<l

=Y RS
E}%g[%, T

B o e T # T

A High Extensible Home Appliance Control Platform

oA RET

—_—

hEFHE TR R



(s R e e F A
RN St R e

Pk fraT A

ot SR S

fife!
BT N S e RSO T (0
ﬂL?ﬁ”nwwﬁmﬂﬂi@$%%J?Mﬂ$§@mﬁﬁmﬂéﬁﬁﬁﬁo i

[REH P R A U PSR 3 SR T T £ ST T = U
FAH Y TR HORECE [ 8T VAR E (BT JIND ~ UPNP) AR - 1 (R4

J2ME ~ .NET Framework) °

t@?'%ﬁ#{fﬁﬁfﬁmﬁi@’ﬂ P [WR OSGE 11 ik 1% 5% (IAC Platform) -
ESIG ﬁx_%wﬁ”@“ﬁrﬂ M FE T AR FlFO S PR 57 ™ £ OSGi 55 »
TR bk YT o AR AR S VT A OSGE AR & fl ™ s - |

ART 03 ELHIE M BT 1 (0 S 7 R S 4R T 0= B ek
R S T GO

IAC Platform F'H R ’/j;’i&qﬁfj" Et@%hjlﬁiﬁ’ o SR R VR R
i 4R SRR R

il



A High Extensible Home Appliance Control Platform

Student: Hui-wen Lin Advisor: Shyan-Ming Yuan

Department of Computer and Information Science

National Chiao Tung University

Abstract

Since the population of the network technology, more and more home appliances
supports the capability of network connection. It means that the house owners could interact
with home appliances wherever they are. Nowadays most interacting applications are
developed for particular protocols (UPNPJINI);.and executed on special environment
(J2ME, .NET Platform).

To solve the problems mentioned above,-we proposed a high extensible Platform named
IAC Platform. It defines the descriptor ‘that abstracts the services, and transforms services that
are in varied protocols into OSGi services. It also provides a universal interface so that the
developers could write interacting applications with the same procedure. Besides, we take use
of ART Platform to improve the adaptive capability of the platform.

IAC Platform not only integrates the network protocols and execution environments, but

also makes the applications support new services and new protocols without be rewritten.

il



Acknowledgement

PSRRI SO - B ORI - el
lﬁgi?iﬂﬁlj TR ﬁﬁiflﬁﬁéjﬁ‘ﬂﬁfﬁiﬂ@f‘ﬂﬂ[&’Egﬁgﬁﬁ‘[f'ﬁlﬂ[ﬂ B pORR A
RGPPSR A ERRGY 5 PR R e - R e BRI
FEFEERL > WY ORISR
BRIV B ELASRIE R 2 AREA SRR B BEfeuR]
S GBI T IRRE B O SRR L R O il

Y)Y o BB PT- 0 AORRE T 2 o t'r“‘ﬂ%??;f Fie ?f‘mﬂi

BETGREYE S PR~ ESHIHED > BT Eﬂjfp @i’fﬁ > I ERES iE 2 Fj[
I BRSSO PRAIR S S T S R [ 0 R 20 B TR

P TS S 0 RS I B RRL 2 UL E
B

B R BRI R RS S E g P 2 S
FIERT) AR sl - FRES RS S5 S @RI P i R

v



Table of Contents

ACKNOWIEAGEMENT ...t e e e v
Table Of CONTENTS ..o e Vv
LiST OF FIQUIES ...ttt et et vii
LISt OF TABIES ... IX
Chapter 1 INtrodUCTION ........c.ooiiiiiece e e 1
Lole PIEEACE et 1

1.2, MOTIVALION .ttt sttt et et st e bt et st e sbeeanenaeens 1

1.3. ReSCAICh ODJECIVES ...veiiiiiiiiiiieeciieecite ettt ettt eeae e e tae e e e e eseeeenneeeennes 2

L4, OUZANIZALION ...uvieniiieiieiiieeit st eiee et eetteeteeseteesteesaaeeseessseenseessseenseesnseenseesnseenseas 4
Chapter 2 BaCKgroUNd....... ... S0, osfee e eseeesneessveessseeessneessneessesssseesnsns 5
2.1, Home NetWork SySteIM..ci e i itiiiiee ettt eee et eteesiaeebeeseneeneeas 5
2.1.1. JINI Network. TechnOlOZY o ..t 5

2.1.2. UPNP Technology . ittt 7

2.1.3. X10 TEChNOIOZY ...t eaaee e 8

2.2.  Integration of HOme NEtWOTK ........ccccoiiiiiiiiiiiiieiierie et 9
2.2.1. OSGi Service Platform ..........coouiiiiiiiiiiiiiee e 9

2.3.  ART (Adaptive Remote Terminal) Platform..........ccccoooiniiiiniiniininiiniccne 10

2.4, Related WOTK.....coiuiiiiiie e 11
Chapter 3 System AFChItECTUNE ..........ccove e 13
3il. OVETVIEW ettt ettt ettt ettt e b e et e bt e st e e bt e e st e e bt e sabeenbeesnbeeneee 13

3.2, ROIES et s 15

3.3. Integrate Home Network SyStems........ccccveeiiiiiiiieeiiieeieeeie e e 16

3.4. Application Runtime Environment............cccceecueeriieiiienieeiieniieieeeie e 18



Chapter 4 DeSIgN ISSUBS.......uieiiieiiie et sae et snaeereennees 21

4.1.  Integration of HOme NetWOrKS ........cccccoveriiiiriiiiiieiieeie et 21
4.1.1. A Universal Development Procedure ...........cccccecuerieneriiniineniicneenennns 22

4.1.2.  Mechanism of High Extensible Service Supporting............c.ccccveeevrenennne. 28

4.1.3. Service ENGINe......cc.ooiuiiiiiiiiiiiiiiciencccc et 30

4.2.  Integration of Ubiquitous DEVICES..........ccvureriiiriieiiieiieiieeie et eiee e 30

4.3.  Relationship of components in IAC Platform ..........ccccoceniiiiniininninicniinens 31

4.4, Software Management............cccueeruieiriiieeriiieeriee et e e e eieeesiee e sbee e saeeeeenee s 32
Chapter 5 Implementation ... 34
5.1.  Construct an OSGi Environment..........c.cccooeerieiniiiiieniiiiienieeeeseeeee e 34

5.2. Writing an ARTApp to Control an Appliance..........cccceeerveeriiniininicneeneniiennene 35
5.2.1. WIite an ARTAPD c.eeeeeeeeeeeee ettt ettt seree e s 35

5.2.2. The procedure of appliance-controlling...........ccocevveerieiiniininicncneenne. 36

5.3, WIItING @ DESCIIPLOT ... fiesermmmremrmsrss e s 4asFesereeesnreeesnsesessseeesssesessseeesssesssssesssseesnnnes 38
5.3.1. GENETAl CASE..... o iiiuessssastiih e e eeieeeite et ee st e et e st eebe e teeeabeesbeeenbeeseesnaeens 38

5.3.2. Configuration of Specific Operation ..........cccccvevvieeeriieeeniiieeniee e 40

5.4.  Integrating the ARTServer to an OSGi bundle ..........ccoceveiviiniininiininiienne 41
Chapter 6 CONCIUSION.......cuiiiiiie e nees 44
0.1, CONCIUSION ..ottt ettt ettt e bt e e bt e eenbeesaeeenbeeeee 44

