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Influence of Local Information on Epidemic Simulation under

Complex Networks

Student: Chien-Ming Chung Advisor: Dr. Chuen-Tsai Sun

Institute of Computer and Information Science
National Chiao Tung University

ABSTRACT

Besides using complex networks in epidemic simulation for unfolding the
relationships between human beings, local information mechanism was designed to
reveal the differences among people and others to approximate reality. However,
previous studies indicate that some local diversity would not affect the simulation
result. The population of weak individuals, for example, would cause the difference of
simulation, but the distribution-of weak-individuals-would not. Furthermore, we are
also interested in the differences ‘between.the' simulation under the small-world
networks and the previous research without considering the relationship as simulation
in the random networks. In this paper, we focused on the analysis of various network
structures and local information, and conclude some reasons that might influence the
epidemic simulations.

Keywords: Complex network, local information, social simulation, epidemic

simulation, small world model
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1 Introduction

In the beginning, the epidemic simulation was performed by dynamic systems [1].
With the introduction of Monde Carlo model, researchers started to have the concept
of individual in the simulation [2]. Without considering the interactions between
human beings, Monde Carlo model just like SIR model, which was still another
simple model of simulating a disease among several compartmental groups, can not
show the real properties of society with epidemic outbreaks. Because the interactions
among several compartmental groups could be under consideration in simulating
circumstances, researchers started to combine SIR model with complex networks after
that were proposed successively. Complex networks are often used to described a
virtual social network, where exist groupssef-related individuals that are interacting
with each other [3]. Small world" networks; scale-free networks, random networks,

and regular networks are in the figld of complex networks.

Recently, researchers used the complex networks to investigate in disease spread
and cultural dissemination by use of SIR model. They could observe the propagation
of diseases or rumors among society, even suggest some control measures for disease,
such as the contagion of SARS and AIDS even for the spread of rumors [4-6].
However, with the differences among all types of the contagion problems, we have to
use suitable network models to simulate the relationship networks. Take AIDS for
example. Its routes of infection is far from the influenza’s, it should be noticed that
we cannot use the same model to analyze them. Generally, the small world model is
used to simulate the epidemic propagation and rumors spreading, while scale-free

network model for the study of AIDS contagions. Therefore, the fundamental



meanings of different structure of social network models are extremely different.

Besides, there also exist other parameters such as attribute information, weight
information, and so on. Regarding to aforementioned local information, researchers
should cautiously collect pieces of information from all aspects to construct a proper
simulating environment Take previous case of simulating epidemic outbreak for
example, first we have to know how many cases we input initially. Further more, we
have to know the percentage of the weak individuals among the whole population,
and how they distribute in the society. Of course, the divergences among the local
information will become a hard job in information gathering and content analyzing for

the settings in the experiments.

Nevertheless, such variances as.the different individuals or the weight information
will not lead to the same results in.different-models. Like the experiments in this
thesis(which we will mention later). »we_diseover that the distribution of the weak
individuals does not reveal an obvious susceptibility in any kind of models, while the
percentage of the those among the whole population show an remarkable effects to

the results.

In order to realize what variances of local information result in some kind of
effects under the circumstance of any specific models, we find out that some
researchers have studied the effectiveness of the different individuals in small world
networks [7]. Therefore, the main point of the thesis will aim to the analysis of
different network structures and the effectiveness resulted from the variance of local
information in contagion problems. After getting the researches about the local

information in contagion problems together, we will talk over the effectiveness caused
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by the following five local variances. First, we will discuss how different ways for
constructing networks affect the vertex degree of information. Second, while
constructing networks, various shortcut numbers would be significant. Third, the
variances caused by the amount of heterogeneous individuals in the whole population
and distribution will be discussed. Finally, the weights and the directions of the
connections of individuals are concerned. We believe that the experimental results

will help to further social contagion issues studies.



2 Background

2.1 Small-World Phenomena

More and more social issues are studied since Watts and Strogatz proposed
small-world network model [8]. For this reason, small-world phenomena [9] which
influenced Watts and Strogatz extremely are discussed with variance of complex
networks. Although many quantities and measures of complex networks have been
proposed and investigated, but what researchers most concerned about were average
path length, clustering coefficient, and vertex degree. We will take a brief

introduction of these networks’ concepts.

