3

—

- B 2 ONRLEEOHE

=
¥ de N x>

A Pluggable Security Framework on
Message Oriented Middleware

Moy o4 i REE

PR BT R

i S e d poE

- B LES Y A T T 2R
A Pluggable Security Framework on Message Oriented Middleware

L A O Student : Shien-Chang Ko
hERE R Advisor : Shyan-Ming Yuan
B o+ F
FoaLof F o
oL oG~
A Thesis

Submitted to Institute of Computer and Information Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

n
Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

PEARAY e £

- BEZRALER Y AHEM DT RENL 2ER

FrA gy R 2 &

M d A FTAREEL

#F &

TE R EFRERREAOLEEFE > UL Ee ¢ 458 (Message-Oriented
Middleware) = 2 f¥F @ L5 fhit ¥ h1 B "FEF LMD BHE P
#1727 Java L PRI AR K ihfinds (JMS APD) » 3 - B - grR g 4
o EE AL Ee Y AL PO AR E G VA > @ Persistent
Fast Java Messaging (PFIM)- r & — &8 %3 JMS API ¢ L v ¢ 4 cky o

Fohedp o HoA K L 2ot BEM

REE S W ¢ A SRR Ll At e v e R T 1 AR 2k cnd > R AES R
BF TG 0 R Mt L N o e 2 RAT 00 PRIM e A
2o RN FTRHESN DT RRY T RH LAFRTASEFF LS
WG H ehig sk T il 11 i e REREL 2HFE D F SR
* g R Bt AR AL SR B RSB T
g 2T RS G R BB PE Y A R

A Pluggable Security Framework on Message Oriented Middleware

Student : Shien-Chang Ko Advisor : Shyan-Ming Yuan

Department of Computer and Information Science

National Chiao Tung University

Abstract

With the rapidly growth of Internet, Message-oriented Middleware (MOM) had
became the widespread used tool for, delivering messages between companies. Sun
Corporation had been aware the trend..and defined a Java Message Service
Application Programming Interface (JMS API) standard. This standard provides a set
of uniform interface for application development: and makes applications more
portable. Persistent Fast Java Messaging (PFIM) is a JMS compliant
Message-oriented Middleware and it has some.outstanding features such as persistent

message and high performance.

MOM had be widely adopted in Internet and the security issues not been noticed in
the past had been discussed more and more. This paper will discuss the security issues
on MOM. Based on PFJM, we bring up a pluggable security framework. "Pluggable"
means application developers only need to modify configurations and plug in many
different security modules to build a secure message delivering system. He/She needs
not to modify applications in order to adopt different security strategies and be more

flexible on developing.

il

Acknowledgements

FARE AL ERHEAPf BRE 2 T8 K3 2 HEL BT AR
PRI EAGNHY 25 T AR P %révﬁ FEqe St FE
A R P RARE DL LRAT ER Y fm;@w o) e e
S N SN 7 \f,%f&ﬂ@ C AT R g Nﬁre.,.ﬂu CESSEY o BB
pApaRt Y JI SR S SRR

Wk BORHE RV ch BREER P fe HR A B AR RH Yl A S
Frentn s > BN G B II R F AR R e o

BRUSBRHHANA g v L5nE > 3 R a@maAy i+
Fo REVFDRERAT ORI S F L BEHIE PHA DLE{oi

il

Table of Contents

CRINESE ADSIIACE cuuceeueeirueiiinenieecsnensnncssenssnesssessssnsssnssssesssnssssesssassssessssssssssssassssassssssaass i
ENGLish ADSTrACT...cciciiiviiiiiiinniiniissnnicssssnnicsssssnsesssass ii
ACKNOWICAZEIMENLS ...cuuvriernricrsnrecssnrisssnnessssnessssnesssssessssessssesssssosssssessssssssssssssssssssssnes iii
Table Of CONLENLSuueeeiveieiiiiriisieinniecssneicssneessseessseecssseessssesssssesssssesssssessssssssssssssses iv
LiSt Of FIGUIES..ccicueiiirniiniiiiiiniininicnsnicssanicssssicssssnsssssssssssesssssesssssesssssossssssssssssssnsssses vii
LiSt Of TADIES cuuueiieiiiiiriitiinntiensntecsnnecsneecssnnecsntecsssessssesssssesssssessssssssssssssssasssssasssses ix
Chapter 1 INtroduCtiON.......ecceeeccsserecssnncsssnnccssnncsssncssssscssssssssssesssssesssssossssssssssssssssss 1
1.1 Preface..iiiiiiniiiniininniisnneennnecssnnecssnecsssseessssnsssssssssssssssssssssssssns 1

1.2 MOtiVALION.ccueeeeiiseesdineneeessenssaecssasssbunsaeesssesssnssssecssnssssesssassssasssnsssassssasnns 2

1.3 Research ODjJECtiVeS sucvssicscssanseasivssnsasisstvorecssssseesssssssssssssssssssssssssssssssssses 3

1.4 Thesis Organization 4
Chapter 2 Background & Related Works.icwicoueeceeecsuiensniiiseecisnenssnnecssneecsnnnes 5
2.1 Java Message Service (JIMS) ...ccuvieervercssnrcssnncssnnecsssnesssssessssesssssesssssosnsssses 5
2.1.1 Central ArchiteCturecccueeeesseeecssneiissnencsnecssnecssnecssseecssssecssssscssseees 5

2.1.2 Distributed Architecture.........coveeirecssencsnensecssnecsenssnessnesssecsaesssacens 7

2.2 Persistent Fast Java Messaging (PFJM)ucicevvcericcscnniecsssnnnecsssnsssccssnnnes 7
2.2.1 Persistent MeSSaging........ccuveeeessercssnncssarncssnsesssssessssesssssesssssssssssssnsses 9

2.2.2 PErfOrmANCE c.cueeeecseeecsneecsneessneessneecsssesssssnessssesssssesssssessssssssssssssssases 9

2.3 Other Productsceeeneenseensseensnensnnsssecssessssessnscssnssssssssesssassssesssssssassssassnne 10

2.4 SECULILY cereerrvunricssssnnrecsssssrressssssssssssssssssssssssasssssssssssssssssssssssssssssssassssssssassssssss 11
2.4.1 SeCUTItY ISSUES ..uuerirrrerissnresssnncssnncssanncssanecssssesssssessssssssssesssssossssssssnss 11

2.4.2 Pluggable Cipher SUiteciciiivverriciisnriccsssnnnecssssnnresssssassessssssscsnns 12

2.4.3 Java Authentication and Authorization Services (JAAS)ucceee. 12

v

2.5 SUNMMATY cuceeririrenssrensrenssenssaesssnesssesssnsssssssssssssesssssssssssssssssssssssssssssassssassssassans 13

Chapter 3 Pluggable Frameworkcoceievveiciseinisnnncssncsssnncsssnnssssnsssssssssssssssnns 15
3.1 Concept of Pluggable FrameworK..........cueeneensnenssennsnensecssnensenssnessanesane 15

3.2 ATCRITECTULE uuceeeiineeiniiteinnenteisnicsteisnecssesssessseesssesssesssesssessssssssessssssssassnne 16
3.2.1 Security INterfacesieeneerreensensnensuenssnensaenssnessaecssnessssssnesssacssne 17

3.2.2 Filter INterfacecouecueeveeiseensseensnecssnensnnssnecsnccsnecsnscssessscsssecnns 18

3.2.3 Other INterfacescccovveeeeseecssneicssnnicssnnicssnnesssnncssseessssncsssssesssssessnes 18

3.3 Interface DESIZNccevereisercssnrcssnncssannsssnnnssssnesssssssssssesssssssssssssssssssnssssanssss 19
3.3.1 Authentication Interface........ececveecvceecsseecssnnccssnncsssnncssenessnenesnns 20

