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ABSTRACT

In recent years, with the development of computer technology, digital image processing and

its applications are more and more important. Image segmentation is an important and basic

processing before other higher level applications. Image Segmentation has become one of the

major subjects in image processing. The purpose of this thesis is to explore the image segmen-

tation using Level Set Methods. Level Set Methods are novel numerical methods, they express

curves or surfaces easily and have the convenient feature of dealing with PDE calculations. We

implement several basic and important methods of image segmentation using level set methods.

Then discuss the main problems encountered in practice and their pros. and cons. on image

segmentation.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

With the develop of computer and digital equipment, image processing has become one of

major subjects in developing computer vision. Segmentation is an important technique used in

image processing to identify objects in an image. Many different methods are used to partition

an image into meaningful regions. One of these methods is to use an active contour to deform

its shape and lactation according to the relative data from the image. The idea behind active

contours for image segmentation is quite simple. We specify an initial guess for the contour,

which is then moved by image driven forces to the boundaries of the desired objects. And

recently, the level set methods are used to implement the active contours, based on various

image analysis methods. Since the level set methods are novel and known by few people and

its applications on the image processing are also developing, it is interesting to know how the

method is and processing segmentation differ to well-known methods. Our motivation is to

organize several basic and important methods of image segmentation using level set methods,

and gives better understanding of their pros, cons, improvement between each other, and defects

of these methods.

1.2 Related Works

There are two deformable models. The traditional one is the Parametric Active Contours

(PACs), also called snakes, which trace the contours by discretizing them to finite number

marker points. The PACs restricts the degree of topological adaptability, especially if the de-

formation involves splitting or merging of parts. In contrast, the Geometric Active Contours
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(GACs) utilizes the level set methods introduced by Osher and Sethian [1][2] recently.

The level set methods express the curve or surface as an implicit function, the topology

changes naturally without any other dealing, and it is easy to calculate local properties. They

give a smooth curve expression, and can be used in 3D models and simulation nature phenom-

ena.

There are three forces considered, the curvature, defined from the curve itself, are designed

to keep the curve smooth during the deformation process, the normal direction constant force

which are used to decide the expanding or shrinking of a curve and force from external felicity

field, which is computed from the underlying image data, are defined to move the curve toward

an object boundary or other desired features within the image.

1.3 Organization of Thesis

In chapter 2 we introduce the basic level set methods. We first introduce the basic idea of level

set methods and the function of three forces. Then we discuss each force and there effect of

curve evolution. In chapter 3 we introduce our main interest of using level set methods on image

segmentations. We first introduce basic method from snake followed by fixed form in level set

methods of Geodesic Active Contour (GAC) [3]. These two method generate small capture

vector fields which point to the boundary of objects. The extension method is Gradient Vector

Flow (GVF) [4], it improves the capture ability of the vectors. Different to previously methods

which utilize gradients of an image, the Edgeflow, purposed in [5] is based on Gabor filter and

Difference of Offset Gaussian to prediction the vector points to the boundary of objects. Finally,

we introduce the region stability method [6]. In the chapter 4 we will test these methods on

artificial images and to observe the noise effect on these methods.
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CHAPTER 2

LEVEL SET METHODS

In this chapter we will introduce the background knowledge of level set methods introduced by

Osher and Sethian [1, 2]. Level set methods are simple numerical methods used to solve various

PDE problems. Recently, they have been used to many areas, including optimal design, CAD,

3D shape modelling, motion simulation, etc.

We will introduce basic concepts of level sets in sections 1.1 and 1.2, then introduce evolving

curve grounds on external velocity, mean curvature and normal direction velocity in section

1.3. Finally, we will discuss the advantages and disadvantage of using level set methods to

implement curve evolution.

2.1 Implicit Functions

Consider a unit circle in two dimensions. We generally represent such a curve as a function

x2 +y2 = 1. A convenient way of approximating the representation is to parameterize the curve

by discretizing it to a finite set of points s, s ∈ [0, 1] , such that each point x is on the curve,

x = ~v(s) = (x(s), y(s)). The curve is denoted as C(s) : [0, 1] → R2.

Alternatively, the idea of level set methods is to represent the interface in Rn in one higher-

dimensional function. For example, the zero isocontour of function φ(x, y) = x2 + y2 − 1, i.e.

φ(x, y) = 0, also expresses the same unit circle as above. Note that φ is a three-dimensional

function, and the unit circle is a two-dimensional curve.

For an implicit function φ(x), here x = (x1, . . . , xn) ∈ Rn, define the interior region an

open sets Ω− = {x | φ(x) < 0 }, and the exterior region Ω+ = {x | φ(x) > 0 }. The contour

is defined by ∂Ω = {x | φ(x) = 0 }.
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Fig. 2.1 parameter representation

Fig. 2.2 Implicit representation of x2 + y2 = 1

2.2 Signed Distance Function

Given any interface Γ in Rn, a signed distance function is used to generate the underly implicit

function in a different way.

A distance function d(x), where x = (x1, . . . , xn), is defined as

d(x) = min(|x− xI |) for all xI ∈ ∂Ω, (2.1)

implying that d(x) = 0 if x ∈ Γ.

A signed distance function is an implicit function φ with |φ(x)| = d(x). The φ(x) is defined
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as

φ(x) = −d(x) for x ∈ Ω−

φ(x) = d(x) for x ∈ Ω+ (2.2)

φ(x) = 0 for x ∈ ∂Ω = Γ.

In our example, we replace the implicit function φ(x, y) = x2 + y2 − 1 with the signed

distance function φ(x, y) =
√

x2 + y2 − 1 in order to represent the unit circle ∂Ω = {x | |x| =

1}.

Between the implicit function and signed distance function, there are several common prop-

erties and advantages of geometry operations.

• Region definition

The signed distance function gives the same boundary ∂Ω, interior region Ω−, and exte-

rior region Ω+, that φ(x, y) = x2 + y2 − 1 does.

• Local properties of the interface

– Gradient and Normal

Define the gradient as

∇φ =

(
∂φ

∂x
,
∂φ

∂y

)
. (2.3)

The gradient ∇φ is perpendicular to the isocontours, and points to the direction of

increasing φ. This indicates that if x is a point at one isocontour, ∇φ(x) has the

same direction as normal ~N at x. Thus the unit normal is

~N =
∇φ

|∇φ|
. (2.4)

Furthermore, the signed distance function has a new property that is

|∇φ| = 1 for all x 6= 0. (2.5)
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– Mean Curvature

The mean curvature of the interface is defined as the divergence of the normal ~N ,

that is

κ = ∇ ·
(
∇φ

|∇φ|

)
, (2.6)

so that κ > 0 for convex regions, κ < 0 for concave regions, and κ = 0 for a plane.

