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Abstract—The design of a large-neighborhood cellular non-
linear network (LN-CNN) with propagating connections is
proposed. The propagating connections are utilized to achieve
large-neighborhood templates in the shape of diamonds. Based
on the propagating connections, each LN-CNN cell can only
be connected to neighboring cells without interconnections to
farther cells. Thus, it is suitable for very large scale integration
implementation. The LN-CNN functions of diffusion, deblurring,
and Müller-Lyer illusion are successfully verified. Meanwhile,
the functions of erosion and dilation are expanded with the di-
amond-shaped LN templates. Furthermore, the simple N- and
P-type synapses stop all the static current paths so that the dc
power dissipation can be reduced to only 0.7 mW on standby and
18 mW in operation. An experimental LN-CNN chip with a 20
20 array has been fabricated using 0.18- � CMOS technology.
With the proposed LN-CNN chip, more applications and LN-CNN
templates can be studied further.

Index Terms—Cellular neural networks (CNNs), CMOS, large-
neighborhood (LN), propagating connections.

I. INTRODUCTION

T HE CELLULAR nonlinear (neural) network (CNN)
which was proposed by Chua and Yang in 1988 [1]–[3]

involves a large-scale nonlinear analogic architecture for
real-time signal processing. Similar to the composition of the
cellular automata [4], [5], it is composed of a massive aggre-
gation of regularly spaced circuit clones, called cells, which
communicate with each other directly and locally. In a basic
CNN, each cell is connected to its nearest layer of neighboring
cells. Such a CNN, called a 3 3 neighborhood CNN, is the
most popular CNN structure. Their local connectivity makes
CNNs easy to be implemented in a very large scale integration
(VLSI) design. So far, many 3 3 neighborhood CNN VLSI
chips have demonstrated their capabilities in realizing real-time
signal and parallel processing functions [6]–[15].

The CNN universal machine (CNNUM) [6] is a pro-
grammable CNN, which can perform several complicated
functions. Recently, research on the CNNUM has been con-
ducted and successfully implemented. Current CNNUMs are
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based on the 3 3 neighborhood CNN structures [7]–[12] and
3 3 neighborhood templates. Some applications [16], [17]
are verified by using the CNNUM. However, 3 3 neighbor-
hood CNNs with the nearest neighborhood are restricted in
their ability to solve complex problems efficiently. Although a
large-neighborhood template can be transformed into several 3

3 neighborhood templates [18], [19], the multiple operating
steps with 3 3 neighborhood templates require more time
and power.

It is more efficient to construct a large-neighborhood CNN
(LN-CNN), which can perform functions using large-neighbor-
hood templates. In an LN-CNN, each cell is connected to more
than one layer of the neighboring cells. Generally, an LN-CNN
is difficult to be implemented in a VLSI design through direct
wire connections among the 3 3 neighborhood CNN cells.
Recently, however, a design for an LN-CNN has been proposed
and implemented by using a new device called the neuron BJT
( BJT) [13]–[15]. Based on the BJT, an LN-CNN with sym-
metric templates has been designed [13], [14]. The LN-CNN
with asymmetric templates has also been proposed with some
limitations in realizing large-neighborhood templates [15].

In this paper, a new improved low-power CMOS compact
LN-CNN architecture with propagating synaptic connections
[21], [22] is proposed and analyzed. In the proposed kernel
unit, only one layer of the neighboring cells is connected, but
it can realize large-neighborhood diamond-shaped templates in
the first two neighboring layers. Thus, complicated wire connec-
tions to farther cells can be avoided. The propagating synaptic
connections can be used not only in horizontal and vertical di-
rections but also in diagonal directions. As a result, the circular
symmetric templates can be realized. Moreover, the circuitry
can be shared between templates and in the proposed archi-
tecture. This results in a simpler architecture and smaller chip
area. To realize the proposed architecture, the low-power neuron
and synapses have been designed using CMOS current-mode
circuits without static current paths. In addition, an experimental
chip has been designed and fabricated using 0.18- CMOS
technology. The LN-CNN chip with the array size of 20
20 can realize the function of the diamond-shaped large-neigh-
borhood templates. The LN-CNN functions of diffusion, de-
blurring, and Müller-Lyer illusion have been verified success-
fully. Meanwhile, the functions of erosion and dilation are ex-
panded with the diamond-shaped LN templates. The total chip
area is , and the area of a single cell is

