類別，使用者可以繼

承這些類別來實作出自訂的風格。使用這個框架，呈現不同畫家風格的描繪可以在同

一個系統中被實現。另外，這個架構的劃分是基於真實畫家的作畫過程，所以其結果

的產生更具有美學價值。在本論文中，我們藉由運用此架構來合成印象派畫作以顯示

它的效力。

I

A Perceptually-Based NPR Framework for Synthesizing

Impressionist Paintings

Student: Qi Zhu Advisor: Dr. Zen-Chung Shih

Department of Computer and Information Science

National Chiao Tung University

ABSTRACT

 Painterly rendering has drawn many experts’ attention. However, the state of the art is

neither systematic nor evaluative. In this thesis, a perceptually-based NPR framework for

painterly rendering is presented. The framework consists of three sub-systems: primitive

mapping system, rendering system and mark system. The primitive mapping system responds

for mapping between various scene primitives (2D region, 1D line and 0D point); the

rendering system takes charge of synthesizing different painterly styles based on various

scene primitives; the mark system gives the actual physical implementation of the strokes

generated by the rendering system. Each sub-system is written as an abstract class in C++

language which can be inherited by user to do some custom control. Using this framework,

different painterly algorithm can be implemented in this system. Besides, the division of this

framework is based on the actual process of painters which means the results generated can be

more evaluative in esthetics aspect. In this thesis, Impressionist paintings are synthesized by

this framework to show its effectiveness.

II

Acknowledgements

First of all, I would like to thank to my advisor, Dr. Zen-Chung Shih, for his help and

supervision in this work. Also, I thank for all the members of Computer Graphics & Virtual

Reality Lab for their comments and instructions. Finally, special thanks go to my family, and

the achievement of this work dedicated to them.

III

Contents

摘 要 ...I

ABSTRACT .. II

ACKNOWLEDGEMENTS ... III

CONTENTS ...IV

LIST OF TABLES ...VI

LIST OF FIGURES.. VII

CHAPTER 1 INTRODUCTION..1

1.1 MOTIVATION ..1
1.2 OVERVIEW..3
1.3 THESIS ORGANIZATION...6

CHAPTER 2 RELATED WORKS ..7

2.1 PAINTERLY RENDERING..7
2.2 MARK SYSTEM ...9
2.3 NPR FRAMEWORK..10

CHAPTER 3 PRINCIPLES OF MAKING IMPRESSIONIST PAINTINGS11

3.1 QUICK DRAWING ..11
3.2 SELECTION OF COLOR...12
3.3 USING OF TACHE ..14

CHAPTER 4 PRIMITIVE MAPPING SYSTEM..16

4.1 EXTENDEDNESS ..16
4.2 SELECTION OPERATORS..20
4.3 CONVERSION OPERATORS...22
4.4 SHAPE MODIFIER ..23

4.4.1 Extract 1D Primitive..23
4.4.2 Modify Shape ...25

CHAPTER 5 RENDERING SYSTEM ..27

5.1 BASIC RENDERING FUNCTION...28
5.2 QUICK DRAW RENDERING FUNCTION...29
5.3 POINTILLIST RENDERING FUNCTION ...30

IV

CHAPTER 6 MARK SYSTEM ...33

6.1 BRUSH MODEL ...34
6.1.1 Stroke Cross Section..34
6.1.2 Stroke Path ..39

6.2 BRISTLE AND CANVAS INTERACTION..42
6.3 OIL PAINTING EFFECTS...42

CHAPTER 7 RESULTS...47

7.1 ORDINARY AND ADVANCE LAYERING ..47
7.2 QUICK DRAWING ..53
7.3 POINTILLIST..57

CHAPTER 8 CONCLUSIONS AND FUTURE WORKS ..63

V

List of Tables

TABLE 1 RESULT STATISTICS. ..62

VI

List of Figures

FIGURE 1 THE PROPOSED FRAMEWORK..5

FIGURE 2 SUNRISE IMPRESSION, CLAUDE MONET. ..12

FIGURE 3 BLUE AND ORANGE ARE USED TOGETHER TO HEIGHTEN TONE AND SUGGEST

BRILLIANCE AND VIBRANT CONTRAST. (A) PIERRE-AUGUSTE RENOIR, BOATING ON THE

SCEINE, DETAIL. (B) CLAUDE MONET, LAVACOURT UNDER SNOW, DETAIL............................14

FIGURE 4 CLAUDE MONET, THE GARE SAINT LAZARE, DETAIL PHOTOGRAPHED IN RAKING

LIGHT...15

FIGURE 5 REPRESENTATION OF EXTENDEDNESS. SPAN IS REPRESENTED AS A PAIR OF LINES WITH

SAME COLOR. IF THE SPAN IS TOO SMALL, THESE TWO LINES ARE MERGED.18

FIGURE 6 EXTENDEDNESS AND SHAPE DIRECTIONS. (A) EXTENDEDNESS; (B) SHAPE DIRECTION

WITH SPANS OF EXTENDEDNESS NOT BEING REVERSED; (C) SHAPE DIRECTION WITH SPANS OF

EXTENDEDNESS BEING REVERSED. ...20

FIGURE 7 EXTRACT 1D PRIMITIVE FROM 2D PRIMITIVE. TWO SPAN ARE CHOSEN: [135,200,0.56],

[319,359,0.76]. THE BLUE LINE REPRESENTS THE 1D PRIMITIVE. ..23

FIGURE 8 EXTRACT BOUNDARY LINE FROM 2D PRIMITIVE. (A) INPUT 2D PRIMITIVE; (B)

EXTRACTED BOUNDARY SPLINE (RED LINE) WITH BOUNDARY POINTS (YELLOW POINTS); (C)

PART OF ORIGINAL BOUNDARY POINTS (594 POINTS); (D) PART OF TRIMMED BOUNDARY

POINTS (411 POINTS); (E) SPLINE AND SELECTED CONTROL POINTS.25

FIGURE 9 MODIFIED SHAPE OF BOUNDARY LINE. MODIFY FUNCTION: SINE FUNCTION WITH

AMPLITUDE 0.05 AND FREQUENCY 10..26

FIGURE 10 SYNTHESIZED IMAGES BY BASIC RENDERING FUNCTION WITH FOUR LAYERS.29

FIGURE 11 QUICK DRAW OF A GOOSE, THREE LAYERS. ..30

FIGURE 12 POINTILLIST RENDERING FUNCTION. (A) ORIGINAL IMAGE. (B) SYNTHESIZED RESULT

OF FIRST POINTILLIST RENDERING FUNCTION. (C) SYNTHESIZE RESULT OF SECOND

POINTILLIST RENDERING FUNCTION. ..32

FIGURE 13 MARK SYSTEM ARCHITECTURE. ...34

VII

FIGURE 14 (A) ROUND AND (B) FLAT STROKE CROSS SECTIONS CONSIST OF LOW SAMPLING

POINTS (ROUND: 16 X 8; FLAT: 16 X 16). ...35

FIGURE 15 BRISTLE DISTRIBUTION IN ROUND STROKE CROSS SECTION.35

FIGURE 16 THE CORRESPONDENCE BETWEEN BRISTLE INDEX AND BRISTLE LOCATION. INDICES

OF THE FIRST ELEVEN BRISTLE ARE SHOWN IN THIS FIGURE. ..36

FIGURE 17 TWO SET OF SAMPLING RESULTS, EACH CONSISTS OF TWO SAMPLING (16X8, 32X16).

