
Chapter 2 
Background 

 

2.1 Basics of Discrete Wavelet Transform (DWT) 

In image compression system, the popular and effective ways are based on 

Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). The 

JPEG, MPEG1, and MPEG2 standards are based on DCT, while the JPEG2000 and 

MPEG4 standards are based on DWT. Both DCT and DWT have their own 

advantages and disadvantages because of their inborn properties. (For example, one of 

the main disadvantages of DCT is the so-called “blocking artifact.”) Many researches 

have shown that for higher compression ratios, the compression performance of DWT 

is better than that of DCT, and the visual picture quality is also better even the PSNR 

values are the same. 

Wavelet transform performs image analysis by multi-resolution. Any 

decomposition of an image into wavelets involves a pair of waveforms: one to 

represent the high frequencies corresponding to the detailed parts of an image 

(wavelet function ψ ) and one for the image's low frequencies or smooth parts 

(scaling function φ ). 

A 2-D image can be derived from 1-D DWT. So the scaling function for 2-D 

DWT can be obtained by multiplying two 1-D scaling functions: 

( ) ( ) (yxyx )φφφ =, . 

Also, the wavelet functions for 2-D DWT can be obtained by multiplying two 

wavelet functions or one wavelet and one scaling function for 1-D. This shows, for a 

2-D image, there are three wavelet functions in three directions: 
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Horizontal: ( ) ( ) ( )yxyxh ψφψ =, . 

Vertical: ( ) ( ) ( )yxyxv φψψ =, . 

Diagonal: ( ) ( ) ( )yxyxd ψψψ =, . 

The 2-D scaling function φ  for multi-resolution approximation can be obtained 

as:  ( ) ( )nymxyx jj
j

nmj −−= 2,22, 2
,, ϕϕ  

The 2-D wavelet functions ψ  are given as: 

( ) ( )nymxyx jji
j

i
nmj −−= 2,22, 2

,, ψψ , { }DVHi ,,=  

As a result, each resolution has three types of detailed images: horizontal (HL), 

vertical (LH) and diagonal (HH). 

The results in four different subbands (LL, HL, LH, and HH) in the 

decomposition corresponding to four types of transformed coefficients: , 

, , and 

( )nmjW ,,0ϕ

( )nmjW H ,,ψ ( nmjW V ,,ψ ) ( )nmjW D ,,ψ . ( )nmjW ,,0ϕ  coefficients are the 

approximation part of the image and correspond to the LL subband.  

coefficients contain the horizontal details and correspond to the HL subband. 

 coefficients contain the vertical details and correspond to the LH 

subband.  coefficients represent the diagonal details in the image and 

constitute the HH subband. In short, the results of wavelet transform are sets of 

wavelet coefficients shown below, which measure the contribution of the wavelets at 

these locations and scales. 
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Then, the decomposition can be repeated on the average part of an image (LL). 

Fig. 2-1(a) shows the sketch map. 

Two-dimensional DWT is implemented by convolving an input N×N image with 

a pair of low-pass and high-pass filters and down-sampling by 2. Recursive 

decompositions of an image on the average part using DWT represent an image 

different scales or subbands. Fig. 2-1(b) shows the sketch map. 

 

  

 

Fig. 2-1. (a) Structure of wavelet decomposition (3-level). (b) 2-D DWT. 
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 The synthesis stage performs up-sampling and filtering in the reverse order to 

reconstruct the image. The equation of 2-D inverse discrete wavelet transform (IDWT) 

is given as: 
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2.2 Wavelets 

There are many wavelet types. They can be distinguished in five types. 

1. Orthogonal wavelets with FIR filters: 

These wavelets can be defined through the filter order N. Families of such 

wavelets include Haar, Daubechies, Coiflet, and Symlets. 

2. Biorthogonal wavelets with FIR filters: 

These wavelets can be defined through the two scaling filters Nd and Nr, for 

decomposition and reconstruction, respectively. The BiorSplines wavelet 

family is a family of this type. 

3. Orthogonal wavelets without FIR filter, but with scale function: 

These wavelets can be defined through the definition of the wavelet 

function and the scaling function. The Meyer wavelet family is a family of 

this type. 

4. Wavelets without FIR filter and without scale function: 

These wavelets can be defined through the definition of the wavelet 

function. Families of such wavelets include Morlet and Mexican_hat. 

5. Complex wavelets without FIR filter and without scale function: 

These wavelets can be defined through the definition of the wavelet 

function. Families of such wavelets include Complex Gaussian and 
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Shannon. 