3.3.2 Authorization INterfaceeecveisveecsensseecsnecsseecsenssnecsecssseenns 23

3.3.3 Encryption INterface........cueeneecrensseensenssnensnensncnsnecssnecssnssncsssnenne 25

3.4 Configuration File.........liciiioueiennneienciiitsnrinnsnisssnncssssnesssnsssssssssssssssssssssnssss 26
Chapter 4 A Security System On.PEIM ...icocciiiiiiennnnnnnnennnennncnsnensnensannsncsssennns 28
4.1 System ArchiteCtUre..co.....lic sssessssesssnsecesdussessesssssssssssssssssssssssssssssssnsssssnsess 28

4.2 SCCUTILY SCIVET ueceueerrueeseivssissnnssssssssionsasessessssesssasssassssssssassssasssssssassssassssassans 29

4.3 Modules DESIZN c...ueiereercssercsssnncssnncsssnssssasssssssssssssssssssessssssssssssssssssssssssssnssss 30
4.3.1 LDAP Authentication Moduleccceeevveecsseiissnnicssnecssnncssnnnesnns 30

4.3.2 LDAP Authorization Module............cueeneeivenseensuensseecsnnissnecssennne 31

4.3.3 DES Encryption Moduleccoueineennensennsnensnensnensnecsaessncssaeeans 31

4.4 A SCENATIO ccuuererneisunicsnrnsnissancssansssnssansssessssssssessssssssssssasssssssssssssasssssssassssasnns 31
Chapter S Discussion 35
5.1 Multiple INterfaces.....cccoeveeesvercssnrcssercssnncssnncsssnsssssssssssssssssssssssssssssssssnssss 35

5.2 Middleware-1ayer SeCULILYccuceerreersnnssuecsanessrecsannssaesssnesssessansssassssnssssassane 37

5.3 Performance vs. SECUTItY...cccvierrrrresssercsssarcsssnesssnssssnsssssnssssssssssssssnssssonsess 38

5.4 Distributed Management........coeeeveeessenssaensanessaeessnssssesssnesssesssssssassssassssassans 38
Chapter 6 Conclusion and Future WOorks........c.ccoeicccsncsssnncsssnncssnscssssssssssssssnns 39

A\

0.1 CONCIUSION ceuueeereeneeeereeneeereeeeeersseeecersssesscssssessesssssssesssssssssssssssesssssssessssessosssse

0.2 FULUYE WOTKS..ceereeeeeueeereeeeereeeeeeessssssssseessssssssssssssssssssesssssssssassssssssssssssssssssssses

Bibliography

vi

List of Figures

Figure 2-1 Central architecture of MOM deSignc.ooeeeuveeeueeecieeeiieescieeeiieeeneens 6
Figure 2-2 Distributed architecture of MOM deSignccccoeevevcieiiieniiaiieaieeannns 7
Figure 2-3 Architecture Of PFEIM...........c.ooooiieieieeiieeee e eeee e eveesivee e 8
Figure 2-4 Persistent messaging Of PFIMcccoooooieoieiieiiieeeieeieeseeeieeeee e 9
Figure 2-5 The authentication portion Of JAASccccueeeeeeeecceeeiiieeiieeecee e 13
Figure 3-1 Architecture of pluggable framework on PFJMcccovveuevvuvennennne.. 16
Figure 3-2 An application of mesSaAge filtercuuvvueevceeecieeeeiiieeiieeeceeeecee e 18
Figure 3-3 Implementation details.................ccccouevoueecieiienciieiieeiieiieeee e 19
Figure 3-4 LoginModule interface icuueciiiianueeeeeieeiieeeieeesieeeeeieeesveessvee s 20
Figure 3-5 State diagram of authentication interface.n................ccoevueecveesveecunenneannen. 21
Figure 3.6 AUthentiCtion STATUS....... s covesevrnserss s et iastesnseeesssseesssseesseessseessssessssessnnees 22
Figure 3-7 Authorization INLETfaCE i . i sssnsiiisss feereereesreeereesieesseesieesseenseesseenseennnes 23
Figure 3-8 State diagram of authorization interfaceccceeeveeeevueesceeesceeennnen. 23
Figure 3-9 Data structure Of AULROFTLYc.coccueevieeiiieiieeiieeieeie et 24
Figure 3-10 ENCrYPDON INLETTACEocccveeeeeieeeciieeieeeieeeeieeeeiaeesaeeesaeessnveesnsaee e 25
Figure 3-11 State diagram of encryption interface..............ccocceecveveeeceeesneecranneannns 25
Figure 3-12 Security CONfIQUIALION.cccueeeeiieecieeeieeeeiieeeieeesaeeesaeesseaeessaee e 27
Figure 4-1 A secure system architecture for PFJM environmentcc.ccoeeuen... 28
Figure 4-2 An example of LDAP direCtorycccoueeeuieeciieeiieecieeeeieeeeieeesvee s 29
Figure 4-3 A PFIM environment With AAEcccccooovieioieiiiieiieiieeeesieee e 30
Figure 4-4 e-Paper SyStem (S1EP 1)ccouueeeueeeieeeeiiieeieeeeieeeeieeeseeesaeessvee e e 32
Figure 4-5 e-Paper SYStem (S1EP 2)coucuuievouieeeiieeeiieesieeesiee et 32
Figure 4-6 e-Paper SYStem (S1ED 3)ueccueeeeeeeeiiieeiieeeiieeesieeesiaeesveessaeessnseesssseesnes 33

vii

Figure 4-7 e-Paper SYStem (S1ED 4)ueeuueeeeeeeeiieeeiie e esiee e steesiee e saee s saee e 34

Figure 5-1 A example of single iNterfacecccoocueveeeieenceiiiieiieieseeee e 36
Figure 5-2 A example of parameters described in XML formcccoevveecuvenneane.. 36
Figure 5-3 Trade-off between security and performanceccccueceevceeeceeneennen. 38

Figure 6-1 Combined usage of authentication-based and application-based filters...41

viii

List of Tables

Table 2-1 Security comparison of SonicMQ, FioranoMQ, OpenJMS 11

Table 5-1 Comparison of multiple interfaces and single interface.............................. 35

X

Chapter 1 Introduction

1.1 Preface

With the rapidly growth of Internet at decades, the e-services environment had been
gradually more practicable. In the past, information exchange between different
departments of a corporation was based on physical paper. The communication
between companies usually used FAX and telephone. Along with the appearance of
many services on the Internet, E-Mail service substituted physical paper. The FAX
telephone line was replaced by the Internet messages between companies. Internet had
become the one unexpendable medium. On the one hand, companies wanted their
services more easily accessible, .and on thewother, for saving their costs on handling
the regular transactions, they built their own information system by their way. For
example, the stock management'system is.used to manage the amount of products and
automatically communicate to the providersivia Internet messages when the amount
of products is less than lower-bound. Internet greatly improved the productivity and
convenience. However, building an information system is time consuming.
Programmers must pay more attention on the details of network message delivery and
system architecture. This disturbs programmers from business model and delays the

time to market.

Afterward, businesses noticed the problem and found the necessary to adopt
middleware to assist the development of information system. According to this reason,
Message-oriented Middleware (MOM) was developed to help programmers for not to

directly access the lower lever and disagreeable network protocols. MOMs are usually

expressed by a set of readable APIs. Programmers can use the API to send and receive
network messages and focus on designing business models. By this way, information
system can quickly be available. However, when programmers move from one MOM
system to another, the codes about communication in an application must be modified
because every MOM’s API is not the same. For portability, Sun defined a standard of
Java Message Service Application Programming Interface (JMS API)[1] adopted by
many MOM providers. The advantages of the standard interface are programs written

by this API can run on many MOM products and programmers only learn one API.