• Unity and Binary operations

For an implicit function φ(x), the complement of φ can be defined by φc(x) = −φ(x).

If there are two implicit functions φ1 and φ2, the union of the interior regions of φ1 and

φ2 can be obtained by φ(x) = min(φ1(x), φ2(x)). Similarly, intersection of the interior

regions of φ1 and φ2 can be obtained by φ(x) = max(φ1(x), φ2(x)). It’s easy to generate

other operations of the interfaces like these do while using implicit functions.

Fig. 2.3 is an example of using level set methods to express curve evolution. Fig. 2.3a is the

distance function φ(x) =
√

x2 + y2 − 1, Fig. 2.3b shows the contours of φ for each level set,

we can see that the zero level set is a unit circle. If we suppose the unit circle evolves under the

normal velocity of constant unit speed, after a time step 4t the φ(x) evolves as shown in Fig.

2.3c. Fig. 2.3d shows the contours of Fig. 2.3c, we have seen that now the zero level set is a

circle with radius two.

In fact, we can also let the φ be positive inside the circle and negative outside the circle,

that will turn the cone upside down, and still gives the same zero level set of unit circle. At this

situation, φ(x) = 1−
√

x2 + y2.

2.3 Motion of Level Sets

The zero level set is generated to the corresponding curve that we are interested in. Then,

evolving the φ(x, y) gives the curve evolution by tracking the zero level set at each time step.

-6-



(a) φ(x) at time t (b) φ(x)=0 at time t

(c) φ(x) at time t +4t (d) φ(x)=0 at time t +4t

Fig. 2.3 Motion of a curve using level set methods

The level set methods can also be used in higher dimensional hyper-surface, for example the

three-dimensional surface and thus the φ is a four-dimensional function. Since our main goal

is to use level set methods to implement curve evolution and image segmentation, we will only

discuss two-dimensional curves and three-dimensional signed distance functions.

2.3.1 External Velocity Field

Let φ(x, y, t) denote φ(x, y) at time t and Γ(t) be the zero level set of φ(x, y, t). Suppose the

external velocity of each point at Γ is given as ~V (x, y). Generating such external velocity filed

~V = (u, v), we wish to move Γ with this velocity. This gives the equation

Γt = ~V (x, y). (2.7)

Since Γ(t) is the evolving zero level set of φ(x, y, t), this also gives φ(Γ(t), t) = 0. Taking

-7-



the derivative to t and applying chain rule gives

φt + ~V · ∇φ = 0, (2.8)

this is the basic equation that will be used to introduce other kinds of velocity fields. Since

we are working on the images, we can generate cartesian grids with size of images, then the

numerical methods are used to solve the φ forward in time.

A rather simple first-order accurate method is the forward Euler method given by

φn+1 − φn

4t
+ ~V n · ∇φn = 0, (2.9)

where 4t is the discretized time step, and tn+1 = tn +4t, φn+1=φ(x, y, tn+1).

To write equation (2.9) in expanded form as

φn+1 − φn

4t
+ unφn

x + vnφn
y = 0, (2.10)

where (u, v) is the external velocity.

We look at one single point (xi, yi) with velocity (ui, vi) as example, if ui > 0 the value of

φ(xi, yi) moves from left to right, and the method of characteristics tells us to look to the left

of (xi, yi) to determine what value of φ will land on the point (xi, yi). Similarly, if ui < 0, we

look to the right of (xi, yi) to determine what value of φ will be. Clearly, backward difference

D−x
i,j φ should be used to approximate φx when ui > 0 and forward difference D+x

i,j φ should be

used to approximate φx when ui < 0, where

D−x
i,j =

φi,j − φi−1,j

4t
(2.11)

D+x
i,j =

φi+1,j − φi,j

4t
. (2.12)

The same is in approximating φn
y . This method of choosing an approximation to the spatial

derivatives based on the sign of u and v is known as upwinding.

There are many other methods can get second order or third order accurate in approximating

φn
x and φn

y , for example, Hamilton-Jacobin ENO, Hamilton-Jacobin WENO, and TVD RK (To-

tal Variation Diminishing Runge-Kutta) method [7]. However, we use simple upwind method
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and forward Euler in this thesis. The reason is that we are interesting in segmentation using

curve evolution not in numerical accurate of simulating curve evolution.

Fig. 2.4 shows the circle moving under the external velocity field ~V = (1, 0), this velocity

field pushes the circle to move from left to right.

Fig. 2.4 Motion of a curve under external velocity field

2.3.2 Normal Direction with Mean Curvature

In the last subsection we discussed the motion of an interface in an external velocity filed. Now

we consider the motion for a self-generated velocity. That is, the interface moves in normal

direction with a velocity proportional to its curvature, which is generated from the φ itself. If

we decompose ~V = Vn
~N + Vt

~T , where ~N is the normal vector and ~T is tangent vector to the

interface, the level set equation (2.8) is equivalent to

φt + (Vn
~N + Vt

~T ) · ∇φ = 0, (2.13)

since ~N and ∇φ point in the same direction, ~T · ∇φ = 0. Then equation (2.13) becomes

φt + Vn
~N · ∇φ = 0. (2.14)

Here Vn = −bκ, where b > 0 and using (2.4), finally we have

φt − bκ |∇φ| = 0. (2.15)

The mean curvature has the following effects. At the convex region, the curvature κ > 0

such that the velocity in the normal direction Vn < 0. This results in shrinking curve to the

direction opposite to normal and trying to smooth curve. Similarly, at the concave region the

-9-



Fig. 2.5 Motion of a curve under curvature driven velocity

curvature κ < 0 and Vn > 0, the curve expands as to smooth curve. This motivation lets any

curve evolving into a circle and shrinking to disappear. Fig. 2.5 shows a star-shaped contour

moving under curvature driven velocity. The tips, that are convex, move inward while the gaps,

that are concave, move outward.

2.3.3 Normal Direction with Constant Velocity Field

In the last subsection the normal directional velocity of the interface is given by the mean

curvature of the interface that determined by local geometric information. Now, we discuss the

normal directional velocity of interface given by a constant velocity field ~V = a ~N . Just directly

replacing −bκ by a in the (2.15) yields the corresponding level set equation

φt + a |∇φ| = 0. (2.16)

When a > 0 the interface moves in the normal direction, and when a < 0 the interface moves

in the opposite direction. When a = 0, the interface stays still. Since φ is a signed distance

function we have |∇φ| = 1, this reduces equation to φt = −a.

