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摘要 

今日的網路應用，如入侵偵測系統(NIDS)，需要的大量記憶體存取已超

過多用途處理器所能容忍的程度。網路處理器是有別於特定功能積體電路的另一

選擇。其多微引擎提供平行處理的能力，且多執行緒隱藏記憶體存取需要的時

間。然而，效能取決於適當的微引擎和執行緒配置。本論文利用 IXP2400 網路

處理器來實作一個入侵偵測系統，並且探討不同資源配置對於效能的影響。本論

文的價值為下列結論。第一，在微引擎使用率不超過 100%的情況下，給定一個

應用程式，執行緒的總數(即 JI × ，I,J 各代表微引擎數量和每個微引擎內執行

緒數量)影響系統的吞吐量。第二， JI × 不斷的增長會使得 SRAM 的使用率超過

k，k 為有效率使用記憶體的上限。第三，給定一個應用程式、演算法和 k，可以

推導一組最佳的(I, J)。第四，當 SRAM 變成瓶頸時，即 kJI >× ，多重記憶體

單元可以用來解決此問題。 
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Abstract 

Networking applications nowadays, such as network intrusion detection system 

(NIDS), require more memory accesses than the original processor can tolerate, where 

the network processor architecture is an alternative solution different to ASIC. The 

architecture provides parallelism through multiple microengines (MEs) and hides 

memory-access latency through hardware threads. However, its performance depends 

on proper ME, thread allocations. In this work, we develop an NIDS over the Intel 

IXP2400 and investigate the impact of resource allocation on its performance. Our 

paper is rich for the following conclusions. First, given an application and algorithm, 

the throughput is influenced mostly by the total number of threads, namely , 

where I and J referred to as the number of ME and threads per ME, respectively, as 

long as the ME utilizations do not exceed 100%. Second, the bottleneck is found to be 

the SRAM as expands and exceeds the upperbound, k, which cost-effectively 

utilizes the memory. Third, supposed an application, algorithm and k, an optimal (I, J) 

can always be derived. Fourth, multiple memory banks can be adopted to tackle the 

SRAM bottleneck, namely when

JI ×

JI ×

kJI >× .  

Keywords: Network Processor, memory-access intensive, microengine, thread, N 
IDS 
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Chapter 1. Introduction 
 

Networking applications nowadays that offer extra security and content-aware 

processing demand for more powerful hardware devices to achieve high performance. 

For memory-access intensive applications, such as Network Intrusion Detection 

Systems (NIDSs) [1], general purpose processors with high speed memory banks are 

often adopted; however, the cost is very considerable while the throughput is not 

satisfactory for that the processor’s utilization is low because of much memory-access 

overhead. 

Rather, the Application-Specific Integrated Circuits (ASICs) [2] can meet the 

performance requirement with a circuitry designed for strict guarantees on 

memory-access latency using pipelined architecture and embedded memory. 

Nonetheless, the lack of flexibility and long period of development make it less 

appealing. 

Network processors [3] are emerging to be an alternative to the above-mentioned 

problems for their multithreaded multiprocessor architecture, flexibility and shortened 

development cycle. Multiple processors allow simultaneous data-plane processing of 

multiple packets on a cluster of processors. Moreover, the hardware threads having 

very little context switch overhead can hide the memory-access latency [4]. Thus, the 

nature of parallelism and latency hiding can greatly increase the throughput of packet 

processing. Besides, network processors offer the flexibility through its 

re-programmability, making functional adaptations much easier than ASIC, which 

otherwise needs to be re-designed.  

