
國 立 交 通 大 學 
 

資訊科學系 

 

碩 士 論 文 
 
 
 
 

符合Learning Design標準學習活動的推薦系統
之研究 

 
A Recommendation Scheme of Personalized Learning Activities 

Based on Learning Design Standard 

 
 
 

研 究 生：林易虹 

指導教授：曾憲雄  博士 

 

 
 
 

中 華 民 國 九 十 四 年 六 月



符合Learning Design標準學習活動的推薦系統之研究 

A Recommendation Scheme of Personalized Learning Activities 
Based on Learning Design Standard 

 
 
 

研究生：林易虹      Student：Yi-Hung Lin 

指導教授：曾憲雄      Advisor：Shian-Shyong Tseng 

 

 
國 立 交 通 大 學 

資 訊 科 學 系 

碩 士 論 文 

 

 
A Thesis 

Submitted to Department of Computer and Information Science 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

Computer and Information Science 
 

June 2005 
 

Hsinchu, Taiwan, Republic of China 
 

中華民國九十四年六月



 i

符合Learning Design標準學習活動的推薦系統之研究 

研究生：林易虹         指導教授：曾憲雄博士 

國立交通大學電機資訊學院資訊科學系碩士班 

摘       要 

隨著數位化學習的普及，許多網路學習的相關標準已被提出與制訂。在這些

標準中，SCORM和Learning Design (LD)最為被廣泛應用。然而，SCORM在描述教

學活動的情境上，有諸多限制與不便，例如：無法明確表達各種教學理論的情境

及不支援多人學習的模式。相較之下，LD 豐富描述教學理論的能力使其成為近來

描述學習活動之熱門標準，故目前的趨勢則以LD作為上層教學活動描述的標準而

SCORM為下端內容描述之標準；同時很多組織或研究單位亦投入開發相關平台與編

輯工具。隨著產生符合LD標準的學習活動越來越多，如何搜尋、進而如何有效地

重複利用等將會成為重要的問題。因此，在本論文中提出了一套學習活動的推薦

機制，稱為Learning Activity Recommendation (LAR) Scheme，以達到能夠有目

標性地搜尋並重複利用符合LD標準之教學活動的目的。根據多元相似度計算的機

制，LAR能夠輔佐使用者找到適合他們需求的學習活動；另外結合規則庫推論，能

夠動態控制使用者互動介面及動態配置相似度計算。LAR不僅能夠尋找到符合使用

者需求的教學活動，簡化使用者在編輯符合LD標準教學活動之過程，同時整個架

構也具備相當的彈性與擴充性。本論文亦導入布魯姆教學目標分類法的相似度計

算來有效地延伸 LAR 的相似度計算能力與擴充能力，同時也藉由實驗來驗證所提

出的結構相似性之效能。 

  
關鍵字：教學活動重複利用、相似度計算、學習設計、規則庫 



 ii

A Recommendation Scheme of Personalized Learning Activities 
Based on Learning Design Standard 

Student：Yi-Hung Lin     Advisor：Shian-Shyong Tseng 

Institute of Computer and Information Science 
National Chiao Tung University 

Abstract 

As the popularity of e-learning, the related standards which are used for providing 

the interoperability, reusability, portability, and sharability of learning resources are 

promoted. Among these standards, the most famous are SCORM and Learning Design 

(LD). However, SCORM has some disadvantages such as unsupported of the pedagogy 

theory and cooperative learning. Therefore, LD becomes the main standard in the use of 

expressing learning scenario. Many institutes are developing the related platforms and 

authoring tools. As more LD compliant learning activities are generated, how to retrieve 

and how to reuse them will be critical issues. Thus, in this thesis, we propose a learning 

activity reusing mechanism, called Learning Activity Recommendation (LAR) Scheme, 

to achieve the purposes that search efficiently and reuse the learning activities compliant 

with LD. With the multiple similarity calculations, LAR can help users to find the 

learning activity they desired. In the framework, we also adopt the expert system shell, 

DRAMA, to handle the interactive interface with users and the generation of the 

similarity equation. In summary, LAR is full of flexibility and scalability to simplify the 

process of editing learning activity compliant with LD. The thesis also adopts the 

pedagogy theory, Bloom, to extend the framework of LAR. The experimental result 

shows that the similarity functionality really works.        

 
Keyword: Reuse Learning Activity, Similarity measurement, Learning Design, 
Rule base.  



 iii

致謝 

這篇論文的完成，首先要感謝我的指導教授，曾憲雄老師。在研究所兩年的

歲月裡，無論是在學術研究或是為人處世方面，皆讓我受益匪淺。在碩二撰寫論

文的這段時間，老師花了很多心思幫我批改、給我建議，心裡覺得很感動；同時

也感謝我的口試委員，黃國禎教授、楊鎮華教授、和楊錦潭教授，他們給予了我

相當多的寶貴意見，讓本篇論文更有意義與價值。 

 

第二要感謝的是蘇俊銘學長和翁瑞峰學長，這段期間內，他們花費了許多心

力與我討論以及給我建議，協助我修改論文；此外從他們身上，我學習了不少生

活態度及為人處事的方法，在此深表感激。還有實驗室的同窗們：君翰、昱璋、

政霖、瑞言、柏智、育松、成樑，在這兩年的時光裡，能和你們一起度過，互相

扶持鼓勵甚至互開玩笑，我覺得能遇到你們很開心也很滿足。還有其他在身邊鼓

勵我的朋友們：姿文、倫武、文如等，眾多親朋好友們雖無法在此一一提及，但

我心裡真的非常感激有你們在我身邊！ 

 

也感謝我的男朋友弘育，在我身邊不停地鼓勵我，讓我在遇到挫折的時候能

夠又繼續樂觀地向前走；最後要感謝的是我的家人，默默地支持與鼓勵，並不時

地關心我。日後，我會更加努力地繼續前進！  



 iv

Tables of Content 

摘       要..................................................................................................................... I 

ABSTRACT....................................................................................................................II 

致謝................................................................................................................................ III 

TABLES OF CONTENT ............................................................................................. IV 

LIST OF FIGURES ..................................................................................................... VI 

LIST OF TABLES.......................................................................................................VII 

CHAPTER 1. INTRODUCTION ..................................................................................1 

CHAPTER 2. RELATED WORK .................................................................................4 

2.1 SCORM................................................................................................................ 4 
2.2 LEARNING DESIGN ................................................................................................ 6 
2.3 BLOOM................................................................................................................ 12 

CHAPTER 3. SCHEME OF LEARNING ACTIVITY RECOMMENDATION ....16 

3.1 LAR SCHEME...................................................................................................... 17 
3.2 DATA REPRESENTATION IN LAR SCHEME............................................................ 19 

CHAPTER 4. PRE-PROCESSING OF LAR SCHEME...........................................24 

4.1 THE DEFINITION OF USER INPUT PARAMETERS ................................................... 24 
4.2 UOL PARSER........................................................................................................ 26 
4.3 CANDIDATED COMPUTABLE ACTIVITIES SELECTION (CCAS) ............................. 29 
4.4 RULES DEFINITION OF SIMILARITY SELECTION (RDSS)...................................... 30 

CHAPTER 5. THE METHODOLOGY OF SIMILARITY MEASUREMENT.....32 

5.1 COVERAGE SIMILARITY (CS) .............................................................................. 32 
5.2 SEQUENCE SIMILARITY (SS)................................................................................ 34 
5.3 PATH SIMILARITY (PS)......................................................................................... 36 
5.4 DISTRIBUTION SIMILARITY (DS) ......................................................................... 38 

CHAPTER 6. APPLYING PEDAGOGY THEORY TO COMPUTABLE 
ACTIVITY.....................................................................................................................39 

6.1 BLOOM SIMILARITY ............................................................................................ 39 
6.2 OTHER PEDAGOGY APPROACHES ......................................................................... 47 

CHAPTER 7. SYSTEM IMPLEMENTATION .........................................................48 



 v

7.1 TRANSFORMATION EXAMPLE OF UOLPARSER ..................................................... 48 
7.2 SYNTHETIC COMPUTABLE ACTIVITY MATRIX AND EXPERIMENT RESULTS .......... 53 
7.3 SYSTEM INTERFACES ........................................................................................... 56 

CHAPTER 8. CONCLUSION .....................................................................................62 

REFERENCES..............................................................................................................63 

APPENDIX A ................................................................................................................66 

 



 vi

List of Figures 

Figure 2.1: An Example of Activity Tree (AT) with Clusters ...........................................5 
Figure 2.2: the structure of learning..................................................................................7 
Figure 2.3: Learning Design Rationale[22] ......................................................................8 
Figure 2.4: Example of Learning Design..........................................................................9 
Figure 2.5: Conceptual model of overall Learning Design.............................................10 
Figure 3.1: Scheme of LAR ............................................................................................17 
Figure 3.2: Unit of Learning ...........................................................................................21 
Figure 4.1: Concept of UoL Parser .................................................................................26 
Figure 4.2: The hierarchy of attributes we used..............................................................27 
Figure 6.1: Example of BP..............................................................................................40 
Figure 6.2: Knowledge Dimension Tree (Up) ................................................................42 
Figure 6.3: Cognitive Processing Dimension Tree (CPDT) ...........................................43 
Figure 6.4: The Extended Scheme of LAR.....................................................................45 
Figure 7.1: The templates of learning flow and its corresponding CAM .......................54 
Figure 7.2: The screenshot of the synthetic CAM ..........................................................54 
Figure 7.3: The screenshot of experiment result .............................................................55 
Figure 7.4: The result of satisfaction...............................................................................56 
Figure 7.5: Editing rules of LAR with DRAMA Editor .................................................57 
Figure 7.6: The first inferencing interactive process ......................................................58 
Figure 7.7: The inference process and the result of LAR ...............................................59 
Figure 7.8: The editing process with RELOAD..............................................................60 
Figure 7.9: Upload page of CopperCore .........................................................................60 
Figure 7.10: The Simulation on CopperCore..................................................................61 

 



 vii

List of Tables 

Table 2.1: Knowledge Dimension [27] ...........................................................................12 
Table 2.2: Cognitive Process Dimension [27].................................................................13 
Table 3.1:Meta-data of Computable Activity..................................................................20 
Table 6.1:BI of figure3.2.................................................................................................40 

 



 viii

List of Algorithms 

 
Algorithm 4.1: UoL Parser Algorithm (UoLPAlgo) .......................................................27 
Algorithm 4.2: Candidated Computable Activity Selection Algorithm (CCASAlgo)....29 
Algorithm 5.1: Loop Path Detection Algorithm (LPDAlgo) ..........................................37 
Algorithm 5.2: Condition Path Detection Algorithm (CPDAlgo) ..................................38 

 

 



 1

Chapter 1. Introduction 

Recently, learning over Internet has become a trend of education, such as 

e-learning, online-learning, or distance learning. Plenty of e-learning systems make 

people conveniently study at any time and any location. Several international 

organizations have proposed several e-learning standards to provide the 

interoperability, reusability, portability, and sharability of learning resources among 

different e-learning systems. Therefore, more and more authoring tools have been 

developed for teachers to edit the teaching materials and learning activities 

compatible with these standards. Therefore, a large number of learning contents will 

be created. Undoubtedly, the maintenance of these learning sources will become a 

critical issue.  

