P B8
P[5

- BAE IR EE AR R AR AL T

A Visualized Kit for Developing Applications on Multiple

Mobile Devices

; y . ’_—':H
p zal 7{ 4 A el U

B TR R

s B e 1 E 4

- BEF IR EREE PR AN AR EF LR

A Visualized Kit for Developing Applications on Multiple
Mobile Devices

FopoA R o Student : Jen-Kai Wu
pERE 2T Advisor : Shyan-Ming Yuan
Bz~ F

Fo o F
ML owm

A Thesis
Submitted to Department of Computer and Information Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer and Information Science
June 2005

Hsinchu, Taiwan, Republic of China

PEARA e £

- BFEHIRCEFHFEE PR B AOART R 1L

F408 g hERIE 2T

Wil < BFAAEE L (BT) AL

PofAfEp fM e FEm AR TR F R AR EE
FPREFARY NS E L2 TP S G0 R RN AT A S
- RBAVERAFHEEIHAGORY 2N V- AR I EEE
EpZaoleb FITERFAT AP BANGFTO/Y 25088 p b
FR T RAEFIE XS DR E R EY - AR 2
FoFad R T BREA R AR AR AN TR A AR K
PORAPRARERIET - EFEOEH R ASEFIEL QIR
EREF AR SERT P HIES N2 - B R AN A
BoRFLEERS A DEERETERAE L S AR AT R
ARV o N A EE R T B HE L I - AR
B P AT TR 1B FELT - BIRG ELBE S
BHALG TR RS FEFE L AE - B ERRY PP RRE
PRI Bp AL DRI EDSGEFEET DD o

!

S

b

El

A Visualized Kit for Developing Applications on Multiple
Mobile Devices

Student: Jen-Kai Wu Advisor: Shyan-Ming Yuan

Department of Computer and Information Science
National Chiao Tung University

ABSTRACT

The proliferation of various maobile. devices makes the development
of mobile applications becomes more.and. more complicated. Currently,
the mobile application can be classified into two types: one is mobile
application which can be directly executed in the devices; the other is
mobile Web application which ‘is'executed through an embedded mobile
Web browser. At this time, none of any existing toolkits has the ability to
develop both types of applications through authoring a single generic
application interface. For this reason, we propose a visualized toolkit
within an integrated development environment and discuss the design
issues in this thesis. The toolkit is capable of creating the generic
application interface simply through intuitive drag-and-drop operations.
The generic application interface can then be transformed into both types
of applications through the style sheet transformation technology.
Furthermore, we not only try to make an easy-to-use toolkit, but also to
preserve some extensibility for future add-ons. Developers can utilize this
integrated toolkit to compile or test both types of applications to save
development time and reduce development efforts.

Acknowledgement

ARy FALER MR TARBRLEI AL oL i
BEZR RN AN ET A P A ELR O R HT
FHELBELFIFLOFRERALBA TR R % L ¥ F s

[

RAFEAF S B R F PR L% -

VAP - PR SR BT
Fr g3 ERNTFETEOEH RS RS R <
AL FRATUAIGOEYREAA R SAZ BDR
R BMEET AL T - BRAR

Table of Contents

ACKNOWIEAGEMENToiiiiicicce e e i
Table of CONTENTScooiiiiie e v
LISt OF FIQUIES....oeiciee et Vil
Chapter 1 INtrodUCTION........c.cooiiieee e 1
LLL PIEIACE. ..ot 1

1.2 IMOTIVALION ...t 2

1.3 RESEAICH ODJECLIVEoviieieieceie et 3

1.4 Research ContribULIONccoiiiiiiiiees e 4

1.5 Outlineg Of the TRESIS........coiiiiiiie e 4
Chapter 2 Background and.Refated WOrKScccccoeeiieiiciieccne, 6
2.1 TOOIKIt DESIGN CONCEPL 1. pursssesnessunasnsiatessin s semheesueeseessessseessessesssesssessesssesssessens 6

