W BT 2RI FEIAD B AR 2
Designing Efficient Mining-algorithms for Frequent Closed

Itemséts Maintenances

oy oA D mRae

hERE e #

o,
\L

4

AU S Je e B A

I

™ok OB koA o2 M T i B OE P OB om o Eow ¥ 2

Designing Efficient Mining algorithms for Frequent Closed Itemsets

Maintenances
Moyod e Student : Cheng-Liang Chiu
hERER g EE Advisor : Shian-Shyong Tseng
T SR

AU ol
L

A Thesis
Submitted to Institute'of Computer and Information Science
College of Electrical Engineering and Computer Science
National Chiae Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

PEARA e &R

II

\

-l
N

Ry B LR HPAD w5

o4 R R thEREF AL

B2~ FRAf R A7

FRPHE EF AR AT e 2 @ F T AR R % R BT o § AT
FTHATHPM L 1@ L EATARIDE B TR R KR @ RTdE b g 5 - e N

PR D B 1% 2 R & g F KR TR g R AL o
R b Siapng N FOREE R Hogieid TIE %38 P & (Frequent Itemsets) £ & {%
‘E\»EE?’J\‘E‘“H:P_/ IEB.g:mlﬁl%;%-léfdlbrL; F‘}&ﬂ*" 'F”LJ mr‘]ﬁﬁ‘_ L ’]‘alg

SeribfE 3N AL I R S RN R s R (P E AT - AT

FE S LR W B3P P & (Closed Itemsets)£? # ~ 38 p £ (Pre-large
Ttemsets) 4% & 4 » FIBHE 3 FRAFS 5 HPTP Fepr s Lo B4 2w

FUANEEL T R OR R (TR A B3 0 R BE R R N TR A AR L TR SRR

(s

(FRAge A HAIE R FRIEY - BEEROME RFALIF P BB RAG EP B
MH T LA R PR LR ERVELTHTHEEEFEAFR o AN
TR BRLA > APRIMFED FAEFE2CIM)EEHFREP Eadyd
% (CIM-P)@ B &7eiuprie s FTARAFR T2 > CIM I * P58 § k§ »%B74F
Brs o R mEgteRaY i p f o @ CIM-PRIFI* $ @ k% M CIM &
B A r ATFTALEE QAT TR s S

MAaEF 4P AP F o~ o TRES BB s TR

I

Designing Efficient Mining algorithms for Frequent

Closed Itemsets Maintenances

Student: Cheng-Liang Chiu Advisor: Dr. Shian-Shyong Tseng

Department of Computer and Information Science

National Chiao Tung University

Abstract

Recently, mining association rules from transaction databases has been one of the
most interesting and popular research topics in data mining. In real-world applications,
a database grows over time such that existing-association rules may become invalid or
new implicitly valid association rules~may appear. Some researchers have thus
developed incremental mining <algorithmsto" maintain association rules without
re-processing the entire database whenever the'database is updated. The common idea
among these approaches is to store previously mined itemsets in advance for later use.
However, for a dense database, the performance of classical incremental mining
algorithms will degrade dramatically due to a huge amount of pre-stored mining
information. On the other hand, most incremental mining algorithms are required one
scan of original database to discover new implicitly valid rules. When the original
database is massive, this will result in excessive 1/O cost.

In this study, we attempt to utilize the concepts of closed itemsets and pre-large
itemsets dealing with the two challenges, respectively. The closed itemsets can
losslessly determine all the pre-stored mined itemsets and their exact support, but are
orders of magnitude smaller than all pre-stored patterns. The pre-large patterns act as
a buffer to avoid the movements of itemsets directly from valid to invalid and
vice-versa when the database maintained. Based on the two concepts, two novel
incremental mining algorithms called Closed Itemsets Maintenance (CIM) and CIM
with Pre-large concept (CIM-P) are thus developed to efficiently maintain association
rules, especially in a dense database.

Keywords: closed itemsets, incremental mining, association rules, data mining.

v

R

=

flenz £ By 7 AR AR Rl Al Hyogk - f F g Lo
B e MLrTaha B AP dhe g N ann e Y e & Y 7
5 AR T ey m;}iI‘i’%% SRkl A A= 7&@0& o Py R e 2R

R R RS X R S Lt S RS EN

BTRERMIAREFL S EPTEAF EF I WG 2 FHIT > 4

HANFIHEHDPERAOFF AL AR g v #§ H - 4

\

o

FiriEks &% kL BiTh hH R S o

ST R E R IR AT SR PR R F L R e K -
PR EFHRATRCPE TR LI HET TR BT MR R
Btk bdrE A Bd E L ok et A BRI RPFREBERER T LY
SR

FORBRIA N MAF SBmB L PFA A ATy L

I —

VB B fo &R B D
T3 b B LA R EERY RAF S RERIEG 4 A AN &

TR ERSAZBRORIANE L B P URE B

BB BNL RS EE - - s) FeEA G K A RGE

i -

Table of contents

BB R s I
ADSITACT ...t ettt e e sttt ha e et e st e ebeens v
B oSSR \Y
Table Of CONTENLSeoiuiiiiiii et e VI
Chapter 1: INtrodUCTIONcoccuiiieiiieciie ettt e e e e e sbe e e saseeeaneas 1
Chapter 2: Related WOTKcooioiiiiiieeceeeeee et e 4
2.1 Closed itemsets mining apProaAChES........cccuveeeruiieeiieeeiieeeiieeereeeeieeesreeesereeens 4
2.2 Incremental mining approachesccveeeveeeiiieeiiee e 5
Chapter 3: Preliminary CONCEPLScccuvieriireeriieeriieerieeesreeerireeeieeeereeesreeesreeeseseeensneas 9
Chapter 4: Frequent Closed Itemsets Maintenanceccccveeeevveerereeencnieenneeesveeenne 12
4.1 Joint closed TEEMSELScc.eeeuiiiiiiiieiie et 12
4.2 The effect of intersectional closed temMSEtscccveeviiiiiieniiieieenieeiiene 14
Chapter 5: The CIM AIZOTTtRM........cccviiiiiieiie e 17
5.1 The closed maintenance tree (CMT)......cccveeiiiieriiieeiiieeieecie e 18
5.2 Generation of the CO set...... .l i 19
5.3 Generation Of the CP Setuii........ st ciiitieeeenieeieenie et eee e 23
Chapter 6: The CIM Algorithm with Pre-large Concept: CIM-P Algorithm............... 27
6.1 The concept of pre-large closed HEMSetscuive.eerveereieierieiieieeieeee e 27
6.2 The detail Algorithm oftCIM =P e 31
Chapter 7: EXPErimeNtS.ccveee idittinneeeeeeeeesstiontenereeesereeessseesssseessseeessseeessseeessseesnnns 33
7.1. The experimental environment and the datasets used.............cccccveevrenennen. 33
Chapter 8: CONCIUSION.iiiiiieeiiieciie ettt e e e e esaseeenens 38
RETEIEIICE ...ttt et 40

VI

Chapter 1: Introduction

Data mining technology has become increasingly important in the field of large
databases and data warehouses. This technology helps discover non-trivial, implicit,
previously unknown and potentially useful knowledge, thus being able to aid
managers in making good decision. Among various types of databases and mined
knowledge, mining association rules from transaction databases is the most interesting
and popular. In general, the process of mining association rules can roughly be
decomposed into two tasks: finding frequent itemsets satisfying the user-specified
minimum support threshold from a given database and generating interesting
association rules satisfying the user-specified minimum confidence threshold from
found frequent itemsets. Since the'first task is very time-consuming when compared
to the second one, the major challenges in mining.association rules thus focus on how
to reduce the search space and decréase.the-computation time in the first task. Some
famous mining approaches, such as Apriori [4],"'DIC [10], DHP [29], Partition [31],

Sampling [26], GSP [5] and FP-Growth [20][33], have been proposed.