. The power is 0.7 mW on standby and
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Fig. 1. Architecture of an LN-CNN kernel unit.

18 mW in operation with a 1.8-V supply voltage. As a result, the
proposed kernel unit has a very simple structure, small dc power
dissipation, and small chip area, which can be applied to the
CMOS implementation of an LN-CNNUM with a huge kernel
array size. Also, with the hardware of the proposed LN-CNN
structure, many new functions or templates of LN-CNN can be
explored.

In Section II, the LN-CNN model, the global architecture of
the kernel unit of the LN-CNNUM, and the components of each
regular cell are described. In Section III, the CMOS circuits of
the neuron, synapses, PSW, and analog memory in the proposed
LN-CNN are described, and HSPICE simulation results are pre-
sented to verify the circuit functions. The overall chip architec-
ture in the design is also illustrated. In Section IV, the measure-
ment results are shown and discussed. Finally, a concluding sec-
tion is provided.

II. ARCHITECTURE AND MODELS

For a standard CNN, the state equation is written as [1]–[3]

(1)

where , , and are the state, output, and input of the
neuron cell in a CNN array, respectively; the coefficient

, called the template , is the threshold of the neuron cell
; and and are the coefficients, called templates

and , which are multiplied with output and input of
the cell , respectively, in the sphere of influence of the
neuron cell . The two sets of products are accumulated over
all the cells in the sphere of influence of the neuron
cell . Where there are nonzero coefficients for templates
and at the neighboring cells , is an integer called

neighborhood of radius. If is greater than one, it is called an
LN-CNN.

The architecture of the proposed LN-CNN kernel unit is
shown in Fig. 1, where the region surrounded by the broken line
represents one neural cell defined by the coordinate. In
(of Fig. 1), the BODY shown in Fig. 2 consists of the neuron,
analog memory, synapses, and control circuits. PU1, PD1, PL1,
PR1, PRU, PRD, PLU, PLD, PU2, PD2, PL2, and PR2 are
all synapses, which can multiply input signals and result in
different gains which are controlled by the synaptic gain con-
trolling signals. As a result, these synapses can be combined to
realize the coefficients of templates and , except the center
coefficients and . Among these synapses, PU2, PD2,
PR2, and PL2 can propagate signals to the cells farther than
the neighboring cells. For example, the signal from

can pass through PL2, be multiplied by the gain of
PL2, and then reach . These connections that are used
to realize large-neighborhood templates are called propagating
connections. PLU, PLD, PRU, PRD, PL1, PD1, PR1, and
PU1 are used to connect the neighboring cells directly. These
connections between the nearest neighboring cells are called
direct connections. PSW is a current switch, and the gain of
PSW is one. The polarities of the signals sent out of the BODY
in upward, downward, leftward, and rightward directions are
determined by four PSWs. The output current of PSW is
combined with that sent from the synapse of the propagating
connections in the former cell. Eventually, the resultant output
is sent into the synapse of the next cell.