JMS 1.1 standard was finalized at 2002. Nowadays MOM providers mostly support
the JMS 1.1 standard, such as SonicMQ[2], FioranoMQ[3], OpenJMS[4], ... etc.
Persistent Fast Java Messaging: (PFIM)[5] “is’=.a Message-oriented Middleware
designed by our laboratory. In addition to support JMS 1.1 standard, we enhance the
persistent message and high performance-features for increasing the scalability

greatly.

1.2 Motivation

Since the e-commerce was more and more popular, network security became an
important issue. The messages delivered via network in plaintext may be snooped by
crackers. So MOM providers began to add security functions to their products,
including user authentication, trust authorization and message encryption. But the
functions were usually and tightly bound with the implementation of MOM’s core.
Furthermore, the security functions were developed by MOM providers, which are
preventing third-party providers from plugging in their security functions into MOMs,

so this makes applications less flexible.

Therefore we bring up a pluggable security framework on MOM. The core concept is
to adopt the loosely-coupled design. Based on this design, we can separate the
MOM’s core functionalities from security functionalities. The security functionalities
can be packed in the form of modules. While developing, programmers only concern
with the business models, not the security issues. During deployment, programmers
can just simply modify the configuration and parameters, and use the suitable security

modules to construct a secure message system.

Based on PFJM, we will realize the modular concept on security functionalities. In
addition, we will implement several useful security modules to demonstrate the

advantages of the pluggable framework.

1.3 Research Objectives

In this paper we discuss the security 1ssues on'MOM. The focus we emphasize is how
to flexibly and easily add security functions into MOM, not the security
functionalities itself. The implementations of security functions are out of scope in
our discussion. We expect under our design, the flexibility of security functions of

MOM can be as great as possible.

Flexibility

The more flexibility the middleware provides the more flexibility the application
behaves. With the pluggable framework, programmers have the greatest flexibility
using different authentication architectures, different authorization policies, and

various encryption algorithms without modify any source codes.

Easy to use

The objective of MOM is to simplify the complicated message exchange protocols.
Programmers can write simple codes for sending messages. The objective of security
functions on MOM should be the same. With the pluggable framework, programmers

can only modify configurations and add appropriate security functions into MOMs.

Scalability

Different applications have different security frameworks. For example, some
small-scale systems need only simple authentication such as password, while other
large-scale systems need more sophisticated authentication. With the pluggable

framework, programmers have the:ability to build'different security framework.

1.4 Thesis Organization

This research is organized as following: in Chapter 2, the background information and
related works are reviewed. We briefly introduce the concept of Message-oriented
Middleware (MOM) and Java Message Service (JMS). We also take a more deeply
introduction to our previous MOM implementation — Persistent Fast Java Messaging
(PFJM) and indicate what security issues are related to MOM. Chapter 3 describes the
design of pluggable framework and the related interfaces. Chapter 4 depicts how to
integrate pluggable framework and Lightweight Directory Access Protocol (LDAP) to
build a secure message delivery environment. Chapter 5 discusses many kinds of
issue on design, including security, performance, resource management, etc. And last,
in Chapter 6 there is a brief conclusion for our design and we give some ideas for the

future works.

Chapter 2 Background & Related Works

This chapter describes MOM and related security issues to you. Section 2.1 introduces
JMS and shows two different MOM architectures. Section 2.2 will introduce
Persistent Fast Java Messaging designed by our laboratory and illustrates the features
and relationship with JMS. Section 2.3 depicts other MOM products on market.
Section 2.4 discusses the security issues on MOM and explains the design
methodology of the products mentioned above. We will list a table for comparison
and readability. Also we will indicate the shortcomings on the design of these
products. Finally we introduce the Java Authentication and Authorization Service

defined by Sun. Section 2.5 summarizes this chapter.

2.1 Java Message Service (JMS)

Java Message Service defined by Sun‘Corporation and other cooperators is a set of
standard interfaces for message delivery. With JMS, programmers can create, send,
receive, and read messages via the simple interfaces. The JMS standard only defines
the semantic of interfaces, not how to implement. Every MOM provider can have
their own implementation. Today almost every MOM products are compatible with
JMS. The design architectures can be divided into two categories: central architecture

and distributed architecture.

2.1.1 Central Architecture

Figure 2-1 Central architecture of MOM design

Figure 2-1 is the central architecture of MOM design. A master server is responsible
for message delivery and all applications,are clients. When applications want to send
messages out, it becomes sender):calling the JMS API and giving the destination of
the messages. Messages will be delivered from application to central server. Central
server will look for the destination of-messages and sénd to the appropriate client. The
destination of messages can be either Topic or Queue. Topic mode is a one-to-many
mode. It means the sender can publish a message to Topic and receivers who
subscribe the Topic will receive the message. While Queue mode is a one-to-one
mode, the sender pushes messages into Queue and only one receiver can get back the

message.

The shortcoming of central architecture is the server-bottleneck problem. If the central
server gets low performance or even becomes failure, the overall message exchange
system will becomes unavailable. However, it has the advantages of easy management

and uncomplicated design.

2.1.2 Distributed Architecture

Another design methodology is the distributed architecture. Under this architecture,
there is no master server and jobs of message delivery are distributed to every client.
Figure 2-2 depicts the architecture. Because there is no longer a server, every client
must be aware of some information of other clients, for example, IP and Port. The
advantage of distributed architecture is the loading of original central server is divided
and distributed to every client. So the single-point-failure problem does not exist. On

the contrary, resource management will be complicated and difficult.

Figure 2-2 Distributed architecture of MOM design

2.2 Persistent Fast Java Messaging (PFJM)

Persistent Fast Java Messaging is a JMS compliant product designed by our laboratory.
PFJM adopts the distributed architecture and implements the message delivery
protocol using IP multicast technology. Figure 2-3 illustrates the overall architecture

of PFIM.

Applications Applications

PFIM
Serializer Dispatcher
Composer
Carri i
arrier MBU Carrier

iy T

Figure 2-3 Architecture of PFIM

Every PFJM instances will simﬁlténeogs}y be client as well as server. When one

|#l'

PFJM instance starts, it connects to other‘PFerinsf?lnces via multicast messages in

J

the network and then obtainsﬂ"'»énegeésﬁfy*ih'foi‘nigtion. When delivering message,
application talks to PFJM and indni“{:z"ites what r‘n-en‘ssage to send and which Topic the
message should go. PFJM is responsible for dividing the message into many Memory
Buffer Units (MBUs) that have same size and put them into the delivery buffer in
memory. Then Carrier will pick up these MBUs and actually send them out via
multicast. While PFJM is a role of receiver, it will register the appropriate multicast
channel which corresponding to Topic. Incoming messages (MBUs) will be received
by Carrier and then be composed by Composer. Finally the origin message is

delivered to application.

In addition to following JMS standard, PFJM emphasizes on some features such as

persistent message and high performance.

2.2.1 Persistent Messaging

PFJM adopts the distributed architecture and avoids single-point-failure. It reduces
the lose rate of message. In addition, PFJM implements the persistent message feature
using file system. When PFJM receives the messages delivered from application, it
makes a copy to the file system. If system failure or any irregular error while
messages are still in memory, the messages do actually lose but will be recovered
from file system and redelivered when PFIM is restarted in the future. Figure 2-4

illustrates the concept of persistent message.