 

Based on these standards, another key challenge to e-learning today, is the 

development of a framework based on sound pedagogical principles that will promote 

the exchange and interoperability of learning concepts, materials and teaching 

strategies [14][1][21]. The process of designing a learning scenario or learning flow is 

called “Teaching/Learning Plan”, “Instructional Design (ID)” or “Learning Lesson”. 

Teachers can inspect or review the learning flow by examining the ID. In other words, 

an ID implies the relationship between resources, such as the manner in which they 

are sequenced or presented to the learner. Alternatively, an instructional context may 

define the role that a given resource plays in a learning scenario; for example, it may 

be an illustration, an example, an explanation or an exegesis [1]. For those 

teaching-beginners without plentiful teaching experiences, they may face some 

troubles while constructing their own learning activities. First, they may be confused 



 2

about how to design a better learning activity that helps students learn more efficiency. 

Second, they may be lack of experiences about how to apply some pedagogy theory 

while designing their learning activity. Besides, the ID is a tedious work. Mostly, the 

well-known learning strategies change little while different teacher applying to their 

learning activity. So, if the knowledge is not well-reuse, these dreary works will be 

repeatly done by different teachers. Therefore, we can realize that IDs constructed by 

other veterans of many teaching experiences for reference are useful and helpful. 

They are worthy to be shared and reused in education. 

  

Among these learning standards, the most famous standards may be SCORM [5]. 

However, its weakness such as unsupported of pedagogy theory and cooperative 

learning make another standard, Learning Design (LD), on the up grade [6]. LD has 

powerful expression ability of learning activity to overcome the disadvantages 

SCORM has. Nowadays, the trend of e-learning standards is to combine the LD and 

SCORM. That’s the reason why we choose it for our e-learning standard here.    

 

In this thesis, we propose an innovative scheme called Learning Activities 

Recommendation (LAR) that can reuse the learning activities compliant to Learning 

Design smartly. Users only need to input the information about their teaching 

activities, and then LAR will retrieve the matched learning activities in the repository 

by the intelligent similarity methodologies. The similarity methodologies are inferred 

by the Rules Definition of Similarity Selection (RDSS) of LAR. RDSS controls the 

interaction with users and generates the similarity equation. This framework provides 

LAR flexibility and scalability.    

  

The organization of this thesis is as follows: In Chapter 2, we introduce some 



 3

related work about e-learning standards. The scheme of LAR and the data 

representation we propose is introduced in Chapter 3. Each phase of LAR is 

introduced in Chapter 4 and Chapter 5. And we adopt the pedagogy theory into LAR 

to prove the extension ability of LAR in Chapter 6. The implementation of LAR is 

discussed in Chapter 7. At the end, concluding remarks are given in Chapter 8.  



 4

Chapter 2. Related work 

In this chapter, some related background knowledge will be introduced. First, we 

will go through the e-learning standards: SCORM and Learning Design. Then the 

famous taxonomy for Educational Objectives, Bloom, will be discussed later.    

 

2.1 SCORM 

SCORM (Sharable Content Object Reference Model) was developed by ADL 

Initiative, which was launched by The White House Office of Science and Technology 

Policy (OSTP) together with government, industry, and academia. Among those 

existing standards for learning contents, SCORM, which was proposed by the U.S. 

Department of Defense’s Advanced Distributed Learning (ADL) organization in 1997, 

is currently the most popular one. The SCORM specifications are a composite of 

several specifications developed by international standards organizations [14][14][1]. 

In a nutshell, SCORM is a set of specifications for developing, packaging and 

delivering high-quality education and training materials whenever and wherever they 

are needed. SCORM-compliant courses leverage course development investments by 

ensuring that compliant courses are Reusable, Accessible, Interoperable, and Durable 

(RAID) [21]. At present, the Sequencing and Navigation (SN) [28] in SCORM 1.3 (or 

called SCORM 2004) adopting the Simple Sequencing Specification of IMS relies on 

the concept of learning activities, each of which may be described as an instructional 

event, events embedded in a content resource, or an aggregation of activities to 

describe content resources with their contained instructional events. Content in SN is 

organized into a hierarchical structure, namely activity tree (AT) as a learning map. 

The example of AT is shown in Figure 1. Each activity in the Activity Tree includes 



 5

two data models: Sequencing Definition Model (SDM) including an associated set of 

desired sequencing behaviors of content designer and Tracking Status Model (TSM) 

including the information about a learner’s interaction with the learning objects within 

associated activities. The SN uses information in SDM and TSM to control the 

sequencing, selecting and delivering of activities to the learner. The sequencing 

behaviors describe how the activity or how the children of the activity are used to 

create the desired learning experience. SN enables users to share not only learning 

contents, but also intended learning experiences. It also provides a set of widely used 

sequencing method so that the teacher could do the sequencing efficiently. However, 

how to create, represent and maintain the activity tree and associated sequencing 

definition is an important issue.   

 

 
Figure 2.1: An Example of Activity Tree (AT) with Clusters 

 

  The complicated sequencing rule definitions of SN in SCORM 2004 make the 

design and creation of course hard. The sequencing rule has less flexibility to support 

cooperative learning. Moreover, SCORM is hard to imply the teaching pedagogic 

theory.   



 6

2.2 Learning Design 

The core concept of the Learning Design framework is that regardless of the 

pedagogical strategy, learners attain learning objectives by performing a specific order 

of learning activities. It has emerged as one of the most significant developments in 

e-learning [22][14][10][2][3][7][10][11].  

 

From a standards/specifications perspective, IMS Global Learning Consortium 

has recently released the IMS Learning Design specification[20], based on the work 

of the Open University of the Netherlands (OUNL) on “Educational Modeling 

Language” [23], a notational language to describe a “meta-model” of instructional 

design. The OUNL that coordinates an international EML/IMS Learning Design 

implementation group known as the Valkenburg group [31] has recently stated their 

intention to no longer develop EML continuously, but instead focus their energies of 

the new IMS Learning Design specification [29]. Thus it can be seen that LD has 

come into more and more notice.  

 

2.2.1 IMS Learning Design Information Model 

The primary use of IMS Learning Design is to model units of learning (uol) by 

including an IMS Learning Design in a content package. The Manifest is the 

information structure defined in the Content Packaging specification. It contains a 

package as an XML file with a fixed, pre-defined name (imsmanifest.xml). The 

integration of a Learning Design into the Content Packaging Structure is set out in the 

Figure 2.2.   



 7

 
Figure 2.2: the structure of learning. 

 

To create a unit of learning, IMS Learning Design is integrated with an IMS 

Content Package by including the learning design element as another kind of 

organization within the <organizations> element, using the standard namespace for 

Learning Design. When the standard namespace is 

“[standard-namespace-for-learning-design]”, then learning design elements are 

included as follows (ignoring irrelevant elements and attributes): 

 

 
<manifest> 
 <metadata/> 
 <organization> 
  <learning-design xmlns=”[standard-namespace-for-learning-design]”> 
   [add learning design elements here] 
  </learning-design> 
 </organization> 
 <resources> 
</manifest> 
 

 

 

 The core components of the Learning Design Framework are shown in Figure 

2.3 and summarized below: 



 8

   
Figure 2.3: Learning Design Rationale[24] 

 

－ Role component specifies the type of participant in a unit of learning. There are 

two basic types: Learner and Staff. These roles can be sub-typed to allow learners to 

play different roles in certain types of learning activity such as task-based, role-play 

and simulations. Similarly support staff can be sub-typed and given more specialized 

roles, such as Tutor, Teaching Assistant, Mentor, etc. Thus, Roles set the basis for 

multi-user models of learning. The name that a certain role is given depends on the 

underline pedagogy and the setting in use.  

－ Activities are one of the core structural elements of the ‘learning workflow’ model 

for learning design. They form the link between the roles and the learning objects and 

services in the learning environment. They describe the activities that a role has to 

undertake within a specified environment composed of learning objects and services. 

They also specify their termination conditions and the actions to be taken on 

termination. There are two basic types of activities: learning activities and support 

activities. A learning activity is directed at attaining a learning objective per individual 

user. Any user performs a learning activity only once (until completion). A support 

activity is meant to facilitate a role performing one or more learning activities. 

 



 9

The controller of the role and activities flow is the attribute “Method”. It contains 

two core parts of the LD specification: the play and conditions. A play specifies the 

actual learning design, the teaching-learning process, referring to the components 

declared earlier. And conditions are used in conjunction with properties to further 

refinement and to add personalization facilities in the learning design.   

 

 Here we illustrate the architecture more detail by showing an example of UoL. 

 

 

Figure 2.4: Example of Learning Design 
 

 Figure 2.4 illustrates a LD compliant learning flow. There are two roles: Learner 

and Teacher. The property “Test_Mode” is default to be false and “Test_Grade” =””. 

In the teacher’s learning flow, the only task is to grade every student’s test which is 

defined as a support activity (SA). This support activity will be executed several times 

until finishing all students’ grades. The learner takes two lessons: ”Introduction of 

Tree” and “Introduction of Search” (Learning Activity). While completing the lesson 

“Introduction of Search”, the property “Test_Mode” becomes true and the Test 

activity will show up. After the learner finishes the test, the system will notify the 

teacher to grade by using the service: send mail of the environment. After the teacher 

grading this student’s test, the learning flow of the students will continue or go back to 



 10

the lesson ”Introduction of Search” depending on the value of the 

property ”Test_Grade”. If the “Test_Grade” is true, the learner will take the 

lesson: ”Conclusion” and then go to another act.   

  

 According to the expressive ability, LD specifies three levels of implementation 

and compliance. The level wise conceptual view of LD is provided in Figure 2.5. In 

this figure, the emphasis is on the functional differences between each level.    

 
Figure 2.5: Conceptual model of overall Learning Design 

 

LD Level A contains all the core vocabulary needed to support pedagogical 

diversity. And Level B adds Properties and Conditions to level A, which enable 

personalization and more elaborate sequencing and interactions based on learner 

portfolios. It can be used to direct the learning activities as well as record outcomes. 