The DCS and CLK in Fig. 1 are digital controlling signal and
clock signal, respectively, to control logic circuits and switches
in the kernel unit. The Pixel input signal of one cell is connected
to the Pixel output signal of the former cell. For example, the
Pixel input of comes from the Pixel output of . This
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Fig. 2. Structure of the BODY in Fig. 1.

signal transfers the input pattern to each cell and the output pat-
tern to the output pads in series. The arrows between the cells
are connected to the relative positions of each cell. For example,
the arrow line from the PRU of is connected to the BODY
of , and similarly, the arrow line from the PLD of

is connected to the BODY of .
In the structure of the BODY in Fig. 2, switches S1–S4 are

controlled by the signals of DCS and CLK, and switch S5 is
controlled by a 5-bit decoder. An SRDA contains one shift reg-
ister, digital controlling logic, and a 1-bit D/A converter (DAC)
inside. The Pixel input of can be transferred to the next cell
by the SRDA. The SRDA provides the binary input signal
or the initial state value of each cell during the oper-
ation. After the operation, the SRDA can store the binary output
of from the neuron, and the analog output can be read out
by turning on switch S5.

In Fig. 2, the Neuron is a neuron with a standard piecewise
linear ramp function

(2)

The input of the BODY comes from the summation of eight
synaptic outputs, as shown in Fig. 1, and the output of the BODY
is duplicated eight times and sent to the four PSWs and four
corner synapses PRU, PRD, PLU, and PLD. PZ generates the
coefficient , where PS is the synapse that generates the center
coefficients and of templates and , respectively. The
Analog Memory is used to store the following equation:

(3)

Before the Neuron, there is a Sign Controller which is used to
adjust the polarities of the signals from the nine synapses.

In the first step of the operation period, only the signal of
in (3) is calculated, sampled, and stored by the Analog

Memory. In addition, the digital code of the input is sent
from the Pixel input to the shift register in the SRDA and stored.
Switches S2 and S3 are closed, and S1 and S4 are left open.
At this time, all the synapses are set to certain gains to gen-
erate the template , and PZ is set to generate . The piece-
wise linear ramp function of the neuron is turned off. The input
signal from the SRDA passes through the Neuron. At this
moment, the output of the neuron is the same with the input
signal from the SRDA, multiplied with the template and
combined with to form , which is instilled into the
Analog Memory. After switch S2 is opened, is stored in
the Analog Memory.

In the second step, the digital code of the initial state
of the desired function is sent from the Pixel input to the shift

register in the SRDA and stored. S1 and S2 are open, and S3
and S4 are closed. is read out, and the neuron is set to the
initial state provided by the SRDA. Meanwhile, the
gains of all the synapses are set to generate the template . In
the third step of the operation period, the S1 switch is turned on,
and the S3 switch is turned off. A feedback loop is constructed,
and then, the calculation of (1) is started. After the operation
is completed, the readout period commences. The output is
converted to binary form, and the binary output is sent to and
stored at the shift register in the SRDA. As the input pattern of
the next operation is sent into the LN-CNN, the output pattern
of the former operation can be read out from the Pixel output of
the last cell.

Fig. 3 shows a large-neighborhood template, where symbols
from letters to represent the template coefficients. The neigh-
borhood of radius is redefined, as shown in Fig. 3. Here, the
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Fig. 3. Large-neighborhood template generated by an LN-CNN with propa-
gating connections.

TABLE I
DERIVED EQUATIONS OF TEMPLATE COEFFICIENTS AND GAINS OF SYNAPSES

sphere of influence of a large neighborhood is not consid-
ered as a 5 5 matrix but is defined as a diamond-shaped matrix
in Fig. 3 with neighborhood of radius . Each coefficient
can be derived from the gains of the synapses in Fig. 1 and the
PS in Fig. 2. The derived equations are listed in Table I, where
the template coefficients in Fig. 3 are expressed by the gains
of the synapses, and the gain of each synapse is expressed by
the template coefficients. Thus, the architecture in Figs. 1 and 2
can be used to generate the large-neighborhood templates with

shown in Fig. 3.
According to Table I, the gains of synapses PD2, PU2, PL2,

and PR2 of propagating connections should be less than one for
each. If the synaptic gain of a propagating connection is larger
than or equal to one, then the signal coming from the cells along
one direction would diverge. The gains of these synapses of
propagating connections can be determined from the template
coefficients , , , and , as listed in Table I. Because of the
propagating connections, if the template coefficients , , , and

are not equal to zero, the coefficients , , , and would not

equal zero also, respectively. However, if the template coeffi-
cients , , , and are to be set to zero, the template values

, , , and would be small enough when compared with the
template values , , , and , respectively.