\ >
Producer PERSISTENT message Durable
EEEEEEEEEEER IIIII.III Subscribe
ACK
External
Admin

Figure 2-4 Persistent messaging of PFJM

2.2.2 Performance

There are two main classifications of messages in PFJM, one is the control message
and the other is the actual message. There is a fixed multicast channel for control
message. As PFJM starts, it communicates with other PFJM instances via control

messages. When delivering messages, the actual messages will be sent out via

multicast. By using the IP multicast technology, we have the advantages of high
scalability and high performance. Because when the number of subscriber increases,
publisher still needs to send message once. Obviously this design will have more
performance than traditional centralized MOM. Furthermore, we adopt the NAKJ[5]
technology to accomplish flow control and retransmission instead of heavy protocol

such as TCP. The overhead introduced by protocol can be reduced.

2.3 Other Products

There are some other similar MOM products such as Sonic Software’s SonicMQ[2],
Fiorano Software’s FioranoMQ[3] and OpenJMS[4] which is released in the form of

open source. They are all designed as central,architecture.

OpenJMS
OpenJMS provides the most basic MOM funetionalities. It supports both peer-to-peer

mode and publish/subscribe mode and uses JDBC for persistent messages.

SonicMQ

In addition to basic functions, SonicMQ emphasizes its cluster feature. Although
SonicMQ is the central architecture, it supports multiple servers for constructing a
SonicMQ cluster. With the feature, the loading can be distributed to every server and
the server-bottleneck is no longer a problem. Besides, the amount of publishers and

subscribers can be larger.

FioranoMQ

FioranoMQ emphasizes its high performance. The official website of Fiorano

10

Software indicates its FioranoMQ version 8.0 is more effective than SonicMQ version
6.0 about 2 to 10 times. In addition, FioranoMQ supports transformation between

XML documents and JMS messages.

2.4 Security

2.4.1 Security Issues

Network security becomes more and more important. Performance is not only the
focus of MOM design. Something likes privacies, non-replacement, non-denial are
more concerned. It means every publisher and subscriber in the message exchange
environment needs to be authenticated and the messages transferred in the network
need to be encrypted first. So MOM, needs some functions such as user authentication,
authorization and message encryption. We mnoticed that MOM providers took no
concern on security issues in:the past.and recently they add these functionalities

enthusiastically

The following table is the comparison of security functionalities of SonicMQ,

FioranoMQ and OpenJMS.

Table 2-1 Security comparison of SonicMQ, FioranoMQ, OpenJMS

Issues \ Products SonicMQ FioranoMQ OpenJMS

Authentication ACL ~ ACL -~ Java Realms | Password-based
Password-based

Authorization ACL ACL None

Encryption (Message) | RSA B-safe - Pluggable cipher None
pluggable suites
cipher suites

Encryption (Channel) | HTTPS ~ SSL | HTTPS ~ SSL SSL

11

According to table 2-1, we can see both SonicMQ and FioranoMQ use pluggable
cipher suites, but all of them use static authentication and authorization. It is possible
to carry out using central architecture but when adopting distributed environment, it
has the problems of hard deployment and hard management. We need to design a

more flexible authentication and authorization strategies.

2.4.2 Pluggable Cipher Suite

The pluggable cipher suite SonicMQ and FioranoMQ used is based on the Cipher
interface of JCE (Java Cryptography Extension)[6]. Its advantage is encryption
algorithms can be dynamically added,.into Java environment. In the Sun’s

implementation, it supports AES,Blowfish; DES seties, and RSA series algorithms.

2.4.3 Java Authentication and Authorization Services (JAAS)

Because more and more applications need authentication and authorization functions,
Sun defined a standard — Java Authentication and Authorization Services[7] for
applications to build user based access control easily. JAAS adopts a model of
Pluggable Authentication Module (PAM)[8]. As figure 2-5, LoginContext API is
called by application and it utilizes the LoginModule SPI (Service Provider Interface)
as a bridge with various login modules. We only modify configurations and use
different authentication strategies. JAAS’s authorization portion adopts the Security

Manager and Policy provided by Java2 to control access permissions.

12

Applications

LoginContext API

LoginModule SPI

Figure 2-5 The authentication portion of JAAS

Although JAAS makes nf_"?“?':' < * to integrate authentication and

it has some risks to be accessed by hackers. Third, if we apply JAAS to distributed
systems, the management of authorization rules becomes difficult. So we need to

improve these shortcomings of JAAS.

2.5 Summary

In this chapter we compare the security functions between MOM products on market.
We observed every MOM product adopts a fixed manner for authentication and
authorization. But under distributed environment, the variation of architecture is large
and resources management is difficult. We need a more flexible way to accomplish

authentication and authorization. JAAS is a framework defined by Sun for flexible

13

authentication. But it has some disadvantages in authorization and can’t be applied to

distributed systems. So we bring up a more flexible framework for security.

14

Chapter 3 Pluggable Framework

This chapter describes the pluggable framework. Section 3.1 introduces the concept of
the pluggable framework. Section 3.2 explains how can we adopt the pluggable
framework into PFJM and make it more flexible. Section 3.3 shows the design of
interfaces of the pluggable framework. Section 3.4 introduces the design of

configurations.

3.1 Concept of Pluggable Framework

At the early stages, programmers usually, wrote their codes in the function-oriented
model. They first of all wrotethe corepfunctionalities and then appended other
secondary functionalities. However their design is hard coded core and secondary
functionalities. By the way, modifying either the core functionalities or secondary
functionalities will influence each other. And programmers must be careful when they
did something with the codes to avoid mistakes and bugs. Subsequently, programmers
noticed the problem and adopted the modular design model. It means after core
functionalities were built, other functionalities can be added into the software in the

form of modules, without modifying the software.

The design methodology of modular model requires full plan at the design phase. The
interfaces of modules need to be defined first. We call these interfaces the Service
Provider Interface (SPI). Once interfaces are built, programmers only need to follow

these interfaces and carry out their implementation without changing the origin codes.

15

The biggest benefit of modular design is the division and collaboration between
software components are more clear. Every function can have several different
implementations and we only need to change the configuration to use another

implementation. It makes the software system more loosely-coupled.

3.2 Architecture

We observed that the functionalities of MOM can be categorized into several main
classifications: message delivery, security, message filtering, logging, monitoring,
persistent message and the lowest layer, protocol binding. We can design these

functionalities with pluggable modules.

B

|H|

Authentication Interface Authorization Interface Encryption Interface

Filter Interface
Content-Based Filter Module (CODEX ...)

PFUM Core | I I

Persistence

Routing Service Modue

Figure 3-1 Architecture of pluggable framework on PFJM

Figure 3-1 is the architecture designed with the pluggable framework. Under the JMS

16

API, there are authentication interface, authorization interface and encryption
interface and all of them talk to related modules to actually perform authentication,
authorization and encryption. Next part is the filter interface, as well as persistent

message interface, logging interface, and connection interface.

3.2.1 Security Interfaces

At figure 3-1, the authentication, authorization, and encryption interfaces are security
related interfaces. An abridged MOM system should have authentication functionality.
When a client accesses the MOM system, it should be authenticated and be a legal
user of the system. There are various authentication methods such as Kerberos[9],
NTLM[10] or LDAP[11], ...etc. The authenticator can be the MOM server or any
third-party authentication server,“In. ourdesign, we can plug in any authentication
modules such as Kerberos module, NTLM- module or LDAP module to accomplish

the authentication task.

After authentication successes, the MOM system may authorize clients. It determines
which the Topic client can create or remove, as well as if they can publish to or
subscriber from topic. Authorization usually executes with authentication. Similar to
authentication, authorization can be performed on an authentication server or another

authorization server.

When a client passes the processes of authentication and authorization, and it has the
appropriate access right, it can start publish or subscribe messages. In order to protect
the message against any stealing in network, the published message should be

encrypted. There are many algorithms for encryption, like DES[12], AES[13], ...etc.

