
 i

國 立 交 通 大 學

資訊科學系

碩 士 論 文

高 擴 充 性 之 家 電 控 制 平 台

A High Extensible Home Appliance Control Platform

研 究 生：林慧雯

指導教授：袁賢銘 教授

 ii

中 華 民 國 九 十 四 年 六 月

高擴充性之家電控制平台

研究生: 林慧雯 指導教授: 袁賢銘

國立交通大學資訊科學研究所

摘要

因為網路的普及，越來越多家庭中的裝置支援連接網路的能力，使用者無論在何

處，都可以透過網路控制家裡的裝置，我們將這類的裝置稱為資訊家電。目前資訊家電

的應用程式多數針對特定的裝置開發，並且執行在特定的平台；這樣的開發方式使得開

發程式的人員必須熟悉各種不同的網路協定(例如 JINI、UPNP)和執行平台(例如

J2ME、.NET Framework)。

為了解決上述的問題，我們提出一個整合 OSGi 平台之高擴充性系統(IAC Platform)，

並定義抽象化描述服務的機制，將各種不同網路中的家電裝置服務轉化為 OSGi 服務，

並提供一個統一的存取介面，使程式開發人員得以透過 OSGi 標準找尋並使用服務。以

ART 架構為開發及執行的平台可使本系統運行之程式支援不同平台的手持裝置，解決特

定應用程式只能在特定平台執行的不便。

IAC Platform 不只整合了家庭網路協定與執行環境，並且提供了撰寫一次應用程式

就可以支援各種新服務與新協定的環境。

 iii

A High Extensible Home Appliance Control Platform

Student: Hui-wen Lin Advisor: Shyan-Ming Yuan

Department of Computer and Information Science

National Chiao Tung University

Abstract

Since the population of the network technology, more and more home appliances

supports the capability of network connection. It means that the house owners could interact

with home appliances wherever they are. Nowadays most interacting applications are

developed for particular protocols (UPNP, JINI), and executed on special environment

(J2ME, .NET Platform).

 To solve the problems mentioned above, we proposed a high extensible Platform named

IAC Platform. It defines the descriptor that abstracts the services, and transforms services that

are in varied protocols into OSGi services. It also provides a universal interface so that the

developers could write interacting applications with the same procedure. Besides, we take use

of ART Platform to improve the adaptive capability of the platform.

 IAC Platform not only integrates the network protocols and execution environments, but

also makes the applications support new services and new protocols without be rewritten.

 iv

Acknowledgement

首先我要感謝袁賢銘教授兩年來的指導和教誨，讓我所學習的學問更上一層樓；也

感謝博士班學長，尤其是葉秉哲、邱繼弘和鄭明俊，謝謝你們這兩年對我的訓練和協助，

讓我可以順利完成這篇論文；此外還要感謝蕭存喻、吳瑞祥、高子漢，謝謝你們給我的

種種建議，增加此篇論文的思考廣度。

 謝謝文如，很幸運可以和妳同學兩年互相勉勵和一起學習；謝謝俊元，感謝你的幫

忙；謝謝倫武，那些一起在實驗室奮鬥的日子很值得回憶；以及所有實驗室的其他同學

和學弟，謝謝你們一直以來的照顧，協助解決許多課業上的難題，為實驗室帶來熱絡的

研究風氣。

 還有我的家人，姝萍、佩瑩和宗勳，謝謝你們平時的鼓勵，以及為我解決許多生活

上的煩惱，讓我可以順利完成學業；以及我的高中好友們，曉蓉、珈倩、佳雯、以萱、

乃瑜、怡瑢、貞瑩、佳玲、宛凌，妳們就像是我的姊妹一樣，總是給我完全的支持，謝

謝。

 最後，我要將這篇論文，獻給我的父母，感謝你們讓我來到這個世界，並且耐心的

付出以及細心的教誨，讓我得以完成碩士學業；我會更加努力，面對未來的各項挑戰。

 v

Table of Contents

Acknowledgement .. iv

Table of Contents... v

List of Figures ..vii

List of Tables ... ix

Chapter 1 Introduction ... 1

1.1. Preface ..1

1.2. Motivation ..1

1.3. Research Objectives ...2

1.4. Organization ...4

Chapter 2 Background.. 5

2.1. Home Network System...5

2.1.1. JINI Network Technology ..5

2.1.2. UPnP Technology ...7

2.1.3. X10 Technology ...8

2.2. Integration of Home Network ..9

2.2.1. OSGi Service Platform ...9

2.3. ART (Adaptive Remote Terminal) Platform..10

2.4. Related work... 11

Chapter 3 System Architecture .. 13

3.1. Overview ..13

3.2. Roles ...15

3.3. Integrate Home Network Systems..16

3.4. Application Runtime Environment...18

 vi

Chapter 4 Design Issues.. 21

4.1. Integration of Home Networks ...21

4.1.1. A Universal Development Procedure ...22

4.1.2. Mechanism of High Extensible Service Supporting.................................28

4.1.3. Service Engine..30

4.2. Integration of Ubiquitous Devices..30

4.3. Relationship of components in IAC Platform ..31

4.4. Software Management..32

Chapter 5 Implementation ... 34

5.1. Construct an OSGi Environment..34

5.2. Writing an ARTApp to Control an Appliance...35

5.2.1. Write an ARTApp ...35

5.2.2. The procedure of appliance controlling..36

5.3. Writing a Descriptor ...38

5.3.1. General case..38

5.3.2. Configuration of Specific Operation ..40

5.4. Integrating the ARTServer to an OSGi bundle ..41

Chapter 6 Conclusion.. 44

6.1. Conclusion..44

6.2. Comparison...44

6.3. Future Works ..45

Chapter 7 Bibliography .. 47

 vii

List of Figures

Figure 2-1 The Architecture of JINI ...6

Figure 2-2 The Architecture of OSGi Service Platform...10

Figure 2-3 The ART Platform...10

Figure 3-1 The scenario of controlling the home appliances13

Figure 3-2 The architecture of IAC Platform ...14

Figure 3-3 Roles of IAC Platform ..15

Figure 3-4 The transformation of the UPnP services and OSGi services.................17

Figure 3-5 Mapping the service to controller interface by descriptors.....................18

Figure 3-6 The processes of controlling the appliances ...19

Figure 3-7 The sequence of using ARTApp to control appliances20

Figure 4-1 Class diagram of IAController Interface ..24

Figure 4-2 Sequence diagram of discovering service...25

Figure 4-3 The relationship of the Service, Action, and StateVariable26

Figure 4-4 The relationship of the Action and its implementation...........................27

Figure 4-5 The concept of the configuration ..29

Figure 4-6 The relationship of each component in IAC Platform............................32

