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Abstract

Recently many researches found obvious local clustering property and
small-world property in various kinds ‘of ,complex world. To understand the
detailed structure and specific dynamic properties of various networks and to
classify the key differences of various similar networks, we defined two kinds of
different network motifs in topology and funetion according to the link property
of edge. These two network motifs are small-world motifs and clustering motifs
which are functionally important and statistically significant. By discovering and
analyzing these two kinds of motifs, researchers in many fields of science can
not only understand completely the global information and local structure of real

networks but also the construction and evolution beyond the network.
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Introduction

In the twentieth century, complexity is a new science which includes not only
the meaning of the word, but also in fact “complex and various” and “organization
and structure”. We can divide the physical world into three different systems. The
first is the “regular” system which is stable and periodic, like Newton’s celestial
mechanics. The second is the “Chaos” system which is composed of many chaotic
molecules, like gas molecules. The third is between regular and Chaos, like
structured and infinite varied features in ecosystem, economy, politics, or
psychology. Complexity will face the challenge of the third. To research this kind
of question, many complex structures are represented by the network which is
so-called “complex network”. This.complex network goes from scale of
biomolecules, through cells,to organisms;.such. as: transcription network, neuron
synaptic connection network and ecological food web.

The research of complex network-is-a-high-multi-sciences, and the sources of
the network’s data are all-inclusive and'much wider than any other science’s range,
from Science Corporation, movie production, food web chains evolution,
contagious disease spread, to document connection. The characteristic of this kind
of research is data validation, math theory deduction, and the high integrity of
computer simulation. Most of network data and structure are too large and
complex to transform them to strict mathematical description. Therefore computer
simulation became an accredited scientific verification, but how to collect useful
information is a worth-discussed topic. Many scientists interest in how to discover
the law or structure beyond the network. For example, the rivers which are
different in appearance may be created by the rainfall of the climate and minerals

which form mountains and plains. But on the view of rivers’ catchments and the



number of rivers, we found that they follow “power-law”, which shows that the
number of rivers decrease 2.7 times[1] while the square measure of rivers’
catchments area is doubled. Another example is that of mail experiments by
Milgram who discovered “six-degree of separation [2]”. This shows that any two
among six hundred million people can connect to each other through on average
six people. This discovering of the objective law in the network also provides us
another shortcut of solving or analyzing problems. For instance, in www network,
when analyzing in link property, data mining (like: page rank), sociology of
content creation and detection of communication can be found out [20]. Therefore,
with a good network model and full understanding of the network structure, we
can 1) prove formal properties of algorithm, 2) detect the peculiar region of the
network, and 3) predict evolution of new phenomena.

Analyzing network typology can help researchers solve many problems
in complex network [3]. For example,-the reasons that cause Milgram’s “six
degree of separation” is “small-world [4]”; scale-free network shows the order of
the unorderly www network and “preferential attachment” is the reason why most
wealth is in the hand of few people. This global information of the network helps
us compare the properties of many different networks.

However when we look further into the detailed structure of network or the
structural design principles of network, this kind of global information is not
sufficient. We noticed that Milo’s research defined “motifs” as patterns of
interconnections occurring in complex networks at numbers that are significantly
higher than those in randomized networks. After finding motifs according to
local structure, Milo added some function to them. However, opinions are
divergent on this point [7].

To more understand the detailed network structures, capabilities ,and
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functionalities of these networks, we referred to Mark’s weal tie proposal[8] and
defined the “small-world” and “clustering” motifs which are network simple
building blocks with weak or strong ties. We found such small-world motif in
networks from neurobiology to ecology to engineering. In those networks,
small-world motif plays an important role which substantially lowers the degree
of separation of the network by its “weak tie”. We modify Milo’s motifs [7] by
adding the “weak” or “strong” properties on the edges of those motifs to analyze
more functionalities and differences between them. For instance, both gene
regulation network and social network have similar Feed-Forward loop motif in
Milo’s previous research. However, we found the small-world Feed-Forward
loop motif in gene regulation network but clustering Feed-Forward loop motif in
social network. The clustering Feed-Forward.loop is far from the former owing
to the clustering in the latter..Moreover; by.finding the motifs statistically and
functionally significant, we show-both-local structure and global information in

individual complex network.

The rest of this paper is organized as follows: in the next section we will
discuss research on small-world, weak tie and motif. The third section details how
we adopt the Milo’s and Mark’s researches to build our model. We first defined
the strong-tie and weak-tie of the edge, two kinds of motifs, methods of how to
find out motifs, and finally comparisons between different networks. In the forth
section, we experimented with five kinds of complex networks. In the fifth section,
we discuss how to complex networks into three types according to small-world
motif or clustering motif that existed in complex networks. Finally, we
summarized our contribution and discussed some unsolved problems in future

work.



2 Related works

2.1

2.2

Small worlds

Since the middle age of 1960, “small world phenomenon” has been
found again and again, for instance, Milgram discovered “six degree of
separation” through mail experiments [2] and “Oracle of Kevin Bacon”---if
any two persons show together in the same movie, and we say these two are
connected. For instance, how many connections are between Elvis Presley
and Kevin Bacon? In the movie”Speedway (1968)” Elvis Presley
and”Courtney Brown” showed together, and the latter showed in”My Dog
Skip (2000)” with Bacon. So there is only one step space between Elvis
Presley and Bacon. The average separation between each actor and Bacon is
2.896. This small world phenamenon exists almost everywhere. However,
there isn’t a real model can be used to explain this specific phenomenon until
1996. Watts and Strogatz provided-“*small-world model [4]”, which begins
with a regular network and then'we'can add some links (shortcuts) randomly.
They found that the fewer short cuts you add the less effects the clustering
got.
Weak-ties

When small world phenomenon is represented, it attracted many people,
sociologist Granovetter is one of them, and he strongly felt that a
worth-discussed is hided behind the small world phenomenon. In 1973,
Granovetter’s paper “the strength of the weak ties [8]” revealed this secrete to
the world. Granovetter firstly researched “what kind of link connects the
community”. He roughly mentioned the strength of connection among people.