Since the hardware resources of network processors are richer than these of 

general purpose processors, the resource allocation, such as processors, threads and 
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memory is critical to the performance. For memory-access intensive applications, 

some related researches have been devoted to improve the throughput by the 

deployment of network processors. Bos and Huang [5] implemented an NIDS over 

the Intel IXP1200 [6]. The prototype comprises only the receiver and packet 

processing using Aho-Corasick [7] algorithm, but it does not support inspection of 

patterns across more than two packets as well as multiple flows. Clark, et al, [8] 

designed a Network Intrusion Detection and Prevention System (NIDP) utilizing an 

IXP1200 and an FPGA performing the matching for packet header and payload 

respectively, in which bottleneck is found to be the bus connecting them. Nevertheless, 

none of both addressed the impact of allocations of processors, threads, and memory 

banks on performance which influences the throughput and utilizations of processor 

and memory bank. 

In this work, we explored the feasibility of implementing a memory-access 

intensive application, namely an NIDS, over the Intel IXP2400 [9], which has a set of 

characteristics common to most network processors. Several software components 

referred to as processing stages [10] were designed for packet reception and 

transmission, classification, thread dispatcher and signature matching. Among all 

string matching algorithms, the two, Aho-Corasick and Wu-Manber [11], were 

commonly adopted for signature matching due to that they are easy for 

implementation as well as popular in most network applications, for example, Snort. 

We use an intuitive allocation of processors and threads for each processing stage, 

aiming to suggest a possible adjustment according to the results of both external and 

internal benchmarks. The former characterized the throughput figures of the 

implementation, while the latter carried out some in-depth analysis of the memory, 

processor utilization with regards to the allocations of processors, threads, and 

memory banks when different algorithms were used. Some questions were 
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investigated and discussed including: 1) Task allocation and bottleneck observation, 2) 

Effect of improper ME/thread allocations, 3) Optimal numbers of MEs and threads 

within each ME, 4) Effectiveness of employing several memory banks. Our 

preliminary results show that increasing the total number of threads improves the 

throughput, besides the performance benefits from multiple memory banks 

considerably.  

This paper is organized as follows. Chapter 2 describes the hardware 

architectures of IXP2400. Chapter 3 describes the problem statement. Chapter 4 

elaborates the design and implementation of our system. Chapter 5 presents the results 

and observations in the external and internal benchmarks. Some conclusive remarks 

of this article are made in chapter 6. 
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Chapter 2. Hardware Architecture of IXP2400 

 

2.1 Hardware Architecture of IXP2400 

 As depicted in Fig. 1, IXP2400 consists of several components connected by a 

bus. The design of the hardware is categorized into the following features. 
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Fig. 1. Hardware architecture of IXP2400 

 

Multithreaded multiprocessor architecture 

The IXP2400 features nine programmable processors: one Intel XScale core [12] 

and eight microengines (MEs), operating at 600MHz. The Intel XScale core is 

responsible for housekeeping functions such as table initialization and exception 

processing for control-plane packets such as ICMP unreachable packets. Data-plane 

processing, which accounts for the most part in packet processing, is implemented on 

MEs. Each ME has eight hardware threads, each of which having its own register set 

and program counter to support fast context switch when memory accesses occur.  

Versatile memory hierarchy 

To ease memory-access overhead, IXP2400 exploits four different memory types, 
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DRAM, SRAM, scratchpad, and local memory in an ME, given tradeoffs between 

size and latency. IXP2400 has one channel of DDR running at 300MHz. The channel 

can support up to 2GB of DRAM, yielding enough capacity for storing packet buffers. 

In addition to DRAM, IXP2400 also provides two channels of Quad Data Rate (QDR) 

SRAM running at 400MHz. Up to 16MB of SRAM can be populated on each channel 

The SRAM is primary for accommodating packet descriptors, queue descriptors and 

other data structures frequently used. Furthermore, the on-chip 16KB scratchpad 

memory running at 700MHz provides very similar capability to SRAM. In the rest, 

local memory inside each ME is 2560 words in size and often used as a cache for 

smaller data structures.  