(A) UNIFORM SAMPLING OF RADIUS_RATIO RESULTS UN-UNIFORM DISTRIBUTION OF BRISTLES;

(B) TRANSFER RADIUS_RATIO BY POWER FUNCTION RESULTS UNIFORM

DISTRIBUTION OF BRISTLES..37

7.0xy =

FIGURE 18 BRISTLE DISTRIBUTIONS IN FLAT STROKE CROSS SECTION. |AB| = |ED|.38

FIGURE 19 THE CORRESPONDENCE BETWEEN BRISTLE INDEX AND BRISTLE LOCATION. INDICES

OF THE FIRST SEVEN BRISTLE ARE SHOWN..39

FIGURE 20 CARDINAL SPLINE CONSTRUCTED BY FIVE CONTROL POINTS WITH DIFFERENT

SMOOTH PARAMETERS (A) 10 (B) 2 RESPECTIVELY. ...40

FIGURE 21 TESSELLATED STROKES WITH DIFFERENT TESSELLATION SCALE. (A) ROUND CROSS

SECTION WITH TESSELLATION SCALE 8. (B) ROUND CROSS SECTION WITH TESSELLATION

SCALE 1; (C) FLAT CROSS SECTION WITH TESSELLATION SCALE 8; (D) FLAT CROSS SECTION

WITH TESSELLATION SCALE 1. ...41

FIGURE 22 REAL OIL PAINTING STROKES. (A) PURE COLOR INTENSITY VARIANT RANDOM. (B)

HEIGHT GAP EFFECT RANDOM. ...43

FIGURE 23 TWO RANDOM SYSTEMS: (A) PLAIN STROKE. (B) PURE COLOR INTENSITY VARIANT

EFFECT. (C) PLAIN HEIGHT. (D) HEIGHT GAP EFFECT..46

FIGURE 24 ORIGINAL INPUT IMAGE..48

FIGURE 25 FINAL IMAGE COMPOSED OF FIVE LAYERS. THE WHOLE IMAGE IS TREATED AS ONE

PRIMITIVE. ...49

FIGURE 26 FINAL IMAGE CONSTRUCTED BY FIVE STAGES. FIVE PRIMITIVES: ENTIRE IMAGE, SKY,

GRASS, HAYSTACK AND SHEEP...51

FIGURE 27 ORIGINAL INPUT IMAGE..54

FIGURE 28 FINAL IMAGE COMPOSED OF TWO STAGES. FOURTEEN PRIMITIVES: ENTIRE IMAGE

AND THIRTEEN GEESE. ...55

FIGURE 29 ORIGINAL INPUT IMAGE..58

FIGURE 30 FINAL IMAGE COMPOSED OF TWO STAGES. SIX PRIMITIVES: SKY, TREE, HAYSTACK,

GRASS, GRASS SHADOW, AND ROAD. ..59

VIII

FIGURE 31 FINAL IMAGE COMPOSED OF TWO STAGES WITH ANOTHER POINTILLIST STYLE. SIX

PRIMITIVES: SKY, TREE, HAYSTACK, GRASS, GRASS SHADOW, AND ROAD.61

IX

Chapter 1

Introduction

1.1 Motivation

Painterly rendering has been studied for many years. A typical painterly rendering

problem is to take an ordinary image (probably generated from a digital camera) as input and

generate another image as output which represents a particular painting style. The input can

also come from other format, e.g. 3D polygon mesh, which provides more information.

Usually, such algorithms are hard-wired to their inputs. Thus, it is difficult to integrate these

algorithms. Besides, these algorithms generate various painting style by changing parameters.

However, these parameters are related to their implementations rather than to the painting

style. The consequence is: a. changing these parameters is not intuitive; b. the esthetics value

of the results is questioned; c. the integration of different algorithms is not easy. Due to these

limitations, a general framework for painterly rendering is required which is the goal of this

thesis.

1

The framework contains three sub-systems: primitive mapping system, rendering system,

and mark system. This is inspired by the book “Art and Representation” written by John

Willats [19]. As Willats wrote in this book, the goal of this book is to “describe the

representational systems in pictures and the functions of these systems, independently of any

historical or developmental consideration”. Willats divided the process of painting into two

systems: the drawing system and the denotation system. The drawing system maps spatial

relations in the scene into corresponding relations in the picture (e.g. perspective projection)

while the denotation system maps scene primitives into corresponding picture primitives, such

as regions, lines and points.

Recently, Fr´edo Durand [3] extended Willats’ framework into four sub-systems: spatial

system, primitive system, attribute system and mark system. The spatial system is similar to

Willats’ drawing system. The primitive system maps primitives in the object space to those in

the picture space. The attribute system assigns visual properties to picture primitives. The

mark system implements primitives in location defined by spatial system with attributes

defined by attribute system.

The framework presented in this thesis is similar to Durand’s work. The spatial system is

omitted currently – perspective projection is used. The mark system is similar to Durand’s

mark system. We merge Durand’s primitive system and attribute system to one, the primitive

system and add in the rendering system. The reason is that assigning visual properties to

picture primitives is different from depicting it. The rendering system deals with how to

depict a picture primitive. Besides, we think primitive mapping is not simply choosing among

different primitives. It also deals with mapping of attributes in primitives. For example,

impressionist prefers high tone pure color and this is suitable in primitive mapping – map

ordinary color in primitive to high tone pure color.

2

1.2 Overview

As mentioned before, painterly rendering algorithm has a variety of inputs. To construct

a framework, we should unify these inputs. We define the input of our framework contains a

hierarchy of object. Each object which contains the following information: object information

(such as object name, type, importance, etc), object relation information (such as shadow

object, parent object, child objects, etc) and primitive information (each object contains

several primitives, in this thesis we only deal with two dimensional primitives which are 2D

region, 1D line and 0D point).

There are a lot of algorithms dealing with converting raw inputs to our input. For

example, image segmentation algorithm can extract objects from an image while the polygon

mesh input implicitly has this information. Line detection algorithms, for example, silhouette

edge detection algorithms, and crease edge detection algorithms, can extract 1D primitive

from polygon mesh input. Actually, a lot of NPR algorithms are dealing with this converting

operation. However, their algorithms are hard-wired to the way of extracting information

from input. It is hard to integrate such algorithms. Besides, it is not intuitive for other field

experts who want to give guidelines to these algorithms. It is common because computer

experts usually don’t know artistic rules well. We separate the input from our framework.

This let us focus on synthesizing painterly rendering effects.

When the input is available, it is fed to primitive mapping system. A Primitive object has

two essential properties: shape and color. As a framework, we do not restrict their formats.

We use the most general format: shape is represented as a two-dimensional mask and color is

represented as a two-dimensional color buffer in which pixels use the RGB color model.

Besides, every primitive has a property called as Extendedness [19]. It is a description of

object shape properties based on human’s perception of shape. We use Extendedness to

3

synthesize the quick drawing effect of Impressionist paintings. The primitive mapping system

maps one primitive to another primitive. The mapping can between the same primitive type,

e.g. 2D region to 2D region; it also can be between different primitive types. Details of this

part will be discussed in Chapter 4.

After primitive mapping is done, user can choose a subset of mapped primitives and sort

them into a partial order which will be fed to the rendering system. The manipulation of

mapped primitive sequence to the one fed to rendering system is not restricted by our

framework. User can do whatever they like. In fact, this part involves artist’s creation and

their own opinion which can not be done by computer.

The rendering system responds to choose Rendering Function for each mapped primitive.

Each rendering function takes mapped primitive as input. Besides, it can access global

information – input and Canvas object which is used in mark system. It also can access other

information. We do not restrict either the type of information or the amount of information.