For example, we and our family or our friends are often together, this



connection is “strong tie”, while “weak-tie” is for the connection between us
and nodding acquaintances. Granovetter wanted to discuss whether the key

connection is strong-tie or weak-tie. Take following graph as consideration:

Bob
Allen

Candy

Figure 1. One special case in social community.

If Allen has a strong tie with Bob and Candy, then the possibility that
Bob has a strong tie with Candy is very high. In this special case, strong-tie
connections usually seldom exist-alone, but instead, they formed triangles
easily. For example, both of my good:friends, in real life, are usually good
friends. Therefore, inrelationship network, removing a strong-tie connection
is hard to affect the degree of separation of the network. It is because that we
can get to the other point through the left two edges in this strong-tie-formed
triangle. Therefore, oppose to our general concept, strong-tie connection is
not the key for maintaining the network. But instead, weak-tie connection
plays a different role which like a “bridge”. If this bridge disappears, it will
be very hard to connect between the points in the one side of the bridge with
that point in the other side. Weak-tie connection plays a key role in
maintaining networks. For example, in real life, Granovetter discovered that
16% people found jobs through people they “often” met, while 84% people
found jobs through people they ”seldom” met. It’s easy to send the message
to other people that we want jobs, but it isn’t far enough. Your good friend

might have heard this news for two or three times from your common friends.



2.3

But a distant relative or a nodding acquaintance might pass it on to further.
Granovetter’s conclusion is that weak-tie connection is an important factor
maintaining the small world which has a low degree of separation. Without
weak-tie connection, the whole network will be divided into separated
disconnected groups. Weak-tie connection is not only a key connection
between individuals, but also in groups.

Clustering

Clustering is a common phenomenon in nature, for example, in human
relationship; we often interacted with our neighbors or people near us and
finally formed a group. In the prior research, “clustering algorithm” is always
an important issue.

Clustering can be considered the'most important unsupervised learning
problem; so, as every other problem of this kind, it deals with finding a
structure in a collection of.unlabeled.data; A loose definition of clustering
could be “the process of organizing-objects into groups whose members are
similar in some way”. A cluster is therefore a collection of objects which are
“similar” between them and are “dissimilar” to the objects belonging to other
clusters. So, the goal of clustering is to determine the intrinsic grouping in a
set of unlabeled data. But how to decide what constitutes a good clustering? It
can be shown that there is no absolute “best” criterion which would be
independent of the final aim of the clustering. Consequently, it is the user
which must supply this criterion, in such a way that the result of the clustering
will suit their needs.

For instance, we could be interested in finding representatives for
homogeneous groups (data reduction), in finding “natural clusters” and

describe their unknown properties (“natural” data types), in finding useful
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and suitable groupings (“useful’” data classes) or in finding unusual data

objects (outlier detection).

2.4 Motif

The earliest application of network motifs is in gene regulation network
[11], and finding basic building blocks which has the property of the
clustering in complex wiring diagram. These building blocks can divide into
three types: feedforward loop, single input module (SIM), dense overlapping

regulons (DOR)) (Figure 2).

a feedforward loop

Y
|

z
b single input module (SIM)

f_l_iﬁ

Z1Z; .. Iy

dense overlapping regulons (DOR

X1 X X3 ... X

Nosh

Z, Iy Z3 Zy..Zy

Figure 2. Network motifs found in the E.coli transcriptional regulation

network [11]

Milo expanded this method [6] and defined 13 types of motif which

size=3(Table 1). This motif still has clustering property.
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Motif

R inir e P 3R

Table 1. 13 types of motifs of size 3[6]
In real network, the frequency of occurrences of each subgraph was
recorded. Milo compared the real network to suitably randomized networks
and only selected patterns appearing in the real network at numbers

significantly higher than those in the randomized networks to be motif.

B randomized networks

real network

Figure 3. A) A real network, B) similar random networks

For a stringent comparison, Milo used randomized networks (Figure 3)
that have the same single-node characteristics as does the real network: Each
node in the randomized networks has the same number of incoming and
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outgoing edges as the corresponding node in the real network. Furthermore,
the randomized networks used to calculate the significance of n-node
subgraphs were generated to preserve the same number of appearances of all
(n-1)-node subgraphs as in the real network (See Appendix A).

To compare the different networks, Milo described the statistical
significance as Z score and defined Superfamily(SP) which is the vector of Z

scores normalized to length 1 (See Appendix A).



3 Model

3.1 Definition of weight of edge
First of all, we defined the weight of the edge by the concept of weak-tie

proposed by Granovetter. We expressed the weight of an edge (a,b) by weight

(a,b).
Z 1
weight (ab)= | length(path(a,b);)
where path(a,b); # edge(a,b) and

length(path(a,b);) = Network_average diameter

path (a,b); can not.be edger(a;b)itself, but it is i-th path between a and b
and this path’s length is'smaller.than the average network’s diameter. The
length of one path isthe total number of nodes in this path. The average

network’s diameter is:

D ShortestPath(a, b)

a,b,a=b

Network_average_diameter = C,
Where path (a,b); # edge (a,b)

And ShortestPath (a,b) = Min(length(path(a,b);))

In an n-nodes network, for any two nodes a and b, node a is different
from node b. We counted the length of the shortest path, at last we get the
average length of the shortest path between any two nodes is
Netwrok_average diameter.

