
國 立 交 通 大 學

電 機 資 訊 學 院

資 訊 科 學 系

碩 士 論 文

低 負 荷 虛 擬 機 器 內 部 通 訊
Lightweight Inter-Virtual -Machine

Communicat ion

指導教授：張瑞川 教授

中華民國九十四年六月

 研 究 生 ： 張 明 絜

低 負 荷 虛 擬 機 器 內 部 通 訊

Lightweight Inter-Virtual-Machine Communication

研 究 生：張明絜 Student：Ming-Chieh Chang

指導教授：張瑞川 Advisor：Ruei-Chuan Chang

國 立 交 通 大 學
資 訊 科 學系
碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 i

低負荷虛擬機器內部通訊

研究生： 張明絜 指導教授： 張瑞川 教授

國 立 交 通 大 學 資 訊 科 學 研 究 所

摘 要

複雜的應用與伺服器系統一般會利用 multi-tier 搭配 machine redundancy 來達到 load

balance 與提升系統的 reliability。這不但會造成硬體成本的提高，系統管理的困難，也

會使得 CPU 使用率大幅降低。除此之外，也因各系統均需要相互通訊，而使得內部與

外部的通訊大量提升。虛擬機器技術提供了一個方式來降低機器數量與提升 CPU 使用

率。此外，它也提供了降低內部通訊負載量的機會。

一般而言，這些內部的通訊還是利用傳統的網路通訊協定來達成。然而，有許多虛

擬機器實際上是處於同一個實體機器上。根據這一點，我們可以利用簡易的通訊協定來

提升通訊的速度。

在此論文中，我們利用同一個實體機器的特性，設計了 fast Inter Virtual-machine

Communication (fast-IVC)的機制。該機制會在建立 TCP/IP 連線時，主動判斷收發端是

否處於同一台實體機器上。若是，則改用較簡單的通訊協定來取代原本 TCP/IP 通訊協

定。根據實驗，利用 fast-IVC 傳遞資料可以提升 50%到 150％的效能。

 ii

Lightweight Inter-Virtual Machine Communication
Student: Ming-Chieh Chang Advisor: Dr. Ruei-Chuan Chang

Department of Computer and Information Science

National Chiao Tung University

Abstract

Complex applications or Internet services are usually constructed by multiple tiers and

machine to improve reliability. However, it not only requires high hardware cost and

expensive management overhead but also incurs both inter and intra machine communication

overhead. Moreover, the CPU utilization of each machine is usually low since many services

are I/O-bound and each machine performs a less-complicated function in the multiple-tier

architecture.

The virtual machine technology was proposed for consolidating the machines and

improving the CPU utilization. In addition, it also provides an opportunity to reduce the

overhead of the inter-machine communication.

Generally, machines communicate with each other via network protocols. However,

virtual machines reside on the same physical host, making it possible to improve the

performance of the communication among them.

In this thesis, we propose a mechanism called fast Inter Virtual-machine Communication

(fast-IVC), which transparently turns the TCP/IP based network communication between two

virtual machines on the same physical host into shared memory based communication.

Fast-IVC will detect whether the communication endpoints reside on the same physical

machine. If they are, the complex TCP/IP stack will be skipped transparently and the

communication performance will be improved.

 iii

We implement the fast-IVC on Xen. According to the performance results, the

performance improvement ranges from 50% to 150%.

 iv

Acknowledgements

I am so grateful to have much guidance from my advisor Professor R. C. Chang. He

taught me the essential of research, guided me the way of thinking. I also very appreciate Dr.

Da-Wei Chang. He advised me so that I can finish my thesis.

Besides, thanks to each member of the computer system laboratory for their

encouragement and kindly help. I would like to thank my parents for their unlimited love.

Finally, I thank all friends for all the joyous things that inspire my life.

Ming-Chieh Chang

Department of Computer and Information Science

National Chiao Tung University

2005/6

 v

TABLE OF CONTENTS

摘 要 ...i
Abstract...ii
Acknowledgements ...iv
LIST OF FIGURES...vi
LIST OF TABLES...vi
CHAPTER1 INTRODUCTION...1

1.1 Motivation ..1
1.2 Thesis Organization ..3

CHAPTER2 RELATED WORK ..4
2.1 Remote Procedure Call Optimizations ...4
2.2 Virtualization Technology ..5
2.3 Optimizations on Local Inter-Virtual Machine Communication..................................7

CHAPTER3 DESIGN AND IMPLEMENTATION...8
3.1 Design Goal ..8
3.2 System Design ..9

3.2.1 Tunnel Manager...10
3.2.2 Protocol Monitor ... 11
3.2.3 Tunnel Protocol ... 11
3.2.4 Event Manager...12

3.3 Discussions ...13
3.4 Implementation...14

3.4.1 Platform ...14
3.4.2 Socket Operation Interception...14
3.4.3 IP-to-Domain Mappings..15
3.4.4 Tunnel Creation and Release ...15
3.4.5 Tunnel Protocol ...18
3.4.6 Event Manager...20

CHAPTER4 PERFORMANCE EVALUATION ...22
4.1 Experiment Environment..22
4.2 Maximize Throughput when Data in the Memory ...22
4.3 Maximize Throughput when Data in the Disk ...25
4.4 Throughput when the Different Channel Sizes ..27