 

Flexible external interface  

The Media Switch Fabric (MSF) is an external interface used to connect the Intel 

IXP2400 to a physical layer device and/or a switch fabric. The MSF consists of 

receiving and transmitting interfaces which can be configured for different protocols 

such as POS PHY Level 3 [13] and CSIX-L1 [14]. Incoming packets are received into 

the Receive Buffer (RBUF) and outgoing packets are held in the Transmit Buffer 

(TBUF), which are both 8KB in size. The MEs can move data from RBUF to DRAM 

and from DRAM to TBUF using the DRAM[rbuf_rd] and DRAM[tbuf_wr] 

instructions directly, greatly avoiding packet duplications and unnecessary memory 

accesses. 

 

Coprocessors 

Two kinds of hardware coprocessors, including a hash unit shared by all MEs 

and a Cyclic Redundancy Code (CRC) unit inside each ME, are incorporated in the 

system. The hash unit is capable of 48-bit, 64-bit and 128-bit polynomial divisions. 
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Performing a high-quality hash in software is cycle-consuming, which occurs 

frequently in packet classification, and thus it should be offloaded to the coprocessor. 

Besides, a high quality hash will uniformly distribute entries in the smaller table to 

reduce the probability of a hash collision, and therefore resulting in fewer memory 

accesses. In addition to the hash unit, each ME contains a CRC unit providing a 

similar functionality to the hash unit for offloading CRC computation. 

 

2.2 Detailed Packet Flow in IXP2400 

The processing flow of an ordinary packet is elaborated below referring to Fig 1. 

Upon the arrival of a packet at the MSF of IXP2400, the MSF partitions the packet 

into several smaller chunks called mpackets, which can be configured to 64, 128, and 

256 bytes in size, and places them into the RBUF elements. The threads of the MEs 

dedicated for packet receiving in turn perform the reassembly of mpackets, and move 

them directly from the RBUF into DRAM, in which MEs and the Intel XScale core 

carry out further operations. The packet processing typically consists of packet 

classification followed by packet modification. During packet processing at MEs, 

chances are that some exception handling and housekeeping are manipulated by the 

Intel XScale core through the interrupt and message queue mechanism. In the later 

scenario of packet flow, the transmission process is just the reverse of the reception 

process, namely the packet is segmented into several mpackets by the threads 

dedicated for packet transmission, and then placed into the TBUF. 
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Chapter 3. Problem Statements 

 
In this paper, we focus on the impact on performance by the processor, thread 

and memory bank allocations when implementing memory-access intensive 

applications on the Intel IXP2400 network processor. Some problem statements are 

discussed below. 

 

(1) Task Allocation and Bottleneck Observation  

 Before implementing an NIDS, some functional blocks referred to as processing 

stages need to be identified and then mapped to the platform. During the mapping 

process, we try to properly exploit the hardware features such as hierarchical memory 

structure and multithreaded multiprocessor architecture. This mainly involves the 

assignment of memories to store different data structures, as well as the allocation of 

threads and MEs. The possible bottlenecks will be identified after the system is 

implemented. 

 

(2) Effect of Improper ME/Thread Allocations 

The performance of an application is affected by two factors, the computing 

power and memory-access latency. The former is determined by the number of 

processors used referred to as I, while the latter can be alleviated by adjusting the total 

number of threads employed, namely JI × [15]. Observing that total numbers of 

processors and threads are fixed to the hardware platform, it is interesting to see how 

an allocation (I, J), especially an improper one, affects the system performance.  
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 (3) Optimal Numbers of MEs and Threads within Each ME 

It is known that memory-access intensive applications benefit from increasing 

the total number of threads, namely JI ×  rather than individual I and J, because of its 

ability of hiding memory-access latency. Nonetheless, how to determine a fitting , 

given a certain hardware spec such as clock rate and memory service rate, remains 

unanswered. In addition, we are also interested in finding a optimal (I, J) combination, 

regardless of the limit on the numbers of MEs and threads per ME of the platform. A 

(I, J) is considered optimal when the utilizations of both ME and memory are 

cost-effectively high, as will be explained in chapter 5.  