(T 07103111 o 5 11 ) 1 DRSPS 44

0.3, FUture WOTKS ....cooiiiiii e e 45
Chapter 7 Bibliography ..o 47

vi



List of Figures

Figure 2-1 The Architecture of JINT........cccoiiiiiiiiniiiiieeeeee e 6
Figure 2-2 The Architecture of OSGi Service Platform..........cccccveevvieieciieeeieeenen. 10
Figure 2-3 The ART Platform.......ccccooeiiiiiiiiiieniiieeeeeeeeeteee e 10
Figure 3-1 The scenario of controlling the home appliances ............cccceeveeeeveenenn. 13
Figure 3-2 The architecture of IAC Platform ...........ccocoveiiiiniininniniinieiciecee 14
Figure 3-3 Roles of IAC Platformi.........ccccoveeiiiiiiiiieeeeeeeee e 15
Figure 3-4 The transformation of the UPnP services and OSGi services................. 17
Figure 3-5 Mapping the service to controller interface by descriptors..................... 18
Figure 3-6 The processes of controlling the appliances ...........ccceeveeeviierieeiiiennnne. 19
Figure 3-7 The sequence:of usingtARTApp to control appliances ............cccceeueeee. 20
Figure 4-1 Class diagram ‘of [AController Interface ...........ccoceevevviniininiiiniencnnns 24
Figure 4-2 Sequence diagram Of diSCOVETING SETVICE......cceerueeruieeiiianieeiie e 25
Figure 4-3 The relationship ofithe Service, Action, and StateVariable .................... 26
Figure 4-4 The relationship of the Action and its implementation........................... 27
Figure 4-5 The concept of the configuration............ccecvevievierieniininiineeeeeeees 29
Figure 4-6 The relationship of each component in IAC Platform...............c............ 32
Figure 5-1 Available command list 0f OSCar.........ccccovieviiiiiniiniiiiniieeeeeee 35
Figure 5-2 Tthe bundle state of OSGi Framwork...........cccceevevieeiiiiinciiiiiiecieeee, 35
Figure 5-3 The sequence diagram of controlling home appliances............c.ccccuenee. 37
Figure 5-4 The operation list of Simple Light.........cccooeviiiiiiiiiiiiieeeeeee e, 38
Figure 5-5 Service attributes in the descriptor ..........ccccocevierieneriiiniiienieeeenene 39
Figure 5-6 The abstract definition in the descriptor ........cccceccveeeiiieeiieeciie e 39
Figure 5-7 The mapping information of the descriptor .........cceeeveeriinerienienennens 40

vii



Figure 5-8 The configuration definition of the descriptor...........cccccecveverviiniincnnns

Figure 5-9 Source code of Activator.java

Figure 5-10 Manifest file of the ARTServer bundle ............ocooviriiniiiiniinininnn.

viii



List of Tables

Table 6-1 The comparison Table of IAC Platform and other systems...................... 45

X



Chapter 1 Introduction

1.1.Preface

Controlling the home information appliances should go through many steps. First,
the appliances must be connected into the home networks. Then, the application
developers have to get the service references provided by service providers, and then
they construct the applications to control these appliances. After they finish the
developing, the applications are installed into the mobile device, such as PDA and cell
phone. At last the house owner could control the appliances with his/her mobile
device. However, it is much harder thanh we think to develop an application to control
the home appliance, because the=appliance may be connected into home network with
varied network protocols, such=as JINI [1]; UPNP [2], X10, and so forth. Moreover,
the application may only be executed correctly on a certain platform, like MIDP
platform, while the house owner’s mobile device may support another execution
platform. To overcome these problems, we have designed a platform, named IAC
Platform, which simplifies the procedure of developing applications that control the

home appliances.

1.2.Motivation

In these days, the use of information appliances is more and more popular. The
appliances could be controlled by not only a certain control box, but the controlling
applications that are executed on mobile devices. To take a simple example, the house
owner could turn on the air conditioner by his/her cell phone. Further, there are some

advanced applications that could manage the interoperability between appliances, for

1



example, when a television in the living room is turned on, the residential gateway
would detects the situation and notify the controller of the light in the living room to

turn it on.

It is not easy to access all appliances in the house or office with a simple
application, because there is no standard protocol for home network now. It means
that the home appliances may be connected to different network systems, and the
developers have to access these appliances by different protocols. Therefore, we have
to design a platform that integrates the services in heterogeneous networks, so that the

developers could access them by the unified approach.

We also believe that the house owner would want to control the home appliances
with his/her own mobile device, not'a particalar controller device. To achieve this
goal, we need find a solution t¢ handle the adaptive issue between varied execution

environments.

1.3.Research Objectives

There are three objectives in IAC Platform: integrating the home networks,
improving adaptation ability of the applications, and making the platform extensible

to the new protocols and new services.

Integrating the home networks

There are plenty of home network protocols nowadays, while the connection and
interaction mechanism of each protocol is quite different. It means that there is no
unified approach to access the appliances which are in different network systems.

Thus, if a programmer wants to develop applications to control the information

2



appliances, he/she has to be familiar with the every protocol, and implements with the
corresponding protocol. It is observable that developing applications with this way
will be hard and waste much time. Thus, integrating different home network protocols

is a very important issue in IAC Platform.

Improving adaptation ability of the application

On the other side, there are many choices when executing application on mobile
device, such like J2ME platform, .NET framework, HTML browser, and WAP
browser. In order to let an application be executed on varied platforms, developers
have to spend lots of time porting the program to each execution environment. Thus,
we want to design a mechanism, which improves the adaptive capability of the

program and reduces the porting effort.

Making the platform extensible

The platform is designed to integrate not-only the existent home network systems,
but the protocols which may be proposed in the future. For the point of programmers,
they need not learn the new protocol, but develop applications with procedures that

are defined in IAC Platform.

Since the programmers develop applications without considering network
protocols, it is possible that the same application could be used to control varied

services.

It could be concluded, from what has been said above, that we try to design a
platform that has no limit on two sides — home network protocol and execution
environment. The platform simplifies the development procedure of the applications.

With the platform, developers only have to focus on the program logic. That is to say,

3



developers should not to consider what kind of network protocol the appliance uses
and which kind of execution environment the application suits. On the contrary, it is
handled by our system, IAC Platform.

With the integration of development environment, the IAC Platform is extensible

because it is suitable to new added service and protocol without much modification.

1.4.0rganization

In Chapter 2, we introduce the technologies that are used in IAC Platform, and
discuss the related research. In Chapter 3, we illustrate the architecture of IAC
Platform and the components in it. In Chapter 4, we discuss the design issues of each
component, and how these components, cooperate to carry out our objectives. In
Chapter 5, we turn to developers”perspective: 'We show that developer could develop
an application easily with help of TAC platform. In Chapter 6, we give the conclusions

and future works.



Chapter 2 Background

In this chapter, we make a brief introduction of the home network systems which
are popular nowadays. We also introduce OSGi Service Platform, which is used to
integrate different home network systems, and ART Platform. Besides, related work

would also be discussed.

