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設計高效能之頻繁封閉項目集維護演算法 

 

研究生 : 邱成樑                 指導教授 : 曾憲雄博士 

 

國立交通大學資訊科學研究所 

摘要 

如何從龐大且複雜的資料庫中萃取出有用的知識與資料是近來非常熱門的

研究課題。在真實生活中，新資料的加入使得資料探勘的結果不斷改變。當新的

資料新增時為了避免重新處理整個資料庫來獲得新的探勘結果；一些漸進式的資

料探勘演算法利用儲存之前的探勘結果來降低新增資料時所需要處理的時間。 

然而，傳統的漸進式資料探勘技術遇到頻繁項目集(Frequent Itemsets)長度很

長時，大量頻繁項目集的保存將使得漸進式資料探勘有實做上的困難。此外，傳

統的漸進式資料探勘技術每次都必須消耗額外的存取動作重新掃描一次資料庫

以確定是否有新的頻繁項目集產生。 

有鑑於此，此篇論文將封閉項目集(Closed Itemsets)與準大項目集(Pre-large 

Itemsets)的概念導入到漸進式資料探勘；封閉項目集的概念是在沒有遺失任何資

訊的情況下將資料進行壓縮，透過此優點來將漸進式資料探勘預先保存的資料進

行壓縮。而準大項目集則是用一種緩衝區的概念來避免項目集直接從有效項目集

被判定為無效項目集，且反之亦然；這樣可避免常對資料庫進行重新掃描。基於

這兩個概念，我們提出封閉項目集維護演算法(CIM)與準大封閉項目集維護演算

法(CIM-P)兩個新的漸進式資料探勘演算法，CIM 利用封閉項目集來有效取得探

勘結果，減少維護於記憶體中的項目集。而 CIM-P 則利用緩衝區來降低 CIM 在

每次加入新資料時，必須重新掃描資料庫的機率。 

關鍵字:封閉項目集、漸進式資料探勘、關聯式規則、資料探勘
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Abstract 
 

Recently, mining association rules from transaction databases has been one of the 
most interesting and popular research topics in data mining. In real-world applications, 
a database grows over time such that existing association rules may become invalid or 
new implicitly valid association rules may appear. Some researchers have thus 
developed incremental mining algorithms to maintain association rules without 
re-processing the entire database whenever the database is updated. The common idea 
among these approaches is to store previously mined itemsets in advance for later use. 
However, for a dense database, the performance of classical incremental mining 
algorithms will degrade dramatically due to a huge amount of pre-stored mining 
information. On the other hand, most incremental mining algorithms are required one 
scan of original database to discover new implicitly valid rules. When the original 
database is massive, this will result in excessive I/O cost. 

In this study, we attempt to utilize the concepts of closed itemsets and pre-large 
itemsets dealing with the two challenges, respectively. The closed itemsets can 
losslessly determine all the pre-stored mined itemsets and their exact support, but are 
orders of magnitude smaller than all pre-stored patterns. The pre-large patterns act as 
a buffer to avoid the movements of itemsets directly from valid to invalid and 
vice-versa when the database maintained. Based on the two concepts, two novel 
incremental mining algorithms called Closed Itemsets Maintenance (CIM) and CIM 
with Pre-large concept (CIM-P) are thus developed to efficiently maintain association 
rules, especially in a dense database. 
Keywords: closed itemsets, incremental mining, association rules, data mining. 
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Chapter 1: Introduction 
 

Data mining technology has become increasingly important in the field of large 

databases and data warehouses. This technology helps discover non-trivial, implicit, 

previously unknown and potentially useful knowledge, thus being able to aid 

managers in making good decision. Among various types of databases and mined 

knowledge, mining association rules from transaction databases is the most interesting 

and popular. In general, the process of mining association rules can roughly be 

decomposed into two tasks: finding frequent itemsets satisfying the user-specified 

minimum support threshold from a given database and generating interesting 

association rules satisfying the user-specified minimum confidence threshold from 

found frequent itemsets. Since the first task is very time-consuming when compared 

to the second one, the major challenges in mining association rules thus focus on how 

to reduce the search space and decrease the computation time in the first task. Some 

famous mining approaches, such as Apriori [4], DIC [10], DHP [29], Partition [31], 

Sampling [26], GSP [5] and FP-Growth [20][33], have been proposed. 

 

In real-world applications, a database grows over time such that existing 

association rules may become invalid or new implicitly valid association rules may 

appear. Recently, some researchers have developed incremental mining algorithms to 

maintain association rules without re-processing the entire updated database [13]. The 

common idea of these researches lies in that, the previously mined information such 

as mined frequent itemsets are stored in advance; when new transactions are inserted, 

(a) a large portion of candidate itemsets can be decided using the pre-stored mined 

frequent itemsets; (b) only a small portion of candidate itemsets obtained from the 

new transactions without sufficient information needs to be re-processed against the 
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original database. Task (a) is responsible for updating previously mined association 

rules, and Task (b) is responsible for finding new association rules. Much computation 

time can thus be saved in this way. However, for a dense database such as census data 

and DNA sequences, the computation cost of Task (a) will be getting tremendous due 

to a huge amount of previously mined frequent itemsets. For example, a frequent 

30-itemset (a frequent itemset consisting of 30 items) implies the presence of 230-2 

additional frequent itemsets as well. The performance of classical incremental mining 

algorithms will degrade dramatically. On the other hand, most incremental mining 

algorithms are required one scan of original database to deal with Task (b). When the 

original database is massive, this will result in excessive I/O cost. As a result, in this 

study, we attempt to utilize the concepts of closed itemsets and pre-large itemsets to 

overcome the two challenges, respectively. 

 

 In a dense database, many itemsets usually appear together, and we can 

consider them together. The concept of closed itemsets, which is denoted as the 

itemsets having no proper superset with the same support, can be treated as a lossless 

compression for all itemsets in the database. It can also reduce redundant rules 

generated [34]. Therefore, using the set of frequent closed itemsets instead of the set 

of frequent itemsets from the original database as the pre-stored mining information 

can increase both efficiency and effectiveness of an incremental mining algorithm. 

The set of frequent closed itemsets can easily determine all the frequent itemsets and 

their exact supports, and its order of magnitude is smaller than the set of all frequent 

itemsets. 

 

In general, the number of newly inserted transactions is much smaller than the 

number of records in the original database. Only the candidate itemsets whose 

 2



supports are slightly less than the minimum support in the original database are 

possible to be frequent after database maintenance. The concept of pre-large itemsets 

is denoted as the set of itemsets having support between a lower support threshold, 

which is smaller than the given minimum support, and an upper support threshold, 

which is equal to the given minimum support. Therefore, using the pre-large closed 

itemsets to enlarge the amount of pre-stored frequent closed itemsets can reduce the 

cost of re-processing the entire database at the expense of storage spaces. This is 

because they act as a buffer to avoid the movements of closed itemset directly from 

infrequent to frequent and vice-versa during the incremental mining process. 