 

We choose four often-used wavelet families in our paper. They are Haar Wavelet 

(HW) family, Daubechies Wavelet (DW) family, Coiflet Wavelet (CW) family, and 

Biorthogonal Wavelet (BW) family. Discussion of wavelets begins with Haar wavelet. 

It is the first and simplest one. Haar wavelet is discontinuous, and resembles a step 

function. It represents the same wavelet as Daubechies when N is equal to 1 (DW1). 

Daubechies invented compactly support orthogonal wavelets, thus made discrete 

wavelet analysis practicable. Coiflet wavelet has 2N moments equal to 0 and the 

scaling function has 2N-1 moments equal to 0. The two functions have a support of 

length 6N-1. Biorthogonal wavelet exhibits the property of linear phase, which is 

needed for signal and image reconstruction. It uses two wavelets, one for 

decomposition (on the left side) and the other for reconstruction (on the right side) 

instead of the same single one. Fig. 2-2 shows some wavelet functions of each 

wavelet family. 
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Fig. 2-2. Wavelet functions of each wavelet family. 

 

Important properties of wavelet families are compact support (lead to efficient 

implementation), symmetry (useful in avoiding dephasing in image processing), 

orthogonality (allow fast algorithm), regularity and degree of smoothness (related to 

filter order or filter length). The properties of each wavelet family are shown in Table. 

2-1. 
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Family Orthogonal Compact Support Symmetry 

Haar ● ● ● 

Daubechies ● ● Far from 

Coiflet ● ● Near from 

Biorthogonal  ● ● 

Table. 2-1. Properties of each wavelet family. 

 

HW, DW, and CW are parameterized by filter order (N) that determines filter 

length (L). BW uses filters with similar or dissimilar orders for decomposition (Nd) 

and reconstruction (Nr). Although the filter length L is determined by filter order N, 

relationship between them is different in different wavelet families. For example, 

filter length for DW family is 2N, and for CW family is 6N. HW is the special case of 

DW with N = 1 and L = 2 (DW1). Filter lengths of BW are approximately 

{ ( ) 22,2max d +rNN }, but effective lengths are different for LPF and HPF used for 

decomposition and reconstruction. Table. 2-2 shows the details. And Table. 2-3 shows 

filter coefficients of some wavelets. 
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Wavelet Family Filter Order N Filter Length L

Haar 1 2 

Daubechies A positive integer. 2N 

Coiflet 1, 2, 3, 4, 5 6N 

Biorthogonal 

Nr Nd

1 1, 3, 5 

2 2, 4, 6, 8 

3 1, 3, 5, 7, 9 

4 4 

5 5 

6 8 
 

(Nr, Nd ) Ld Lr

1, 1 2 2 

1, 3 6 2 

1, 5 10 2 

2, 2 5 3 

2, 4 9 3 

2, 6 13 3 

2, 8 17 3 

3, 1 4 4 

3, 3 8 4 

3, 5 12 4 

3, 7 16 4 

3, 9 20 4 

4, 4 9 7 

5, 5 9 11 

6, 8 17 11 
 

Table. 2-2. Filter order and filter length of each wavelet family. 

 

 10



 DW1 DW2 DW5 CW2 BW2.2 BW4.4 

k aL(k) aL(k) aL(k) aL(k) aL(k) sL(k) aL(k) sL(k) 

0 0.7071 -0.1294 0.0033 -0.0007 0 0 0 0 

1 0.7071 0.2241 -0.0126 -0.0018 -0.1768 0.3536 0.0378 -0.0645

2  0.8365 -0.0062 0.0056 0.3536 0.7071 -0.0238 -0.0407

3  0.4830 0.0776 0.0237 1.0607 0.3536 -0.1106 0.4181

4   -0.0322 -0.0594 0.3536 0 0.3774 0.7885

5   -0.2423 -0.0765 -0.1768 0 0.8527 0.4181

6   0.1384 0.4170   0.3774 -0.0407

7   0.7243 0.8127   -0.1106 -0.0645

8   0.6038 0.3861   -0.0238 0 

9   0.1601 -0.0674   0.0378 0 

10    -0.0415     

11    0.0164     

Table. 2-3. Filter coefficients of some wavelets. 

 

 

2.3 Image Compression Schemes 

The goal of image compression is to represent an image as accurately as possible 

using the fewest number of bits. There are two kinds of image compression schemes: 

lossless and lossy. The main difference between them is whether or not the original 

data can be recovered completely in a compression system. 

