
Chapter 2

Fault-Tolerant and Progressive Image Sharing

Using Vector Quantization

 In this chapter, we proposed two methods about image sharing. One is the

fault-tolerant version of vector quantization (VQ) style image sharing; and the other is

the lossless progressive version of VQ-style image sharing. In the first method, the

secret image is compressed by VQ and shared among n shadows. The n shadows are

hidden into the last bit-plane of codebooks, which look like ordinary images. After

collecting r shadows (r <= n), the codebooks and the code indices of the secret image

can be computed. The secret image can then be recovered. No information can be

revealed if less than r shadows are gotten. In the second method, a lossless

progressive image sharing method is proposed. As the number of collected shadows

increases, the quality of recovered secret image will be improved, too. Finally, a

lossless secret image can be revealed when all n shadows are acquired. The

organization of this chapter is described as follows. Section 2.1 presents the

introduction, which contains the motivation and some sharing methods nowadays.

Section 2.2 presents the proposed methods. Section 2.3 shows experimental results.

And the summary is in Section 2.4.

2.1 Introduction

 There are many methods of secret image sharing nowadays. For example, the

user can share the secret image to some shadows by the polynomial equations [1]; or

 10

can use the method of visual cryptography to share the transparencies [10]. Vector

quantization [2] is one of the approaches used in secret image sharing. By the

codebook in VQ, user computes the code indices of secret image. Because the size of

code indices is smaller than original secret image, secret image can be compressed

such that user can hide it more easily than hide the pixel values of the image directly.

Besides, because there are only two colors (black and white) can be used in the visual

cryptography, the quality of the recovered image using VQ , which can use many

different colors, is more acceptable than the one using visual cryptography. In the

literature, there are two major ways about VQ-style image sharing. The first one is

that the user provides some host images, and the codebooks for VQ are constructed

using the first m bit-planes of these host images [21] (assume that the gray levels of

the pixels of the host images are in the range 0~255, i.e., there are 8 bit-planes in

every host image). The value of m depends on the number of the host images and the

sizes of the secret image and host images. Then the user compresses the secret image

using these codebooks to get code indices. Finally, the code indices are hidden into

the last (8-m) bit-planes of these host images. In the recovery step, the user must

collect all of the host images. By computing the code indices of the secret image,

which lie in the last (8-m) bit-planes of the host images, and the codebooks, which are

the first m bit-planes of the host images, the user can retrieve the secret image.

Because the host images are only modified the last (8-m) bit-planes, the impact to the

host images is small; and besides, the quality of retrieved secret image is also not bad.

However, there is a drawback in this method, namely, if one of the host images is

damaged or lost, the user cannot get codebook, and hence, recovering the secret image

becomes impossible. The other VQ-style sharing method is that the user shares the

codebook among the n shadow images by (r, n) threshold scheme proposed by Shamir

[20]; and the code indices of secret image are kept in a local storage unit. Thus if the

 11

user gets any r of the n shadow images, the codebook can be recovered by these r

shadows. Using the recovered codebook and the code indices saved in the local

storage unit, the user can get the secret image. Unlike the first method, the second

method is fault-tolerant. The codebook can always be recovered as long as the number

of broken shadows is no more than n-r. However, the quality of the secret image

recovered using in [20] is not good as the one using in [21]. Therefore, by modifying

the first method, we propose here a VQ-style sharing method which is fault-tolerant

and with good recovered quality.

Progressive image sharing is another useful sharing method. To begin our design,

we review the progressive VQ introduced in [14] and the progressive image sharing

method proposed in [15]. By computing and hiding the difference of the original

image and the compressed image, the method in [14] can achieve the effect of

progressive reconstruction. Then, after collecting all shadow images, the secret image

was revealed losslessly in [14]. However, the order of collecting the shadow images

was important in [14], since the difference was saved in order. For example, if the

second and the third shadow images are gotten, nothing can be acquired because there

exist only the information about difference. In [15], a progressive image sharing

method by using the property of DCT frequency domain is proposed. According to

the frequency bands, user can share the data of different frequency bands in different

threshold. When more shadows are collected, the more information of frequency can

be gotten, that makes the better quality of secret image. However, this method is not

lossless. The secret image is still damaged though all the shadows are received, and

the adjustment of the threshold is not convenient, too. Thus we propose here a method

that the rough version of the secret image can be gotten when any shadows are

collected. Then, with the increasing of the number of the shadows being collected, the

quality of the recovered secret image will be better and better. Finally a secret image

1r

 12

will be recovered losslessly when all of the shadows are received.