17

We can adopt appropriate algorithms by changing the encryption module.

3.2.2 Filter Interface

The JMS standard has defined most essential application based filter. The client as a
receiver can indicate which message it interests according to the information in the
message headers and message properties. But it is too fundamental for complicated
applications. Some MOM providers may add more powerful filters such as content

based filters to improve their quality.

Secret: Personal Info

j‘f ublic: Medical histor

2_"' | Public: Medical history / .HJ‘ Public: Medical history
e S

iG] =) J%J n—>

Dr, A Secret: Personal Info

Public: Medical history

Figure 3-2 An application of message filter

Another kind of filter is authentication based filter. For example, figure 3-2 is a
hospital information system built with MOM. While Dr. A publishes an anamnesis to
Dr. B and Nurse C, Nurse C can only read the public section of the anamnesis because

she is authenticated to be a general user that has lower permission.

3.2.3 Other Interfaces

Other interfaces are monitoring interface, persistent message interface, logging
interface and connection interface. Monitoring interface provides third-party
companies the opportunity of applying their monitor products into MOM. Persistence

interface provides a method for messages to be stored in the file system or database.

18

Logging information can be stored to file system or sent to logging daemon via
logging interface. At last, connection interface provides the chance of using many

different protocol bindings.

3.3 Interface Design

Configuratio

= P — —
. ogin ogin
r———eee——{
Subject Context | 1@ Module
-‘_‘_-___._'_,J
——
P
Authorize Authorize| |
Authority Context | P5———| Module
"h_-___._-‘
——
Encrypt Encrypt | |
Context |0 Maodule
\

Figure 3-3 Implementation details

In this paper we will introduce the design of authentication, authorization and
encryption interface. Figure 3-3 is the implementation details. The principals of our
design are simplified interfaces and are compatible with the authentication modules of

JAAS.

When PFJM instance is executed, it will read the configuration and determines which
modules are loaded. Then it manages these modules via various contexts.
LoginContext is responsible for managing LoginModules. The number of
LoginModule can be zero or more. It means there are many processes to complete
authentication. If authenticated, LoginContext will put some confidentiality into the

Subject data structure. AuthorizeContext 1is responsible for managing

19

AuthorizeModules to authorize PFJM instance. AuthorizeModule gains the access
right according to the confidentiality in the Subject data structure and stores the right
to the Authority data structure. When PFJM needs to publish or subscribe messages,
the Authority will be check first to determine whether it has the appropriate rights.
EncryptContext is responsible for managing EncryptModules. EncryptModule is used
to encrypt and decrypt messages. EncryptModule may get the private key form

Subject.

3.3.1 Authentication Interface

In order to be compatible with JAAS’s authentication modules, we adopt the
authentication interface of JAAS and implement our own LoginContext to manage

them. Figure 3-4 is the LoginModule interface:

public interface LoginModule
{
boolean abort ();
boolean commit ();
void initialize (Subject subject, CallbackHandler callbackHandler,
java.util.Map sharedState, java.util. Map options);
boolean login ();
boolean logout ();
E

Figure 3-4 LoginModule interface

The state diagram of interface call is as figure 3-5.

20

\Chtain confidence | Do postaction) Reclaim
Module loading iand do actual logini after login resources

camimit

|
|
|
:
|
SUCCEES

Figure 3-5 State diagram of authentication interface

Initialize

When PFJM starts, LoginContext will request every LoginModule’s initialize function
to construct and load the module. It will also pass in a Subject data structure for
LoginModules to store the generated confidentiality after authenticated. When login
processes are actually performed, CallbackHandler'is necessary for LoginModules to
get required information from user, such asuser name and password. The sharedState
options are useful when two or more LeginModules need to communicate. The

options which named option are parameters that would be passed into LoginModules.

login

As all LoginModules are initialized, LoginContext will invoke the login function of
every module. Login method is the place that actually performs authentication.
Different LoginModules will have different implementations of login. No matter the
result of authentication, LoginModule should memorize its authentication state and
return the result to LoginContext. LoginContext will decide whether the overall
authentication passed or not after all login processes are performed. Overall
authentication is determined by the significant value of every module which comes

2 (13

from configuration. The significant value can be “required”, “sufficient”, “requisite”

21

or “optional”. “Required” means this module is required and if any required modules
failed, the overall authentication will fail. But the login processes behind this module
will still be performed. “Sufficient” means if the present module successes, the overall
authentication will be passed at the premise of no “required” or “requisite” fails and
the later on login processes will be skipped. “Requisite” is the same with “required”.
The difference between these two options is when requisite modules are failed, the
later processes are skipped. “Optional” means whatever the result of authentication is;

it has no effect on overall authentication.

The following figure is an example of authentication status. There are four
authentication modules: SampleLoginModule, NTLMLoginModule, SmartCard, and
Kerberos modules. The significant values are reéspectively “required”, “sufficient”,

“requisite” and “optional”.

SampleLoginModule |required. }pass|pass [pass{pass|fail |fail |fail |fail

NTLoginModule sufficient |pass |fail {fail |fail |pass|fail [fail [fail

SmartCard requisite [* |pass|pass|fail |* |pass|pass|fail
Kerberos optional |* |pass|fal [* [* [|pass|fail |*
Overall Authentication pass|pass [pass |fail |fail [fail |fail |fail

Figure 3.6 Authentication status[7]

commit or abort

If overall authentication passed, LoginContext will call every module’s commit
function. Commit function needs to determine if its login process is passed. If so, it
will put some confidentiality into Subject, and clean the private data that user inputs.
If overall authentication failed, LoginContext will call all every module’s abort

method to clean up the privacy.

22

logout
When authentication process is finished, LoginContext will call every module’s

logout method and clear the Subject data structure.

3.3.2 Authorization Interface

Because the authorization of JAAS utilizes the Java2 security model, it leads to some
problems described above in distributed system. We redesign this portion using the
pluggable concept by defining authorization interface Figure 3-7 is the outline of

authorization interface.

public interface AuthorizeModule {

public void initialize (Subject subject, Authority authority, Map
sharedState,Map options);

public boolean retrievePolicy ();

public boolean cleanup ();

Figure 3-7 Authorization interface

Figure 3-8 is the state diagram of authorization interface.

Get policy i Reclaim
Module loading | info actually ! resources

finished

cleanup

O—-ﬁnitializeHetrieve Policy

Figure 3-8 State diagram of authorization interface

23

initialize

After authenticated, LoginContext will give the control to AuthorizeContext. As the
same as LoginModule, AuthorizeContext will call every AuthorizeModule’s initialize
method and pass in the Subject which gained from LoginContext. Moreover,
AuthorizeContext will pass in an Authority data structure for storing permission

information. The sharedState and options parameter is the same as LoginModule.

retrievePolicy

After initialized, AuthorizeContext will call every module’s retrievePolicy method.
This method should retrieve permission information according to Subject. It may get
information from the local or remote authorization server. The permission information

should be put into Authority.

Because we may add new permission.information during the development, we design
the Authority data structure as flexible.as possible. And we classify permissions into

categories. Figure 3-9 depicts the Authority data structure.

TopicPermission
create remove read write

Authority P o 1]]
T

Q/ . JNDILookupPermission

TopicsPermission

JNDIPermission

___,,/\:

A J
—
—

X _

Figure 3-9 Data structure of Authority

24

cleanup
When PFJM terminated, AuthorizeContext will call the cleanup method of every

module. This function should clear permission information stored in Authority.

3.3.3 Encryption Interface

public interface EncryptModule {
public void initialize (Subject subject, Map sharedState, Map options);
public byte[] getEncryptedMessage (byte[] msg) throws EncryptException;
public byte[] getDecryptedMessage (byte[] msg) throws EncryptException;
public boolean cleanup ();

public boolean negotiate ();

Figure 3-10 Encryption interface.