 

Although using the concept of closed itemsets can effectively reduce the number 

of itemsets considered, some closed itemsets for the updated database, called joint 

closed itemsets in this paper, may not be considered by a classical incremental mining 

algorithm. The major reason is that the set of joint closed itemsets, which was 

compressed before, cannot be determined by above-mentioned Tasks (a) and (b). In 

this paper, we thus propose a novel incremental mining algorithm called Closed 

Itemsets Maintaining (CIM) to extend Tasks (a) and (b) that can efficiently find all 

frequent closed itemsets for the updated database. Task (a) of CIM algorithm is 

responsible for extracting the joint closed itemsets, which was compressed by the 

pre-stored frequent closed itemsets in the original database, and updating them against 

the newly inserted transactions. Task (b) of CIM algorithm is responsible for 

generating the candidate itemsets for the updated database which has not been 

determined in Task (a). Furthermore, based on the concept of pre-large itemsets, we 

propose the CIM-P algorithm to reduce the cost of Task (b) in the CIM algorithm. 

Also, we design the bucketing strategy to improve the utility of buffer. The 

consumption of buffer can be rigidly calculated using the maximum value of buckets. 
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Chapter 2: Related Work 
 

In the following, the previous related studies of closed itemsets mining and 

incremental mining approaches will be briefly described. 

 

2.1 Closed itemsets mining approaches 

 

The major challenge in mining association rules is to reduce the search space and 

decrease the computation time required for mining frequent itemsets. The Apriori 

algorithm, which is the most well-known, utilizes a level-wise candidate generation 

approach to reduce its search space such that only frequent itemsets found in the 

previous level are treated as seeds for generating candidate itemsets in the current 

level. Many later algorithms [10][29][31][26][5] were based on this property and 

attempted to further reduce candidate itemsets and I/O costs. However, this Apriori 

property can not work well for dense databases, such as census data and DNA 

sequences, or a low minimum support. This is because most generated candidate 

itemsets are frequent itemsets such that the number of frequent itemsets will grow up 

exponentially; the performance of an Apriori-like algorithm thus degrades 

dramatically. 

 

Some researchers have then developed closed itemsets mining algorithms to 

reduce the number of itemsets generated. Examples include A-close [34], CLOSET 

[35], CLOSET+ [36] and CHARM [36]. The A-close algorithm is an Apriori-like 

algorithm using a breadth-first search manner to find frequent closed itemsets directly. 

However, breadth-first searches may encounter difficulties since there could be many 

candidates generated and need to scan the database many times. The CLOSET 
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algorithm [35], an extension of the FP-growth algorithm, uses a depth-first search 

(recursive divide-and-conquer) manner and a database-projection approach to mine 

long patterns from the FP-tree (frequent pattern tree) structure representing all 

transactions of database. However, the CLOSET algorithm may suffer from a sparse 

database or a low minimum support. An enhancement of the CLOSET algorithm, the 

CLOEST+ algorithm, thus combines various known search manners and 

closure-testing strategies to improve the performance of CLOSET. The CHARM 

algorithm uses a dual itemsets-tidset search tree and the Diffset technique to 

enumerate closed itemsets from a vertical-layout database. In many dense datasets, 

the CHARM algorithm has better performance than the A-close, CLOSET and 

CLOSET+ algorithms. 

 

2.2 Incremental mining approaches 

 

In real-world applications, a database grows over time such that existing 

association rules may become invalid or new implicitly valid rules may appear. In 

these situations, conventional batch-mining algorithms do not utilize previously 

mined patterns for later maintenance, and may require considerable computation time 

to re-process the entire updated database to get all up-to-date association rules. Some 

researchers have developed incremental mining algorithms to maintain association 

rules without re-processing the entire database whenever the database is updated. 

Examples include the FUP-based algorithms [13][14], an adaptive algorithm [30], an 

incremental mining algorithm based on the concept of pre-large itemsets [22], and an 

incremental updating technique based on the concept of negative border [16][32]. The 

common idea of these researches lies in that, the previously mined information such 

as mined frequent itemsets are stored in advance; when new transactions are inserted, 
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a large portion of candidate itemsets can be decided by using the pre-stored frequent 

itemsets; only a small portion of candidate itemsets obtained from the new 

transactions needs to be re-processed against the original database. Much computation 

time can thus be saved in this way. The correctness of this idea is simply illustrated as 

follows. 

Considering an original database and the newly inserted transactions, there are 

four cases of candidate itemsets shown in Figure 2-1 may arise: 

Case 1: A candidate itemset is frequent in both the original database and the 

newly inserted transactions. 

Case 2: A candidate itemset is frequent in the original database but infrequent in 

the newly inserted transactions. 

Case 3: A candidate itemset is infrequent in the original database but frequent in 

the newly inserted transactions. 

Case 4: A candidate itemset is infrequent in both the original database and the 

newly inserted transactions.  

 

 

Incremental Batch

Figure 2-1: Four cases of candidate itemsets when adding new transactions to 

existing databases. 

Original DB 
d 

Frequent Infrequent 

D
Infrequent

Frequent Case 1 Case 2

Case 3 Case 4
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Among the cases, since candidate itemsets in Case 1 are large in both the original 

database and the new transactions, they are still large after the weighted average of 

the supports; similarly, candidate itemsets in Case 4 are still small after the new 

transactions are inserted. Cases 1 and 4 will not affect the final association rules; Case 

2 may remove existing association rules; and Case 3 may generate new association 

rules. 

 

Cheung and his co-workers proposed an incremental mining algorithm, called 

FUP (Fast UPdate algorithm) [13][14], to efficiently cope with these four cases by 

pre-storing the previously mined frequent itemsets from the original database. It 

handles Cases 1, 2 and 4 by updating the pre-stored frequent itemsets against the 

newly inserted transactions, and re-processes only the itemsets without sufficient 

information in Case 3 against the original database if necessary. 

 

The performance of the FUP algorithm will get degraded if a lot of candidate 

itemsets from the newly inserted transactions belong to Case 3. For example, suppose 

{A}, {B} and {AB} are all the previously mined frequent itemsets from the original 

database and {C}, {D} and {CD} are the three candidate itemsets from some newly 

inserted transactions. The final results can not be determined without re-processing 

the original database. 

 

As a result, Thomas et al. [32] and Feldman et al. [16] utilized the concept of 

negative border [16] to enlarge the amount of pre-stored mining information in the 

FUP algorithm for improving the maintenance performance. A negative border of 

frequent itemsets can be easily formed by excluding the set of frequent itemsets from 

the set of candidate itemsets generated level by level. In other words, the negative 
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border consists of the itemsets which are candidates but do not have enough supports. 

