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摘  要 

複雜的應用與伺服器系統一般會利用 multi-tier 搭配 machine redundancy 來達到 load 

balance 與提升系統的 reliability。這不但會造成硬體成本的提高，系統管理的困難，也

會使得 CPU 使用率大幅降低。除此之外，也因各系統均需要相互通訊，而使得內部與

外部的通訊大量提升。虛擬機器技術提供了一個方式來降低機器數量與提升 CPU 使用

率。此外，它也提供了降低內部通訊負載量的機會。 

一般而言，這些內部的通訊還是利用傳統的網路通訊協定來達成。然而，有許多虛

擬機器實際上是處於同一個實體機器上。根據這一點，我們可以利用簡易的通訊協定來

提升通訊的速度。 

在此論文中，我們利用同一個實體機器的特性，設計了 fast Inter Virtual-machine 

Communication (fast-IVC)的機制。該機制會在建立 TCP/IP 連線時，主動判斷收發端是

否處於同一台實體機器上。若是，則改用較簡單的通訊協定來取代原本 TCP/IP 通訊協

定。根據實驗，利用 fast-IVC 傳遞資料可以提升 50%到 150％的效能。 
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Abstract 

Complex applications or Internet services are usually constructed by multiple tiers and 

machine to improve reliability. However, it not only requires high hardware cost and 

expensive management overhead but also incurs both inter and intra machine communication 

overhead. Moreover, the CPU utilization of each machine is usually low since many services 

are I/O-bound and each machine performs a less-complicated function in the multiple-tier 

architecture. 

The virtual machine technology was proposed for consolidating the machines and 

improving the CPU utilization. In addition, it also provides an opportunity to reduce the 

overhead of the inter-machine communication. 

Generally, machines communicate with each other via network protocols. However, 

virtual machines reside on the same physical host, making it possible to improve the 

performance of the communication among them. 

In this thesis, we propose a mechanism called fast Inter Virtual-machine Communication 

(fast-IVC), which transparently turns the TCP/IP based network communication between two 

virtual machines on the same physical host into shared memory based communication. 

Fast-IVC will detect whether the communication endpoints reside on the same physical 

machine. If they are, the complex TCP/IP stack will be skipped transparently and the 

communication performance will be improved. 
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We implement the fast-IVC on Xen. According to the performance results, the 

performance improvement ranges from 50% to 150%. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Complex applications or Internet services are usually composed of multiple tiers. For 

example, a web service can be organized as three tiers: web server, application server, and 

data storage server. In order to improve the system reliability, machine redundancy can be 

usually used in each tier. Figure 1 shows a typical architecture of a three-tier web service. In 

this architecture, inter-tier traffic (e.g., request/response messages) can be large. 

 

Figure 1 A 3-Tier Architecture 

 
Some fault tolerant techniques based on machine redundancy, such as process pair [9], 

can results in large intra-tier traffic (e.g., state checkpointing/syncronization). The process 
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pair technique requires a (primary) server to synchronize its state with the backup server so 

that the backup can take over the job when the primary fails. 

In addition to the inter-tier and intra-tier traffic, implementing a reliable service based on 

multiple machines also requires both high hardware cost and expensive management overhead. 

Moreover, the CPU utilization of each machine is usually low since many services are 

I/O-bound and each machine performs a less-complicated function in the multiple-tier 

architecture. Therefore, some companies consolidate the machines and improve the CPU 

utilization by using the virtual machine technology [34]. 

Virtual machine technology, which was introduced by IBM in 1960 [4][5][6][16][30], 

can provide many virtual machines, which are isolated with each other, on top of the a single 

hardware machine. Thus, a multi-tier service based on virtual machine technology results in 

less hardware and management cost and more effective CPU utilization. 

In addition to the benefits mentioned above, the virtual machine technology also 

provides an opportunity to reduce the overhead of the inter-machine communication. 

Generally, machines communicate with each other via network protocols such as TCP/IP. 