Figure 3-10 is the state diagram of encryption-interface.

Reclaim

Module loading Key setup Encrypt/ Decrypt data resources

getEncryptediessage ﬂ i

S

)

SN A

E [getDecryptedMessage }:I E i

Figure 3-11 State diagram of encryption interface

O—-[initialize]—v—-[negotiate

initialize & negotiate
There may be many methods to do encryption. Some algorithms may be safer, but
slower, and some are opposite. Via unified interface, we can plug in appropriate

encryption modules at different circumstances. As the same as authentication and

25

authorization, EncryptContext will initiate the module via calling the initialize method.

Then it calls the negotiate method. This method must finish key setup.

getEncryptedMessage & getDecryptedMessage
When sending or receiving messages, EncryptContext will call the
getEncryptedMessage to encrypt messages or getDecryptedMessage to decrypt

messages.

cleanup
When PFJM terminated, EncryptContext will call this method to cleanup private data

such as private key.

3.4 Configuration File

26

<Security>
<!-- This part specifies which LoginModule should be invoked -->
<l-- "needs" option can be 'required','sufficient','requisite','optional' -->
<LoginModule name="com.cmc.jms.security.modules. LDAPLoginModule"
needs="required">
<!-- You can optionally indicate which CallbackHandler should be used -->
<CallbackHandler name="com.cmc.jms.examples.MyCallbackHandler"/>
<Option debug="true"/>
<Option server="140.113.88.237"/>
<SharedState myState1="ok"/>
</LoginModule>

<!-- This part specifies which AuthorizeModule should be invoked -->
<AuthorizeModule name="com.cmc.jms.security.modules. LDAPAuthorizeModule">
<Option debug="true"/>
<SharedState myState2="ok"/>

</AuthorizeModule>

<!-- This part specifies which EncryptModule should be invoked -->
<EncryptModule name="com.cmc.jms.security.modules. DESEncryptModule">
<Option debug="false"/>
<SharedState myState3="no"/>
</EncryptModule>

</Security>

Figure 3-12 Security configuration

The configuration file of PFIM is in the form of XML[14]. The Security section in
this file is the security related setting. Figure 3-11 is an example; PFJM instance uses
LDAPLoginModule to login the message exchange system. The server option informs
LDAPLoginModule where the LDAP server is. Then it use LDAPAuthorizeModule to
gain its permission and finally, DESEncryptModule to encrypt the outgoing message

using Data Encryption Standard algorithm.

27

Chapter 4 A Security System on PFJM

After PFJM has integrated with the pluggable framework, we can adopt many security
modules to construct a secure message exchange environment. In this chapter, we use

LDAP as the basic building block.

4.1 System Architecture

L Securnity
server

{ PFM LED
PE L[” ; Administrative domain

Figure 4-1 A secure system architecture for PFJM environment

In order to integrate authentication and authorization into PFJM, it is necessary to
make a good plan to manage various resources such as user list and topic directory.
Unfortunately, it is difficult to manage resources in the distributed system because the
management protocol may be too complicated and less effective. Due to the difficulty
and disadvantages, we use the centralized architecture to construct the security
environment. Figure 4-1 is the outline of the architecture. There is a security server in
PFJM environment for authentication and authorization. The advantage of this
architecture is easy management. Besides, the confidentialities are stored in the
security server, it is not a problem for local steals.

28

4.2 Security Server

We use LDAP (Lightweight Directory Access Protocol) as the security server. LDAP
is a lightweight protocol for rapidly search for specific data in LDAP server. The data
structure in LDAP server is tree architecture. Figure 4-2 is the data structure we stored

in LDAP directory.

de=nctu, de=edu, de=tw

ou=keystore

ou=topic

ou=user

cn=g3man cn=lionking cn=topic1 cn=topic2 ch=key1

Figure 4-2 A example of LDAP directory

In this figure every circle is a node and composed by one or more properties. A
property is composed by a couple of name and value. Every node has at least one
index property, for example, cn=q3man. Index property is used to indicate the relative
distinguished name (RDN). The path from the root of the tree structure to the specific
RDN is called distinguished name (DN). For example, the left lowest node has the

DN of cn=q3man, ou=user, dc=nctu, dc=edu, dc=tw.

We classify resources into three parts — user directory, topic directory and keystore

29

directory. User directory is a list of user information such as user name and password.
Topic directory has some topic information. Keystore directory is a place where

private keys store.

We utilize OpenLDAP[15] server as the security server. OpenLDAP server is released
in the form of open source. It provides complete LDAP services. It also has access

control mechanism to restrict information that PFJM can access.

4.3 Modules Design

We use LDAPLoginModule to authenticate PFIM to the OpenLDAP server and
authorize via LDAPAuthorizeModule. Finally we use DESEncryptModule to encrypt

messages that sent to topic. The flow, patl} is-as'figute 4-3.

LDAP
Server

(1) authentication

PFJM

Ak

i?r:?‘ /‘ \ PFJM
) encryption
& @ =

Modules

(2) authorization

Figure 4-3 A PFJM environment with AAE

4.3.1 LDAP Authentication Module

LDAPLoginModule is responsible for authentication. It implements the LDAP

30

protocol and communicates with the OpenLDAP server. LDAPLoginModule will ask
for user name and password using CallbackHandler. Then it passes this information to

OpenLDAP using SSL secure connection.

4.3.2 LDAP Authorization Module

After LDAPLoginModule passed, LDAPAuthorizeModule is used to retrieve
necessary permissions and pass to PFJM. If PFJM has no permission to perform an

action, it returns exception.

4.3.3 DES Encryption Module

Finally the DESEncryption is used te'encrypt messages. The module use 64 bits key

space and Data Encryption Standard algorithm.

4.4 A Scenario

We setup a OpenLDAP server and write a simple e-Paper publishing system to
demonstrate the advantages of the pluggable framework. As figure 4-4, the left
window is an e-Paper publisher and the right window is an e-Paper subscriber. The
middle window is an illegal snooper that eavesdropping the traffic between publisher
and subscriber. With no security mechanisms, the snooper will successfully read the

traffic.

31

2 gPaper Publisher

20050505 TAEEEFHR
NPE B 5A8 KRB A2 CAS GRS
ARG IR

FHREEERE + SFAEARE L ETER 2GR
R EICEIRRMIRY - MEGAP N AER NS
Frk - 3G - FIAMERIEIS O S1E] 3 Ei@ R
BEOTHRE R ICARS - Bt ER R+ AT
SRR ET AR ENE) - TRAITEEDE © EENPRIE R
TE—O% (HRAZERAF) SAFRNE—ETS
TR - ERaEIGIREE S -

PEEEFTHALFIRERRERET - PEREE
M EEEICI R IR R GG - RAERE
S a T EBISEREHRE A - FRESSN - 10R
SEASIGARN - TR TRRTE -

EIFL PRI GRS EIICGFI - BT
FHAFAFAGEIN, - RERIENAESERAEL
B 323G THRZI00EF + FIL S{E 00804 3G SRR
AT —RIGHRRAEE -

IO 1

005.05.05 TimEpsE

i PRS0 IS KSR G A SRR

A a i

FHEEER - SEATAREFLTHTEN
SRS IEICEIMBRARTS - RGP REE]
B 3G BIAESLEF) B1%E] 5
BETHEERIGIRE Et R AP
EETMARRANE) o (RATSEAR » EENPEIE]
—O% (BA—EBEAP) mARnE T
4 ORifatEICRRBS IR -