Figure 5-1 Available command list of Oscar..35

Figure 5-2 Tthe bundle state of OSGi Framwork...35

Figure 5-3 The sequence diagram of controlling home appliances..........................37

Figure 5-4 The operation list of Simple Light ..38

Figure 5-5 Service attributes in the descriptor ...39

Figure 5-6 The abstract definition in the descriptor ...39

Figure 5-7 The mapping information of the descriptor ..40

 viii

Figure 5-8 The configuration definition of the descriptor ..41

Figure 5-9 Source code of Activator.java...42

Figure 5-10 Manifest file of the ARTServer bundle ..43

 ix

List of Tables

Table 6-1 The comparison Table of IAC Platform and other systems......................45

 1

Chapter 1 Introduction

1.1. Preface

Controlling the home information appliances should go through many steps. First,

the appliances must be connected into the home networks. Then, the application

developers have to get the service references provided by service providers, and then

they construct the applications to control these appliances. After they finish the

developing, the applications are installed into the mobile device, such as PDA and cell

phone. At last the house owner could control the appliances with his/her mobile

device. However, it is much harder than we think to develop an application to control

the home appliance, because the appliance may be connected into home network with

varied network protocols, such as JINI [1], UPNP [2], X10, and so forth. Moreover,

the application may only be executed correctly on a certain platform, like MIDP

platform, while the house owner’s mobile device may support another execution

platform. To overcome these problems, we have designed a platform, named IAC

Platform, which simplifies the procedure of developing applications that control the

home appliances.

1.2. Motivation

In these days, the use of information appliances is more and more popular. The

appliances could be controlled by not only a certain control box, but the controlling

applications that are executed on mobile devices. To take a simple example, the house

owner could turn on the air conditioner by his/her cell phone. Further, there are some

advanced applications that could manage the interoperability between appliances, for

 2

example, when a television in the living room is turned on, the residential gateway

would detects the situation and notify the controller of the light in the living room to

turn it on.

It is not easy to access all appliances in the house or office with a simple

application, because there is no standard protocol for home network now. It means

that the home appliances may be connected to different network systems, and the

developers have to access these appliances by different protocols. Therefore, we have

to design a platform that integrates the services in heterogeneous networks, so that the

developers could access them by the unified approach.

We also believe that the house owner would want to control the home appliances

with his/her own mobile device, not a particular controller device. To achieve this

goal, we need find a solution to handle the adaptive issue between varied execution

environments.

1.3. Research Objectives

There are three objectives in IAC Platform: integrating the home networks,

improving adaptation ability of the applications, and making the platform extensible

to the new protocols and new services.

Integrating the home networks

There are plenty of home network protocols nowadays, while the connection and

interaction mechanism of each protocol is quite different. It means that there is no

unified approach to access the appliances which are in different network systems.

Thus, if a programmer wants to develop applications to control the information

 3

appliances, he/she has to be familiar with the every protocol, and implements with the

corresponding protocol. It is observable that developing applications with this way

will be hard and waste much time. Thus, integrating different home network protocols

is a very important issue in IAC Platform.

Improving adaptation ability of the application

On the other side, there are many choices when executing application on mobile

device, such like J2ME platform, .NET framework, HTML browser, and WAP

browser. In order to let an application be executed on varied platforms, developers

have to spend lots of time porting the program to each execution environment. Thus,

we want to design a mechanism, which improves the adaptive capability of the

program and reduces the porting effort.

Making the platform extensible

 The platform is designed to integrate not only the existent home network systems,

but the protocols which may be proposed in the future. For the point of programmers,

they need not learn the new protocol, but develop applications with procedures that

are defined in IAC Platform.

Since the programmers develop applications without considering network

protocols, it is possible that the same application could be used to control varied

services.

It could be concluded, from what has been said above, that we try to design a

platform that has no limit on two sides – home network protocol and execution

environment. The platform simplifies the development procedure of the applications.

With the platform, developers only have to focus on the program logic. That is to say,

 4

developers should not to consider what kind of network protocol the appliance uses

and which kind of execution environment the application suits. On the contrary, it is

handled by our system, IAC Platform.

With the integration of development environment, the IAC Platform is extensible

because it is suitable to new added service and protocol without much modification.

1.4. Organization

In Chapter 2, we introduce the technologies that are used in IAC Platform, and

discuss the related research. In Chapter 3, we illustrate the architecture of IAC

Platform and the components in it. In Chapter 4, we discuss the design issues of each

component, and how these components cooperate to carry out our objectives. In

Chapter 5, we turn to developers’ perspective. We show that developer could develop

an application easily with help of IAC platform. In Chapter 6, we give the conclusions

and future works.

 5

Chapter 2 Background

In this chapter, we make a brief introduction of the home network systems which

are popular nowadays. We also introduce OSGi Service Platform, which is used to

integrate different home network systems, and ART Platform. Besides, related work

would also be discussed.

2.1. Home Network System

In the past, the use of the computer network system is mainly in the companies

and for the business usage. Nowadays, as the price of the computer is going down and

the popularity of the embedded system is growing up, it is often seen that there are

more than two systems in a house or an office. These systems may have to share files

and peripherals, such as a printer. The requirement of sharing the resources forms the

concept of the home network system, which connects shared resources in a small local

area. Through the home network system, the devices in the house could communicate

with each other.

In general, the bulk of the home network systems use the Ethernet as

communication protocol. However, the general users of the home network system

may not be familiar with network protocol. Thus, there are some advanced protocols,

these advanced protocols need less setting skill, and support the capability of

plug-and-play, such as JINI, UPNP, X10; these protocols are the most popular home

network systems recently..

2.1.1. JINI Network Technology

JINI network technology, which is based on Java technology, is a distributed

 6

communication system. It is an open architecture that enables developers to create

network-centric services -- whether implemented in hardware or software -- that are

highly adaptive to change. JINI technology can be used to build adaptive networks

that are scalable, evolvable and flexible as typically required in dynamic computing

environments. The characteristics of the JINI technology are as follows.

1. Support Plug-and-Play mechanism for network service.

2. Provide toolkit for developers to build strong distributed systems.

3. Provide an architecture which is based on services.

The architecture of the JINI technology is indicated by Figure 2-1, and the

procedures of finding services could be divided into three steps: Discovery, Join, and

Lookup.

Lookup Service

Service Provider

Service
Attribute

Service
Object

Client

Service
Object

Service
Object

Service
Attribute

Figure 2-1 The Architecture of JINI

 Discovery Protocol

For service providers and clients, the first step of joining JINI network is to search for

 7

Lookup Service, and get the reference of the Lookup Service.

 Join Protocol

After a service provider finds the Lookup Service, it registers itself and then uploads

the service proxy object to the Lookup Service. It is so called “Join” step in JINI

technology.