2.2 The Proposed Secret Image Sharing Method of VQ-style

 In Section 2.2.1, we propose the fault-tolerant VQ-style sharing method, which

includes the hiding phase and reconstruction phase. In Section 2.2.2, the lossless

progressive image sharing method of VQ-style is presented.

2.2.1 Fault-tolerant VQ-style Image Sharing

 Without loss of generality, suppose that there are 5 shares in this method, and the

number of codebooks needed in the method is 3. That is, the n in Thien’s (r, n)

threshold scheme [7] equals 5; and the value of r is 3. In other words, collecting only

3 images will be enough reveal the secret image. In the n=5 host images, which all

look like normal images, only the first three of them are using as the codebooks. Just

like the original method in [21] did, the code indices of secret image are then

computed using these three codebooks. And the code indices are shared by Thien’s (r,

n) threshold scheme. Then the five generated shares are hidden in the last (8-k)

bit-planes of the five host images, respectively. As for our fourth and fifth host images,

which are not codebooks, stored not only the shares of the code indices, but also the

mixed information of the three codebooks. The mixed information of the three

codebooks is calculated from the original three codebooks using the exclusive-OR

operations

jjj BAX ⊕=,1 , (2.1)

jjj CBX ⊕=,2 , (2.2)

jjjj CBAY ⊕⊕=,1 . (2.3)

 13

(Note that A, B and C denote the first, second and third codebooks, respectively, and j

means the serial number of the code index in its own codebook. For example,

denotes the 36th code index in the first codebook; and denote the two

numbers to be hidden in the fourth host image; correspondingly, denote the

information to be hidden in the fifth host image.)

36A

1X 2X

1Y

The exclusive-OR operations can be set arbitrarily as long as they guarantee that the

three codebooks can be recovered when any 3 shadow images are received. For

example, the information generated using Equations (2.4) ~ (2.7), instead of

Equations (2.1) ~ (2.3), can also be used as the hidden data in the fourth and fifth host

images.

jjj BAX ⊕=,1 (2.4)

jjj CBX ⊕=,2 (2.5)

jjj CAY ⊕=,1 (2.6)

jjj CBY ⊕=,2 (2.7)

After hiding the information of codebooks, the fourth and the fifth host images will

look like the original host images if the size of codebook is not too huge. For example,

in a 512 x 512 host image X, it only need about one bit-plane to hide the mixed

information ((2.4) and (2.5)) of the codebooks {A, B, C} each of which contains 256

code words and each code word is 4x4=16 dimensions. The generations of the

codebooks, the code indices, and the mixed information of the codebooks are shown

in Figures 2.1 and 2.2.

 14

Fig. 2.1 The generations of the codebooks and the code indices.

Fig. 2.2 The generation and hiding of the mixed information.

 15

In the recovery part, only three of the five shares are needed to recover the secret

image. If we collect three shadows which do not include the fourth and the fifth

shadow (recalling that the fourth and the fifth shadows are the shadows that contain

the mixed information of the codebooks, and the mixed information is calculated by

the exclusive-OR operations), the code indices can then be revealed by the last (8-k)

bit-planes. Then, using these code indices and the three codebooks which are the first

k bit-planes of the three shadows, the secret image can be recovered. However, if one

of the three collected shadows is the fourth or fifth shadow, then only two codebooks

can be generated directly using the first k bit-planes of the two collected codebook

shadows. As for the third codebook, it is computed by applying the exclusive-OR

operations on these three shadows. For example, if the exclusive-OR operations are

the equations (2.1) ~ (2.3) and the three collected shares are the first, the second and

the fourth shadows, respectively, then the operation that generates the third codebook

is

jjj XBC ,2⊕= . (2.8)