All extra information is treated as void pointer and the recognizing of these pointers is done in

user defined custom rendering functions. The output of this system is a list of stroke

definitions. Besides, rendering function can generate stroke definitions in several stages and

the previous stage result (Canvas object) will affect the generation of next stage. Details of

this part will be discussed in Chapter 5.

The stroke definitions generated by rendering system are fed to the mark system. Mark

system in our framework is composed of two objects: stroke and canvas. Details of this part

will be discussed in Chapter 6.

The following graph shows the whole framework:

4

Primitive System

Rendering System

Mark System

Input

List of Primitives

List of Stroke
Definitions

Canvas

Figure 1 The proposed framework.

5

1.3 Thesis Organization

The rest of this paper is organized as follows. In Chapter 2, related works are presented.

Principles of making Impressionist paints are introduced in Chapter 3. Chapter 4, 5, and 6

give detail explanations of each sub-system of our framework. The results are shown in

Chapter 7. Finally, conclusions and future works are presented in Chapter 8.

6

Chapter 2

Related Works

2.1 Painterly Rendering

Painterly rendering algorithms have been studied for years. [6, 7, 8, 9, 10, 11, 12, 13, 14,

17, 20] The purpose of this kind algorithm is to synthesize images with painting effects

provided by the given input. The input can be two-dimensional images or three-dimensional

polygon meshes. For example, Wang [17] presents a method for converting a photo to a

synthesized painting by an example painting. His algorithm uses a hierarchical patch-based

approach to synthesize directional textures. Actually the synthesizing work is done by texture

mapping. Our work is close to another branch of painterly rendering algorithms: stroke based

painterly rendering algorithms. A classic paper was written by Haeberli [6]. Its main

contribution is to provide a paradigm for painterly rendering: the synthesized image is formed

by an ordered collection of brush strokes. Each of which has color, shape, size and orientation.

By controlling these strokes, various painting effects can be easily created. As a matter of fact,

a lot of painterly rendering algorithms follow this paradigm. Besides, Haeberli explored many

possibilities above painterly rendering: the stroke definition may come from user’s interaction

(a mouse in his paper), it can also come from image processing algorithms on the input image.

7

There are at least four characteristics of stroke based painterly algorithms: a.

Determination of stroke definition, i.e. how to choose stroke location, direction, color and

shape; b. Input of algorithm; c. Interaction with user; d. Goal of algorithm, i.e. what painterly

style does this algorithm try to synthesize. Litwinowicz [10] transforms a video clip into

animations that have Impressionist effect. Strokes are clipped by edges detected in the source

image in order to maintain silhouettes and other features of image. Stroke orientation is

normal to the gradient direction of the original image. Strokes are also added and deleted from

frame to frame by using optical flow fields to maintain temporal coherence. Hertzmann [8]

presents a multi-layering painting algorithm. The synthesized image is composed of several

layers which correspond to the practice of a painter. These layers start with a rough sketch

drawn with large size stroke. Then, the stroke size becomes progressively smaller and is

placed only in areas where the sketch differs from the source image. Hertzmann also

presented an algorithm for generating long curved strokes. The stroke path will follow the

normal of image gradient and ends when a maximal steps defined by user is reached. Besides,

various painting styles can be synthesized by changing the parameters. Barbara [12] presents

an algorithm for rendering animations in painterly style. The input is a three-dimensional

polygon mesh. He models surfaces as three-dimensional particles. Each of which will be

placed a stroke. The attribute of a stroke is determined by the geometric and lighting

properties of surfaces. For example, color is directed from frame buffer; orientation is normal

to image (current frame) gradient; size is from a user defined reference picture. Georges [20]

uses “stroke texture” to simulate the principles of traditional pen-and-ink illustration in an

automated rendering system. The input is also a three-dimensional polygon mesh. User can

use lines to indicate the important part so that more strokes will be placed at this part.

As discussed above, most algorithms focus on characteristics a and b. Characteristic c is

rare due to their goal is an automatic system. However, due to the complexity of artist’s

8

painting process and weak power of computer artificial intelligence nowadays, the esthetics

value of result is questioned. Hence, most algorithms just claim their results are like certain

painting style without any proof. As mentioned by Hertzmann in his survey paper on stroke

based rendering [9], aesthetic decisions made by artist is important otherwise all algorithms is

useless. Thus, how can an artist get involved in synthesizing process is the key element of a

success painterly algorithm. Unfortunately, most algorithm are hard-wired to their codes

which neither provides much variation on possible painting styles nor suitable for non-

computer-expert such an artist to guide the synthesizing process. This is why we want to

develop a general framework.

2.2 Mark System

The physical implementation of a stroke is the mark system. Some algorithms just use a

texture to represent a stroke while others use brush model. Brush model is also used in our

approach. Strassmann [15] developed a one-dimensional brush model to synthesize Chinese

Ink Painting or Japanese Sumi-e. He defines a one-dimensional array of bristles as the

painting brush. Each bristle has its own properties such as ink supply and position. While

painting, the brush moves along the path and leaves footprints on the canvas. Strassmann also

defined several parameters to simulate painting styles. For example, the ink quantity is used to

simulate dry brush effect. Weng [18] introduced a two-dimensional brush model. It is similar

to Strassmann’s except his use of an ellipse as the contact region. Bristles are distributed

uniformly in the contact region. The advantage is elliptical contact region is better for turning

effects. In this thesis, we adapt Weng’s stroke model and add one more contact region, the

rectangle. Both are commonly used in Impressionist paintings. In oil paintings, painter

usually paints several layers to complete their work. Cassidy [2] uses fluid computation on

9

one wet layer and unlimited dry layers which are an ordered set of translucent glazes to

simulate water color. Our mark system consists of one dry layer and one wet layer.

2.3 NPR Framework

Stéphane [4] presents a programmable interface to non-photorealistic line drawing. By

given three-dimensional polygon mesh, a view map contains lines and their topology is

extracted. After that, there are three user definable modules are applied: selecting, chaining

and splitting. Each of these modules refines the lines which will be drawn on the final image.

The advantage of this framework is much flexible to synthesize many line drawing styles.

Many new effects are possible in this framework, such as advanced layering, control over

stroke topology, stroke geometry displacement, and density control. Their idea comes from

shading language in photorealistic rendering. Upstill [16] gives the spirit of shading language:

“The key idea in the RenderMan Shading Language is to control shading, not only by

adjusting parameters, but by telling the shader what you want it to do directly in the form of a

procedure.” We think this is what current painterly rendering algorithms lack.

10

Chapter 3

Principles of Making Impressionist

Paintings

Before the detailed discussion of each sub-system, we first introduce principles of

making Impressionist paintings so that the target effects are clear. The impressionism took

place in France during the late 19th and early 20th centuries by a group of artist who have

similar approaches and techniques on oil painting. They challenged the traditional academic

system which was controlled, deliberated and marked by an absolute precision of finish in

their times. Oppose to the academic system, they prefer outdoor scenes and directly responds

what they perceived in the weather condition right away, regardless of object’s traditional

shape. The Impressionist paintings have three characteristics: quick drawing, selection of

color, and using of tache. All of these characteristics are for one good – capture the intangible

fleeting effects of light and atmosphere in paintings.