However, domains1 reside on the same physical host, making it possible to improve the 

performance of the communication among them. Specifically, the complex TCP mechanisms 

such as packet re-ordering, packet retransmission, RTT measurement, checksum, and etc., 

which are useful for Internet communication, can totally be skipped since the communication 

endpoints reside on the same physical machine. In this thesis, we propose a mechanism called 

fast Inter Virtual-machine Communication (fast-IVC), which transparently turns the TCP/IP 

based network communication between two virtual machines on the same physical host into 

shared memory based communication. Fast-IVC will detect whether or not the 

communication endpoints reside on the same physical machine. If they are, the complex 

                                                 
1 A domain is a virtual environment in the virtual machine, and we will describe the details in Section 2.2 
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TCP/IP stack will be skipped transparently and the communication performance will be 

improved. 

Several approaches have already been proposed to improve the performance of such inter 

virtual machine communication [10][11][20][27]. Most of them only reduce the overhead of 

the data link layer instead of the whole protocol stacks [20][27]. However, according to 

previous study [7], TCP/IP processing which can not be improved or skipped by these efforts 

dominates the network communication overhead. Inter-User Communication Vehicle (IUCV) 

[10][11], which was proposed by IBM do skip the protocol processing overhead. However, it 

is not application transparent. That is, service applications should be modified to obtain the 

performance improvement. The contribution of the thesis is that we propose a mechanism that 

can automatically detect whether or not the communication endpoints are in the same host and 

transparently skip the whole network protocol processing. 

 We implement the fast-IVC on an open source virtual machine monitor, Xen [1]. 

According to the performance results, the performance improvement of fast-IVC ranges from 

50% and 150%. 

 

1.2 Thesis Organization 

The rest of the thesis is organized as follows. We describe the related works in Chapter 2. 

In Chapter 3, we describe the design and implementation of the fast-IVC. Next, we show the 

performance results in the Chapter 4. Finally, we give conclusions and future work in Chapter 

5. 
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CHAPTER 2 

RELATED WORK 

The related work can be classified into three categories: remote procedure call 

optimizations, virtualization technology, and optimizations on inter-virtual machine 

communication. We will describe these efforts in the rest of this chapter. 

2.1 Remote Procedure Call Optimizations 

Remote Procedure Call (RPC) was introduced by Birell and Nelson [3]. It allows the 

caller and callee to be distributed over heterogeneous systems. When the caller invokes a 

procedure on a remote callee, the stub programs on both the caller and the callee hosts are 

responsible for marshalling/un-marshalling the arguments and return values, and 

sending/receiving the marshalled data through the network. 

Two kinds of techniques were proposed to optimize RPC in a physical machine: shared 

memory [2][12][22] and scheduling path changing [13]. 

There are four copy operations for each cross-domain RPC request (two on call, two on 

return). In order to reduce the overhead, DASH system [22], light weight procedure call [2] 

(LRPC) and Peregrine [12] eliminate unnecessary copying by sharing data between the kernel 

and user domains. 

Mach [13] uses the hand-off scheduling, which schedule the CPU context from the 

sender thread to the receiver thread directly if the two threads are in the same domain. This 

results in better performance since the arguments can be placed in the registers. 
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2.2 Virtualization Technology 

The virtualization technology is an important technology for improving server 

availability and consolidating servers. It has been researched and improved for nearly thirty 

years [5][16]. Basically, the techniques can be classified into three categories: single 

operating system image, fully-virtualized virtual machine, and para-virtualized virtual 

machine. 

Ensim[31], Vservers[35], CKRM[17] and Jails[14] are based on Single Operating 

System Image (SSI) technique. These systems delegate untrusted or less-trusted parties to 

manage a part of the system. ,e.g. two different web sites which are maintained by different 

parties, by allowing some (but not all) administrative functions. To provide isolation, the 

systems group user processes into resource containers so that a user process can not access 

resources outside the resource container. The drawback of this technique is that it does not 

perform well in fault isolation. For example, a kernel crash will cause all services on top of it 

become unavailable. Therefore, it is not suitable for a system with high reliability 

requirement. 