The four corner coefficients , , , and are determined
directly by synapses PRD, PLD, PRU, and PLU, respectively, of
direct connections. Similarly, the coefficient can be generated
directly by the PS in Fig. 2.

III. CIRCUIT IMPLEMENTATION AND SIMULATION RESULTS

It has already been established that current-mode signals can
be easily combined. In addition, current-mode circuits are faster
and consume less power than voltage-mode circuits. Therefore,
the proposed LN-CNN has been implemented by using cur-
rent-mode circuits. In all the current-mode circuit realizations,
the signals represented in Figs. 1 and 2 and transferred inside
the kernel unit are all in current mode, except the DCS, CLK,
synaptic gain controlling signals and the digital logic circuits
signals.

A. Neurons and PZ

Fig. 4 shows the circuit of the PZ and the Neuron inside the
BODY, as indicated by dotted lines in Fig. 2. The PZ is imple-
mented by devices and . The gate bias voltages
and directly control the current through and ,
respectively, to generate the threshold current . The circuitry
of – is the neuron core with the piecewise linear ramp
function. The gate bias voltages and are used not only to
maintain the static current of the neuron zero with devices
and but also to limit the currents through with
and with , respectively. Furthermore, and
also act as switch S1 in Fig. 2. The gate bias voltages and
are controlled by the external bias current . The transfer
characteristic of the neuron is simulated, as shown in Fig. 5. The
low and high limit currents of the piecewise linear ramp function
range from 351.8 to 487.8 nA and from 389.5 to 534.3 nA, re-
spectively, when the is in the range of 250–360 nA and the
supply voltage is 1.8 V. When the neuron is on standby or there
is no input current, the leakage current is less than 1 nA. In the
first and second steps of the operation period, S1 is turned off,
i.e., are turned off. In this way, the neuron core acts
as two current mirrors. As the input current , shown in Fig. 4,
is provided by the SRDA in the first step, the current is
calculated, and in the second step, the initial value
is also introduced by the SRDA. Moreover, and are
used to send the binary outputs to the SRDA or send the tran-
sient currents to the analog outputs through S5.

B. Synapses and Sign Controller

The circuit diagrams of the synapses are shown in
Fig. 6(a)–(c) and are indicated by broken lines, whereas
the circuit diagram of the Sign Controller is demonstrated
by broken lines in Fig. 6(d). The circuit of Fig. 6(a) is used
to realize synapses PL2, PR2, PD2, and PU2 of propagating
connections. There are two paths, i.e., N and P types, in one
synapse to deal with the bidirectional current inputs. If an
LN-CNN is on standby or there are no input currents, the
synapses consume no power. The device pairs and
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Fig. 4. Circuit diagram of the Neuron and PZ in Fig. 2.

Fig. 5. Transfer characteristic of a neuron with different external bias currents
�����'s.

can be seen as two sets of current mirrors, and the
maximum gains are determined by the ratios of and

. and with gate bias voltages and
are operated in the linear region to control the current

mirror gains of and , respectively. All
the gate bias voltages and of synapses combined
with the gate bias voltages and of the PZ form the
synaptic gain controlling signals, as shown in Fig. 1. Further-
more, the gate bias voltages and are generated
by using an on-chip 4-bit DAC. There are 16 different values
for and . An HSPICE-simulated Inouta versus
Inina diagram of the N-type synapse with differing gate bias
voltages 's ranging from 34.4 to 737 mV is shown in
Fig. 7. The corresponding N- and P-type current gains of the
input current ranging from 300 to 500 nA are shown in Fig. 8,
where are operated in the subthreshold region
with a supply voltage of 1.8 V. The N-type synaptic gains
with different values range from 0 to 1.54 in the input
current range of 300–500 nA, while the P-type synaptic gains
with different values range from 0 to 1.42. The N-type
synaptic gain has an average variation of 6.38%, while the
P-type synaptic gain has that of 7.72%, as indicated by short
bars over the input current range of 300–500 nA. It can be seen
that the synapses can generate the desired templates with a