Afterward, LD Level C adds Notification, which can be used for notifying or 

“messaging” both between system components and between roles. This adds a new 

dimension by supporting real-time event-driven work/learning flow. Activities can 



 11

then be set as a consequence of dynamic changes to the learner’s profiles and/or of 

events generated in the courses of the learning activities. 

 

2.2.2 Compared with SCORM Simple Sequence 

While the definitions of Learning Design vary, the main elements tend to include 

greater focus on “context” dimensions of e-learning (rather than simply “content”), a 

more “activity” based view of e-learning (rather than “absorption”), and greater 

recognition of the role of “multi-learner” (rather than just single learner) 

environments. While Learning Design does not exclude single learner, self-paced 

modes of e-learning, it draws attention to a wider range of collaborative e-learning 

approaches in addition to single learner approaches. Much of the focus on Learning 

Design arises from a desire for re-use and adaptation at a level above simply re-using 

and adapting content objects. These above advantages make Learning Design become 

more popular than SCORM. 

 

2.2.3 Related Tools of LD Specification 
Currently many systems and tools which are based on Learning Design 

specification are developing. The most popular related researches are two projects: 

RELOAD Editor [26] and CopperCore [8].   

 

The RELOAD Editor supports the full IMS Learning Design specifications for 

Levels A, B and C. It provides the graphical User Interface for all elements. Besides, 

it also provides fully featured Help system and easy file management. For the 

designer of LD compliant learning activity, the most convenient function is the 

wizards to import and export as IMS Learning Design Zip Package.  

 



 12

 The CopperCore is a J2EE runtime engine for IMS Learning Design released by 

the Open Universiteit Nederland (OUNL). It supports all three levels of IMS Learning 

Design (A, B, and C). It includes a command line interface to most of the API calls, 

an example of a publication interface, and an example of a web delivery interface. 

These two tools will be helpful in the experiment of this thesis.   

 

 

2.3 Bloom 

In 1956, Benjamin Bloom who headed a group of educational psychologists 

developed a classification of levels of intellectual behavior important in learning [30]. 

However, to the need of real need in education [3], Bloom taxonomy was revised in 

2001 [4]. The revision divides the learning goal into two dimensions: knowledge 

dimension and cognitive process dimension. The former assists the teachers classify 

what to teach; the latter promotes the students retain and transfer the knowledge they 

learned. The following tables depict two dimensions in detail.  

 

Table 2.1: Knowledge Dimension [4] 

MAJOR TYPES AND SUBTYPES      EXAMPLES 

A. Factual knowledge – The basic elements students must know to be acquainted 
with a discipline or solve problem in it. 
AA. Knowledge of terminology 
AB. Knowledge of specific details and 
elements 

Technical vocabulary, musical symbols. 
Major natural resources, reliable sources 
of information 

B. Conceptual knowledge – The interrelationships among the basic elements 
within a larger structure that enable them to function together. 
BA. Knowledge of classifications and 
categories 
BB. Knowledge of principles and 
generalizations 

Periods of geological time, forms of 
business ownership 
Pythagorean theorem, law of supply and 
demand 



 13

BC. Knowledge of theories, models, and 
structures 

Theory of evolution, structure of 
Congress 

C. Procedural knowledge – How to do something, methods of inquiry, and criteria 
for using skills, algorithms, techniques, and methods 
CA. Knowledge of subject-specific skills 
and algorithms 
CB. Knowledge of subject-specific 
techniques and methods 
CC. Knowledge of criteria for 
determining when to use appropriate 
procedures 

Skills used in painting with watercolors, 
whole-number division algorithm 
Interviewing techniques, scientific 
method 
Criteria used to determine when to apply 
a procedure involving Newton’s second 
law, criteria used to judge the feasibility 
of using a particular method to estimate 
business costs. 

D. Metacognitive knowledge – Knowledge of cognition in general as well as 
awareness and knowledge of one’s own cognition 
DA. Strategic knowledge 
 
 
 
DB. Knowledge of subject-specific 
techniques and methods 

 
 
DC. Knowledge of criteria for 
determining when to use appropriate 
procedures 

Knowledge of outlining as a means of 
capturing the structure of a unit of 
subject matter in a text-book, knowledge 
of the use of heuristics. 
Knowledge of the types of tests 
particular teachers administer, 
knowledge of the cognitive demands of 
different tasks 
Knowledge that critiquing essays is a 
personal strength, whereas writing 
essays is a personal weakness; 
awareness of one’s own knowledge level

 

Table 2.2: Cognitive Process Dimension [4] 
PROCESS 
CATEGORIES 

COGNITIVE PROCESSES  
AND EXAMPLES 

1. Remember – Retrieve relevant knowledge from long-term memory.  
1.1 Recognizing 
1.2 Recalling 

(e.g., Recognize the dates of important events in U.S. history)
(e.g., Recall the dates of important events in U.S. holiday) 

2. Understand – Construct meaning from instructional messages, including oral, 
written, and graphic communication 
2.1 Interpreting (e.g., Paraphrase important speeches and documents) 



 14

2.2 Exemplifying 
2.3 Classifying 
 
2.4 Summarizing 
 
2.5 Inferring 
 
2.6 Comparing  
2.7 Explaining 

(e.g., Give examples of various artistic painting styles) 
(e.g., Classify observed or described cases of mental 
disorders) 
(e.g., Write a short summary of the events portrayed on 
videotapes) 
(e.g., In learning a foreign language, infer grammatical 
principles from examples) 
(e.g., Compare historical events to contemporary situations) 
(e.g., Explain the causes of important eighteenth-century) 

3. Apply – Carry out or use a procedure in a given situation 
3.1 Executing 
 
3.2 Implementing 

(e.g., Divide one whole number by another whole number, 
both with multiple digits) 
(e.g., Determine in which situations Newton’s second law is 
appropriate) 

4. Analyze – Break material into constituent parts and determine how parts relate to 
one another and to an overall structure or purpose 
4.1 Differentiating 
 
4.2 Organizing 
 
4.3 Attributing 

(e.g., Distinguish between relevant and irrelevant numbers in 
a mathematical word problem) 
(e.g., Structure evidence in a historical description into 
evidence for and against a particular historical explanation) 
(e.g., Determine the point of view of the author of an essay in 
terms of his or her political perspective) 

5. Evaluate – Make judgments based on criteria and standards 
5.1 Checking 
 
5.2 Critiquing 

(e.g., Determine whether a scientist’s conclusions follow 
from observed data) 
(e.g., Judge which of two methods is the best way to solve a 
given problem) 

6. Create – Put elements together to form a coherent or functional whole; 
reorganize elements into a new pattern or structure. 
6.1 Generating 
 
6.2 Planning 
6.3 Producing 

(e.g., Generate hypotheses to account for an observed 
phenomenon) 
(e.g., Plan a research paper on a given historical topic) 
(e.g., Build habitats for certain species for certain purposes) 

 

 By applying the Bloom taxonomy in education, educators can examine 

objectives from the student’s point of view and consider the panorama of possibilities 



 15

in education. Most important of all, it can help educators see the integral relationship 

between knowledge and cognitive processes inherent in objectives.  

 In summary, how to help the teachers who have little teaching experience to 

design the learning activity compliant with Learning Design and adapt Bloom 

taxonomy as course assessment is an important issue.  



 16

Chapter 3. Scheme of Learning Activity 

Recommendation 

 

As mentioned previously, the standard trend about LD plus SCORM must be the 

main stream in e-learning. LD’s powerful expression ability of learning activity is 

attracting more and more scholars and instructional designers to develop related tools 

or systems. Under the circumstances, the issue of learning activities management is 

arising. Based on the management issue, the first important thing is how to reuse these 

learning activities. Besides, the reusing mechanism must be efficient to simplify users 

edit their learning activities. As we know, the real methodology hasn’t been proposed 

yet. In our related work, only some scholars proposed the need in the future. Besides, 

each learning activity has its unique structure. So how to model it and how to design 

the similarity functions are another issues. The LAR (Learning Activity 

Recommendation) we propose in this chapter will solve the above problems. 

 

According the articles in these websites: JISC [16] and CETIS [17] , the reusing 

unit should be a completed learning design (learning activity) rather than its subset. 

That is the reason why we choose a completed learning activity to be our reusing unit 

in this thesis. 

 

In the following section, the data presentation is discussed. And then the scheme 

of LAR is introduced in Section 3.2.  



 17

3.1 LAR Scheme 
The procedure of LAR that we propose to solve the issues mentioned above is 

shown in Figure 3.3.  

User Inputs

Structure Similarity

Computable
Activity 

Repository

List of learning activity with high similarity 
similarity measure > threshold

Candidated
CA

Selection

UoL parser

Coverage
Similarity

Sequence
Similarity

Distribution
Similarity

 &Refinement

LD compliant learning activity (left) 
& its associated description file (right)

Rules Definition 
of Similarity 

Selection
(DRAMA) Similarity measurement

Rulebase

Path Condition
Similarity

Domain expert

User query

Selection

 

Figure 3.1: Scheme of LAR 

 

The LAR is composed of three phases: 

Phase 1. Pre-Processing deals with the raw data and determines how to calculate the 

similarity in phase 2 by inference. It includes: UoL Parser, Candidated CA Selection 

(CCAS), and Rules Definition of Similarity Selection (RDSS). Their functionality is 

described as following: 

 UoL Parser: it transforms the LD compliant learning activity associated with 

meta-data into the data representation, Computable Activity, which we defined in 



 18

next section. The parsed CAs will be stored in the Computable Activity 

Repository (CAR).  

 Candidated CA Selection (CCAS): it filters the CAs in CAR according to the 

user’s input. So the number of CAs that needs to be calculated in Phase 2 would 

be reduced. 

 Rules Definition of Similarity Selection (RDSS): it handles the interaction with 

users and generates the similarity equation based on the user’s input parameters. 

The infer mechanism is based on the rules in the Similarity Measurement Rule 

Base (SMRB). These rules are defined by domain experts. The RDSS provides 

quite flexibility to extend the similarity calculations.  

 

Phase 2. Similarity Measuring calculates the similarity value of each CAs of CCAS 

according to the similarity equation that inferred from RDSS. As we analyze the 

structure of a learning activity, we propose four similarity functions as follows. 

 Coverage Similarity (CS): it computes the similarity level between the courses 

the learning activities has and the courses users want to use.      

 Sequence Similarity (SS): it computes the similarity level between the courses’ 

learning flow in the learning activities and the learning flow users want. 

 Path Similarity (PS): it computes the similarity level between the path condition 

of each course in a learning activity and the path condition users want. 

