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Abstract

Networking applications nowadays, such as network intrusion detection system
(NIDS), require more memory accesses than the original processor can tolerate, where
the network processor architecture is an-alternative solution different to ASIC. The
architecture provides parallelism “‘through.-multiple ‘microengines (MEs) and hides
memory-access latency through hardware threads. ' However, its performance depends
on proper ME, thread allocations. In“this'work, we develop an NIDS over the Intel
IXP2400 and investigate the impact of resource allocation on its performance. Our
paper is rich for the following conclusions. First, given an application and algorithm,
the throughput is influenced mostly by the total number of threads, namely | xJ,
where | and J referred to as the number of ME and threads per ME, respectively, as
long as the ME utilizations do not exceed 100%. Second, the bottleneck is found to be
the SRAM as | xJexpands and exceeds the upperbound, k, which cost-effectively
utilizes the memory. Third, supposed an application, algorithm and k, an optimal (I, J)
can always be derived. Fourth, multiple memory banks can be adopted to tackle the

SRAM bottleneck, namely when I x J > k.

Keywords: Network Processor, memory-access intensive, microengine, thread, N
IDS
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Chapter 1. Introduction

Networking applications nowadays that offer extra security and content-aware
processing demand for more powerful hardware devices to achieve high performance.
For memory-access intensive applications, such as Network Intrusion Detection
Systems (NIDSs) [1], general purpose processors with high speed memory banks are
often adopted; however, the cost is very considerable while the throughput is not
satisfactory for that the processor’s utilization is low because of much memory-access
overhead.

Rather, the Application-Specific Integrated Circuits (ASICs) [2] can meet the
performance requirement with a circuitry designed for strict guarantees on
memory-access latency using . pipelined architecture and embedded memory.
Nonetheless, the lack of flexibility and leng period of development make it less
appealing.

Network processors [3] are emerging to'be an alternative to the above-mentioned
problems for their multithreaded multiprocessor architecture, flexibility and shortened
development cycle. Multiple processors allow simultaneous data-plane processing of
multiple packets on a cluster of processors. Moreover, the hardware threads having
very little context switch overhead can hide the memory-access latency [4]. Thus, the
nature of parallelism and latency hiding can greatly increase the throughput of packet
processing. Besides, network processors offer the flexibility through its
re-programmability, making functional adaptations much easier than ASIC, which
otherwise needs to be re-designed.

Since the hardware resources of network processors are richer than these of

general purpose processors, the resource allocation, such as processors, threads and



memory is critical to the performance. For memory-access intensive applications,
some related researches have been devoted to improve the throughput by the
deployment of network processors. Bos and Huang [5] implemented an NIDS over
the Intel IXP1200 [6]. The prototype comprises only the receiver and packet
processing using Aho-Corasick [7] algorithm, but it does not support inspection of
patterns across more than two packets as well as multiple flows. Clark, et al, [8]
designed a Network Intrusion Detection and Prevention System (NIDP) utilizing an
IXP1200 and an FPGA performing the matching for packet header and payload
respectively, in which bottleneck is found to be the bus connecting them. Nevertheless,
none of both addressed the impact of allocations of processors, threads, and memory
banks on performance which influences the throughput and utilizations of processor
and memory bank.

In this work, we explored the feasibility of implementing a memory-access
intensive application, namely an-NIDS; over-the. Intel 1XP2400 [9], which has a set of
characteristics common to most network processors. Several software components
referred to as processing stages [10] were designed for packet reception and
transmission, classification, thread dispatcher and signature matching. Among all
string matching algorithms, the two, Aho-Corasick and Wu-Manber [11], were
commonly adopted for signature matching due to that they are easy for
implementation as well as popular in most network applications, for example, Snort.
We use an intuitive allocation of processors and threads for each processing stage,
aiming to suggest a possible adjustment according to the results of both external and
internal benchmarks. The former characterized the throughput figures of the
implementation, while the latter carried out some in-depth analysis of the memory,
processor utilization with regards to the allocations of processors, threads, and

memory banks when different algorithms were used. Some questions were
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investigated and discussed including: 1) Task allocation and bottleneck observation, 2)
Effect of improper ME/thread allocations, 3) Optimal numbers of MEs and threads
within each ME, 4) Effectiveness of employing several memory banks. Our
preliminary results show that increasing the total number of threads improves the
throughput, besides the performance benefits from multiple memory banks
considerably.