Fig. 6. Circuit diagrams of (a) synapses PL2, PR2, PD2, and PU2; (b) synapses
PL1, PR1, PD1, and PU1; (c) synapses PRU, PRD, PLU, PLD, and PS; and (d)
the sign controller.

tolerable level of error by setting the codes for the and
voltages with proper values.

The circuits of the synapses of direct connections are shown
in Fig. 6(b) and (c), and it can be seen that the circuits and opera-
tions are similar to those of the synapses of propagating connec-
tions. The circuit in Fig. 6(b) realizes synapses PL1, PR1, PD1,
and PU1, while that in Fig. 6(c) realizes PLU, PLD, PRU, PRD,
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Fig. 7. HSPICE-simulated Inouta versus Inina diagram of the N-type synapse
in Fig. 6(a) with 16 different values for � .

and PS. The P- and N-type synaptic gains of one synapse of di-
rect connections can be set to different values to perform more
functions. The synapses shown in Fig. 6(b) share two master
devices with the synapses of propagating connec-
tions, while those shown in Fig. 6(c) share with the
Neuron. The output currents of Fig. 6(b) and (c) are sent to the
Sign Controller using switches and to decide the polari-
ties of the signals. The maximum gains of synapses PLU, PLD,
PRU, and PRD are set to two, and those of PL1, PR1, PU1,
and PD1 are set to four. The gain of synapse PS is set to eight.
Through this design, this LN-CNN can generate the templates,
as shown in Fig. 3, where the center coefficient is smaller than
eight and the coefficients , , , and are smaller than four,
while the coefficients , , , and are smaller than two.

The circuitry of the Sign Controller is shown in Fig. 6(d),
where switches and of the nine synapses used to adjust
the polarity of the signals from the synapses are also drawn.
Devices and with gate bias voltages and ,
respectively, maintain the static current from to at
zero level. and are the current mirrors
used to invert the direction of the current flow. If the polarity of
the input signal from the synapses is negative, is turned off,
and the input signal enters the neuron or analog memory through
switch and the Sign Controller. However, in the same situ-
ation, if the input signal is positive, is turned off, and the
signal enters the neuron through the switch.

C. PSWs

Each of the synapses contains one pair of switches and
to control the signal polarities, except the synapses of prop-

agating connections. Hence, to confirm that the output signals
sent out of the BODY and those sent out of the synapses of prop-
agating connections have the same polarities, the PSW has been
added to achieve this purpose.

Fig. 9 shows the circuit diagram of the PSW. The output
currents of the neuron are mirrored through and
to generate the gate voltages on and , respectively.
The current through , where the gate is connected to
the gate of , is opposite to the current through

Fig. 8. Range of (a) the N-type and (b) P-type current gains of the synapses
with an input current range of 300–500 nA.

Fig. 9. Circuit diagram of the PSW.

, whose gate is connected to the gate of .
The polarity of the output current in the PSW is selected using
switches . For a positive (negative) output of the
PSW, switches and ( and ) are closed, and
at the same time, switches and ( and ) are
opened. There are four PSWs containing switches
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TABLE II
COMPARISON OF DEVICE NUMBERS AND INTERCONNECTION LINES

Fig. 10. Circuit diagram of the analog memory.

and , as shown in Fig. 1, and these four PSWs
share the circuits of .