By Forward Euler, φn+1 = φn − a4t, this equation gives a hint of the behavior of a curve.

-10-



(a) a > 0

(b) a < 0

Fig. 2.6 Motion of a curve under constant normal velocity

Suppose a > 0, if at some points x0 and x1, which φ(x0) = 0 and φ(x1) = a4t, after a time

step 4t, the φ(x0) = −a4t and φ(x1) = 0. This means that the zero level set moves to the

normal direction with distance a4t. Similarly, if a < 0 the zero level set moves to the opposite

direction with distance a4t. If we let our distance function φ be positive outside the circle

and negative inside the circle, then the whole curve will expand outward for a > 0 and shrink

inward for a < 0.

Fig. 2.6a is an example of a star-shaped moving under the constant normal velocity a = 1 >

0, and Fig. 2.6b is under the constant normal velocity a = −1 < 0. Compare to the motion

under the curvature driven velocity, where only the curves of the convex regions are shrinking,

the motions of convex regions and concave regions under the constant normal velocity are either

both shrinking or both expanding.

2.3.4 Overall of Level Set Methods

We have discussed the concept of using level set methods to express curves and their motions

under three kinds of velocities. Combine these three kinds of velocities to get,

φt − bκ |∇φ|+ a |∇φ|+ ~V · ∇φ = 0. (2.17)
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Let F be the function of normal directional constant velocity of grid points. Weight each kind

of velocity to yield the level set equation

φt = ακ |∇φ|+ βF |∇φ| − γ~V · ∇φ. (2.18)

By Forward Euler method, we have

φn+1 = φn +4t(ακ |∇φ|+ βF |∇φ| − γ~V · ∇φ). (2.19)

The Courant-Friedreichs-Lewy condition (CFL condition) asserts that if want to have a stability

approximation solution of (2.19), the numerical waves should propagate at least as fast as the

physical waves. In other words, (ακ |∇φ|+βF |∇φ|−γ~V ·∇φ) < 4x/4t over all grid points.

Since we work with images, the grid size is set to the pixel size. Thus 4x = 1 pixel. Our time

step must be chosen to satisfy 4t < 1/ max(ακ |∇φ|+ βF |∇φ| − γ~V · ∇φ).

The first advantage of using level set methods is that we don’t need to care about the merg-

ing or separating of curves. The topological changes of curve evolution is not problematic as

traditional curve tracking methods, which have to remove or add tracking points and reconnect

if two curves are merging or separating. The level set methods automatically handle topolog-

ical changes. Fig. 2.7a shows two single circles that are expanding to connect each other to

generate a single curve. Fig. 2.7b shows two circles, the outside circle is shrinking while the

inside expanding, then merge to a horn shape. The second advantage is that it is easy to cal-

culate the local properties of the curve, such as normal and curvature discussed in Section 2.2.

Third is the generality for arbitrary dimensions and no self-intersection problem which results

in swallowtail in PACs. And the most disadvantage is its computational expensiveness.
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(a) Merge of two expanding circles

(b) Merge of two circles which outside is shrinking and inside is expanding

Fig. 2.7 Topological changes of curves
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CHAPTER 3

IMAGE SEGMENTATION USING LEVEL SET METHODS

In this chapter we will introduce our survey of image segmentation using level set methods.

Section 3.1 gives a preview of classification and skeleton of image segmentation using level

set methods. Section 3.2, 3.3 and 3.4 provide the detail of Geodesic Active Contour, Gradient

Vector Flow, and EdgeFlow, respectively. Rather than previous edge-based methods, Section

3.5 introduce the region-based method to evolve contours via level set methods.

3.1 Preview

Image segmentation is a basic preprocessing of many image analysis applications. Most meth-

ods process image segmentation based on various attributes such as texture, color, and gray

level intensity. Most previous approaches to image segmentation can be classified as follows:

• Filtering-based methods : detect edges followed by edge linking.

• Region growing and merging.

• Global optimization based on energy functions and bayesian criteria.

• Graph partitioning and clustering.

• Curve evolution and active contour models.

Being different to the other ways which give a fragment result needed further processing,

curve evolution methods usually result in closed contours and give a whole complete object seg-

ments. The two different methods to represent and implement curve evolutions are parametric

active contours (PACs) and geometric active contours (GACs).

The major problem of using active contours to approach image segmentation is how to drive

the curve to move to the boundaries of objects. In this thesis we will discuss several well-known
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Image Segmentation Using
Level Set Methods

Active Contour EdgeFlow

(GVF)
Gradient Vector Flow

Edge-based

Mumford-Shah Model

Region-based

Fig. 3.1 Image Segmentation using level set methods

level set methods of image segmentation using active contours.

3.2 Active Contours with Edge Stopping

Caselles et al. [8] and Malladi et al. [9] are among the first to use level set methods to extract

objects from an image in their parallel works. They suppose the curve is either expanding or

shrinking and stop evolving at the object boundary. This gives the idea to design a constant

velocity field in the normal direction such that the velocities are positive or negative when the

curve is at the smooth region and zero while at the object boundary.

Suppose C(s) : [0, 1] → R2 is a parametrization of a 2-D closed curve. The edge stopping

is designed with the following edge function

g(x, y) =
1

1 + |∇Gσ(x, y) ∗ I(x, y)|
, (3.1)

where Gσ is a Gaussian function with standard deviation σ. In equation (3.1), it is obvious that at

smooth regions we have |∇Gσ ∗ I| → 0 implies g → 1 and at edges we have |∇Gσ ∗ I| → ∞
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implies g → 0. In fact, |∇Gσ ∗ I| as known is a simple method to find edges in an image.

Another edge function which falls to zero faster on edges can be defined as:

g(x, y) = e−|∇Gσ(x,y)∗I(x,y)| (3.2)

Fig. 3.2 g(x, y) = 1/(1 + |∇Gσ(x, y) ∗ I(x, y)|) of Lenna, normalize to
0 ∼ 255, where black means small value while white means large
value.

Modify the curve evolution PDE as:

Ct = g(bκ + F ) ~N, (3.3)

the corresponding level set equation is

φt = g(κ + F ) |∇φ| . (3.4)

The curve will expand if F is always positive and shrink if F is always negative. With the

effects of g, the curve will slow down when progressing near to the edges, then stops while

reaching the edges.