In real-world applications, a database grows over time such that existing
association rules may become invalid or new implicitly valid association rules may
appear. Recently, some researchers have developed incremental mining algorithms to
maintain association rules without re-processing the entire updated database [13]. The
common idea of these researches lies in that, the previously mined information such
as mined frequent itemsets are stored in advance; when new transactions are inserted,
(a) a large portion of candidate itemsets can be decided using the pre-stored mined
frequent itemsets; (b) only a small portion of candidate itemsets obtained from the

new transactions without sufficient information needs to be re-processed against the

1

original database. Task (a) is responsible for updating previously mined association
rules, and Task (b) is responsible for finding new association rules. Much computation
time can thus be saved in this way. However, for a dense database such as census data
and DNA sequences, the computation cost of Task (a) will be getting tremendous due
to a huge amount of previously mined frequent itemsets. For example, a frequent
30-itemset (a frequent itemset consisting of 30 items) implies the presence of 2°°-2
additional frequent itemsets as well. The performance of classical incremental mining
algorithms will degrade dramatically. On the other hand, most incremental mining
algorithms are required one scan of original database to deal with Task (b). When the
original database is massive, this will result in excessive I/O cost. As a result, in this
study, we attempt to utilize the concepts of closed itemsets and pre-large itemsets to

overcome the two challenges, respeetively.

In a dense database, many itemsets usually’ appear together, and we can
consider them together. The concept of closed’ itemsets, which is denoted as the
itemsets having no proper superset with the same support, can be treated as a lossless
compression for all itemsets in the database. It can also reduce redundant rules
generated [34]. Therefore, using the set of frequent closed itemsets instead of the set
of frequent itemsets from the original database as the pre-stored mining information
can increase both efficiency and effectiveness of an incremental mining algorithm.
The set of frequent closed itemsets can easily determine all the frequent itemsets and
their exact supports, and its order of magnitude is smaller than the set of all frequent

itemsets.

In general, the number of newly inserted transactions is much smaller than the

number of records in the original database. Only the candidate itemsets whose

supports are slightly less than the minimum support in the original database are
possible to be frequent after database maintenance. The concept of pre-large itemsets
is denoted as the set of itemsets having support between a lower support threshold,
which is smaller than the given minimum support, and an upper support threshold,
which is equal to the given minimum support. Therefore, using the pre-large closed
itemsets to enlarge the amount of pre-stored frequent closed itemsets can reduce the
cost of re-processing the entire database at the expense of storage spaces. This is
because they act as a buffer to avoid the movements of closed itemset directly from

infrequent to frequent and vice-versa during the incremental mining process.

Although using the concept of closed itemsets can effectively reduce the number
of itemsets considered, some closed itemsets for.the updated database, called joint
closed itemsets in this paper, may not be considered by a classical incremental mining
algorithm. The major reason is that-the set-of joint closed itemsets, which was
compressed before, cannot be determined by-above-mentioned Tasks (a) and (b). In
this paper, we thus propose a novel incremental mining algorithm called Closed
Itemsets Maintaining (CIM) to extend Tasks (a) and (b) that can efficiently find all
frequent closed itemsets for the updated database. Task (a) of CIM algorithm is
responsible for extracting the joint closed itemsets, which was compressed by the
pre-stored frequent closed itemsets in the original database, and updating them against
the newly inserted transactions. Task (b) of CIM algorithm is responsible for
generating the candidate itemsets for the updated database which has not been
determined in Task (a). Furthermore, based on the concept of pre-large itemsets, we
propose the CIM-P algorithm to reduce the cost of Task (b) in the CIM algorithm.
Also, we design the bucketing strategy to improve the utility of buffer. The

consumption of buffer can be rigidly calculated using the maximum value of buckets.

3

Chapter 2: Related Work

In the following, the previous related studies of closed itemsets mining and

incremental mining approaches will be briefly described.

2.1 Closed itemsets mining approaches

The major challenge in mining association rules is to reduce the search space and
decrease the computation time required for mining frequent itemsets. The Apriori
algorithm, which is the most well-known, utilizes a level-wise candidate generation
approach to reduce its search space such that only frequent itemsets found in the
previous level are treated as seed$ for generating candidate itemsets in the current
level. Many later algorithms [H0}[29][31]}26][5] were based on this property and
attempted to further reduce candidate-itemsets.and 1/O costs. However, this Apriori
property can not work well for dense. databases, such as census data and DNA
sequences, or a low minimum support. This is because most generated candidate
itemsets are frequent itemsets such that the number of frequent itemsets will grow up
exponentially; the performance of an Apriori-like algorithm thus degrades

dramatically.

Some researchers have then developed closed itemsets mining algorithms to
reduce the number of itemsets generated. Examples include A-close [34], CLOSET
[35], CLOSET+ [36] and CHARM [36]. The A-close algorithm is an Apriori-like
algorithm using a breadth-first search manner to find frequent closed itemsets directly.
However, breadth-first searches may encounter difficulties since there could be many

candidates generated and need to scan the database many times. The CLOSET

4

algorithm [35], an extension of the FP-growth algorithm, uses a depth-first search
(recursive divide-and-conquer) manner and a database-projection approach to mine
long patterns from the FP-tree (frequent pattern tree) structure representing all
transactions of database. However, the CLOSET algorithm may suffer from a sparse
database or a low minimum support. An enhancement of the CLOSET algorithm, the
CLOEST+ algorithm, thus combines various known search manners and
closure-testing strategies to improve the performance of CLOSET. The CHARM
algorithm uses a dual itemsets-tidset search tree and the Diffset technique to
enumerate closed itemsets from a vertical-layout database. In many dense datasets,
the CHARM algorithm has better performance than the A-close, CLOSET and

CLOSET+ algorithms.

2.2 Incremental mining approaches

In real-world applications, a+ database-grows over time such that existing
association rules may become invalid or new implicitly valid rules may appear. In
these situations, conventional batch-mining algorithms do not utilize previously
mined patterns for later maintenance, and may require considerable computation time
to re-process the entire updated database to get all up-to-date association rules. Some
researchers have developed incremental mining algorithms to maintain association
rules without re-processing the entire database whenever the database is updated.
Examples include the FUP-based algorithms [13][14], an adaptive algorithm [30], an
incremental mining algorithm based on the concept of pre-large itemsets [22], and an
incremental updating technique based on the concept of negative border [16][32]. The
common idea of these researches lies in that, the previously mined information such

as mined frequent itemsets are stored in advance; when new transactions are inserted,

5

a large portion of candidate itemsets can be decided by using the pre-stored frequent
itemsets; only a small portion of candidate itemsets obtained from the new
transactions needs to be re-processed against the original database. Much computation
time can thus be saved in this way. The correctness of this idea is simply illustrated as
follows.

Considering an original database and the newly inserted transactions, there are
four cases of candidate itemsets shown in Figure 2-1 may arise:

Case 1: A candidate itemset is frequent in both the original database and the

newly inserted transactions.

Case 2: A candidate itemset is frequent in the original database but infrequent in

the newly inserted transactions.

Case 3: A candidate itemset ig-infrequent i the original database but frequent in

the newly inserted transactions.

Case 4: A candidate itemset is linfrequent.in both the original database and the

newly inserted transactions.

Incremental Batch

Oriainal DB
K Y
Freauent Infrequent
D Frequent Case l Case 2
5 Infrequent Case 3 Case 4

Figure 2-1: Four cases of candidate itemsets when adding new transactions to

existing databases.

Among the cases, since candidate itemsets in Case 1 are large in both the original
database and the new transactions, they are still large after the weighted average of
the supports; similarly, candidate itemsets in Case 4 are still small after the new
transactions are inserted. Cases 1 and 4 will not affect the final association rules; Case
2 may remove existing association rules; and Case 3 may generate new association

rules.

Cheung and his co-workers proposed an incremental mining algorithm, called
FUP (Fast UPdate algorithm) [13][14], to efficiently cope with these four cases by
pre-storing the previously mined frequent itemsets from the original database. It
handles Cases 1, 2 and 4 by updating the pre-stored frequent itemsets against the
newly inserted transactions, and.te-processes only the itemsets without sufficient

information in Case 3 against the original database if necessary.

The performance of the FUP algorithm-will get degraded if a lot of candidate
itemsets from the newly inserted transactions belong to Case 3. For example, suppose
{A}, {B} and {AB} are all the previously mined frequent itemsets from the original
database and {C}, {D} and {CD} are the three candidate itemsets from some newly
inserted transactions. The final results can not be determined without re-processing

the original database.