If the three collected shares are the second, the third and the fifth shadows, then the

operation to calculate the first codebook becomes

jjjj YCBA ,1⊕⊕= . (2.9)

Moreover, if two of the three collected shadows are the fourth shadow and the fifth

shadows, then only one codebook can be generated directly. Then, the other two

codebooks are calculated by the exclusive-OR operations similarly. Thus all three

codebooks are gotten (either directly, or after some computation), and the code

indices can be extracted from the last (8-k) bit-planes. The secret image can be

recovered in the same way. As a remark, if only one or two shadows are collected;

then the code indices cannot be computed even if the information of the codebooks is

 16

sufficient, so nothing about the secret image will be revealed.

Fig. 2.3 The operations when receiving the 1st, 2nd, and 4th shadows.

Fig. 2.4 The operations when receiving the 2nd, 3rd, and 5th shadows.

 17

2.2.2 Lossless Progressive Image Sharing by Vector Quantization

 Like the original VQ sharing method in [14], the code indices of the secret image

are first calculated using a given codebook “ ”. We call the set of the code indices as

 (with the letter i representing the word indices), and the lossy secret image

reconstructed by as . To achieve the goal of recovering secret image by any

shadows, the set is shared to create n shadows by Thien’s (r, n) secret image with

. The n shares are then hidden in n host images. At the second stage, the

difference image of the secret image and the reconstructed image is

computed. The image is processed by VQ again using a shrunk codebook

c

1i

1i 1s 1r

1i

1rr =

2d 1s

2d c~ (c~

is obtained by shrunk all codeword values of original codebook by 10 in every

dimension), and the code indices data of is denoted as . Let denoted the

approximated image of using code indices data and the codebook c

c

2d 2i 2s

2d 2i ~ . As

mentioned above, the indices data is also shared among n shadows by Thien’s

method with threshold . The value of can be any value more than for

the purpose of progressive sharing. Then the n shadows of this stage (Stage 2) are

hidden in the same n host images where the n shadows at the first stage are hidden.

Similarly, at the third stage, the difference of and is evaluated and called .

Then, , and the shadows of are generated by the same method (must be

smaller than , too; and the codebook being used is still the shrunk codebook

2i

2rr = 2r 1r

2d 2s 3d

3i 3s 3i 2r

3r c~).

The remaining stages are executed in the same manner. After implementing the all

stages (assuming there are k stages in total), the last difference image which assigned

as is gotten at the final stage. In the final stage (the stage), the difference

image is no longer processed by VQ. Instead, it is only shared by Thien’s method,

where the threshold equals n, and the n shadows are hidden in the same n host

images mentioned above. Lastly, the n host images are completed and they can be

kd thk

kd

kr

 18

shared to internet or saved in different institutions, etc.

In the recovery phase, if any host images are acquired, the code indices

can be computed. Thus a lossy secret image can be generated. With the increasing

of the number of the shadow images being collected, if the number is fulfilled ,

can be computed, which generates . By adding and , it will produce a better

quality of secret image than . When the incoming number of the shadow images

comes to , the recovery method of the secret image becomes to adding , , and

, which is generated from (can be recovered by using the incoming

shadow images). By adding , it improves the quality of the secret image by adding

 and alone. The methods are similar as above when there are , ..., and

 shadow images being gotten. Finally, by all of the shadow images (namely, n

shadow images), can be computed (recalling that is shared to the n host

images directly instead of applying VQ in the sharing phase). And the lossless secret

image is generated by adding from to and . We will briefly describe

every stage as follows. Fig. 2.5 shows the flowchart of the proposed method in the

sharing phase.