The processing time for Case 3 in the FUP algorithm can be reduced by additionally 

keeping the negative border of frequent itemsets. Similarly, Hong et al. [22] proposed 

the concept of pre-large itemsets [22] to enlarge the amount of pre-stored mining 

information for improving the maintenance performance. The proposed algorithm 

doesn't need to rescan the original database until a number of new transactions have 

been inserted. 

 8



Chapter 3: Preliminary Concepts 
 

Let I = {i1, i2, …, im} be a set of m items. A subset X of I consisting of k items is 

called a k-itemset. Let D be a transactional database (TDB) consisting of a set of 

transactions, where each transaction T consisting of a set of items of I is associated 

with an identifier called TID, and |D| denotes the number of transactions in D. A 

transaction T is said to contain X if and only if X ⊆ T. The support of an itemset X, 

X.sup, in D is denoted as the percentage of transactions in D which contain X. For the 

itemsets in D, X is called a closed itemset if there does not exist an itemset Y which 

closes (absorbs) X, where an itemset Y is said to close (absorb) X iff X ⊆ Y and X.sup 

= Y.sup. CI denotes the set of all closed itemsets in D. Furthermore, if there is no 

superset of X existing in D, X is also called a maximum itemset. 

 

An association rule is an implication of the form X ⇒ Y, where X and Y are 

subset of I, and X∩Y = φ. The support of a rule X ⇒ Y, (X∪Y).sup, in D is denoted as 

the percentage of transactions in D which contain X∪Y, and the confidence of X Y 

is computed by (X∪Y).sup/X.sup. Given the user-specified minimum support 

threshold, minsup, and minimum confidence threshold, minconf, the problem of 

mining association rules is to find out all association rules in D that have support and 

confidence larger than minsup and minconf, respectively. With respect to the minsup, 

the set of frequent itemset, FI, includes all the itemsets whose support is larger than 

minsup; the set of infrequent itemset, NI, includes all the itemsets whose support is 

less than minsup; the set of frequent closed itemset, FCI, includes all the closed 

itemsets whose support is larger than minsup, FCI = {x|x ∈ CI, x.sup ≥ minsup}; and 

the set of infrequent closed itemset, NCI, includes all the closed itemsets whose 

support is less than minsup, NCI = {x| x ∈ CI – FCI}. Note that FCI includes no 

⇒
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itemset which has a superset with the same support, and thus FCI ⊆ FI. The problem 

of mining association rules can be reduced to the problem of finding FI or FCI in D. 

 

Let d be an increment of new transactions which is added to the original database 

D, |d| be the number of transactions in d, D+ be the updated database which denotes D 

∪ d, and |D+| be the number of transactions in D ∪ d. Therefore, FID, FId and CI D+ 

denote the FI obtained from D, d and D+ with respect to the same minsup, 

respectively, and FCI, NI, NFCI or CI obtained from D, d and D+ can have similar 

meanings. The problem of maintaining association rules is to find FID+ or FCID+. Let 

the set of original frequent itemsets, O, be defined as O = {x|x ∈ FID}, and the set of 

potential frequent itemsets, P, be defined as P = {x|x ∈ FId − FID}. By definition, an 

itemset X ∈ FID+ must belong to O ∪ P, and thus the problem of maintaining 

association rules is equivalent to processing O ∪ P. Similarly, let the set of closed 

original frequent itemsets, CO, be defined as CO = {x|x ∈ FID and x ∈ CID+}, and the 

set of closed potential frequent itemsets, CP, be defined as CP = {x|x ∈ FId − FID and 

x ∈ CID+}. The problem of maintaining association rules is also equivalent to 

processing CO ∪ CP. Since directly obtaining CO ∪ CP is impractical because CID+ 

is unknown before processing D+, the major contribution in this study is to utilize the 

pre-stored mining information FCID and some information from d to approach CO ∪ 

CP and thus obtain FCID+. The related concepts are described as follows. 

 

We further discuss the set of joint closed itemsets, JCI, which is defined as JCI = 

{x|x = y ∩ z, y ∈ CID, z ∈ CId}. JCI can be divided into four parts based on FCID, 

FCId, NCID and NCId: 

 FFJCI = {x|x = y ∩ z, y ∈ FCID, z ∈ FCId}. 

 FNJCI = {x|x = y ∩ z, y ∈ FCID, z ∈ NCId}. 
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 NFJCI = {x|x = y ∩ z, y ∈ NCID, z ∈ FCId}. 

 NNJCI = {x|x = y ∩ z, y ∈ NCID, z ∈ NCId}. 
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 Chapter 4: Frequent Closed Itemsets Maintenance 
 

Considering an original database D and the newly inserted transactions d, there 

are four cases of candidate itemsets for the updated database D+ have been discussed 

in Section 2. With pre-storing previously mined frequent itemsets FID, a typical 

incremental mining algorithm can efficiently cope with these four cases by two steps: 

(a) updating O against d and (b) rescanning P against D. Following this idea, we can 

use two similar steps: (a) updating CO against d and (b) rescanning CP against D to 

find out FCID+ dealing with the problem of maintaining association rules. However, 

directly obtaining CO = {x|x ∈ FID and x ∈ CID+} and CP = {x|x ∈ FId − FID and x ∈ 

CID+} is impractical because CID+ is unknown before processing D+. In the following, 

we attempt to utilize the pre-stored known information FCID from D and the 

information FCId obtained from d to approach CO and CP. 

 

4.1 Joint closed itemsets 

 

Lemma 1: If x ∈ CID ∪ CId, then x ∈ CID+. 

Proof: We prove the lemma by contradiction. If x ∉ CID+, there must exist a 

proper superset y of x such that y.supD+ = x.supD+, i.e., y.supD*|D| + y.supd*|d| = 

x.supD*|D| + x.supd*|d|. Thus y.supD = x.supD and y.supd = x.supd, contradicting 

the claim that x ∈ CID ∪ CId. Thus, x ∈ CID+.  

 

Let FCId-D denote FCId – FCID. Since FCID is the pre-stored mining information, 

we only need to find FCId from d to determine FCID-d. According to Lemma 1, we 

have FCID ⊆ CID ⊆ CID+ and FCId-D ⊆ CId ⊆ CID+. FCID and FCId-D are both closed 

itemsets in D+. If an incremental mining algorithm can utilize FCID and FCId to 
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obtain CO and CP, the problem of maintaining association rules in a dense database 

can be efficiently coped with. We first discuss the differences between FCID and CO 

and between FCId-D and CP. For example, given D = {ABCE, CD, BCE}, d = 

{ABCDE, CDE} and minsup = 0.6, FID = {B, C, E, BC, BE, CE, BCE}, FId = {C, D, 

E, CD, CE, DE, CDE}, FCID = {C, BCE} and FCId = {CDE}. By definitions, FCId-D 

= {CDE}, CO = {C, CE, BCE} and CP = {CD, CDE}. As shown in this example, 

there exist some closed itemsets in CID+ but not in CID or CId, such that FCID and 

FCId-D may be not equivalent to CO and CP. The following lemmas are used to derive 

the set of joint itemsets (JCI) which are closed itemsets for D+ but can not be 

determined by FCID and FCId-D. 