JI ×

 

(4) Effectiveness of Employing Several Memory Banks 

Multiple memory banks reduce the average memory access latency. For 

memory-access intensive applications, more memory banks are supposed to improve 

the performance. Nonetheless, the effectiveness could be influenced by whether the 

accesses are evenly distributed into memory banks. Some experiments are therefore 

designed to investigate the feasibility of adding memory banks for memory-access 

applications. 

 

 

 

 

 

 

 

 

 8



Chapter 4. Design and Implementation 

 
In this chapter, we first introduce basic operations of an NIDS, and then 

characterize its processing stages in order to map them onto IXP2400. Finally the 

design and implementation of an NIDS over IXP2400 is described. 

 

4.1 NIDS Briefing 

The processing of an NIDS, for example, Snort [1], mainly consists of three 

phases: a packet decoding phase which sets up pointers to packet data at different 

layers and stores them into data structures for later analysis by the detection engine; a 

detecting phase, in which a group of rules matched by a packet header are applied for 

further signature matching, and an alert phase, in which some alert or logging routines 

are carried out. Although later versions of Snort include the preprocessing phase 

performing the IP de-fragmentation and TCP stream reassembly, it is optional and can 

be turned off. Among these phases, recent measurement of Snort [16] on a production 

network shows that at least 31% of total processing time is consumed by the detecting 

phase, while the rest is spent mostly on disk I/O.  

  

4.2 Design Issues 

 According to the above-mentioned characteristic of an NIDS, it is clear that we 

can implement an NIDS over IXP2400 by dividing the packet processing into a series 

of stages, namely receiver, packet inspector and transmitter, and mapping them onto 

the MEs. We do not consider the preprocessing stage since oftentimes it is not done in 

the fast path [17], but by the XScale. Moreover, packets can be distributed to a pool of 
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MEs, and thus threads, in the packet inspector to exploit high parallelism. 

Nevertheless, two problems including packet ordering and flow interleaving arise. 

 

Packet ordering 

The issue of packet ordering happens in a processing stage when multiple threads 

are dispatched to process the corresponding packet simultaneously. If the amount of 

time to process a packet is not constant, the packet ordering is no longer guaranteed as 

shown in Fig. 2a. To tackle this problem, a mechanism named ordered threads [18], is 

adopted to keep packets in strict order, meaning that threads in a processing stage 

consisting of several functions handle packets in order as presented in Fig. 2b. The 

synchronization among threads is simple since only one thread is allowed to enter a 

function, for example, function 2 in Fig. 2b, which may access a global variable at a 

certain instant. The ordering is supported in a very efficient manner using a feature of 

the hardware called inter-thread signaling. However, this mechanism suffers from the 

performance degradation due to the poor parallelism and less hiding of 

memory-access latency [18]. 
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Fig. 2. Timeline showing two consecutive packets (a) being out of order, and (b) being 
ordered in a processing stage  
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Flow interleaving 

etch across multiple packets when doing packet inspection. If 

fine our design by adding two processing stages with strict 

.3 Mapping Processing Stages to the Hardware Platform 

and 

 A pattern may str

flows are interleaved, it is not guaranteed that two consecutively processed packets 

belong to the same flow; in this way patterns across multiple packets can not be 

inspected appropriately.  

 For such cases, we re

packet ordering, namely flow classifier and thread dispatcher. The main idea behind is 

to classify packets into different flow queues such that flows are no longer interleaved. 

Further, each thread in the packet inspector is dispatched by a dispatcher to serve one 

flow queue. After finishing the inspection of a packet, the packet inspector thread 

stores the final state of inspection for later reference by another thread serving the 

same queue. So, patterns across multiple packets can be inspected and the packet 

ordering in the same flow is maintained. 

 

4

 Fig. 3 shows the processing stages of an NIDS, its corresponding task 

resource allocation on IXP2400. The NIDS processing is elaborated as follows. On 

receiving a packet from an input port, the packet data is moved from RBUF to DRAM; 

the corresponding packet descriptor is stored in SRAM and also passed to the next 

stage through the receiving scratch ring. Subsequent stage, the flow classifier, 

retrieves a packet descriptor for flow classification which conducts several operations. 