The problem of this method is that in the numerical calculation if the curve propagates

beyond the desired boundary, it continues propagating, there is no other mechanism to push the

curve back to the object boundary.
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To overcome this problem, Cassela et al. [3] introduce Geodesic Active Contour (GAC)

method , which uses minimization of the energy function

Min

∫ 1

0

g(C) |C ′(s)| ds (3.5)

and finds the gradient descend equation

Ct = g(κ + F ) ~N − (∇g · ~N) ~N. (3.6)

The corresponding level set equation is

φt = g(κ + F ) |∇φ|+∇g · ∇φ. (3.7)

The term ∇g generates an external velocity vector field ~V = −∇g. The corresponding vector

is almost zero at the smooth region, and points to the nearest edge at the neighborhoods of this

edge, see Fig. 3.3a. As the contour moves beyond the edge, the vector pushes the contour back

to the edge.

3.3 Gradient Vector Flow

Since the ∇g is almost zero at smooth region, the initial contour must be close to the true

boundary or else it will evolve to ill result. In the papers [4] [10], Xu and Prince use an energy

function to generate vector flow filed which is propagated from certain image generating vector

field.

Define

f 1(x, y) = |∇I(x, y)|2 ,

f 2(x, y) = |∇Gσ(x, y) ∗ I(x, y)|2 .

(3.8)

The field ∇f has vectors pointing toward the edges, but as mentioned above this kind of

field has a narrow capture range. Xu an Prince generate vector filed ~v(x, y) = (u(x, y), v(x, y)),
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called the gradient vector flow (GVF) field, from minimizing the energy functional

ε =

∫∫
µ(ux

2 + uy
2 + vx

2 + vy
2) + |∇f |2 |~v −∇f |2 dx dy, (3.9)

where f is chosen as f 1 or f 2 and µ is a parameter governing the tradeoff between the first and

the second terms.

We see that when |∇f | is small, the vector is dominated by partial derivatives of the vector

field, when |∇f | is large, the second term dominates the integrand, and is minimized by setting

~v = ∇f . This says that the minimum solution will hold the original vector at neighborhoods of

edges and propagate the vector for the smooth region next to the edges.

The calculus of variations gives the minimal solution of energy function in Euler equation

forms. Given

E[u] =

∫∫
D

F (x, y, u, ux, uy)dx dy, (3.10)

the solution minimizing E[u] satisfies

∂F

∂u
=

∂

∂x

∂F

∂ux

+
∂

∂y

∂F

∂uy

. (3.11)

Solving equation (3.9), the solution can be found from

µ∇2u− (u− fx)(fx
2 + fy

2) = 0

µ∇2v − (v − fy)(fx
2 + fy

2) = 0.

(3.12)

Now, we turn to solve (3.12) by treating u and v as functions of time

ut(x, y, t) = µ∇2u(x, y, t)− (u(x, y, t)− fx(x, y)) · (fx(x, y)2 + fy(x, y)2)

vt(x, y, t) = µ∇2v(x, y, t)− (v(x, y, t)− fy(x, y)) · (fx(x, y)2 + fy(x, y)2)

(3.13)

where u(x, y, 0) and v(x, y, 0) are initialized as ∇f . In practice, the more iterations to solve

(u, v) the more range vectors diffuse and the larger capture ability the result has.

C. Xu and J. L. Prince use the GVF in the parametric curve model

Ct(s, t) = αC ′′(s, t) + βC ′′′′(s, t) + ~v. (3.14)
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(a) −∇g (b) GVF v

Fig. 3.3 Compare vector field of GAC with GVF of V-shape.

In this thesis we replace f with −∇g, in last subsection, to generate GVF, and use GVF as

external velocity field. This results in modifying equation (3.7) as

φt = g(κ + F ) |∇φ| − ~v · ∇φ. (3.15)

Since v has large capture rang, the curve evolution can be driven by field rather than constant

speed F . The curve will shrink at somewhere and expand at others.

3.4 EdgeFlow

Previous active contour methods aim to identify an object by utilizing the local discontinuities

such as edges. The weak connection between contours and images is only with edge function

or vector flow generated from edge function. Obviously, it’s bad on nature images or texture

images. As we will discuss in our experiment result, the segmentation is based on the founded

edges.

Alternatively, Wei et al. [11] generate the EdgeFlow from the intensity information of the

pixel and its neighborhoods, then Sumengen et al. [5] use EdgeFlow in active contours.

Decide the number of directions n and θ = {πi/n | i ∈ 0, . . . , n− 1}. Consider a location

s in the image, define a tuple measurement F (s, θ) = [E(s, θ), P (s, θ), P (s, θ + π)], where
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E(s, θ) edge energy at s along the orientation θ.

P (s, θ) probability of finding an image boundary in the direction θ from s.

P (s, θ + π) probability of finding an image boundary in the direction θ + π from s.

Sumengen et al. generate these measurements based on intensity and texture properties. For

vector-valued image the intensity measurement can be calculated at each layer, RGB color

image as example, we will have FR(s, θ), FG(s, θ), FB(s, θ) and FTEX(s, θ) for each direction

θ from each location s. Finally, combining each orientation for each location s generates final

EdgeFlow.

3.4.1 Useful Tools

We introduce several useful tools used to generate F (s, θ). The two-dimensional Gaussian

function is defined as

Gσ(x, y) =
1√
2πσ

e

−(x2 + y2)

2σ2 . (3.16)

The first derivative of Gaussian (GD) along the x-axis is

GDσ(x, y) =
∂Gσ(x, y)

∂x
= − x

σ2
Gσ(x, y) (3.17)

and the difference of offset Gaussian (DOOG) along the x-axis with distance is defined as

DOOGσ(x, y) = Gσ(x, y)−Gσ(x + d, y), (3.18)

where d is the offset between centers of two Gaussian kernels. To generate the derivative of

Gaussian and difference of offset Gaussian along some orientation θ, we simply rotate the co-

ordinates with −θ and calculate GD and DOOG. From linear algebra, we know that the new

coordinates are

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

(3.19)
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thus

GDσ,θ(x, y) = GDσ(x′, y′)

DOOGσ,θ(x, y) = DOOGσ(x′, y′).