 

Lemma 2: If x ∈ JCI, then x ∈ CID+. 

Proof: If x ∈ JCI, x must be one of following two cases. 

Case 1: If x ∈ CID ∪ CId, then x ∈ CID+ according to Lemma 1; 

Case 2: If x ∉ CID ∪ CId, there exist y ∈ CID and z ∈ CId such that x ⊂ y, x ⊂ z, 

and x is closed by both y and z. We prove this case by contradiction. If x ∉ CID+, 

there must exist a proper superset x’ of x such that x’.supD+ = x.supD+, i.e., 

x’.supD*|D| + x’.supd*|d| = x.supD*|D| + x.supd*|d| = y.supD*|D| + z.supd*|d|. 

Thus x’ ⊂ y, x’ ⊂ z (because x’.supD = y.supD and x’.supd = z.supd) and x’ = y ∩ z, 

contradicting the claim that x ∈ JCI. Thus, x ∈ CID+.  

 

Lemma 3: If x ∈ CID+, then x ∈ CID ∪ CId ∪ JCI.

Proof: If x ∈ CID+ and x ∉ CID ∪ CId, x must be closed in both D and d. Assume 

y is the itemset that closes x in D and z is the itemset that closes x in d. Then 

x.supD+ * |D+| = y.supD * |D| + z.supd * |d|. If y ⊆ z, x is belonging to Case 1 of 

Lemma 2, contradicting the claim that x ∉ CID; if z ⊆ y, x is also belonging to 
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Case 1 of Lemma 2, contradicting the claim that x ∉ CId. Thus y  z and z  

y. According to Case 2 of Lemma 2, there must exist x’ = y ∩ z and x’ ∈ CI

⊆/ ⊆/

D+. If 

x ⊂ x’, x is closed by x’ (because x’.supD+ = x.supD+), contradicting the claim that 

x ∈ CID+. Thus, x = x’ and x ∈ JCI.  

 

Theorem 1: CID+ = CID ∪ CId ∪ JCI. 

Proof: According to Lemmas 1 and 2, we have (CID ∪ CId ∪ JCI)  CI⊆ D+. On 

the other hand, according to Lemma 3, we have CID+  (CI⊆ D ∪ CId ∪ JCI). 

Thus, CID+ = CID ∪ CId ∪ JCI.  

 

4.2 The effect of intersectional closed itemsets 

 

Considering an original database and the newly inserted transactions, there are 

four cases of joint closed itemsets shown in Figure 4-1 may arise: 

 

 

Incremental Batch

 

Figure 4-1: Four cases of JCI 

 

Original DB 
d 

FCId NCId

D
NCID

FCID
FFJCI FNJCI

NFJCI NNJCI
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The case of FFJCI: A closed itemset is frequent in both the original database and 

the newly inserted transactions. 

The case of FNJCI: A closed itemset is frequent in the original database but 

infrequent in the newly inserted transactions. 

The case of NFJCI: A closed itemset is infrequent in the original database but 

frequent in the newly inserted transactions. 

The case of NNJCI: A closed itemset is infrequent in both the original database 

and the newly inserted transactions. 

 

Since the closed itemsets in FFJCI are frequent in both the original database and 

the new transactions, they will still be frequent after the weighted average of the 

counts. Similarly, the closed itemsets in NNJCI will still be infrequent after the new 

transactions are inserted. FFJCI and NNJCI will not affect the final association rules. 

FNJCI may remove existing association rules, and NFJCI may add new association 

rules. 

 

According to Theorem 1, the following theorems are derived to obtain CO and 

CP by FCID, FCId and JCI. 

 

Theorem 2: CO = {x|x ∈ FCID ∪ FFJCI ∪ FNJCI}. 

Proof: By definition, CO collects the closed itemsets for D+ which is generated 

from FID. According to Theorem 1, CO = {x|x ∈ FID and x ∈ CID+} = {x|x ∈ FID 

and x ∈ CID ∪ CId ∪ JCI } = {x|x ∈ FCID ∪ FFJCI ∪ FNJCI}.  

 

Theorem 3: CP = {x|x ∈ (FCId − FFJCI) ∪ NFJCI}. 

Proof: By definition, CP collects the closed itemsets for D+ which is generated 
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from FId−FID. As Theorem 2, FCId ∪ FFJCI ∪ NFJCI is the set of closed 

itemsets for D+ which is generated from FId. Thus CP = {x|x ∈ FId − FID and x ∈ 

CID+} = {(FCId ∪ FFJCI ∪ NFJCI) − (FCID ∪ FFJCI ∪ FNJCI)) = {x|x ∈ FCId 

∪ FFJCI ∪ NFJCI – FFJCI} = {x|x ∈ (FCId − FFJCI) ∪ NFJCI}.  

 

In contrast to the definitions of CO and CP, Theorems 2 and 3 provide a 

convenient way to obtain CO and CP. For CO, FFJCI and FNJCI can be obtained by 

processing the pre-stored mining information FCID against d. For CP, however, 

since NFJCI has to be generated from NCID, which is usually unknown in a typically 

incremental mining process, this cost is too expensive to be acceptable. As a result, 

the following theorem is derived to obtain CP. 

 

Theorem 4: CP = {x|x ∈ FId – cover(FFJCI, FId), x ∈ CID+}. 

Proof: By definition, the FFJCI covers the itemsets which are included both in 

FId and FID. Thus CP = {x|x ∈ FId − FID and x ∈ CID+} = {x|x ∈ FId – 

cover(FFJCI, FId), x ∈ CID+}, where the function cover(FFJCI, FId) means the 

itemsets in FId which are covered by FFJCI.  

 

Since FFJCI has been obtained in CO generation, we only need to find FId and 

remove the itemsets in FId which have been determined in FFJCI as candidates for 

CP. It seems to be a better way for CP generation, because the cost of checking 

closure property of {FId – cover(FFJCI, FId)} in D+ is less than that of NFJCI 

generation. 
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Chapter 5: The CIM Algorithm 
 

According to Theorems 2 and 4, we develop a novel incremental mining 

algorithm mainly consisting of CO_generation and CP_generation subroutines, called 

Closed Itemsets Maintaining (CIM), to efficiently find FCID+ for D+. In the proposed 

CIM algorithm, an in-memory data structure called closed maintenance tree (CMT) is 

used to facilitate the processes of CO_generation and CP_generation subroutines. 

The detail of CMT will be illustrated in Section 5.1. When new transactions are 

inserted, the CIM algorithm first executes the CO_generation subroutine to update 

existing FCID in CMT and find FFJCI and FNJCI. After that, it executes the 

CP_generation subroutine to generate the candidate itemsets for CP which has not 

been determined in the CO_generation subroutine and insert them into CMT. Finally, 

the CIM algorithm rescans these obtained candidates in CMT against D, checks their 

closure property and then output the frequent closed itemsets for the updated database. 