We took the summation of the inverse of all paths’ length as edge’s

10



weight. We took the “inverse” of all path’s length because the more the nodes
in a path the longer the path’s length. This kind of path belongs to “weak-tie”
since the probability of disconnection between two nodes is high if any one of
nodes in the path removed. Therefore, this path is less helpful for connection.
On the contrary, if the number of the nodes in the path is less, this path is
helpful for connecting two nodes and the weight is more.

We took the “summation” of the inverse of all path’s length as edge’s
weight because the more the total number of all paths is, the more the weight
is and the more the path belongs to -tie. Otherwise, weak-tie.

3.2 Definition of weak-ties and strong -ties
Using the definition mentioned above, we found out the weight of each edge

of random network and average weight of the.random network.

anweight(a, b)

a,b,a#b

(RandNetwork_average_weight)= -

2

We got 100 average weight of the random network, and averaged them as a

threshold.

D" (RandNetwork _average _ weight),
threshold=—

100
In real network, we compared each edge’s weight and threshold, when it is

larger than threshold; we defined this edge strong-tie, otherwise, weak-tie [21].

If weight (a,b)>threshold then edge (a,b) is strong-tie

Else edge (a,b) is weak-tie

3.3 Definition of small-world motif and clustering motif
In a motif, if one weak-tie edge included, this motif is “small-world motif”,

11



otherwise it is “clustering motif”. We use this division to divide original 13 types
of motifs of size 3 to 26 types of motifs. We compared the real network to suitably
randomized networks and only these 26 patterns appearing in the real network at

numbers significantly higher than those in the randomized networks to be motif.

3.4 Small-world and clustering motif Detection

Firstly, the generation of the random networks is the same with original
method (Appendix A); however, we use edge’s weight we defined to get the
threshold. We compared the edge’s weight and threshold to decide this edge is
“weak-tie” or “strong-tie” in both random network and real network, then we use
26 motifs of size 3 to record the appearing number in real network and random
networks. If the appearing number in real network is larger than those in random
network the mean and two STD. of random networks, we called this subgraph
“small-world motif” or “clustering motif”.
3.5 Comparison among different-networks

In order to compare different networks, we modified Milo’s original method
[10], for each small-world subgraph i, the statistical significance is described by

the Zz_SmallWorld; score:

Nreal _SmallWorld; —(Nrand _ SmallWorld, )

Z _SmallWorld; =
B STD(Nrand _ SmallWorld,)

Nreal_SmallWorld; is the number of times the SmallWorld subgraph i appears in

real network, (Nrand _SmallWorld,) and STD (Nrand_Smallworld) are the mean

and standard deviation of its appearances in the randomized network ensemble.

Also, we can define Z_Clustering; :

12



Nreal _Clustering; — (Nrand _ Clustering; )
STD(Nrand _ Clustering;,)

Z _Clustering; =

To compare in different sized networks, we defined SP_SmallWorld; which is the
vector of Z_Smallworld; normalized to length 1:

Z _SmallWorld,
(Y Z _smallworld )2

SP _SmallWorld, =

Similarly, we can also define SP_Clustering; :

Z _Clustering,
Oz _Clusteringf)%

SP _Clustering; =

13



Experiment and Result

We totally tested five kinds of data; they are gene regulation, yeast
transcription network, social network, food webs and electrical circuits. These
networks are : 1,2) transcription interactions between regulatory protein and gene
in E.coli and yeast; 3) human interactions among leaders and prisoners; 4) tropic
interactions in ecological food webs, representing pelagic and benthic
species(Little Rock Lake), birds, fishes, invertebrates(Ythan Estuary), primarily
larger fishes(Chesapeake Bay), lizards(St. Martin Island), primarily
invertebrates(Skipwith Pond), pelagic lake species(Bridge Brook Lake), and
diverse desert taxa(Coachella Valley);.5)electronic sequential logic circuits parsed
from the ISCAS89 benchmark setj where nodes represent logic gates and
flip-flops. The detailed explanations are in appendix B.

For analyzing the result, we.divided network three types to discuss, 1) a
network with small-world motifs“and clustering motifs, 2) a network with only
small-world motifs, 3) a network with only clustering motifs. We discussed these
three types:

4.1 A network with small-world motifs and clustering motifs

In food webs (Table 2), we found that, skipwith and bridgebrook both have
small-world three chain and clustering branch motifs. With clustering branch
motif, it exhibits that in such food web, there are many preys for the predator to
select, once the predator is eliminated, the food web will be seriously affected. If
the relation between predator and prey is removed, it will not affect food web too
much, since there are still many other preys for predator to eat. On the other hand,

the small-world three chain shows that there are few preys for the predator. Once
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these prey or the relation between predator and prey, are removed, it will result a

seriously consequence for the food web, not only the possibility of extinction of

the prey, but it may lead to a disequilibrium of the whole food web if this relation

between predator and prey is a role like bridge. Since relation plays important

roles in the food webs, thus protection of these motifs is also an important issue.

However, Milo’s method cannot differentiate one’s function from another’s.

Motif Motif
Network Nodes  Edges N.Real N.Random#SD Z Score
Category Type ID
Gene Regulation E.coli 424 519 sSmall World 38 42 8.0+3.00 11.36
Yeast Transcription
Yeast 688 1079 | .Small World 38 69 13.7+3.36 16.47
Network
Clustering 108 5 0.1+0.20 25.31
Leader 32 96
Social Network Clustering 74 41 2.1£3.90 10.05
Small World 46 12 1.9+1.30 7.73
Prisoner 67 182
Clustering 110 4 0.1+0.3 15.40
LittleRock 92 984 | Small World 108 93 40.945.60 9.23
Ythan 83 391 | Small World 12 1182 978.6+38.30 5.25
St. Martin 42 205 Clustering 6 337 207.4+36.80 3.52
Chesapeake 31 67 Clustering 36 32 9.546.50 3.45
Food Webs Coachella 29 243 | Clustering 238 8 0.1+0.14 57.00
Small World 12 158 141.847.70 2.12
Skipwith 25 189
Clustering 12 26 4.14£3.60 6.02
Small World 12 166 110.5+9.70 5.75
B.Brook 25 104
Clustering 6 175 117.5+15.10 3.81
5208 122 189 | Small World 98 10 0.9+0.90 10.51
Electrical Circuits 5420 252 399 | Small World 98 20 1.0+1.00 19.87
s838 512 819 | Small World 98 40 1.0+0.90 43.40