First, the fields of packet header (e.g., IP pairs and port pairs) are used to calculate a 

hash key indexing into a hash table in SRAM. Since the task requires much 

computing power, the hash unit is adopted to offload the computation. Second, if a 

hash hit occurred, the hash entry pointing to a flow context in SRAM is referred to 

enqueue a packet descriptor for inspection; otherwise the creation of both hash entry 
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and flow context is carried out at runtime. The flow context mainly consists of the 

SRAM address of flow queue keeping the packet descriptors, state of inspection and 

status flags. Then, the thread dispatcher thread chooses a packet descriptor among 

flow queues round-robinly and passes it to a packet inspector thread, performing the 

pattern matching. Once a packet payload is matched against a pattern, a message is 

delivered to the XScale through the XScale scratch ring for carrying out alert. Finally, 

the transmitter thread examines the transmitting scratch ring to determine whether a 

packet is waiting to be sent, fetching the packet’s descriptor in SRAM and sends the 

entire packet in DRAM to TBUF for output.  

 

 

In our implementation, a tentative allocation of MEs and threads is chosen based 

Fig. 3. The processing stages of an NIDS on IXP2400 

on the benchmarking of Snort. Each processing stage is allocated one ME except the 

packet inspector, which is given four MEs. That gives us totally four MEs and 

thirty-two threads to use for later adjustment and analysis. For thread allocation in the 

receiver, eight threads are evenly divided into four groups corresponding to four 

gigabit ports. Each port is served by two ordered threads to keep packets in order. As 
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for the transmitter, eight ordered threads are assigned to one gigabit port. For the flow 

classifier threads, classifying packets could take vastly different amounts of time 

when the hash collisions occur; considering the thread dispatcher threads, choosing 

among flow queues round-robinly needs to maintain the synchronization of a 

round-robin counter. Hence, we adopt eight ordered threads in both processing stages. 

In the packet inspector, unordered threads, rather than the ordered ones, are employed 

for the following reasons. First, the ordered thread may not be efficient in hiding the 

memory access latency due to each function in a processing stage can only be 

executing on one thread at any given time. Second, since a flow queue is served by 

one thread at a time, packets will never get out of order within that flow; meanwhile, 

ordered thread is adopted by processing stages before and after the packets being 

inspected. Hence the ordering of packets is maintained. Interaction between the thread 

dispatcher and packet inspector will be detailed in the section 4.4.2. 

 

4.4 Algorithms Adopted and Packet Inspection  

luences the performance of an NIDS. 

4.4.1 String Matching Algorithms 

 Packet inspection is a critical stage that inf

Several string matching algorithms were proposed for improvement. However, coding 

microcode is difficult, since it depends heavily on hardware characteristics. Two 

popular algorithms, Aho-Corasick referred to as A-C and Wu-Manber referred to as 

W-M, are thus used because they are easy to implementation and adopted in most 

network applications, for example, Snort. The two algorithms typically consist of two 

phases: a pre-processing phase, which computes and builds necessary data structures 

in memory from input patterns, and an inspection phase, in which patterns are looked 

up against the packet payload. Nevertheless, the pre-processing phase is 
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time-consuming and typically done by the XSacle. For our implementation, we store 

the data structures in SRAM in order to reduce the memory access overhead. The 

operation of A-C involves state transitions of automaton. Therefore, we can record the 

state when finishing the inspection of a packet, and start from last state for the next 

one. Similarly, we keep the shift value instead of state for W-M so that patterns across 

multiple packets can be inspected. 