Average Path Length :

Average path length mainly describes that two. nodes communicate with each

other in a network probably pass. through hew many paths. Suppose that d;;
represents the minimum paths from node i to node j, and D; represents the
maximum paths from node i to node j. Then average path length between these

d; +D;
two nodes would be

, and average path length of a network model is

averaged all pair of nodes’ average path length. Generally speaking, average path
length depends on the size of a network. Take six degree separation for example, two
arbitrary people in real world can be link up with no more than six people. And for a
small group, the average path length would be 1 because of every one have
acquaintance with each other.

Normally, for approximate to real world, researchers would set up experiment’s

parameters by any reference material. Think about the six degree separation of real



world which contains six billion people, and the distance between two nodes increases
logarithmically with expanding system size [10]. Say, a virtual society’s average path
length should be 2.45 with ten thousand individuals. Therefore, there should be 17
shortcuts besides 4 neighbors. But in some social simulation experiments’
small-world model, they would set shortcuts less than this. We will analyze this

unusual problem in this paper.

Clustering Coefficient :

In real world, my friend’s friend would be my friend also. On the other hand, two
of my friends probably may be friends with each other. It represents that most people
are clustered together by “friends”. Clustering coefficient mainly says the probability
of being friends mutually among.a group. Clustering effect in regular network and
small-world network is quite obvious by linking.up with neighbors of all nodes at
initial state. On the contrary, random-network.and scale-free network are not been

setting any edges with neighbors, such-that we-can’t find out clustering effect.

Suppose that clustering coefficient C, of individual i in the social network

and this node links up with k; nodes. Obviously, there are no more than w

edges exist among them. Then clustering coefficient of node i is defined as

C = % k —1) The E,; represents exactly edge numbers exist among the group.
2

And the clustering coefficient of whole network is the average of C, overall i.

Vertex Degree :
What is most important characteristic of a node in network may be the vertex

degree. The more vertex degree of a node, the more related individuals it has. Either



the spread of rumors or the infection of diseases, the probability of expanding is larger
than other nodes which are in low branches. Usually, a person who is good at
communication in a group and this man has a good relationship with the others, so
that we will pass the message through him for efficiency.

Vertex degree distribution is determined by construction network model.
Scale-free network with power-law is extremely different from small-world network
or random network with identity degree distribution. Even in small-world network
models, different vertex degree settings can make virtual society closed to real world.

Therefore, degree of vertices will be a significant index in different models.

2.2 Complex Networks

According to average path length, clustering -coefficient, and vertex degree
distribution these three small-world" phenomenon, complex networks can be

categorized as below.

Regular Networks :

As shown in figure 2-1, it’s a simple regular network. All individuals in a regular
network just link up with neighbors. Since every node only has local edges, so we can
determine a parameter of distance d, what represents it’s all relative within the

distance.

However, all small-world phenomenon is decided by the value of d . It will be a
complete graph while d is maximum, then there is lowest average path length,

highest clustering coefficient, and highest vertex degree. What a circumstance may be



horrible with contagion problem. Imagine that a traditional village, a bad guy is talked
by some villagers. And 2 or 3 days later, everyone in the village knows about the bad
guy. The powerful contagion is because of villagers know almost each other. But if
d equals to 1, it means all individuals just link up with neighbors. Then the highest
average path length, lowest clustering coefficient and vertex degree will be occurred.

Such environment has bad efficiency in contagion problems.

Fig. 2-1 Regular Network

Random Networks :

In opposition to regular networks are random networks which proposed by Erdos
and Rényi [11], generating a random network is adding links between pairs of
randomly chosen nodes, or rewiring all edges in a regular network. If sufficient
numbers of links are added, this kind of networks may exhibit small-world properties

but with little or no clustering, what is an unusual situation in the real world.

Small-World Networks :

It indicates that it is a high clustering and low separation society in the real world

7



in recent researches [12]. Using regular networks to construct a virtual society like the
real world, we have to let the network model close to a complete graph without
rationality. In order to make it sense, the small-world networks modified by Newman
and Watts, which used adding shortcuts instead of rewiring [13], are used more often.

A small-world network is generated by inserting long-range links which is called
shortcuts into an n-dimension regular network [8]. Thus it can reserve the clustering
property, and reduce the average path length to suitable to the real world.