A comparison of the device numbers and interconnection
lines of the kernel unit between the proposed structure and
the LN-CNN with direct connection using the circuit structure
in [9] is given in Table II. As can be seen from Table II, the
LN-CNN with direct connections needs 12 connections, in-
cluding four connections to the farther neighboring cells. In the
proposed structure, more devices are required; however, as each
cell only has eight connections to the nearest eight neighboring
cells, this facilitates the IC implementation.

D. Analog Memory

Fig. 10 shows the circuit diagram of the analog memory,
where and are used to generate the gate voltages
of and , respectively, from the input current .
The gate voltages are stored at node A (B) by turning off

with the signal Vsample (with the comple-
mentary signal of Vsample). and are used to
compensate for the charge injections and the clock feedthrough
from and , respectively. and are
used to increase the gate–source capacitance of
and , respectively, in order to suppress the sampling
error. The current mirror is used
to isolate storage node A (B) from the output node of analog
memory so that the stored voltage is not affected by the voltage
change at the output node. As the analog memory is read out,
the signal Venable (the complementary signal of Venable)

turns on , and at the same time, it also turns on
the compensational function of . Furthermore,
devices and with gate bias voltages and ,
respectively, maintain the static current from to at
zero level and also act as switch S2, as can be seen in Fig. 2.

E. Overall Chip Architecture

Fig. 11 shows the architecture of the whole system, where
the size of the kernel unit array is 20 20. There are 5 54
shift registers to store the digital codes of synaptic gain control-
ling signals. The digital codes of each synaptic gain controlling
signal are stored in a 4-bit shift register for absolute value and a
1-bit shift register for polarity. However, one synapse requires
two synaptic gain controlling signals, and the signals have dif-
ferent values when templates and are generated. Hence,
there are 5 52 shift registers required for templates and .
For the synaptic gain controlling signals of template , a 6-bit
register is required for the absolute value of template , and
a 1-bit shift register is used for its polarity. Thus, 5 2 1-bit
shift registers are required for template . The signal from the
Digital Controlling Circuit determines whether the Generation
Circuit for templates , , and , which has 28 DACs, gener-
ates synaptic gain controlling signals for either template or
templates and . The external bias current generates
the bias currents and voltages required in the system, particu-
larly the bias voltages inside the Neuron, Sign Con-
troller, and Analog Memory, as shown in Fig. 1. The signals

and with external clock signal
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Fig. 11. Architecture of the 20 � 20 LN-CNN system.

Fig. 12. 5 � 5 templates B, A, and Z for Müller-Lyer illusion [3].

Fig. 13. Extracted values of the diamond-shaped template from an HSPICE postlayout simulation.

Ext_CLK are used to determine whether the external input sig-
nals are input and initial patterns or the digital codes of synaptic
gain controlling signals, respectively. In the array, 5-bit binary
signals in one clock cycle are sent into the LN-CNN and read
out from the Pixel outputs. From 20 neuron analog output sig-
nals of one column selected by a 5-bit decoder, three real-time
neuron analog output signals can be read out using a 20-to-3
multiplexer.

In the first step, both input pattern and digital codes of the
templates , , and are ready for operation, and the signal

is set to Low first to cause the template generation circuit
to generate synaptic gain controlling signals of the templates

and . Meanwhile, the function of the neuron in the kernel unit
is turned off. The signal goes to High in order to inject
the input pattern into all the neurons. The result of the first step is
sent into the analog memory and stored after the signal
is enabled, and then, the signal returns to Low.

In the second step, the pattern in the shift register of the SRDA
is replaced by the initial pattern of the desired function. The ini-
tial pattern in the shift register is then sent to the neurons as the
initial values by enabling the signal again. Meanwhile,
the signal is set to High so that the template is generated
by the synapses as the template generation circuit generates the
synaptic gain controlling signals of the template . In the third
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Fig. 14. (a) Input patterns of Müller-Lyer illusion. (b) Resultant output pattern of Müller-Lyer illusion from the HSPICE simulation result.