Virtual machine technology, which was introduced by IBM in 1960 [4][5][6][16][30], 

was defined by IBM as “a fully protected and isolated copy of the underlying physical 

machine’s hardware”. It is designed for a company to isolate the environment of each user, so 

that users can not interfere with each other. 

Figure 2 shows the typical architecture of a virtual machine [19]. The Virtual Machine 

Monitor (VMM), which is used to virtualize or extend the underlying hardware, is a middle 

layer between the guests and the host. A domain (or, a virtual machine) is a virtual 

environment in the guest, and hardware access from a domain will trap into the VMM. The 

host layer can be a bare machine or a host OS, both of them are used currently (e.g., VMware 

GSX and VMware ESX [34]). The operating system of a domain is called a guest operating 
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system. Note that many domains can run concurrency on a VMM. 

 

Figure 2 A Typical Virtual Machine Architecture 

 

Traditional virtual machines [4][5][33][34] fully virtualize the underlying hardware so 

that any programs, including operating systems, can run on top of these virtual machines 

without modifications. However, some processor architectures such as x86 do not support 

virtualization very well [15][18], and hence fully virtualize these processors is not easy and 

requires high performance overhead. 

To reduce the performance overhead, para-virtualization was proposed [24][26][25], 

which requires cooperation (i.e., some modifications) of the guest operating systems. In other 

word, these guest operating systems know that they work on the virtual machine. Our system, 

fast-IVC, is based on the para-virtualization VMM. A pair of sockets communicates with each 

other via a simple and shared-memory based protocol when the VMM detects that the ends of 

sockets are both on the top of the VMM. 

Virtual Machine Monitor (VMM) 
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2.3 Optimizations on Local Inter-Virtual Machine Communi 

 -cation 

Local inter-virtual machine communication (local IVC) is defined as the communication 

between different domains on the same VMM. Under this situation, the communication 

environment is much simper than the real network (i.e., no packet loss, no packet reordering, 

etc.) and thus performance improvement is possible by simplifying the protocol processing 

job. 

IBM proposed Hipersocket [27][28][29], which is used to construct virtual LAN in 

z/VM  [36], a virtual machine system for the IBM zSeries servers. It eliminates the MAC 

header and CRC processing, and directly copies data from the source data queue to the 

destination data queue. Sun also introduced a virtual LAN technique called InterDomain 

Networks (IDN) [20] on its StarFire Enterprise 10000 servers in the late 1990s. It allows 

domains to connect by using shared memory regions, which eliminates the memory copying 

of the Hipersocket. The main drawback of these techniques is that they only reduce the 

overhead of the data link layer, which is quite small in the whole TCP protocol stack [7]. 

IBM also proposed a technique called Inter-User Communication Vehicle (IUCV) 

[10][11], which provides a socket interface for communication between guest operating 

systems. It does simplify the protocol stacks. However, it is not application transparent. 

Specifically, the application should explicitly use the IUCV connections. 

In summary, IUCV is not transparent to users while the others do not elimiate the 

overhead of the TCP/IP protocol processing. By contrast, fast IVC can eliminate the TCP/IP 

network protocol processing in a transparent way. 
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CHAPTER 3 

DESIGN AND IMPLEMENTATION 

In this chapter, we describe the design and implementation of fast-IVC, which is a 

mechanism to improve the performance of communication among different domains on the 

same physical machine. Section 3.1 describes the design goal, which is followed by the 

design of the fast-IVC mentioned in Section 3.2. The implementation details are shown in 

Section 3.3. 

 

3.1 Design Goal 

In our design, we expect to meet the following requirements: 

 

 Performance Improvement 

Fast-IVC should improve the performance of communication among different 

domains on the same physical machine or VMM (i.e., local IVC). 

 

 Transparency 

Applications should not aware of the existence of the fast-IVC. They use 

network sockets to communicate with each other as before. Fast-IVC should 

automatically transmit the data from the source socket to the destination socket if 

they are on the same VMM. 