Using rewiring method to construct networks above, we can arrange the result as

figure 2-2 by p, which is rewiring probabilities.

p=0 0<p <<l p=1
s W R AR ? RN . o ? s
A 5 A fi, q A
f A i B
1 ‘I, .Ir
! 1 |c .
& & % § |
% B g —~4
iy St - _ % ’ ¥ | %
oy N S G g o5 @
{a) Regular (b) Small-World (¢} Random

Fig. 2-2 three types of networks

In this regular network (figure2-2a), every node just interacts with 4 neighbors.
Without shortcuts, this model shows high clustering and separation, and all vertex
degree is 4. Rewiring some links we can see a small-world network shown as figure
2-2b. In addition to all vertex degree are near 4, some individuals has shortcuts for
interacting with long-range individuals. Besides, friends acquaint with each other
makes it represents high clustering and low separation. The extreme random network
model (figure 2-2c) is generated by rewiring all links, such that friends became

unfamiliar with each other. So it is low separation but low clustering.



That is homogenous vertex degree of the networks above. On the contrary of
scale-free networks which investigated recently represent the power-law degree
distribution. In the real world, sexual intercourse, internet hyperlink, and so on,

belong to this type of model.

Scale-Free Networks :

The power-law of vertex degree distribution is the most important property in
scale-free networks [14-16]. It means most individuals have fewer links but fewer
individuals have many links. Take the sexual intercourse for example, most of us are
single mate, but some have many lovers. Such as internet hyperlink is also this
situation. So it is suitable for venereal disease or internet virus studies by using
scale-free networks.

Generating a scale-free network begins-with a small number of nodes which

m, m<m

denoted as [3]. Then recurring-let a-new:-node connects to 0 preexisting
nodes picked from the group by probability” P “which determined by vertex degree of
the node. New nodes are preferentially attached to existing nodes that have large

numbers of connections.

2.3 SIR model with Complex Networks

Tracing the contagion problems to its source is SIR model proposed by Kermack
and McKendrick [17]. The SIR model describes how individual changes when
became ill, which are classified as three types. S (Susceptible) means the healthy body
with low resistance. | (Infectious) means the ill individual and a source of infection. R

(Removed/Recovery) shows that the individual is dead or recovered. Without illness,



recovered bodies can’t infect others, and the probability of being illness again

becomes low.

In early studies of contagion, three type groups in SIR model interact with
complete random, that equals to investigate contagion in random networks. Although
this hypothesis is not meet the reality, but a simplistic model without detailed setting
is convenient for researchers. They just have to consider the disease’s ability and the
number of infector at initial. Adding to passed studies, a roughly simulation of

contagion is then constructed.

However, during the process of contagion, there is a close relationship between
the propagation of disease or rumers and different. network topology of interpersonal
relationship. Thinking about the interaction of humans, in addition to household and
friends, we may communicate with-a.restaurant-owner. Random networks can’t
represent whole situation. Besides, there is.some difference in detail of contagions.

Thus, different network models are needed for various epidemic problems [18-20].

Generally, the small world model is used to simulate the epidemic propagation
and rumors spreading, and scale-free network model for the study of sexual diseases
contagions, and computer virus spreading. Therefore, we would discuss contagion
problem with these two networks mainly, and compare the results to random networks

and regular networks which were not similar to real world.
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3 Network Models in the Experiments

According to traditional cellular automata, we used a 100x100 2-D lattice to
generate the complex networks as the platform in this paper, and investigated the
transformation of these ten thousand individuals. In these virtual societies, all

individuals would interact with others by edges only.

Each individual with 4 nearest neighbor links as the level one von Neumann
Neighborhood in 2-D lattice was the regular network (figure3a). We thought such the
circumstance as the family with five population was similar to reality. The
small-world network was generated by adding several shortcuts between random
nodes in the regular network (figure 3b). Here'we used adding shortcuts instead of

rewiring in order to avoid breaking graph {6].
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Fig. 3 Input of the assumption

Furthermore, we used three ways to construct different small-world networks for

our investigation of local information. We set a new weighted property d(v) of all

11



d(v)

> d(v)

veV (G)

nodes, and let P(v,)= be the probability of node i which would be

picked for adding shortcuts. The higher probability an individual had, the easier it was
chosen to connect with others. The function of probability was classified into three
ways below for closing reality, constant, normal, and uniform distribution. Firstly,
constant distribution meant all individuals had equally probability. Secondly, we
made the chosen probability of all nodes representing normal distribution. Finally, in
uniform distribution, we divided all individuals into three parts with particular

probability each.