 Lookup Protocol

In the architecture of JINI technology, the client does not connect to service provider

and take use of service directly. Instead, it connects to Lookup Service, and search for

matched services.

Relying on the above steps, clients could find the required service, and download

the service proxy object from the Lookup Service. Then, the clients execute the proxy

object directly, or communicate with remote service by the object.

2.1.2. UPnP Technology

UPnP technology is a distributed, open networking architecture that employs

TCP/IP and other Internet technologies to enable seamless proximity networking, in

addition to control and data transfer among networked devices in the home, office,

and public spaces.

The most obvious difference between UPnP and JINI technology is that there is

no Lookup Service in the architecture of UPnP technology. The client communicates

with the service provider directly. In addition, UPnP technology calls services with

remote procedure call, while JINI technology does it with proxy objects.

 8

The processes of searching and controlling services for UPnP technology are

explained below.

 Discovery

The service provider broadcasts messages, which include the information of the

services, such as device name, manufacturer, and etc. On the other hand, the client

could send message to search for services. If the service provider gets the query

message and held the required services, it would send response to the client with the

service information.

 Description

After the client finds out the required service, the service provider would send the

client a XML document which contains the detail of the service. The content of the

document includes the information of devices, services, actions, and etc.

 Control

The client sends the action message to execute the action of the service. After

finishing the action command, the service provider would send the execution result to

the client.

2.1.3. X10 Technology

X10 technology sends signals through home power line. The plug of the home

appliance is put in the X10 module socket, and X10 module is connected to home

power system. Then we could send signals to control the power state of the

appliances.

Considering the above three types of home network protocols, we get the

conclusion that there are many different mechanisms in varied protocols. Therefore, it

would be a big challenge for programmers to develop applications to control home

 9

appliances with different protocols separately.

2.2. Integration of Home Network

2.2.1. OSGi Service Platform

In order to integrate the different home network systems, we chose OSGi Service

Platform as the middleware that helps to collect all the services in varied protocols to

the same environment.

The OSGi™ specifications [3] define a standardized, component oriented,

computing environment for networked services. The OSGi Service Platform provides

the capability to manage the life cycle of the software components. Software

components can be installed, updated, or removed dynamically. Software components

are libraries or applications that can dynamically discover and use other components.

The OSGi Alliance has developed many standard component interfaces that are

available from common functions like HTTP servers, configuration, logging, security,

user administration, XML, and any more. In OSGi 3 specifications, service interface

is included. It defines the service interfaces of UPnP and JINI technology to transform

these two types of services into the OSGi services. Thus, developers could

communicate with the services using OSGi protocol, instead of accessing these

services from networks directly. The architecture of the OSGi Service Platform is

indicated by Figure 2-2.

 10

Figure 2-2 The Architecture of OSGi Service Platform

2.3. ART (Adaptive Remote Terminal) Platform

As the computing ability of the mobile devices is poor in the past, we had

designed a platform to solve this kind of problem. Adaptive Remote Terminal

Platform [4] is a client-server model system, and clients communicate with servers by

means of an asynchronous message-delivery mechanism. Figure 3-2 helps to

understand the idea.

ART Client
Specific Platform

ART Server
J2SE

Window
Window

Canvas

Window App.
App.

App.

App.Asynchronous
message
delivery

Figure 2-3 The ART Platform

 ART has two basic characteristics: “adaptation” and “remote terminal” (remote

control and terminal display). To achieve the goals, it separates the UI and the

 11

program logic. ART server is responsible for executing program logic, while the ART

client is in charge of displaying UI.

 The UI of ART platform is described by XUL file, which follows the XML

document format. When ART applications are executed on varied platform, ART

Platform would generate fit UI. Thus, making use of ART Platform to develop the

applications, developers need not consider the execution environment of the mobile

device. It means that developers only have to write program once, ART Platform

would make the ART application adaptive and suitable for varied execution platform.

2.4. Related work

In the present day, the related research could be divided into three parts:

integration of the varied home network systems, the representation capability of OSGi

Service Platform on mobile devices, and the solutions of controlling the home

appliances.

 In aspect of integrating home networks, nowadays most solutions utilize proxy to

connect two different home network protocols. Taking such solution, the extensibility

of the system is very poor, because it is very hard to put in the third protocol [5-7].

 OSGi Service Platform provides a simple HTTP server; it means that the

developers could design UI by writing Servlet code. Though almost all the mobile

devices support web browser, writing Servlet code is not an efficient approach for

designing UI. Besides, the HTML protocol is weak in interaction, because it is

one-way client-server model. Only after a client sends requests, the server could send

responses back. The server could not send message to the client actively.

 One final point is the research on controlling the home appliances. The published

result is all limited on a particular home network protocol and execution environment

[8-11]. There is no research for two-way opened development environment -- a

 12

platform that makes the applications be executed on any mobile device, and control

the appliances which are on varied network systems.

 13

Chapter 3 System Architecture

3.1. Overview

First of all, we have to explain the scenario about how to use our system. Taking

some simple examples, people may forget to turn off the light when leaving house and

want to turn it off with remote controlling application. They may also want to monitor

the state of TV when they are in office to see whether children watch TV all the time.

Furthermore, when house owner goes traveling for a long time, they may hope to

control the appliances as they are at home, so that the thieves will not know that there

is no person in the house.

We all know that mobile users could control the household appliances by their

mobile devices, such as PDA, cell phone. The devices connect to the home gateway

through wireless network. The gateway manages all the appliances at home, including

UPNP TV, JINI refrigerator, X10 light, and so on. The scenario is showed as Figure

3-1.

X10 network

JINI network

UPNP network

Figure 3-1 The scenario of controlling the home appliances

 14

About the former, the home gateway has to communicate with each network

system. It is also a hard work for developers to design controlling applications with

these protocols. Thus, we proposed a platform named IAC Platform that provides a

universal interface for developers so that they could access the appliances with the

same procedure and should not know about what kind of network the appliances

belong to. We could say that the IAC platform makes developing the appliance

control applications more efficient, because it saves developers’ time to study the

different specifications of home network protocols.

As there are many kinds of mobile devices in these days, IAC platform also

supports varied execution environments. We bring ART Platform into our system

because one of the ART Platform’s characteristics is “adaptation”. Developers only

have to write application once, and the ARTApp would be ported to different

execution environments automatically.