 

 Little Overhead 

More system resources are required while the sockets are on the same VMM. 

This is due to create communication tunnel between a socket pair. Fast-IVC should 
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occupy resources as little as possible. 

 

3.2 System Design 

As mentioned above, the communication environment of local IVC is much simpler than 

a real network since we do not need to care about the problems such as packet loss, packet 

reordering, etc. Therefore, we can use a much simpler protocol instead of the traditional 

communication protocols. 

We designed a fast communication mechanism between domains on top of the same 

VMM called fast-IVC, which is illustrated in Figure 3. As shown in the figure, fast-IVC 

builds up a tunnel between the communicating domains and automatically switches the 

traditional network socket channel to the memory-based tunnel when the source and 

destination ends of the connection are on the same VMM. The switch is transparent to user 

applications and the performance of the local IVC is improved due to the skip of the network 

protocol processing. 

 

 

Figure 3 Comparison of the Original (left) Protocol Processing and fast-IVC (right) 

 

Figure 4 illustrates the architecture of fast-IVC, which consists of four components: 

tunnel manager, protocol monitor, tunnel protocol and event manager. We will describe these 

components in the following sections. 
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Figure 4 The Architecture of Fast-IVC 

 

3.2.1 Tunnel Manager 

The tunnel manager is a component that provides functions to create or release a tunnel 

in the guest OS. A tunnel is actually a shared memory block, which will be created if the 

source and destination of a socket connection are on the same VMM. After a tunnel is created, 

the tunnel should be mapped into both sender’s and receiver’s address spaces. Tunnel creation 

will fail if one or both of the communication ends can not map the tunnel into their address 

spaces. 

The memory block of a tunnel can be allocated from the memory pool of the VMM, the 

sender, or the receiver. We do not allocate tunnel memory from the VMM since its address 

space limitation. Moreover, allocating memory from sender or receiver makes no differences 

so we allocate the memory from the sender’s memory pool. 
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3.2.2 Protocol Monitor 

The protocol monitor detects whether or not a tunnel should be created by checking the 

destination IP addresses, and asks the tunnel manager to create a tunnel when necessary. As 

usual, a user creates a connection by using TCP sockets. If the source and destination are on 

the same VMM, the protocol manager will detect the fact and switch the communication 

protocol to the tunnel protocol. Otherwise, the communication goes through the traditional 

network protocol. 

We intercept network protocol operations to perform the destination address checking. In 

TCP, the destination can be known after a socket executes accept() or connect(). In UDP, the 

destination is known when the socket executes sendmsg()/rcvmsg(). Therefore, we intercept 

the send/receive operations. Specifically, the protocol monitor determines whether to change 

to the tunnel protocol or to use the TCP/IP protocol stack when a send or receive operation is 

issued at the first time. 

3.2.3 Tunnel Protocol 

The tunnel protocol is a simple communication protocol used for local IVC. After a 

tunnel is mapped into both the sender’s and the receiver’s address spaces, the data will be 

transferred by the tunnel protocol. The sender pushes data into the tunnel, and the receiver is 

notified when the current memory chunk2 is full or no more data needs to sent. When the 

receiver is notified, the memory chunk should be locked from the sender until the receiver 

reads all the data of the chunk. After all the data is read, the chunk can be used again by the 

sender. 

                                                 
2 A tunnel consists of multiple memory chunks which are called channels, and we will describe the details in 
Section 3.4.5 
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3.2.4 Event Manager 

In order to support sender-receiver cooperation during tunnel creation/release and data 

transmission, an event notification mechanism is needed. However, due to isolation 

maintained by the VMM, a domain can not send messages or events directly to the other 

domains. Therefore, we design an event manager to allow a guest OS to send events to VMM 

or another guest OS. Moreover, since the destination of an event is a socket, which is not 

aware by the VMM, we divide the event manager into two parts: Domain Event Manager 

(DEM) and Socket Event Manager (SEM). The former resides in VMM and is responsible for 

dispatching events to the corresponding domains, or getting events from domains. The latter 

resides in each guest OS and is responsible for dispatching events to the corresponding 

sockets and providing an event interface to the other components (e.g., protocol monitor) in 

the guest OS. 