2.1.Home Network System

In the past, the use of the computer network system is mainly in the companies
and for the business usage. Nowadays, as the price of the computer is going down and
the popularity of the embedded system is growing up, it is often seen that there are
more than two systems in a housg-or an office: These systems may have to share files
and peripherals, such as a printer. The requirement of sharing the resources forms the
concept of the home network system;which-connects shared resources in a small local
area. Through the home network system, theidevices in the house could communicate
with each other.

In general, the bulk of the home network systems use the Ethernet as
communication protocol. However, the general users of the home network system
may not be familiar with network protocol. Thus, there are some advanced protocols,
these advanced protocols need less setting skill, and support the capability of
plug-and-play, such as JINI, UPNP, X10; these protocols are the most popular home

network systems recently..

2.1.1.JINI Network Technology

JINI network technology, which is based on Java technology, is a distributed



communication system. It is an open architecture that enables developers to create
network-centric services -- whether implemented in hardware or software -- that are
highly adaptive to change. JINI technology can be used to build adaptive networks
that are scalable, evolvable and flexible as typically required in dynamic computing

environments. The characteristics of the JINI technology are as follows.

1. Support Plug-and-Play mechanism for network service.
2. Provide toolkit for developers to build strong distributed systems.

3. Provide an architecture which is based on services.

The architecture of the JINI technology is indicated by Figure 2-1, and the
procedures of finding services could be diyidcd imto three steps: Discovery, Join, and

Lookup.

Service
‘ Attribute.

Service |
por

ttribute

-

Figure 2-1 The Architecture of JINI

® Discovery Protocol

For service providers and clients, the first step of joining JINI network is to search for



Lookup Service, and get the reference of the Lookup Service.

® Join Protocol
After a service provider finds the Lookup Service, it registers itself and then uploads
the service proxy object to the Lookup Service. It is so called “Join” step in JINI

technology.

® Lookup Protocol
In the architecture of JINI technology, the client does not connect to service provider
and take use of service directly. Instead, it connects to Lookup Service, and search for

matched services.

Relying on the above steps; clients could-find. the required service, and download
the service proxy object from the Lookup-Service. Then, the clients execute the proxy

object directly, or communicate with remote service by the object.

2.1.2.UPnP Technology

UPnP technology is a distributed, open networking architecture that employs
TCP/IP and other Internet technologies to enable seamless proximity networking, in
addition to control and data transfer among networked devices in the home, office,
and public spaces.

The most obvious difference between UPnP and JINI technology is that there is
no Lookup Service in the architecture of UPnP technology. The client communicates
with the service provider directly. In addition, UPnP technology calls services with

remote procedure call, while JINI technology does it with proxy objects.

7



The processes of searching and controlling services for UPnP technology are
explained below.
® Discovery
The service provider broadcasts messages, which include the information of the
services, such as device name, manufacturer, and etc. On the other hand, the client
could send message to search for services. If the service provider gets the query
message and held the required services, it would send response to the client with the
service information.
® Description
After the client finds out the required service, the service provider would send the
client a XML document which contains the detail of the service. The content of the
document includes the information’ef devices, services, actions, and etc.
® Control
The client sends the action message to execute the action of the service. After
finishing the action command, the service provider would send the execution result to

the client.

2.1.3.X10 Technology

X10 technology sends signals through home power line. The plug of the home
appliance is put in the X10 module socket, and X10 module is connected to home
power system. Then we could send signals to control the power state of the

appliances.

Considering the above three types of home network protocols, we get the
conclusion that there are many different mechanisms in varied protocols. Therefore, it

would be a big challenge for programmers to develop applications to control home

8



appliances with different protocols separately.

2.2.Integration of Home Network

2.2.1.0SGi Service Platform

In order to integrate the different home network systems, we chose OSGi Service
Platform as the middleware that helps to collect all the services in varied protocols to
the same environment.

The OSGi™ specifications [3] define a standardized, component oriented,
computing environment for networked services. The OSGi Service Platform provides
the capability to manage the life cycle of the software components. Software
components can be installed, updated, or removed.dynamically. Software components
are libraries or applications that-can dynamically diseover and use other components.
The OSGi Alliance has developedimany-standard component interfaces that are
available from common functions like HTTP.servers, configuration, logging, security,
user administration, XML, and any more. In OSGi 3 specifications, service interface
is included. It defines the service interfaces of UPnP and JINI technology to transform
these two types of services into the OSGi services. Thus, developers could
communicate with the services using OSGi protocol, instead of accessing these
services from networks directly. The architecture of the OSGi Service Platform is

indicated by Figure 2-2.



Applications /| Bundies
0 S
‘ Services a
S I
| Service Registry | 'l'f
i
| Life Cycle | i
£ m—
Modules

Exacution

Environmeant l

05 & Hardware |

Figure 2-2 The Architecture of OSGi Service Platform

2.3.ART (Adaptive Remote Terminal) Platform

As the computing ability of the mobile devices is poor in the past, we had
designed a platform to solve this kindsof; problem. Adaptive Remote Terminal
Platform [4] is a client-server modelsystem, and clients communicate with servers by

means of an asynchronous message-delivery mechanism. Figure 3-2 helps to

understand the idea.

) Window
indow 4

Canvas

ART Client

Specific Platform

ART has two basic characteristics: “adaptation” and “remote terminal” (remote

control and terminal display). To achieve the goals, it separates the Ul and the

Asynchronous
message
delivery

=

10

ART Server

J2SE

Figure 2-3 The ART Platform



program logic. ART server is responsible for executing program logic, while the ART
client is in charge of displaying Ul

The UI of ART platform is described by XUL file, which follows the XML
document format. When ART applications are executed on varied platform, ART
Platform would generate fit UL. Thus, making use of ART Platform to develop the
applications, developers need not consider the execution environment of the mobile
device. It means that developers only have to write program once, ART Platform

would make the ART application adaptive and suitable for varied execution platform.

2.4.Related work

In the present day, the related research could be divided into three parts:
integration of the varied home network systems, the representation capability of OSGi
Service Platform on mobile devices, and .the solutions of controlling the home
appliances.

In aspect of integrating home networks, nowadays most solutions utilize proxy to
connect two different home network protocols. Taking such solution, the extensibility
of the system is very poor, because it is very hard to put in the third protocol [5-7].

OSGi Service Platform provides a simple HTTP server; it means that the
developers could design Ul by writing Servlet code. Though almost all the mobile
devices support web browser, writing Servlet code is not an efficient approach for
designing UI. Besides, the HTML protocol is weak in interaction, because it is
one-way client-server model. Only after a client sends requests, the server could send
responses back. The server could not send message to the client actively.

One final point is the research on controlling the home appliances. The published
result is all limited on a particular home network protocol and execution environment

[8-11]. There is no research for two-way opened development environment -- a

11



platform that makes the applications be executed on any mobile device, and control

the appliances which are on varied network systems.

12



Chapter 3 System Architecture

3.1.0verview

First of all, we have to explain the scenario about how to use our system. Taking
some simple examples, people may forget to turn off the light when leaving house and
want to turn it off with remote controlling application. They may also want to monitor
the state of TV when they are in office to see whether children watch TV all the time.
Furthermore, when house owner goes traveling for a long time, they may hope to
control the appliances as they are at home, so that the thieves will not know that there
is no person in the house.