OSGi
Framework

ART
Server JINI

Driver

UPNP
Driver

Control app.
Database

ART application for controlling the appliance

UPnP TV

Request

Download

Integrate home network systemsApplication Runtime Environment

JINI Refrigerator
Home Gateway

Figure 3-2 The architecture of IAC Platform

 15

The simple architecture of IAC Platform is indicated as Figure 3-2. When a new

appliance is detected by gateway, which installs OSGi Service Platform to integrate

services, the service driver would transform the service provided by the appliance into

an OSGi service. Then the ARTServer would discover the new OSGi service, and tries

to download the ARTApp, which is used to control the appliance, from database.

Finally the mobile users could connect to ARTServer with ARTClient and interact

with the appliance.

3.2. Roles

We define several terms that will be referred. Since IAC Platform brings ART

Platform in, we also introduce some ART operations. They are schematized in Figure

3-3.

Mobile User Operate ARTApp

Control Device

<<extend>>

Developer

Provide ARTApp

Port ART Client

System Provider

Maintain ART Server

Provide Service

Service Provider

Provider Service Descriptor

IAC

Figure 3-3 Roles of IAC Platform

 Mobile user is house owner who takes use of ARTApps to control the home

 16

appliances.

 ARTApps are mobile applications written with ART APIs that we provide. Each

of these applications consists of UI and program logic. ARTApps work on the

server side and send result to client to show.

 ARTClients are agents which run on mobile devices, and they serve mobile users

for interacting with ARTServers.

 ARTServer is to stand for the server body of ART. After an ARTApp comes out,

it is put in ARTServer and waits to serve ARTClients.

 Developers we mention below are programmers who write ARTApps to control

the household appliances.

 Service providers provide the services and service descriptors.

 Service descriptors are XML documents which describe the information of the

services. It is used to abstract services. The detail of the descriptor would be

talked in section 5.3.

3.3. Integrate Home Network Systems

One of the most significant contributions of our system is integrating different

home network protocols. As the Figure 3-1 indicates, there may be more than two

types of network systems at home. If developers write programs for these protocols

respectively, they will waste lots of time. Hence, to design a platform which provides

a nice development environment, it is clear that integrating home networks is the most

important problem that we have to solve.

We divide the integration into two parts: (1) make use of OSGi Service Platform

to transform all the services into OSGi service; (2) provide a universal development

procedure for developers.

In the first place, we introduce how OSGi service Platform works to transform

 17

all the services at networks into OSGi Services. The procedure could be schematized

as Figure 3-4. The OSGi specification defines service interfaces, including UPNP and

JINI. We could download the implementation of the interface, which is so called

UPNP or JINI Base Driver. The Base Driver is composed of importer and exporter.

The importer discovers the device in the network and transforms it into an OSGi

service; the exporter transforms an OSGi service which is on OSGi Framework into a

virtual Device.

Base Driver

Exporter Importer

OSGi side

UPnP side

Device
Virtual
Device

UPNP Device
(OSGi Service)

OSGi Service
(UPNP Device)

discovery

Create

Create

Figure 3-4 The transformation of the UPnP services and OSGi services

In addition to the transformation of services, we also design a universal

controller interface named IAController Interface to provide a unified procedure of

accessing the OSGi services, and then proceed to control the appliances. With

IAController Interface, developers could write programs to interact with the

appliances without considering the network protocols. However, it is not easy to

 18

design a universal interface since there is much diversity between varied home

network protocols. Therefore, we need a descriptor to help us obtaining the

information of the service, and then mapping the characteristics of the service into

IAController Interface. Figure 3-5 shows this concept. The detail of IAController

Interface will be discussed in Section 4.1.1.

UPnP TVJini refrigerator

Description
Data

….
….

….
….

Network
Device

Operation System

OSGi Framework

Universal Interface

Figure 3-5 Mapping the service to controller interface by descriptors

3.4. Application Runtime Environment

When developers write the controlling applications, using the IAController

Interface could avoid communicating with network protocols directly. In the other

aspect, to let applications supporting varied execution environment, we chose ART

Platform as the development and execution environment. In the Section 2-3, we

described the characteristics of ART Platform: ARTApps have adaptive capability on

varied execution environments. It could general the suitable code by executing

 19

environment.

With ART Platform, developers need not port programs to fit varied execution

platforms. However, we have to solve the problem of communication between ART

Platform and OSGi Service Platform. The solution we designed is wrapping the

ARTServer as an OSGi bundle, so that ART Server becomes a package of the OSGi

framework. It could not only export itself to by other bundles, but import other

bundles, such as IAController Interface. Thus, ARTApps executing on ARTServer

could access the OSGi services, and achieve the goal of controlling the Devices. We

could indicate the processes by Figure 3-6.

OSGi Framework

Universal
Interface

ART Server

ART Client

Internet

OSGi Service UPNP network

Device

Figure 3-6 The processes of controlling the appliances

So far, we have seen how the ARTClient controls the appliances. Now we

discuss how the ARTServer gets correct ARTApps to control the appliances. The issue

could be considered in two aspects: developers and IAC platform.

For developers, after developing the ARTApps, they will upload the ARTApps to

the database with the service IDs. For IAC platform, the steps of using ARTApp are

more complex. First, ARTServer has to listen for the new added OSGi services, and

then downloads the corresponding ARTApps from the database with service identities.

After the ARTApps are downloaded, they would be putted in ARTServer and wait to

serve. When an ARTClient connects to ARTServer, ARTServer will start the ARTApp.

Therefore, ARTClient could utilize the ARTApps to control the home appliances. The

 20

sequence is showed as Figure 3-7.

Developer IAC Platform

Develop ARTApp to
control the appliances

Upload ARTApp to
database

ARTServer detect the
new OSGi service

Download the ARTApp
from database

ARTApp is putted in
ARTServer

ARTClient connect to
Server and control the
Appliances with ARTApp.

Figure 3-7 The sequence of using ARTApp to control appliances

 21

Chapter 4 Design Issues

In this chapter, we would discuss the design issues of IAC Platform. As

mentioned above, the capabilities provided by IAC Platform include integrating

varied home network services, and making IAC Platform more flexible and adaptive.

There are lots of design issues about IAC platform. For example, in order to integrate

home network systems, we have designed a universal controller interface

(IAController Interface). With the interface, applications used to interact with home

appliances are developed with universal procedure. We have also defined the format

of the service descriptor; the descriptor written by service providers abstracts the

services so that the actual service in the network could be mapped to abstract service

object of IAController Interface. The design concept of descriptor is to help IAC

Platform to be extensible for new home network protocol and new service. The design

issue of IAController Interface would be discussed in Section 4.1.1, and the content of

the descriptor would be explained in Section 4.1.2.

In the aspect of execution platform, we want to choose a platform that support

most kinds of ubiquitous devices. The platform must adapt one application to many

execution environments.

We also considered the issue that how the components in IAC Platform

communicate with each other. At last, we would explain the software management

topic in IAC Platform.