As a result, Thomas et al. [32] and Feldman et al. [16] utilized the concept of
negative border [16] to enlarge the amount of pre-stored mining information in the
FUP algorithm for improving the maintenance performance. A negative border of
frequent itemsets can be easily formed by excluding the set of frequent itemsets from

the set of candidate itemsets generated level by level. In other words, the negative

7

border consists of the itemsets which are candidates but do not have enough supports.
The processing time for Case 3 in the FUP algorithm can be reduced by additionally
keeping the negative border of frequent itemsets. Similarly, Hong et al. [22] proposed
the concept of pre-large itemsets [22] to enlarge the amount of pre-stored mining
information for improving the maintenance performance. The proposed algorithm
doesn't need to rescan the original database until a number of new transactions have

been inserted.

Chapter 3: Preliminary Concepts

Let I = {iy, iy, ..., in} be a set of m items. A subset X of | consisting of k items is
called a k-itemset. Let D be a transactional database (TDB) consisting of a set of
transactions, where each transaction T consisting of a set of items of | is associated
with an identifier called TID, and |D| denotes the number of transactions in D. A
transaction T is said to contain X if and only if X < T. The support of an itemset X,
X.sup, in D is denoted as the percentage of transactions in D which contain X. For the
itemsets in D, X is called a closed itemset if there does not exist an itemset Y which
closes (absorbs) X, where an itemset Y is said to close (absorb) X iff X < Y and X.sup
= Y.sup. Cl denotes the set of all closed itemsets in D. Furthermore, if there is no

superset of X existing in D, X is also called a maximum itemset.

An association rule is an<implication-ef-the form X = Y, where X and Y are
subset of I, and XNY = ¢. The suppeortof a rule X = Y, (XUY).sup, in D is denoted as
the percentage of transactions in D which contain XUY, and the confidence of X=Y
is computed by (XUY).sup/X.sup. Given the user-specified minimum support
threshold, minsup, and minimum confidence threshold, minconf, the problem of
mining association rules is to find out all association rules in D that have support and
confidence larger than minsup and minconf, respectively. With respect to the minsup,
the set of frequent itemset, Fl, includes all the itemsets whose support is larger than
minsup; the set of infrequent itemset, NI, includes all the itemsets whose support is
less than minsup; the set of frequent closed itemset, FCI, includes all the closed
itemsets whose support is larger than minsup, FCI = {x|x € CI, x.sup > minsup}; and
the set of infrequent closed itemset, NCI, includes all the closed itemsets whose

support is less than minsup, NCI = {x| x € CI — FCI}. Note that FCI includes no

9

itemset which has a superset with the same support, and thus FCI < FI. The problem

of mining association rules can be reduced to the problem of finding FI or FCI in D.

Let d be an increment of new transactions which is added to the original database
D, |d| be the number of transactions in d, D* be the updated database which denotes D
U d, and |D”| be the number of transactions in D U d. Therefore, Flp, Flg and Cl p+
denote the FI obtained from D, d and D" with respect to the same minsup,
respectively, and FCI, NI, NFCI or CI obtained from D, d and D" can have similar
meanings. The problem of maintaining association rules is to find Flp+ or FClp+. Let
the set of original frequent itemsets, O, be defined as O = {X|x € Flp}, and the set of
potential frequent itemsets, P, be defined as P = {x|x € Flq — Flp}. By definition, an
itemset X € Flps must belong to © U P, and. thus the problem of maintaining
association rules is equivalent t0 processing O U P: Similarly, let the set of closed
original frequent itemsets, CO,be défined.as-CO = {X|x € Flp and x € Clp.+}, and the
set of closed potential frequent itemsets, CP, be defined as CP = {x|x € Flq — Flp and
X € Clp+}. The problem of maintaining association rules is also equivalent to
processing CO U CP. Since directly obtaining CO U CP is impractical because Clp+
is unknown before processing D*, the major contribution in this study is to utilize the
pre-stored mining information FClp and some information from d to approach CO U

CP and thus obtain FClp.. The related concepts are described as follows.

We further discuss the set of joint closed itemsets, JCI, which is defined as JCI=
{Xx =y nz,y e Clp, z € Clg}. JCI can be divided into four parts based on FClp,
FClg, NClp and NClg:

® FFJCI = {xx=ynzYy e FClp, z € FClg}.

® FNJCI = {xx=ynzYy € FClp, z € NClg}.

10

® NFJCI = {xx=ynzy e NClp, z € FClg}.

® NNJCI = {x)x=y " z,y € NClp, z € NClg}.

11

Chapter 4: Frequent Closed Itemsets Maintenance

Considering an original database D and the newly inserted transactions d, there
are four cases of candidate itemsets for the updated database D have been discussed
in Section 2. With pre-storing previously mined frequent itemsets Flp, a typical
incremental mining algorithm can efficiently cope with these four cases by two steps:
(a) updating O against d and (b) rescanning P against D. Following this idea, we can
use two similar steps: (a) updating CO against d and (b) rescanning CP against D to
find out FClps+ dealing with the problem of maintaining association rules. However,
directly obtaining CO = {x|x € Flp and x € Clp+} and CP = {X|x € Flg— Flp and x e
Clp+} is impractical because Clps+ is unknown before processing D™ In the following,
we attempt to utilize the pre-stored known ‘information FClp from D and the

information FCly obtained from-d to ‘approach-CO.and CP.

4.1 Joint closed itemsets

Lemma 1: If x € Clp U Clg, then X € Clps.

Proof: We prove the lemma by contradiction. If X ¢ Clp., there must exist a
proper superset Y of X such that y.SUpp+ = X.SUPp-, i.€., Y.Supp*|D| + y.supg*|d| =
X.supp*|D| + x.supg*|d|. Thus y.supp= X.Supp and y.SUpg = X.SUPg, contradicting

the claim that X € Clp W Clg. Thus, X € Clps. [|

Let FCly.p denote FCly — FClp. Since FClp is the pre-stored mining information,
we only need to find FCly from d to determine FClp.4. According to Lemma 1, we
have FClp < Clp < Clp+ and FCly.p < Cly < Clp+. FClp and FClg.p are both closed

itemsets in D*. If an incremental mining algorithm can utilize FClp and FCly to

12

obtain CO and CP, the problem of maintaining association rules in a dense database
can be efficiently coped with. We first discuss the differences between FClp and CO
and between FClyp and CP. For example, given D = {ABCE, CD, BCE}, d =
{ABCDE, CDE} and minsup = 0.6, Flp = {B, C, E, BC, BE, CE, BCE}, Flq= {C, D,
E, CD, CE, DE, CDE}, FClp = {C, BCE} and FClq = {CDE}. By definitions, FCly.p
= {CDE}, CO = {C, CE, BCE} and CP = {CD, CDE}. As shown in this example,
there exist some closed itemsets in Clp+ but not in Clp or Clg, such that FClp and
FClg.p0 may be not equivalent to CO and CP. The following lemmas are used to derive
the set of joint itemsets (JCI) which are closed itemsets for D+ but can not be

determined by FClp and FClg.p.

Lemma 2: If x € JCI, then x.& Clp..

Proof: If x € JCI, X must be one of following.two cases.

Case 1: If x € Clp U Clg, then x:e'Clps-according to Lemma 1;

Case 2: If x ¢ Clp U Clg, there exist Y. € Clp and z € Clgsuch thatx cy, X c z,
and X is closed by both y and z. We prove this case by contradiction. If X ¢ Clp.,
there must exist a proper superset X’ of X such that X’.SUpp+ = X.SUpp+, i.e.,
X”.supp™|D| + x’.supg™|d] = x.supp*|D| + x.supg*|d| = y.supp*|D| + z.supg*|d].
Thus X” c 'y, X’ < z (because X’.Supp = Yy.supp and X’.SUpg = Z.SUPq) and X’ =y N Z,

contradicting the claim that x € JCI. Thus, X € Clps. [

Lemma 3: If X € Clp+, then x € Clp L Clg U JCI.