(3.20)

3.4.2 Intensity EdgeFlow

The GDs are generally used to determine if s lies near the edge and the edge lies in direction

θ from s, i.e. the edge direction is around perpendicular to θ. If so, |GDσ,θ(x, y) ∗ I(x, y)| will

have a large value. In fact, this is one dimensional derivative form different to |∇Gσ(x, y) ∗ I(x, y)|.

s
θ•

Fig. 3.4 Edge lies on direction θ from s

For two orientation θ1 and θ2, if |GDσ,θ1(x, y) ∗ I(x, y)| > |GDσ,θ2(x, y) ∗ I(x, y)|, then

the edge may lies from s in direction θ1 than θ2. The function E(s, θ) will be used to express

the strength of vectors. Thus, we define edge energy as

E(s, θ) = |GDσ,θ(x, y) ∗ I(x, y)| . (3.21)

Another prediction method utilities DOOGs, the simple idea is that if there is an edge lies

within the distance d in direction θ from s, the intensity different between (x+d cos θ, y+d sin θ)

and (x, y) should be large. The error in prediction is defined to be

Error(s, θ) = |Iσ(x + d cos θ, y + d sin θ)− Iσ(x, y)|

= |DOOGσ,θ(x, y) ∗ I(x, y)| . (3.22)
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Therefore, the probabilities of EdgeFlow direction is

P (s, θ) =
Error(s, θ)

Error(s, θ) + Error(s, θ + π)
. (3.23)

Note that σ is the only parameter needed to control.

3.4.3 Texture EdgeFlow

The texture features are extracted based on a Gabor wavelet decomposition scheme [12]. A two

dimensional Gabor function g(x, y) and its Fourier transform G(u, v) are

g(x, y) =

(
1

2πσxσy

)
e

−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πjWx


, (3.24)

G(u, v) = e
−1

2

(
(u−W )2

σ2
u

+
v2

σ2
v

)
, (3.25)

where σu = 1/2πσx and σv = 1/2πσy. By dilations and rotations of g(x, y) through

gmn(x, y) = a−mG(x′, y′), a > 1, m, n ∈ Z

x′ = a−m(x cos ϕ + y sin ϕ)

y′ = a−m(−x sin ϕ + y cos ϕ).

(3.26)

this generates a class of function decompose frequency domain.

Give Ul and Uh to be the lower and upper center frequencies of interest. Let K be the

number of orientations and S the number of scales. Then design

a = (
Uh

Ul

)−
1

S−1

σu =
(a− 1)Uh

(a + 1)
√

2 ln 2

σv = tan
( π

2k

) [
Uh − 2 ln

(
σ2

u

Uh

)] [
2 ln 2− (2 ln 2)2σ2

u

U2
h

]− 1
2

(3.27)

using (3.26) with W = Uh, m = 0, 1 . . . , S − 1, and k = 0, 1 . . . , K − 1. The total number of

decomposed frequencies are N = S ·K, see Fig. 3.5 as an example.
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Fig. 3.5 Filter responses in the Gabor filter dictionary. The filter parame-
ters used are Uh = 0.35, Ul = 0.1, K = 6 and S = 4.

Ma et al. define Ul = 1/4σ and Uh = 0.45, as in the intensity edges, the σ is the only

parameter needed to control. Applying filters on the image gives the Gabor filtered images

Oi(x, y) = gi(x, y) ∗ I(x, y) = mi(x, y) e[ϕi(x, y)] (3.28)

where 1 ≤ i ≤ N .

For each location (x, y), now we have a texture feature vector

Ψ(x, y) = [m1(x, y), m2(x, y), . . . ,mN(x, y)] (3.29)

The texture edge energy is defined as

E(s, θ) =
∑

1≤i≤N

|GDσ,θ(x, y) ∗mi(x, y)| (3.30)

and the error in prediction is defined as

Error(s, θ) =
∑

1≤i≤N

|DOOGσ,θ(x, y) ∗mi(x, y)| (3.31)

The probabilities P (s, θ) can be estimated using (3.23).

3.4.4 EdgeFlow Vector

For each location s, we had generated intensity and texture edge energy and probabilities in

different orientation. The edge energy and probabilities can be combined together to form a
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single EdgeFlow field. Consider

E(s, θ) =
∑
a∈A

Ea(s, θ) · ω(a)

P (s, θ) =
∑
a∈A

Pa(s, θ) · ω(a),
∑
a∈A

ω(a) = 1

(3.32)

where A = {intensity/color, texture}, the ω is the weighting coefficient with different image

attribute a ∈ A. For example, EdgeFlow of the RGB color model image could be obtained with

A = {red, green, blue, texture} and maybe let ω(texture) = 0.4 and ω(red) = ω(green) =

ω(blue) = 0.2. After combine various edge energy and probabilities, there are only one edge

energy and one probability in each orientation at location s. The following work is to deicide

flow direction at each lactation s form {[E(s, θ), P (s, θ), P (s, θ + π)] | 0 ≤ θ < π} Define the

continuous range of flow direction which maximize the sum of probabilities in a corresponding

half plane

Θ(s) = arg max
θ

{ ∑
θ≤θ′<θ+π

P (s, θ′)

}
. (3.33)

The EdgeFlow vector is then defined by

~F (s) =
∑

Θ(s)≤θ<Θ(s)+π

E(s, θ) · ejθ. (3.34)

The ~F (s) is a complex number with magnitude representing edge energy and angle representing

the flow direction. In our implementation the direct flow vector is

~V (s) =

 ∑
Θ(s)≤θ<Θ(s)+π

E(s, θ) cos θ,
∑

Θ(s)≤θ<Θ(s)+π

E(s, θ) sin θ

 . (3.35)

After this vector field is generated, the original method is followed by propagating vectors.

The propagation ends and edges are made by checking the opposite direction vectors. If x or

y component of two connect vectors change signs, the edges are marked. The boundaries are

found by linking the edges. Segmentation is further processed with region merging.

Sumengen et al. [5] use EdgeFlow as external vector field in front propagation. They utilize

EdgeFlow to produce the normal direction constant velocity F as the edge function. The edge
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Fig. 3.6 The procedure to generate EdgeFlow

function F is derived as follows

F =
1

1 +
∣∣∣~V ∣∣∣ . (3.36)

This is the reverse procedure of gradient vector flow method, which generates edge function

first and then external velocity. We summarize the procedure as follows
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3.5 Region Based Image Segmentation

Most methods of pushing the contour to the edge utilize vector flow field and stopping edge

function, as we had surveyed prior, with level set active contour model (2.18). Another method

is to generate level set functions based on minimization of an energy based-segmentation. Chan

et al. [6] proposed a model using Mumford-Shah functional for segmentation [13].

3.5.1 Description of model

Suppose u0 : Ω̄ → R is the given image and C is the curve in Ω. The Mumford-Shah functional

for segmentation is

FMS(u, C) =µ · Length(C)

+ λ

∫
Ω

|u0(x, y)− u(x, y)|2 dx dy (3.37)

+

∫
Ω\C

|∇u(x, y)|2 dx dy,

where µ and λ are positive parameters.