3.1 Quick Drawing

11

The most remarkable characteristic of Impressionist painting probably is the sketching

effects due to quick drawing. Because the Impressionists want to capture the constantly

changing lighting effects outdoors, painting speed is essential if the artist try to capture a

convincing effect. Thus, they should draw quickly: quickly and directly without attempting to

develop the detail and careful finish. Another reason for sketching effects is Impressionist

emphasize color instead of shape. They treat scene in front of them as a collection of color

patch rather than objects. Thus, they usually ignore the true boundary of objects in their

paintings. That’s why they usually received the criticism such as “nothing but sketches”,

“satisfied with a first impression” and praise such as “sincerity” and “truth”.

Figure 2 Sunrise Impression, Claude Monet.

3.2 Selection of Color

12

Impressionists emphasize the color. First of all, the color of priming is important to

Impressionist. They often use the ground color to represent part of the finished painting. Then,

Impressionists prefer using high tone pure color. Earth pigments were used with discretion.

Moreover, complementary colors are preferred by Impressionist.

A common misconception is that the Impressionist painters exploited a process of

‘optical mixing’ by using separate touches of pure prismatic colors that fused in the eye of the

beholder. To explain this clearly, we first discuss the relation between primary and

complementary colors. Isaac Newton had shown in 1666 that white light could be separated

into its component colors by means of a prism. However, this color mixture model is only

suitable for additive color such as sun and monitor. In fact, color matching experiments in 17th

century by Thomas Young and other experts in which three primary colors are placed on a

disc and spin it fast show that the result is not white but only grey. The reason is that mixture

of pigment belongs to subtractive or more complex mixture model. In fact, a strong color

tends to irradiate its surroundings with its own complementary. Therefore if two

complementary colors are placed together they can enhance each other. That’s the true reason

Impressionists prefer placing complementary colors adjacently. Another reason is using

complementary colors to present vibrant struggling light rays outdoors. French poet Jules

Laforgue wrote: “The Impressionist sees light as bathing everything not with a dead whiteness,

but rather with a thousand vibrant struggling colors of rich prismatic decomposition”.

Colored shadow features consistently and prominently appear in Impressionist paintings,

especially those depicting sunlit scenes of snow and landscape. In summer landscapes

purplish red is used for shadows of trees and dull violets are used for the shadows of rocks or

across dusty roads. Manet said: “I have finally discovered the true color of the atmosphere.

It’s violet.”

13

 (a) (b)

Figure 3 Blue and orange are used together to heighten tone and suggest brilliance and vibrant
contrast. (a) Pierre-Auguste Renoir, Boating on the Sceine, detail. (b) Claude Monet,
Lavacourt under Snow, detail.

3.3 Using of Tache

Tache, the colored patch or stroke, is the most distinctive feature of Impressionist

paintings. Unlike academic painting in which forms could be smoothly modeled,

Impressionist defines forms in clearly differentiated patches of color which gave the effect of

light surrounding and reflecting off objects rather than the specific shapes of the objects

themselves. In fact, tache is not simply a color sensation. It has weight, thickness and texture.

All of these affect the viewer’s perception of its color. Whirling, flickering dashes of paint

were perfectly suited for capturing the intangible qualities of light, air, cloud and vapor.

However, it is impossible to categorize the types of tache marks made by Impressionist. It is

difficult even to trace the development of a single painter.

14

Figure 4 Claude Monet, The Gare Saint Lazare, detail photographed in raking light.

15

Chapter 4

Primitive Mapping System

A Primitive has two essential properties: shape and color. As mentioned in Chapter 1,

shape is represented as a two-dimensional mask and color is represented as a two-dimensional

color buffer in which pixels use the RGB color model. Besides, every primitive has a property

called extendedness [19]. There are three kinds of primitives available in our framework: two-

dimensional primitive, one-dimensional primitive, and zero-dimensional primitive. The basic

information a one-dimensional primitive is the control point information, including location,

size, and color. Zero-dimensional primitive has point information including location, size, and

color.

The primitive mapping system maps one primitive to another primitive. There’re four

kinds of mapping operation in our frame work: selection, conversion, shape modifier, and

color modifier. Selection operation enables user to select primitive in input. Conversion

operation convert primitive of one type to another type. Shape modifier changes the shape

property of primitive. Color modifier changes the color property of primitive.

4.1 Extendedness

16

Willat [19] use the concept of extendedness to describe human’s perception of shape.

The extendedness specifies the relative extensions of primitive in different directions in space.

For example, a ball equally extends itself from its center to all direction. Thus its

extendedness can be notated as 3111 where the suffix 111 implies the ball extends itself in all

three main directions: X, Y, and Z axes. A plate extends itself in two directions: X and Y axes.

Thus its extendedness is 211. A stick extends itself only in one direction. Thus its

extendedness is 11. The number 3, 2, and 1 before extendedness suffix stand for the

dimensional index of a primitive. It determines the number of dimensions within which a

primitive can potentially be extended.

We extend Willat’s extendedness concept and use it to synthesize Impressionist’s quick

drawing effect. The extendedness in our framework is defined as a list of spans each of which

has start direction, end direction, and intensity. The following two figures show the

representation of extendedness of a 2D primitive man and a 2D primitive goose. The

representation is the form of [a, b, c] where a and b are the start and end direction in degree, c

is the intensity normalized in [0, 1]. The primitive man has three spans: [83, 100, 0.77], [252,

264, 0.82], [278, 291, 0.76] and the primitive goose has five spans: [135,200,0.56],

[202,211,0.54], [252,252,0.53], [292,292,0.53], [319,359,0.76].

17

 (a) (b)

Figure 5 Representation of extendedness. Span is represented as a pair of lines with same
color. If the span is too small, these two lines are merged.

To find the extendedness, we first find the center of the primitive. Then we sample all

direction from the center and calculate its intensity. At last we merge adjacent directions into

spans according their intensities and select several major spans among them. The detail

algorithm is follows:

Find_Extendedness(Primitive p)
{

// 1. Find center of primitive.
center ← find center of primitive p

// 2. Sample all direction.
for (all points po in primitive) {

direction ← find angle between line po-center and X-axis

intensity_by_direction[direction]++

}
for (all directions: d is from 0 to 359) {

begin_direction ← d
gap_left ← MERGE_GAP_SIZE
spaned ← 0 : intensity ← 0
// 3. Merge adjacent direction.

18

while (gap_left>0 && (MERGE_MAX_SIZE<0 || spaned<MERGE_MAX_SIZE)
{

if (intensity_by_direction[d] < max_intensity * LEN_THRESHOLD)
gap_left--

intensity ← intensity + intensity_by_direction[d]
spaned++ : d++

}
d--
// 4. Trim un-necessary merge.
while (intensity_by_direction[d] < max_intensity * LEN_THRESHOLD) d--
end_direction ← d
intensity ← intensity / (end_direction - begin_direction)
// 5. Generate one span.
one major span generated: [begin_direction, end_direction, intensity]

}
}

Algorithm A

Three parameters mentions in figure 6 are MERGE_GAP_SIZE, MERGE_MAX_SIZE,

and LEN_THRESHOLD whose values are 5, -1, and 0.5 in our implementation respectively.

They are suitable for many kinds of shapes. After the extendedness is generated, it will be

used to generate “shape direction” for every point in primitive. For points inside major span,

their shape directions are the same as their span direction. For points outside major span their

shape direction are the blended result of the directions of their adjacent spans. However,

before we generate shape direction, we should reverse a few span directions. Consider the

following situation:

19

(a)

 (b) (c)

Figure 6 Extendedness and shape directions. (a) Extendedness; (b) Shape direction with spans
of extendedness not being reversed; (c) Shape direction with spans of extendedness being
reversed.