Detail of the proposed CIM algorithm is shown as follows. 

 

The CIM algorithm(CMT, D, d, minsup) 
Parameters: 
 CMT: A closed maintenance tree; 
 D: An original database; 
 d: A set of newly inserted transactions; 
 minsup: A minimum support. 
Begin 
 Set FFJCISet = φ; /* FFJCISet is a set used to store the 

itemsets of FFJCI. */ 
 Set CandCP1 = φ; /* CandCP1 is a set used to store candidate 

1-itemsets for CP. */ 
CO_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1); 

 Set F1D+ = φ; /* F1D+ is a set used to store frequent 
1-itemsets in the updated database. */ 
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 Set mincountD+ = minsup * (|D| + |d|); 
 Obtain_frequent_items(CMT, mincountD+, F1D+); 
 /* Obtain F1D+ from CMT. */ 

CP_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1, F1D+, CMT.root); 
 Rescan_CP(CMT, D, minsup); /* Rescan obtained candidate k-itemsets (k ≥ 

2) of CP in CMT against D. */ 
 Check_Closure_CP(CMT); /* Check closure property for all candidates 

itemsets of CP in CMT. */ 
 Remove_NI(CMT, mincountD+); /* Remove the itemsets in CMT whose 

support counts are less than mincountD+. */ 
 Output_FCI(CMT); /* Output the frequent closed itemsets for the 

updated database.*/ 
End. 

 

5.1 The closed maintenance tree (CMT) 

 

A closed maintenance tree (CMT) is a tree structure extended from a prefix tree 

[39]. A prefix tree is constructed as follows. For each itemset x, a corresponding node 

vx is built in the prefix tree. Node vx maintains its corresponding itemset with support 

count, denoted as (itemsets, support count). For any pair of nodes vx and vy 

corresponding to itemsets x and y, there is a directed edge from vx to vy if x is a parent 

of y. x is said to be a parent of y if y can be obtained by adding a new item to x (x ⊂ y), 

and inversely, y is said to be a child of x. Therefore, an itemset has only one parent 

and more than one child in the constructed prefix tree. Note that, the itemsets in a 

prefix tree are usually maintained in lexicographic order, and for saving the storage 

space, each node only maintains the suffix of an itemset regarding its parent node. In 

particular, unlike a general prefix tree maintaining all itemsets in D, a CMT only 

maintains FCID and some intermediate mining information from D. There are three 

types of nodes in a CMT: 
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 Prefix nodes: the nodes are used to represent the common prefixes of closed 

itemsets. 

 Closed nodes: the nodes are used to represent closed itemsets in FCID. Note 

that, although a non-leaf closed node also represents the common prefix of 

its child closed nodes in a CMT, it is not a prefix node mentioned above. 

 Infrequent nodes: the nodes are used to represent infrequent 1-itemsets in D. 

 

The purpose of maintaining infrequent 1-itemsets obtained from D in the CMT is 

to reduce useless item combinations in the CP_generation subroutine. The detail will 

be described in Section 5.3. 

 

Figure 5-1 shows an example of CMT. The prefix node (B, 3) and the closed 

node (CE, 2) stand for the closed itemset (BCE, 2); (B, 3) and (E, 3) stand for the 

closed itemset (BE, 3). The CMT maintains only one infrequent node (D, 1). 
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Figure 5-1 A Closed Maintenance Tree 

 

5.2 Generation of the CO set 

The CO_generation subroutine is responsible for processing FCID against d to 

find FFJCI and FNJCI. In that, finding FNJCI is the most concerned because most 



itemsets in NId are needless, thus requiring excessive computation cost. In order to 

reduce needless item combinations from NId, the CO_generation subroutine adopts 

the branch-wise processing strategy to find FFJCI and FNJCI. The CO_generation 

subroutine operates from the most left branch to the most right branch in a given 

CMT. In each branch, it uses the items belonging to the branch, i.e. the items of the 

maximum itemset in the branch, as seeds to mine the closed itemsets in d by a closed 

itemsets mining approach, such as the CHARM algorithm. Since it considers only the 

items in a branch at a time, needless itemsets belonging to NId can be effectively 

reduced. After all branches have been processed, the CO_generation subroutine then 

updates these found itemsets against CMT to obtain CO. Thus, by the branch-wise 

processing strategy, the CO_generation subroutine can find FFJCI and FNJCI 

directly and reduce search space of mining closed itemsets in d. The performance of 

CO_generation subroutine is greatly improved. 

 

Figure 5-2 shows an example of the CO_generation subroutine. Given FCId = 

{BCD, CD} and NCId = {}. By the branch-wise processing strategy, the 

CO_generation subroutine first considers the most left branch with items {A, C} and 

treats {A} and {C} as seeds to mine the closed itemset in d. The item {A} would be 

removed because it does not appear in d. The found {C} is an itemset belonging to 

FFJCI. The other branches are processed in a similar way. From this example, the 

itemset {C} seems to be generated and processed several times and thus increasing 

computation cost, but in our algorithm, a simple checking mechanism is used to avoid 

duplicate generation. 
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Figure 5-2 an example of branch update strategy 

 

We maintain FCID and infrequent 1-item in the CMT. The CO_generation 

subroutine updates count of each node in the CMT and inserts new itemsets from 

FFJCI and FNJCI into the CMT. CO_generation marks all nodes belong to FFJCI 

that would be used in CP_generation later. It also marks some infrequent 1-item 

nodes from infrequent to frequent. 

 

CO_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1) 
Parameters: 

CMT: The closed maintenance tree; 
d: The newly inserted transactions; 
minsup: The minimum support; 
FFJCISet: The set used to store the itemsets of FFJCI; 
CandCP1: The set used to store candidate 1-itemsets for CP. 

Begin 
 Set T = φ;  /* T is a set used to store the mining results 

by branch-wise processing strategy. */ 
for each branch bi ∈ CMT, do 

if bi consists of only one infrequent item x, then 
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update x.count against d; /* x.count denotes support count of x. */ 
if x.count ≥ minsup*|D+|, then 

insert x with x.count into CandCP1; 
else if bi ≠ null, then 

 Closed_itemset_mining(bi, d, T); /* Execute a closed itemsets mining 
algorithm and store mining results into T. */ 

 x = CMT.get_first_CI(); /* Fetch the first closed itemset by lexical 
order in CMT. */ 

 y = T.get_first_CI(); /* Fetch the first closed itemset by lexical 
order in T. */ 

while x ≠ null and y ≠ null, do 
if x = y, then 

x.count = x.count + y.count; 
if y.count ≥ minsup*|d|, then 

insert x with x.count into FFJCISet; 
 x = CMT.get_next_CI(x); /* Fetch the next closed itemset by lexical 

order in CMT. */ 
 y = T.get_next_CI(y); /* Fetch the next closed itemset by lexical 

order in T. */ 
else if x ∩ y = x, then 

x.count = x.count + y.count; 
if y.count ≥ minsup*|d|, then 

insert x with x.count into FFJCISet; 
x = CMT.get_next_CI(x); 

else if x ∩ y = y then 
if y.count ≥ minsup*|d|, then 

insert y with (x.count + y.count) into FFJCISet; 
y.count = x.count + y.count; 
insert y with y.count into CMT; 
y = T.get_next_CI(y); 

else if x ∩ y = z and z ≠ null then 
if CMT.exist(z) = false, then 

z.count = x.count + y.count; 
insert z with z.count into CMT; 
if y.count ≥ minsup*|d|, then 

insert z with z.count into FFJCISet; 
x = CMT.get_next_CI(x); 

  else if (x.count + y.count) > z.count, then 
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z.count = x.count + y.count; 
if y.count ≥ minsup*|d|, then 

insert z with z.count into FFJCISet; 
x = CMT.get_next_CI(x); 

End. 