This paper is organized as follows. Chapter 2 describes the hardware
architectures of IXP2400. Chapter 3 describes the problem statement. Chapter 4
elaborates the design and implementation of our system. Chapter 5 presents the results
and observations in the external and internal benchmarks. Some conclusive remarks

of this article are made in chapter 6.



Chapter 2. Hardware Architecture of 1XP2400

2.1 Hardware Architecture of 1XP2400

As depicted in Fig. 1, 1XP2400 consists of several components connected by a

bus. The design of the hardware is categorized into the following features.
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Fig. 1. Hardware architecture of 1XP2400

Multithreaded multiprocessor architecture

The IXP2400 features nine programmable processors: one Intel XScale core [12]
and eight microengines (MEs), operating at 600MHz. The Intel XScale core is
responsible for housekeeping functions such as table initialization and exception
processing for control-plane packets such as ICMP unreachable packets. Data-plane
processing, which accounts for the most part in packet processing, is implemented on
MEs. Each ME has eight hardware threads, each of which having its own register set
and program counter to support fast context switch when memory accesses occur.
Versatile memory hierarchy

To ease memory-access overhead, IXP2400 exploits four different memory types,

4



DRAM, SRAM, scratchpad, and local memory in an ME, given tradeoffs between
size and latency. IXP2400 has one channel of DDR running at 300MHz. The channel
can support up to 2GB of DRAM, yielding enough capacity for storing packet buffers.
In addition to DRAM, 1XP2400 also provides two channels of Quad Data Rate (QDR)
SRAM running at 400MHz. Up to 16MB of SRAM can be populated on each channel
The SRAM is primary for accommodating packet descriptors, queue descriptors and
other data structures frequently used. Furthermore, the on-chip 16KB scratchpad
memory running at 700MHz provides very similar capability to SRAM. In the rest,
local memory inside each ME is 2560 words in size and often used as a cache for

smaller data structures.

Flexible external interface

The Media Switch Fabric (MSF) is an external interface used to connect the Intel
IXP2400 to a physical layer device.and/or-a-switch fabric. The MSF consists of
receiving and transmitting interfaces which.can be configured for different protocols
such as POS PHY Level 3 [13] and CSIX-L1 [14]. Incoming packets are received into
the Receive Buffer (RBUF) and outgoing packets are held in the Transmit Buffer
(TBUF), which are both 8KB in size. The MEs can move data from RBUF to DRAM
and from DRAM to TBUF using the DRAM[rbuf_rd] and DRAM[tbuf wr]
instructions directly, greatly avoiding packet duplications and unnecessary memory

acCCesses.

Coprocessors
Two kinds of hardware coprocessors, including a hash unit shared by all MEs
and a Cyclic Redundancy Code (CRC) unit inside each ME, are incorporated in the

system. The hash unit is capable of 48-bit, 64-bit and 128-bit polynomial divisions.
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Performing a high-quality hash in software is cycle-consuming, which occurs
frequently in packet classification, and thus it should be offloaded to the coprocessor.
Besides, a high quality hash will uniformly distribute entries in the smaller table to
reduce the probability of a hash collision, and therefore resulting in fewer memory
accesses. In addition to the hash unit, each ME contains a CRC unit providing a

similar functionality to the hash unit for offloading CRC computation.

2.2 Detailed Packet Flow in 1XP2400

The processing flow of an ordinary packet is elaborated below referring to Fig 1.
Upon the arrival of a packet at the MSF of 1XP2400, the MSF partitions the packet
into several smaller chunks called mpackets, which can be configured to 64, 128, and
256 bytes in size, and places them into,the'RBUF ‘elements. The threads of the MEs
dedicated for packet receiving in turn perform the reassembly of mpackets, and move
them directly from the RBUF into. DRAM:‘in-which MEs and the Intel XScale core
carry out further operations. The packet: processing typically consists of packet
classification followed by packet modification. During packet processing at MEs,
chances are that some exception handling and housekeeping are manipulated by the
Intel XScale core through the interrupt and message queue mechanism. In the later
scenario of packet flow, the transmission process is just the reverse of the reception
process, namely the packet is segmented into several mpackets by the threads

dedicated for packet transmission, and then placed into the TBUF.