Shape direction in Figure 6 is not natural. In fact, shape direction of the rectangle-like shape

in Figure 6 should be horizontal at every point. Thus, we should reverse span direction if the

angle between two span direction A and B is larger than π-A and B.

4.2 Selection Operators

There are four kinds of selection operators: selecting, merging, subtracting and sorting.

The selecting operator takes a primitive as input and decides whether to select it according to

the information contained in the primitive. For example, selection may depend on the

importance value or type of an object where the primitive belongs to. Users can implement

their own selection operator based on complex functions. Several build-in selection operators

20

are available such as selection by object importance, selection by object id, and selection by

object type.

Usually, painters usually paint the canvas in several layers. They use large cross-section

stroke in early layers and small cross-section size stroke in latter layers. Besides, in early

layers, objects of a scene are treated as one object. While in latter layers, important objects are

treated repeatedly. Some painterly rendering approach simply places stroke on canvas from

large cross-section stroke to small cross-section stroke referring to the whole image [8]. In

these algorithms, the whole image is treated as an object. We provide merging operator which

takes two primitives as input and the merged result as output. Users are allowed to customize

their layering behavior by merging unimportant primitives. For example, far primitives can

merge together and near or important primitives should be treated separately. The build-in

merging operator is implemented by set union in which the shape mask and color buffer of

primitive are treated as sets.

Subtracting operator subtracts one primitive from another. It is clear that the background

primitive should not contain the foreground primitive. However, in order to reduce user’s

work, the background primitive in input usually contains foreground primitive. Thus, we need

subtraction operator. This operator is also used to co-operate some kind of rendering function.

For example, the quick-draw drawing function needs that the primitive has never been drawn

before. Thus, subtracting operator will be applied to another other primitive which contains

this primitive. The build-in subtraction operator is implemented by set subtraction in which

the shape mask and color buffer of primitive are treated as sets.

The order of primitive drawing heavily influences the result. We provide sorting operator

to determine the order of primitives. The input of sorting operator is two primitives and the

output is the comparing result: smaller or equal, bigger, and un-comparable. This will result in

21

a partial order of primitives in which primitives of the same anti-chain are in the same

painting layer. There is no un-trivial build-in sorting operator because this operation involves

the creativities of painters which should be fully determined by users.

4.3 Conversion Operators

Conversions between different types of primitives are necessary in some situations. For

example, painter usually uses just a single stroke to depict a far object. A two-dimensional

primitive should be converted to a one-dimensional primitive. Conversion operator deals with

this kind of conversion. Since there are three kinds of primitives, there are six conversions

totally: 2D 1D, 2D 0D, 1D 2D, 1D 0D, 0D 2D, and 0D 1D. In our framework, 1D

and 0D primitives contain their corresponding 2D primitive information. In other words, the

2D primitive is the generalization of 1D and 0D primitive. Thus the conversion of 1D 2D

and 0D 2D are trivial. The conversion of 1D 0D can be done by 1D 2D 0D. Similarly,

the conversion of 0D 1D can be done by 0D 2D 1D. So, there’re only two conversions

need to be implemented: 2D 1D and 2D 0D.

The key idea of conversion from 2D primitive to 1D primitive is to find the main axis

(1D primitive) of a region (2D primitive) such that this main axis can represent the region. We

use the information from extendedness to find this main axis. First, we choose an

extendedness span with maximal value of area span multiplying intensity. Then, another

extendedness span is chosen. The restriction is its value of area span multiplying intensity

should be large as possible and the angle between these two spans should be larger than 900.

After these two spans are chosen, the main curve may grow little by little from the center of

the primitive following the direction of two spans.

22

Figure 7 Extract 1D primitive from 2D primitive. Two span are chosen: [135,200,0.56],
[319,359,0.76]. The blue line represents the 1D primitive.

Conversion from 2D primitive to 0D primitive is easy. The center of 2D primitive is used

to represent the center of 0D primitive. The radius of the bounding circle of 2D primitive is

used to represent the size of 0D primitive. The color of 0D primitive is the average color of

the 2D primitive.

4.4 Shape Modifier

Shape modifying operation allows user change the shape of a primitive. This is common

in Van Gogh’s painting in which lines of objects were twisted to represent painter’s inner

feelings.

4.4.1 Extract 1D Primitive

To reduce user’s work, the input usually contains only two-dimensional primitives. Thus,

we should extract one-dimensional primitive, i.e. lines, from two-dimensional primitive.

There are two kinds of extracted 1D primitive: boundary line and internal line. The definition

of boundary line is clear. The internal line will be discussed in Chapter 5.

Identify which point in 2D primitive belongs to boundary line is easy while how to sort

them is not trivial. We have to sort these boundary points so that a subset of these points are

able be selected as the control points of cardinal spline. We randomly choose a boundary

point and find its neighboring boundary point by following two set of directions: (a) up, right
23

up, right, right down, down; (b) down, left down, left, left up, up. The neighboring boundary

point is used to find another neighboring boundary point. If we can’t find such a point, we

change from one direction set to another direction set. This process stops when both two

directions are tried and no un-visited boundary points found. However, this approach will not

work if there exists unnecessary boundary points. Unnecessary boundary points are defined as

removing them will still makes boundary line closed. Thus we must trim these points before

sorting.

After sorting, a subset of boundary points are selected as control points used by Cardinal

spline. An initial subset of boundary points is chosen. Then, boundary points are added to this

subset if it can refine the spline with control points in current subset. The following algorithm

extracts 1D primitive from 2D primitive:

Extract_1D_Primitive(Primitive2D p)
{

// 1. Find original boundary points.
un-sorted_boundary_points ← find boundary points

// 2. Trim un-necessary boundary points.
for (all points point in un-sorted_boundary_points)

if (trim point will still make the boundary line be closed)
trim point from un-sorted_boundary_points

// 3. Sort boundary points.
start_point ← choose a start boundary point
add start_point to sorted_boundary_points
while (true) {

next_point ← un-visited neighbor boundary point of previous_next_point
following current direction
// direction set one {up, right up, right, right down, down}
// direction set two {down, left down, left, left up, up}
if (no next_point available and both two direction set are tried) break;
else if (no next_point available) reverse direction

}
// 4. Choose a subset of boundary points to be the control points
control_point_set ← Choose an initial subset of sorted boundary points
while (spline by control_point_set can not be refined)

add a boundary point to control_point_set between two control point if it can
refine the spline

}
Algorithm B. Extract boundary line.

24

(a) (b)

 (c) (d)

(e)

Figure 8 Extract boundary line from 2D primitive. (a) Input 2D primitive; (b) Extracted
boundary spline (red line) with boundary points (yellow points); (c) Part of original boundary
points (594 points); (d) Part of trimmed boundary points (411 points); (e) Spline and selected
control points.

4.4.2 Modify Shape

After the 1D primitive of boundary lines are obtained, the shape of the spline can be

modified. We define the modifying function take location of a point on spline as input and a

25

scalar as output. We move control point along the direction which is normal to its tangent

direction by a distance controlled by this scalar. Changing the shape of a primitive will cause

some new region belongs to the primitive. Thus, we should define the color distribution of

this new region. Besides, the shape and color distribution of its neighbor primitive should be

changed correspondingly. Otherwise holes between them will appear. Because the change of

primitive shape is not large compared to the shape of primitive itself, the redistribution of

color is simply done by enlarging original primitive and cutting it by the changed boundary

line.

Figure 9 Modified shape of boundary line. Modify function: sine function with amplitude
0.05 and frequency 10.