Fig. 15. Template B of 5 � 5 and diamond-shaped templates of (a) diffusion [19] and (b) deblurring [3].

step, the signal is enabled, and the signal
is disabled to turn off the initial values. The function

of the neurons is turned on to start the overall calculation of
template with the signals read out from the analog memo-
ries. After the outputs are stable, the binary output pattern can
be stored in the SRDA as the signals and
are set to High. When the next input pattern comes in, all the dig-
ital signals are disabled, except the signal , and
the output pattern can be read out from the 5-bit Pixel outputs.

F. HSPICE Simulation Results

The proposed LN-CNN circuit was designed using 0.18-
CMOS technology. The HSPICE postlayout simulation was

performed with a 20 20 kernel cell array to verify the circuit
functions. The function of Müller-Lyer illusion with the 5

5 large-neighborhood template [3], as shown in Fig. 12,
was adopted. According to the original 5 5 template, the
predicted signs of each diamond-shaped template are set in
Fig. 13. Only the center coefficients and are positive,
while the others are negative in Fig. 12, so it is reasonable that
only the center coefficients in the diamond-shaped template
are set to positive. The input pattern of Müller-Lyer illusion is
shown in Fig. 14(a). After the HSPICE simulation, the resultant
output pattern is shown in Fig. 14(b), where the upper line
with outward arrows becomes shorter than the lower line with
inward arrows after illusion. The function cannot be realized
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by a 3 3 neighborhood template. The coefficients of the
diamond-shaped large-neighborhood template in Fig. 3 were
extracted from the postlayout simulation results directly and are
shown in Fig. 13, which has the same signs as those in Fig. 12.

The simulated standby power consumption is about 1.148
mW, where a 1.8-V supply voltage is used. The external bias
current is 360 nA. The kernel unit array only consumes 1 ,
which accounts for about 0.087% of the overall standby power
consumption. As the array is extended to 128 128, the standby
power consumption is about 7.35 mW and is dominated by the
peripheral circuits.

G. Software Simulation Results

The published large-neighborhood templates are limited.
Among the four published LN-CNN templates [3], [18], [19],
only one template [18] cannot be implemented by using the
proposed structure, since it violates the constraint. Other LN
templates for diffusion, deblurring, and Müller-Lyer illusion
have been successfully verified. The 5 5 template of diffu-
sion [19] and deblurring [3] are approximated by the proposed
diamond-shaped templates, as shown in Fig. 15(a) and (b). The
coefficients of templates A and Z are zero for diffusion. For de-
blurring, the center coefficient of template A of 5 5 template
is ten, and that of diamond-shaped template is seven. Templates

of both functions are zero. The input pattern and simulation
results of diffusion and deblurring are shown in Fig. 16(a) and
(b), respectively. It is shown that the diamond-shaped template
can realize the function of 5 5 templates correctly.

The diamond-shaped LN templates can also realize some op-
erations of binary images in one step which can be realized by
the 3 3 neighborhood templates in two steps. The erosion and
dilation functions with 3 3 neighborhood templates can con-
tract and expand the edges of images by one pixel, respectively.
However, the diamond-shaped LN templates can reinforce the
functions to contract or expand the edges by two pixels. Fig. 17
shows the function of erosion where the boundary cells are set
to be white ( 1). For dilation, it can be realized by the same
templates of erosion by making template Z positive. In addi-
tion, these two functions with the diamond-shaped LN templates
cannot be achieved with 3 3 neighborhood templates in one
step. Two iterations with 3 3 neighborhood templates are re-
quired to realize the same functions. Thus, it takes more time
and energy.

IV. EXPERIMENTAL RESULTS

An experimental LN-CNN chip has been fabricated using
0.18- CMOS technology. The whole chip area is

, where the unit cell is . Fig. 18
shows the photograph of the fabricated LN-CNN chip.