4.1. Integration of Home Networks

In order to integrate varied home networks, we have designed a universal

interface, which provides a unified procedure to interact with home appliances.

Besides, we have defined service descriptors, so that IAC Platform could create

 22

abstract service objects according these descriptors. Before introducing detail of

design mechanisms, we explain the abstract service and physical service first.

In our design, we separate the services into abstract and physical. All services

with varied network protocols would have some common characteristics, and we

group these characteristics as the properties of the abstract service. A Service object in

IAController Interface is designed as a abstract service object. On the other hand,

physical service points to the service reference provided by service provider. It may

exist in network or be transformed into an OSGi service reference; it is used to control

the appliance directly.

4.1.1. A Universal Development Procedure

To provide a universal procedure to control household appliances, we have

designed an interface, which is mentioned above as IAController Interface. The

interface defines the specification of the abstract objects; it abstracts the service

properties, action, and state variable objects and provides mapping information. No

matter which original protocol the service belongs to, IAC Platform could map the

physical service into the abstract service of the interface. Thus, developers write

applications without taking care of the protocol details.

IAController Interface mainly provides the suitable API for programmers to

develop interaction application of home appliances. We first define the interfaces of

service, action, and state variable, and the relationship of them, and then design how

to map these objects to physical services. At last we design a model to handle the

event messages. In addition, IAController Interface also regulates the procedures of

service discovery and descriptor locating. The issues of descriptor locating and

service discovery would be taken up in Section 4.1.1.1.

IAController Interface is used to integrate services. To design flexible interfaces,

 23

we have studied several network protocols first, focusing on the similarity of

capability and the difference of their implementation. The steps of accessing the home

network service could be classified into four parts.

 Discovering the required Service:

Search for the desired service by matching the attributes or capabilities of the

service.

 Getting service information:

The service information contains action details, state variable name, and etc.

 Invoking action:

Clients send command to execute functions.

 Event model:

Service sends notification to clients actively, the major goal is to inform the

change of the service state.

According to the conclusions we got above, we have designed the class diagram

of IAController Interface indicated as Figure 5-1. In the beginning, developers could

use Discovery object to search for services, and get the required abstract service

objects. The abstract service object usually contains two lists, ActionList and

StateVariableList, which include Action and StateVariable objects. These two types of

objects are also abstract objects, described in service descriptors. Developers could

use above three objects (Service, Action, StateVariable) to invoke basic operations, as

the steps described in Section 5.2.2. Now we discuss the concept of each interface.

 24

Figure 4-1 Class diagram of IAController Interface

4.1.1.1. Discovery

Now we come to the issues about steps of service discovery. First, we get the

service descriptor with descriptor locator. After obtaining the descriptor, IAC Platform

would parse it and produce a abstract service object. The procedure of service

discovery is illustrated as Figure 4-2.

 25

Main Discovery DescriptorLocator ServiceBuilder

getService(DescriptionLocator)
getDescription()

Document

parse(Document)

Service

Service

Figure 4-2 Sequence diagram of discovering service

There is a method getService in class Discovery. The method needs a parameter

which’s type is DescriptorLocator; the class DescriptorLocator contains a method

named getDescriptor which return an org.w3c.dom.Document object. After getting the

Document object, developers could use class ServiceBuilder to parse the service

descriptor and create abstract objects, and then deliver the service object as return

value of method getService.

4.1.1.2. Service

Service object contains the abstract information of service properties, such as

service ID, service type, and so on. Bedsides, it also has two lists which contain

abstract action and state variable objects. The relationship of Action, StateVariable,

and Service is indicated as Figure 4-3.

It deserves to be mentioned that we designed Service with an abstract concept.

The properties of the service mainly come from the service descriptor. With Service

 26

objects, developers could design application to control appliances without carrying

about the implementation of the protocols. Therefore, it could reduce the development

effort for the developers. They could use the unified interface to access all appliance

services.

Action

invoke()

StateVariable

Service
serviceID
serviceType
serviceName
actionList
stateVariableList

+has

+has

Figure 4-3 The relationship of the Service, Action, and StateVariable

4.1.1.3. Action

The most significant method in class Action is invoke. It is used to send action

command to service in order to interact with home appliances. Before sending an

action command, developers have to collect all parameters the action requires, and put

these parameters into a Dictionary object.

 The difference between Service and Action is that the implementations of Action

would be implemented according to varied protocols. Because the procedure of

invoking action depends on protocol mechanisms, each protocol should have its own

action implementation. Figure 5-4 indicates the relationship of the interface Action

and its implementations.

 27

<<interface>>

Action

UPNPActionImp JINIActionImp ……

UPNP

Device

JINI

Device

……..

invoke
invoke invoke

Figure 4-4 The relationship of the Action and its implementation

4.1.1.4. StateVariable

The design of StateVariable is similar to Action. The main function of

StateVariable object is getting the current state of the service. Similarly, developers

could change the state of the service by setting the state variable value.

4.1.1.5. Listener

We also have to design a mechanism to handle the event messages sent from

services. Events are mapped and delivered to ARTApps according to the whiteboard

model. The ARTApp interested in receiving the events registers an object

implementing the Listener interface (referring to Figure 4-1). A filter could be set to

limit the events for which ARTApp is notified.

If an ARTApp is registered with a property named art.iacontrol.filter with the

value of instance of a Filter object, the listener is only notified for matching events.

If an event is generated, the notify method is called on all registered ARTApps for

which the optional filter matched for that event. If no filter is specified, all events

 28

must be delivered. If the filter does not match, the IAC Platform must not notify the

ARTApp.

One or multiple events are passed as parameters to notify (String, Dictionary)

method. The Dictionary object holds a pair of StateVariable objects that triggered the

event and an Object for the new value of the state variable.

Event model is an optional mechanism of IAC Platform. It is implemented for

those protocols that are suitable for event model.

4.1.2. Mechanism of High Extensible Service Supporting

The main purposes of service descriptor are creating abstract service objects, and

defining the configuration properties. Through reasonable mapping, ARTApp could

operate the physical service by using the abstract service object which is produced

according to descriptor. The concept of configuration is grouping similar operation of

different service, so that developers could write an application to control varied

appliances.