The solution of image u is obtained by minimizing this functional and is formed by smooth

regions Ri with sharp boundaries, denoted here by C. Mumford and Shah reduced FMS with

restriction to piecewise constant functions u = ci where ci is constant on each connected com-

ponent Ri of Ω\C. The model proposed by Chan et al. is a particular case of the Mumford

and Shah’s model, which the Ω\C is decomposed according to only two piecewise components

R1 = inside(C) and R2 = outside(C).

The idea of Chan et al. is that assume the image u0 is formed by two regions of piecewise-

constant intensities, generally one object and one background. Then consider the fitting energy

function

F1(C) + F2(C) =

∫
inside(C)

|u0(x, y)− c1|2 dx dy +

∫
outside(C)

|u0(x, y)− c2|2 dx dy, (3.38)

where c1 = average(inside(C)) and c2 = average(outside(C)). If C is fitting to the boundary
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of the object, the F1(C) + F2(C) ≈ 0. Therefor in active contour model the curve C will

minimize this function, and we add regularizing terms the length of C and the area inside C.

This energy function is

F (C, c1, c2) =µ · Length(C) + ν · Area(inside(C))

+ λ1

∫
inside(C)

|u0(x, y)− c1|2 dx dy (3.39)

+ λ2

∫
outside(C)

|u0(x, y)− c2|2 dx dy.

3.5.2 The Level Set Formulation of the Model

Represent the curve C with level set methods, here we inverse the φ to φ > 0 inside the curve

and φ < 0 outside the curve. The function becomes:

F (φ, c1, c2) =µ · Length{φ = 0}+ ν · Area{φ > 0}

+ λ1

∫
φ>0

|u0(x, y)− c1|2 dx dy (3.40)

+ λ2

∫
φ<0

|u0(x, y)− c2|2 dx dy.

Note integral terms in the function are over inside and outside regions of the curve respectively.

Besides, after evolved with error of accuracy the zero level set lying between φ > 0 and φ < 0

may not exactly zero. In order to set the integral over the entire image domain Ω and measure

the length of the curve we utilize the following two special functions:

• Heaviside function

H(x) =

1 if x ≥ 0,

0 if x ≤ 0.
(3.41)

• Dirac measure δ

δ(x) =
d

dx
H(x). (3.42)

-27-



Express the function F in

F (φ, c1, c2) =µ

∫
Ω

δ(φ) |∇φ| dx dy + ν

∫
Ω

H(φ)dx dy

+ λ1

∫
Ω

|u0(x, y)− c1|2 H(φ)dx dy (3.43)

+ λ2

∫
Ω

|u0(x, y)− c2|2 (1−H(φ))dx dy.

Minimizing F (φ, c1, c2) using a gradient descent method, yields the associate Euler equation

for φ

φt = δ(φ)

[
µ · div

(
∇φ

|∇φ|

)
− ν − λ1(u0 − c1)

2 + λ2(u0 − c2)
2

]
. (3.44)

The additional length term is a regularizing term and has a scaling role. If µ is large, only lager

objects are detected, while for small µ, much and smaller objects are also detected. Chan et al.

set ν = 0 and λ1 = λ2 = 1. This is different to general level set active contour model. Actually,

the term −ν − λ1(u0 − c1)
2 + λ2(u0 − c2)

2 can be seen as the constant speed in the normal

direction but is dependent on the position and time.

3.5.3 Model of Vector-Valued Images

In the continuous paper of Chan et al. [14], they extended the method to vector-valued images.

The model lets the curve minimize the energy function according to each channel u0,i of an

image, with i = 1, . . . , N channels.

Let c+ = (c+
1 , . . . , c+

N) and c− = (c−1 , . . . , c−N) be the vectors of the averages of inside and

outside curve on each channel respectively. The extension of model is

F (φ, c+, c−) =µ · Length(C)

+

∫
inside(C)

1

N

N∑
i=1

λ+
i

∣∣u0,i(x, y)− c+
i

∣∣2 dx dy (3.45)

+

∫
outside(C)

1

N

N∑
i=1

λ−i
∣∣u0,i(x, y)− c−i

∣∣2 dx dy.
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Rewriting it in level set form, we have

F (φ, c+, c−) =µ

∫
Ω

δ(φ) |∇φ| dx dy

+

∫
Ω

1

N

N∑
i=1

λ+
i

∣∣u0,i(x, y)− c+
i

∣∣2 H(φ)dx dy (3.46)

+

∫
Ω

1

N

N∑
i=1

λ−i
∣∣u0,i(x, y)− c−i

∣∣2 H(1− φ)dx dy

and the Euler equation for φ

φt = δ(φ)

[
µ · div

(
∇φ

|∇φ|

)
− 1

N

N∑
i=1

λ+
i (u0,i − c+

i )2 +
1

N

N∑
i=1

λ−i (u0,i − c−i )2

]
. (3.47)

The µ is regularizing term as above, λ+
i and λ−i are used to set different weighing according

each layer.
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CHAPTER 4

EXPERIMENT RESULTS

In this chapter we will discuss the experiment results using the level set segmentation meth-

ods. First, we will discuss the effects of parameters when using level set methods on image

segmentation. Then some artificial images will be the sample of image segmentation in order

to compare the noise effects of these methods. In our experiment we can organize these meth-

ods from the view point of how they drive the curves. The first part is driven by generated

vector field with edge function, this part including Geodesic Active Contour, Gradient Vector

Flow and Edge Flow. The vector field ~V and edge function F are calculated before the curve

evolution and fixed at all time. Another part is driven by energy balance which the curve evo-

lution is according to the region stability which changes with time to time. We will discuss the

improvement progress of these methods and observe the practical situation in our experiment.

4.1 Vector Driven Methods

The general level set equation of curve evolution is of the form

φt = ακ |∇φ|+ βF |∇φ| − γ~V · ∇φ.

We process the image segmentation with procedure as in Fig. 4.1 to generate the curve evolution

segmentation. With the several methods we have introduced, each term can be summarized as

• κ based on the curve itself,

• F the edge function used to decide whether the curve is still expanding or shrinking or

stops at the edges,

• ~V the velocity field pushes the curve to move to the edges.
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Image

Caculate

Vector Flow
~V

Edge Fun.
F

!!!!!!aaaaaa!!!!!!a
aaaaa

Initialization
φ0

Caculate curvature
dependent speed

Caculate ~V and F
dependent speed

Yes

Ct : {φt = 0}
converges?