Proof: If x € Clp+ and X ¢ Clp U Clg, X must be closed in both D and d. Assume
y is the itemset that closes X in D and z is the itemset that closes X in d. Then
X.supp+ * |D*| = y.supp * |D| + z.supg * |d]. If y < z, X is belonging to Case 1 of
Lemma 2, contradicting the claim that x ¢ Clp; if Z C y, X is also belonging to

13

Case 1 of Lemma 2, contradicting the claim that X ¢ Clg. Thusy ¢ zandz ¢
y. According to Case 2 of Lemma 2, there must exist X’=Yy Nz and X’ € Clps. If
X < X’, X is closed by X’ (because X’.SUpp+ = X.SUPp+), contradicting the claim that

X € Clp+. Thus, x=x"and x € JCI. [|

Theorem 1: Clp+ = Clpu Clgu JCI.
Proof: According to Lemmas 1 and 2, we have (Clp L Clgu JCI) < Clp+. On
the other hand, according to Lemma 3, we have Clp+ < (Clpu Clgu JCI).

Thus, Clp+ =Clpu Clgu JCI. |

4.2 The effect of intersectional closed itemsets

Considering an original database and the newly inserted transactions, there are

four cases of joint closed itemsets shown-in-Figure 4-1 may arise:

Incremental Batch

Oriainal DB
¥ 4
FCl4 NCly
D FCly FFJCI FNJCI
NCln NFJCI NNJCI

Figure 4-1: Four cases of JCI

14

The case of FFJCI: A closed itemset is frequent in both the original database and
the newly inserted transactions.

The case of FNJCI: A closed itemset is frequent in the original database but
infrequent in the newly inserted transactions.

The case of NFJCI: A closed itemset is infrequent in the original database but
frequent in the newly inserted transactions.

The case of NNJCI: A closed itemset is infrequent in both the original database

and the newly inserted transactions.

Since the closed itemsets in FFJCI are frequent in both the original database and
the new transactions, they will still be frequent after the weighted average of the
counts. Similarly, the closed itemsets in NNJCI will still be infrequent after the new
transactions are inserted. FFJCl-and NNJCI will not-affect the final association rules.
FNJCI may remove existing association-tules;-and NFJCI| may add new association

rules.

According to Theorem 1, the following theorems are derived to obtain CO and

CP by FClp, FClg and JCI.

Theorem 2: CO = {x|x € FClp u FFJCI U FNJCI}.
Proof: By definition, CO collects the closed itemsets for D* which is generated
from Flp. According to Theorem 1, CO = {X|x € Flp and x € Clp+} = {X|x € Flp

and X € Clp U Clqu JCI } = {x|x € FClp U FFICI U FNJCI}. |

Theorem 3: CP = {x|x e (FClq — FFICI) U NFJICI}.

Proof: By definition, CP collects the closed itemsets for D* which is generated

15

from Flg—Flp. As Theorem 2, FCly w FFJCI U NFJCI is the set of closed
itemsets for D* which is generated from Fl4. Thus CP = {X|x € Flg— Flp and X €
Clp+} = {(FClq u FFICI U NFJCI) — (FClp u FFRICI U FNJCI)) = {x|x € FClyq

v FFJCI U NFJCI - FFJCI} = {x|x € (FClq — FFJCI) U NFJCI}. [

In contrast to the definitions of CO and CP, Theorems 2 and 3 provide a
convenient way to obtain CO and CP. For CO, FFJCI and FNJCI can be obtained by
processing the pre-stored mining information FClp against d. For CP, however,
since NFJCI has to be generated from NClp, which is usually unknown in a typically
incremental mining process, this cost is too expensive to be acceptable. As a result,

the following theorem is derived to obtain CP.

Theorem 4: CP = {x|x € Flg —cover(FFJCI, Flg), X € Clp+}.

Proof: By definition, the FFJCI covers-the itemsets which are included both in
Flg and Flp. Thus CP = {X|x''e Flg ='Flp and x € Clp+} = {X|x € Flg —
cover(FFJCI, Flg), x € Clp+}, where the function cover(FFJCI, Fly) means the

itemsets in Flg which are covered by FFJCI. [|

Since FFJCI has been obtained in CO generation, we only need to find Fly and
remove the itemsets in Fly which have been determined in FFJCI as candidates for
CP. It seems to be a better way for CP generation, because the cost of checking
closure property of {Flg — cover(FFJCI, Flg)} in D+ is less than that of NFJCI

generation.

16

Chapter 5: The CIM Algorithm

According to Theorems 2 and 4, we develop a novel incremental mining
algorithm mainly consisting of CO_generation and CP_generation subroutines, called
Closed Itemsets Maintaining (CIM), to efficiently find FClp+ for D*. In the proposed
CIM algorithm, an in-memory data structure called closed maintenance tree (CMT) is
used to facilitate the processes of CO_generation and CP_generation subroutines.
The detail of CMT will be illustrated in Section 5.1. When new transactions are
inserted, the CIM algorithm first executes the CO_generation subroutine to update
existing FClp in CMT and find FFJCI and FNJCI. After that, it executes the
CP_generation subroutine to generate the candidate itemsets for CP which has not
been determined in the CO_generation subrouting.and insert them into CMT. Finally,
the CIM algorithm rescans these obtained ‘candidates: in CMT against D, checks their
closure property and then output the frequent.closed 1temsets for the updated database.

Detail of the proposed CIM algorithm is shown as follows.

The CIM algorithm(CMT, D, d, minsup)
Parameters:

CMT: A closed maintenance tree;

D: An original database;

d: A set of newly inserted transactions;

minsup: A minimum support.

Begin
Set FFJCISet = ¢, /* FFJCISet is a set used to store the
itemsets of FFJCI. */
Set CandCP1 = ¢, /* CandCP1 is a set used to store candidate

1-itemsets for CP. */

CO_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1);

Set Flp+ = ¢; /* Flp+ is a set used to store frequent
l-itemsets in the updated database. */

17

Set mincountp: = minsup * (|D] + |d|);
Obtain_frequent items(CMT, mincountp+, Flp+);

/* Obtain Flp+ from CMT. */
CP_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1, F1p.+, CMT.root);

Rescan CP(CMT, D, minsup); /* Rescan obtained candidate k-itemsets (k >
2) of CP in CMT against D. */

Check Closure CP(CMT); /* Check closure property for all candidates
itemsets of CP in CMT. */

Remove NI(CMT, mincountp); /* Remove the itemsets in CMT whose

support counts are less than mincountp.. */
Output FCI(CMT); /* Output the frequent closed itemsets for the
updated database.*/
End.

5.1 The closed maintenance tree (CMT)

A closed maintenance tree (CMT)is a tree, structure extended from a prefix tree
[39]. A prefix tree is constructed as follows. For each:itemset X, a corresponding node
Vx is built in the prefix tree. Node W maintains its corresponding itemset with support
count, denoted as (itemsets, support count). For any pair of nodes vy and vy
corresponding to itemsets X and Y, there is a directed edge from vy to vy if X is a parent
of'y. X is said to be a parent of y if y can be obtained by adding a new item to X (X C V),
and inversely, Y is said to be a child of x. Therefore, an itemset has only one parent
and more than one child in the constructed prefix tree. Note that, the itemsets in a
prefix tree are usually maintained in lexicographic order, and for saving the storage
space, each node only maintains the suffix of an itemset regarding its parent node. In
particular, unlike a general prefix tree maintaining all itemsets in D, a CMT only
maintains FClp and some intermediate mining information from D. There are three

types of nodes in a CMT:

18

® Prefix nodes: the nodes are used to represent the common prefixes of closed
itemsets.

® Closed nodes: the nodes are used to represent closed itemsets in FClp. Note
that, although a non-leaf closed node also represents the common prefix of
its child closed nodes in a CMT, it is not a prefix node mentioned above.

® Infrequent nodes: the nodes are used to represent infrequent 1-itemsets in D.

The purpose of maintaining infrequent 1-itemsets obtained from D in the CMT is
to reduce useless item combinations in the CP_generation subroutine. The detail will

be described in Section 5.3.

Figure 5-1 shows an examplé of CMT. The.prefix node (B, 3) and the closed
node (CE, 2) stand for the closed.itemset (BCE,.2); (B, 3) and (E, 3) stand for the

closed itemset (BE, 3). The CMT maintains-only one-infrequent node (D, 1).