 The general idea of the configuration is indicated as Figure 4-5. Taking light

and refrigerator for examples, these two appliances both contain power control

operation. The action for light to control the power state is setPower1 (boolean), and

for refrigerator is setPower2 (String). In the descriptors of the two services, it is

defined clearly what command should be operated when turning on and off the

appliances. For light, turning it on should send setPower1 (true) command, while

turning it off need setPower1 (false) command. For refrigerator, setting the power

state uses setPower2 (“on”) and setPower2 (“off”). With the definition of

configuration, developers only use PowerOn and PowerOff operations to set the

power state of different appliance, without knowing original action name and

parameters

 29

Action:
setPower1(boolean)

Action:
setPower2(String)

PowerOn:
setPower1(true)

PowerOff:
setPower1(false)

PowerOn:
setPower2(“On”)

PowerOff:
setPower2(“Off”)

ARTApp
PowerOn
PowerOff

Figure 4-5 The concept of the configuration

There is another advantage of using descriptor; it could increase the extensibility

of IAC Platform. Service providers should not rewrite services to fit IAC Platform.

Instead, they write descriptors to describe the service information. Similarly, two

services with similar operations could use the same ARTApp if they contain

descriptors to complete the mapping.

In addition to define the format of the descriptor, it is a design issue to get

descriptor, because we hope the access approach of getting descriptor is flexible. The

descriptor file may be a local file, a remote file, and even network stream. Thus, we

defined the interface DescriptorLocator, and the implementation of the

DescriptorLocator would be replaced to adapt varied descriptor source.

The implementation of the DescriptorLocator has to get the descriptor content,

and parses it to construct a XML DOM document, which represents the structure of

the service, and returns the DOM tree to the originator. After locating the descriptor,

the next step is creating abstract service objects for developers. ServiceBuilder creates

abstract service objects and sets the service attributes with information described in

descriptors, such like service id, type, and friendly name. Furthermore, Action and

StateVariable objects are also created and put into ActionList and StateVariableList.

 30

We design ServiceBuilder with a flexible approach, too; if IAC Platform supports

a new protocol, and defines the new service descriptor, we only need to extend the

ServiceBuilder to support the new protocol and service descriptor.

It should be concluded that the steps of producing a abstract service object are as

following: (1) locating the descriptor file; (2) parsing the descriptor; (3) creating

Service, Action and StateVariable object. (1) and (2) are completed in

DescriptorLocator implementation, and (3) is in ServiceBuilder.

4.1.3. Service Engine

The aim of service engine is charge of mapping the desired OSGi service

reference to the abstract service object. Since each protocol has its own properties, it

has corresponding service engine, respectively. Taking UPNP for example, UPNP

Service Engine catches all devices, actions, state variables from OSGi Framework.

When developers want to access OSGi service reference by abstract service

object, service engine will look for matching service reference rapidly. Another

advantage is that it could be replaced easily with a newly implementation if we write

an efficient service engine, because each engine is written independently. Besides,

service engine has cache capability, so that abstract service object could be reused,

instead of searching for required service reference every request time.

4.2. Integration of Ubiquitous Devices

Another superiority of IAC Platform is that ARTClient could be executed on

varied execution platform, so that house owner could use any mobile device to control

the household appliances. To construct smooth communication between OSGi Pltform

and ART Platform, we considered all possible approaches and finally decided to wrap

the ARTServer into an OSGi bundle and execute on OSGi Platform. Since the design

 31

of OSGi Service Platform gives highly capability of bundle management, bundles

could interact with each other and share resource. Thus, ARTApp could import

package of IAController Interface, and use the operations provided by IAController

Interface. Besides, OSGi Platform has excellent ability on managing life cycle of

bundles, so the administrator could manage the version and state of ARTServer

conveniently. The detail of porting ARTServer would be discussed in Section 5.3.

4.3. Relationship of components in IAC Platform

IAC Platform is an integrated platform. We take many existent standards to

compose a home appliance controller platform, and the two most significant platforms

of them are OSGi Service Platform and ART Platform.

Before starting explaining how the components interact in IAC Platform, we list

the important components in the platform first.

(1) ARTClient

(2) ARTServer

(3) IAController Interface

(4) OSGi Service

(5) Device

The relationship of these components is indicated as Figure 4-6. The

communication between ARTClient and ARTServer relies on ART protocol; it uses

asynchronous massages to deliver command (client->server) and send display result

back (server->client). IAController Interface would be wrapped as an OSGi bundle,

so that other bundles in OSGi Framework could use it, such as bundle ARTServer.

Thus, the ARTApp executing on ARTServer could use the operations provided by

IAController Interface.

 32

ARTClient ARTServer
IAController

Interface

OSGi

Service
Device

ART

Protocol

OSGi Platform

Import

Figure 4-6 The relationship of each component in IAC Platform

IAController Interface plays a key role in IAC Platform, because it bridges the

ARTApp and OSGi service reference. It provides developers a universal access

approach to access the services. Besides, it searches the required service reference

from OSGi Framework by filter description. Therefore, the action and query from

ARTApp could be sent to OSGi service reference and get result correctly by help of

IAController Interface. Wrapping IAControll Interface in an independent OSGi

bundle is convenient to replace the interface with newly implementation in the future.

The last step of controlling appliances is connecting the device service to the

OSGi service reference. OSGi Framework is responsible for the transformation.

Through the base driver provided by third parties, OSGi Frmawork could transform

the appliance services detected in network into OSGi service references. Therefore,

the OSGi service reference could be seen as the proxy of the appliance service.

4.4. Software Management

In IAC Platform, we utilize OSGi Service Platform to manage all the components.

 33

There are two components, ARTServer and IAController Interface, wrapped as OSGi

bundles and could be replaced dynamically. Furthermore, IAController Interface

contains many mechanisms to transform services, such like Service Engine. If IAC

Platform supports new protocols or an efficient bundle is adapted to replace old one,

OSGi Service Platform provides a perfect solution for updating these bundles

dynamically.

 34

Chapter 5 Implementation

After discussing architecture and design issues, we will go into details to

implementation. This chapter would introduce the OSGi environment we use; how to

write an ARTApp to control appliances; how to write a right service descriptor, and

the steps of integrating ART Platoform into OSGi Platform.

5.1. Construct an OSGi Environment

In IAC Platform, we chose OSGi Service Platform as the middleware to integrate

network services. Oscar [12] is an open source implementation of the OSGi

framework specification, and it is currently compliant with a large portion of the

OSGi 3 specifications. Therefore, we could take use of Oscar to construct an OSGi

environment. Oscar provides a shell environment, and available command is indicated

by Figure 5-1.

bundlelevel <level> <id> ... | <id> - set or get bundle start level.

cd [<base-URL>] - change or display base URL.

headers [<id> ...] - display bundle header properties.

help - display shell commands.

install <URL> [<URL> ...] - install bundle(s).

obr help - Oscar bundle repository.

packages [<id> ...] - list exported packages.

ps [-l] - list installed bundles.

refresh - refresh packages.

services [-u] [-a] [<id> ...] - list registered or used services.

shutdown - shutdown Oscar.