Table 1 shows the events that are provided by the event manager. When a tunnel is 

created in the sender side, the sender will notify the receiver by EVENT_CREATE_ TUNNEL, 

and receiver will map the tunnel into its address space so that the data can be transferred by 

the tunnel. The receiver notifies sender by EVENT_REJECT_TUNNEL if the tunnel mapping 

fails and the sender switches back to TCP/IP protocol when it gets this event. When a sender 

wants to close a tunnel, it sends the EVENT_SEND_CLOSE_TUNNEL event. Similarly, the 

EVENT_ RECV_CLOSE_TUNNEL event is sent when a receiver wants to close a tunnel. 

Finally, EVENT_SEND_DATA is used to notify the receiver to get data from the tunnel, and 

EVENT_ RECV_GET_DATA is used to notify the sender that the channel is free so the sender 

can use the channel again. 
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Name Source/Dest. Description 

EVENT_CREATE_TUNNEL Sender/Receiver Sender creates a tunnel, and 
receiver can use the tunnel. 

EVENT_SEND_CLOSE_TUNNEL Sender/Receiver Sender closes a tunnel, and 
receivers can close it. 

EVENT_REJECT_TUNNEL Receiver/Sender Receiver can not map the tunnel 
into its address space. 

EVENT_ RECV_CLOSE_TUNNEL Sender/Receiver Receiver closes the tunnel, and 
sender can close it. 

EVENT_SEND_DATA Sender/Receiver Sender has put the data into the 
tunnel, and receiver can get data 
from the tunnel. 

EVENT_ RECV_GET_DATA Receiver/Sender The channel (i.e., memory 
chunk) can be used again by the 
sender. 

Table 1 Events Supported by the Event Manager 

 

3.3 Discussions 

TCP periodically send KEEPALIVE message if the connection is idle, e.g. no data, so 

that the other end of connection can know whether the connection is alive or not. In the 

fast-IVC, the TCP connection is not removed when the tunnel protocol is used. Because 

fast-IVC never sends data by TCP, like Figure 5, TCP will detect the connection state by the 

same mechanism. In other word, we can detect connection state by original TCP. 

 

 

Figure 5 KEEPALIVE message 
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3.4 Implementation 

 

3.4.1 Platform 

We have implemented fast-IVC in Xen 1.2 [1] with Xenolinux 2.4.26. Xen is an open 

source and para-virtualized VMM, which was introduced by the Computer Laboratory in 

University of Cambridge. The Xenolinux is a modified Linux kernel running on Xen. 

3.4.2 Socket Operation Interception 

As mentioned above, we intercept the socket send/receive operations to perform the 

destination address checking. Each socket has a socket operation structure, ops, which records 

the pointers of the socket operation functions. The structure is initialized according to the type 

of the socket when the socket is created. For example, the structure refers to the TCP 

operation set (i.e., ops_tcp) when a TCP socket is created. To perform the interception, we 

modified the TCP socket creation code so that the structure refers to an initial operation set 

(rather the TCP operation set) when a TCP socket is created. As shown in Figure 6, the initial 

operation set checks whether the source and the destination are on the same VMM when the 

first time the send or receive operation is invoked. If they do, the structure will be set to refer 

to the tunnel operation set and the TCP/IP processing can totally be skipped. Otherwise, the 

structure will be set to refer to the TCP operation set and the socket communication is via 

TCP/IP. 
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Figure 6 changing of ops filed 

 

3.4.3 IP-to-Domain Mappings 

When the socket send/receive operation is intercepted, the protocol monitor will check 

the destination address of the socket to see if the sender and the receiver are on the same 

VMM. The checking is straightforward. If the IP address of the receiver corresponds to a 

domain managed by the VMM, the sender and the receiver are on the same VMM. Otherwise, 

they are not. However, only the VMM (i.e., Xen) knows the mapping between the IP and 

domain. Therefore, the protocol manager has to invoke the VMM to perform the checking. 