26

Chapter 5

Rendering System

The rendering system responds for choosing rendering function for each mapped

primitive. Each rendering function takes mapped primitive as input and generates stroke

definitions. Stroke definition contains stroke path, stroke cross section per control points,

initial bristle properties, and physical effect relative parameters. All of these are necessary to

mark system. Besides, rendering function can access global information – input and Canvas

object which is used in mark system. It can also access other information. The generation of

stroke definition is divided into several stages. Stroke definitions generated from each stage

are fed to mark system and its results will affect the next stroke definition generation stage.

We implemented several rendering functions: basic, quick draw, and pointillist. The

basic rendering function places stroke on canvas from large stroke cross section size to small

stroke cross section size according to the whole primitive. The stroke path direction is guided

by primitive image orientation. The quick draw rendering function is used to synthesize quick

drawing effect of Impressionist paintings. Primitives are drawn with fewer strokes as possible.

The stroke direction usually follows the direction of object shape. We obtain direction of

object shape from its extendedness. Pointillist rendering function is used to synthesize

27

pointillist painting style in neo-Impressionism. How to choose the color of each point is the

key concern in pointillist rendering function.

5.1 Basic Rendering Function

The basic rendering function contains three phases. First, a series of brush sizes R1, R2, ...,

Rn are determined. This series of brush sizes corresponds to layers of painting from larger

brush size to small brush size. For each painting layer, the brush size, canvas, and a blurred

image from color buffer of primitives are used to generate stroke definitions. We use

Gaussian blur to generate the blurred image and the deviation of Gaussian kernel is

proportioned to brush size.

Second, when a layer is about to be painted a list of stroke locations is generated. Each of

these locations will be used to generate one stroke definition. To generate these locations, the

blurred image is divided into several grids. The number of grids is inversely proportioned to

brush size. In each grid, we measure the average color difference between reference image

and canvas. When the average difference is larger than some threshold, a stroke location will

be generated in this grid. The stroke location will be located in the largest difference point in

the grid.

Third, a stroke definition will be generated on the location calculated in previous phase.

Stroke color is determined by the color of blurred reference image in stroke location. Stroke

size is determined by brush size. Stroke path grows little by little and follows the normal

direction of image gradient. Each growing process generates one control point. The growing

process is stopped when one of the following two conditions hold: a. a maximal stroke length

is reached; b. the difference between stroke color and blurred reference image color is larger

then the difference between canvas color and blurred reference image color.

28

Figure 10 Synthesized images by basic rendering function with four layers.

5.2 Quick Draw Rendering Function

The quick draw rendering function is used to synthesize quick drawing effect of

Impressionist paintings, e.g. figure 2. To synthesize this kind of effect, the following objective

should be achieved. First, use as fewer strokes as possible to represent the foreground object.

These strokes should reveal the shape of the object. The color distribution of foreground

object is much less noticeable than its shape in synthesizing. Second, neither of shape and

color of the background objects is noticeable in synthesizing.

29

To achieve the first objective, we change the stroke path generation process which is

third phase in basic rendering function. Stroke path no longer follows the normal direction of

image gradient. The blending direction of “shape direction” and normal of image gradient is

used instead. The shape direction is calculated from primitive extendedness which is

explained in Section 4.1. Besides, we use the stencil buffer of canvas to avoid overlapped

strokes. To achieve the second objective, we blur the color buffer of primitive belonged to the

background object. The blurring operation is done by blending each pixel’s color value with

the mean color of the whole color buffer. The blurred color buffer is used as the input to the

second phase in basic rendering function.

Figure 11 Quick draw of a goose, three layers.

5.3 Pointillist Rendering Function

Pointillist rendering function is used to synthesize pointillist painting style in neo-

Impressionism. In Pointillism, small strokes or dots of pigment are used to complete the

whole painting. The sizes of colored dots are regular. The color of these dots represents the

actual physical composition of the lighting on object surface. For example, a scene of grass in

sunlight will be painted in the following steps. First, green pigment is used to present the

inherent color of grass. Then, light blue dots are applied to represent the reflection of sunlight

30

on grass. Three kinds of color dots are used to represent the shadow area of grass: green, red,

and light blue. Red is the complementary color of green and Impressionist usually use

complementary color to represent object shadow.

Traditional pointillist algorithm use random saturation and intensity color dots to

synthesize this effect. However, by the inspection of the above example, the choice of color of

each dot is the key concern. The color dot set, for the above example green, red, and light blue

for shadow area of grass, represents the composition of light condition on object surface. Thus,

random choice is not suitable.

We provide two pointillist rendering functions. The first approach is similar to the

traditional algorithm. It uses the ground color to roughly painting the primitive first. Then

color dots are placed on canvas. The colors of dots are the quantization of primitive color in

their respective locations. The second approach also uses the ground color to roughly painting

the primitive. Then, a color set is defined by the user. Color dots are placed on canvas. The

colors of dots are chosen from the color set and will be blended with the color of primitive in

their respective locations. Currently, user can specify at most three colors in the color set.

31

(a)

(b)

(c)

Figure 12 Pointillist rendering function. (a) Original image. (b) Synthesized result of first
pointillist rendering function. (c) Synthesize result of second pointillist rendering function.

32

Chapter 6

Mark System

The list of stroke definitions generated by rendering system is fed to mark system which

draws these strokes on canvas. The physical implementation of stroke definition heavily

depends on the target painting media. For example, it is obvious that the water color mark

system should differ from oil painting mark system a lot. Besides, the convenient usage of

mark system is also important. In our framework the stroke definitions are automatically

implemented by the mark system. Thus, physically-based mark system or interactive mark

system in which too many possibilities exist is not suitable for our framework.

Our mark system basically contains three components: brush model including Pigment,

Canvas, Stroke Path, and Stroke Cross Section: Round CS, Flat CS; bristle canvas interaction

BCInteraction and random system Randomable. Bristle location is determined by stroke path

and stroke cross section. Besides, each bristle contains pigment, so does canvas. The

interaction between bristle and canvas occurs on every contact along the stroke path. To

synthesize oil painting effects, some properties are made random through random system. The

following figure shows the architecture of our proposed mark system.

33

Figure 13 Mark system architecture.

6.1 Brush Model

6.1.1 Stroke Cross Section

It is common for Impressionist to use both round and float-section brushes. Thus, we

create two stroke cross section: round stroke cross section and flat stroke cross section which

both provide the following information: bristle location based on current brush location,

orientation and bristle index; the blended stroke cross section with other cross sections which

will be discussed in section 6.2; random interval level which will be discussed in section 6.3.

34

 (a) (b)

Figure 14 (a) Round and (b) flat stroke cross sections consist of low sampling points (Round:
16 x 8; Flat: 16 x 16).

As shown in Figure ??, the bristle distribution in round stroke cross section is based on the

intersection between straight lines radiate from the ellipse center O and concentric ellipses

bounded in the outmost ellipse. For example, P is such an intersection.

Figure 15 Bristle distribution in round stroke cross section.

The bristle location is calculated by the following formula:

ytygammaxgammay
xtygammaxgammax

ithetaiBy
ithetaiAx

_'*)cos('*)sin(
_'*)sin('*)cos(

)_sin(*_'
)_cos(*_'

++=
+−=

=
=

 (1)

35

In the above formula, (x’, y’) is the coordinate of bristle in ellipse coordinate system, i.e. point

O is treated as (0, 0). When the brush is placed at (t_x, t_y) in world coordinate system with

orientation angle gamma, the third and fourth formula will transfer (x’, y’) into world

coordinate system by a rotation and a translation. The first and second formula deal with the

bristle location in ellipse coordinate system by given bristle index. The bristle index starts

from zero and increases counterclockwise from the inside to outside of an ellipse.