 Distribution Similarity (PS): it computes the similarity level to match the user’s 

need of pre-requisite.     

The inference engine of RDSS will trigger the suitable functions to compute the 

similarity value.  

 

Phase 3. Display lists the learning activities to end-users in the order that depend on 



 19

their similarity score from high to low. Users can choose their favorite learning 

activity recommend by LAR to do some refinement that make it become their desired 

learning activity.  

 

The process in Figure 3.1 can be described as follows. First, the user inputs their 

queries by interacting with RDSS. The query includes two parts: the requirements 

about learning activity and the meta-data. UoL Parser transforms the original learning 

activity documents compliant with LD (xml file) which describes a learning activity 

into Computable Activity (CA). And CCAS gets the meta-data in user’s query to 

reduce the searching space. The RDSS not only controls the interactive input interface 

with users but also generates the suitable similarity measurement equation that is 

combined with the similarity formulas according to the rules defined by domain 

experts in the SMRB. Then the similarity calculation is executed based on the 

similarity equation. After computing similarity functions, the learning activities will 

be ranked decreasingly depending on the similarity value and be shown to end-users 

to refine.     

 

These phases will be introduced in detail in Chapter 4. In order to compute the 

similarity between user’s queries and these LD compliant learning activities, we 

propose a data representation which is called Computable Activity (CA). In the 

following section, its definition is shown explicitly.   

 

 

3.2 Data Representation in LAR Scheme 

We define the storage unit for reusing is a Computable Activity (CA). A CA 



 20

describes the learning flow in an activity and some meat-data associated with the 

learning activity. The formula of CA can be illustrated as followings: 

 

CA = { Meta-data, unit of learning (UoL) }  

 

In the LAR scheme, the place to store the unit of learning associates with its 

meta-data for reusing is the repository which is called Computable Activity 

Repository (CAR). We assume all CA stored in CAR must be represented in Learning 

Design Standard (LD) and verified by education domain experts.  

 

The Mata-data is used for assisting our similarity computation. It is a pair with 

attribute and corresponding value. The following table shows the attributes we 

maintain and their description. 

 

Table 3.1:Meta-data of Computable Activity 

Attribute Description  

Suitable-Learning-Target It refers to which grades students can attend to this 
learning activity.  

LD-Level It describes what kind of LD this learning activity 
matched. It value are: A or B or C. 

Role It describes what kinds of Roles are involved in this 
learning activity. 

Depth The Longest path from start course to final course. 

 

In Chapter 2, we mentioned the definition of UoL. Here we’ll reduce the range of 

UoL. In this thesis, we focus on the Organizations: Learning Design which is the core 

of the UoL. The UoL is composed of a set of Activity Structures (AS) and a method 

including several rule definitions which can be used to control the learning guidance.  



 21

 An AS in turn consists of references to one or more of: a learning activity, a 

support activity, an (sub) Activity-structure, and another (separate) unit of learning. A 

learning activity is directed at attaining a learning objective per individual user. Any 

user performs a learning activity only once (until completion). It can be a text, an 

audio-file, a video file or any other cue to the user. A support activity is meant to 

facilitate a role performing one or more learning activities. The part to joint these 

activities is the rules in method. So we can adapt the UoL for a graphical based 

representation. We first describe some definitions and then illustrate the graphical 

formula and a figure to depict.      

      

Definition 3.1: Unit of Learning (UoL) 

UoL = { V, E }, where 

 V = {v1, v2, …, vm} . In UoL, V denotes an activity which can be the Learning 

Activity (LA) or Support Activity (SA). Several activities are organized into an 

activity structure (AS).   

 E = {e1, e2, e3, …,en} , where ei = <Ai, Aj> 

 
Figure 3.2: Unit of Learning 

 

 Figure 3.1 represents a UoL that has 11 learning activities and edges. These 

activities are connected by the edges. In this example, (LA1 & LA2), (LA5 & LA6), 

and (LA7 & LA8) are grouping into AS1, AS2, and AS3 respectively. The AS4 is 

composed of AS2 and AS3. LA3 is a Test LA, so there are two edges spilt from here: 



 22

one is going backward to LA2 and another one is continuing learning LA4. This is a 

kind of remedy teaching strategy.  So we can learn that different UoL represents 

different unique learning flow.      

  

In order to calculate the similarity between user’s query and UoLs, we apply a 

matrix called Computable Activity Matrix (CAM) to represent the learning flow of 

UoL. The related definitions and example are shown as followings.  

 

Definition 3.2: Computable Activity Matrix (CAM) 

 CAM is the adjacency-matrix representation of the graph UoL, we assume that 

the vertices are presented as Coursename1, Coursename2, …, Coursenamen in the 

order as in the learning activity. The Coursenamei is presented as i for short in the 

matrix. Then the adjacency-matrix representation of a graph UoL consists of a |V| × 

|V| matrix CAM = (aij) such that   

=ija
 ∈

 

Example 3.2: The CAM and Meta-data of Figure 3.2 

  

  

 

 

Suitable-Learning-Target 6 grades 

LD-Level  B 

Roles <learner> 

Depth 8 

Meta-data 
CAM11,11 









































00000000000
10000000000
01000000000
00100000000
00010000000
00100000000
00000100000
00001010000
00000001010
00000000100
00000000010

1 2

1

11

2

3

10

4

5

6

7

8

9

3 4 11105 6 7 8 9



 23

This example describes the CAM and Meta-data of Figure 3.1. The 

attributes of CAM represent the names of learning activity of Figure 3.1. Their 

relationship is one-to-one mapping, such as 1 means LA1. There is an edge 

connect LA1 from LA2 , so the CAM12 = 1; while there is no edge from LA6 to 

LA8, so the CAM68 = 0. The values of LD-Level and Suitable-Learning-Target 

are gotten from the input document. By counting the longest path number 

between the start course:LA1 and the final course: LA11, the Depth is assigned to 

8. 

 



 24

Chapter 4. Pre-Processing of LAR Scheme 

Pre-processing can be used to transform data and reduce the searching spaces. 

There are three components in this phase: UoLP (UoL Parser), CCAS (Candidated 

Computable Activities Selection) and Rules Definition of Similarity Selection (RDSS). 

In the following sections, these components will be described in detail.  

 

4.1 The Definition of User Input Parameters 

The proposed scheme provides users with application user interface to execute 

queries and get results. We define the following query vector to record the user’s 

requirements.  

 

Definition 4.1: Query Vector (QV) 

Query vector (qv) = <Mata-data, UoL_paremeters > 

 Mata-data = {LD_level, SLA}, where  

－ LD_level: the level of learning Design, 

－ SLA: the suitable learning ages of the learner. 

 UoL_paremeters = {CN, CS, CP, PreR, Weights }, where 

－ CN (Course Name): the course-names the user wants to use. In this thesis, 

the user can only choose the existing courses in our Computable Activity 

Repository.  

－ CS: the courses sequence while navigating the user desired courses,  

－ CP: the courses’ navigating path condition. Users can fill the sequence types 

(condition, loop) they want between two courses. That means from the coursei to 

coursej, the navigation path is like what users defined in the candidated learning 



 25

activity.  

－ PreR: this parameter means pre-requisite of learning activity. The input type 

is boolean. If the value is true, that means LAR will search the learning activity 

that has more courses than user desired. Then these courses not in user’s input 

parameters will become recommended courses for reference.   

－Weights: the weight of each similarity calculation. If the user doesn’t configure 

them, the RDSS will assign the default weights. 

 

Example 4.1: User Input 

Query vector (qv) = {(B, 6 grades), (A,C,D), (C→A→D), (C→A:Condition, D→

A:Loop), Yes} 

 

After calculating, the matched learning activities will be ranked in the order of 

their similarity scores and display to users. Users can edit their favorite one.  

 

 



 26

4.2 UoL Parser 

 The inputs of UoLP are the xml files compliant with LD. We have mentioned the 

xml structure of LD in Chapter2.1. The following figure 3.4 is a simple transform 

concept.  

 LD compliant with
learning Activity 

+

Data Input

UoL Parser

Meta-data
value























00000
10100
01000
00100
00010

1
1

2

2

n

n

⋯⋯
CAMnxn

Computable Activity

Information about 
the learning activity

 
Figure 4.1: Concept of UoL Parser 

 

The above figure depicts the concept of UoL Parser. Each learning activity and 

its associated description file are the input of UoL Parser. After the process of UoL 

Parser, the Computable Activity will be generated. The description file is a xml file 

we defined. Its format will be shown in Appendix 1. It contains most attributes of 

Meta-data, while the LD compliant with Learning Activity is transformed into the 

Computable Activity Matrix.  

 

As we illustrated in Chapter 2, Learning Design has a powerful ability of 

expressing the learning scenario. Hence it has too many attributes so that is so 



 27

complicated. So, in the thesis, we focus on the following attributes to represent the 

Scheme, LAR.  

 

Figure 4.2: The hierarchy of attributes we used 
 
 The definition of UoL Parser algorithm is shown as follows: 
 

Algorithm 4.1: UoL Parser Algorithm (UoLPAlgo) 

Algorithm: UoL Parser Algorithm (UoLPAlgo) 

Definition of Symbols: 

Roles = {role1, role2, … , rolen}: it is a set of roles which is used to record what kind 

of roles participates in this unit of learning.  

TmpActivity: it represents a structure that record this activity’s identifier, title, its 

related properties and status after changing. 

CAM_Attri: it represents these learning activities in this unit of learning in 

sequence. 

TmpCondition: it represents the conditions of all properties in this unit of learning. 

It records the property’ name, its changed criteria, and the results.     

 

Input: LD compliant with learning activities and their description file. 

Output: Meta-data and CAM  



 28

Step1. Read the description file. 

Step1.1. Set each attributes of description file to the corresponding attributes in 
Meta-data.  

Step2. Read the LD compliant with learning activities into DOM tree. 
 Step 2.1 Read the element “learning-design identifier”. 
 Step 2.2  Read the value of its attribute “level” into the “LD-Level” of 

Meta-data. 
 Step 2.2 Enter the element “components”. 
 Step 2.3 Read the element “roles”. 
 Step 2.4 Add each value of “learner identifier” into Roles.  
    Step 2.5  Set Roles into Meta-data.  

Step 2.5 For each element “activities” 
 Step 2.5.1 set each related value into TmpActivity.  
    Step 2.5.2 Intitialize eacho elements of CAMnn = 0 where n is the number 

of learning activities in this unit of learning. 
Step3. Read the element “Method”. 
    Step 3.1 Read the element “conditions”. 
        Step 3.1.1 set each “if-else” into TmpCondition. 