 

5.3 Generation of the CP set 

The CP_generation subroutine is responsible for generating the candidate 

itemsets for D+ which has not been determined in the CO_generation subroutine. A 

straightforward way is to find FId and then remove all the itemsets which have been 

covered by FFJCI. This may require an excessive computation cost for a large size of 

FId. As a result, the CP_generation subroutine adopts a more effective and efficient 

way dealing with this task. It attempts to combine the obtained itemsets in FFJCI and 

the 1-itemsets which are infrequent in D but frequent in D+, denoted as N-F(1), with 

the frequent 1-itemsets in D+ to directly generate the itemsets belonging to {FId – 

cover(FFJCI, FId)} as candidates for CP. Since all the infrequent 1-itemsets in D have 

been pre-retained in the CMT, it is easy to obtain N-F(1) and all the frequent 

1-itemsets in D+ after the CO_generation subroutine. Specifically, the CP_generation 

subroutine first treats each itemset of FFJCI as a seed and each itemset of N-F(1) as an 

initial candidate. Then it uses a depth-first and left-to-right search manner in the CMT 

to generate the other candidates. When meeting a seed node vx, an itemset x of FFJCI 

in the CMT, the CP_generation subroutine combines x with one of the frequent 

1-itemsets in D+ to form a new itemset x’. If x’ is not included in one of x’s supersets 

in FFJCI and frequent in d, x’ is a new candidate itemset and a corresponding node vx’ 

is built in the CMT. On the other hand, when meeting a candidate node vy, an 

candidate itemset y of N-F(1) or new itemsets generated above in the CMT, the 

CP_generation subroutine does a similar combination-and-testing to generate a new 
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candidate itemset y’ and build a corresponding node vy’ in the CMT. These two 

candidate generations continue until no new candidate itemsets are generated. 

 

Figure 5-4 extends previous example to show the CP_generation subroutine. The 

CP_generation subroutine uses FFJCI, {B, BC, C} and newly frequent 1-item {D} to 

generate CP. At the first step, we fetch the first itemsets {B} and combine all frequent 

items that are not exist in the supper set of {B} in FFJCI and so on. Since item C 

appears in itemset {BC}, the superset of {B} in FFJCI. We only have to test {BD} in 

next step. Second step, we check the combined itemset are local frequent or not. Third 

step, we rescan D to sure remain itemsets are global frequent or not. At the last step, 

we will check the support value of remain itemsets and remove the non-closed. After 

all steps, we can get CP = {CD}. By original definition, CP should be {CD, BCD}; in 

the CP_generation subroutine, we directly prune the infrequent one {BCD} but this 

doesn’t influence our mining result. 
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Figure 5-3 example of CP_generation 

CP_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1, F1D+, x) 
Parameters: 

CMT: The closed maintenance tree; 
d: The newly inserted transactions; 
minsup: The minimum support; 
FFJCISet: The set used to store the itemsets of FFJCI; 
CandCP1: The set used to store candidate 1-itemsets for CP; 
F1D+: The set used to store frequent 1-itemsets in the updated database; 
x: A variable. 

Begin 
if x = CMT.root, then 

for each child ci of x, do 
CP_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1, F1D+, ci); 
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else if x ⊆ FFJCISet or x ⊆ CandCP1, then 
for each zi ∈ F1D+ and the lexical order of zi is after that of the first item of x, do 

 x’ = combine(x, zi);  /* Attempt to generate a new candidate 
itemset for CP. */ 

if x’ ≠ null, then 
if cover(FFJCISet, x’) ≠ null, then continue; 

/* If x’is covered by FFJCISet. */ 
update x’.count against d; 
if x’.count ≥ minsup*|d|, then 

insert x’ with x’.count into CMT; 
for each child ci of x, do 

CP_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1, F1D+, ci); 
End. 
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Chapter 6: The CIM Algorithm with Pre-large Concept: 

CIM-P Algorithm 
 

Although the CIM algorithm focuses on the newly inserted transactions and thus 

saves much processing time in maintaining association rules, it must still scan D to 

handle CP in which candidate closed itemsets are frequent for d but not retained in 

CO. This situation may occur frequently, especially when d is heterogeneous with D. 

For example, in an extreme case, suppose {A}, {B} and {AB} are the entire CO and 

{C}, {D} and {CD} are the itemsets in CP. The final results can not be determined 

without re-processing {C}, {D} and {CD} against D. If the itemsets in CP could be 

decided without rescanning D at each time, the maintenance time could be further 

reduced. 

 

6.1 The concept of pre-large closed itemsets 

In general, the number of records in d is much smaller than the number of 

records in D. Only the closed itemsets whose supports are slightly less than minsup in 

D are possible to be frequent for D+ after database maintenance. The concept of 

pre-large closed itemsets is denoted as the set of closed itemsets having support 

between a lower support threshold, which is smaller than minsup, and an upper 

support threshold, which is equal to minsup. The pre-large closed itemsets are not 

truly frequent at present but more possible to be frequent in the future when database 

is updated. Therefore, using the pre-large closed itemsets to enlarge the amount of CO 

can reduce the cost of rescanning D at the expense of storage spaces. This is because 

they act as a buffer to avoid the movements of closed itemset directly from infrequent 

to frequent and vice-versa during the incremental mining process. When few new 
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transactions are inserted, the infrequent closed itemsets excluding the pre-large ones 

will at most become pre-frequent (pre-large) and cannot become frequent. Base on the 

concept of pre-large closed itemsets, the enhancement of CIM algorithm, CIM-P, 

does not require rescanning D until the accumulative amount of new transactions 

exceeds the safety bound the buffer can afford, which depends on database size. Thus, 

as databases grow larger, the numbers of new transactions allowed before database 

rescanning is required also grow. The CIM-P algorithm thus becomes increasingly 

efficient as databases grow. 

 

Figure 6-1 shows the concept of pre-large closed itemsets. The lower support is 

denoted Sl and the upper support is denoted Su which is equal to minsup. 