We all know that mobile users_couldreontrol'the household appliances by their
mobile devices, such as PDA, cell phone. The devices connect to the home gateway
through wireless network. The gateway manages all.the appliances at home, including
UPNP TV, JINI refrigerator, X10 light, ‘and so on. The scenario is showed as Figure

3-1.

Figure 3-1 The scenario of controlling the home appliances

13



About the former, the home gateway has to communicate with each network
system. It is also a hard work for developers to design controlling applications with
these protocols. Thus, we proposed a platform named TAC Platform that provides a
universal interface for developers so that they could access the appliances with the
same procedure and should not know about what kind of network the appliances
belong to. We could say that the IAC platform makes developing the appliance
control applications more efficient, because it saves developers’ time to study the
different specifications of home network protocols.

As there are many kinds of mobile devices in these days, IAC platform also
supports varied execution environments. We bring ART Platform into our system
because one of the ART Platform’s characteristics is “adaptation”. Developers only

have to write application once. R k‘ pp would be ported to different

execution environments automati

Home Gateway

@ ART application for controlling the appliance

Figure 3-2 The architecture of IAC Platform

14



The simple architecture of IAC Platform is indicated as Figure 3-2. When a new
appliance is detected by gateway, which installs OSGi Service Platform to integrate
services, the service driver would transform the service provided by the appliance into
an OSGi service. Then the ARTServer would discover the new OSGi service, and tries
to download the ARTApp, which is used to control the appliance, from database.
Finally the mobile users could connect to ARTServer with ARTClient and interact

with the appliance.

3.2.Roles

We define several terms that will be referred. Since IAC Platform brings ART
Platform in, we also introduce some ART operations. They are schematized in Figure

3-3.

IAC —
O
/({ - ’ ‘)4 . Control Device / jz\

<777>/;' Developer

Operate ARTApp
Provide ARTApp

Mobile User

OO
_— - Port ART Client <,,,,><'\'\—\—\,;, ) pu

— -
7% - Provide Senice -
7\7\7\’\*\7\,\/> - - _— -
System Provider - Senice Provider

-
— Z
Maintain ART Server <,,,,>

Provider Senice Descriptor

Figure 3-3 Roles of IAC Platform

® Mobile user is house owner who takes use of ARTApps to control the home

15



appliances.

ARTApps are mobile applications written with ART APIs that we provide. Each
of these applications consists of Ul and program logic. ARTApps work on the
server side and send result to client to show.

ARTClients are agents which run on mobile devices, and they serve mobile users
for interacting with ARTServers.

ARTServer is to stand for the server body of ART. After an ARTApp comes out,
it is put in ARTServer and waits to serve ARTClients.

Developers we mention below are programmers who write ARTApps to control
the household appliances.

Service providers provide the services and service descriptors.

Service descriptors are XML documents which describe the information of the
services. It is used to abstract services.-The detail of the descriptor would be

talked in section 5.3.

3.3.Integrate Home Network Systems

One of the most significant contributions of our system is integrating different

home network protocols. As the Figure 3-1 indicates, there may be more than two

types of network systems at home. If developers write programs for these protocols

respectively, they will waste lots of time. Hence, to design a platform which provides

a nice development environment, it is clear that integrating home networks is the most

important problem that we have to solve.

We divide the integration into two parts: (1) make use of OSGi Service Platform

to transform all the services into OSGi service; (2) provide a universal development

procedure for developers.

In the first place, we introduce how OSGi service Platform works to transform

16



all the services at networks into OSGi Services. The procedure could be schematized
as Figure 3-4. The OSGi specification defines service interfaces, including UPNP and
JINI. We could download the implementation of the interface, which is so called
UPNP or JINI Base Driver. The Base Driver is composed of importer and exporter.
The importer discovers the device in the network and transforms it into an OSGi
service; the exporter transforms an OSGi service which is on OSGi Framework into a

virtual Device.

UPNP Device
(OSGi Service)

- Create
\ Base Driver /

Exporter Importer

OSGi Service
(UPNP Device)

/ 1

OSGi side

Virtual
Device

Figure 3-4 The transformation of the UPnP services and OSGi services

discovery UPNP side

In addition to the transformation of services, we also design a universal
controller interface named [AController Interface to provide a unified procedure of
accessing the OSGi services, and then proceed to control the appliances. With
IAController Interface, developers could write programs to interact with the

appliances without considering the network protocols. However, it is not easy to

17



design a universal interface since there is much diversity between varied home
network protocols. Therefore, we need a descriptor to help us obtaining the
information of the service, and then mapping the characteristics of the service into
[AController Interface. Figure 3-5 shows this concept. The detail of [AController

Interface will be discussed in Section 4.1.1.

Network
Device

=(m
M [ @=|
)

Jini refrigerator UPNP TV

Description
Data

Universal Interface

OSGi Framework

Operation System

Figure 3-5 Mapping the service to controller interface by descriptors

3.4.Application Runtime Environment

When developers write the controlling applications, using the IAController
Interface could avoid communicating with network protocols directly. In the other
aspect, to let applications supporting varied execution environment, we chose ART
Platform as the development and execution environment. In the Section 2-3, we
described the characteristics of ART Platform: ARTApps have adaptive capability on

varied execution environments. It could general the suitable code by executing

18



environment.

With ART Platform, developers need not port programs to fit varied execution
platforms. However, we have to solve the problem of communication between ART
Platform and OSGi Service Platform. The solution we designed is wrapping the
ARTServer as an OSGi bundle, so that ART Server becomes a package of the OSGi
framework. It could not only export itself to by other bundles, but import other
bundles, such as IAController Interface. Thus, ARTApps executing on ARTServer
could access the OSGi services, and achieve the goal of controlling the Devices. We

could indicate the processes by Figure 3-6.

ART Server /1_'\\,_|/ Universal

Interface
(:/J}EJ o OSGi Framework é |
ART Client

OSGi Service

UPNP network

Figure 3-6 The processes of contralling the appliances

So far, we have seen how the ARTClient controls the appliances. Now we
discuss how the ARTServer gets correct ARTApps to control the appliances. The issue
could be considered in two aspects: developers and IAC platform.

For developers, after developing the ARTApps, they will upload the ARTApps to
the database with the service IDs. For IAC platform, the steps of using ARTApp are
more complex. First, ARTServer has to listen for the new added OSGi services, and
then downloads the corresponding ARTApps from the database with service identities.
After the ARTApps are downloaded, they would be putted in ARTServer and wait to
serve. When an ARTClient connects to ARTServer, ARTServer will start the ARTApp.

Therefore, ARTClient could utilize the ARTApps to control the home appliances. The

19



sequence is showed as Figure 3-7.

Developer

Develop ARTApp to
control the appliances

Upload ARTApp to
database

IAC Platform

ARTServer detect the
new OSGi service

Download the ARTApp
from database

ARTApp is putted in
ARTServer

ARTClient connect to
Server and control the
Appliances with ARTApp.