Chapter 3. Problem Statements

In this paper, we focus on the impact on performance by the processor, thread
and memory bank allocations when implementing memory-access intensive
applications on the Intel 1XP2400 network processor. Some problem statements are

discussed below.

(1) Task Allocation and Bottleneck Observation

Before implementing an NIDS, some functional blocks referred to as processing
stages need to be identified and then mapped to the platform. During the mapping
process, we try to properly exploit.the hardware features such as hierarchical memory
structure and multithreaded multiprocessor .architecture. This mainly involves the
assignment of memories to store different.data-structures, as well as the allocation of
threads and MEs. The possible bettlenecks-will be identified after the system is

implemented.

(2) Effect of Improper ME/Thread Allocations

The performance of an application is affected by two factors, the computing
power and memory-access latency. The former is determined by the number of
processors used referred to as I, while the latter can be alleviated by adjusting the total
number of threads employed, namely | xJ[15]. Observing that total numbers of
processors and threads are fixed to the hardware platform, it is interesting to see how

an allocation (I, J), especially an improper one, affects the system performance.



(3) Optimal Numbers of MEs and Threads within Each ME

It is known that memory-access intensive applications benefit from increasing
the total number of threads, namely | x J rather than individual I and J, because of its
ability of hiding memory-access latency. Nonetheless, how to determine a fitting I x J ,
given a certain hardware spec such as clock rate and memory service rate, remains
unanswered. In addition, we are also interested in finding a optimal (I, J) combination,
regardless of the limit on the numbers of MEs and threads per ME of the platform. A
(I, J) is considered optimal when the utilizations of both ME and memory are

cost-effectively high, as will be explained in chapter 5.

(4) Effectiveness of Employing Several Memory Banks

Multiple memory banks ‘reduce the average memory access latency. For
memory-access intensive applications, more memory' banks are supposed to improve
the performance. Nonetheless, the effectiveness could be influenced by whether the
accesses are evenly distributed into memory banks. Some experiments are therefore
designed to investigate the feasibility of adding memory banks for memory-access

applications.



Chapter 4. Design and Implementation

In this chapter, we first introduce basic operations of an NIDS, and then
characterize its processing stages in order to map them onto IXP2400. Finally the

design and implementation of an NIDS over IXP2400 is described.

4.1 NIDS Briefing

The processing of an NIDS, for example, Snort [1], mainly consists of three
phases: a packet decoding phase which sets up pointers to packet data at different
layers and stores them into data structures for later analysis by the detection engine; a
detecting phase, in which a group.of rules,matched-by a packet header are applied for
further signature matching, and-an‘alert phase; in which some alert or logging routines
are carried out. Although later-versions 'of 'Snort include the preprocessing phase
performing the IP de-fragmentation and TCP stream reassembly, it is optional and can
be turned off. Among these phases, recent measurement of Snort [16] on a production
network shows that at least 31% of total processing time is consumed by the detecting

phase, while the rest is spent mostly on disk /0.

4.2 Design Issues

According to the above-mentioned characteristic of an NIDS, it is clear that we
can implement an NIDS over 1XP2400 by dividing the packet processing into a series
of stages, namely receiver, packet inspector and transmitter, and mapping them onto
the MEs. We do not consider the preprocessing stage since oftentimes it is not done in

the fast path [17], but by the XScale. Moreover, packets can be distributed to a pool of



MEs, and thus threads, in the packet inspector to exploit high parallelism.

Nevertheless, two problems including packet ordering and flow interleaving arise.