    Step 3.2 Enter the element “role-part”. 

        Step 3.2.1 Read the activity-structure-ref of each role-part. 

    Step 3.3 Read each activity-structure-ref recursively. 

        Step 3.3.1 Expand each learning activity in the activity structure 

        Step 3.3.2 Assign the learning activity’s name into CAM_Attri. 

        Step 3.3.3 Read the element “on-complete” of the learning activity. 

        Step 3.3.4 Map the changed-property with the TmpCondition. 

        Step 3.3.5 If there are any learning activity are shown after this property 

changed, appdend it to the CAM_Attri. 

        Step 3.3.6 Mark the CAMij = 1 if the learning acitivy i can achieve the 

learning activity j 

 



 29

4.3 Candidated Computable Activities Selection (CCAS) 

 The processing of LAR may take a great deal of time to calculate the similarity 

scores of all the learning activities while there are a large number of CAs in CAR. 

However, the performance is a key index for modern computer systems; a candidated 

computable activity selection (CCAS) to avoid calculating all CAs during the retrieval 

process can be very helpful to improve the performance.  

 

The attribute to filter CA in CCAS are the Suitable Learning Target, and LD 

level in meta-data parameters. Here, we adopt the principle of “exactly match”. The 

concerned attributes can still be extended if there is more information about learning 

activities in the future. The CCAS algorithm is shown below: 

 

Algorithm 4.2: Candidated Computable Activity Selection Algorithm (CCASAlgo) 

Algorithm: Candidated Computable Activity Selection Algorithm (CCASAlgo) 

Input: All learning activities in LAKB 

Output: Only the learning activities that match the user’s input attribute.   

Step 1: For each learning activity in LAKB, check their meta-data.  

 Step 1.1: Check the level of LD. 

 Step 1.2: Check the age of students. 

Step2: If any attribute in a learning activity is not equal to

user’s input parameters, then ignore this learning activity.   

 

 

 



 30

4.4 Rules Definition of Similarity Selection (RDSS) 

After Candidated Computable Activity Selection, the inference engine will infer 

the suitable similarity equation according the user’s inputs and rules in the similarity 

measurement rule base (SMRB). By adapting this inference mechanism, the similarity 

measurement will be more flexible and scaleable. In NORM [15], a new knowledge 

model, proposed to process knowledge modularization and knowledge relations, is 

used to represent the generating equation rule in LAR. In the rule base, there is a rule 

class, called MainRC. MainRC is used for controlling the interactive interface 

between LAR and users and the sequencing of the similarity calculation. In the thesis, 

we concern four similarity calculations: Coverage Similarity (CS) which concerns the 

possession rate of courses that users need, Sequence Similarity (SS) which concerns 

the learning order, Path Similarity (PS) which concerns the types of navigating paths 

in the UoL, and Distribution Similarity (DS) which concerns the need of pre-requisite 

courses. Following is illustrated the example of our rule base.  

 

Rule base = {MainRC }           

 MainRC contains these rules:  

 Facts: CS, SS, PS, DS (boolean) 

 Rules:  

R1: If CS, then SS 

 R2: If CS & SS, then PS 

 R3: If CS, then DS 

 

 The rules above are defined in what condition which similarity calculation 

should be executed. In the similarity we concern, the basic calculation is Coverage 



 31

Similarity (CS). Other three similarity calculation are based CS. So the user must 

input the course names for CS, or the LAR will only search the activities that match 

the meta-data of the user’s desire. There is another dependency relation of SS and PS. 

So in R2, they have the “and” relationship in rule condition. 

   

 The similarity score will be the summary of each similarity score multiple their 

corresponding weight.  

 

 Score =                                 

  

The weights corresponding to each similarity calculation are obtained from two 

ways: the system default weight or user configuration. User can configure these 

weights according their need while interacting with IE. If users don’t assign any 

weight, the system default weight is shown as following formula: 

)(
1
Factnum

w =  

Example 4.3: weight configuration   

If the user don’t input any parameter and only the fact CS, SS are true, the w will 

become: 
2
1

=w . And the Score =  

 

 

 

The detail of calculating Similarity will be introduced in Chapter 5.  

DDPPSSCC SWSWSWSW ×+×+×+× 1=∑ iW,

DPSC SSSS ×+×+×+× 00
2
1

2
1



 32

Chapter 5. The Methodology of Similarity 

Measurement 

In LAR, the most important part is to calculate the similarity function between 

user’s query and computable activity (CA) in CAR. In this chapter, we will introduce 

our similarity measurement.   

 

The most important part in a learning activity is its learning flow. A 

well-structured learning flow will affect the outcome of learning. After discussing 

with some teachers and domain experts, we analyze the structure similarity based on 

four viewpoints: coverage, sequence, path condition, and distribution. Each viewpoint 

has its corresponding weight. These weights are provided by our inference engine or 

configured by users.  

 

 In the following section, we’ll introduce the calculation of each structural 

viewpoint more detailed.  

 

5.1 Coverage Similarity (CS)  

The coverage means that the number of courses that user wants are in the 

learning activities to compare with. Here, we define a heuristic function called 

Match(Ci). This function is used for detect that if the course of query is in the 

comparing learning activity. Following formulas are used for computing Coverage 

Similarity.   

 



 33

Score(LA1)= 

Score(LA1)= 

 Match(Ci) = 1 if the learning activity has course i that user want. 

 user_query = total courses that user inputs. 

 Score =  
∑
∑

queryuser
CiMatch

_
)(

  

 

Example 5.1: Coverage Similarity 

 There are two learning activities below. Now a user inputs that he/she wants to 

search a learning activity that has courses: A, B, and D. We can calculate the coverage 

similarity score of each learning activity by the formula. 

  

 

 LA1 has the courses A, B, and D that exactly matched the user’s inputs, so LA1 

gets the score: 1; while LA2 only has the courses B and D, so it only gets the score: 

3
2  

 

 

1
3

111
=

++

3
2

3
11
=

+THB H D

UoL2



 34

5.2 Sequence Similarity (SS) 

In learning activity, another important part is the learning sequence. The proper 

arrangement of the courses will affect the students’ learning achievement. As Section 

3.2 illustrated, we use the CA to compute the similarity. The characteristic, transport 

closure, of CAM can present the path condition step by step while traversing the UoL 

in CA. And the depth of Meta-data in a UoL refers to the CAM’s multiplication times. 

We define each multiplication result, Mn, n = 1…Depth of Meat-data. By doing the 

“or” operation to each Mn, we will get another new matrix, CheckedMatrix (CM). 

Later we will explain how to use CM to calculate the sequence similarity. The 

calculating formula is illustrating following: 

 

Score =      , where    

 n: the number of courses that user input as sequence parameter, 

 nC2 : The combination of courses. For example, if user inputs courses in 

order: A→B→D. There are 3 combinational pairs: (A,B), (B,D), (A,D),    

 OMP: Order Matched Pattern. 

 

Example 5.2: Sequence Similarity 

 In this example, the user inputs the courses sequences he wants: “A→D→B”. 

The detail computing process will be seen in LA1. 

 

A Board
C

D

B E

UoL1
 

CMLA1= 

nC
OMP

2



























000000
110000
111000
111000
111001
111110

A Board C D B E
A

Board

C
D
B
E



 35

Score(LA1)=  



























000000
100000
010000
010000
001101
000010



























000000
100000
010000
010000
001101
000010

×



























000000
000000
100000
100000
020010
001101

×



























000000
000000
000000
000000
201101
020010

× =



























000000
000000
000000
000000
020010
201101

CAM3 CAM1

CAM4

 

∪ ∪ ∪
 

 

 By checking the CM[A][D], CM[A][B], and CM[D][B], we can count the 

sequence similarity score of LA1. 

 

 The remaining two calculations of sequence similarity are based the same 

approach. 

 

THA email B H D

UoL2  

 

 

1
3

)111(
=

++

CMLA2= 

3
2

3
)11(
=

+

= CMLA1 

Score(LA2)=  

























000000
111000
111000
111000
101100
111110

A Email B H TH D
A

Email

B
H
TH

D



 36

A
C

D

B

UoL3  

 

 

 

5.3 Path Similarity (PS)  

This part is used for detecting the learning sequence condition. It’s an extended 

request of sequence similarity. By means of the characteristics of CAMnxn, the path 

condition will be discovered. There are three path conditions that can be detected: 

“Loop”, “Condition”, and “And”. When “Loop” occurs, if the path is from Cj to Ci, 

CAMmax(i,j) x man(i,j) will be a symmetric matrix. When “Condition” occurs, if the branch 

node is Ci, CAM[Ci] will have at least two 1’s elements. If “And” occurs at the 

convergence node Ci, CAM[][Ci] will have at least two 1’s elements. The following 

example illustrates the observation.  

 

Example 5.3: Path Similarity 

 There under we show a learning activity and its CAMnxn. By examining the 

markers of CAMnxn, the path conditions reveal.  

  

 

 

  

 

 

The circle marks the condition “Loop” from CTa to CA. It is a symmetric 

3
1

Score(LA3)= 

A Ta
C

D

B E



























000000
100000
010000
010000
001101
000010
EBDCTA A

E
B
D
C
T
A

A

nxnCAM



 37

sub-matrix of A2x2. The A[TA][C] and A[TA][D] reveal that there is a conditional 

branch at CTa. While A[C][B] and A[D][B] show that there is a merge condition at CB.   

 

 Here we only concern two conditions: “Loop” and “Condition”. Because the two 

conditions are often used for remedy learning in education [5]. User’s input may like 

“CA->CB, Condition”. The score formula is as following: 

 

Score =
RMP
PMP , where  

 PMP: Path Matched Pattern, 

 RMP: Required Matched Pattern. 

 

The following two algorithms are for detecting these path conditions. 

  

Algorithm 5.1: Loop Path Detection Algorithm (LPDAlgo) 

Algorithm: Loop Path Detection Algorithm (LPDAlgo) 

Symbol Def: 

Cs : start course 

Ce : end course  

Input: Which kind of paths from Ci to Cj 

Output: The boolean value   

Step 1: Check Mn[Cs][Ce] = 1 

Step 1.1 Check index of Cs > Ce. If true, then Loop = true , else Loop = false.  

 

 

 

 



 38

Algorithm 5.2: Condition Path Detection Algorithm (CPDAlgo) 

Algorithm: Condition Path Detection Algorithm (CPDAlgo) 

Input: Which kind of paths from Ci to Cj 

Output: The boolean value   

Step 1: At Mn[Cs][Ce] = 1 

   Step 1.1 for (i=index(Ce);i< total_course;i++) 

             Check Mi[Cs][i] == 1. 