MMiinnssuupp  
Area of small CIs Area of large CIs 

support

 

Figure 6-1: The concept of pre-large closed itemsets 

 

As mentioned above, if the number of records in d is much smaller than the 

number of records in D, an itemsets in CP cannot possibly be frequent for D+. Given 

the user-specified Sl and Su, the safety bound of buffer can be derived by the 

following theorem. 

Theorem 5: If |d| ≤ 
u
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S
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−

−

1
)(

, then an itemsets in CP cannot possibly be 

frequent for D+ [22].  

SSuuSSll

Area of small CIs Area of large CIs 

Area of pre-large CIs  

support

 28



 

The 
u

lu

S
DSS

−

−

1
)(

 can be used as the safety bound of buffer to decide the suitable 

time of rescanning D. However, only considering whether the accumulative amount 

of new transactions exceeds 
u

lu

S
DSS

−

−

1
)(

 seems too loose. For example, assume the 

safety bound 
u

lu

S
DSS

−

−
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)(

 = 10 and the accumulative amount of new transactions t = 

0. When an increment d, in which each transaction consists of only one distinct item 

and |d| = 11, has been inserted into D, then t = 11 larger than 
u

lu

S
DSS

−

−

1
)(

 = 10 and 

the CIM-P algorithm needs rescanning D to cope with CP. However, these distinct 

closed itemsets consume only one of buffer, and the effort of rescanning D is 

worthless. 

 

In this study, the bucketing strategy is proposed to improve the utility of buffer. 

The purpose of bucketing strategy is using some buckets to record the actual 

contributions of d for the major itemsets, the itemsets with higher support counts, in 

CP. The consumption of buffer can be tightly calculated using the maximum value of 

buckets. If only one bucket exists, the bucket is accumulated using the maximum 

support count in CP. Otherwise, according to the number of buckets k, the bucketing 

strategy selects k itemsets with the highest support counts in CP and then accumulates 

their corresponding bucket values: (a) for each selected itemset matching a previously 

stored itemset in the buckets, the bucketing strategy accumulates the target bucket 

using the support count of the selected itemset; (b) for the remaining selected itemsets, 

the bucketing strategy finds two of them respectively having the largest and the 

smallest support counts to accumulate the unprocessed bucket having the smallest 

value and all the remaining unprocessed buckets, respectively. 
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For example, given three buckets b1, b2 and b3, |D| = 100, Sl = 30%, Su = 50%, 

and CP1 = {(ab, 15), (cd, 12), (cde, 11), (bd, 10)} and CP2 = {(bcd, 11), (ab, 10), (ad, 

10)} respectively obtained from two increments with |d1| = 20 and |d2| = 20. By 

Theorem 5, the safety bound is 40
5.01

100*)3.05.0(
=

−
− . After d1 has been inserted into 

D, b1 = (ab, 15), b2 = (cd, 12) and b3 = (cde, 11). Since the maximum value of buckets 

is 15 less than 40, the CIM-P algorithm does not need rescanning D and the safety 

bound becomes 48
5.01

120*)3.05.0(
=

−
−  in the updated database D+. After d2 has been 

inserted into D+, the bucketing strategy first accumulates b1 = (ab, 15) using the 

support count of (ab, 10) and thus b1 = (ab, 25), and then accumulates b2 = (cd, 12) 

and b3 = (cde, 11) respectively using the support count of (ad, 10) and (bcd, 11) and 

thus b2 = (ad, 22) and b3 = (bcd, 22). Since the maximum value of buckets is 25 less 

than 48, the CIM-P algorithm still does not need rescanning D+. 

 

The utility of buffer would be better if we have more buckets, but the cost of 

storage space and accumulating buckets would be increased. This is a trade off in this 

strategy. In the CIM-P algorithm, according to the user-specified lower support and 

upper support thresholds, the large and pre-large closed itemsets with their support 

counts in preceding runs are stored in the CMT for later use in maintenance. When 

new transactions are inserted, the proposed algorithm first executes the 

CO_generation subroutine to find FFJCI and FNJCI and the CP_generation 

subroutine to generate the candidate frequent closed itemsets for D+ which has not 

been determined in the CO_generation subroutine. Then, the proposed algorithm 

utilizes the bucketing strategy to calculate the accumulative consumption of buffer 

and decide the suitable time of rescanning D. If the accumulative consumption is 
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within the safety bound of buffer, no action is needed. Otherwise, the original 

database has to be re-scanned to guarantee information lossless. The detail of the 

proposed maintenance algorithm is shown as follows. 

 

6.2 The detail Algorithm of CIM-P 

In the CIM-P algorithm, according to the user-specified lower support and upper 

support thresholds, the large and pre-large closed itemsets with their support counts in 

preceding runs are stored in the CMT for later use in maintenance. When new 

transactions are inserted, the proposed algorithm first executes the CO_generation 

subroutine to find FFJCI and FNJCI and the CP_generation subroutine to generate 

the candidate frequent closed itemsets for D+ which has not been determined in the 

CO_generation subroutine. Then, the proposed algorithm utilizes the bucketing 

strategy to calculate the accumulative consumption of buffer and decide the suitable 

time of rescanning D. If the accumulative consumption is within the safety bound of 

buffer, no action is needed. Otherwise, the original database has to be re-scanned to 

guarantee information lossless. The detail of the proposed maintenance algorithm is 

shown as follows. 

 

The CIM algorithm(CMT, D, d, Sl, Su, k) 
Parameters: 

CMT: A closed maintenance tree based on Sl; 
D: An original database; 
d: A set of newly inserted transactions; 
Sl: A lower support threshold; 
Su: An upper support threshold; 
k: the number of buckets. 

Begin 

 Set SF = 
u

lu

S
DSS

−

−

1
)(

; /* SF is the safety bound of buffer*/ 
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 Set FFJCISet = φ; /* FFJCISet is a set used to store the 
itemsets of FFJCI. */ 

 Set CandCP1 = φ; /* CandCP1 is a set used to store candidate 
1-itemsets for CP. */ 

  Set_Bucket(BucketSet, 0, φ) /* Initiate buckets, where BucketSet is a set 
used to store the most frequent k itemsets in 
CP*/ 

CO_generation subroutine(CMT, d, Su, FFJCISet, CandCP1); 
 Set F1D+ = φ; /* F1D+ is a set used to store frequent 

1-itemsets in the updated database. */ 
 Set mincountD+ = Su * (|D| + |d|); 
 Obtain_frequent_items(CMT, mincountD+, F1D+); 
 /* Obtain F1D+ from CMT. */ 

CP_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1, F1D+, CMT.root); 
if Bucket_Strategy(CMT, BucketSet, Su) > SF, then 

 /* return support count of most frequent 
itemset in the Bucket */ 

 Rescan(CMT, D, d, Sl); /* Reconstruct CMT based on Sl */ 
 else, 
 Remove_NI(CMT, mincountD+); /* Remove the itemsets in CMT whose 

support counts are less than mincountD+. */ 
 Output_FCI(CMT); /* Output the frequent closed itemsets for the 

updated database.*/ 
End. 
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Chapter 7: Experiments 
 

Before showing the experimental results, we first describe the experimental 

environments and the datasets used. 