The random network was generated by adding several shortcuts in 2-D lattice
without nearest-neighbor links. In.order to remain. the property of random networks,
we would not use the probability when adding nodes. We just picked several

node-pairs complete randomly.

Lastly, for constructing the scale-free networks, we set the weighted property
d(v) as small-world networks for all nodes. At the initial stage, all d(v) were set to
1. Then we connected two nodes randomly, and increased the d(v) of these two
nodes by 1, which made these nodes be picked easier later. Repeating the steps, we

had the virtual society of scale-free networks.

12



4 Contagion Models

Contagion problems are concerned about how infectious individuals affect
accepters via certain infection channel. In epidemiology, infectious individuals are the
patients. They make healthy people become infectious by direct contact or air
spreading, the routes of infection. When talking about beliefs, missionaries play the
role as the infectious ones, spread their beliefs in words or newspaper and magazines,
making people inspired and have the belief too. Where words, newspaper and
magazines are the routes of infection, and those who are called are the accepters.
From the examples above, we can tell that contagion problems are composed of three

individuals, infectious ones, routes of infection, and accepters.

In this article, we use all-kind of -social .network models as the simulation
platforms. Owing to the properties will distinct.from one kind of contagion problem to
another, we will discuss them through from random networks, small world networks,
to scale-free networks. Besides, we use SIR model (figure 4-1) to simulate the
propagation of ergodic individuals, expecting to show the process of how infectious

individual take use of the connections in the networks as their channel.

13
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Fig. 4-1 SIR model

We can tell that when observing the phase transition of each individual, it is
possible that a susceptible one (S) will become:infectious (I) through the interaction

with infectious ones. We call the rate |Rate, ... . As time passing, infectious ones will

inf ect

be set as removed or recovery, depending on the 'Rate If an infectious one is in

remove *

a recovery state, it will be harder to be infected again than the susceptible ones

because it forms an antibody.

It is acceptable and more often used to discuss illnesses spreading by SIR model.
But a question here is that can we use the same model to simulate culture propagating
and rumor spreading? Imaging a situation here. During an election, a candidate will
do some propaganda. In the beginning, he/she will have some supporters who support
his/her politics, we say that they are in the infectious state, that is being infected by
the candidate’s allure. These supporters will do more propaganda for the candidate
among those they know, say their relatives or friends, which makes it possible for

those who do not decide to support a certain candidate yet (Susceptible) to support the

14



same candidate as their friends or relatives. As for the followers of other candidates,
there might be chances for them to give up supporting because of some negative news

and become removable

Other than the transition state function in SIR model, the states of individuals are
not the same. Just like in the real world, some people have stronger resistance than
others, or the contact frequency are not equal. Family members will contact more to
each other than the neighbor, that is why there should be some differences in the
interaction connections. When it comes to contagion problems in different social
networks, what mentioned above is local variances, which we concerned the most

here.

15



5 Local Information Mechanism

Local information mechanism mainly set up the differences between individuals
or channels to fit the whole simulation to reality. Thinking about the daily life, we
may contact household or friends, such that every node in network models is linked
up with each other. But the number of friends depends on person. Some have many
friends and some are unsociable. These differences of simulations are interested and

studied in detail by researchers.

In this paper, we categorize local information into edge-related and node-related.
Node-related information can be classified into vertex degree and individual attributes
in details. The number of friends of+€ach node is-what vertex degree dominate, which
is controlled by network models’ differences. And individual attribute mainly handle
how hard is the node being infectious. Edge-related-information then classified into
diversity of weights and directions.. The difference of weight controls intensity of
interaction between the pair. Greater the weight, more interact between the pair. The
difference of directions is caused by some specific purposes. Take rumor for example,

the hearsay sources just blow about the gossip but not receive anything.

Follows, we would verify the influences of local information on complex

networks by experiments below.
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6 The Experiments

In the experiments, we used a 100x100 2-D lattice to generate complex networks
as the platform. Besides, the average vertex degree was 8 in all models, which
included 4 nearest-neighbor links. There were ten individuals set to I-state and others
were S-state at initial. During each time step, all individuals interacted with their
friends randomly. We traced the number of I-state individuals after 90 time steps and
compared the result curves by two directions. Firstly, we would look at the first hill
height, appearance time, and its duration. And secondly, we focused on the variance
of total number of infectious individuals among the whole world. So, we would show

the result curves mainly, and show the accumulative curves on its top.