Figure 16 The correspondence between bristle index and bristle location. Indices of the first
eleven bristle are shown in this figure.

Thus, take point P as an example, by the given bristle index, we can calculate the angle

between line OP and x-axis and the length of line segment OP by the following formulas:

π*2*__
_*__
_*__

__
__

__
__

1__*___

)
__

(

ratioangleitheta
RADIUSMINORratioradiusiB
RADIUSMAJORratioradiusiA

SIZEANGLESAMPLE
indexangleratioangle

SIZERADIUSSAMPLE
indexradiusratioradius

SIZEANGLESAMPLEindexradiusindexbristleindexangle
SIZEANGLESAMPLE

indexbristleceilindexradius

=
=
=

=

=

−−=

=

36

...... (2)

As shown in the above formula, there are four parameters controlling the distribution of

bristles. MAJOR_RADIUS and MINOR_RADIUS are the major radius and minor radius of

outmost ellipse. SAMPLE_ANGLE_SIZE and SAMPLE_RADIUS_SIZE control the count of

sampled point in the contact region of brush.

Due to the nature of ellipse, uniform sampling of radius_ratio in Formula set (2) may

sample too many points in the inner of ellipse. As a result, the bristle is not uniformly

distributed in the contact region. To solve this problem, we define a mapping function from

the original radius_ratio to the transformed radius_ratio. It is a power function and both its

domain and co-domain are [0, 1].

(a) (b)

Figure 17 Two set of sampling results, each consists of two sampling (16x8, 32x16). (a)
Uniform sampling of radius_ratio results un-uniform distribution of bristles; (b) Transfer
radius_ratio by power function results uniform distribution of bristles. 7.0xy =

37

The flat stroke cross section operates similar to the round stroke cross section. As shown

in Figure ??, the bristles distribute in a trapezoid area centered at O with BOTTOM_LENGTH

|AO|, UPPER_LENGTH_1 |CD|, UPPER_LENGTH_2 |EF| and HEIGHT |BD|.

Figure 18 Bristle distributions in flat stroke cross section. |AB| = |ED|.

The bristle location is calculated by the following formulas:

ytygammaxgammay
xtygammaxgammax

ratiocolumn
LENGTHUPPERLENGTHBOTTOMLENGTHUPPER

ratiorowLENGTHUPPERLENGTHBOTTOM
ratiocolumnLENGTHBOTTOMratiorowy

HEIGHTratiocolumnx

_'*)cos('*)sin(
_'*)sin('*)cos(

_*
)]1___2__(*

_1__
2
_0[

)_1(*)_*_('
*_0'

++=
+−=

++

+−−

+−=
−=

...... (3)

In the above formula, (x’, y’) is the coordinate of bristle in trapezoid coordinate system, i.e.

point O is treated as (0, 0). The third and fourth formula is similar to those in Formula (1).

The first and second formula deal with bristle location in trapezoid coordinate system by

38

given bristle index. The bristle index starts from zero and increases from bottom to top and

right to left.

Figure 19 The correspondence between bristle index and bristle location. Indices of the first
seven bristle are shown.

Thus, take point P as example, by the given bristle index we can calculate column_ratio and

row_ratio in formula set 3 from the following formulas:

1__
__

1__
__

__
__

__mod__

−
=

−
=

=

=

SIZEHSAMPLE
indexcolumnratiocolumn

SIZEVSAMPLE
indexrowratiorow

SIZEVSAMPLE
indexbristleindexcolumn

SIZEVSAMPLEindexbristleindexrow

 Formula set 4.

SAMPLE_V_SIZE and SAMPLE_H_SIZE controls count of sampled point vertically and

horizontally in the contact region of brush.

6.1.2 Stroke Path

The stroke path determines the location and orientation of a brush by interpolating a set

of control points. Besides, stroke path also provides pressure and active bristle percentage

39

which will be discussed later. The location information is constructed by Cardinal spline since

it will interpolate all control points. In fact, the Cardinal spline is simply constructed by

Bezier curve. When the control points are given, additional control points will automatically

be inserted into original adjacent control points. Then the original control points and the

inserted control points are used together to construct the Bezier curve. Cardinal spline

provides one parameter to control how new control points will be inserted. Smaller parameter

will result smooth curve.

a. b.

Figure 20 Cardinal spline constructed by five control points with different smooth parameters
(a) 10 (b) 2 respectively.

By given control points and the stroke cross sections per control point, the tessellation

mechanism will generate the bristle information in any location along the stroke path. Bristle

information such as location, orientation, and pressure are linearly interpolated between

control points. All of these are done by blending ability of stroke cross section. By given two

stroke cross sections and the location orientation information (obtained from the stroke path),

the blended stroke cross section will be generated. The tessellation scale can be adjusted to

improve the efficiency.

40

Although the bristle amount of a brush is fixed, the amount of bristles which actually

contact the canvas depends on the area of contact region. The larger area is, the more bristles

contact the canvas. Hence we add supplementary information per control points: the active

bristle percentage (abp). The range of ABP is between zero and one. It depends on the area of

contact area. The larger area is, the more percentage is. ABP is calculated once randomly

before the tessellation begins.

 (a) (b)

 (c) (d)

Figure 21 Tessellated strokes with different tessellation scale. (a) Round cross section with
tessellation scale 8. (b) Round cross section with tessellation scale 1; (c) Flat cross section
with tessellation scale 8; (d) Flat cross section with tessellation scale 1.

41

6.2 Bristle and Canvas Interaction

When the stroke path, stroke cross section per control point, initial bristle properties are

done, they are tessellated by a list of bristle and canvas interactions. The interaction occurs on

every touching operation of stroke cross section on canvas along stroke path. Bristle and

canvas interaction determines how a bristle interacts with canvas, i.e. the change of properties

of bristle and canvas. Canvas and bristle both contains one kind of property: pigment. It has

color, quantity, drop scale, and height scale. The quantity, drop scale and the pressure controls

the pigment drop amount. The height scale is used for impasto effect of oil painting in which

pigment on canvas is three-dimensional, i.e. it has height relate to the canvas plane. The

height of a pigment is the multiplication of its quantity and its height scale. There two kinds

of interaction: wet-on-dry and wet-on-wet. Wet-on-dry simply drops pigment in bristle onto

canvas while wet-on-wet blends pigment in bristle with pigment on canvas. The blending uses

subtractive color mixture model.

6.3 Oil Painting Effects

To create real oil painting stroke effects. Two random systems are used: pure color

intensity variant random and height gap effect random. Pure color intensity variant concerns

the effect that when apply one pure pigment color on canvas, the actual color is not uniform.

In fact the intensity of the pigment color varies. Height gap effect concerns the effect that

pigment height is not uniform in a stroke. Usually, height of pigment could form several

spans. Each span has roughly uniform height while different spans have different heights.

42

 (a) (b)

Figure 22 Real oil painting strokes. (a) Pure color intensity variant random. (b) height gap
effect random.

To synthesize pure color intensity variant effect, we randomly change the pigment

intensity of initial bristle properties. In RGB color model, changing intensity is done by

scaling RGB values identically.