CMT (O Closed node
root @ Prefix node Database

"> Infrequent node TID Items

100 ACD

. 200 BCE
> 300 |ABCE

400 B E

minsup = 0.5

Figure 5-1 A Closed Maintenance Tree

5.2 Generation of the CO set
The CO_generation subroutine is responsible for processing FClp against d to

find FFJCI and FNJCI. In that, finding FNJCI is the most concerned because most

19

itemsets in NIy are needless, thus requiring excessive computation cost. In order to
reduce needless item combinations from Nlg, the CO_generation subroutine adopts
the branch-wise processing strategy to find FFJCI and FNJCI. The CO_generation
subroutine operates from the most left branch to the most right branch in a given
CMT. In each branch, it uses the items belonging to the branch, i.e. the items of the
maximum itemset in the branch, as seeds to mine the closed itemsets in d by a closed
itemsets mining approach, such as the CHARM algorithm. Since it considers only the
items in a branch at a time, needless itemsets belonging to Nly can be effectively
reduced. After all branches have been processed, the CO_generation subroutine then
updates these found itemsets against CMT to obtain CO. Thus, by the branch-wise
processing strategy, the CO_generation subroutine can find FFJCI and FNJCI
directly and reduce search space of mining closed. itemsets in d. The performance of

CO_generation subroutine is greatly improved.

Figure 5-2 shows an examplesof the CO_generation subroutine. Given FCly=
{BCD, CD} and NCly = {}. By the branch-wise processing strategy, the
CO_generation subroutine first considers the most left branch with items {A, C} and
treats {A} and {C} as seeds to mine the closed itemset in d. The item {A} would be
removed because it does not appear in d. The found {C} is an itemset belonging to
FFJCI. The other branches are processed in a similar way. From this example, the
itemset {C} seems to be generated and processed several times and thus increasing
computation cost, but in our algorithm, a simple checking mechanism is used to avoid

duplicate generation.

20

d

TIC Iterms
=1u]u] BCD
&00 c D

Branch update

root

Brawch | FFICTEFMNICT Local count
A (55 2
BCE EBC 1
BECE & 2
BE E 1
[c 2

root

Figure 5-2 an example of branch update strategy

We maintain FClp and infrequentil=itém in the CMT. The CO_generation
subroutine updates count of each'node in-the CMT and inserts new itemsets from
FFJCI and FNJCI into the CMT..CO. generation marks all nodes belong to FFJCI
that would be used in CP_generation ‘later. It also marks some infrequent 1-item

nodes from infrequent to frequent.

CO_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1)
Parameters:
CMT: The closed maintenance tree;
d: The newly inserted transactions;
minsup: The minimum support;
FFJCISet: The set used to store the itemsets of FFJCI;
CandCP1: The set used to store candidate 1-itemsets for CP.
Begin
Set T = ¢, /* T is a set used to store the mining results
by branch-wise processing strategy. */
for each branch b; ¢ CMT, do

if bj consists of only one infrequent item X, then

21

update x.count against d; /* x.count denotes support count of X. */
if x.count > minsup*|D*|, then
insert X with x.count into CandCP1;
else if b # null, then
Closed_itemset mining(bj, d, T); /* Execute a closed itemsets mining

algorithm and store mining results into T. */

X =CMT.get first CI(); /* Fetch the first closed itemset by lexical
order in CMT. */
y=T.get first CI(); /* Fetch the first closed itemset by lexical

order in T. */
while x # null and y # null, do
if x =y, then
X.count = x.count + y.count;
if y.count > minsup*|d|, then
insert X with x.count into FFJCISet;

X =CMT.get next CI(X); /* Fetch the next closed itemset by lexical
ordér in CMT. */
y = T.get_next CI(y); /% Eetch the next closed itemset by lexical

order.in T. */
else if x "y =x, then
x.count = x.count + y.count;
if y.count > minsup*|d|, then
insert X with x.count into FFJCISet;
X =CMT.get next CI(X);
elseif x Ny =y then
if y.count > minsup*|d|, then
insert y with (x.count + y.count) into FFJCISet;
y.count = x.count + y.count;
insert y with y.count into CMT;
y =T.get next CI(y);
else if x My =1z and z # null then
iIf CMT.exist(z) = false, then
z.count = x.count + y.count;
insert z with z.count into CMT;
if y.count > minsup*|d|, then
insert z with z.count into FFJCISet;
X =CMT.get next CI(X);
else if (x.count + y.count) > z.count, then

22

z.count = x.count + y.count;
if y.count > minsup*|d|, then
insert z with z.count into FFJCISet;
X =CMT.get next CI(X);
End.

5.3 Generation of the CP set

The CP_generation subroutine is responsible for generating the candidate
itemsets for D* which has not been determined in the CO_generation subroutine. A
straightforward way is to find Flq and then remove all the itemsets which have been
covered by FFJCI. This may require an excessive computation cost for a large size of
Flg. As a result, the CP_generation subroutine adopts a more effective and efficient
way dealing with this task. It attempts, to combine the obtained itemsets in FFJCI and
the 1-itemsets which are infrequent in D but frequent in D, denoted as N-F(;), with
the frequent 1-itemsets in D* to directly generate the itemsets belonging to {Flg —
cover(FFJCI, Fly)} as candidates.for CP. Since all the infrequent 1-itemsets in D have
been pre-retained in the CMT, it is ‘easy to obtain N-F() and all the frequent
l-itemsets in D" after the CO_generation subroutine. Specifically, the CP_generation
subroutine first treats each itemset of FFJCI as a seed and each itemset of N-F(;) as an
initial candidate. Then it uses a depth-first and left-to-right search manner in the CMT
to generate the other candidates. When meeting a seed node Vy, an itemset X of FFJCI
in the CMT, the CP_generation subroutine combines X with one of the frequent
l-itemsets in D* to form a new itemset X’. If X’ is not included in one of X’s supersets
in FFJCI and frequent in d, X’ is a new candidate itemset and a corresponding node V-
is built in the CMT. On the other hand, when meeting a candidate node vy, an
candidate itemset y of N-F() or new itemsets generated above in the CMT, the

CP_generation subroutine does a similar combination-and-testing to generate a new

23

candidate itemset Y’ and build a corresponding node vy in the CMT. These two

candidate generations continue until no new candidate itemsets are generated.

Figure 5-4 extends previous example to show the CP_generation subroutine. The
CP_generation subroutine uses FFJCI, {B, BC, C} and newly frequent 1-item {D} to
generate CP. At the first step, we fetch the first itemsets {B} and combine all frequent
items that are not exist in the supper set of {B} in FFJCI and so on. Since item C
appears in itemset {BC}, the superset of {B} in FFJCI. We only have to test {BD} in
next step. Second step, we check the combined itemset are local frequent or not. Third
step, we rescan D to sure remain itemsets are global frequent or not. At the last step,
we will check the support value of remain itemsets and remove the non-closed. After
all steps, we can get CP = {CD}. By original definition, CP should be {CD, BCD}; in
the CP_generation subroutine, -‘we.directly prune.the infrequent one {BCD} but this

doesn’t influence our mining result.

toot

D d
Catabase ;ID% fatec”;
TID | Iters | Cew 1 <o
(4G, 2 100 | ACD
200 | BCE
300 |ABCE
© 3 400 | B E

(E, 2

24

Step1 combine Step2 Local frequent

. checking
Seedl Seed? Combire Belong to FFICT
c S =S i Conbine | Frequest ind
E I EL Hao ED Tes
BC & EC Tes ECD Tor
BC I BCD Ho oD Tos
[D cD Mo D Tes
I jnl Ho
Step3 Global fregquent Step4 Global closure
checking checking
Combire Fregquentin D} Conbine | closed in 0
ED Hao ZD W as
BiCD Mo D Ma
cD Tes
D Tes
Steps add node Stepé remove
from CP infrequent nodes
oot - root

(B, 43 (C, 5

(c.3 (E, 300CD, 3)

Figure 5-3 example of CP_generation

CP_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1, Flp., X)
Parameters:

CMT: The closed maintenance tree;

d: The newly inserted transactions;

minsup: The minimum support;

FFJCISet: The set used to store the itemsets of FFJCI;

CandCP1: The set used to store candidate 1-itemsets for CP;

Flp+: The set used to store frequent 1-itemsets in the updated database;

X: A variable.
Begin

if x=CMT.root, then

for each child ¢ of X, do
CP_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1, Flp., Cj);

25

else if x ¢ FFJCISet or x < CandCP1, then
for each zj € Flp+ and the lexical order of zj is after that of the first item of X, do
X’ = combine(X, Zj); /* Attempt to generate a new candidate
itemset for CP. */
if X # null, then
if cover(FFJCISet, x*) # null, then continue;
/* If X’1s covered by FFJCISet. */
update x’.count against d;
if x’.count > minsup*|d|, then
insert X’ with X’.count into CMT;
for each child cj of X, do
CP_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1, Flp., Cj);
End.