6.1 Network Structure Analysis

The experiment was started ‘with. various" network structures. According to
different issues, we needed different network models. Besides, the social thinking
would influence the network structure also. In studies of SARS, for example, although
small-world networks were suitable for this problem, but the status of contagion
would be different in open society or close society. Therefore, while different
proportion of open people, normal people, and close people being in the society, it

might cause the different results what was interested by researchers.

From the facts described above, we added the shortcuts in the small-world
networks in three ways. Firstly, all vertex degree being the same, it meant people have
almost equivalent friends. Secondly, we made the vertex degree representing

uniform-distribution what makes people trisect into three equal parts. Finally, let the

17



vertex degree be normal distribution to display much normal people and fewer others.
Except that, we would not configure this information in scale-free networks and

random networks for keeping the particular property among them.

30000

25000 |
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15000 |
800 10000 -

% 4‘Unlform 50(3’ / B
‘56007 11 20 3 41 51 6 7 8l
—
.8 Constant
95}
= 400
5 200 ¢
5
0

1 11 21 31 41 51 61 71 81

Time Step

Fig. 6-1 Results 'of vertex-degree distribution

Contrary to our prediction, the results revealed that different ways for generating
small-world networks would not affect the simulation what meant we would not
consider the effect of social-thinking because of its little effects (Figure 6-1). We
found that the first hill height, appearance time, and duration were all similar. Even
the variances of total number of infectious individuals were much closed. These
showed that although the shortcut-distribution was different, it would cause the
infections in another area if there were sufficient opportunities for diseases or rumors
transferring to the distant places, such that we would use the original small-world
networks (constant probability) in the experiments below. However, there was
essential difference among different models, such as random networks and scale-free

networks (figure 6-2).
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Fig. 6-2 Results of network structures analysis

Random networks totally lost the clustering.effect, so that the disease or the
rumors would not be sustained-in local area..But the simulation results revealed that
the random network was similar to the small-world network, it was because we only
connected 4 nearest neighbors for<all.individuals in 2-D lattice without sufficient
clustering property. Besides no clustering effect, scale-free networks with power-law
of vertex degree caused the more strange results than random networks. When the
individual with high vertex degree was infected, then the number of individuals with
I-state became the maximum very quickly, because of the highest probability for
spreading disease occurred, that the individuals connected to the hub-nodes with high
vertex degree called danger-groups. Such that the first hill appear earlier than other
network models, and its duration was shorter too. On the other hand, we could find
that the total number of infectious individuals increased with high-speed at beginning

in scale-free networks. This circumstance was certainly different from other networks.
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6.2 Weak Individual Proportions

In this experiment we looked at the influence of the proportion of heterogeneous
individuals. For instance, in some developed cities, most people are not easily
infected by disease. But in backward countries, resistance against disease of people is

quite not enough.

As described above, we checked the influence of that by doubling the chances of
heterogeneous individuals becoming infected, and investigated the results when the

proportions of heterogeneous individuals were set at 0, 1, 5, 10, 30, and 50 percent.
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Fig. 6-3 Weak individual proportion in Watts’ networks
Results are shown in Figure 6-5. We found that the higher the proportion of
heterogeneous individuals, the earlier the appearance of the first hill and the higher
the value of the top spot. Besides, according to the results and the variance of total

number of infectious individuals, we could see there was not obvious variance at low
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weak proportion changes. We therefore suggest that the higher proportion of

heterogeneous individuals in Watts’” networks is a significant factor.
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Fig. 6-5 Weak individual proportion in scale-free networks

In scale-free networks, more heterogeneous individuals and the higher the value of
the top spot. Besides, deserve to mention that the first hill appeared at the same time
whatever the proportion of heterogeneous individuals were. That is because of the
structure of scale-free networks. Entire model is almost connected by hub-nodes, such
that the danger area may be influenced when hub-nodes are infectious. As the results,
we found that the proportion of heterogeneous individuals could influence the ill
population, but never change the epidemic propagation restricted by network’s

topologies.