Table 2. Network motifs found in biologival and technological networks.
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4.2 A network with only small-world motifs

We found that only small-world motifs exist in electrical circuit, but no
clustering motifs. This is because in electrical circuit designs, engineers
commonly try to eliminate redundant circuit for economical cost reasons.
Furthermore, signal transmissions between input and output usually are directly
transmitted, avoiding any intermediate node that may increase the delay time, and
the implementation of this circuit also implies that there may contain more
“weak-ties” in the circuit. The more complex and mass the layout of the circuit,
the more the delay time. Thus clustering motifs are sparse even absent in the
electrical circuit designs. However, small-world motif provides us a plain and

low-delay principle in designing circuit.

4.3 A network with only.clustering motifs

Most of real networks-have small-world motifs. But the experiments results
show that none of clustering motif.but small-world motif exists in the leaderinter
social network and four various food webs. For example, in social network there
are clustering combined branches motif whose edges are all strong-ties, in other
words, two strangers with a common friend have a higher than average probability
of meeting each other and becoming friends themselves. In coachllalnter, we have
found ten clustering motifs which represent that this network’s clustering is very
significant; This results also implies that because of its various connections, it
won't lose its connections to others easily by the noise of the artificial or nature
way. Certainly, there may exists some weak-ties in the network, but with the
number of them is few, it's not shown particularly only because the quantities are

not large. However, this clustering motif shows “the richer becomes much richer”.
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4.4 Compare different networks

In the previous method (2), leaderInter and prisonerinter of Social networks
are classified as similar networks, with the correlation coefficient of 0.962(Figure 4),
but in our experimental results, it shows differences from before, we noticed that
leaderinter has more remarkable small-world motifs (small-world correlation
coefficient = 0.746) (Figure 5), specially small-world uplinked mutual dyad motif, and
it shows that many nodding acquaintances in this network. Whereas prisonerinter has
more clustering motif (clustering correlation coefficient = 0.311) (Figure 6), especially
combined branch motif, since there are more tightly connected groups in this network.
When we are grouping real networks by small-world motif or clustering motif, we not
only classify them based on their local structure, but also on their global information.

This  will  help us gett the key. point of the network.

0.6 1
0.3
0.0
0.3

-0.6
6 12 14 36 38 46 74 78 98 102 108 110 238

Motif ID

Figure 4. The curve of the normalized Z score thorough Milo’s motif

and classification
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Small-World Network Motif ID

Figure 5. The curve of the normalized Z_SmallWorld Score through

small-world motif and classification

6 12 14 36 38 46 4 78 98 102 108 110 238
Clustering Network Motif ID

Figure 6. The curve of the normalized Z_Clustering Score through

clustering motif and classification

4.5 Explore the details of each complex network

We discussed the details of each complex network in Appendix C
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5 Conclusion

In the previous researches about complex networks, we have observed the
small-world property in real networks, such as biological, sociological, and
technological networks. We find the functional motifs which can represent more
global information after giving the weak or strong properties of edge to the Milo’s
motif. We can suitably master the design principle of the real complex networks.
This is a great help for understanding the real complex networks in the future for
everyone. By using our methods, we can compare different networks in proper
way instead of too big or too small view.

We provided a general definition for the edge’s weight and weak-tie
connection, and it is suitable for any:cemplex network. For a specific field of
science, it can define the edge’s weight-and weak-tie connection by itself to match
its special meaning, and the remainder-part can use the method we mentioned in
this paper which has generality and extensibility.

We have already found out the motifs that are statistically significant and
functionally important in the network, and tried to use these motifs to explain “the
behavior of the process” in the network. However, we cannot make sure the thing
that is whether or not there are other important factors which affect the network or
if the motif we have found out is the most important factor affecting network. We
did not have a theoretical framework to confirm us if we are in a right place.
Second, there is much to be done in developing more sophisticated models of
networks, both to help us understand network topology and to act as a substrate
for the study of processes taking place on networks. While some network

properties, such as degree distributions, have been thoroughly modeled and their
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causes and effects well understood, others such as correlations, transitivity, and
community structure have not [3]. We believe these factors affecting the behavior
and the response of the network. For this sake, the future work of this paper is to
rebuild networks [24]. The reason why we want to rebuild networks is:

1.) Itis hard to collect the complete data, such as: citation networks or

sexual relationship network.
2.) The amount of the original data is too large to collect, such as: www.
Third, the ultimate goal of the study of the complex networks is to understand

the behavior and function of the networked systems [22] [23]. For instance, to
explain how the topology of the World Wide Web affects Web surfing and search
engines, how the structure of a food web affects population dynamics, and so forth

13].
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4% B

Directed Network

Description

Gene regulation

Directed transcriptional regulation between operons[15]

Yeast transcription

Directed transcriptional regulation between genes[16]

Social Network

Inmates in prison choose “What fellows on the tier are you closest

friends with? [17]".

College students in a course about leadership choose which three

members they wanted to have in a committee [18].