Figure 3-7 The sequence of using ARTApp to control appliances

20




Chapter 4 Design Issues

In this chapter, we would discuss the design issues of IAC Platform. As
mentioned above, the capabilities provided by IAC Platform include integrating
varied home network services, and making IAC Platform more flexible and adaptive.
There are lots of design issues about IAC platform. For example, in order to integrate
home network systems, we have designed a wuniversal controller interface
(IAController Interface). With the interface, applications used to interact with home
appliances are developed with universal procedure. We have also defined the format
of the service descriptor; the descriptor written by service providers abstracts the
services so that the actual service in the network could be mapped to abstract service
object of IAController Interface,«The design.concept of descriptor is to help IAC
Platform to be extensible for new home netwotk protocol and new service. The design
issue of IAController Interface would:be-discussed in' Section 4.1.1, and the content of
the descriptor would be explained in Section4.1.2.

In the aspect of execution platform, we want to choose a platform that support
most kinds of ubiquitous devices. The platform must adapt one application to many
execution environments.

We also considered the issue that how the components in IAC Platform
communicate with each other. At last, we would explain the software management

topic in IAC Platform.

4.1.Integration of Home Networks

In order to integrate varied home networks, we have designed a universal
interface, which provides a unified procedure to interact with home appliances.

Besides, we have defined service descriptors, so that IAC Platform could create
21



abstract service objects according these descriptors. Before introducing detail of
design mechanisms, we explain the abstract service and physical service first.

In our design, we separate the services into abstract and physical. All services
with varied network protocols would have some common characteristics, and we
group these characteristics as the properties of the abstract service. A Service object in
IAController Interface is designed as a abstract service object. On the other hand,
physical service points to the service reference provided by service provider. It may
exist in network or be transformed into an OSGi service reference; it is used to control

the appliance directly.

4.1.1.A Universal Development Procedure

To provide a universal procedure to control household appliances, we have
designed an interface, which 4s ;mentioned-above-as IAController Interface. The
interface defines the specification of the-abstract ‘objects; it abstracts the service
properties, action, and state variable ebjects-and provides mapping information. No
matter which original protocol the service belongs to, IAC Platform could map the
physical service into the abstract service of the interface. Thus, developers write
applications without taking care of the protocol details.

[IAController Interface mainly provides the suitable API for programmers to
develop interaction application of home appliances. We first define the interfaces of
service, action, and state variable, and the relationship of them, and then design how
to map these objects to physical services. At last we design a model to handle the
event messages. In addition, [AController Interface also regulates the procedures of
service discovery and descriptor locating. The issues of descriptor locating and
service discovery would be taken up in Section 4.1.1.1.

IAController Interface is used to integrate services. To design flexible interfaces,

22



we have studied several network protocols first, focusing on the similarity of
capability and the difference of their implementation. The steps of accessing the home

network service could be classified into four parts.

® Discovering the required Service:

Search for the desired service by matching the attributes or capabilities of the

service.
® Getting service information:

The service information contains action details, state variable name, and etc.
® Invoking action:

Clients send command to execute functions.
® Event model:

Service sends notification=to.clients actively, the major goal is to inform the

change of the service state.

According to the conclusions we got abeve, we have designed the class diagram
of IAController Interface indicated as Figure 5-1. In the beginning, developers could
use Discovery object to search for services, and get the required abstract service
objects. The abstract service object usually contains two lists, ActionList and
StateVariableList, which include Action and StateVariable objects. These two types of
objects are also abstract objects, described in service descriptors. Developers could
use above three objects (Service, Action, StateVariable) to invoke basic operations, as

the steps described in Section 5.2.2. Now we discuss the concept of each interface.

23



Discovery

®yetSeniceBylD])
|

discpver

rI *
Senice S
actionList : List has 1.

stateVariatle - Listlo——" | Yinvoke()

SyetAction()

SyetStateVariable) ha
| Statelariable

subacHbe

=

=

D”t

<<Interface>>
Listener ] Listenetlmpl

publish

Snotify()

D”*

Figure 4-1 Class diagram-of IAController Interface

4.1.1.1.Discovery

Now we come to the issues about steps of service discovery. First, we get the
service descriptor with descriptor locator. After obtaining the descriptor, IAC Platform
would parse it and produce a abstract service object. The procedure of service

discovery is illustrated as Figure 4-2.

24



Main Discovery DescriptorLocator SenviceBuilder

getSenice(DescriptionLocator)

getDescription()

Document

parse(Document)

Senice

Senice

Figure 4-2 Sequence diagram of discovering service

There is a method getService in class Discovery. The method needs a parameter
which’s type is DescriptorLocator; the“class .DescriptorLocator contains a method
named getDescriptor which return'an.org.w3c.dem:Document object. After getting the
Document object, developers could use class ServiceBuilder to parse the service
descriptor and create abstract objects, and then deliver the service object as return

value of method getService.

4.1.1.2.Service

Service object contains the abstract information of service properties, such as
service ID, service type, and so on. Bedsides, it also has two lists which contain
abstract action and state variable objects. The relationship of Action, StateVariable,
and Service is indicated as Figure 4-3.

It deserves to be mentioned that we designed Service with an abstract concept.

The properties of the service mainly come from the service descriptor. With Service

25



objects, developers could design application to control appliances without carrying
about the implementation of the protocols. Therefore, it could reduce the development

effort for the developers. They could use the unified interface to access all appliance

services.
Action
Senice +has
EHsenicelD | PBinvke()
EseniceType ‘oo
EFseniceName -~ +has
EactionList T :
E¥istateVariableList —| StateVariable
Figure 4-3 The relationship of the Service, Action, and StateVariable
4.1.1.3.Action

The most significant method in class-Action is.invoke. It is used to send action
command to service in order to interact-with home appliances. Before sending an
action command, developers have to collect all parameters the action requires, and put
these parameters into a Dictionary object.

The difference between Service and Action is that the implementations of Action
would be implemented according to varied protocols. Because the procedure of
invoking action depends on protocol mechanisms, each protocol should have its own
action implementation. Figure 5-4 indicates the relationship of the interface Action

and its implementations.

26



<<interface>>

Action
| |
| UPNPActionImp | | JINIActionlmp | | ...... |
| |
invoke nvoke invoke

UPNP JINI
Device Device

Figure 4-4 The relationship of the Action and its implementation

4.1.1.4.StateVariable

The design of StateVariable is similar te. Action. The main function of
StateVariable object is getting the current state of the service. Similarly, developers

could change the state of the service by-setting-the state variable value.

4.1.1.5.Listener

We also have to design a mechanism to handle the event messages sent from
services. Events are mapped and delivered to ARTApps according to the whiteboard
model. The ARTApp interested in receiving the events registers an object
implementing the Listener interface (referring to Figure 4-1). A filter could be set to
limit the events for which ARTApp is notified.

If an ARTApp is registered with a property named art.iacontrol.filter with the
value of instance of a Filter object, the listener is only notified for matching events.

If an event is generated, the notify method is called on all registered ARTApps for

which the optional filter matched for that event. If no filter is specified, all events

27



must be delivered. If the filter does not match, the IAC Platform must not notify the
ARTApp.

One or multiple events are passed as parameters to notify (String, Dictionary)
method. The Dictionary object holds a pair of StateVariable objects that triggered the
event and an Object for the new value of the state variable.

Event model is an optional mechanism of IAC Platform. It is implemented for

those protocols that are suitable for event model.