To synthesize height gap effect, we first randomly generate a series span values and then

use these span values to change the drop scale of pigment. The drop scale of pigment affects

the drop quantity of pigment and thus affects the height of pigment. The generation of span

values can be controlled by four parameters: base_gap, min_gap, random_gap and

random_level. Bristles are collected into the same span according to their y-axis coordinate in

local coordinate system. The span size and value are generated from the following formula:

)_,0(_
))_,_0(_,min(min__

levelrandomRandvaluespan
gaprandomgaprandomRandgapbasegapsizespan

=
−+=

...... (5)

The Rand(a, b) function in formula 5 will generate a random number between a and b.

43

(a)

(b)

44

(c)

(d)

45

Figure 23 Two random systems: (a) Plain stroke. (b) Pure color intensity variant effect. (c)
Plain height. (d) Height gap effect.

46

Chapter 7

Results

In this chapter, five result sets are presented. Result set 1 shows an ordinary oil painting

effect and advance layering effect. Result set 2 shows the quick drawing effect of

Impressionism. Result set 3 shows Pointillist’s style which belongs to Neo-Impressionism.

The framework is implemented in C++ language on NB with a Pentium 1.5G CPU and 512

MB RAM.

7.1 Ordinary and Advance Layering

47

Figure 24 Original input image.

48

Figure 25 Final image composed of five layers. The whole image is treated as one primitive.

49

 First Layer Second Layer

 Third Layer Fourth Layer

50

Figure 26 Final image constructed by five stages. Five primitives: entire image, sky, grass,
haystack and sheep.

51

First stage (two layers): the whole image is treated as a primitive.

Second stage (three layers): sky.

Third stage (two layers): grass.

52

Fourth stage (two layers): sheep.

Fifth stage (three layers):: haystack.

7.2 Quick Drawing

53

Figure 27 Original input image.

54

Figure 28 Final image composed of two stages. Fourteen primitives: entire image and thirteen
geese.

55

Final image of first stage (two layers): whole image.

Final image of second stage (two to three layers): thirteen geese.

56

One goose: second stage (three layers).

7.3 Pointillist

57

Figure 29 Original input image.

58

Figure 30 Final image composed of two stages. Six primitives: sky, tree, haystack, grass,
grass shadow, and road.

59

Final image of first stage.

60

Figure 31 Final image composed of two stages with another Pointillist style. Six primitives:
sky, tree, haystack, grass, grass shadow, and road.

61

 Image Size Primitive Layers Time (seconds)

Basic I 375 x 500 1 4 191

Basic II 375 x 500 5 2, 3, 2, 1 241

Quick Draw 800 x 600 15 2, {2~3,...} 1 210

Pointillist I 594 x 792 6 {1,...}, {1,...} 2 145

Pointillist II 594 x 792 6 {1,...}, {1,...} 2 144

Table 1 Result statistics.

62

Chapter 8

Conclusions and Future Works

A painterly rendering framework has been presented in this thesis. The framework

consists of three sub-systems: primitive mapping system, rendering system and mark system.

The framework is written in C++. It is complete and flexible. Any developers can extend this

framework by costuming its components. Thus, different painterly algorithm can be

implemented in this system. Besides, the division of this framework is based on the actual

process of painters which means the results generated can be more evaluative in esthetics

aspect.

Impressionist paintings are synthesized by this framework to show its effectiveness in

this thesis. We’ve shown three different styles of Impressionist paintings: original, quick

drawing and Pointillism. Several results are presented in each style. Achieving each style

needs extending or modifying each components of this framework. The extending or

modifying work is clear and intuitive.

In the future, we’ll try to enhance our framework in the following aspects:

Add the spatial system to this framework. We omit this part in our thesis. However, it is

important especially in oriental paints. I’ll try to figure out how the complex projection

system is establishing in painting process. Another future work is to improve the mark system.

So far, we just synthesized two effects of oil painting. We’ll do more in the future. Having a

GUI interface such like Render Monkey is also a future work.
63

References

[1] BOMFORD D., KIRBY J., LEIGHTON J. and ROY A., “Art in the Making

Impressionism”, The National gallery, London in association with Yale University Press,

1990.

[2] CURTIS C. J., ANDERSON S. E., SEIMS J. E., FLEISCHER K. W., SALESIN D. H.,

“Computer-Generated Watercolor”, Proceedings of ACM SIGGRAPH 97, 1997.

[3] DURAND F., “An Invitation to Discuss Computer Depiction”, Proc. 2nd Intern.

Symposium on Non-Photorealistic Animation and Rendering, 2002.

[4] GRABLI S., TURQUIN E., DURAND F., X F., “Programmable Style for NPR Line

Drawing”, Rendering Techniques 2004 (Eurographics Symposium on Rendering), 2004.

[5] HAASE C. S. and MEYER G. W., “Modeling Pigmented Materials for Realistic Image

Synthesis”, Master's Thesis, University of Oregon, August 1991, 1991.

[6] HAEBERLI P., “Paint by numbers: abstract image representations”, Proceedings of

ACM SIGGRAPH 86, 1986.

[7] HAYS J., ESSA I., “Image and Video Based Painterly Animation”, The 3rd

International Symposium on Non-Photorealistic Animation and Rendering, 2004.

[8] HERTZMANN A., “Painterly Rendering with Curved Brush Strokes of Multiple Sizes”,

Proceedings of ACM SIGGRAPH 98, 1998.

[9] HERTZMANN A., “A Survey of Stroke-Based Rendering”, IEEE Computer Graphics &

Applications, Special Issue on Non-Photorealistic Rendering. July/August, 2003.

[10] LITWINOWICZ P., “Processing Images and Video for An Impressionist Effect”,

Proceedings of ACM SIGGRAPH 97, 1997.

[11] LEE M., KOWALSKI M. A., TRYCHIN S. J., BOURDEV L. D., GOLDSTEIN D., and

HUGHES J. F., "Real-Time Nonphotorealistic Rendering", Computer Graphics:

Proceedings SIGGRAPH, Aug 1997. Annual Conference Series 1997. ACM Siggraph,

1997.

1

[12] MEIER B. J., “Painterly Rendering for Animation”, Proceedings of ACM SIGGRAPH 96,

1996.

[13] SALISBURY M., ANDERSON C., LISCHINSKI D., and SALESIN D. H., "A

Resolution-Independent Representation for Pen-and-Ink Illustrations", Dept. of

Computer Science and Eng. U. of Washington. Technical Report UW-CSE-96-01-02. Jan

1996.

[14] SALISBURY M. P., WONG M. T., HUGHES J. F., and H D., "Orientable Textures for

Image-Based Pen-and-Ink Illustration", Proceedings of SIGGRAPH 97, in Computer

Graphics Proceedings, Annual Conference Series, 401-406, August 1997.

[15] STRASSMANN S., ”Hairy Brushes”, Proceedings of ACM SIGGRAPH 86, 1986.

[16] STEVE U., “The Renderman Companion”, Addison Wesley, Reading, MA, 1989

[17] WANG B., WANG W., YANG H., SUN J., “Efficient Example-Based Painting and

Synthesis of 2D Directional Texture”, IEEE Transactions on Visualization and

Computer Graphics Volume 10, Number 3, 2004

[18] WEN S. Z., SHIH Z. C., CHIU H. Y., “The Synthesis of Chinese Ink Painting”, National

Computing Symposium’99, page 461-468, 1999.

[19] WILLATS J., “Art and Representation”, Princeton U. Press, 1997.

[20] WINKENBACH G., SALESIN D. H., “Computer-Generated Pen-and-Ink Illustration”,

Proceedings of ACM SIGGRAPH 94, 1994.

2

	論文封面.doc
	MS_ZhuQi_Final.doc