Packet ordering

The issue of packet ordering happens in a processing stage when multiple threads
are dispatched to process the corresponding packet simultaneously. If the amount of
time to process a packet is not constant, the packet ordering is no longer guaranteed as
shown in Fig. 2a. To tackle this problem, a mechanism named ordered threads [18], is
adopted to keep packets in strict order, meaning that threads in a processing stage
consisting of several functions handle packets in order as presented in Fig. 2b. The
synchronization among threads is simple since only one thread is allowed to enter a
function, for example, function 2 .in Fig. 2b, which may access a global variable at a
certain instant. The ordering is supported in-a-very efficient manner using a feature of
the hardware called inter-thread-signaling.--However,-this mechanism suffers from the
performance degradation due to. the poor * parallelism and less hiding of

memory-access latency [18].

Packet N ——Jdewn 9 |
processed by thread 0 |_>Thread 0 Fun. 1 Fun.2 Inter-thread
Inter-thread signaling
i ling
Packet N+1 Thread 1 ——220 _ Fun.1 b——g Fun.2 b————
—————»{ processed by thread 1}—> : :
Waitfor/v Wad
Time a signal a signal Time
> 0 e >

Fig. 2. Timeline showing two consecutive packets (a) being out of order, and (b) being
ordered in a processing stage
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Flow interleaving

A pattern may stretch across multiple packets when doing packet inspection. If
flows are interleaved, it is not guaranteed that two consecutively processed packets
belong to the same flow; in this way patterns across multiple packets can not be
inspected appropriately.

For such cases, we refine our design by adding two processing stages with strict
packet ordering, namely flow classifier and thread dispatcher. The main idea behind is
to classify packets into different flow queues such that flows are no longer interleaved.
Further, each thread in the packet inspector is dispatched by a dispatcher to serve one
flow queue. After finishing the inspection of a packet, the packet inspector thread
stores the final state of inspection for later reference by another thread serving the
same queue. So, patterns across .multiple packets can be inspected and the packet

ordering in the same flow is maintained.

4.3 Mapping Processing‘Stages to.the Hardware Platform

Fig. 3 shows the processing stages of an NIDS, its corresponding task and
resource allocation on 1XP2400. The NIDS processing is elaborated as follows. On
receiving a packet from an input port, the packet data is moved from RBUF to DRAM;
the corresponding packet descriptor is stored in SRAM and also passed to the next
stage through the receiving scratch ring. Subsequent stage, the flow classifier,
retrieves a packet descriptor for flow classification which conducts several operations.
First, the fields of packet header (e.g., IP pairs and port pairs) are used to calculate a
hash key indexing into a hash table in SRAM. Since the task requires much
computing power, the hash unit is adopted to offload the computation. Second, if a
hash hit occurred, the hash entry pointing to a flow context in SRAM is referred to

engueue a packet descriptor for inspection; otherwise the creation of both hash entry
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and flow context is carried out at runtime. The flow context mainly consists of the
SRAM address of flow queue keeping the packet descriptors, state of inspection and
status flags. Then, the thread dispatcher thread chooses a packet descriptor among
flow queues round-robinly and passes it to a packet inspector thread, performing the
pattern matching. Once a packet payload is matched against a pattern, a message is
delivered to the XScale through the XScale scratch ring for carrying out alert. Finally,
the transmitter thread examines the transmitting scratch ring to determine whether a
packet is waiting to be sent, fetching the packet’s descriptor in SRAM and sends the

entire packet in DRAM to TBUF for output.
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Fig. 3. The processing stages of an NIDS on 1XP2400

In our implementation, a tentative allocation of MEs and threads is chosen based
on the benchmarking of Snort. Each processing stage is allocated one ME except the
packet inspector, which is given four MEs. That gives us totally four MEs and
thirty-two threads to use for later adjustment and analysis. For thread allocation in the
receiver, eight threads are evenly divided into four groups corresponding to four

gigabit ports. Each port is served by two ordered threads to keep packets in order. As
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for the transmitter, eight ordered threads are assigned to one gigabit port. For the flow
classifier threads, classifying packets could take vastly different amounts of time
when the hash collisions occur; considering the thread dispatcher threads, choosing
among flow queues round-robinly needs to maintain the synchronization of a
round-robin counter. Hence, we adopt eight ordered threads in both processing stages.
In the packet inspector, unordered threads, rather than the ordered ones, are employed
for the following reasons. First, the ordered thread may not be efficient in hiding the
memory access latency due to each function in a processing stage can only be
executing on one thread at any given time. Second, since a flow queue is served by
one thread at a time, packets will never get out of order within that flow; meanwhile,
ordered thread is adopted by processing stages before and after the packets being
inspected. Hence the ordering of paekets is maintained. Interaction between the thread

dispatcher and packet inspector-will.be detatled in.the section 4.4.2.