26

Chapter 6: The CIM Algorithm with Pre-large Concept:

CIM-P Algorithm

Although the CIM algorithm focuses on the newly inserted transactions and thus
saves much processing time in maintaining association rules, it must still scan D to
handle CP in which candidate closed itemsets are frequent for d but not retained in
CO. This situation may occur frequently, especially when d is heterogeneous with D.
For example, in an extreme case, suppose {A}, {B} and {AB} are the entire CO and
{C}, {D} and {CD} are the itemsets in CP. The final results can not be determined
without re-processing {C}, {D} and {CD} against D. If the itemsets in CP could be
decided without rescanning D at each, time, the maintenance time could be further

reduced.

6.1 The concept of pre-large‘closed itemsets

In general, the number of records'in d is much smaller than the number of
records in D. Only the closed itemsets whose supports are slightly less than minsup in
D are possible to be frequent for D" after database maintenance. The concept of
pre-large closed itemsets is denoted as the set of closed itemsets having support
between a lower support threshold, which is smaller than minsup, and an upper
support threshold, which is equal to minsup. The pre-large closed itemsets are not
truly frequent at present but more possible to be frequent in the future when database
is updated. Therefore, using the pre-large closed itemsets to enlarge the amount of CO
can reduce the cost of rescanning D at the expense of storage spaces. This is because
they act as a buffer to avoid the movements of closed itemset directly from infrequent

to frequent and vice-versa during the incremental mining process. When few new

27

transactions are inserted, the infrequent closed itemsets excluding the pre-large ones
will at most become pre-frequent (pre-large) and cannot become frequent. Base on the
concept of pre-large closed itemsets, the enhancement of CIM algorithm, CIM-P,
does not require rescanning D until the accumulative amount of new transactions
exceeds the safety bound the buffer can afford, which depends on database size. Thus,
as databases grow larger, the numbers of new transactions allowed before database
rescanning is required also grow. The CIM-P algorithm thus becomes increasingly

efficient as databases grow.

Figure 6-1 shows the concept of pre-large closed itemsets. The lower support is

denoted S and the upper support is denoted Sy which is equal to minsup.

Area of small Cls T4 s s L

U \—WIIIN-III|||||¢|||||||||||||||||||-l||| M thport

Area of pre-large Cls

Area of small Cls Y § Aneal of llarge

I
e ° * ‘ W Il ! Support
S

Figure 6-1: The concept of pre-large closed itemsets

As mentioned above, if the number of records in d is much smaller than the
number of records in D, an itemsets in CP cannot possibly be frequent for D*. Given
the user-specified S; and S, the safety bound of buffer can be derived by the

following theorem.
(Su—Sn|D|

frequent for D™ [22]. [

Theorem 5: If |d| < , then an itemsets in CP cannot possibly be

28

(Su—S)|D|
c —mM8
1- S

Th can be used as the safety bound of buffer to decide the suitable

time of rescanning D. However, only considering whether the accumulative amount

(Se—Sn|D|

— Ju

of new transactions exceeds seems too loose. For example, assume the

(Su—Sn|D|

—Su

safety bound = 10 and the accumulative amount of new transactions t =

0. When an increment d, in which each transaction consists of only one distinct item

(Su—S)|D|

1—Su

and |d| = 11, has been inserted into D, then t = 11 larger than =10 and

the CIM-P algorithm needs rescanning D to cope with CP. However, these distinct
closed itemsets consume only one of buffer, and the effort of rescanning D is

worthless.

In this study, the bucketing strategy is proposed:to improve the utility of buffer.
The purpose of bucketing strategy- is using some buckets to record the actual
contributions of d for the major itemsets, the ‘itemsets with higher support counts, in
CP. The consumption of buffer can be tightly calculated using the maximum value of
buckets. If only one bucket exists, the bucket is accumulated using the maximum
support count in CP. Otherwise, according to the number of buckets k, the bucketing
strategy selects K itemsets with the highest support counts in CP and then accumulates
their corresponding bucket values: (a) for each selected itemset matching a previously
stored itemset in the buckets, the bucketing strategy accumulates the target bucket
using the support count of the selected itemset; (b) for the remaining selected itemsets,
the bucketing strategy finds two of them respectively having the largest and the
smallest support counts to accumulate the unprocessed bucket having the smallest

value and all the remaining unprocessed buckets, respectively.

29

For example, given three buckets by, by and bs, |D| = 100, S| = 30%, Sy = 50%,
and CP; = {(ab, 15), (cd, 12), (cde, 11), (bd, 10)} and CP, = {(bcd, 11), (ab, 10), (ad,

10)} respectively obtained from two increments with |d;| = 20 and |d,] = 20. By

(0.5—-0.3)*100
1-0.5

Theorem 5, the safety bound is =40 . After d; has been inserted into

D, by =(ab, 15), b, = (cd, 12) and b; = (cde, 11). Since the maximum value of buckets

is 15 less than 40, the CIM-P algorithm does not need rescanning D and the safety

(0.5-0.3)*120

Y =48 in the updated database D*. After d, has been

bound becomes

inserted into D*, the bucketing strategy first accumulates b; = (ab, 15) using the
support count of (ab, 10) and thus b, = (ab, 25), and then accumulates b, = (cd, 12)
and bs = (cde, 11) respectively using the sapport count of (ad, 10) and (bcd, 11) and
thus b, = (ad, 22) and b; = (bcd; 22). Since: the maximum value of buckets is 25 less

than 48, the CIM-P algorithm still does not need rescanning D"

The utility of buffer would be better if we have more buckets, but the cost of
storage space and accumulating buckets would be increased. This is a trade off in this
strategy. In the CIM-P algorithm, according to the user-specified lower support and
upper support thresholds, the large and pre-large closed itemsets with their support
counts in preceding runs are stored in the CMT for later use in maintenance. When
new transactions are inserted, the proposed algorithm first executes the
CO _generation subroutine to find FFJCI and FNJCI and the CP_generation
subroutine to generate the candidate frequent closed itemsets for D* which has not
been determined in the CO_generation subroutine. Then, the proposed algorithm
utilizes the bucketing strategy to calculate the accumulative consumption of buffer

and decide the suitable time of rescanning D. If the accumulative consumption is

30

within the safety bound of buffer, no action is needed. Otherwise, the original
database has to be re-scanned to guarantee information lossless. The detail of the

proposed maintenance algorithm is shown as follows.

6.2 The detail Algorithm of CIM-P

In the CIM-P algorithm, according to the user-specified lower support and upper
support thresholds, the large and pre-large closed itemsets with their support counts in
preceding runs are stored in the CMT for later use in maintenance. When new
transactions are inserted, the proposed algorithm first executes the CO_generation
subroutine to find FFJCI and FNJCI and the CP_generation subroutine to generate
the candidate frequent closed itemsets for D* which has not been determined in the
CO_generation subroutine. Then;: the proposed. algorithm utilizes the bucketing
strategy to calculate the accumulative consumption of buffer and decide the suitable
time of rescanning D. If the aceumulative . consumption is within the safety bound of
buffer, no action is needed. Otherwise;.the original database has to be re-scanned to
guarantee information lossless. The detail of the proposed maintenance algorithm is

shown as follows.