CHAPTER5 CONCLUSION AND FUTURE WORK ..28
5.1 Conclusion..28
5.2 Future Work ..28

REFERENCE ...29

 vi

LIST OF FIGURES

Figure 1 A 3-Tier Architecture..1
Figure 2 A Typical Virtual Machine Architecture...6
Figure 3 Comparison of the Original Protocol Processing and fast-IVC...................................9
Figure 4 The Architecture of Fast-IVC...10
Figure 5 KEEPALIVE message..13
Figure 6 changing of ops filed..15
Figure 7 Message Sequence Chart for a Successful Tunnel Creation16
Figure 8 Message Sequence Chart for a Failed Tunnel Creation ...17
Figure 9 Tunnel Structure ...18
Figure 10 Max throughput and its performance improvement when data in the memory24
Figure 11 Max throughput and its performance improvement when data in the disk..............26
Figure 12 Throughput when different channel size... ...27

LIST OF TABLES
Table 1 Events Supported by the Event Manager...13

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Complex applications or Internet services are usually composed of multiple tiers. For

example, a web service can be organized as three tiers: web server, application server, and

data storage server. In order to improve the system reliability, machine redundancy can be

usually used in each tier. Figure 1 shows a typical architecture of a three-tier web service. In

this architecture, inter-tier traffic (e.g., request/response messages) can be large.

Figure 1 A 3-Tier Architecture

Some fault tolerant techniques based on machine redundancy, such as process pair [9],

can results in large intra-tier traffic (e.g., state checkpointing/syncronization). The process

 2

pair technique requires a (primary) server to synchronize its state with the backup server so

that the backup can take over the job when the primary fails.

In addition to the inter-tier and intra-tier traffic, implementing a reliable service based on

multiple machines also requires both high hardware cost and expensive management overhead.

Moreover, the CPU utilization of each machine is usually low since many services are

I/O-bound and each machine performs a less-complicated function in the multiple-tier

architecture. Therefore, some companies consolidate the machines and improve the CPU

utilization by using the virtual machine technology [34].

Virtual machine technology, which was introduced by IBM in 1960 [4][5][6][16][30],

can provide many virtual machines, which are isolated with each other, on top of the a single

hardware machine. Thus, a multi-tier service based on virtual machine technology results in

less hardware and management cost and more effective CPU utilization.

In addition to the benefits mentioned above, the virtual machine technology also

provides an opportunity to reduce the overhead of the inter-machine communication.

Generally, machines communicate with each other via network protocols such as TCP/IP.

However, domains1 reside on the same physical host, making it possible to improve the

performance of the communication among them. Specifically, the complex TCP mechanisms

such as packet re-ordering, packet retransmission, RTT measurement, checksum, and etc.,

which are useful for Internet communication, can totally be skipped since the communication

endpoints reside on the same physical machine. In this thesis, we propose a mechanism called

fast Inter Virtual-machine Communication (fast-IVC), which transparently turns the TCP/IP

based network communication between two virtual machines on the same physical host into

shared memory based communication. Fast-IVC will detect whether or not the

communication endpoints reside on the same physical machine. If they are, the complex

1 A domain is a virtual environment in the virtual machine, and we will describe the details in Section 2.2

 3

TCP/IP stack will be skipped transparently and the communication performance will be

improved.

Several approaches have already been proposed to improve the performance of such inter

virtual machine communication [10][11][20][27]. Most of them only reduce the overhead of

the data link layer instead of the whole protocol stacks [20][27]. However, according to

previous study [7], TCP/IP processing which can not be improved or skipped by these efforts

dominates the network communication overhead. Inter-User Communication Vehicle (IUCV)

[10][11], which was proposed by IBM do skip the protocol processing overhead. However, it

is not application transparent. That is, service applications should be modified to obtain the

performance improvement. The contribution of the thesis is that we propose a mechanism that

can automatically detect whether or not the communication endpoints are in the same host and

transparently skip the whole network protocol processing.

 We implement the fast-IVC on an open source virtual machine monitor, Xen [1].

According to the performance results, the performance improvement of fast-IVC ranges from

50% and 150%.

1.2 Thesis Organization

The rest of the thesis is organized as follows. We describe the related works in Chapter 2.

In Chapter 3, we describe the design and implementation of the fast-IVC. Next, we show the

performance results in the Chapter 4. Finally, we give conclusions and future work in Chapter

5.

 4

CHAPTER 2

RELATED WORK

The related work can be classified into three categories: remote procedure call

optimizations, virtualization technology, and optimizations on inter-virtual machine

communication. We will describe these efforts in the rest of this chapter.

2.1 Remote Procedure Call Optimizations

Remote Procedure Call (RPC) was introduced by Birell and Nelson [3]. It allows the

caller and callee to be distributed over heterogeneous systems. When the caller invokes a

procedure on a remote callee, the stub programs on both the caller and the callee hosts are

responsible for marshalling/un-marshalling the arguments and return values, and

sending/receiving the marshalled data through the network.

Two kinds of techniques were proposed to optimize RPC in a physical machine: shared

memory [2][12][22] and scheduling path changing [13].