4.4 Algorithms Adopted ‘and Packet Inspection

4.4.1 String Matching Algorithms

Packet inspection is a critical stage that influences the performance of an NIDS.
Several string matching algorithms were proposed for improvement. However, coding
microcode is difficult, since it depends heavily on hardware characteristics. Two
popular algorithms, Aho-Corasick referred to as A-C and Wu-Manber referred to as
W-M, are thus used because they are easy to implementation and adopted in most
network applications, for example, Snort. The two algorithms typically consist of two
phases: a pre-processing phase, which computes and builds necessary data structures
in memory from input patterns, and an inspection phase, in which patterns are looked

up against the packet payload. Nevertheless, the pre-processing phase is
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time-consuming and typically done by the XSacle. For our implementation, we store
the data structures in SRAM in order to reduce the memory access overhead. The
operation of A-C involves state transitions of automaton. Therefore, we can record the
state when finishing the inspection of a packet, and start from last state for the next
one. Similarly, we keep the shift value instead of state for W-M so that patterns across

multiple packets can be inspected.

4.4.2 Thread Dispatcher and Packet Inspector

Fig. 4 details the interactions between thread dispatcher and packet inspector. As
mentioned before, the thread dispatcher thread chooses a packet descriptor among
flow queues and passes it to the packet inspector thread, in which some operations are
involved. First, two flags, namely isEmpty and beingServed, of a flow context are
checked in each round. The former is to indicate if-corresponding flow is occupied
while the later is to denote whether that flow is'being served by a thread. If it is
occupied and not being served, a packet descriptor is assigned to a packet inspector
thread; that is, a flow is served by only one packet inspector thread at a time, and thus
preventing the state (for A-C) or shift value (for W-M) from being corrupted by
another one. Further, the packet inspector thread examines a packet payload against
thousands of patterns in SRAM, updating the state or shift value in the flow context.
If a pattern is matched, a message is sent to the XScale, and then the packet is
transmitted; otherwise the packet is sent to the transmitter directly. Finally, the packet
inspector thread puts itself into a dedicated free thread list and waits for a signal from
the thread dispatcher. The four free thread lists correspond to the four MEs and are
implemented by four scratch rings. Notably, the packet inspector threads are

dispatched round-robinly for the reason of load balance among MEs. Considering
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timeout of a flow, a counter is associated with each flow to avoid the system resource
being exhausted by excess flows, and is maintained by the XSacle. Once the counter
is turned into zero, meaning that the lifetime of that flow is terminated; meanwhile,

the flow queue as well as flow context and hash entry are eliminated.
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Fig. 4. Interaction between the thread dispatcher and packet inspector
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Chapter 5. Performance Benchmark and Bottleneck

Analysis

In this chapter, we evaluate the performance by externally and internally
benchmarking the system implemented using two string matching algorithms. To have
both MEs and memory, namely SRAM, well utilized, we investigate the appropriate
numbers of | and J for the application. Since memory accesses account for a
considerable portion in the packet processing, the feasibility of exploiting multiple

memory banks for load balance is exploited.

5.1 Benchmark Setup

The XScale core in our design is responsible simply for the preprocessing and
alerting; therefore, in this chapter we_focus-mainly on the performance of the MEs
which are the main component that handles the most part of packet processing. Since
the performance statistics including ME and memory utilizations can only be obtained
by the simulator, we evaluate the performance figures through simulation.
Consequently, the preprocessing phase originally done by the XScale is shifted to the
receiver ME since the simulator doesn’t comprise the XScale. Notably two MEs from
two processing stages, the flow classifier and thread dispatcher, respectively, are

borrowed in the analysis due to the dearth of MEs.