The CIM algorithm(CMT, D, d, S, Sy, k)
Parameters:

CMT: A closed maintenance tree based on Sy;

D: An original database;

d: A set of newly inserted transactions;

Si: A lower support threshold,

Su: An upper support threshold;

k: the number of buckets.
Begin

(Su—S)|D|

Set SF = s, [* SF is the safety bound of buffer*/

31

Set FFJCISet = ¢;

Set CandCP1 = ¢,

Set_Bucket(BucketSet, 0, ¢)

/* FFJCISet is a set used to store the
itemsets of FFJCI. */

/* CandCP1 is a set used to store candidate
1-itemsets for CP. */

/* Initiate buckets, where BucketSet is a set

used to store the most frequent K itemsets in
CP*/

CO_generation subroutine(CMT, d, S,, FFJCISet, CandCP1);

Set F1D+ = ¢,

Set mincountp+ = Sy * (|D| + |d));

/* Flp+ is a set used to store frequent

I-itemsets in the updated database. */

Obtain_frequent _items(CMT, mincountp., Flp+);

/* Obtain Flp+ from CMT. */

CP_generation subroutine(CMT, d, minsup, FFJCISet, CandCP1, F1p.+, CMT.root);
if Bucket Strategy(CMT, BucketSet, S;) > SF, then

Rescan(CMT, D, d, S));
else,
Remove NI(CMT, mincountp);

Output FCI(CMT);

End.

[* return support count of most frequent
itemset in the Bucket */
/% Reeonstruct CMT based on S; */

/% Remove the itemsets in CMT whose
support counts are less than mincountp.. */
/* Output the frequent closed itemsets for the
updated database.*/

32

Chapter 7: Experiments

Before showing the experimental results, we first describe the experimental

environments and the datasets used.

7.1. The experimental environment and the datasets used

The experiments were implemented in C™ on a workstation with dual XEON
2.8GHz processors and 2048MB main memory, running RedHat 9.0 operating system.
Several synthetic datasets and a real-world dataset called BMS-POS [3835] were used
in our experiments. The synthetic datasets were generated by a generator similar to
that used in [4]. The parameters listed in Table T were considered when generating the
datasets. The generator first generated L maximal potentially large itemsets, each with
an average size of | items. The items in-a-petentially large itemset were randomly
chosen from the total N items according to its actual size. The generator then
generated D transactions, each with an average size of T items. The items in a
transaction were generated according to the L maximal potentially large itemsets in a
probabilistic way. The details of the dataset generation process can be referred to in
[4].

Table 1: The parameters considered when generating the datasets

Parameter Description
D The number of transactions at initial state
P The number of transactions in each partition
N The number of items
L The number of maximal potentially large itemsets
T The average size of items in a transaction
| The average size of items in a maximal potentially large itemset

33

The two synthetic datasets generated and used in our experiments are listed in

Table2.

Table2: Two synthetic datasets

Datasets D P T 1 L N
T1018D10K 70000 5000 10| 8 200 145
T1018D500K 2000000| 100000 | 10 | 8 | 400 to 560 | 200

The BMS-POS dataset contains several years of point-of-sale data from a large
electronics retailer. Each transaction in this dataset is a customer’s purchase
transaction consisting of all the product categories purchased at one time. There are
515,597 transactions in the dataset. The number of distinct items is 1,657, the
maximal transaction size is 164, and the average transaction size is 6.5. This dataset
was also used in the KDDCUP 2000 competition. In our experiments, D = 500000

and P = 1000 from the BMS-PQS dataset.

7.2. The experimental results

In addition to our proposed CIM and CIM-P algorithm, a closed itemsets mining
algorithm, CHARM was then run for two synthetic datasets requests. The CHARM
algorithm reprocesses entire dataset when a new partition of data is inserted. The CIM
and CIM-P algorithms treated each partition as a new addition of transactions. For the
synthetic data, the execution time spent by the three algorithms for the two datasets is

shown in Figure7-1.

We first compare the CIM and CIM-P algorithms with the CHARM algorithm.

From Figures 7-1(a) and 7-1(c), it is easily seen that the execution times by the CIM

34

and CIM-P algorithms for different transactions are very small. The execution times
by the CHARM algorithm are much larger than those by the CIM and CIM-P
algorithm, and increase proportional to the numbers of transactions. It can thus be
concluded that the CIM and CIM-P becomes increasingly efficient as the database

rows.

In Figure 7-1(b) and 7-1(d), the execution time was recorded after updating the
first new partition in different support values. It is easily seen that these three
algorithms have similar tendencies. The decrement of execution time and the
increment of support value is an inverse proportion. CIM and CIM-P need more
execution time than CHARM because CIM and CIM-P have to record mining lots of

information at the first partition.

mrmy - 3 mump = X%

—+—CHARK —a— CIN —— CIM-F —— CIM —- CIM-F
g 3
a3
A L}

ﬁ‘ 1
H o

A
1

I z

Parlfioee Parftioee

Dataset T1018D10K

7-1(a): The relationships between computational times and partition numbers.

——CHARKM —a CI < CIN-P —i— CIM o IM-F
1 1 2
]
i
1
E E
T ; 14
g =]
= F
1z
0l o
i H‘%
a g
E 2l 23 2l 24 13 EL] ET B 3] 1 2 1 1z n 14 I Is IT I3 %
Supparh) SuppatiE)

35

Dataset T1018D10K

7-1(b): The relationships between computational times and support values.

Eroy = X% mrnp s I%

[——cHap o ome o P | —a CIM —= CIN-F

Timeesc)
&

T s
=EHMEERZEREEHN

-

Partitiors P xtitions

Dataset T1018D500K

7-1(c): The relationships between computational times and partition numbers.

[—cHARM o CIE = CINF | —— UM —- CIM-F

3 m %“ “‘\\“K

T e)
B2 g

!

b
e
H
H
&
[
-
w0
°

z I1 r4] 2% Ie r iE i 1
Support (%) Supgeant{®)

Dataset T1018D500K

7-1(d): The relationships between computational times and support values.

Figure7-1: The execution time spent by the three algorithms for two synthetic
datasets

Finally, we compare the CIM algorithm with the CIM-P algorithm. In our
experiments, CIM-P spent more execution time than CIM in both datasets. The first
reason is CIM-P has to record more information than CIM at the first partition thus
CIM-P spent more time at the first partition. We believe the CIM-P would outperform
CIM if we used more partitions in our experiment. The second reason is the lower

support S;is too low and we will test the influence of S in the future.

36

In the second part of the experiments, the real-world BMS-POS [38] dataset was
used. The execution time spent by the three algorithms for this dataset is shown in
Figure7-2. The CIM and CIM-P algorithms still outperform CHARM when the
number of partitions is increased. But there exists an interesting situation in Figure
7-2(b), both CIM and CIM-P need less execution time than CHARM. It is because in
the real dataset, BMS-PQOS, there are less information be recorded since the less

frequent closed itemsets are generated in the first partition..

-
—— CHARM —a— CTH o STHE-F | —a— UM o CIM-F

n 1 27 g

b in 1} i3 13

15 f e
1032 5 4 5 & 7T @

Partdiore

7-2(a): The relationships betwéen computational times and partition numbers.

[—cHaRM I = eI | [T T TR

Time] st
— \._ L .L:
Tims{eac)
e~

I
(5] =

2 11 Iz n 1% 3 1 17 13 9 b H i 22 F4l 24 i3 1 3 % i

Bapgcat[15) Supped(®)

7-2(b): The relationships between computational times and support values.

Figure7-2: The execution time spent by the three algorithms on the real-world
BMS-POS dataset

37

Chapter 8: Conclusion

Designing incremental mining algorithms which effectively utilize the previously
mined information to reduce costs of knowledge maintenances is rather important and
useful. In order to compress the amount of frequent itemsets, we have utilized the
concepts of closed itemsets to develop more efficient, scalable and practical

approaches for maintaining and compressing association rule.