There are four copy operations for each cross-domain RPC request (two on call, two on

return). In order to reduce the overhead, DASH system [22], light weight procedure call [2]

(LRPC) and Peregrine [12] eliminate unnecessary copying by sharing data between the kernel

and user domains.

Mach [13] uses the hand-off scheduling, which schedule the CPU context from the

sender thread to the receiver thread directly if the two threads are in the same domain. This

results in better performance since the arguments can be placed in the registers.

 5

2.2 Virtualization Technology

The virtualization technology is an important technology for improving server

availability and consolidating servers. It has been researched and improved for nearly thirty

years [5][16]. Basically, the techniques can be classified into three categories: single

operating system image, fully-virtualized virtual machine, and para-virtualized virtual

machine.

Ensim[31], Vservers[35], CKRM[17] and Jails[14] are based on Single Operating

System Image (SSI) technique. These systems delegate untrusted or less-trusted parties to

manage a part of the system. ,e.g. two different web sites which are maintained by different

parties, by allowing some (but not all) administrative functions. To provide isolation, the

systems group user processes into resource containers so that a user process can not access

resources outside the resource container. The drawback of this technique is that it does not

perform well in fault isolation. For example, a kernel crash will cause all services on top of it

become unavailable. Therefore, it is not suitable for a system with high reliability

requirement.

Virtual machine technology, which was introduced by IBM in 1960 [4][5][6][16][30],

was defined by IBM as “a fully protected and isolated copy of the underlying physical

machine’s hardware”. It is designed for a company to isolate the environment of each user, so

that users can not interfere with each other.

Figure 2 shows the typical architecture of a virtual machine [19]. The Virtual Machine

Monitor (VMM), which is used to virtualize or extend the underlying hardware, is a middle

layer between the guests and the host. A domain (or, a virtual machine) is a virtual

environment in the guest, and hardware access from a domain will trap into the VMM. The

host layer can be a bare machine or a host OS, both of them are used currently (e.g., VMware

GSX and VMware ESX [34]). The operating system of a domain is called a guest operating

 6

system. Note that many domains can run concurrency on a VMM.

Figure 2 A Typical Virtual Machine Architecture

Traditional virtual machines [4][5][33][34] fully virtualize the underlying hardware so

that any programs, including operating systems, can run on top of these virtual machines

without modifications. However, some processor architectures such as x86 do not support

virtualization very well [15][18], and hence fully virtualize these processors is not easy and

requires high performance overhead.

To reduce the performance overhead, para-virtualization was proposed [24][26][25],

which requires cooperation (i.e., some modifications) of the guest operating systems. In other

word, these guest operating systems know that they work on the virtual machine. Our system,

fast-IVC, is based on the para-virtualization VMM. A pair of sockets communicates with each

other via a simple and shared-memory based protocol when the VMM detects that the ends of

sockets are both on the top of the VMM.

Virtual Machine Monitor (VMM)

Host

Domain 0 (VM 0)

Application 1

Guest

Operating System

Application n

Guest

Domain X (VM X)

Application 1

Guest

Operating System

Application n

 7

2.3 Optimizations on Local Inter-Virtual Machine Communi

 -cation

Local inter-virtual machine communication (local IVC) is defined as the communication

between different domains on the same VMM. Under this situation, the communication

environment is much simper than the real network (i.e., no packet loss, no packet reordering,

etc.) and thus performance improvement is possible by simplifying the protocol processing

job.

IBM proposed Hipersocket [27][28][29], which is used to construct virtual LAN in

z/VM [36], a virtual machine system for the IBM zSeries servers. It eliminates the MAC

header and CRC processing, and directly copies data from the source data queue to the

destination data queue. Sun also introduced a virtual LAN technique called InterDomain

Networks (IDN) [20] on its StarFire Enterprise 10000 servers in the late 1990s. It allows

domains to connect by using shared memory regions, which eliminates the memory copying

of the Hipersocket. The main drawback of these techniques is that they only reduce the

overhead of the data link layer, which is quite small in the whole TCP protocol stack [7].

IBM also proposed a technique called Inter-User Communication Vehicle (IUCV)

[10][11], which provides a socket interface for communication between guest operating

systems. It does simplify the protocol stacks. However, it is not application transparent.

Specifically, the application should explicitly use the IUCV connections.

In summary, IUCV is not transparent to users while the others do not elimiate the

overhead of the TCP/IP protocol processing. By contrast, fast IVC can eliminate the TCP/IP

network protocol processing in a transparent way.

 8

CHAPTER 3

DESIGN AND IMPLEMENTATION

In this chapter, we describe the design and implementation of fast-IVC, which is a

mechanism to improve the performance of communication among different domains on the

same physical machine. Section 3.1 describes the design goal, which is followed by the

design of the fast-IVC mentioned in Section 3.2. The implementation details are shown in

Section 3.3.

3.1 Design Goal

In our design, we expect to meet the following requirements:

 Performance Improvement

Fast-IVC should improve the performance of communication among different

domains on the same physical machine or VMM (i.e., local IVC).

 Transparency

Applications should not aware of the existence of the fast-IVC. They use

network sockets to communicate with each other as before. Fast-IVC should

automatically transmit the data from the source socket to the destination socket if

they are on the same VMM.