Update φt, t = t0 + n4t

Stop

Evoluation

No

Fig. 4.1 The procedure of image segmentation using level set methods

The total amount of these three forces decide the curve evolution. Besides, α, β, and γ are

weights to each term and σ is used in calculating Gaussian filtered image. In the experiment we

manual set γ = 1 and α < 0.3 for each method. How to set a value for β is the most critical

problem in curve evolution for segmentation. Too small β will make curve move slowly and

may stick if there is no external velocity vector. Too large β will let curve move across the

weak edges even there have external velocity pushing curve back to edges, but it is not enough

to balance the force given by F . We first test the effect of each velocity as follows.
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4.1.1 Curvature Term

In fact, the κ is set to −κ as we discussed in section 2.3.3. The κ keeps the curve evolving

smoothly since it can suppress the high curvature location. In the segmentation, the κ also

effects the sensitives of curve when moving pass the noise. Fig. 4.2 shows an example when a

curve is moving across the noise, In this example, the size of each dot is about 10 pixels and

β = 0.3. Fig. 4.2a is curve evolving with α = 0.1, Fig. 4.2b is shows the curve evolved with

α = 0.5. The difference is that when the curve meets the noise with small α value, it will be

stopped according the relative F ≈ 0, although κ velocity should make small expansion of the

curve it is not large enough to overcome the influence of ~V which pushes the curve back to the

boundary of dots, and with large α value, the κ term of velocity will be able to overcome the

influence of ~V near the boundary.

(a) α = 0.1

(b) α = 0.5

Fig. 4.2 The curve evolution under different κ weighting

4.1.2 Edge Function Term

Next, we experiment the Edge Function term F = g, we find that this term controls the segmen-

tation results in methods GAC and GVF. There are two variables that generate edge function

and affect the curve evolution. First, the σ of the Gaussian smooth function decides the pixel

rang of an edge to be found. Fig. 4.3b and Fig. 4.3c show σ = 0.75 and σ = 2, respectively.

With small σ values the Gaussian smooth function is sensitive to the noises and the resultant
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curve is hard to evolve because at most ranges F ≈ 0. We try to increase the α and β weights

of κ and F , respectively, to overcome this situation in high noise images. We find that although

this makes curve to easily pass through the noise in theory, but in practice, it does not work.

Especially the new problem occurs in the hight curvature corner such as branch corner of a

vessel, the high α value will let curve to expand and leave the corner.

Use large σ value can blur the noise but it will also extend the small F area around the

noises, in this situation, some weak but border noise will result extension area of F ≈ 0. We

can see this at top left branch in Fig. 4.3c, there is a blurred edge across the vessel, when curve

enter the narrow vessel it will stop.

We use the following fixed edge function to nonlinearly enhance the F values.

F = g =
1

1 + a ∗ |∇Gσ ∗ I|
. (4.1)

Observe that F will have a larger value if 0 < a < 1. This means the F value of noise will not

approximate zero, but this also increases the F value of real edges. We can use a threshold d to

cutoff the F , if F < d we set F value equal to zero. And if a > 0 it can used to reduce the F in

the weak edges in noiseless images, which have smooth areas but the edge between objects are

not strong. We can chose a according to the original edge function to look if an image is filled

with noise or filled with smooth regions with weak edges between them.

The edge linking is another problem in F , if there are small gaps in the edge the curve will

expand out from this gap. We use a threshold as above to link the edge, this method also set the

F value of edges absolutely equal to zero. Because we work on the gray images, the maximum

|Gσ ∗ I| is about 255
√

2. Thus the smallest F = 1/(1 + 255
√

2) ≈ 0.002, after several time

steps, the curves will leave the edges. If we set the F values of edges to be zero, we can avoid

this situation. But this improvement only works for gaps small enough. For large discontinuity,

it is really the problem of edge detection.

These problems are caused by that the edge functions are generated roughly from gradient
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(a) σ = 0.75 (b) σ = 0.75 (c) σ = 2 (d) scale with a = 0.1

threshold d

(e) g(x, a) = 1/(1 + a |x|)

Fig. 4.3 Different control of generating edge function

of gaussian smoothed image. The methods GAC and GFV design the curve to stop according to

the edge function, that means where the final curve is, where the edges are found from gradient

of gaussian smoothed image.

Summarize the adjustment for F in the experiment

• select suitable σ

• select a to enhance edge function according the original edge function

• select the threshold d to set F = 0 if F is less than the threshold

(a) No threshold (b) threshold
with 0.5

(c) curve expand over
the edge

Fig. 4.4 Edge linking by threshold
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4.1.3 Vector Field Term

The main difference between vector driven methods is the vector field generation. Before test

the vector field generated by these methods, we explain the basic edge stopped method without

external vector field. The basic method uses only κ and edge function F , and the initial curve

is set to cover the objects or entirely inside an object. Then the curve expands or shrinks

until reaches the edges. But after several time steps, the curves will leave the edges, as we have

(a)

(b)

Fig. 4.5 Simplest segmentation by active curve

discussed in last subsection. The improvement of GAC is to add the external vector field around

the edges. This let the curve stop at the edges. We can see the same effect in the GVF too, since

the GVF is extended from GAC. The drawback is that the curve still need to be initialized to

cover the object or to be inside the object. The GVF propagates the vector field and emphasizes

three improvements

• the curve can be set across the object,

• avoid the curve across the gap of edges,

• curve can move to enter concave regions.

We show this in Fig. 4.6, which the curve is initialized to across the object and is influenced by

the vector field to surround the object without crossing top and bottom gaps.

The firs improvement is because the vectors around the gaps will be generated after vector

propagation and points to the opposite of edges as Fig. 4.6b shows. The second one can be used
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(a)

(b)

Fig. 4.6 Improvement by GVF

to overcome the edge gaps problem as we have mentioned above. Unfortunately, the improve-

ment only suits to the situation when there is only one object we want. In our experiment, we

observe when the curve movement there are multi-object. The curve stops between the parallel

corners or edges of objects.

Fig. 4.7 Multi-Object curve stop at gaps

The last improvement is that the curve can move into the concave regions of an object. Fig.

4.8 shows an example about this problem, the original −∇g in the concaves of w-shaped point

horizontally and parallelly to left and right edges as shows in Fig. 4.8b.

When the curve enters the concaves, it will be stopped. After propagation using GVF

method, the vectors in the concave turn to point into concave as shown in Fig. 4.8c. Fig. 4.9

shows the curve evolution with −∇g and GVF respectively. But in our experiment we observe

that this only works well if the concave region is open wide and reduce to narrow or almost the

same width. If the concave region is from narrow to wide or with some bulge, the vectors after

propagation will point outward the concave and the curve stays still. We can see this in Fig.