1r 1i

1s

2r 2i

2s 1s 2s

1s

3r 1s 2s

3s 3i 3i 3r

3s

1s 2s 4r 5r

1−kr

kd kd

1s 1−ks kd

Nomenclature:

i the calculated code indices image

s the image generated by i

r the threshold in Thien’s sharing method

2d the difference of secret image and 1s

md (m=3,4,...,k) the difference of and 1−md 1−ms

Sharing Phase

I. Computer the code indices of the secret image, where can recover a lossy 1i 1i

 19

secret image , and share to the n host images with the threshold by

Thien’s method.

1s 1i 1r

II. Calculate the difference of the original secret image and . Denominate the

difference and computer the code indices of . Share to the same

n host images as I. with the threshold (note that), and compute the

image generated by .

1s

2d 2i 2d 2i

2r 12 rr >

2s 2i

III. Calculate , which is the difference of and . Then compute and

as mentioned in II. Then, is shared to the n host images with the threshold

(and the n host images are still the same ones).

3d 2d 2s 3i 3s

3i 3r

23 rr >

IV. Repeat the method mentioned above to get d, i, s, and r until the stage before the

final one.

V. After calculating share it to the n host images directly with the threshold n

instead of doing VQ.

kd

Recovery Phase

I. Collect shadow images to compute , which can get by VQ. 1r 1i 1s

II. Gather shadow images to compute , which can be revealed . Get a

better quality of secret image than by adding up and .

2r 2i 2s

1s 1s 2s

III. Repeat II. with the increasing number of the shadow images gotten.

IV. Recovery the lossless secret mage by adding from to and if the

number of the collected shadow images arrives at n.

1s 1−ks kd

 20

Fig. 2.5 The flowchart of lossless progressive image sharing in sharing phase.

 21

2.3 Experimental Results

2.3.1 Fault-tolerant Image Sharing by Vector Quantization

 The r equals 3, and n equals 5 in the example. Fig. 2.6 shows the original secret

image “Lena” whose data size is 1024 x 1024 bytes. Fig. 2.7 (a) ~ (e) are the five host

images and each one has size 512 x 512. The shadow images in which the code

indices of secret image have been hidden in the last bit-plane are shown in Fig. 2.8 (a)

~ (e). Fig. 2.8 (d) and (e) contain the mixed information of three codebooks generated

by Fig. 2.8 (a) ~ (c) (the information is calculated by the exclusive-OR operations).

Fig. 2.9 compares the original secret image (i.e. Fig. 2.6) and the recovered secret

image using any 3 shadow images. The quality of the recovered image is estimated by

the peak signal-to-noise ratio (PSNR), which is defined as
MSE

PSNR
2

10
255log10= ,

where the MSE (mean-square error) is defines as ∑∑
= =

−
×

=
m

i

n

j
ijij xx

nm
MSE

1 1

)~(1
 (note

that and are the original pixel value and the recovered pixel value,

respectively, in an m x n image). The PSNR of the recovered secret image is about

34.01 dB, whose visual quality is not too bad. And the PSNRs of the 5 shadow images

are 52.70, 52.71, 52.69, 48.87 and 50.34 dB, respectively.

ijx ijx~

2.3.2 Lossless Progressive Image Sharing by Vector Quantization

 The secret image “Jet” of size 512 x 512 in this example is shown in Fig. 2.10.

The five 512 x 512-bytes host images are shown in Fig. 2.11 (a) ~ (e). Fig. 2.12

displays the five shadow images in which the information of the secret image has

been hidden. The PSNRs are 40.21, 40.41, 40.89, 40.80 and 40.87 dB, respectively.

Figures 2.13, 2.14, 2.15, and 2.16 show the recovered secret images with different

numbers of shadow images being received. After collecting any 2 shadow images, a

 22

secret image with poor quality can be revealed, which is shown in Fig. 2.13. With any

3 shadow images, a better quality of secret image can be gotten, as displayed in Fig.

2.14. Figures 2.15 and 2.16 are two recovered secret images using 4 and 5 shadow

images, correspondingly. The PSNRs of the secret images recovered by any 2, 3, and

4 shadow images are 28.00, 32.30 and 35.96 dB, respectively, and the secret image

recovered by using 5 shadow images is “lossless”.