Step2: If true, then Condition = true ,else Condition = false.  

 

 

5.4 Distribution Similarity (DS) 

The Distribution here means the pre-requisite in a learning activity. Briefly 

speaking, a longer learning activity means that there are more pre-requisites than short 

one. The similarity calculation provides an optional service to users especially for the 

teachers that have fewer experiences in instructional design. This function offers users 

what should be learned that others think for reference. The following formula 

represents the score calculating mechanism.   

 Score = 
( )

))MAX(LA len(x 
  ,

i10 =
∑ CjCiPath

, where 

  

  

  

 

Concerned with the normalization, the denominator of the function is based on 

the longest learning activity at each selection interval. The length will be the base 

number 10’s exponent. Then the score will be normalized between 0~1.  

: the # of edges from Ci to Cj. Where i < j( )∑   ,CjCiPath

( ) ( )LAiMAXxlen l=

nLAiMAX =)( , n = the depth that the longest LA has



 39

Chapter 6. Applying Pedagogy Theory to 

Computable Activity  

 

 The pedagogy theory plays an important role in education. If the teacher can 

adopt suitable pedagogy theory into the appropriate learning activities, the learner 

could learn well. At present, many pedagogy theories have been proposed. In Chapter 

3, we have proposed the LAR scheme to reuse learning activities by similarity 

measurement. The scheme can be extended to support diverse similarity functions 

based on these pedagogy theories. Here, we take the famous taxonomy for 

Educational Objectives, Bloom, for example. First the similarity calculating 

mechanism is introduced, and then the extension of LAR will be described in detail. 

 

6.1 Bloom Similarity 

As we mentioned in Section 2.3, Bloom taxonomies has become an important 

assessment while designing a learning activity. The purpose of this similarity 

calculation can help teachers find a learning activity with desired courses and 

associated Bloom. In order to take Bloom into the similarity measurement of LAR, 

we first define a structure for Bloom which is called BI and then show the extension 

Computable Activity (CA) formula. 

 

Definition 6.1: BI (Bloom Indicator) 

 BI is a mapping table that records courses and their corresponding Bloom 

taxonomies. The key set is courses’ name. And each key refers to a set of Bloom 

taxonomy. The notation is as following: 

 ( Ci, <B1, B2,…, Bj> ), i = 1…m, j = 1…n.    



 40

 

Take Figure 3.2 for example. Its BI may look like the following table: 

 

Table 6.1:BI of figure3.2 

Name Mapping Bloom Category 

LA1 {AA1.1, BC2.3} 

LA2 {AA1.2} 

…… …… 

LA3 {AA1.3, C1.1, DC1.2} 

  
Therefore, the formula of CA can be extended as followings: 
 

CA = { Meta-data, unit of learning (UoL), BI }  

  

In the Bloom Similarity calculation, we encode Bloom taxonomy into four-bit 

representation, called “Bloom Pattern” (BP). As we know, A BP divides two 

dimensions and each dimension has two hierarchical levels. The former two bits stand 

for knowledge dimension (KD) and the later two bits mean cognitive processing 

dimension (CPD). No mater how precisely each dimension allocated, a BP just has the 

flex length, 4. Take following pictures for example:  

 

 

Figure 6.1: Example of BP 

 

 According to the precision level, we design two functions to give user flexibility 

while counting the Bloom Similarity. The basic function only computes the similarity 

while two BP’s prefix are the same and the reinforced function can compute the 

A B 1 2



 41

similarity between two BPs that have different prefix.  

 

 Besides the functions, we also provide the idea of important weight. For two 

dimensions, we give two important weights respectively:  ,  . User can adapt each 

weight to their need. The score of Bloom Similarity can be illustrated as following: 

 

 Score =                                       

 

6.1.1 Basic Function 

This operation held if the prefixes of two BPs are the same either in the KD or 

CPD. The following formula describes the rule while calculating the similarity 

between user’s query and the target courses’ Bloom taxonomy.  

 

( ) =iii BPqMatch ,

 
 

We can learn that in basic function, while comparing bit i, either KD or CPD, as 

long as the prefix of query and target are the same and queryi = targeti, Matchi(qi,BPi) 

is equal to 1. In order to compare two Bloom taxonomies in different hierarchical 

level, we design a heuristic strategy to calculate. For example, the similarity score 

between the set of “A” and “AB” and the set of “AA” and “AB”, the “A” will get 

score, 1.5. The empty part earns score, 0.5; while “AA” only gets score, 1. That’s 

because “A” is in higher concept, it may include the concept “AA” and “AB”. So it 

counts. But “AA” and “AB” is exclusive part under “A”. So the “B” of “AB” will get 

nothing. We can figure our function by the following example.       

 

( ) ( )jj

j

j
jii

i

i
i BPqMatchBPqMatch ,,

4

3

2

1
∑∑
=

=

=

=

+ βα

α β



 42

Example 6.1: Bloom Similarity  

The user wants to find a course named “A” corresponding to the Bloom 

taxonomy, AA1.1. Now in our candidated learning activities (CLA), there are 5 LAs 

that have the course “A”. The important weight defaults to be 0.5 respectively. Reader 

can notice that the calculation of LA4 in basic function.  

 

 

6.1.2 Reinforced function  

To enhance the precision level of calculation, reinforced function provides a 

flexibility to compute the similarity between two Bloom taxonomies that have 

difference prefixes. Here, we adopt the computing principle bases on the concept 

“distance in a tree”. First, we transform the two dimension of Bloom into a tree 

structure (Figure 6.2). 

 

A B C D

AA AB BA BB BC CA CB CC DA DB DC
 

Figure 6.2: Knowledge Dimension Tree (Up) 
  

LA1 : A1.2 

LA2 : AA2.1 

LA3 : AB1.1 

LA4 : BC1.2 

AA1.1 

Score(LA1) = 0.5x(1+0.5) + 0.5 x (1+0) = 1.25 

Score(LA2) = 0.5x(1+1) + 0.5 x (0) = 1 

Score(LA3) = 0.5x(1+0) + 0.5 x (1+1) = 1.5 

Score(LA4) = 0.  BC vs. AA 

Score(LA5) = 0.5x(1+1) + 0.5 x (1+1) = 1.5 LA5 : AA1.2 



 43

 
Figure 6.3: Cognitive Processing Dimension Tree (CPDT) 

 

We use the algorithm, “Preorder Traversal”, to compute the similarity between 

two Bloom categories with different prefix. For each node, it can get a path length 

while traversal recursively from root. Here we also face the problem that compares 

node at different level. The solution is to compute their average path. The adaptation 

formula, Match(qi, BPi), is as following: 

 

( ) =iii BPqMatch ,
lengthtotal

BPqPath
_

),(1−

lengthtotal
BPqAvgPath

_
),(1−

 

where  

 Path(q,BP) denotes the distance between two points while traversing the tree. 

The value is the distance from root to right node minus the distance from root to 

left node. 

 AvgPath(q,BP) denotes the distance is calculated by the average of shortest path 

and longest path between two Bloom taxonomies in different tree level or in the 

first level.    

 Total_Length denotes the total path length of the tree while traversing it.  

 

 

 



 44

Example 6.2: Reinforced Bloom Similarity  

The user wants to find a course named “A” corresponding to the Bloom 

taxonomy, AA1.1. Now in our candidated computable activities (CCA), there are 3 

LAs that have the course “A”. The important weight defaults to be 0.5 respectively. . 

 

 AA1.1  LA1 : BC1.2 
 150

116)
50

)28(5.0
30

)212(5.0(1 =
−

×+
−

×− Score(LA1) = 
 

 LA2 :CC2.4 
 

 Score(LA2) = 
150
87)

50
)214(5.0

30
)220(5.0(1 =

−
×+

−
×−

 

LA3 : D6  Score(LA3) = 
150
14)

50

2
2

)4844(

5.0
30

2
2

)3228(

5.0(1 =
−

+

×+
−

+

×−

 

 From these three examples, the longer path from AA1.1 will get the fewer scores.  

 

 

 

6.1.3 The Extension of LAR 

We have extended the formula of CA and explained how to compute the 

similarity of Bloom taxonomy above. Corresponding to the extension, the scheme is 

extended as shown in Figure 6.4. In this figure, the Bloom similarity function has 

been imported into the Phase 2. It is calculated before the Structure Similarity 

function. Along with the Bloom similarity, the components: Query Vector and Rules 

Definition of Similarity Selection and schema of the information description file, have 

to be extended to support the function. They will be described in Figure 6.4.    

 



 45

User Inputs

Structure Similarity

Computable
Activity 

Repository

List of learning activity with high similarity 
similarity measure > threshold

Candidated
CA

Selection

UoL parser

Bloom
Similarity

 &Refinement

LD compliant learning activity (left) 
& its associated description file (right)

Rules Definition 
of Similarity 

Selection
(DRAMA)

Similarity measurement
Rulebase

Domain expert

User query

Selection

Pedagogy Similarity

  <Pedagogy/>
    <Bloom/>

                        <learning activity/>
              <taxonomy/>

(CN, its taxonomy)

More facts:
Bloom, P_Bloom, BB, RB

Rules: 
R1: If Bloom & P_Bloom, then BB
R2: If Bloom & !P_Bloom, then RB
R3: If Structure, then CS
R4: If CS, then SS
R5: If CS & SS, then PS
R6: If CS, then DS

 

Figure 6.4: The Extended Scheme of LAR 

 

As we mentioned in the previous page, the Query Vector and Similarity 

Measurement Rule Base are also extended to support the pedagogy theory. Their 

definitions are illustrated as follows.   

 

Definition 6.2: The Extended Query Vector (QV’)  

Extended Query vector (qv’) = <Mata-data, UoL_paremeters’ > 

 Mata-data   

 UoL_paremeters = {CN, BI, CS, CP, PreR }, where 

－ BI(Bloom Indicator): it represents the corresponding Bloom taxonomies of a 

CN. The definition is illustrated in Definition 6.1,  

－ Others paremeters are the same with Section 3.2. 

 

 We have described the extended qv’ of LAR above. It stands to reason that if we 

want to calculate the Bloom similarity, the rules in Rules Definition of Similarity 



 46

Selection (RDSS) must expand to support this function. The following rules explained 

the extended RDSS.  