5.1.1 Patterns for Packet Inspection

Observing that 2475 patterns are used in the current Snort, we employ 2000

random patterns in which characters are generated uniformly according to the
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guidelines discovered in [19]. The shortest pattern length, LSP, which is known as a
major factor on the performance of string matching algorithms such as W-M, is set to
four [20]. As mentioned previously, the pattern preprocessing phase is done directly

by the receiver ME and the resulted data structure is stored in SRAM.

5.1.2 Simulator Setup

The 1XP2400 Developer Workbench provides tools for compiling microC into
microcode and a simulator called Transactor, for evaluating the performance. The
simulator allows users to configure parameters. In our experiment, the clock of the
ME is 600 MHz. The input interface of the MSF is divided into four gigabit ports,
while the output interface is a four-gigabit.one. The transmitter and receiver buffers
are both 256 bytes. Four data streamsrof 64-byte TCP/IP packets with randomly
generated payload are injected. The stmulation lasts until 50000 packets are

transmitted.

5.2 Effect of Improper ME/Thread Allocations

To investigate the effect of improper ME/thread allocations, we compare the
performance, in terms of utilization, of A-C for different (1,J) combinations. As shown
in Fig. 5, I and J can be configured while the total number of threads, | x J , is fixed.
Two outcomes are observed. First, the throughput is influenced mostly by I x J, since
the throughput remains unchanged for all (1,J) combinations. Second, the average ME
utilization degrades while increasing I. This is because thel xJ, rather than the
computing power, counts for the throughput, whereas the same traffic load is balanced

by more MEs. The same explanation applies to the results for W-M in Fig. 6.
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Fig. 5. The performance of A-C for different (1,J) combinations. The number
of threads is fixed at 12.
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Fig. 6. The performance of W-M for different (I,J) combinations. The number
of threads is fixed at 12.

Fig. 6 shows that the overall memory utilization of W-M is higher than the one of
A-C while the average ME utilization is low. This is due to the high memory-access

overhead of the former algorithm, as clarified in section 5.3.
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5.3 Profiling on Memory Access and Computational

Instructions

The average ME utilization and throughput of A-C are better than those of W-M.
This is proven by the profiling of memory-access cycles required for handling a
64-byte packet, as shown in Fig. 7. Apparently W-M needs more memory-access

cycles, referred to as P, than A-C as well as computational instruction cycles, referred
to as M, as shown in Fig. 8. We estimate the ratio ofg for the number of patterns
being 2000, & ~0.06 for A-C and & ~0.02 for W-M, respectively, meaning that

the average ME utilization of W-M suffers from the heavy memory-access overhead

except for the throughput.
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Fig. 7. Profiling of memory-access cycles for a 64-byte packet
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5.4 Estimating Optimal Numbers of MEs and Threads

within Each ME

Fig. 9 depicts the performance of the two implementations by increasing
number of MEs and therefore the total number of threads. Some observations can be
made. First, the throughput of A-C is better due to less memory-access overhead.
Second, for number of MEs being from one to four, the ME utilizations of both
implementations are almost the same, implying that the number of threads per ME is
insufficient. Third, initially, the throughputs of both implementations increase with a
direct ratio to | x J , namely number of threads. Nevertheless, the throughput increases
slightly as I =5 for W-M and | = 6 for A-C, respectively, because memory is almost
fully utilized. Fourth, as | increases:and memory utilization approaches 90%, the
average ME utilization degrades, because the. load making memory saturated is

diluted by large 1.
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Fig. 9. The performance of A-C and W-M with different numbers of MEs

(8 threads per ME)

We can also estimate a combination of (1,J) such that both ME and memory are

best utilized. As we learn from Fig. 9, when memory utilization is above 90%,
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increasing |, and therefore total number of threads contributes slightly to the
performance and is not cost-effective. For example, the improvement of memory
utilization from incorporating the sixth processor is about 95.6-91.8 ~ 3.8% and
935-919~1.6% for A-C and W-M, respectively. Hence, 5x8=40 threads
should be enough cost-effectively for both algorithms to well utilize the memory.
Nonetheless, the ME utilization is low when | = 5, meaning that the computing power
is unnecessarily much and should be further reduced. We fix this problem by

employing four MEs, rather than five, so that the average utilization of MEs shall

0, 0,
become%;S?A% (since&;mszllﬁ.S% >100%), and J can thus be

estimated to% =10. Similarly, a combination of (3,13) can be derived for the W-M.