 Little Overhead

More system resources are required while the sockets are on the same VMM.

This is due to create communication tunnel between a socket pair. Fast-IVC should

 9

occupy resources as little as possible.

3.2 System Design

As mentioned above, the communication environment of local IVC is much simpler than

a real network since we do not need to care about the problems such as packet loss, packet

reordering, etc. Therefore, we can use a much simpler protocol instead of the traditional

communication protocols.

We designed a fast communication mechanism between domains on top of the same

VMM called fast-IVC, which is illustrated in Figure 3. As shown in the figure, fast-IVC

builds up a tunnel between the communicating domains and automatically switches the

traditional network socket channel to the memory-based tunnel when the source and

destination ends of the connection are on the same VMM. The switch is transparent to user

applications and the performance of the local IVC is improved due to the skip of the network

protocol processing.

Figure 3 Comparison of the Original (left) Protocol Processing and fast-IVC (right)

Figure 4 illustrates the architecture of fast-IVC, which consists of four components:

tunnel manager, protocol monitor, tunnel protocol and event manager. We will describe these

components in the following sections.

 10

Figure 4 The Architecture of Fast-IVC

3.2.1 Tunnel Manager

The tunnel manager is a component that provides functions to create or release a tunnel

in the guest OS. A tunnel is actually a shared memory block, which will be created if the

source and destination of a socket connection are on the same VMM. After a tunnel is created,

the tunnel should be mapped into both sender’s and receiver’s address spaces. Tunnel creation

will fail if one or both of the communication ends can not map the tunnel into their address

spaces.

The memory block of a tunnel can be allocated from the memory pool of the VMM, the

sender, or the receiver. We do not allocate tunnel memory from the VMM since its address

space limitation. Moreover, allocating memory from sender or receiver makes no differences

so we allocate the memory from the sender’s memory pool.

 11

3.2.2 Protocol Monitor

The protocol monitor detects whether or not a tunnel should be created by checking the

destination IP addresses, and asks the tunnel manager to create a tunnel when necessary. As

usual, a user creates a connection by using TCP sockets. If the source and destination are on

the same VMM, the protocol manager will detect the fact and switch the communication

protocol to the tunnel protocol. Otherwise, the communication goes through the traditional

network protocol.

We intercept network protocol operations to perform the destination address checking. In

TCP, the destination can be known after a socket executes accept() or connect(). In UDP, the

destination is known when the socket executes sendmsg()/rcvmsg(). Therefore, we intercept

the send/receive operations. Specifically, the protocol monitor determines whether to change

to the tunnel protocol or to use the TCP/IP protocol stack when a send or receive operation is

issued at the first time.

3.2.3 Tunnel Protocol

The tunnel protocol is a simple communication protocol used for local IVC. After a

tunnel is mapped into both the sender’s and the receiver’s address spaces, the data will be

transferred by the tunnel protocol. The sender pushes data into the tunnel, and the receiver is

notified when the current memory chunk2 is full or no more data needs to sent. When the

receiver is notified, the memory chunk should be locked from the sender until the receiver

reads all the data of the chunk. After all the data is read, the chunk can be used again by the

sender.

2 A tunnel consists of multiple memory chunks which are called channels, and we will describe the details in
Section 3.4.5

 12

3.2.4 Event Manager

In order to support sender-receiver cooperation during tunnel creation/release and data

transmission, an event notification mechanism is needed. However, due to isolation

maintained by the VMM, a domain can not send messages or events directly to the other

domains. Therefore, we design an event manager to allow a guest OS to send events to VMM

or another guest OS. Moreover, since the destination of an event is a socket, which is not

aware by the VMM, we divide the event manager into two parts: Domain Event Manager

(DEM) and Socket Event Manager (SEM). The former resides in VMM and is responsible for

dispatching events to the corresponding domains, or getting events from domains. The latter

resides in each guest OS and is responsible for dispatching events to the corresponding

sockets and providing an event interface to the other components (e.g., protocol monitor) in

the guest OS.

Table 1 shows the events that are provided by the event manager. When a tunnel is

created in the sender side, the sender will notify the receiver by EVENT_CREATE_ TUNNEL,

and receiver will map the tunnel into its address space so that the data can be transferred by

the tunnel. The receiver notifies sender by EVENT_REJECT_TUNNEL if the tunnel mapping

fails and the sender switches back to TCP/IP protocol when it gets this event. When a sender

wants to close a tunnel, it sends the EVENT_SEND_CLOSE_TUNNEL event. Similarly, the

EVENT_ RECV_CLOSE_TUNNEL event is sent when a receiver wants to close a tunnel.

Finally, EVENT_SEND_DATA is used to notify the receiver to get data from the tunnel, and

EVENT_ RECV_GET_DATA is used to notify the sender that the channel is free so the sender

can use the channel again.

 13

Name Source/Dest. Description

EVENT_CREATE_TUNNEL Sender/Receiver Sender creates a tunnel, and
receiver can use the tunnel.

EVENT_SEND_CLOSE_TUNNEL Sender/Receiver Sender closes a tunnel, and
receivers can close it.

EVENT_REJECT_TUNNEL Receiver/Sender Receiver can not map the tunnel
into its address space.