 35

Figure 5-1 Available command list of Oscar

Oscar could be executed on embedded system, so it could be installed on a home

gateway that does not have powerful capability. After installing Oscar, we could start

the OSGi Service Platform and install bundles on it. The bundles used in IAC

Platform are ARTServer, IAController Interface, and Base Driver that imports service

from network. We use “ps” to see current bundles’ state of the OSGi Framework; the

result is displayed as Figure 5-2.

Figure 5-2 Tthe bundle state of OSGi Framwork

5.2. Writing an ARTApp to Control an Appliance

5.2.1. Write an ARTApp

Since IAC Platform chose ART Platform as the development and execution

start <id> [<id< <URL> ...] - start bundle(s).

startlevel [<level>] - get or set framework start level.

stop <id> [<id> ...] - stop bundle(s).

uninstall <id> [<id> ...] - uninstall bundle(s).

update <id> [<URL>] - update bundle.

version - display version of Oscar.

 36

environment, the developers have to learn about how to writing an ARTApp. The

steps of developing an ARTApp are described below.

1. State initial UI in XML and save them.

2. Create a new Java file by the name of Main.java, and there must be a class named

Main in it.

3. The class Main has to extend from class ARTApp.

4. Developers must implement two method in class Main, startApp and stopApp.

5. The detailed steps of writing an ARTApp is described in thesis “An Adptive

Mobile Application Development Framework, 2003”.

5.2.2. The procedure of appliance controlling

Then developers start to write the logic part of the application -- controlling the

home appliances. Figure 5-3 shows the steps of how an ARTApp gets a service and

invokes an action. The sequence begins with ARTApp which sends a request to the

Discovery object with service ID, and gets the response with a abstract service object.

After getting the Service object, ARTApp take use of the service object to get the

desired action with the action name. At last, ARTApp invokes action according the

command which is triggered by ARTClient.

 37

Figure 5-3 The sequence diagram of controlling home appliances

The ARTApp communicates with the abstract service object in IAC Platform,

and the abstract service is created according to the service descriptor, so the operation

ARTApps provide must be mapped to service descriptor correctly. Taking a simple

example, to control a simple light, we write an ARTApp which has two operations,

turnOn and turnOff the light. With the service descriptor, we got the information that

there is an action named SetPower to control the power state of the light. The turnOn

method must invoke action SetPower with “true” parameter, while the turnOff method

with “false” parameter.

Figure 5-4 displays the operation list of the simple Light. If “Power On” is

chosen, the UPNP simple Light would be turned on. Otherwise, it would be turned

off.

 38

Figure 5-4 The operation list of Simple Light

In this sample, we could observe that developers write ARTApp by following the

rules of ART Platform, service descriptor, and IAController Interface, without having

knowledge about the network protocols.

5.3. Writing a Descriptor

IAC Platform needs the help of descriptor to gain the service information when

detecting a new service reference. The format of the service descriptor is similar to

Web Service. The information of the properties, state variables, and actions of the

service would be described in the service descriptor.

5.3.1. General case

We take the simple examples to introduce the service descriptor. We choose a

simple air conditioner service, which only provides the power control capability. The

service has an action named setPower and a state variable named power with boolean

type. The descriptor could be separated into four parts.

In this section we introduce the front three parts; they are mandatory for every

descriptor. It is used to abstract the service and map it to the IAController Interface.

The first portion contains the service properties such as service ID, type, and etc.

 39

Figure 5-5 indicates this part.

Figure 5-5 Service attributes in the descriptor

The second portion defines abstract actions of the service. Developers write

ARTApps use the operation provided in this part. Figure 5-6 informs that how many

actions developers could invoke. Besides, it also contains the state variable

information. The tag id (actionId and stateVariableId) is used to map the abstract

object to the actual object.

Figure 5-6 The abstract definition in the descriptor

<serviceId>DCSLAB-ART-Simple-Airconditoner</serviceId>

<serviceType>upnp</serviceType>

<friendlyName>Simple Airconditoner</friendlyName>

<iacDefinition>
 <actionList>
 <action>
 <actionId>art-airconditoner-setPower</actionId>
 <actionName>userSetPower</actionName>
 <argumentList>
 <argument>
 <argumentName>airconditonerPower</argumentName>
 <dataType>boolean</dataType>
 <direction>in</direction>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <stateVariableList>
 <stateVariable>
 <stateVariableId>art-airconditoner-Power</stateVariableId>
 <stateVariableName>userPower</stateVariableName>
 <stateVariableType>boolean</stateVariableType>
 </stateVariable>
 </stateVariableList>
 </iacDefinition>

 40

 The third portion of the descriptor is about mapping information; it maps the

abstract action mentioned above to the actual object, so that the ARTApp could send

the command to the actual action object and invoke it. The mapping description of the

simple air conditioner is indicated as Figure 5-7. From the description, the action

which id is art-sample-power-1 would be map to actual action named SetPower, with

the service id being urn:schemas-upnp-org:serviceId:power:1. The mapping approach

of state variable is similar to action.

Figure 5-7 The mapping information of the descriptor

5.3.2. Configuration of Specific Operation

In our design, there is an optional portion in service descriptor. It is used to

define specific configuration of the service, such as power control. With this kind of

description, one ARTApp could be used by many services, as long as the service

descriptors provide the correct configuration. Figure 5-8 shows the configuration

<mapping target="upnp">

 <upnpUdn>uuid:cybergarageAirConDevice</upnpUdn>

 <mapping-actionList>

 <upnp-action targetAction="art-airconditoner-setPower">

 <upnp-serviceId>urn:schemas-upnp-org:serviceId:power:1</upnp-serviceId>

 <upnp-actionName>setPower</upnp-actionName>

 <upnp-argument targetArgument="airconditonerPower">setPower</upnp-argument>

 </upnp-action>

 </mapping-actionList>

 <mapping-stateVariableList>

 <upnp-stateVariable targetStateVariable="art-airconditoner-Power">

 <upnp-serviceId>urn:schemas-upnp-org:serviceId:power:1</upnp-serviceId>

 <upnp-stateVariableName>Power</upnp-stateVariableName>

 </upnp-stateVariable>

 </mapping-stateVariableList>

 </mapping>

 41

information about the power control.

We take power control as the example when explaining the usage of the

configuration. It suits for all the appliances having power switch. The description tells

the system which abstract action should be used. In this example, the configuration

powerOn is mapping to SetPower(true),and powerOff is mapping to SetPower(false).