5.5 Bottleneck of SRAM Command Queues

The memory bottleneck can be further-confirmed according to the history of
SRAM command queues as shown: in:-Fig..10. From the figure, we can see that the
queues are nearly full as | = 4. When | = 5, the queues start to overflow, indicating
that no more requests can be served. Hence, threads issuing memory-access requests

are blocked, resulting in the degradation of ME utilizations.
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Fig. 10. History of SRAM command queues for W-M
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5.6 Effectiveness of Multiple Memory Banks

One of the solutions to the memory bottleneck is to add more memory banks. To
evaluate the benefit, we adopt two SRAM banks to store the data structures of the
string matching algorithms. Table 1 shows that only minor improvement can be
gained due to the difficulty of splitting the data structure, namely goto table, of A-C
evenly into different memory banks. The W-M, on the contrary, benefits substantially
(about 43.7%) from two banks as presented in Table 2. This is credited to the use of
several tables which make the distribution of data a lot easier and more efficient to

memory banks.

Table. 1. The performance of A-C with:two memory banks when (1,J) = (6,8)

One memory bank

Two memory banks

Avg. ME util. (%) 61.1 63.2
MEM util. (%) 95.6 95.2/1.8
Throughput (Mbps) 670.6 674.4

Table. 2. The performance of W-M with two memory banks when (1,J) = (6,8)

One memory bank

Two memory banks

Avg. ME util. (%) 44.0 63.2
MEM util. (%) 93.5 70.0/57.2
Throughput (Mbps) 133.2 191.4
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Chapter 6. Conclusion and Future Works

In this work, we elaborate the implementation of a memory-access intensive
application, NIDS, over the IXP2400 network processor. We introduce the hardware
platform, briefing the NIDS processing flow, and identify necessary processing stages
to be mapped to the platform. NIDS includes a critical processing stage, the packet
inspection, which are implemented with A-C and W-M. Some design issues including
packet ordering and flow interleaving are solved, and thus patterns across multiple
packets can be inspected appropriately. Finally we externally and internally
benchmark the system aiming to observe the effect of the allocations of processors,
threads, and memory banks, as well as possible bottlenecks.

The external and internal benchmark shows that the system can support up to
670 Mbps using the A-C and 133Mbps with'the W-M. It is observed that given a
certain application and algorithm, the throughput is: influenced mostly by the total
number of threads as long as the. ME“utilizations- do not exceed 100%. Although
enlarging | x J by adding more processors benefits the throughput, the ME utilization
suffers. This is because the load saturating memory is diluted by the increased I,
meaning that J instead should be extended. The bottleneck is then found to be the
SRAM as the | xJ expands and exceeds the upperbound, k, that cost-effectively
utilizes the memory. With the upper-bound, we estimate an optimal (1, J), i.e. (4, 10)
for the A-C and (3,13) for the W-M, respectively. In fact, supposed an application,
algorithm and k, an optimal (I, J) can always be derived.

Two workarounds are suggested to solve the SRAM bottleneck, namely
when | x J > k. The first is to use multiple memory banks. Our result indicates that
the performance gains a 43.7% improvement from two banks for W-M since the data

structure itself makes it easy to be evenly distributed among banks. The other is to
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adopt a multi-port memory which allows multiple simultaneous memory accesses.
This is helpful especially to algorithms, such as the A-C, having data structures
difficult to be uniformly split.

Two issues are to be investigated in the future. First, the influence, i.e. the real
traffic rather than, synthetic one will be considered. Second, we tend to observe the
impact of allocations of processors, threads, and memory banks on performance for

computation-intensive applications.
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