 

4.4.2 Thread Dispatcher and Packet Inspector 

acket inspector. As 

men

Fig. 4 details the interactions between thread dispatcher and p

tioned before, the thread dispatcher thread chooses a packet descriptor among 

flow queues and passes it to the packet inspector thread, in which some operations are 

involved. First, two flags, namely isEmpty and beingServed, of a flow context are 

checked in each round. The former is to indicate if corresponding flow is occupied 

while the later is to denote whether that flow is being served by a thread. If it is 

occupied and not being served, a packet descriptor is assigned to a packet inspector 

thread; that is, a flow is served by only one packet inspector thread at a time, and thus 

preventing the state (for A-C) or shift value (for W-M) from being corrupted by 

another one. Further, the packet inspector thread examines a packet payload against 

thousands of patterns in SRAM, updating the state or shift value in the flow context. 

If a pattern is matched, a message is sent to the XScale, and then the packet is 

transmitted; otherwise the packet is sent to the transmitter directly. Finally, the packet 

inspector thread puts itself into a dedicated free thread list and waits for a signal from 

the thread dispatcher. The four free thread lists correspond to the four MEs and are 

implemented by four scratch rings. Notably, the packet inspector threads are 

dispatched round-robinly for the reason of load balance among MEs. Considering 
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timeout of a flow, a counter is associated with each flow to avoid the system resource 

being exhausted by excess flows, and is maintained by the XSacle. Once the counter 

is turned into zero, meaning that the lifetime of that flow is terminated; meanwhile, 

the flow queue as well as flow context and hash entry are eliminated. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Interaction between the thread dispatcher and packet inspector 
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Chapter 5. Performance Benchmark and Bottleneck 

In this chapter, we evaluate the performance by externally and internally 

ench

 

.1 Benchmark Setup 

sign is responsible simply for the preprocessing and 

alerting

 

atterns for Packet Inspection 

 current Snort, we employ 2000 

random

Analysis 

 
 
b marking the system implemented using two string matching algorithms. To have 

both MEs and memory, namely SRAM, well utilized, we investigate the appropriate 

numbers of I and J for the application. Since memory accesses account for a 

considerable portion in the packet processing, the feasibility of exploiting multiple 

memory banks for load balance is exploited.

 

5

The XScale core in our de

; therefore, in this chapter we focus mainly on the performance of the MEs 

which are the main component that handles the most part of packet processing. Since 

the performance statistics including ME and memory utilizations can only be obtained 

by the simulator, we evaluate the performance figures through simulation. 

Consequently, the preprocessing phase originally done by the XScale is shifted to the 

receiver ME since the simulator doesn’t comprise the XScale. Notably two MEs from 

two processing stages, the flow classifier and thread dispatcher, respectively, are 

borrowed in the analysis due to the dearth of MEs.  

5.1.1 P

Observing that 2475 patterns are used in the

 patterns in which characters are generated uniformly according to the 
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guidelines discovered in [19]. The shortest pattern length, LSP, which is known as a 

major factor on the performance of string matching algorithms such as W-M, is set to 

four [20]. As mentioned previously, the pattern preprocessing phase is done directly 

by the receiver ME and the resulted data structure is stored in SRAM. 

 

5.1.2 Simulator Setup 

orkbench provides tools for compiling microC into 

icr

.2 Effect of Improper ME/Thread Allocations 

s, we compare the 

perfo

 The IXP2400 Developer W

m ocode and a simulator called Transactor, for evaluating the performance. The 

simulator allows users to configure parameters. In our experiment, the clock of the 

ME is 600 MHz. The input interface of the MSF is divided into four gigabit ports, 

while the output interface is a four-gigabit one. The transmitter and receiver buffers 

are both 256 bytes. Four data streams of 64-byte TCP/IP packets with randomly 

generated payload are injected. The simulation lasts until 50000 packets are 

transmitted. 

 

5

To investigate the effect of improper ME/thread allocation

rmance, in terms of utilization, of A-C for different (I,J) combinations. As shown 

in Fig. 5, I and J can be configured while the total number of threads, JI × , is fixed. 