P#EBIETETLFIRERRESRT - Y

SereI3EiEER B IEE AR A - R -
IGRRSE + PETTERIRE -

BIFLFIE AR TR ERIGRY

FHEAFIBNEE, ZERIEMAESD
—3C FHIZE00 » FLLEE0080413CF 90
T SCHTRTIE S -

< | >

HEETEICPIM R A R GRS 0 RRI.

|

2l 2005.05.05 TR
NPE R BS R B R B 2GS R
G

FEMEETE - SEAFAEELTHTEEL
PIREIR e IC EREARBERRSY - TRHICA P RETEL
B TE - 36T 0 IR ESEIFL AEITI0H
BRI T E A SORRR; - (Bt R RS F
FEIEEIARTA AARERNE) - TRATIERE - EEN
TEEFERTE—O% (BR°"HEAFP) %
B iRt - TGRS -

chEE{FTE - FIRAR RS - PR
TR EEEHGM MR R B SGARE - RAL
FEROITEEEEER R - BRSSP
13| G FEREEIGARSY - BT R -

| BIEL TSGR PR ERICER
TFEIRIERIE FEREUHEST
HUEE— 50 PRZ00iE - FLLSE008083GPS
ISR IARET B3GR - o
< | >

[

w2 v

£ TH 09

RIL.. |(LIB.

Figure 4-4 e-Paper system (step 1)

In order to avoid eavesdroppmg agalnst snooper we plugged in LDAPLoginModule,
|
LDAPAuthorizeModule, and DESEncryprtModule a.t publisher and subscriber, as

figure 4-5.

(P UliraEdit-32 - [DAEEEE R \PFIME _ T \PFIM\pfjm.xm1*]
gﬁ‘x&) WEE BRE HER BRD %K(I) B E%(M.) SEREA) WHEAD R

2| X

DS d A SR EHu« % H| = -8 = Efr -~ HhaBPe BN & 2N
pfjm.xml*l |
20 «<l-- This section contains the pluggable modules and their relationship --> izj
21 <Plugin>
2z
z3 «l--— This section contains setting for security modules -->
24 <Security>
z5 «l-- This part specifies which LoginModule should be inwvoked -->
zZ6 <l-— "needs" option can be 'required', 'sufficient’, 'requisite’, 'optional' --»
z7 <LoginModule name="com.cmnc.jms.security.modules.LDAPLoginModule” needs="required">
z8 <!--TYou can optionally indicate which CallbackHandler should be used -->
29 <CallbackHandler name="com.cmc.jms.GUICallbackHandler"/>
30 <Option debug="true"/>
31 <Option server="140.113.88.237"/>
3z <Sharedftate myStatel="ok"/>
33 </LoginModule:>
34
35 «l-- This part specifies which AuthorizeModule should be inwvoked -->
36 <AuthorizeModule name="com.cmnc.jmns.security.modules.LDAPAuthorizeModule>
=i <Option debug="true"/>
38 <Sharedftate myState2="ok"/>
33 </AuthorizeModule>
40
41 «l-- This part specifies which EncryptModule should be inwvoked -->
4z <EncryptModule name="com.cmnc.jms.security.modules . DESEncryptModule>
43 <Option debug="false"/>
44 <Option key="keyl"/>
45 <GSharedftate myState3="no"/>
46 </EncryptModule>

-
ﬂJ

F1 46, 4 23, CW g B 2005/5/13 10:40

Figure 4-5 e-Paper system (step 2)

32

In figure 4-5, we indicate the LDAP server’s IP and which key is used to encrypt

messages. We use the GUICallbackHandler to ask for user name and password.

Figure 4-6 is the looks of GUICallbackHandler.

7 192.160.0.3 - ki

ePaper Snooper

Q- © P LO8spmw
LD | DA S E RN PFIMAE T 'PFIM
Ep =
T s aweomxE A ™
® (5 MobileHero)

& User Anthentication

User Login

MName: g3man I
Password: s

b
& [Jaxen

53 1MX
® (3 INDI
& (5 Kerbaros
B [2) MantaRay =

[OpenLDAP o
= (3 PR v
® 3 bak 1KB
[classes N
CVs T.IEE) UDP CONTROL:L
® gdoc | KBl |PHonitor: Enter thread

B S lib By Send subscribe request
UDP CONTROL: L

3] h SIC

153 storage

® ([PFIM.precvs ¥

fissos - mwen [[0

2 Dser Authentication

Password: ’7
Login

Figure 4-6 e-Paper system (st"eﬁn;‘.?){. —

Finally we can observe the snooper is not authenticated and can’t get the private key

for encryption. It can’t receive the message that the publisher sent and get an

exception, as figure 4-7.

33

o A 10:49

CH e T

£ oPaper Publisher

M05.05.05 TEEPEE
NPEREINGIE ATk s Ao R
HEr R

FHREEER - —FAFABELINTERLLC
PR B ICEIIFARREIRES - MAICAF RARRT
W I MAIEABELFHITICE
BRI TR R ICHRET - B EERA AR
TR MARRN) - 1R - RENPE
TEFFFERTTR—O% (HR-ZHEMF) LR
FIEE I AR - BRI ICARTES A8 -

PEBETHHLIAEERESRT PRER
IEEA B EH G FARE R I GARR - RAIL
REEREERRER R - BRSE
0 2GFRREIGARET - Bl T2RIE -

BISL FIIEMSIR I P EHAICRNT - &
TTFHERFAEE, - RERTEMAESIER
HELEE— 3230 PRIZA00 » FNLUS{0080f3GFI8E

B RTERAL A HE T — R IC R &R -

® [l
& ([sre
b slorage

® (=1 PFIM.precvs

pluggable framework.

92 192.168.0.4 - EEHSEE J;HE”

£ ePaper Subscriber

0050505 TR
NPEERETIR AR REMICASCRIRE
R G

FHIRFEER - =FAFARELFITEREH
ENATEERED BRI ICEEHE EIR R TIAE -
ENPRIERSERTR—O% (ER-HHRAF

PERETETOFARRERET - hBER
SR ERIRENAT - HEAE » 10 FATMEIGARRE

B FIAIC AR TR E R ICI
B AL 00806 3G P IRS B A AR AT 18T

SRR B SRR i 30 TR
FREIFIE AT » SRR AL - |
o 5

Java. lang. ClassCastException

PMonitor: Enter thread

at com.cmc. jus.carrier.ReceiveTable
at com.cme. jms.carrier.MessageRece]

| L%

>

9 2F v | Ow [F...

=
=

'ﬂexigie al;id easy to use advantages of the

34

Chapter 5 Discussion

In this chapter we discuss some ideas and trade-off during design of the pluggable

security framework and describe the advantages and disadvantages.

5.1 Multiple Interfaces

In our design we define multiple interfaces for different functionalities instead of
single interface. The main reason is different functionalities have dissimilar input and
output. It means different parameters and return values of interfaces. Also, adapting
single interface needs assistance of meta-data, fqr example, the deployment descriptor

of EJB[16]. It will lead to péffofmetlnf:e -i?izas&:, The following table lists the
comparison of multiple interfaces and single interface: designs.
- Pl .-'.'

. % 1HDEG
ey

Table 5-1 Comparison of multiple iﬁt.e';faces and "s‘ingle interface

Performance High Low
Readability High Low
Maintenance Hard Easy
Flexibility Low High
Deployment Easy Hard
Performance

Due to the input/output of multiple functionalities are different, the design of single

interface needs some help of meta-data. For example, we can design a interface called

35

Unilnterface :

public interface Unilnterface

{
public int preAction (DSPara in, DSRtn out);
public int inAction (DSPara in, DSRtn out);
public int postAction (DSPara in, DSRtn out);

b

Figure 5-1 A example of single interface

The data type DSPara is a flexible data structure for storing parameters. As the same,
the DSRtn is a data structure for storing return values of the functions. The retrun
value of every function states the execution state. At this scenario, every module must

inherit this interface and the DSPara anhd DSRtn:may be described as XML.