 

Rule base = {MainRC’ }           

MainRC’ contains:  

 Facts: Structure, Bloom, P_Bloom, BB, RB, CS, SS, PS, DS (boolean) 

Rules:  

R1: If Bloom & P_Bloom, then BB 

 R2: If Bloom & !P_Bloom, then RB 

 R3: If Structure, then CS 

R4: If CS, then SS 

 R5: If CS & SS, then PS 

 R6: If CS, then DS 

 

 These rules demonstrate the relationship between each similarity function. The 

Bloom function is divided into two precision levels according to the prefix. The 

default weight has changed a little. Here the default weight of Bloom function is 0.5 

and the Structure function is the same. Unlike the Section 4.3, the weight of Coverage 

Similarity, Sequence Similarity, Path Similarity, and Distribution Similarity are 

summed up to 0.5. That’s because these functions are derived from Structure 

Similarity function. Thus, LAR provides flexibility and scalability for designers to 

enhance the similarity functions they need.      

 

 

 



 47

6.2 Other pedagogy approaches 

In the previous section, we adopt the famous taxonomy for learning objective, 

Bloom, into the scheme, LAR. There are still many pedagogy theories that can be 

modeled into the LAR. For example, we can define some learning patterns and 

transform them into the similarity functions, such as Problem-based learning, 

Inquiry-based learning, and so on. Although the LAR we proposed in this thesis 

haven’t concern the similarity calculation of these pedagogy theory, it is full of 

flexibility to achieve this goal. Besides, LAR can be used for recommending any 

learning activities based on different standard that can be modeled as learning flow.   



 48

Chapter 7. System Implementation 

For evaluating the performance of LAR, in the chapter, the experiment by 

synthetic computable activity matrix has been done. All the experiments are running 

on Intel P4 2.8 GHz processor with 512 MB DDR RAM, executed in the Windows 

2000 Server operating system, and developed in the IDE, Eclipse, with jdk1.4.2_08 

version.   

 

7.1 Transformation Example of UoLParser 

In this section, we demenstrate a transformation from a learning design unit to 

the Computable Activity Matrix (CAM). The following learning design unit contains 

four content learning acitivities and a test learning acitivity. The original file is 

illustrated as following: 

     

<?xml version="1.0"?> 

<!--Edited with XMLSPY Home Edition Version 2005 by Owen ONeill, Open University of the 

Netherlands--> 

<manifest xmlns="http://www.imsglobal.org/xsd/imscp_v1p1" 

xmlns:imsld="http://www.imsglobal.org/xsd/imsld_v1p0" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://www.imsglobal.org/xsd/imscp_v1p1 

http://www.imsglobal.org/xsd/imscp_v1p1p3.xsd http://www.imsglobal.org/xsd/imsld_v1p0  

http://www.imsglobal.org/xsd/IMS_LD_Level_B.xsd" identifier="learningactivity-example"> 

<metadata> 

<schema>IMS Metadata</schema> 

<schemaversion>1.2</schemaversion> 

</metadata> 

<organizations> 

<imsld:learning-design identifier="Course-learningactivity" level="B" 

uri="http://ou.nl/examplelearningactivity"> 



 49

<imsld:title>Learning Activity Example With Conditions</imsld:title> 

<imsld:components> 

<imsld:roles> 

<imsld:learner identifier="Learner"> 

<imsld:title>Learner role</imsld:title> 

</imsld:learner> 

</imsld:roles> 

<imsld:properties> 

<imsld:locpers-property identifier="P-availability-examples"> 

<imsld:datatype datatype="boolean"/> 

<imsld:initial-value>false</imsld:initial-value> 

</imsld:locpers-property> 

</imsld:properties> 

 

<imsld:activities> 

<imsld:learning-activity identifier=”computer introduction”> 

  <activity-description> 

    <item identifierref=”RES-computer-introduction” identifier=”I-computer-introduction”> 

  </activity-description> 

</imsld:learning-activity> 

<imsld:learning-activity identifier=”software introduction”> 

  <activity-description> 

    <item identifierref=”RES-software-introduction” identifier=”I-software-introduction”> 

  </activity-description> 

</imsld:learning-activity> 

<imsld:learning-activity identifier=”hardware introduction”> 

  <activity-description> 

    <item identifierref=”RES- hardware -introduction” identifier=”I- hardware -introduction”> 

  </activity-description> 

</imsld:learning-activity> 

<imsld:learning-activity identifier="Preparation"> 

<imsld:title>Optional Extra Help</imsld:title> 

<imsld:activity-description> 

<imsld:item identifierref="R-Preparation" identifier="I-preparation"/> 

</imsld:activity-description> 

<imsld:complete-activity> 

<imsld:user-choice/> 

</imsld:complete-activity> 



 50

<imsld:on-completion> 

<imsld:change-property-value> 

<imsld:property-ref ref="P-availability-examples" /> 

<imsld:property-value>true</imsld:property-value> 

</imsld:change-property-value> 

</imsld:on-completion> 

</imsld:learning-activity> 

 

<imsld:learning-activity identifier="Assignment-1"> 

<imsld:title>Assignment - Answer these questions</imsld:title> 

<imsld:environment-ref ref="E-study-resources" /> 

<imsld:activity-description> 

<imsld:item identifierref="R-Assignment-1" identifier="I-assignment-1"/> 

</imsld:activity-description> 

<imsld:complete-activity> 

<imsld:user-choice/> 

</imsld:complete-activity> 

</imsld:learning-activity> 

   

<imsld:activity-structure identifier="AS-introduction" structure-type="sequence"> 

<imsld:title>Introduction</imsld:title> 

<imsld:learning-activity-ref ref="computer introduction"/> 

</imsld:activity-structure> 

<imsld:activity-structure identifier="AS-subject-introduction" structure-type="select" 

number-to-select=”1”> 

<imsld:title/> 

<imsld:learning-activity-ref ref="software introduction"/> 

<imsld:learning-activity-ref ref="hardware introduction"/> 

</imsld:activity-structure> 

<imsld:activity-structure identifier="AS-test" structure-type="selection" number-to-select="2"> 

<imsld:title>Learning Activities</imsld:title> 

<imsld:learning-activity-ref ref="Preparation"/> 

<imsld:learning-activity-ref ref="Assignment-1"/> 

</imsld:activity-structure> 

<imsld:activity-structure identifier="AS-learningactivity" structure-type="sequence" > 

<imsld:title>Learning Activities</imsld:title> 

<imsld:learning-structure-ref ref=" AS-introduction "/> 

<imsld:learning-structure-ref ref=" AS-subject-introduction "/> 



 51

<imsld:learning-activity-ref ref="Preparation"/> 

<imsld:learning-activity-ref ref="Assignment-1"/> 

</imsld:activity-structure> 

</imsld:activities> 

 

<imsld:environments> 

<imsld:environment identifier="E-study-resources"> 

<imsld:title>Study resources</imsld:title> 

<imsld:learning-object identifier="LO-article"> 

<imsld:item identifierref="R-article" identifier="I-article"/> 

</imsld:learning-object> 

</imsld:environment> 

</imsld:environments> 

 

</imsld:components> 

 

<imsld:method> 

<imsld:play> 

<imsld:title>learning LD activity</imsld:title> 

<imsld:act> 

<imsld:title>Learning about Learning Design</imsld:title> 

<imsld:role-part> 

<imsld:title>Role part learner</imsld:title> 

<imsld:role-ref ref="Learner"/> 

<imsld:activity-structure-ref ref="AS-learningactivity"/> 

</imsld:role-part> 

</imsld:act> 

</imsld:play> 

<imsld:conditions> 

<imsld:if> 

<imsld:is> 

<imsld:property-ref ref="P-availability-examples"/> 

<imsld:property-value>true</imsld:property-value> 

</imsld:is> 

</imsld:if> 

<imsld:then> 

<imsld:show> 

<imsld:class class="P-availability-examples" /> 



 52

</imsld:show> 

</imsld:then> 

<imsld:else> 

<imsld:hide> 

<imsld:class class="P-availability-examples" /> 

</imsld:hide> 

</imsld:else> 

</imsld:conditions> 

</imsld:method> 

</imsld:learning-design> 

</organizations> 

 

<resources> 

<resource identifier="R-computer-introduction" type="imsldcontent" href="index.xml"> 

<file href="index.xml"/> 

</resource> 

<resource identifier="R-software-introduction" type="imsldcontent" href="software_intro.xml"> 

<file href=" software_intro.xml"/> 

</resource> 

<resource identifier="R-hardware-introduction" type="imsldcontent" href="hardware_intro.xml"> 

<file href=" hardware_intro.xml"/> 

</resource> 

<resource identifier="R-article" type="imsldcontent" href="article.xml"> 

<file href="article.xml"/> 

</resource> 

<resource identifier="R-Preparation" type="webcontent" href="preparation.html"> 

<file href="preparation.html"/> 

</resource> 

<resource identifier="R-Assignment-1" type="webcontent" href="assignment1.html"> 

<file href="assignment1.html"/> 

</resource> 

</resources> 

</manifest> 

 

After the processing of UoLParser, the CAM is shown as following figure: 



 53

 
Figure 7.1: The result of UoLParser 

 

7.2 Synthetic Computable Activity Matrix and Experiment 

Results 

We use synthetic computable matrix to evaluate the precision of our proposed 

Learning Activity Recommendation (LAR) scheme. All synthetic computable 

matrixes are generated by the following principles: 1) No continuous learning activity 

for testing or service learning activity. 2) Two learning activities have no connection if 

they are split from the same learning activity. 3) Only learning activity for testing or 

service learning activity can loop backward to another learning activity. 4) Each 

learning activity has to be passed. We design an authoring tool that generates the test 

data. The generating mechanism is based on combining the CAM of each template. 

There are three templates in the template pool: linear, condition, and loop. The name 

of each learning activity is generated randomly. The following figure illustrates the 

template flow and its corresponding CAM. The template can be extended as need. 



 54

LA3LA1 LA2 LAn 

















0000
1000
0100
0010

LA3

LA1

LA2

LA4



















0000
1000
1000
0110

LA3LA1 LA2 LAn



















0010
1000
0100
0010

Linear

Condition

Loop
 

Figure 7.2: The templates of learning flow and its corresponding CAM 

 

By combining these templates, we can generate the synthetic CAMs. The result 

is shown as follows: 

 

Figure 7.3: The screenshot of the synthetic CAM 

 



 55

In LAR Scheme, the most important part is the similarity measuring mechanism. 

We’ll use these synthetic computable matrixes that generated by the tool to verify the 

structure similarity functions that we analyze in the thesis. The experiment generates 

500 synthetic computable matrixes randomly. In this experiment, we input 5 different 

queries. Then we will verify the result of each query to examine the functionality of 

LAR.      

 

 The following figure depicts the result of the experiment. The top of the figure 

represents the user’s input parameters. After the similarity measurement, the results 

are listed in the order of scores from high to low. The CAM1 gets the highest score, 

because it exactly matches the user’s query.  