2.4 Summary

 In this chapter, two method of VQ-style secret image sharing are proposed. One

is the fault-tolerant image sharing, and the other is the lossless progressive image

sharing. In the first method, rn − shadow images can be destructed since the

information of codebooks and code indices can be recovered by the other r shadow

images. Nothing about the secret image can be gotten when there are insufficient

number of shadow images being collected. It provides a flexible method in the secret

image sharing. In the other method that we proposed, the more the shadow images

being gotten, the better the quality of the secret image being recovered. There is no

restriction about which shadow images are gotten since the information is hidden in

every shadow image. It is convenient that we don’t need to care about which shadow

images we get, and just need to care about how many shadow images we collect.

Besides, the shadow images are not downgraded too much (about 38 dB) after hiding

the sharing information. Also note that the secret image can be revealed in a loss free

manner when all shadows are collected.

 23

Fig. 2.6 The original 1024x1024 secret image “Lena”.

 24

(a) (b)

(c) (d)

(e)

Fig. 2.7 The five host images of size 512x512.

 25

(a) (b)

(c) (d)

(e)

Fig. 2.8 The five shadow images, which are the modified versions of Fig. 2.7 (a) ~ (e),

respectively (the corresponding PSNRs are 52.70, 52.71, 52.69, 48.87 and

50.34 dB).

 26

(a)

(b)

Fig. 2.9 The recovered result. (a) is the original secret image (i.e. Fig. 2.6), while (b)

is the 34.01 dB image recovered using any 3 shadow images.

 27

Fig. 2.10 The original 512x512 secret image “Jet”.

 28

 (a) (b)

 (c) (d)

(e)

Fig. 2.11 The five host images of size 512 x 512.

 29

 (a) (b)

 (c) (d)

 (e)

Fig. 2.12 The five shadow images of size 512 x 512. The PSNRs of (a) ~ (e) are 40.21,

40.41, 40.89, 40.80 and 40.87 dB, respectively.

 30

Fig. 2.13 The recovered secret image (PSNR = 28.00 dB) using any 2 shadows in Fig.

2.12.

Fig. 2.14 The recovered secret image (PSNR = 32.30 dB) using any 3 shadows in Fig.

2.12.

 31

Fig. 2.15 The recovered secret image (PSNR = 35.96 dB) using any 4 shadows in Fig.

2.12.

Fig. 2.16 The recovered “lossless” secret image using all 5 shadows in Fig. 2.12.

 32

	Chapter 1
	Introduction
	
	1.1 Motivation
	1.2 Related Works
	1.2.1 Literatures about Image Sharing
	1.2.2 Literatures about Image Hiding
	1.2.3 Literatures about Fake Detection and Error Correction

	1.3 Overview of the Proposed Methods
	1.4 Dissertation Organization
	Chapter 2
	Fault-Tolerant and Progressive Image Sharing Using Vector Quantization
	2.1 Introduction
	2.2 The Proposed Secret Image Sharing Method of VQ-style
	2.2.1 Fault-tolerant VQ-style Image Sharing
	2.2.2 Lossless Progressive Image Sharing by Vector Quantization

	2.3 Experimental Results
	2.3.1 Fault-tolerant Image Sharing by Vector Quantization
	2.3.2 Lossless Progressive Image Sharing by Vector Quantization

	2.4 Summary

	Chapter 3
	Error Correction of Secret Images by
	Search-Order Coding
	3.1 Introduction
	3.2 Error Correction by SOC (the Basic Version)
	3.3 Advanced Version of Error Correction Using SOC
	3.4 Experimental Results
	3.5 Summary

	Chapter 4
	The Applications of the
	SOC Error Correction Techniques
	4.1 Introduction
	4.2 Some Applications of the SOC-image
	4.3 Experimental Results
	4.4 Summary

	Chapter 5
	Conclusions and Future Works
	5.1 Conclusions
	5.2 Future Works

	References