Food webs

Tropic interactions in ecological food webs[19]

Electrical circuits

The nodes represent logic gates and flip-flops. These data parsed from

ISCAS89 benchmark set

Table 3. The details of the networks
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fffé.C

Motif Motif
Category Network Nodes  Edges N.Real N.RandomtSD  Z Score
Type 1D
Gene Regulation E.coli 424 519 | Small World 38 42 8.0+3.00 11.36
Yeast Transcription Small World 38 69 13.743.36 16.47
Yeast 688 1079
Network Clustering 6 41 0.441.0 45.06
Clustering 6 11 3.0£3.1 25.31
Clustering 12 25 6.946.5 2.79
Clustering 36 72 8.3+7.9 8.04
Leader 32 96
Clustering 38 3 0.3+0.6 4.61
Clustering 74 41 2.1£3.90 10.05
Clustering 108 5 0.1+0.20 25.31
Social Network
Clustering 12 33 15.6+8.5 2.07
Clustering 38 8 0.5+0.7 10.6
Small World 46 12 1.9+1.30 7.73
Prisoner 67 182
Small World 108 6 1.1+1.2 4.43
Small World 110 8 2.0+1.2 5.04
Clustering 110 4 0.1+0.3 15.40
Food Webs Small World 46 296 221.3+16.7 4.49
LittleRock 92 984
Small' World 108 93 40.945.60 9.23
Ythan 83 391 | Small World 12 1182 978.6+38.30 5.25
St. Martin 42 205 Clustering 6 337 207.4+36.80 3.52
Chesapeake 31 67 Clustering 36 32 9.546.50 3.45
Clustering 6 287 169.8+21.8 541
Clustering 12 129 28.8+8.4 11.88
Clustering 36 201 95.0+12.3 8.66
Clustering 38 306 103.6+15.1 12.8
Coachella 29 243 | Clustering 46 58 4.8+1.9 28.3
Clustering 74 61 5.943.1 17.89
Clustering 108 31 10.2+2.1 10.27
Clustering 110 7 0.3+0.6 115
Clustering 238 8 0.1+0.14 57.00
Clustering 6 325 185.1+28.1 4.98
Small World 12 158 141.8+7.70 212
Clustering 12 26 4.1+3.60 6.02
Skipwith 25 189
Clustering 38 106 36.5+23.0 3
Small World 46 45 40.1+0.6 2.6
Clustering 108 15 9.6+1.6 3.45
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Clustering 6 175 117.5+15.10 3.81
B.Brook 25 104 | Small World 12 166 110.549.70 5.75
Small World 36 79 74.6+7.3 5.97
Small World 36 83 13.0+4.8 21
s208 122 189
Electrical Circuits Small World 98 10 0.940.90 10.51
5420 252 399 | Small World 98 20 1.0£1.00 19.87
s838 512 819 | Small World 98 40 1.0+£0.90 43.40

Table 4. The details of the motifs in each network

+ Gene Regulation(colilnterFullVecl.txt) > Yeast Transcription Network(yeast.txt)
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iﬁﬂf@_éj EINHE IJE;yﬁj E{fjjrﬁ: s [ u%p u*:[a‘j* TGS Gt o PR S I?ﬁl%fﬁffw
~ 8 L gene 7Y operon BERSHARY » JRg KA AT TRV % A
FYRYE F%J%ii? yeast.txt [V “Ha«[gu]rw FGEHN 7 TableS (1> id kLig motif (i id -
irL?J 137 o [ 7 [’FEJE'J;VﬁfJ Milo Fret s Zscore 1525 £ original_Zscore » 17 i =% {1
Fﬁﬁﬂ?}{fj motif 5 5% [ small-world motif #I clustering motif 5+ i Zscore 73 ]|
1L weak_Zscore k- strong_Zscore » [i]=Y iFﬁ}{ﬁ’ original_Zscore > weak_Zscore #!I
strong_Zscore 53 {4 PRy ELRE 1 AT [fifiERL original_sp - weak_sp !
strong_sp - =% {11 Figure 7 7" '] ISWFIRERYE o RUE [T BES 2R ZR7RVe
B ES MR AL R S PR -

#> small-world motif -

f[lﬂ
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ID Original_Zscore Weak_Zscore Strong_Zscore Original_sp Weak_sp Strong_sp
6 -16.7195 1.123717 45.0583 -0.33912 0021972  0.249836
12 -16.9379 -17.0232 45.0583 -0.34355 -0.33285  0.249836
14 -1.39474 -1.40177 45.0583 -0.02829 -0.02741  0.249836
36 -16.6628 -19.4475 90.3529 -0.33797 -0.38025  0.500982
38 16.68645 16.47264 45.0583 0.33845 0322084  0.249836
46 -0.31291 -0.31449 45.0583 -0.00635 -0.00615  0.249836
74 -6.46387 -6.49643 45.0583 -0.13111 012702 0.249836
78 -16.9379 -19.4475 45.0583 -0.34355 -0.38025  0.249836
98 -16.9379 -19.4475 45.0583 -0.34355 -0.38025  0.249836
102 9.9 9.949874 45.0583 0.200801 0.194547  0.249836
108 433705 4358899 45.0583 0.087968 0085228  0.249836
110 -16.9379 -19.4475 45.0583 -0.34355 -0.38025  0.249836
238 -16.9379 -19.4475 45.0583 -0.34355 -0.38025  0.249836

Table 5. Yeast py Zscore 7! Superfamily
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Figure 7. Yeast py Superfamily
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SR RLE T~ HUESfy] > I Table 6 - Figure8 fr=i ) « 57 KikL prisoner fiaffF -
SR ffpﬂ‘*[iﬁlﬁﬁ »HE Jﬂ[ﬁ#ﬁli‘ﬁ‘(v[l Table 7 > Figure9 H7=.) o
Tk BFRT L R - Juf’ﬁ | R I‘Fuﬂ“ﬁi@w o ERVESE ~
v B 2 S RIS aﬁrcgﬂag,j/@\pfﬂJEJ*v PPN - EE
BREF % > O RLAY ORI o HpAL I