In the first part of this thesis, we have described that is not an intuitive translation
from incremental frequent itemsets mining to incremental frequent closed itemsets
mining, and divided the closed itemsets in the updated database into several portions.
We have shown the frequent cleSed itemsets®in the updated database could be
generated by two candidate sets, the closed-original-frequent itemsets and the closed
potentially frequent itemsets. "A. special set-named intersectional closed itemset
collects the closed itemsets that only.appears.in.the updated database has also been
described. Some frequent closed itemsets belong to the intersectional closed itemsets
are difficult to be determined since they were closed by other closed itemsets before.
We have shown the relations between the closed original itemsets, the closed

potentially frequent itemsets and intersectional closed itemsets.

In the second part of this thesis, in order to avoid huge comparing cost, CIM has
utilized the branch update strategy to generate the closed original frequent itemsets
and make full use of the closed original itemsets to generate the closed potentially
frequent itemsets are generated from . At last we have utilized the concept of pre-large,
to develop the CIM-P algorithm that reduces the amount of the closed potentially

frequent itemsets further. We have utilized two strategies to improve the utility of

38

buffer. The first is bucketing strategy that uses some buckets to record the actual
contributions of d for the major itemsets in pre-large (the itemsets with higher
supports). The consumption of buffer can be tightly calculated using the maximum
value of buckets. This strategy can enhance the utility of buffer and the second
strategy is using the infrequent l-items to prune the itemsets that must still be
infrequent. These two strategies can enhance the utility of buffer used in our CIM-P

algorithm.

39

Reference

1. C.C. Aggarwal, P.S. Yu, A new approach to online generation of association rules,
IEEE Transactions on Knowledge and Data Engineering, Vol. 13, No. 4, pp.
527-540, 2001.

2. R. Agrawal, T. Imielinksi, A. Swami, Mining association rules between sets of
items in large database, ACM SIGMOD Conference, pp. 207-216, Washington DC,
USA, 1993.

3. R. Agrawal, T. Imielinksi, A. Swami, Database mining: a performance perspective,
IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No. 6, pp.
914-925, 1993

4. R. Agrawal, R. Srikant, Fast algorithm fot mining association rules, ACM
International Conference on-Very Large Data Bases, pp. 487-499, 1994.

5. R. Agrawal, R. Srikant,- Mihing.sequential patterns, IEEE International
Conference on Data Engineering, pp. 3-1451995.

6. W.G. Aref, M.G. Elfeky, A.K. Elmagarmid, Incremental, online, and merge mining
of partial periodic patterns in time-series databases, IEEE Transactions on
Knowledge and Data Engineering, Vol. 16, No. 3, pp. 332-342, 2004.

7. R.J. Bayardo, R. Agrawal, D. Gunopulos, Constraint-based rule mining in large,
dense databases, IEEE International Conference on Data Engineering, pp. 188-197,
1999.

8. K. Beyer, R. Ramakrishnan, Bottom-up computation of sparse and iceberg cubes,
ACM SIGMOD Conference, pp. 359-370, 1999.

9. S. Brin, R. Motwani, C Silverstein, Beyond market baskets: generalizing
association rules to correlations, ACM SIGMOD Conference, pp. 265-276,

Tucson, Arizona, USA, 1997.

40

10

11.

12.

13.

14.

15.

16.

17.

18.

19

.S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and
implication rules for market basket data, ACM SIGMOD Conference, pp. 255-264,
Tucson, Arizona, USA, 1997.

S. Chaudhuri, U. Dayal, An overview of data warehousing and OLAP technology,
ACM SIGMOD Record, 26:65-74, 1997.

M.S. Chen, J. Han, P.S. Yu, Data mining: an overview from database perspective,
IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pp.
866-883, 1996.

D.W. Cheung, J. Han, V.T. Ng, C.Y. Wong, Maintenance of discovered association
rules in large databases: an incremental updating approach, IEEE International
Conference on Data Engineering, pp. 106-114, 1996.

D.W. Cheung, S.D. Lee, B. Kao, A general mcremental technique for maintaining
discovered association rules, In.Proceedings of Database Systems for Advanced
Applications, pp. 185-194, Melbourne, Australia, 1997.

M. Fang, N. Shivakumar, H,Garcia-Molina, R. Motwani, J.D. Ullman,
Computing iceberg queries efficiently, ACM International Conference on Very
Large Data Bases, pp. 299-310, 1998.

R. Feldman, Y. Aumann, A. Amir, H. Mannila, Efficient algorithms for
discovering frequent sets in incremental databases, ACM SIGMOD Workshop on
DMKD, pp. 59-66, USA, 1997.

G. Grahne, L.V.S. Lakshmanan, X. Wang, M.H. Xie, On dual mining: from
patterns to circumstances, and back, IEEE International Conference on Data
Engineering, pp. 195-204, 2001.

J. Han, L.V.S. Lakshmanan, R. Ng, Constraint-based, multidimensional data
mining, [EEE Computer Magazine, pp.2-6, 1999.

.J. Han, M. Kamber, Data mining: concepts and techniques, Morgan Kaufmann

41

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Publishers, 2001.

J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation,
ACM SIGMOD Conference, pp. 1-12, 2000.

C. Hidber, Online association rule mining, ACM SIGMOD Conference, pp.
145-156, USA, 1999.

T.P. Hong, C.Y. Wang, Y.H. Tao, A new incremental data mining algorithm using
pre-large itemsets, International Journal on Intelligent Data Analysis, 2001.

W.H. Immon, Building the data warehouse, Wiley Computer Publishing, 1996.
L.V.S. Lakshmanan, R. Ng, J. Han, A. Pang, Optimization of constrained frequent
set queries with 2-variable constraints, ACM SIGMOD Conference, pp. 157-168,
Philadelphia, Pennsylvania, USA, 1999.

B. Lan, B.C. Ooi, K.L. Tan,.Efficient indexing structures for mining frequent
patterns, IEEE International-Conference on Data Engineering, pp. 453-462, 2002.
H. Mannila, H. Toivonen,~A.lL} Verkamo,, Efficient algorithm for discovering
association rules, The AAAI Wortkshop onKnowledge Discovery in Databases, pp.
181-192, 1994.

H. Mannila, H. Toivonen, On an algorithm for finding all Interesting sentences,
The European Meeting on Cybernetics and Systems Research, Vol. 11, 1996.

R.T. Ng, L.V.S. Lakshmanan, J. Han, A. Pang, Exploratory mining and pruning
optimizations of constrained associations Rules, ACM SIGMOD Conference, pp.
13-24, Seattle, Washington, USA, 1998.

J.S. Park, M.S. Chen, P.S. Yu, Using a hash-based method with transaction
trimming for mining association rules, IEEE Transactions on Knowledge and Data

Engineering, Vol. 9, No. 5, pp. 812-825, 1997.

30. N.L. Sarda, N.V. Srinivas, An adaptive algorithm for incremental mining of

association rules, IEEE International Workshop on Database and Expert Systems,

42

31.

32.

33.

34.

35.

36.

37.

38.

39.

pp. 240-245, 1998.

A. Savasere, E. Omiecinski, S. Navathe, An efficient algorithm for mining
association rules in large databases, ACM International Conference on Very Large
Data Bases, pp. 432-444, 1995.

S. Thomas, S. Bodagala, K. Alsabti, S. Ranka, An efficient algorithm for the
incremental update of association rules in large databases, The International
Conference on Knowledge Discovery and Data Mining, pp. 263-266, 1997.

K. Wang, L. Tang, J. Han, J. Liu, Top down FP-Growth for association rule
mining, Pacific-Asia Conference on Advances in Knowledge Discovery and Data
Mining, pp. 334-340, 2002.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. InICDT'99, Jan:.1999.

J. Pei, J. Han, and R. Mao.-CLOSET: 'An-efficient algorithm for mining frequent
closed itemsets. In DMKD'00, May2000-

M. Zaki and C. Hsiao. CHARM: An efficient algorithm for closed itemset mining.
In SDM'02, April 2002.

J. Wang, J. Han, and J. Pei, “Closet+: Searching for the Best Strategies for Mining
Frequent Closed Itemsets,” Proc. ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, Aug. 2003.

Z. Zheng, R. Kohavi, L. Mason, Real world performance of association rule
algorithms, The International Conference on Knowledge Discovery and Data
Mining, 2001.

R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm
for generation of frequent item sets. Journal of Parallel and Distributed Computing,

61(3):350- 371, 2001.

43