Figure 5-8 The configuration definition of the descriptor

5.4. Integrating the ARTServer to an OSGi bundle

There are many advantages to wrap ARTServer as an OSGi bundle. As we

discussed before, OSGi Framework is powerful in software management; bundles

 <configuration>

 <powerService>

 <powerOn>

 <invoked-ationID>art-airconditoner-setPower</invoked-ationID>

 <argument>

 <argumentName>airconditonerPower</argumentName>

 <dataType>booelan</dataType>

 <direction>in</direction>

 <argumentValue>true</argumentValue>

 </argument>

 </powerOn>

 <powerOff>

 <invoked-ationID>art-airconditoner-setPower</invoked-ationID>

 <argument>

 <argumentName>airconditonerPower</argumentName>

 <dataType>boolean</dataType>

 <direction>in</direction>

 <argumentValue>false</argumentValue>

 </argument>

 </powerOff>

 </powerService>

 </configuration>

 42

could share resource with each other, and could be updated dynamically.

A bundle gains access to the OSGi framework using a unique instance of

BundleContext. In order for a bundle to get its unique bundle context, it must

implement the BundleActivator interface; this interface has two methods, start and

stop, that both receive the bundle's context and are called when the bundle is started

and stopped, respectively. Figure 5-9 is the source code of Activator.java. It is used to

produce an ARTServer instance on OSGi Framework. In method start an ARTServer

is initialed. Figure 5-10 is the manifest file.

Figure 5-9 Source code of Activator.java

package com.art.main;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceListener;

import org.osgi.framework.ServiceEvent;

public class Activator

 implements BundleActivator {

 public void start(BundleContext context) {

 System.out.println("Starting ART Server.");

 new ART().init();

 }

 public void stop(BundleContext context) {

 ART.stop();

 }

 }

 43

Figure 5-10 Manifest file of the ARTServer bundle

Then we create an OSGi bundle by wrapping the class files and Manifest.mf to a

Jar format file, with the command jar cfm ARTServer.jar manifest.mf com.

Manifest-Version: 1.0

Bundle-Description: ART Server Bundle

Bundle-Name: ART Server

Created-By: DCSLab

Bundle-Activator: com.art.main.ART

Bundle-Classpath: .,lib/xerces.jar,lib/ftp.jar

Bundle-Vendor: DCSLab

Bundle-Version: 1.0.0

 44

Chapter 6 Conclusion

6.1. Conclusion

So far, we have described our system, IAC Platform, and how it achieves the

objectives mentioned in Chapter 1. The key point of design is on the service

descriptor. Through the abstracted service descriptor, developers could write

ARTApps to control appliances; the platform could map the original physical service

to abstract service and provide a universal development procedure; and most

important, the service could configure itself as some kind of device. It means that the

service may be controlled by existent ARTApp, instead of writing a new ARTApp. It

improves the extensibility of the service supporting. Besides, we bring OSGi Service

Platform to integrate varied home networks, and ART Platform to the ubiquitous

devices.

The main advantages of using IAC Platform are as follows:

 Service provider need not rewrite service to fit IAC Platform.

 Developers who write application do not consider the network protocols.

 House owner could use his/her familiar ubiquitous device to control appliances.

 The same ARTApp could control varied appliances.

 The descriptor we defined could be extended easily to fit the new type of

network and service.

6.2. Comparison

IAC Platform solves many problems of controlling appliances. Thus choosing

 45

IAC Platform as development and execution environment is more suitable than other

systems. Table 6-1 is the comparison table.

 IAC Platform Other System
Integrate Home
Network

Using OSGi Framework, the
extensible ability is better than
others.

Using proxy to transform
two kinds of networks, it
is complex and not easy to
support new protocol.

Integrate
Ubiquitous
Device

Using ART Platform to solve the
adaptation problem.
The ARTApps could be executed on
many platforms, such like
J2ME, .NET, WAP browser, and etc.

The representation of
OSGi Framework is
similar to Servlet. It is not
efficient to write hard
code to display the UI.

Extensibility 1. A new network protocol could be
included in IAC Platform easily.
2. A new service could be supported
by IAC Platform with little effort.

Not support.

Table 6-1 The comparison Table of IAC Platform and other systems

6.3. Future Works

Now we finished the prototype of the IAC Platform, but there are still many jobs

that could make the platform more mature. We propose some future works that

enhance IAC Platform.

 Support of network protocols

Now we have finished the implementation of UPNP and X10 network protocols.

To make the platform more complete, we must add other protocol, like JINI, as

soon as possible.

 46

 Definition of configuration

Configuration is a significant part of the platform, now we have defined a few,

such as power configuration. In the future we will define more kind of

configurations. Then, developers would have a better environment when

developing application to interact with appliances.

 Optimizing

To improve the efficiency of IAC Platform, there are some implementations that

could be optimized. One example is Service Engine; we could rewrite a Service

Engine to increase the speed of searching matching service from OSGi

Framework.

 47

Chapter 7 Bibliography

[1] UPnP™ Forum, http://www.upnp.org/

[2] Jini.org, http://www.jini.org/

[3] OSGi Alliance, http://www.osgi.org/

[4] 姚立三, “ART ─ 可適性的行動應用程式開發平台”,國立交通大學電資學院

碩士班論文，民 92.

[5] Chau, O.S., Hui, P., and Li, V.O.K., “An Architecture Enabling Bluetooth / JINI

Interoperability,”Proc. IEEE PIMRC, Barcelona, Spain, September 2004.

[6] Song Yean Cho, Dae Young Seo, Tai Yun Kim,“Gateway Framework for

Home Appliance’s Interoperability Based on Heterogeneous Middleware in

Residential Networks,” Consumer Electronics, 2002. ICCE. 2002 Digest of

Technical Papers. International Conference on 18-20 June 2002

[7] J. Allard, V. Chinta, S. Gundala, G. G. Richard III, “JINI Meets UPnP : An

Architecture for JINI/UPnP Interoperability,” IEEE Computer Society, 2003.

[8] Latvakoski, E.J.; Paakkonen, P., ”Remote interaction with networked appliances

attached in a mobile personal area network,” Communications, 2003. ICC '03.

IEEE International Conference, May 2003.

[9] Mariana Nikolova, Frans Meijs and Peter Voorwinden,” Remote Mobile

Control of Home Appliances,” IEEE Transactions on Consumer Electronics,

FEBRUARY 2003.

[10] Noriyuki Kushiro, Shigeki Suzuki, Masanori Nakata, Hideki Takahara and

Masahiro Inoue,” Integrated Residential Gateway Controller for Home Energy

Management System engineering,” IEEE Transactions on Consumer

Electronics, AUGUST 2003.

 48

[11] Zhaohui Ye, Yindong Ji, Shiyuan Yang,” Home Automation Network

Supporting Plug-and-Play,” IEEE Transactions on Consumer Electronics, Vol.

50, No. 1, FEBRUARY 2004.

[12] Oscar Project, http://oscar.objectweb.org/

[13] Domotics Software, http://domoware.isti.cnr.it/