       

Figure 7.4: The screenshot of experiment result 



 56

 The experiment result shows that our approach is workable and beneficial. By 

these four similarity functions, we can retrieve a desired learning activity efficiently. 

Another experiment is focused on the satisfaction of users. In the experimental 

scenario, we invite 10 persons that include the roles of teachers and students to use the 

simulator. We offer the testers two environmental scenarios: 1) Retrieve learning 

activities only by course names (GradeA). 2) Retrieve learning activities based on 

LAR approach (GradeB). The testers can score from points 0~10 for each scenario. 

The result shows in Figure 7.4.       

Satisfaction

0

5

10

1 2 3 4 5 6 7 8 9 10
Person

G
r
a
d
e

GradeA

GradeB

 

Figure 7.5: The result of satisfaction 

 
 

7.3 System Interfaces 

 We use the editor of DRAMA to edit the rule in LAR which is shown in Figure 

7.5. The rules’ prototype is described in Section 4.3.  



 57

 
Figure 7.6: Editing rules of LAR with DRAMA Editor 

 

The input scenario is controlled by Rules Definition of Similarity Selection. In 

the following figures, Figure7.6 illustrates the first inferring process: when user inputs 

the desired courses, the rule1 will be triggered. Then the user is required to input the 

information of course sequence and the needness of course distribution. And in next 

inferring process, the user is asked to input the courses’ path condition. After the user 

inputs their parameters, LAR will calculate the similarity functions and then display 

the results to the user. In Figure 7.7, the inference process and the result of LAR are 

shown. 



 58

 
Figure 7.7: The first inferencing interactive process 

If the user inputs paremeters 
of course information, the 
rule1, rule3 will be triggerd. 

Then the corresponding 
page is shown. 



 59

 
Figure 7.8: The inference process and the result of LAR 

 

Then we use the project mentioned in Section 2.2.3, RELOAD, to edit the 

learning activity LAR recommended. After the user refines the learning activity they 

choose from the recommendation list, the user has to upload the learning activity 

content package to the CopperCore Server. And then the simulation of the learning 

Then the rule2 is 
triggered. So the 
correponding page is 
shown. 

The results are ranked by 
their similarity scores 
decreasingly. 



 60

activity compliant with LD is done by CopperCore. The following figures show the 

interfaces.   

 

 

Figure 7.9: The editing process with RELOAD 

 
Figure 7.10: Upload page of CopperCore 



 61

 
Figure 7.11: The Simulation on CopperCore 



 62

Chapter 8. Conclusion  

Due to the growth of e-learning Standards, more and more institutes are 

developing the related tools, such as authoring tools and learning management 

systems. As many learning activity compliant with LD are generated, how to retrieve 

and how to reuse them will be critical issues. Thus, in this thesis, we propose a 

reusing learning activity mechanism, called Learning Activity Recommendation 

(LAR) Scheme, to achieve the purposes that search efficiently and reuse the LD 

compliant learning activities. According to the multiple similarity calculations, LAR 

can help users to find the learning activity they desired. In the framework, we also 

adopt the expert system shell, DRAMA, to handle the interactive input interface and 

the generation of the similarity equation. In summary, LAR is full of flexibility and 

scalability to simplify the process of editing learning activity compliant with LD. We 

also adopt the pedagogy theory, Bloom, to extend the framework of LAR. The 

experimental results are also shown to verify the similarity functionality.       

 

In the near future, we will improve the data representation of Computable 

Activity (CA) for enhancing its scalability, such as to calculate the multi-role scenario 

of Learning Design. Then, the similarity functions will be extended to support more 

pedagogy theory, and we’ll develop a LAR system. Besides, LAR can adopt the retain 

mechanism of CBR. Therefore, the LAR can recommend more adaptive learning 

activities to users.      



 63

References 

[1] Alliance for Remote Instructional and Authoring and Distribution Networks for 

Europe (ARIADNE) 2004, ARIADNE: Foundation for The European 

Knowledge Pool. http://www.ariadne-eu.org 

[2] AUTC (2002). AUTC conference: Reusable Learning Designs: opportunities and 

challenges. University of Technology, Sydney, December 2002. [Online] 

http://www.iml.uts.edu.au/autc/ [30th July 2003] 

[3] Anderson, W., Sosniak, L. A. (Eds) (1994). “Bloom’s taxonomy: A forty-year 

retrospective”. Chicago, IL: The National Society for the Study of Education. 

[4] Anderson, W., Krathwohl, D. R. (Eds) (2001). “A taxonomy for learning, 

teaching, and assessing: A revision of Bloom’s educational objectives”. New 

York, NY: Longman. 

[5] BMC Remedy Service Management 

http://www.remedy.com/solutions/services/education/lpc.htm 

[6] CETIS (2003a). Pedagogy Forum. [Online] 

http://www.cetis.ac.uk/members/pedagogy/ [30th July 2003] 

[7] CETIS (2003b). RELOAD: Reusable E-Learning Object Authoring and Delivery. 

[Online] http://www.cetis.ac.uk/members/x4l/articles/reload [30th July 2003] 

[8] CopperCore, http://coppercore.org/ 

[9] Design, Standards, and Reusability, 

http://www.downes.ca/cgi-bin/website/view.cgi?dbs=Article&key=1059622263 

[10] Downes, S. (2003). Design, Standards and Reusability. [Online] 

http://www.downes.ca/cgibin/website/view.cgi?dbs=Article&key=1059622263 

[30th July 2003] 

[11] Griffiths, D. (2003). SCOPE: Structuring Content for Online Publishing 



 64

Environments. [Online] http://www.tecn.upf.es/scope/ [30th July 2003] 

[12] Harper, B. & Oliver, R. (2002). Reusable Learning Designs: information and 

communication technologies and their role in flexible learning. Presentation for 

the “AUTC Reusable Learning Designs: opportunities and challenges” 

Conference, UTS, Sydney, December 2002. [Online], 

http://www.learningdesigns.uow.edu.au/ Publications/AUTCICTProject.ppt 

[30th July 2003] 

[13] LOM Standard, http://ltsc.ieee.org/wg12/20020612-Final-LOM-Draft.html 

[14] Laurillard, D. (2002). Design Tools for E-learning. Keynote presentation for 

ASCILITE2002.[Online], 

http://www.unitec.co.nz/ascilite/proceedings/papers/key_laurillard.pdf [30th July 

2003] 

[15] Lin, Y.T., Tseng, S.S., Tsai, C.F. (2003), “Design and implementation of new 

object-oriented rule base management system”, Expert Systems with 

Applications, vol. 25, pp. 369-385, 2003. 

[16] Learning Design Issuse: Learning Object, JISC. 

http://www.jiscinfonet.ac.uk/InfoKits/effective-use-of-VLEs/designing-for-sustai

nability/designing-issues-learning-objects 

[17] Learning Design and reuseability, Wilbert Kraan, CETIS staff (2003). 

http://www.cetis.ac.uk/content/20030902133812 

[18] IEEE Learning Technology Standards Committee (LTSC) 2004, IEEE LTSC | 

WG12, http://ltsc.ieee.org/wg12/ 

[19] IMS (Instructional Management System), http://www.imsproject.org/ 

[20] IMS Learning Design Information Model Version1.0 Final Specification 

[21] Jones, E.R. (2004), Dr. Ed’s SCORM Course, 

http://www.scormcourse.jcasolutions.com/index.php 



 65

[22] Kraan, W. (2002). DfES' e-learning guru: Learning Design is the way ahead. 

[Online] http://www.cetis.ac.uk/content/20020930092048 [30th July 2003] 

[23] Koper, R. (2001). From change to renewal: Educational technology foundations 

of electronic environments. EML website. [Online]. Available: 

http://www.eml.ou.nl/ [30th April 2001] 

[24] Karampiperis, P. Sampson, D. (2004), “A Flexible Authoring Tool Supporting 

Learning Activities”. In Prc. Of LADIS Internation Conference on cognition and 

Exploratory Learning in Digital Age. 

[25] Oliver, R., Harper, B., Hedberg, J., Wills, S., Agostinho, S. (2002) “Exploring 

strategies to formalise the description of learning designs”. J. Herrington (Eds.) 

Proceedings of HERDSA. Joondalup: Edith Cowan University, 2002. 

[26] RELOAD, http://www.reload.ac.uk/ 

[27] SCORM (Sharable Content Object Reference Model), 

http://www.aslnet/orgScorm/scorm.cfm 

[28] Sequencing and Navigation (SN) 2004, ‘Sharable Content Object Reference 

Model (SCORM) Sequencing and Navigation (SN) Version 1.3’, Advanced 

Distributed Learning. 

http://www.adlnet.org/index.cfm?fuseaction=DownFile&libid=648&bc=false 

[29] Tattersall, C. (2003). EML and IMS Learning Design. Presentation for the 

Valkenburg Group,Vancouver, February 2003. 

[30] Taxonomy of educational objectives: The classification of educational goals, 

Handbook Ⅰ: Cognitive domain. New York, NY: Longman, Green. 

[31] Valkenburg Group (2003). Valkenburg Group. [Online], 

http://www.valkenburggroup.nl/ [30th July 2003] 

 



 66

Appendix A 

 
<?xml version="1.0" encoding="UTF-8"?> 
<xsd:schema xmlns:xsd=http://www.w3.org/2005/XMLSchema 

targetNamespace=http://e-learning.nctu.edu.tw 
xmlns=”http://e-learning.nctu.edu.tw/XMLSchema 
elementFromDefault=”qualified”> 
 

<xsd:element name=”extension_LD”> 
 <xsd:compexType content=”elementOnly”> 
  <xsd:sequence> 
   <xsd:element name=” learning_target_info” type=”LTI”/> 

    <xsd:element name=” pedagogy_involved” type=”Pedagogy”> 
  </xsd:sequence>  

</xsd:compexType> 
 </xsd:element> 
 <xsd:complexType name=”LTI” content=”elementOnly”> 
  <xsd:sequence> 
   <xsd:element name=” suitable-learning-target” type=”string”/> 

</xsd:sequence> 
</xsd:compexType> 

 <xsd:complexType name=” Pedagogy” content=”elementOnly”> 
  <xsd:sequence> 
   <xsd:element name=” Bloom” type=”BloomType”/> 

</xsd:sequence> 
</xsd:compexType> 
<xsd:complexType name=” BloomType” > 

  <xsd:sequence> 
   <xsd:element name=” learning activity” type=”string”/> 
   < xsd:element name=” Taxonomy” type=”string”/> 

</xsd:sequence> 
</xsd:compexType> 

</xsd:schema> 