6.3 Distribution Patterns‘of Weak Individuals

Follows is the investigation-of distribution of heterogeneous individuals. Imaging
the proportion of heterogeneous -individuals between a developed city with
shantytown and a normal city may be similar, but the distribution of these weak
individuals causes the main difference. For scale-free networks and random networks,
without nearest-neighbor links, that is no meaning of discussion on distribution of
weak individuals although the heterogeneous individuals clustered together in the

models. Therefore, we just investigated this problem in small-world networks.
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In this experiment, we set the heterogeneous individuals at 1%, and used the
parameter R representing the radius,of distribution, and R would be 0, 0.2, 0.4, 0.6,

0.8, and 1.0. As shown in figure 6-6, all heterogeneous were clustered together while

Fig. 6-6 the radius representation

R was set to 0, and they were randomly.being-the entire model when R was 1.
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Fig. 6-7 Distribution patterns of weak individual in small-world networks
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As the results, we found that no matter how heterogeneous individuals scattered
in small-world networks, it would not be a problem in epidemic simulations, what we

said was an insensitive condition.

6.4 Familiar pairs and One-way channels Proportions

Then, we would look at the differences of weights and directions between nodes
among the model. For instance, the interaction may be stronger between closed
friends than others, and high frequency of contacts may cause more probability of
infection of disease; and further, some epidemic sources may just infect others
without being influenced, such that some links of them are one-way spreading. By
these reasons, we analyzed the situations,when-randomly doubled some edges’ weight
which cause double chance of-infection or made some edges being one-way which

spreading in only one direction, which we called heterogeneous channels.

As the experiment 2, we investigated the results when the proportions of double

weighted channels were set at 0, 1, 5, 10, 30, and 50 percent.
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Fig. 6-8 Small-world networks
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Fig. 6-9 Random networks
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Fig. 6-10 Scale-free networks

The results told us that more double, weighted channels were set, more infectious

And the discussion about direc els, we made 0, 1, 5, 10, 30, and 50

percent channels were set as one-way.
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Fig. 6-11 Small-world networks
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Fig. 6-13 Scale-free networks
Although these results showed that more one-way channels less efficiency in
epidemic simulation, this factor would not affect the simulation very much at low
percent of one-way channels. Therefore, we have to configure this factor carefully

while many one-way channels are needed.
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6.5 Distribution Patterns of Familiar pairs

In this section we would focus on weighted edge distribution in the small-world
network only. In our daily life, we had the better relationship with our family or
neighbors, such that the double weighted edges might all appear in the
nearest-neighbor links instead of double weighted edges randomly. By this reason, we
would not discuss this issue in scale-free networks and random networks, which
without nearest-neighbor links.

We took two parts A and B into the experiment. A part meant the double weighted
edges were distributed randomly in the network model, and B part meant the double
weighted edges were all in the nearest-neighbor links. Then as the experiment 4, we
looked at the difference of double weighted edges were set at 1, 5, 10, 30, and 50

percent.

w
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Fig. 6-14 Distribution pattern of familiar pairs in small-world networks
Results from this experiment are shown in Figure 6-14. The similarity of the

curves leads us to suggest that the influence of the pattern of scattered heterogeneous
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individuals is not significant.
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7 Conclusion

Summarizing all results, we classified the experiments into 3 types below,
network-structures,  sensitive  information, and insensitive  information.
Network-structures information means that we have to determine what model is
needed depending on various simulations. As mentioned above, we used scale-free
networks for discussion of propagation of sexual disease, and used small-world
networks for spreading of rumors. Besides, we could find that there was no significant
difference between random networks and small-world networks with level one von
Neumann Neighborhood, because of the lower clustering coefficient.

The sensitive information indicates that the parameters of epidemic simulations
which might change the infectiouspower. Take experiment 2 for example, without
nearest-neighbor links, scale-free networks-and random networks are constructed by
shortcuts, such that the number of shortcuts may influence the simulation so much.
Besides, in experiment 3, more heterogeneous individuals, weaker the whole society,
and the influence of disease is larger. The different weighted channels are also the
sensitive condition by affecting the efficiency between nodes. Say, these are all count
in intensity information, and we have to configure them carefully.

Finally, insensitive information is pointing to the parameters which are side issues
in epidemic experiments. As the experiment 4, the efficiency of epidemic simulation
was almost equal no matter what distributions of heterogeneous individuals were
configured. And the experiment 6, we configured the double weighted edge by two
different ways, but the simulation results were similar. Such the insensitive

information can be ignored or configured arbitrarily.
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