EVENT_ RECV_CLOSE_TUNNEL Sender/Receiver Receiver closes the tunnel, and
sender can close it.

EVENT_SEND_DATA Sender/Receiver Sender has put the data into the
tunnel, and receiver can get data
from the tunnel.

EVENT_ RECV_GET_DATA Receiver/Sender The channel (i.e., memory
chunk) can be used again by the
sender.

Table 1 Events Supported by the Event Manager

3.3 Discussions

TCP periodically send KEEPALIVE message if the connection is idle, e.g. no data, so

that the other end of connection can know whether the connection is alive or not. In the

fast-IVC, the TCP connection is not removed when the tunnel protocol is used. Because

fast-IVC never sends data by TCP, like Figure 5, TCP will detect the connection state by the

same mechanism. In other word, we can detect connection state by original TCP.

Figure 5 KEEPALIVE message

 14

3.4 Implementation

3.4.1 Platform

We have implemented fast-IVC in Xen 1.2 [1] with Xenolinux 2.4.26. Xen is an open

source and para-virtualized VMM, which was introduced by the Computer Laboratory in

University of Cambridge. The Xenolinux is a modified Linux kernel running on Xen.

3.4.2 Socket Operation Interception

As mentioned above, we intercept the socket send/receive operations to perform the

destination address checking. Each socket has a socket operation structure, ops, which records

the pointers of the socket operation functions. The structure is initialized according to the type

of the socket when the socket is created. For example, the structure refers to the TCP

operation set (i.e., ops_tcp) when a TCP socket is created. To perform the interception, we

modified the TCP socket creation code so that the structure refers to an initial operation set

(rather the TCP operation set) when a TCP socket is created. As shown in Figure 6, the initial

operation set checks whether the source and the destination are on the same VMM when the

first time the send or receive operation is invoked. If they do, the structure will be set to refer

to the tunnel operation set and the TCP/IP processing can totally be skipped. Otherwise, the

structure will be set to refer to the TCP operation set and the socket communication is via

TCP/IP.

 15

Figure 6 changing of ops filed

3.4.3 IP-to-Domain Mappings

When the socket send/receive operation is intercepted, the protocol monitor will check

the destination address of the socket to see if the sender and the receiver are on the same

VMM. The checking is straightforward. If the IP address of the receiver corresponds to a

domain managed by the VMM, the sender and the receiver are on the same VMM. Otherwise,

they are not. However, only the VMM (i.e., Xen) knows the mapping between the IP and

domain. Therefore, the protocol manager has to invoke the VMM to perform the checking.

Invoking the VMM is high since it involves processor mode changing. One way to

reduce the cost is to cache the IP-to-Domain mappings in the protocol monitor in each guest

OS. However, we do not implement it in fast-IVC because it incurs the consistency problem;

when an IP-to-Domain mapping is updated, DEM has to notify each domains.

3.4.4 Tunnel Creation and Release

Figure 7 shows the flow of a successful tunnel creation. First, a tunnel is created by the

tunnel manager of the sender’s guest OS when the IVC is identified as local. Each tunnel

contains a number of memory pages and is initially mapped into the virtual address space of

 16

the sender’s guest OS. Then, the protocol monitor asks the socket event manager to send an

EVENT_CREATE_TUNNEL event to the receiver(s). When the receiver gets the event, it

obtains the tunnel information from the VMM and tries to map the tunnel into its address

space. Note that the mapping may fail, as shown in Figure 8. Under this situation, the receiver

sends back an EVENT_REJECT_TUNNEL event to the sender.

Figure 7 Message Sequence Chart for a Successful Tunnel Creation

 17

Figure 8 Message Sequence Chart for a Failed Tunnel Creation

The tunnel manager releases a tunnel when the sender or all the receivers close the tunnel.

When a sender closes a tunnel, the tunnel manager will send an EVENT_SEND_CLOSE

_TUNNEL event to all the receivers. Once a receiver is notified by the event, it should get the

remaining data from the tunnel and then unmap the tunnel. The tunnel manager of the last

receiver is responsible for sending an event EVENT_ALL_RECV_GET_DATA back to the

tunnel manager of the sender when it unmaps the tunnel. Once the event is received, the

tunnel manager of the sender will actually release the tunnel.

When a receiver actively closes a tunnel, the tunnel manager of the receiver will unmap

the tunnel and send an event EVENT_RECV_ CLOSE_TUNNEL to the sender, which will

modify the reference count of the tunnel. When the reference count reaches zero, the tunnel

 18

manager of the sender will release the tunnel.

3.4.5 Tunnel Protocol

After both the sender and the receiver map a tunnel into their address spaces, they can

follow the tunnel protocol to perform data communication. Before the description of the

protocol, we describe the structure of a tunnel first, which is shown in Figure 9. In order to

reduce the synchronization time between the sender and the receivers, we implement multiple

channels in a tunnel. Therefore, the sender can write data to one channel while the receivers

can read data from the other channel. Currently, a tunnel has four channels, each of which is a

memory page.