The input image pattern in Fig. 14(a) was used to verify the
illusion function of the fabricated LN-CNN. The digital codes
of the synaptic gain were adjusted to achieve the suitable value.
The binary output pattern was read out from the 5-bit pixel out-
puts, as shown in Fig. 11. The analog current-mode transients
can be read out from the three real-time analog outputs in Fig. 11
using the transimpedance amplifiers outside of the chip. When
the analog output current is zero, the output voltage of the tran-
simpedance amplifier is 0.9 V. Since most pixels in the input

Fig. 16. Input patterns and simulation results of (a) diffusion and (b) deblur-
ring.

pattern shown in Fig. 14(a) are in white and all the white pixels
remain in white after processing, the N-type synaptic gain of
the PS is set to a larger value than the P-type synaptic gain in
the measurement. In this way, the problems of variation in the
process can be overcome.

The measured binary output pattern is shown in Fig. 19. The
experimental result is the same with the postlayout simulation
result, except Pixel A which is black in the simulation results
of Fig. 14(b). The reason for the error is that the bias current
of Pixel A is too small due to process variation. Thus, the self-
feedback of Pixel A cannot keep Pixel A in the black state.

The measured analog output voltage of Pixel B through the
transimpedance amplifier is shown in Fig. 20. The step signal is
the signal , as shown in Fig. 11. As the signal

rises, the analog output remains nearly at 0 V
within about 1 . Then, it starts to rise and reaches 0.9 V at
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Fig. 17. Input and output patterns of erosion with 3 � 3 neighborhood templates [3] in two iterations and with diamond-shaped templates in one iteration.

Fig. 18. Photograph of the fabricated 20 � 20 LN-CNN chip.

about 2 . Finally, it takes 3 to achieve the overall opera-
tion from the black to the white state. The measured transient
response time is 3 . From the result of post simulation, the
transient response operation time is less than 0.1 without
the transimpedance amplifier. The difference is due to the large
loading effect of the transimedance amplifier.

In the experimental result, the overall power consumption
was about 0.7 mW on standby and 18 mW during the oper-
ation in the third step. The comparisons of power dissipation
and energy consumption per cell in the proposed LN-CNN with
those in CNNUC3 [10] and ACE16K [11] are listed in Table III.

Fig. 19. Experimental resultant output pattern of Müller-Lyer illusion.

As may be seen in Table III, the cell in the LN-CNN has lower
power dissipation and energy consumption.

V. CONCLUSION

In this paper, a new architecture of LN-CNN has been pro-
posed. In the proposed LN-CNN, the propagating connections
are utilized to generate diamond-shaped large-neighborhood
templates. In such a connected network, each neuron cell only
needs to contact the neighboring cells without the need for
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TABLE III
COMPARISON OF LN-CNN WITH CNNUC3 [10] AND ACE16K [11]

Fig. 20. Experimental results of Pixel B with the signal ��������	��������	��������	 
����
����
����.

farther interconnections. Therefore, such network architecture
is suitable for VLSI implementation. Moreover, by separating
the synapses into N- and P-type parts without static currents,
the static power dissipation can be reduced to a minimum
level. Moreover, during such an operation, the synapses of
direct connections with different N- and P-type synaptic gains
can also offer more functions. The connections can also be
implemented in both horizontal and vertical directions and in
diagonal directions to realize the circular symmetric templates.
Furthermore, the LN-CNN functions of diffusion, deblurring,
and Müller-Lyer illusion have also been verified successfully.
With the proposed LN-CNN structure using propagating con-
nections, many new applications and LN-CNN templates can
be explored.

A CMOS LN-CNN chip with a 20 20 kernel unit array
has been fabricated in 0.18- CMOS technology. From the
experimental results of this paper, it can be seen that the
5 5 template of Müller-Lyer illusion is reconstructed into
a diamond-shaped LN template, and the function has been
successfully realized using the LN-CNN and with a chip power
consumption of 0.7 mW on standby and 18 mW in operation.

Further research on the universal machine for LN-CNN needs
to be conducted for various applications to be realized.
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