Invoking the VMM is high since it involves processor mode changing. One way to 

reduce the cost is to cache the IP-to-Domain mappings in the protocol monitor in each guest 

OS. However, we do not implement it in fast-IVC because it incurs the consistency problem; 

when an IP-to-Domain mapping is updated, DEM has to notify each domains. 

 

3.4.4 Tunnel Creation and Release 

Figure 7 shows the flow of a successful tunnel creation. First, a tunnel is created by the 

tunnel manager of the sender’s guest OS when the IVC is identified as local. Each tunnel 

contains a number of memory pages and is initially mapped into the virtual address space of 
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the sender’s guest OS. Then, the protocol monitor asks the socket event manager to send an 

EVENT_CREATE_TUNNEL event to the receiver(s). When the receiver gets the event, it 

obtains the tunnel information from the VMM and tries to map the tunnel into its address 

space. Note that the mapping may fail, as shown in Figure 8. Under this situation, the receiver 

sends back an EVENT_REJECT_TUNNEL event to the sender. 

 

 

Figure 7 Message Sequence Chart for a Successful Tunnel Creation 
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Figure 8 Message Sequence Chart for a Failed Tunnel Creation 

 
The tunnel manager releases a tunnel when the sender or all the receivers close the tunnel. 

When a sender closes a tunnel, the tunnel manager will send an EVENT_SEND_CLOSE 

_TUNNEL event to all the receivers. Once a receiver is notified by the event, it should get the 

remaining data from the tunnel and then unmap the tunnel. The tunnel manager of the last 

receiver is responsible for sending an event EVENT_ALL_RECV_GET_DATA back to the 

tunnel manager of the sender when it unmaps the tunnel. Once the event is received, the 

tunnel manager of the sender will actually release the tunnel. 

When a receiver actively closes a tunnel, the tunnel manager of the receiver will unmap 

the tunnel and send an event EVENT_RECV_ CLOSE_TUNNEL to the sender, which will 

modify the reference count of the tunnel. When the reference count reaches zero, the tunnel 
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manager of the sender will release the tunnel. 

 

3.4.5 Tunnel Protocol 

After both the sender and the receiver map a tunnel into their address spaces, they can 

follow the tunnel protocol to perform data communication. Before the description of the 

protocol, we describe the structure of a tunnel first, which is shown in Figure 9. In order to 

reduce the synchronization time between the sender and the receivers, we implement multiple 

channels in a tunnel. Therefore, the sender can write data to one channel while the receivers 

can read data from the other channel. Currently, a tunnel has four channels, each of which is a 

memory page. 

 

Figure 9 Tunnel Structure 

 
Each channel has a header to keep the information about the tunnel. The header includes 

three fields: gen_num, size and pend_read. Similar to the concept of TCP sequence number, 

the sender maintains a sequence number which is increased by 1 whenever it begins to put 

data into a channel. After the sequence number is increased, the gen_num field of the channel 
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is set to the value of the sequence number to indicate the sequence of the data. Similar to the 

concept of ACK sequence number used in TCP, each receiver also maintains the next 

generation number that it expects to see. Before reading data from a channel, the receiver 

checks if the number equals to the gen_num field of the channel. If it does, the receiver can 

read data from the channel. The size field indicates the size of data in the channel. The 

pend_read field represents the pending readers of the channel and the channel should not be 

reused by the sender until the value of this field becomes zero. The field is set as the number 

of receivers by the sender when the channel is full or the sender has no more data to put into 

the channel. While a receiver gets all the data in the channel, it will decrease the value by 1. 

After all the receivers are done, the field will become zero and the channel can be used again 

by the sender. 