<DSPara>
<Integer>500</Integer>
<Byte>0x01</Byte>

<DSPara>

Figure 5-2 A example of parameters described in XML form

This is a key point that leads to performance waste. Because PFIM kernel needs to
parse the XML first and reconstruct the DSPara and DSRtn data structure, it is time

consuming.

Readability
As figure 5-1, we can’t quickly find out the semantics according to the Unilnterface’s
member functions. In our multiple interfaces design, the semantics is clear. For

example, getEncryptedMessage means message encryption.

36

Deployment

The difficulty of deployment is also an important concern. The single interface design
is more complicated on deployment because the types of parameters and return values
are not fixed and also the semantics of functions are not clear. So the MOM’s manager
usually got confusion with deployment. In our design, the structure and semantics of

configuration are clearer for easy deployment.

The advantage of using multiple interfaces is the semantics of interfaces is clear.
Programmers can easily read and understand the interfaces. Unlike EJB, the
categories of functions of MOMs are not infinite. So the design of multiple interfaces

is possible.

Because there is only a set of interface; programmers only need be familiar with the
interface. It is more convenient for maintenance using single interface. By the help of
deployment configurations, it is also more flexible than multiple interfaces. But for
clear semantic and easy deployment, we adopt the design methodology of multiple

interfaces.

5.2 Middleware-layer Security

The reason why we bring security functions into middleware layer, not leave to
application layer is to simplify the programming processes and programmers can
focus on business model. Without security related codes, applications are more
portable. Another reason is if middleware supports many security modules,

programmers can easily built their security framework.

37

5.3 Performance vs. Security

It is usually a trade-off between performance and security. More safely encryption
usually needs more CPU resources. By pluggable security framework, programmers
can choice appropriate modules to fit their requirement. But under some circumstance,
programmers have no idea about how safely the security module is and how much
CPU resources the module needs. We bring up the classification mechanism and

document it to programming guide. Figure 5-1 is an example.

S2 S1 PO P1
Security < > Performance
KerberosLoginModule LDAPLoginModule
KerberosAuthorizeModule LDAPAuthorizeModule
AESEncryptModule M DESEncryptModule
LDAPLoginModule FileLoginModule
LDAPAuthorizeModule LocalAuthorizeModule
AESEncryptModule

Figure 5-3 Trade-off between security-and-performance

In the example we classify modules into four levels. Level PO uses LDAP for
authentication and authorization, and DES for encryption. It provides medium

security and performance. It is a guideline for programmers.

5.4 Distributed Management

It is very difficult in distributed management. The lookup, synchronization, addition,
and deletion of resource are sophisticated enough for writing another paper. But under
some circumstance it is indeed necessary. With pluggable security framework,
third-party providers can plug in their distributed modules and use distributed security

architecture with PFJM.

38

Chapter 6 Conclusion and Future Works

6.1 Conclusion

In the e-services world, MOMs are widespread used at various systems. Programmers
can build their systems quickly by MOMs. MOMs simplify the sophisticated
processes for delivering messages. For portability, Sun defined the JMS API and
programs written using JMS API have the benefit of “write once, run anywhere”. The
JMS API is a set of simplified API that programmers can learn easily. But Sun doesn’t
define security related functionalities in JMS APIL. Nowadays, security issues are more
and more concerned. So every MOM providers usually add their own security

functions into their products.

In this paper, we discuss many. security.issues including user authentication, trust
authorization, and message encryption‘on MOMs. We surveyed the methods how the
MOM products on market solve the issues. And we conclude that the design is less
flexible and can’t be adapted to distributed systems. So we bring up a pluggable
security framework with more flexibility. We design our security functions in the
modular concept and define several interfaces for security modules. Based on PFJM,
we built the pluggable security framework into PFJM and write several security
modules for it. Programmers can adapt to different security strategies by modifying
configurations. In this paper, we designed a system that using LDAP server for
authentication and authorization to demonstrate the flexibility of pluggable security

framework.

39

The pluggable concept can be applied to other functions such as logging. By
pluggable framework, the distinction and collaboration of components of software are

clearer. And the maintenance and addition of the software are more convenient.

6.2 Future Works

There are many security related problems in MOMs, not just authentication,
authorization and encryption. Other problems such as how to filter messages, how to
manage topics are also important and complicated. Following we give some ideas for

filtering and topic related issues.

Authentication-based Filter

We can add filter interface into PEJM forfilteting messages. PFJM already has basic
application-based filter. “Application-based” means the filter’s rules come from
applications. Another kind- . of. ‘filter is authentication-based filter.
“Authentication-based” means its rulés come from the identity of authenticated user.
For example, the filter rules of nurse C in figure 3-2 filter the private portion of an

anamnesis.

If application-based filter are used with authentication-based filter, the filter processes

are as following.

40

Authentication-based Filter

Message {BasicFilterHXMLFilter}» _______
. ; Filtered
N - {BasmFllter}_{XMLFllter} T
—

S

Application-based Filter

Figure 6-1 Combined usage of authentication-based and application-based filters

After authenticated, authentication;based filters. will be executed. In the example,
there are BasicFilter and XMLEFilter. Application-based filters are executed according

to the requirement of applications.

Pluggable Protocol

As figure 2-1, message encryption can be classified to per-message encryption and
per-channel encryption. In our pluggable security framework, there is per-message
encryption. By adding connection interface in figure 3-1, we can have the pluggable

per-channel encryption such as HTTP, SSL, SOAP, SSH, etc.

Per-Topic Encryption

In our framework, all messages are processed by the same encryption modules. But
more complicated, we expect messages are processed by different modules according
to the topics. So every topic uses different encryption algorithms. A cracker who have

successfully snooped one topic will have no idea to snoop another one. The PFIM

41

environment is more secure.

42

Bibliography

[1] Sun Microsystem, Java Message Service Specification Version 1.1, April 2002

[2] Sonic Software’s SonicMQ, http://www.sonicsoftware.com/index.ssp

[3] Fiorano Software's FioranoMQ,

http://www.fiorano.com/products/fmg/overview.htm

[4] Project OpenJMS, http://openjms.sourceforge.net/

[5] Yu-Fang Huang, Tsun-Yu Hsiao, Shyan-Ming Yuan. A Java Message Service
with Persistent Message, Proceeding of Symposium on Digital Life and Internet

Technologies 2003
[6] Sun Microsystem, Java Cryptography Extension,(JCE) Version 1.1

[7] Sun Microsystem, Java Authentication-and Authorization Services (JAAS)

Version 1.0, December 1999

[8] DEC-RFC 86.0 from SunSoft, Unified Login with Pluggable Authentication

Modules (PAM), October 1995
[9] MIT, Kerberos: The Network Authentication Protocol
[10] Eric Glass, The NTLM Authentication Protocol, 2003

[11] RFC 3377, Lightweight Directory Access Protocol (v3) : Technical Specification,

September 2002

[12] National Bureau of Standards, “Data Encryption Standard,” U.S. Department of

Commerce, FIPS pub. 46, Jan. 1997

[13] National Institute of Standards and Technology (NIST), “Advanced Encryption

43

Standard (AES)”, FIPS Publication 197, Nov. 2001,

http://csrc.nist.gov/encryption/aes/ index.html
[14] Project dom4j, http://dom4j.org/

[15] Project OpenLDAP, http://www.openldap.org/

[16] Sun Microsystem, Enterprise JavaBeans Technology (EJB) Specification Version

2.1

44

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