4.1.2.Mechanism of High Extensible Service Supporting

The main purposes of service descriptor are creating abstract service objects, and
defining the configuration properties. Through reasonable mapping, ARTApp could
operate the physical service by using the abstract service object which is produced
according to descriptor. The concept of configuration is grouping similar operation of
different service, so that developers cCould-wiite' an application to control varied
appliances.

The general idea of the configuration is indicated as Figure 4-5. Taking light
and refrigerator for examples, these two appliances both contain power control
operation. The action for light to control the power state is setPowerl (boolean), and
for refrigerator is setPower2 (String). In the descriptors of the two services, it is
defined clearly what command should be operated when turning on and off the
appliances. For light, turning it on should send setPowerl (true) command, while
turning it off need setPowerl (false) command. For refrigerator, setting the power
state uses setPower2 (*“on”) and setPower2 (““off”’). With the definition of
configuration, developers only use PowerOn and PowerOff operations to set the
power state of different appliance, without knowing original action name and

parameters

28



Action: Action:
setPowerl(boolean) setPower2(String)

PowerOn: PowerOn:
setPowerl(true) setPower2(*On”)
PowerOff: PowerOff:
setPowerl(false) setPower2(*Off”)

ARTApPpP
PowerOn
PowerO

Figure 4-5 The concept of the configuration

There is another advantage of using descriptor; it could increase the extensibility
of IAC Platform. Service providers should not rewrite services to fit IAC Platform.
Instead, they write descriptors to describesthe service information. Similarly, two
services with similar operations could use ithe ssame ARTApp if they contain
descriptors to complete the mapping.

In addition to define the format*of the descriptor, it is a design issue to get
descriptor, because we hope the access approach of getting descriptor is flexible. The
descriptor file may be a local file, a remote file, and even network stream. Thus, we
defined the interface DescriptorLocator, and the implementation of the
DescriptorLocator would be replaced to adapt varied descriptor source.

The implementation of the DescriptorLocator has to get the descriptor content,
and parses it to construct a XML DOM document, which represents the structure of
the service, and returns the DOM tree to the originator. After locating the descriptor,
the next step is creating abstract service objects for developers. ServiceBuilder creates
abstract service objects and sets the service attributes with information described in
descriptors, such like service id, type, and friendly name. Furthermore, Action and

StateVariable objects are also created and put into ActionList and StateVariableList.

29



We design ServiceBuilder with a flexible approach, too; if IAC Platform supports
a new protocol, and defines the new service descriptor, we only need to extend the
ServiceBuilder to support the new protocol and service descriptor.

It should be concluded that the steps of producing a abstract service object are as
following: (1) locating the descriptor file; (2) parsing the descriptor; (3) creating
Service, Action and StateVariable object. (1) and (2) are completed in

DescriptorLocator implementation, and (3) is in ServiceBuilder.

4.1.3.Service Engine

The aim of service engine is charge of mapping the desired OSGi service
reference to the abstract service object. Since each protocol has its own properties, it
has corresponding service engine; respectively. Taking UPNP for example, UPNP
Service Engine catches all deviees,.actions, state variables from OSGi Framework.

When developers want to- access -OSGi-seryice reference by abstract service
object, service engine will look “for-matching service reference rapidly. Another
advantage is that it could be replaced easily with a newly implementation if we write
an efficient service engine, because each engine is written independently. Besides,
service engine has cache capability, so that abstract service object could be reused,

instead of searching for required service reference every request time.

4.2.Integration of Ubiquitous Devices

Another superiority of IAC Platform is that ARTClient could be executed on
varied execution platform, so that house owner could use any mobile device to control
the household appliances. To construct smooth communication between OSGi Pltform
and ART Platform, we considered all possible approaches and finally decided to wrap

the ARTServer into an OSGi bundle and execute on OSGi Platform. Since the design
30



of OSGi Service Platform gives highly capability of bundle management, bundles
could interact with each other and share resource. Thus, ARTApp could import
package of IAController Interface, and use the operations provided by IAController
Interface. Besides, OSGi Platform has excellent ability on managing life cycle of
bundles, so the administrator could manage the version and state of ARTServer

conveniently. The detail of porting ARTServer would be discussed in Section 5.3.

4.3.Relationship of components in IAC Platform

IAC Platform is an integrated platform. We take many existent standards to
compose a home appliance controller platform, and the two most significant platforms
of them are OSGi Service Platform and ART Platform.

Before starting explaining how the components interact in IAC Platform, we list
the important components in the platform first:

(1) ARTClient

(2) ARTServer

(3) IAController Interface

(4) OSGi Service

(5) Device

The relationship of these components is indicated as Figure 4-6. The
communication between ARTClient and ARTServer relies on ART protocol; it uses
asynchronous massages to deliver command (client->server) and send display result
back (server->client). [AController Interface would be wrapped as an OSGi bundle,
so that other bundles in OSGi Framework could use it, such as bundle ARTServer.
Thus, the ARTApp executing on ARTServer could use the operations provided by

TIAController Interface.

31



ART

Protocol
IAController
ARTServer
Interface

OSGi
Service

OSGi Platform

Figure 4-6 The relationship of each component in IAC Platform

IAController Interface plays a keysrole in IAC Platform, because it bridges the
ARTApp and OSGi service referencer It provides developers a universal access
approach to access the services. Besides, it searches the required service reference
from OSGi Framework by filter. description. Therefore, the action and query from
ARTApp could be sent to OSGi service reference and get result correctly by help of
IAController Interface. Wrapping IAControll Interface in an independent OSGi
bundle is convenient to replace the interface with newly implementation in the future.

The last step of controlling appliances is connecting the device service to the
OSGi service reference. OSGi Framework is responsible for the transformation.
Through the base driver provided by third parties, OSGi Frmawork could transform
the appliance services detected in network into OSGi service references. Therefore,

the OSGi service reference could be seen as the proxy of the appliance service.

4.4.Software Management

In IAC Platform, we utilize OSGi Service Platform to manage all the components.

32



There are two components, ARTServer and [AController Interface, wrapped as OSGi
bundles and could be replaced dynamically. Furthermore, IAController Interface
contains many mechanisms to transform services, such like Service Engine. If IAC
Platform supports new protocols or an efficient bundle is adapted to replace old one,
OSGi Service Platform provides a perfect solution for updating these bundles

dynamically.

33



Chapter 5 Implementation

After discussing architecture and design issues, we will go into details to
implementation. This chapter would introduce the OSGi environment we use; how to
write an ARTApp to control appliances; how to write a right service descriptor, and

the steps of integrating ART Platoform into OSGi Platform.

5.1.Construct an OSGiI Environment

In TAC Platform, we chose OSGi Service Platform as the middleware to integrate
network services. Oscar [12] is an open source implementation of the OSGi
framework specification, and it is curtently compliant with a large portion of the
OSGi 3 specifications. Thereforey we coulditake use of Oscar to construct an OSGi
environment. Oscar provides a shell environment, and available command is indicated

by Figure 5-1.

bundlelevel <level> <id> ... | <id> - set or get bundle start level.

cd [<base-URL>] - change or display base URL.
headers [<id> ...] - display bundle header properties.
help - display shell commands.

install <URL> [<URL> ...] - install bundle(s).

obr help - Oscar bundle repository.

packages [<id> ...] - list exported packages.

ps [-1] - list installed bundles.

refresh - refresh packages.

services [-u] [-a] [<id> ...] - list registered or used services.
shutdown - shutdown Oscar.