The gen_num field of a channel is increased by 1 before the sender writes any data to the 

channel. Then, the sender copies data into the channel and sets the size field. After the data 

copy completes, the sender increases the pend_read field by the number of the receivers and 

notifies the receivers immediately if the channel is full or no more data needs to be sent. If the 

channel is full or more data needs to be sent, the sender notifies the receiver by event, then 

switches to the next channel and repeats the above job until the next channel is still locked 

from the sender.  

Each receiver maintains the wait_gen, which is the next generation for waiting. When the 

wait_gen is equal to the gen_num and the channel is not empty and, it gets data from the 

channel. When all data is gotten for a receiver, the pend_read will be checked. If it is not zero, 

it will decrease pend_read by one. Once the pend_read reaches to zero, and the receiver will 

send an EVENT_ RECV_GET_DATA event to the sender. After decreasing pend_read, the size 

field. Since pend_read is not equal to zero and size is not equal to MAX_CHANNEL_SIZE 

only if sender is no more data to send, receiver can know data is sent completely. 



 20

3.4.6 Event Manager 

The event manager is designed by two levels architecture. When a component wants to 

send an event to other domain, it will use the event interface which is provided by socket 

event manger (SEM), and each event is implemented by a hypercall3, and the event is passed 

into domain event manger (DEM) which is implemented in the Xen. Then, DEM signals the 

destination domain by emulating interrupt signals which provided by Xen. However, the 

interrupt can not carry any information, so the socket event manager (DEM) which is 

implemented in the guest OS get the event information by hypercall get_event_information()  

 

3.4.6.1 Domain Event Manager 

The DEM is implemented in Xen, and is responsible for dispatching events to the 

corresponding domains. The event dispatching is based on IP-to-domain mappings maintained 

in Xen. Specifically, when a domain sends an event to another domain, the destination IP 

address will be passed to Xen for looking up the destination domain. Then, the event will be 

inserted into an event list of the destination domain, waitting for the SEM to get it. 

Since events can happen frequently, the Xen-domain mode switches caused by the events 

will lead to a large overhead. We utilize three mechanisms to reduce the overhead. 

First, since those events are not ordered, the DEM can store all the events for a socket in 

an per-socket event_info structure which is allocated in Xen when a tunnel is created. When 

an event is inserted into the structure, an event_flag field of the structure is set to indicate that 

there are pending events in this structure. When the SEM invokes the get_event_information() 

hypercall, all the pending events are returned to the SEM. Thus, a number of mode switches 

                                                 
3 Similar to system call interface provided by an OS, hypercall is an interface provided by Xen to allow domains 
to request Xen to perform privileged operations.  
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can be eliminated.  

Second, all event_info are linked in the event_list. Xen must search all list when it wants 

to find a event_info. To reduce the search overhead, we implement the event_hint in DEM. 

For each domain, DEM stores the pointer of the first corresponded event_info and the total 

number of the corresponded event_info, which are in the event_list. When a SEM calls 

get_event_information(), the DEM just gets event from the event_hint, and searches event_list 

to the next event if there is still a remaining event. Even it has to search event_list, it only 

needs to search from the event, which is store in the event_list. 

 

3.4.6.2 Socket Event Manager 

The SEM is implemented in the guest OS and is responsible for dispatching events to the 

corresponding sockets. It provides an interface so that other components can send and receive 

event. Each event corresponds to a hypercalls. When an event-related interrupt is triggered, 

ghost OS will invoke the get_event_information() hypercall to get the event_info, which 

contains the socket IP addresses, port numbers and other necessary information. 

After the SEM gets the event_info by get_event_information(), it will map the IP 

addresses and the port numbers to the real memory address of the socket. We do this by the 

tcp_v4_lookup() functions which is provided by Xenolinux. Then do corresponding 

operations which are provided by other components. 
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CHAPTER 4 

PERFORMANCE EVALUATION 
 

4.1 Experiment Environment 

We run Xen 1.2 and Xenolinux 2.4.16 on an Intel Pentium 4 1.6 GHz PC, which is 

equipped with 1GB DDR RAM, a 100Mbps Ethernet adaptor, and an 80 GB HD (Maxtor 

DiamondMax Plus 9, 7200 RPM, and 8MB internal buffer). 