4.8d. Fig. 4.10 shows a clearer example, where vectors in the front part of concave point out
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(a) w shape (b) right concave of
−∇g

(c) right concave of
GVF

(d) left concave of
GVF

Fig. 4.8 Vector Field on the concave region

(a) with −∇g

(b) with GV F

Fig. 4.9 The curve evolution under different vector field

and vectors in the rear area of concave point into concave.

The GAC and GVF generate vector field based on gradient of edge function, i.e. F = g and

~V = −∇g, this means there are limits to the texture images.

In contrast to generate vector field from edge function, EdgeFlow uses Gabor filter to give

a better vector flow of texture images. Fig. 4.11 shows a texture box with similar intensity. In

the experiment we utilizes the streamlines to compare the vector field generated by different pa-

rameters. The streamlines are the paths over which a dense number of free particles move under

the influence of external forces when laced in the external force field. From the experiment, in

the texture images, the σ has to set large, in order to avoid the disorderly vector groups which

obstruct the curve evolution. We show this in the Fig. 4.12, with σ = 3 there are a little textures
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(a) u shape (b) GVF

Fig. 4.10 U-shape Concave region

in the inside box which are regarded as edges and results the vectors point to them. And we

compare the EdgeFlows generated with intensity or texture only to look the effect of the pre-

diction using Gabor filter. The most drawback of EdgeFlow is that it is very time consuming.

(a) Texture Box
image

(b) EdgeFlow of (a)

(c) Segmentation with EdgeFlow

Fig. 4.11 EdgeFlow generate with 12 orientation, σ = 5, S = 5, K = 6, texture EdgeFlow
only.
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(a) σ = 5 texture only (b) σ = 3 texture only (c) σ = 3 intensity only

Fig. 4.12 Streamlines of EdgeFlow vector field

4.1.4 Force Balance Problem

We have tested the each vector driven method in terms of each force. In these methods we set

the curve to cover, inside or across the objects. While the initial curve is far from the objects or

edges, there are two methods to evolve curves. First method is to suppose that the vector field

~V is able to move the curves to the objects. But in the multi-object images or nature images, the

vectors between the objects are disarray. And the curve will be ill evolved. Second is to set the

curve expanding by F and will around the objects, this means in the smooth region the effect of

ακ+βF is must larger than γ~V , otherwise the curve will have ill-evolution as above. We show

our experiment in Fig. 4.13

(a) Ill evolution

(b) Expanding around the objects

Fig. 4.13 The curve initialize outside the objects

But ακ + βF should also be less than γ~V near the edges. Otherwise, the little values of

ακ + βF will let the curve leave the edge after several time steps, the ~V is not able to push the

curves back to the edges. And the curves will keep leave the edges.
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F F

~V ~V

Edge

to edge
at edge
leave edge

Summarize each parameter setting from experiment as follow

• ακ + βF > γ~V let curves expand to edges at smooth region.

• ακ + βF small enough at edges avoid curve leave the edges.

• ακ + βF < γ~V let curves back to the edges when curves try to leave edges.

4.2 Energy Balance Methods

Instead of vector driven methods, we test on the region based methods. The region based

equation is

φt = δ(φ)

[
µ · div

(
∇φ

|∇φ|

)
− 1

N

N∑
i=1

λ+
i (u0,i − c+

i )2 +
1

N

N∑
i=1

λ−i (u0,i − c−i )2

]

The algorithm of region based method is:

Initialize φ0, t = t0

for n less than maximum iterations

Compute ci(φt)

Compute div
(

∇φ
|∇φ|

)
Update φt, t = t0 + n4t

end
The initial curve locations affect the segmented objects in region based method. Fig. 4.14 shows

the segmentation progress of two initial curves. It is worthy to notice that the inside hole of the

circle object is also segmented out by the curve. The time cost in region based method are much

less than the vector driven methods, i.e. much fewer iterations of solving φ are needed.
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(a)

(b)

Fig. 4.14 Region based method initial in different location

4.3 Artificial Images

We test the image segmentation on artificial images. In all tests the parameters are manually

set to have best results. In Fig. 4.15 , we use GVF to segment the three objects shown. In this

example, we also can see the curve merging and splitting. Then we add 15%, 30% and 45%

Gaussian noise respectively, In the 15% Gaussian noise the GVF still can cut out the objects,

as shown in Fig. 4.16, but with more noise it is hard to set a suitable parameter to find out the

objects, since the methods are based on the edge and the edge function are noise sensitively. An

ill-improvement is to set an initial curve which covers all objects then shrink it by a vector field.

We use EdgeFlow to generate a under vector filed around edges. The segmented result with

45% gaussian noise added are shown in Fig. 4.17. With noise image, the region based method

gives good results on Fig. 4.18a and Fig. 4.18b.

-41-



Fig. 4.15 Segment three objects by Gradient Vector Flow, σ = 0.5, µ =
0.1 with 60 iteration, α = 0.05, β = 0.2

Fig. 4.16 Added 15% Gaussian noise, σ = 2, µ = 0.1 with 60 iteration,
α = 0.05, β = 0.3

Fig. 4.17 Added 45% Gaussian noise, using EdgeFlow, 8 orientation σ =
3, α = 0.1, β = 0.2
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(a) Gaussian noise 30%

(b) Gaussian noise 45%

Fig. 4.18 Segmentation of the 30% and 45% Gaussian noise image using region based method

-43-



CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

In this thesis, we survey the level set methods and their applications on image segmentation.

We separate the conclusion discuss in two ways

level set methods

The level set methods are simpler to express the surfaces or curves, but they have the draw-

back of high time consuming on numerical PDE calculation. Since each implicit function φ

can result in only one piece of segmentation, to get more segmentations we need more implicit

functions to be initialized in different parts of an image. This also increases calculation time.

Image segmentation

The advantage we can find is its convenient for cutout the region after segmentation and the

result of segmentation by curve is a complete region. The drawbacks of the level set methods

in image segmentation are that:

First, the level set is an active contour implementation method and the segmentation results

are based on the methods of the image attribute analysis, for instance, edge detection uses

gradient of Gaussian to smooth images, texture analysis utilizes Gabor filter.

Second, the generated vector field and the driven curve are hardly to balance among the

different velocities κ, F (Edge function) and ~V (External velocity field). The parameters need

to be set differently case by case. Ideally, we hope we do not need to care about the parameters,

α, β, of the level set curve evolution function and only need to care about the underlying designs

of F and ~V . For this reason, the region based method seems to give an idea of obtaining another

form of the level set function of curve evolution.

Furthermore, to solve the parameter setting, designing a training system to get reasonable

setting maybe workable.
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