34



start <id> [<i1d< <URL> ...] - start bundle(s).

startlevel [<level>] - get or set framework start level.
stop <id> [<id> ...] - stop bundle(s).

uninstall <id> [<id> ...] - uninstall bundle(s).

update <id> [<URL>] - update bundle.

version - display version of Oscar.

Figure 5-1 Available command list of Oscar

Oscar could be executed on embedded system, so it could be installed on a home
gateway that does not have powerful capability. After installing Oscar, we could start
the OSGi Service Platform and install bundles on it. The bundles used in IAC
Platform are ARTServer, IAController Interface, and Base Driver that imports service
from network. We use “ps” to seescurrent bundles’ state of the OSGi Framework; the

result is displayed as Figure 5-2:

ps
ETART LEVEL 1
1D State Mame
A1 [Active System Bundle <1.8.22
11 [Active Shell Service <1.8.82
21 [Active Shell TUI <1.8.8>
Bundle Repository <1.1.87>
ART Server <1.6.08>
UPnPF Device Control Implementation <1.8.8>
UPFnP Base Driver 1.8.3 <1.8.3>
05Gi Serwvice (1.8.2)

31 [Active
61 [Active
7?1 [Active
21 [Active
181 [Active

e b b b b b bd
e N B T R R

Figure 5-2 Tthe bundle state of OSGi Framwork

5.2.Writing an ARTApp to Control an Appliance

5.2.1.Write an ARTApp

Since TAC Platform chose ART Platform as the development and execution

35



environment, the developers have to learn about how to writing an ARTApp. The

steps of developing an ARTApp are described below.

1.

2.

State initial UI in XML and save them.

Create a new Java file by the name of Main.java, and there must be a class named
Main in it.

The class Main has to extend from class ARTApp.

Developers must implement two method in class Main, startApp and stopApp.

The detailed steps of writing an ARTApp is described in thesis “An Adptive

Mobile Application Development Framework, 2003”.

5.2.2.The procedure of appliance controlling

Then developers start to write the logic part of the application -- controlling the

home appliances. Figure 5-3 shows. the steps-of how an ARTApp gets a service and

invokes an action. The sequence begins-with-ARTApp which sends a request to the

Discovery object with service ID, and gets the response with a abstract service object.

After getting the Service object, ARTApp take use of the service object to get the

desired action with the action name. At last, ARTApp invokes action according the

command which is triggered by ARTClient.

36



main - AApp discaovery deviceService powerAction
Discovery Sepice Action
' getServiceBylD(String) ! !
"E:' ....................

getﬂxction('String)

]

imvoke(ictionary)

CHEE— — E—

+++++++++ u

Figure 5-3 The sequence diagram of controlling home appliances

The ARTApp communicatesswith the abstract service object in IAC Platform,
and the abstract service is creatéd according to the se€tvice descriptor, so the operation
ARTApps provide must be mapped ‘to-servicerdescriptor correctly. Taking a simple
example, to control a simple light, ' we write'an ARTApp which has two operations,
turnOn and turnOff the light. With the service descriptor, we got the information that
there is an action named SetPower to control the power state of the light. The turnOn

method must invoke action SetPower with “true” parameter, while the turnOff method

with “false” parameter.

Figure 5-4 displays the operation list of the simple Light. If “Power On” is

chosen, the UPNP simple Light would be turned on. Otherwise, it would be turned

off.

37




[F ] A [F antl )

Simple Light Menu

Functions: 1 _
owver 2N 2 State Detail

(iPoweer Off

Current State:

TIPowwer: on

Exit + Mlenu Exit heru

Figure 5-4 The operation list of Simple Light

In this sample, we could observe that developers write ARTApp by following the
rules of ART Platform, service descriptor, and [AController Interface, without having

knowledge about the network protocols.

5.3.Writing a Descriptor

IAC Platform needs the h€lpyof descriptor to gain the service information when
detecting a new service reference. The format-of the service descriptor is similar to
Web Service. The information of the properties, state variables, and actions of the

service would be described in the service descriptor.

5.3.1.General case

We take the simple examples to introduce the service descriptor. We choose a
simple air conditioner service, which only provides the power control capability. The
service has an action named setPower and a state variable named power with boolean
type. The descriptor could be separated into four parts.

In this section we introduce the front three parts; they are mandatory for every
descriptor. It is used to abstract the service and map it to the [AController Interface.

The first portion contains the service properties such as service ID, type, and etc.

38



Figure 5-5 indicates this part.

<serviceld>DCSLAB-ART-Simple-Airconditoner</serviceld>
<serviceType>upnp</serviceType>

<friendlyName>Simple Airconditoner</friendlyName>

Figure 5-5 Service attributes in the descriptor

The second portion defines abstract actions of the service. Developers write
ARTApps use the operation provided in this part. Figure 5-6 informs that how many
actions developers could invoke. Besides, it also contains the state variable
information. The tag id (actionld and stateVariableld) is used to map the abstract

object to the actual object.

<ijacDefinition>
<actionList>
<action>
<actionld>art-airconditoner-setPower</actionld>
<actionName>userSetPower</actionName>
<argumentList>
<argument>
<argumentName>airconditonerPower</argumentName>
<dataType>boolean</dataType>
<direction>in</direction>
</argument>
</argumentList>
</action>
</actionList>
<stateVariableList>
<stateVariable>
<stateVariableld>art-airconditoner-Power</state Variableld>
<stateVariableName>userPower</stateVariableName>
<stateVariableType>boolean</state Variable Type>
</stateVariable>
</stateVariableList>

</iacDefinition>

Figure 5-6 The abstract definition in the descriptor

39



The third portion of the descriptor is about mapping information; it maps the
abstract action mentioned above to the actual object, so that the ARTApp could send
the command to the actual action object and invoke it. The mapping description of the
simple air conditioner is indicated as Figure 5-7. From the description, the action
which id is art-sample-power-1 would be map to actual action named SetPower, with
the service id being urn:schemas-upnp-org:serviceld:power:1. The mapping approach

of state variable is similar to action.

<mapping target="upnp">
<upnpUdn>uuid:cybergarage AirConDevice</upnpUdn>
<mapping-actionList>
<upnp-action targetAction="art-airconditoner-setPower">
<upnp-serviceld>urn:schemas-upnp-org:serviceld:power: 1 </upnp-serviceld>
<upnp-actionName>setPower</upnp-actionName>
<upnp-argument targetArgument="airconditonerPower">setPower</upnp-argument>
</upnp-action>
</mapping-actionList>
<mapping-state VariableList>
<upnp-stateVariable targetState Variable="art-airconditoner-Power">
<upnp-serviceld>urn:schemas-upnp-org:serviceld:power: 1 </upnp-serviceld>
<upnp-stateVariableName>Power</upnp-stateVariableName>
</upnp-state Variable>

</mapping-stateVariableList>

</mapping>

Figure 5-7 The mapping information of the descriptor

5.3.2.Configuration of Specific Operation

In our design, there is an optional portion in service descriptor. It is used to
define specific configuration of the service, such as power control. With this kind of
description, one ARTApp could be used by many services, as long as the service

descriptors provide the correct configuration. Figure 5-8 shows the configuration

40



information about the power control.