 

4.2 Maximize throughput when data in the memory  

In this evaluation, we run test program on two different domains. The sender sends 

memory block to the receiver, and receiver does not write data into the disk when it gets the 

data. We set 128MB RAM and 8 GB virtual disk space for a domain. And we run 100 times 

for each block size. 

Figure 10 shows the throughput comparison of TCP/IP and fast-IVC without disk 

overhead. We also show the performance of fast-IVC with different channel numbers to 

evaluate the effect of the channel number. Specifically, 2 (tunnel-2-mem), 4 (tunnel-4-mem), 

and 8(tunnel-8-mem) channels were evaluated. The throughputs of the 1-byte file are 

1353.826, 1606.169, 1445.424 and 1328.372 bytes per second, which are too small to show in 

the figure. 

In this experiment, three pointers are worth mentioning. First, the throughput of the 

1-byte of tunnel-8 is small than others since it needs to wait a large continuous memory space 

when creating the tunnel. Second, excepting the results of tunnel-8 of the 1-byte file, the 

throughput of the tunnel protocol is always higher than that of TCP/IP, it means the 

transmission overhead of TCP/IP is much higher than the overhead of tunnel protocol so that 
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the overhead of tunnel creation can be covered. Third, performance improves as the channel 

number grows. 
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Figure 10 Max throughput (top) and its performance improvement (down) when data in the 

memory 
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4.3 Maximize Throughput when Data in the Disk  

In this evaluation, we run vsftp server and ftp client on two different domains. Same as 

4.2, each domain has 128MB RAM and 8 GB virtual disk space emulated by Xen. The client 

gets the files from the server, and we run 25 times for each file size. 

Figure 11 shows the throughput comparison of TCP/IP and fast-IVC. We also show the 

performance of fast-IVC with different channel numbers to evaluate the effect of the channel 

number. Specifically, tunnel-2, tunnel-4, and tunnel-8 are related number of the channels. The 

throughputs of the 1-byte file are 17.07, 25.56, 26.06 and 15.73 bytes per second, which are 

too small to show in the figure. 

One pointer is interested; the performance does not always improve as the channel 

number grows. Increasing the channel number from two to four does improve the 

performance since the memory buffer is enlarged and thus the waiting time of the sender and 

the receivers is reduced. However, the waiting time is small when the channel number 

becomes four, and thus increasing the channel number further does not lead to performance 

improvement.  
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Figure 11 Max throughput (top) and its performance improvement (down) when data in the 

disk 
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4.4 Throughput when the Different Channel Sizes 

Because EVENT_SEND_DATA is only sent when the channel is full, the large channel 

size can eliminate amount of events. Unfortunately, there is a side effect. Sender and receiver 

more possibly block for waiting the free channel and data. The result of the effect of different 

channel sizes is shown in Figure 12. And we keep the channel number is four in this 

experiment. As expectation, the throughput does not increase when the channel size is 

increased, in fact, best performance is emergence when channel size is 4K byte. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In this thesis, we propose a mechanism called fast-IVC to improve the performance of 

local inter-virtual machine communication. It automatically switches the TCP/IP protocol 

processing to a shared-memory based protocol when the end points of a connection are on top 

of the same virtual machine monitor.  

We implement fast-IVC on a para-virtualized machine environment, Xen. The 

experimental results show that the performance improvement ranges from 50% to 150%. And 

the creation overhead is small enough to neglect.  

 

5.2 Future Work 

Currently, fast-IVC only supports TCP. We plan to support UDP in the future. Generally, 

supporting UDP may lead to a larger overhead. This is because IP addresses and port numbers 

can be different in each UDP send/receive operation so that the destination address has to be 

checked every send/receive operation. As mentioned in Section, the checking involves 

domain-VMM mode switches. 
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