Figure 9 Tunnel Structure

Each channel has a header to keep the information about the tunnel. The header includes

three fields: gen_num, size and pend_read. Similar to the concept of TCP sequence number,

the sender maintains a sequence number which is increased by 1 whenever it begins to put

data into a channel. After the sequence number is increased, the gen_num field of the channel

 19

is set to the value of the sequence number to indicate the sequence of the data. Similar to the

concept of ACK sequence number used in TCP, each receiver also maintains the next

generation number that it expects to see. Before reading data from a channel, the receiver

checks if the number equals to the gen_num field of the channel. If it does, the receiver can

read data from the channel. The size field indicates the size of data in the channel. The

pend_read field represents the pending readers of the channel and the channel should not be

reused by the sender until the value of this field becomes zero. The field is set as the number

of receivers by the sender when the channel is full or the sender has no more data to put into

the channel. While a receiver gets all the data in the channel, it will decrease the value by 1.

After all the receivers are done, the field will become zero and the channel can be used again

by the sender.

The gen_num field of a channel is increased by 1 before the sender writes any data to the

channel. Then, the sender copies data into the channel and sets the size field. After the data

copy completes, the sender increases the pend_read field by the number of the receivers and

notifies the receivers immediately if the channel is full or no more data needs to be sent. If the

channel is full or more data needs to be sent, the sender notifies the receiver by event, then

switches to the next channel and repeats the above job until the next channel is still locked

from the sender.

Each receiver maintains the wait_gen, which is the next generation for waiting. When the

wait_gen is equal to the gen_num and the channel is not empty and, it gets data from the

channel. When all data is gotten for a receiver, the pend_read will be checked. If it is not zero,

it will decrease pend_read by one. Once the pend_read reaches to zero, and the receiver will

send an EVENT_ RECV_GET_DATA event to the sender. After decreasing pend_read, the size

field. Since pend_read is not equal to zero and size is not equal to MAX_CHANNEL_SIZE

only if sender is no more data to send, receiver can know data is sent completely.

 20

3.4.6 Event Manager

The event manager is designed by two levels architecture. When a component wants to

send an event to other domain, it will use the event interface which is provided by socket

event manger (SEM), and each event is implemented by a hypercall3, and the event is passed

into domain event manger (DEM) which is implemented in the Xen. Then, DEM signals the

destination domain by emulating interrupt signals which provided by Xen. However, the

interrupt can not carry any information, so the socket event manager (DEM) which is

implemented in the guest OS get the event information by hypercall get_event_information()

3.4.6.1 Domain Event Manager

The DEM is implemented in Xen, and is responsible for dispatching events to the

corresponding domains. The event dispatching is based on IP-to-domain mappings maintained

in Xen. Specifically, when a domain sends an event to another domain, the destination IP

address will be passed to Xen for looking up the destination domain. Then, the event will be

inserted into an event list of the destination domain, waitting for the SEM to get it.

Since events can happen frequently, the Xen-domain mode switches caused by the events

will lead to a large overhead. We utilize three mechanisms to reduce the overhead.

First, since those events are not ordered, the DEM can store all the events for a socket in

an per-socket event_info structure which is allocated in Xen when a tunnel is created. When

an event is inserted into the structure, an event_flag field of the structure is set to indicate that

there are pending events in this structure. When the SEM invokes the get_event_information()

hypercall, all the pending events are returned to the SEM. Thus, a number of mode switches

3 Similar to system call interface provided by an OS, hypercall is an interface provided by Xen to allow domains
to request Xen to perform privileged operations.

 21

can be eliminated.

Second, all event_info are linked in the event_list. Xen must search all list when it wants

to find a event_info. To reduce the search overhead, we implement the event_hint in DEM.

For each domain, DEM stores the pointer of the first corresponded event_info and the total

number of the corresponded event_info, which are in the event_list. When a SEM calls

get_event_information(), the DEM just gets event from the event_hint, and searches event_list

to the next event if there is still a remaining event. Even it has to search event_list, it only

needs to search from the event, which is store in the event_list.

3.4.6.2 Socket Event Manager

The SEM is implemented in the guest OS and is responsible for dispatching events to the

corresponding sockets. It provides an interface so that other components can send and receive

event. Each event corresponds to a hypercalls. When an event-related interrupt is triggered,

ghost OS will invoke the get_event_information() hypercall to get the event_info, which

contains the socket IP addresses, port numbers and other necessary information.

After the SEM gets the event_info by get_event_information(), it will map the IP

addresses and the port numbers to the real memory address of the socket. We do this by the

tcp_v4_lookup() functions which is provided by Xenolinux. Then do corresponding

operations which are provided by other components.

 22

CHAPTER 4

PERFORMANCE EVALUATION

4.1 Experiment Environment

We run Xen 1.2 and Xenolinux 2.4.16 on an Intel Pentium 4 1.6 GHz PC, which is

equipped with 1GB DDR RAM, a 100Mbps Ethernet adaptor, and an 80 GB HD (Maxtor

DiamondMax Plus 9, 7200 RPM, and 8MB internal buffer).

4.2 Maximize throughput when data in the memory

In this evaluation, we run test program on two different domains. The sender sends

memory block to the receiver, and receiver does not write data into the disk when it gets the

data. We set 128MB RAM and 8 GB virtual disk space for a domain. And we run 100 times

for each block size.