 

7.1. The experimental environment and the datasets used 

 

The experiments were implemented in C++ on a workstation with dual XEON 

2.8GHz processors and 2048MB main memory, running RedHat 9.0 operating system. 

Several synthetic datasets and a real-world dataset called BMS-POS [3835] were used 

in our experiments. The synthetic datasets were generated by a generator similar to 

that used in [4]. The parameters listed in Table 1 were considered when generating the 

datasets. The generator first generated L maximal potentially large itemsets, each with 

an average size of I items. The items in a potentially large itemset were randomly 

chosen from the total N items according to its actual size. The generator then 

generated D transactions, each with an average size of T items. The items in a 

transaction were generated according to the L maximal potentially large itemsets in a 

probabilistic way. The details of the dataset generation process can be referred to in 

[4].  

Table 1: The parameters considered when generating the datasets 

Parameter Description 
D The number of transactions at initial state 
P The number of transactions in each partition 
N The number of items 
L The number of maximal potentially large itemsets 
T The average size of items in a transaction 
I The average size of items in a maximal potentially large itemset 
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The two synthetic datasets generated and used in our experiments are listed in 

Table2.  

Table2: Two synthetic datasets 

Datasets D P T I L N 
T10I8D10K 70000 5000 10 8 200 145 
T10I8D500K 2000000 100000 10 8 400 to 560 200 

 

The BMS-POS dataset contains several years of point-of-sale data from a large 

electronics retailer. Each transaction in this dataset is a customer’s purchase 

transaction consisting of all the product categories purchased at one time. There are 

515,597 transactions in the dataset. The number of distinct items is 1,657, the 

maximal transaction size is 164, and the average transaction size is 6.5. This dataset 

was also used in the KDDCUP 2000 competition. In our experiments, D = 500000 

and P = 1000 from the BMS-POS dataset. 

 

7.2. The experimental results 

 

In addition to our proposed CIM and CIM-P algorithm, a closed itemsets mining 

algorithm, CHARM was then run for two synthetic datasets requests. The CHARM 

algorithm reprocesses entire dataset when a new partition of data is inserted. The CIM 

and CIM-P algorithms treated each partition as a new addition of transactions. For the 

synthetic data, the execution time spent by the three algorithms for the two datasets is 

shown in Figure7-1. 

 

We first compare the CIM and CIM-P algorithms with the CHARM algorithm. 

From Figures 7-1(a) and 7-1(c), it is easily seen that the execution times by the CIM 
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and CIM-P algorithms for different transactions are very small. The execution times 

by the CHARM algorithm are much larger than those by the CIM and CIM-P 

algorithm, and increase proportional to the numbers of transactions. It can thus be 

concluded that the CIM and CIM-P becomes increasingly efficient as the database 

grows. 

 

In Figure 7-1(b) and 7-1(d), the execution time was recorded after updating the 

first new partition in different support values. It is easily seen that these three 

algorithms have similar tendencies. The decrement of execution time and the 

increment of support value is an inverse proportion. CIM and CIM-P need more 

execution time than CHARM because CIM and CIM-P have to record mining lots of 

information at the first partition. 

 

Dataset T10I8D10K 

7-1(a): The relationships between computational times and partition numbers.  
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Dataset T10I8D10K 

7-1(b): The relationships between computational times and support values. 

 

Dataset T10I8D500K 

7-1(c): The relationships between computational times and partition numbers. 

 

 

Dataset T10I8D500K 

7-1(d): The relationships between computational times and support values. 

Figure7-1: The execution time spent by the three algorithms for two synthetic 
datasets  

 

Finally, we compare the CIM algorithm with the CIM-P algorithm. In our 

experiments, CIM-P spent more execution time than CIM in both datasets. The first 

reason is CIM-P has to record more information than CIM at the first partition thus 

CIM-P spent more time at the first partition. We believe the CIM-P would outperform 

CIM if we used more partitions in our experiment. The second reason is the lower 

support Sl is too low and we will test the influence of Sl in the future. 
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In the second part of the experiments, the real-world BMS-POS [38] dataset was 

used. The execution time spent by the three algorithms for this dataset is shown in 

Figure7-2. The CIM and CIM-P algorithms still outperform CHARM when the 

number of partitions is increased. But there exists an interesting situation in Figure 

7-2(b), both CIM and CIM-P need less execution time than CHARM. It is because in 

the real dataset, BMS-POS, there are less information be recorded since the less 

frequent closed itemsets are generated in the first partition.. 

 

7-2(a): The relationships between computational times and partition numbers. 

 

 

7-2(b): The relationships between computational times and support values. 

Figure7-2: The execution time spent by the three algorithms on the real-world 
BMS-POS dataset 
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Chapter 8: Conclusion 
 

Designing incremental mining algorithms which effectively utilize the previously 

mined information to reduce costs of knowledge maintenances is rather important and 

useful. In order to compress the amount of frequent itemsets, we have utilized the 

concepts of closed itemsets to develop more efficient, scalable and practical 

approaches for maintaining and compressing association rule.  

In the first part of this thesis, we have described that is not an intuitive translation 

from incremental frequent itemsets mining to incremental frequent closed itemsets 

mining, and divided the closed itemsets in the updated database into several portions. 

We have shown the frequent closed itemsets in the updated database could be 

generated by two candidate sets, the closed original frequent itemsets and the closed 

potentially frequent itemsets. A special set named intersectional closed itemset 

collects the closed itemsets that only appears in the updated database has also been 

described. Some frequent closed itemsets belong to the intersectional closed itemsets 

are difficult to be determined since they were closed by other closed itemsets before. 

We have shown the relations between the closed original itemsets, the closed 

potentially frequent itemsets and intersectional closed itemsets.  

In the second part of this thesis, in order to avoid huge comparing cost, CIM has 

utilized the branch update strategy to generate the closed original frequent itemsets 

and make full use of the closed original itemsets to generate the closed potentially 

frequent itemsets are generated from . At last we have utilized the concept of pre-large, 

to develop the CIM-P algorithm that reduces the amount of the closed potentially 

frequent itemsets further. We have utilized two strategies to improve the utility of 
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buffer. The first is bucketing strategy that uses some buckets to record the actual 

contributions of d for the major itemsets in pre-large (the itemsets with higher 

supports). The consumption of buffer can be tightly calculated using the maximum 

value of buckets. This strategy can enhance the utility of buffer and the second 

strategy is using the infrequent 1-items to prune the itemsets that must still be 

infrequent. These two strategies can enhance the utility of buffer used in our CIM-P 

algorithm. 
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