Two outcomes are observed. First, the throughput is influenced mostly J , since 

the throughput remains unchanged for all (I,J) combinations. Second, the average ME 

utilization degrades while increasing I. This is because the JI

by I ×

× , rather than the 

computing power, counts for the throughput, whereas the same t c load is balanced 

by more MEs. The same explanation applies to the results for W-M in Fig. 6.  

raffi
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Fig. 5. The performance of A-C for different (I,J) combinations. The number 
of threads is fixed at 12. 
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Fig. 6. The performance of W-M for different (I,J) combinations. The number 
of threads is fixed at 12. 

 

Fig. 6 shows that the overall memory utilization of W-M is higher than the one of 

A-C while the average ME utilization is low. This is due to the high memory-access 

overhead of the former algorithm, as clarified in section 5.3. 
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5.3 Profiling on Memory Access and Computational 

Instructions 

 The average ME utilization and throughput of A-C are better than those of W-M. 

This is proven by the profiling of memory-access cycles required for handling a 

64-byte packet, as shown in Fig. 7. Apparently W-M needs more memory-access 

cycles, referred to as P, than A-C as well as computational instruction cycles, referred 

to as M, as shown in Fig. 8. We estimate the ratio of
M
P  for the number of patterns 

being 2000, 06.0≈
M
P  for A-C and 02.0≈

M
P  for W-M, respectively, meaning that 

the average ME utilization of W-M suffers from the heavy memory-access overhead 

except for the throughput. 
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Fig. 7. Profiling of memory-access cycles for a 64-byte packet 
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Fig. 8. Profiling of computational instruction cycles for a 64-byte packet 
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.4 Estimating Optimal Numbers of MEs and Threads 

e performance of the two implementations by increasing 

b

 

We can also estimate a combina at both ME and memory are 

best utilized. As we learn from Fig. 9, when memory utilization is above 90%, 

(61.1, 95.6) 

(44.0, 93.5) (51.1, 91.9) 

(69.9, 91.8) 

(61.2, 87.3) 

(71.8, 78.3) 

(63.0, 70.1) 

(73.8, 64.4) 

(61.2, 54.2) 

(72.7, 46.7) 

(63.2, 40.7) 

(75.2, 30.3) 

(ME Util., MEM Util.) 

5

within Each ME 

  Fig. 9 depicts th

num er of MEs and therefore the total number of threads. Some observations can be 

made. First, the throughput of A-C is better due to less memory-access overhead. 

Second, for number of MEs being from one to four, the ME utilizations of both 

implementations are almost the same, implying that the number of threads per ME is 

insufficient. Third, initially, the throughputs of both implementations increase with a 

direct ratio to JI × , namely number of threads. Nevertheless, the throughput increases 

slightly as I = 5 for W-M and I = 6 for A-C, respectively, because memory is almost 

fully utilized. Fourth, as I increases and memory utilization approaches 90%, the 

average ME utilization degrades, because the load making memory saturated is 

diluted by large I.  

 

Fig. 9. The performance of A-C and W-M with different numbers of MEs  

(8 threads per ME) 

tion of (I,J) such th
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increasing I, and therefore total number of threads contributes slightly to the 

performance and is not cost-effective. For example, the improvement of memory 

utilization from incorporating the sixth processor is about %8.38.916.95 ≈− and 

%6.19.915.93 ≈−  for A-C and W-M, respectively. Hence, 4085 =×  threads 

should be enough cost-effectively for both algorithms to we ory. 

E utilization is low when I = 5, meaning that the computing power 

is unnecessarily much and should be further reduced. We fix this problem by 

employing four MEs, rather than five, so that the average utilization of MEs shall 

become

ll utilize the mem

Nonetheless, the M

%4.875%9.69
≅

×  (since
4

%100%5.1165%9.69
>≅

3
× ), and J can thus be 

estimated to 10
4
40

5.5 Bottleneck of SRAM Command Queues 

= . Similarly, a combination of W-M. 