We take power control as the example when explaining the usage of the
configuration. It suits for all the appliances having power switch. The description tells
the system which abstract action should be used. In this example, the configuration

powerOn is mapping to SetPower(true),and powerOff is mapping to SetPower(false).

<configuration>
<powerService>
<powerOn>
<invoked-ationID>art-airconditoner-setPower</invoked-ationID>
<argument>
<argumentName>airconditonerPower</argumentName>
<dataType>booelan</dataType>
<direction>in</direction>
<argumentValue>true</argumentValue>
</argument>
</powerOn>
<powerOff>
<invoked-ationID>art-airconditoner-setPower</invoked-ationID>
<argument>
<argumentName>airconditonerPower</argumentName>
<dataType>boolean</dataType>
<direction>in</direction>
<argumentValue>false</argumentValue>
</argument>
</powerOff>

</powerService>

</configuration>

Figure 5-8 The configuration definition of the descriptor

5.4.Integrating the ARTServer to an OSGi bundle

There are many advantages to wrap ARTServer as an OSGi bundle. As we

discussed before, OSGi Framework is powerful in software management; bundles

41



could share resource with each other, and could be updated dynamically.

A bundle gains access to the OSGi framework using a unique instance of

BundleContext. In order for a bundle to get its unique bundle context, it must

implement the BundleActivator interface; this interface has two methods, start and

stop, that both receive the bundle's context and are called when the bundle is started

and stopped, respectively. Figure 5-9 is the source code of Activator.java. It is used to

produce an ARTServer instance on OSGi Framework. In method start an ARTServer

is initialed. Figure 5-10 is the manifest file.

package com.art.main;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceListener;

import org.osgi.framework.ServiceEvent;

public class Activator

implements BundleActivator {

public void start(BundleContext context) {
System.out.println("Starting ART Server.");
new ART().init();

H

public void stop(BundleContext context) {

ART.stop();

Figure 5-9 Source code of Activator.java

42



Manifest-Version: 1.0

Bundle-Description: ART Server Bundle
Bundle-Name: ART Server

Created-By: DCSLab

Bundle-Activator: com.art.main.ART
Bundle-Classpath: .,lib/xerces.jar,lib/ftp.jar
Bundle-Vendor: DCSLab

Bundle-Version: 1.0.0

Figure 5-10 Manifest file of the ARTServer bundle

Then we create an OSGi bundle by wrapping the class files and Manifest.mf to a

Jar format file, with the command jar cfm ARTServer.jar manifest.mf com.

43



Chapter 6 Conclusion

6.1.Conclusion

So far, we have described our system, IAC Platform, and how it achieves the
objectives mentioned in Chapter 1. The key point of design is on the service
descriptor. Through the abstracted service descriptor, developers could write
ARTApps to control appliances; the platform could map the original physical service
to abstract service and provide a universal development procedure; and most
important, the service could configure itself as some kind of device. It means that the
service may be controlled by existent ARTApp, instead of writing a new ARTApp. It
improves the extensibility of the service supporting. Besides, we bring OSGi Service
Platform to integrate varied home networks;-and -ART Platform to the ubiquitous
devices.

The main advantages of using IAC Platform are as follows:
® Service provider need not rewrite service to fit [AC Platform.
® Developers who write application do not consider the network protocols.
® House owner could use his/her familiar ubiquitous device to control appliances.
® The same ARTApp could control varied appliances.
® The descriptor we defined could be extended easily to fit the new type of

network and service.

6.2.Comparison
IAC Platform solves many problems of controlling appliances. Thus choosing

44



IAC Platform as development and execution environment is more suitable than other

systems. Table 6-1 is the comparison table.

IAC Platform Other System
Integrate Home | Using OSGi  Framework, the | Using proxy to transform
Network extensible ability is better than | two kinds of networks, it
others. is complex and not easy to
support new protocol.
Integrate Using ART Platform to solve the | The representation of
Ubiquitous adaptation problem. OSGi  Framework s
Device The ARTApps could be executed on | similar to Servlet. It is not
many  platforms, such like | efficient to write hard
J2ME, .NET, WAP browser, and etc. | code to display the UI.
Extensibility 1. A new network protocol could be | Not support.

included in IAC Platform easily.
2. A new service'could be supported
by IAC Platform with little effort.

Table 6-1 The comparison:Table'of TAC Platform and other systems

6.3.Future Works

Now we finished the prototype of the IAC Platform, but there are still many jobs

that could make the platform more mature. We propose some future works that

enhance [AC Platform.

®  Support of network protocols

Now we have finished the implementation of UPNP and X10 network protocols.

To make the platform more complete, we must add other protocol, like JINI, as

soon as possible.

45



Definition of configuration

Configuration is a significant part of the platform, now we have defined a few,
such as power configuration. In the future we will define more kind of
configurations. Then, developers would have a better environment when
developing application to interact with appliances.

Optimizing

To improve the efficiency of IAC Platform, there are some implementations that
could be optimized. One example is Service Engine; we could rewrite a Service
Engine to increase the speed of searching matching service from OSGi

Framework.

46



Chapter 7 Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

UPnP™ Forum, http://www.upnp.org/

Jini.org, http://www. jini.org/

OSGi Alliance, http://www.osgi.org/

P2 =2 “ART— V@ eanfmFd g * £ B3 T 7R d A 2 F 5K
AL T~ 0 R 92

Chau, O.S., Hui, P., and Li, V.O.K., “An Architecture Enabling Bluetooth / JINI
Interoperability,”Proc. IEEE PIMRC, Barcelona, Spain, September 2004.

Song Yean Cho, Dae Young Seo, Tai Yun Kim,“Gateway Framework for
Home Appliance’s Interoperability Based on Heterogeneous Middleware in
Residential Networks,” Consumer Electronics, 2002. ICCE. 2002 Digest of
Technical Papers. International Conference on 18-20 June 2002

J. Allard, V. Chinta, S. Gundala, G. G-Richard-1II, “JINI Meets UPnP : An
Architecture for JINI/UPnP Interoperability,” IEEE Computer Society, 2003.
Latvakoski, E.J.; Paakkonen, P., ”"Remote interaction with networked appliances
attached in a mobile personal area network,” Communications, 2003. ICC '03.
IEEE International Conference, May 2003.

Mariana Nikolova, Frans Meijs and Peter Voorwinden,” Remote Mobile
Control of Home Appliances,” IEEE Transactions on Consumer Electronics,

FEBRUARY 2003.

[10] Noriyuki Kushiro, Shigeki Suzuki, Masanori Nakata, Hideki Takahara and

Masahiro Inoue,” Integrated Residential Gateway Controller for Home Energy
Management System engineering,” IEEE Transactions on Consumer

Electronics, AUGUST 2003.

47



[11] Zhaohui Ye, Yindong Ji, Shiyuan Yang,” Home Automation Network
Supporting Plug-and-Play,” IEEE Transactions on Consumer Electronics, Vol.
50, No. 1, FEBRUARY 2004.

[12] Oscar Project, http://o0scar.objectweb.org/

[13] Domotics Software, http://domoware.isti.cnr.it/

48