Figure 10 shows the throughput comparison of TCP/IP and fast-IVC without disk

overhead. We also show the performance of fast-IVC with different channel numbers to

evaluate the effect of the channel number. Specifically, 2 (tunnel-2-mem), 4 (tunnel-4-mem),

and 8(tunnel-8-mem) channels were evaluated. The throughputs of the 1-byte file are

1353.826, 1606.169, 1445.424 and 1328.372 bytes per second, which are too small to show in

the figure.

In this experiment, three pointers are worth mentioning. First, the throughput of the

1-byte of tunnel-8 is small than others since it needs to wait a large continuous memory space

when creating the tunnel. Second, excepting the results of tunnel-8 of the 1-byte file, the

throughput of the tunnel protocol is always higher than that of TCP/IP, it means the

transmission overhead of TCP/IP is much higher than the overhead of tunnel protocol so that

 23

the overhead of tunnel creation can be covered. Third, performance improves as the channel

number grows.

 24

0

50

100

150

200

250

1 1M 10M 20M 30M 40M 50M 60M 70M 80M 90M 100M

Data size (Bytes)

T
hr

ou
hh

pu
t

(M
 b

yt
es

)

socket-mem

tunnel-2-mem

tunnel-4-mem

tunnel-8-mem

0

1

2

3

4

5

6

1 1M 10M 20M 30M 40M 50M 60M 70M 80M 90M 100M

Data size (bytes)

S
pe

ed
up

socket-mem

tunnel-2-mem

tunnel-4-mem

tunnel-8-mem

Figure 10 Max throughput (top) and its performance improvement (down) when data in the

memory

 25

4.3 Maximize Throughput when Data in the Disk

In this evaluation, we run vsftp server and ftp client on two different domains. Same as

4.2, each domain has 128MB RAM and 8 GB virtual disk space emulated by Xen. The client

gets the files from the server, and we run 25 times for each file size.

Figure 11 shows the throughput comparison of TCP/IP and fast-IVC. We also show the

performance of fast-IVC with different channel numbers to evaluate the effect of the channel

number. Specifically, tunnel-2, tunnel-4, and tunnel-8 are related number of the channels. The

throughputs of the 1-byte file are 17.07, 25.56, 26.06 and 15.73 bytes per second, which are

too small to show in the figure.

One pointer is interested; the performance does not always improve as the channel

number grows. Increasing the channel number from two to four does improve the

performance since the memory buffer is enlarged and thus the waiting time of the sender and

the receivers is reduced. However, the waiting time is small when the channel number

becomes four, and thus increasing the channel number further does not lead to performance

improvement.

 26

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 10M 20M 30M 40M 50M 60M 70M 80M 90M 100M

File size (bytes)

th
ro

ug
hp

ut
 (

by
te

/s
ec

)

socket

tunnel-2

tunnel-4

tunnel-8

0

0.5

1

1.5

2

2.5

3

1 10M 20M 30M 40M 50M 60M 70M 80M 90M 100M

Data size (bytes)

S
pe

ed
up

socket

tunnel-2

tunnel-4

tunnel-8

Figure 11 Max throughput (top) and its performance improvement (down) when data in the

disk

 27

4.4 Throughput when the Different Channel Sizes

Because EVENT_SEND_DATA is only sent when the channel is full, the large channel

size can eliminate amount of events. Unfortunately, there is a side effect. Sender and receiver

more possibly block for waiting the free channel and data. The result of the effect of different

channel sizes is shown in Figure 12. And we keep the channel number is four in this

experiment. As expectation, the throughput does not increase when the channel size is

increased, in fact, best performance is emergence when channel size is 4K byte.

0

10

20

30

40

50

60

70

socket 4K 8K 16K 32K 64K 128K 256K 512K 1024K

channel size (bytes)

th
ro

u
gh

pu
t

(K
by

te
s/

se
c)

Figure 12 Throughput when different channel size

 28

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, we propose a mechanism called fast-IVC to improve the performance of

local inter-virtual machine communication. It automatically switches the TCP/IP protocol

processing to a shared-memory based protocol when the end points of a connection are on top

of the same virtual machine monitor.

We implement fast-IVC on a para-virtualized machine environment, Xen. The

experimental results show that the performance improvement ranges from 50% to 150%. And

the creation overhead is small enough to neglect.

5.2 Future Work

Currently, fast-IVC only supports TCP. We plan to support UDP in the future. Generally,

supporting UDP may lead to a larger overhead. This is because IP addresses and port numbers

can be different in each UDP send/receive operation so that the destination address has to be

checked every send/receive operation. As mentioned in Section, the checking involves

domain-VMM mode switches.

 29

REFERENCE

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauery, I. Pratt and

A. Warfeld., “Xen and the Art of Virtualization”, In Proceedings of the ACM Symposium

on Operating Systems Principles, Oct. 2003.

[2] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy., “Lightweight Remote

Procedure Call”. In Proceedings of the 12th ACM Symposium on Operating System

Principles, vol. 23(5), pp. 102-113, Dec. 1989.

[3] A. D. Birrell and B. J. Nelson, “Implementing Remote Procedure Calls”, ACM

Transactions on Computer Systems, vol. 2(1), pp. 39-59, Feb. 1984.

[4] R. J. Creasy, “The Origin of the VM/370 Time-Sharing System”, IBM J. Research and

Development, vol. 25(5), pp. 483-490, Sep. 1981.