 

The memory bottleneck can be further confirmed according to the history of 

re, we can see that the 

)13,3(  can be derived for the 

 

SRAM command queues as shown in Fig. 10. From the figu

queues are nearly full as I = 4. When I = 5, the queues start to overflow, indicating 

that no more requests can be served. Hence, threads issuing memory-access requests 

are blocked, resulting in the degradation of ME utilizations. 

 

 

 

Fig. 10. History of SRAM command queues for W-M 

I = 4 

I = 5 
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5.6 Effectiveness of Multiple Memory Banks 

One of the solutions to the memory bottleneck is to add more memory banks. To 

evaluate the benefit, we adopt two SRAM banks to store the data structures of the 

string matching algorithms. Table 1 shows that only minor improvement can be 

gained due to the dif  table, of A-C

enly into different memory banks. The W-M, on the contrary, benefits substantially 

(about 43.7%) from two banks as presented in Table 2. This is credited to the use of 

several tables which make the distribution of data a lot easier and more efficient to 

memory banks. 

Table. 1. The performance of A-C with two memory banks when ( , ) = (6,8) 

 One memory bank Two memory banks 

ficulty of splitting the data structure, namely goto  

ev

 

 

I J

Avg. ME util. (%) 61.1 63.2 

MEM util. (%) 95.6 95.2/1.8 

Throughput (Mbps) 670.6 674.4 

 

Table. 2. The performance of W-M with two memory banks when (I,J) = (6,8) 

 One memory bank Two memory banks 

Avg. ME util. (%) 44.0 63.2 

MEM util. (%) 93.5 70.0/57.2 

Throughput (Mbps) 133.2 191.4 
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Chapte ion an ture Wor
 In this work, we elaborate the impl entation of a m s intensive 

application P2400 n  processor. We

latform, briefing the NIDS processing flow, and identify necessary processing stages 

to be mapped to the platform. NIDS includes a critical processing stage, the packet 

spection, which are implemented with A-C and W-M. Some design issues including 

ns across multiple 

acke

ed I, 

meaning that 

r 6. Conclus d Fu ks 
em emory-acces

, NIDS, over the IX etwork  introduce the hardware 

p

in

packet ordering and flow interleaving are solved, and thus patter

p ts can be inspected appropriately. Finally we externally and internally 

benchmark the system aiming to observe the effect of the allocations of processors, 

threads, and memory banks, as well as possible bottlenecks.   

The external and internal benchmark shows that the system can support up to 

670 Mbps using the A-C and 133Mbps with the W-M. It is observed that given a 

certain application and algorithm, the throughput is influenced mostly by the total 

number of threads as long as the ME utilizations do not exceed 100%. Although 

enlarging JI by adding more processors benefits the throughput, the ME utilization 

suffers. This is because the load saturating memory is diluted by the increas

×

J instead should be extended. The bottleneck is then found to be the 

SRAM as the JI ×  expands and exceeds the upperbound, k, that cost-effectively 

utilizes the memory. With the upper-bound, we estimate an optimal (I, J), i.e. (4, 10) 

for the A-C and (3,13) for the W-M, respectively. In fact, supposed an application, 

algorithm and al (I, J) can always be derived.  

Two workarounds are suggested to solve the SRAM bottleneck, namely 

when kJI . The first is to use multiple memory banks. Our result indicates that 

the performance gains a 43.7% improvement from two banks for W-M since the data 

structure itself makes it easy to be evenly distributed among banks. The other is to 

k, an optim

>×
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adopt a multi-port memory which allows multiple simultaneous memory accesses. 

This is helpful especially to algorithms, such as the A-C, having data structures 

diffic

wo issue

 

 

 

 

 

 

 

 

 

 

ult to be uniformly split. 

T s are to be investigated in the future. First, the influence, i.e. the real 

traffic rather than, synthetic one will be considered. Second, we tend to observe the 

impact of allocations of processors, threads, and memory banks on performance for 

computation-intensive applications. 
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