ID Original_Zscore Weak_Zscore Strong_Zscore Original_sp Weak_sp Strong_sp
6 -1.747412 -3.287122 2.590444 -0.20969 -0.22023 0.082448
12 -0.937555 -3.019262 2.793733 -0.11251 -0.20228 0.088918
14 -2.793824 -3.255373 1.364124 -0.33526 -0.2181 0.043417
36 -1.044121 -8.133933 8.044244 -0.1253 -0.54495 0.256029
38 0.566814 -0.46433 4.607804 0.068019 -0.03111 0.146656
46 1.663396 1.678409 -0.100504 0.199611 0.112448 -0.0032
74 -3.253861 -9.626284 10:045202 -0.39047 -0.64493 0.319715
78 -4.387757 -5.168297 3.451602 -0.52654 -0.34626 0.109856
98 0.217539 -0.621614 5.686241 0.026105 -0.04165 0.18098
102 1.045186 1.048487 -0.100504 0.125424 0.070245 -0.0032
108 2.310234 -0.735767 25.311394 0.277233 -0.04929 0.805602
110 2.076463 1.174308 9.949874 0.24918 0.078675 0.316681
238 3.591276 -0.540117 -0.10054 0.43096 -0.03619 -0.0032

Table 6. Leader fiv Zscore #{! Superfamily

4/’\v —e— original_sp
0 : e —=— weak_sp
98 102 108 110 238 strong_sp

-0.5

Figure 8. Leader p¥ Superfamily
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ID Original_Zscore Weak_Zscore Strong_Zscore Original_sp Weak_sp Strong_sp
6 -6.31005 -1.28729 -0.16873 -0.20119 -0.08592 -0.00396
12 -3.7163 -3.1816 2.079942 -0.11849 -0.21236 0.048762
14 -10.3395 -4.52546 1.128846 -0.32966 -0.30205 0.026465
36 -8.88971 -1.83048 -0.73229 -0.28344 -0.12218 -0.01717
38 4.680244 0.649788 10.59812 0.149223 0.04337 0.248461
46 8.831725 7.730779 5.249851 0.281587 0.515996 0.123077
74 -8.07271 -4.37754 -0.07007 -0.25739 -0.29218 -0.00164
78 -16.3888 -7.72919 -0.68034 -0.52253 -0.51589 -0.01595
98 0.755017 0.758821 -0.732294 0.024073 0.050648 -0.01717
102 1.86011 1.991263 -0.27435 0.059307 0.132908 -0.00643
108 5.152789 4.431013 5.686241 0.164289 0.295751 0.133308
110 8.502822 5.044127 15.40288 0.2711 0.336673 0.361104
238 14.40838 -0.38685 -0.732294 0.459391 -0.02582 -0.01717

Table 7. Prisoner f¥Zseore #! Superfamily

e
'/ﬁ —&— original_sp
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Figure 9. Prisoner p¥ Superfamily
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ID Original_Zscore Weak_Zscore Strong_Zscore Original_sp Weak_sp Strong_sp
6 5.021437 2.349219 -1.43135 0.344815 0.137488 -0.11347
12 6.656267 5.246372 -1.41398 0.457077 0.307045 -0.1121
14 -0.29792 0.077245 -0.65099 -0.02046 0.004521 -0.05161
36 5.046043 0.851961 -1.46478 0.346505 0.049861 -0.11612
38 -5.15904 -2.76497 -1.41697 -0.35426 -0.16182 -0.11233
46 1.180611 1.592555 -0.41082 0.081071 0.093204 -0.03257
74 -0.76969 0.332168 -0.70142 -0.05285 0.01944 -0.05561
78 -5.15904 -2.76497 -1:46478 -0.35426 -0.16182 -0.11612
98 -2.13993 -2128712 -0.14286 -0.14695 -0.13385 -0.01133
102 -1.47295 -1.75495 -0.26149 -0.10115 -0.10271 -0.02073
108 1.342258 1.205492 -0.71322 0.092171 0.070552 -0.05654
110 -5.15904 -2.76497 -1.46478 -0.35426 -0.16182 -0.11612
238 -5.15904 -2.76497 -1.46478 -0.35426 -0.16182 -0.11612
Table 8. Ythan fiv Zscore #[! Superfamily
1
0.5 — —e— original_sp
0 — | | " weak_sp
05 F 6 98 102 108 8 strong_sp
-1

Figure 10. Ythan % Superfamily
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1D Original_Zscore

6 -0.85325
12 1.77455
14 -2.65069
36 -0.85325
38 0.853245
46 -2.65069
74 -2.65069
78 -2.65069
98 -2.65069
102 -2.65069
108 -2.65069
110 -2.65069
238 -2.65069

Weak_Zscore

-3.73667
-0.63137
-3.73667
-2.17196
0.701046
-3.73667
-3.73667
-3.73667
-2.67395
-3.73667
-3.73667
-3.73667

-3.73667

Strong_Zscore

3.522563

1.93752

0.31449

1.834843

0.029506

-0.31449

-0.31449

-0.31449

-0.31449

-0.31449

-0.31449

-0.31449

-0.31449

Original_sp

-0.10304

0.214302

-0.32011

-0.10304

0.103041

-0.32011

-0.32011

-0.32011

-0.32011

-0.32011

-0.32011

-0.32011

-0.32011

Weak_sp
-0.3176
-0.05366
-0.3176
-0.18461
0.059586
-0.3176
-0.3176
-0.3176
-0.22727
-0.3176
-0.3176
-0.3176

-0.3176

Strong_sp
0.779525
0.428763
0.069595
0.406041

0.00653
-0.0696
-0.0696
-0.0696
-0.06959
-0.0696
-0.0696
-0.0696

-0.0696

Table 9. St. Martin g Zscore #I Superfamily
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Figure 11. St. Martin p% Superfamily
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ID Original_Zscore Weak_Zscore Strong_Zscore Original_sp Weak_sp Strong_sp