[5] R. P. Goldberg, “Survey of Virtual Machine Research”, IEEE Computer Magazine, vol.

7(6), pp. 34-45, June 1974.

[6] P. H. Gum, “System/370 Extended Architecture: Facilities for Virtual Machines”, IBM

Journal of Research and Development, vol. 27(6), pp. 530-544, Nov. 1983.

[7] CX. Guo and SR. Zheng , "Analysis and Evaluation of the TCP/IP Protocol Stack of

Linux", International Conference on Communication Technology Proceedings, vol. 1, pp.

444 -453, Aug. 2000.

[8] N. Harris, F. Armingaud, M. Belardi, C. Hunt, M. Lima, W. Malchisky Jr., J. R. Ruibal

and J. Taylor, Linux Handbook: A Guide to IBM Linux Solutions and Resources, IBM

redbooks, SG24-7000-01, April 2004

[9] Y. Huang, C. Kintala, N. Kolettis and N.D. Fulton, “Software Rejuvenation: Analysis,

Module and Applications”, Proceedings of the Symposium on Fault Tolerant Computing

FTCS-25, pp. 381-390, June 1995

 30

[10] IBM, z/VM CP Commands and Utilities Reference, IBM redbooks, SC24-6081-01, Dec.

2004.

[11] IBM, z/VM TCP/IP Programmer's Reference, IBM redbooks, SC24-6021-02, Aug. 2003.

[12] D. B. Johnson and W. Zwaenepoel, “The Peregrine High-performance RPC system”,

Software - Practice and Experience, vol. 23(2), pp. 201-221, Feb. 1993.

[13] M. B. Jones and R. F. Rashid, “Mach and matchmaker: kernel and language support for

object oriented distributed systems”, In Proceedings of the Conference on Object-Oriented

Programming Systems, Languages, and Applications, pp. 67-77, Oct. 1986.

[14] PH. Kamp and Robert N. M. Watson. “Jails: Confining the Omnipotent Root”, In

Proceedings of the International SANE Conference, 2000.

[15] S. T. King, G. W. Dunlap and P. M. Chen, “Operating System Support for Virtual

Machines”, 2003 USENIX Annual Technical Conference, pp. 71-84, June 2003.

[16] R. R. March, “Survey of System Virtualization Techniques”, March 2004.

[17] S. Nagar, H. Franke, J. Choi, C. Seetharaman, S. Kaplan, N. Singhvi, V. Kashyap and M.

Kravetz, “CKRM: Class-based Prioritized Resource Control in Linux”, In Proceedings of

the Ottawa Linux Symposium, July 2003.

[18] J. S. Robin and C. E. Irvine, “Analysis of the Intel Pentium's Ability to Support a Secure

Virtual Machine Monitor”, Proceedings of the USENIX Security Symposium, Aug. 2000.

[19] J. E. Smith and R. Nair, “An Overview of Virtual Machine Architectures”, Nov. 2004.

[20] Sun, Sun Enterprise. 10000 : InterDomain Networks User Guide, Sun document, Feb.

2000

[21] W. Torres-Pomales, “Software Fault Tolerance: A Tutorial”, Langley Research Center,

NASA, Oct. 2000.

[22] S. Tzou, and D. P. Anderson, “A Performance Evaluation of the Dash essage-Passing

System”, Tech. Rep. UCB/CSB 88/452, Cumputer Division, University of California,

 31

Berkeley, Oct. 1988.

[23] C. A. Waldspurger, “Memory Resource Management in VMware ESX Server”,

Proceedings of the Symposium on Operating Systems Design and Implementation,

Dec. 2002.

[24] A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble, “Constructing Services with

Interposable Virtual Hardware”, In Proceedings of the 1st Symposium on Networked

Systems Design and Implementation, pp. 169-182, March 2004.

[25] A. Whitaker, M. Shaw, and S. D. Gribble. “Scale and performance in the Denali isolation

kernel”, In Proceedings of Symposium on Operating Systems Design and Implementation,

Dec. 2002.

[26] A. Whitaker, M. Shaw and S. D. Gribble, “Denali: Lightweight Virtual Machines for

Distributed and Networked Applications”, In Proceedings of the USENIX Annual

Technical Conference, June 2002.

[27] B. White, R. Ayyar and V. Uskokovic, zSeries HiperSockets, IBM readbooks,

SG24-6816-00, May 2002.

[28] B. White, J Nesbitt, F Packheiser and E. Palacio, IBM eserver zSeries: Connectivity

Handbook book, IBM redbooks, SG24-5444-04, Jan. 2005.

[29] S. Williams, Networking Overview for Linux on zSeries, REDP-3901-00, IBM redbooks,

Dec. 2004.

[30] T. V. Vleck, “The IBM 360/67 and CP/CMS”,

 http://www.multicians.org/thvv/360-67.html

[31] Ensim, http://www.ensim.com/index.html

[32] User-Mode Linux, http://user-mode-linux.sourceforge.net/

[33] VirtualPC, http://www.microsoft.com/windows/virtualpc/default.mspx

[34] VMWare, http://www.vmware.com/

 32

[35] VServer, http://linux-vserver.org/

[36] z/VM, http://www.vm.ibm.com/