In a lossless compression scheme, every bit of image that is originally in the 

image is hold after the image is decompressed, so all of the information is restored. 

The two important and popular lossless compression algorithms are Huffman coding 

 11



and Lempel-Ziv coding. 

On the other hand, in a lossy compression scheme, typically there is some 

distortion between the original image and the decompressed image. It permanently 

reduces certain information, so a part of the original information cannot be 

reconstructed when the image is decompressed (even the distortion may not be 

noticed by human eyes). Fig. 2-3 shows the fundamental components in a lossy image 

compression scheme. Compression is obtained by applying a transform to decorrelate 

the image data, quantizing the resulting transform coefficients, and entropy coding the 

quantized values. 

A lossy image compression scheme is typically comprised of three major parts. 

First, a transform is performed. Commonly used transforms are the Fourier Transform, 

Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT). Take 

DWT for example, a wavelet bank decomposes the image into wavelet coefficients. 

Second, the coefficients are quantized. A quantizer simply reduces the number of bits 

needed to store the transformed coefficients by reducing the precision of those values. 

It is a lossy and irreversible procedure. Quantization can be performed on each 

individual coefficient, which is known as Scalar Quantization (SQ). Quantization can 

also be performed on a group of coefficients together, and this is known as Vector 

Quantization (VQ). Third, the entropy encoder encodes the quantized coefficients into 

a bit stream to give better overall compression. It uses a model to accurately 

determine the probabilities for each quantized value and produces an appropriate code 

based on these probabilities so that the resultant output code stream will be smaller 

than the input stream. The commonly used entropy encoders are the Huffman encoder 

and the arithmetic encoder. Entropy encoding is a lossless and reversible procedure. 

To recover the original data, we can apply the above procedures in a reverse order. 
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Fig. 2-3. The fundamental parts in a lossy image compression scheme. 

 

 

2.4 Image Quality Evaluations 

In a compression system, there are objective and subjective image quality 

evaluations. 

A standard objective measure of image quality is reconstruction error. Suppose 

that an input image element block { ( )nx }, n=0, 1… N-1 is reproduced as { }, 

n=0, 1… N-1. The reconstruction error 

( )ny

( ) ( ) ( )nynxnr −= . 

The variances of ,  and ( )nx ( )ny ( )nr  are ,  and , respectively. In 

the special case that mean is zero, variances are simply equal to respective 

mean-square values over appropriate sequence length M. 

2
xσ 2

yσ 2
rσ

   ( )nz
M

M

n
z ∑

=

=
1

22 1σ ,  z = x, y or r. 

Signal-to-noise ratio (SNR) is defined as the ratio between signal variance and 

reconstruction error variance [mean-square error (MSE)]. It is usually expressed in 

decibels (dB). 

SNR(dB) = 10 log10 ⎟⎟
⎠
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When the input is an R-bits image,  can be replaced by (22
xσ R - 1)2. For 

example, the peak SNR (PSNR) of an 8-bits image can be defined as: 

PSNR = 10 log10 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
MSE
2552

 

Typical PSNR values range between 20 and 40. Generally when PSNR is 40 dB 

or greater, the original and reconstructed images are virtually indistinguishable by 

human observers. The actual value of PSNR is not meaningful, but the comparison 

between two values for different reconstructed images gives one measure of picture 

quality. 

 Subjective image quality evaluations are difficult to experiment because the 

results vary depending on the test conditions and cost a lot of time. And the standard 

objective measure has been recognized as inadequate because of its low correlation 

with human visual perception. In many applications, it is very important to choose an 

image compression system that gives the best subjective quality, but the quality has to 

be evaluated objectively. So a perception-based, quantitative distortion measure, 

called the Picture Quality Scale (PQS), was developed for evaluating the quality of 

compressed images [16]. 

 PQS is a perception-based objective evaluation. It is constructed by regression 

with Mean Opinion Score (MOS) that is a perception-based subjective evaluation and 

is a five-level grading scale. [Table. 2-4] PQS can be simply expressed as a linear 

combination of uncorrelated principle distortion measures Zj, that is, 

 

 

 

Where {bj} are the partial regression coefficients obtained by multiple linear 

regression of {Zj} against the MOS. 
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For images with high quality, it is possible to obtain values of PQS lager than 5. 

Also for images with low quality scale, PQS can be negative values (meaningless 

results). 

 

Grading Scales Impairment 

5 Imperceptible 

4 Perceptible, but not annoying

3 Slightly annoying 

2 Annoying 

1 Very annoying 

Table. 2-4. The scales of the MOS. 
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