6 -1.71691 -2.87112 1.661523 -0.29547 -0.22051 0.380712
12 -0.36932 -1.20247 1.63356 -0.06356 -0.09235 0.374305
14 -1.71691 -4.15513 -0.41082 -0.29548 -0.31913 -0.09413
36 -1.71691 -4.15513 3.45395 -0.29547 -0.31913 0.791419
38 1.716908 1.799664 -0.41082 0.295475 0.13822 -0.09413
46 -1.71691 -4.15513 -0.41082 -0.29548 -0.31913 -0.09413
74 -1.71691 -4.15513 -0.41082 -0.29548 -0.31913 -0.09413
78 -1.71691 -4.15513 -0.41082 -0.29548 -0.31913 -0.09413
98 -1.09635 -1.10187 -0.41082 -0.18868 -0.08463 -0.09413

102 -1.71691 -4.15513 -0.41082 -0.29548 -0.31913 -0.09413
108 -1.71691 -4.15513 -0.41082 -0.29548 -0.31913 -0.09413
110 -1.71691 -4.15513 -0.41082 -0.29548 -0.31913 -0.09413
238 -1.71691 -4.15513 -0.41082 -0.29548 -0.31913 -0.09413

Table 10. Chesspeake fiv.Zscore #1 Superfamily

1
0.8 |
0.6
04 — —&— original_sp
' —— weak_sp
02
0 ‘ //R ‘ ‘ strong_sp

Figure 12. Chesspeake % Superfamily
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ID Original_Zscore Weak_Zscore Strong_Zscore Original_sp Weak_sp Strong_sp
6 -3.54714 -6.67046 5.405872 -0.26303 -0.29937 0.076242
12 3.930769 -4.53703 11.87985 0.291477 -0.20362 0.167549
14 -5.67502 -6.33327 2.342074 -0.42082 -0.28424 0.033032
36 -5.0119 -11.9216 8.662428 -0.37165 -0.53505 0.122171
38 2.087713 -10.2013 12.81541 0.15481 -0.45784 0.180743
46 6.16401 -4.37193 28.31973 0.457078 -0.19621 0.39941
74 -1.85739 -8.96517 17.88596 -0.13773 -0.40236 0.252256
78 -2.87256 -2.87137 -0.47826 -0.21301 -0.12887 -0.00675
98 -3.32883 -3.27169 -0.41082 -0.24684 -0.14684 -0.00579
102 -3.77928 -3.50148 -1.59456 -0.28024 -0.15715 -0.02249
108 3.486546 -0.65457 10.27412 0.258537 -0.02938 0.144902
110 0.305105 -1.2277 11.49675 0.022624 -0.0551 0.162146
238 2.199358 -3.52769 57.00582 0.163088 -0.15832 0.803987
Table 11. coachellalnter f Zscore #! Superfamily
1

—&— original_sp
——weak_sp

strong_sp

Figure 13. Coachellalnter f Superfamily
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ID Original_Zscore Weak_Zscore Strong_Zscore Original_sp Weak_sp Strong_sp
6 -3.16468 0.461409 -0.75495 -0.19604 0.03128 -0.35
12 1.941243 1.337675 -0.78232 0.120252 0.090684 -0.36269
14 -4.54282 -3.37524 -0.57256 -0.28141 -0.22882 -0.26544
36 -3.47632 0.123292 -0.7745 -0.21534 0.008358 -0.35907
38 2.432854 1.399384 -0.84311 0.150706 0.094868 -0.39087
46 5.023007 4.486077 -0.47983 0.311155 0.304122 -0.22245
74 -7.61981 -6.9357 -0.54746 -0.47202 -0.47019 -0.25381
78 -1.38492 -1.38319 -0.20412 -0.08579 -0.09377 -0.09463
98 -6.02156 -6.05151 -0.37256 -0.37301 -0.41025 -0.17272
102 -2.55845 -2.55461 -0.36786 -0.15849 -0.17318 -0.17054
108 9.238748 9.235317 -0.50509 0.572303 0.626085 -0.23417
110 -0.67044 -0.66601 -0.14286 -0.04153 -0.04515 -0.06623
238 1.773848 1.788265 -0.84311 0.109883 0.121231 -0.39087
Table 12. LittleRock p Zscore ! Superfamily
1
0.5
—e&— original_sp
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Figure 14. LittleRock fi¥ Superfamily
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ID Original_Zscore Weak_Zscore Strong_Zscore Original_sp Weak_sp Strong_sp
6 4584513 -1.84006 3.808106 0.305372 -0.1979 0.50422
12 7.312807 5.747983 -1.17603 0.487103 0.61819  -0.15571
14 -0.98171 -0.41356 -0.48082 -0.06539 -0.04448  -0.06366
36 4.856907 -1.75855 5.979292 0.323516 -0.18913  0.791701
38 -5.16754 -3.62932 0.61633 -0.34421 -0.39033  0.081606
46 1512368 1.749745 -0.32962 0.100738 0.188183  -0.04364
74 -2.08256 -1.87271 -0.42268 -0.13872 -0.20141  -0.05597
78 -5.16754 -2.17544 -1.17603 -0.34421 023397 -0.15571
98 -2.16441 -2.17544 -0.3386 -0.14417 -0.23397  -0.04483
102 -1.22636 -1.22657 -0.1005 -0.08169 -0.13192  -0.01331
108 2.59057 2.56718 -0.48044 0.172557 0.276098  -0.06361
110 -5.16754 -2.17544 -1.17603 -0.34421 023397  -0.15571
230 -5.16754 -2.17544 -1.17603 -0.34421 023397  -0.15571
Table 13. B. Brook fiz Zscore #! Superfamily
1
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Figure 15. B. Brook fy Superfamily
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ID Original_Zscore Weak_Zscore Strong_Zscore Original_sp Weak_sp Strong_sp
6 1.166676 -4.97063 4.981989 0.12233 -0.40178 0.581827
12 5.754029 2.121066 6.016856 0.603328 0.17145 0.702685
14 -1.52663 -1.52221 -0.1005 -0.16007 -0.12304 -0.01174
36 1.304625 1.857087 -0.76268 0.136794 0.150112 -0.08907
38 -1.88959 -3.15688 2.960739 -0.19813 -0.25518 0.345773
46 2.782947 2.600902 -0.1005 0.291801 0.210236 -0.01174
74 -2.41688 -2.41517 -0.1005 -0.25342 -0.19522 -0.01174
78 -2.17163 -4.97063 -0.76268 -0.2277 -0.40178 -0.08907
98 -2.15961 -2.17049 -0.76268 -0.22644 -0.17544 -0.08907
102 -2.17163 -2.18257 -0.76268 -0.2277 -0.17642 -0.08907
108 3.430743 3.452393 -0.1005 0.359724 0.279063 -0.01174
110 -2.17163 -4.97063 -0.76268 -0.2277 -0.40178 -0.08907
238 -2.17163 -4.97063 -0.76268 -0.2277 -0.40178 -0.08907
Table 14. Skipwith ¥ Zscore 1 Superfamily
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Figure 16. SkipwithInter fy Superfamily
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ID Original_Zscore Weak_Zscore Strong_Zscore Original_sp Weak_sp Strong_sp
6 1.714808 0.424154 =0.1673 0.060871 0.035817 -0.03529
12 -8.65087 -0.57413 -1:43396 -0.30708 -0.04848 -0.30252
14 -8.65087 -1:66292 -1.50147 -0.30708 -0.14042 -0.31677
36 1.714808 2.104422 -1.50147 0.060871 0.177704 -0.31677
38 -1.71481 -1.66292 -0-30151 -0.06087 -0.14042 -0.06361
46 -8.65087 -1.66292 -1.50147 -0.30708 -0.14042 -0.31677
74 -8.65087 -1.66292 -1.50147 -0.30708 -0.14042 -0.31677
78 -8.65087 -1.66292 -1.50147 -0.30708 -0.14042 -0.31677
98 10.54809 10.50778 -0.14286 0.374427 0.887312 -0.03014
102 -8.65087 -1.66292 -1.50147 -0.30708 -0.14042 -0.31677
108 -8.65087 -1.66292 -1.50147 -0.30708 -0.14042 -0.31677
110 -8.65087 -1.66292 -1.50147 -0.30708 -0.14042 -0.31677
238 -8.65087 -1.66292 -1.50147 -0.30708 -0.14042 -0.31677

Table 15. S208 jiv Zscore #! Superfamily
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Figure 18. S208 p Superfamily
ID Original_Zscore Weak_Zscore Strong_Zscore Original_sp Weak_sp Strong_sp
6 1.788484 0.451044 -0.35737 0.03538 0.086732 -0.06841
12 -15.5247 -1.45449 -1.7031 -0.30711 -0.75287 -0.32601
14 -15.5247 -1.72251 -1.7031 -0.30711 -0.75287 -0.32601
36 1.788484 1.208996 -0.94222 0.03538 0.086732 -0.18036
38 -1.78848 -1.72251 -0.37363 -0.03538 -0.08673 -0.07152
46 -15.5247 -1.72251 -1.7031 -0.30711 -0.75287 -0.32601
74 -15.5247 -1.72251 -1.7031 -0.30711 -0.75287 -0.32601
78 -15.5247 -1.72251 -1.7031 -0.30711 -0.75287 -0.32601
98 19.40711 19.86786 -0.17586 0.383913 0.941144 -0.03366
102 -15.5247 -1.72251 -1.7031 -0.30711 -0.75287 -0.32601
108 -15.5247 -1.72251 -1.7031 -0.30711 -0.75287 -0.32601
110 -15.5247 -1.72251 -1.7031 -0.30711 -0.75287 -0.32601
238 -15.5247 -1.72251 -1.7031 -0.30711 -0.75287 -0.32601
Table 16. S420 v Zscore #! Superfamily
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ID Original_Zscore Weak_Zscore Strong_Zscore Original_sp Weak_sp Strong_sp
6 1.903386 0.941179 -0.86316 0.017566 0.021366 -0.12968
12 -33.1911 -2.3996 -2.16197 -0.30631 -0.05447 -0.32481
14 -33.1911 -2.3996 -2.16197 -0.30631 -0.05447 -0.32481
36 1.903386 1.395896 -1.11214 0.017566 0.031688 -0.16708
38 -1.90339 -1.75915 -0.48432 -0.01757 -0.03993 -0.07276
46 -33.1911 -2.3996 -2.16197 -0.30631 -0.05447 -0.32481
74 -33.1911 -2.3996 -2.16197 -0.30631 -0.05447 -0.32481
78 -33.1911 -2.3996 -2.16197 -0.30631 -0.05447 -0.32481
98 42.60697 43.39078 -0.14286 0.393212 0.985007 -0.02146
102 -33.1911 -2.3996 -2.16197 -0.30631 -0.05447 -0.32481
108 -33.1911 -2.3996 -2.16197 -0.30631 -0.05447 -0.32481
110 -33.1911 -2.3996 -2.16197 -0.30631 -0.05447 -0.32481
238 -33.1911 -2.3996 -2.16197 -0.30631 -0.05447 -0.32481
Table 17. S838 Fy Zscore. 7! Superfamily
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Figure 20. S838 fiJ Superfamily
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