2.2 User-interface Markup LLanQUAGE eermrese: c+«iaseeesreerveereeseeseaeeseessesseeseessesssenns 6

2.3 DOCUMENT MO ... im0 1 e 6
2.3, L S A K e 7

2.3.2 XML DOM ..ottt 7
2.3.3IDOM ... 8

2.4 JAVABBANS........oiiiiiiiiii e 8

2.5 OPENTOOIS AP ... 8

2.6 REIALE WOTKS ... 9
Chapter 3 Authoring Frameworkccccooeviviiiiiiciecnie e 11
B L OVEIVIBW ...ttt bbbttt n bbbt 11

3.2 Designing USer-INtErfaCeccevvieereeie e 12
3.2.1 TOOIKit COMPOSITIONcvviiiiiieiiieie e e 13

3.2.2 PrEPAratiONcecureeieiiieieeiesieesteeee e e ste e e e e e ste e e e eeeeneenes 14

3.2.3 Visualized EditiNg.......cccooeiiiiiiiiieeiec e 15

3.3 Defining LOGIC USAQEcueiieiieeie ettt 18
3.4 TrANSTOMMING ...ttt bbbt 19
3.5 Programming Application LOGIC.........cecoueiiieiieiiiieie e 20
3.6 SIMUIALING ... 20
Chapter 4 ToolKit ArchiteCtUIe.........ccveviiie e 22
AL IMOUEL ... 22
4.1.1 Document Model DESIQNc.cccveiveieiiieieee e 23
4.1.2 View MOl DESIGNocuviiiiiiiiieieese e 23

B2 WIBW ..ottt bbbt 25
4.3 CONIOIEE ..t 26
4.4 Other MeChaniSIMSiliiiuereieieiee ittt 27
4.4.1 EXENSIDIE VWIOGETStreuiueunttasasiansasis s ceTheeeenvenresieeieeeeseeseesne e sse e 27
4.4.2 The Attribute CONSEralNS semrrresmmms. .« deareveverrereeririesreesesieseeesieseeesienees 29
4.4.3 Drag-and-Drop FrameWork ..citiu e .o 30
4.4.4 Widget-Generation Frameworkcccccveveiieiiiic i 31
4.4.5 Collapsible and Disguisable WIdgets...........ccccevrvereiencneniieseeen 32
4.4.6 Smart POSItion INFEIreNCe.........ccoeiiiiiiciree e 32

4.5 Integration With JBUIIAENcocviiiiiie s 33
A5 L PUML NOGE ..ottt 34
A.5.2 PUML VIBWET ...ttt st 35
A.5.3WIZAIG ...t 35
Chapter 5 Implementation ... 36
B.LIMOTEL ... 36
5.1.1 IDOM MOCELcuvieiiiiiieieee et 36
5.1.2 IDOM FACIOIY ...ovviiiiie ittt 37

5.1.3 CUStOMIZEAd WIAGEL.........oiveiiiiisiieieeeee e 37

5.2 VIBW ..ttt 39
5.2.1 LAYOUL IMANAGETeeieeiieiriiieesieeie ettt 39

5.2.2 Foldable WIAQeLcccoieiieece et 40

5.2.3 COMPOSITE CUISOT ...ttt 40

5.3 CONEIOIIET ... 41
5.3.1 DESIGNEr EVENL.....coiiiiiiieii e 41

5.3.2 Drag-and-DrOpccccciueiieieiieie et 42

5.3.3 CUL/COPY aNd PaSTE........ccviiiiiiiiiiiieieiee e 42

5.4 OENEIS ...ttt 43
5.4.1 Synchronization OF VIBWScccoueiiiiiiineie i 43

5.4.2 Configuration FileSh.c.veore i 43

5.4.3 Create @ PUML AOCUMENT: ... ateiuais tem v 44

5.4.4 Open @ PUML JOCUMENT crerrrrarsrs. e sarereervesseesseesseseesreesseseesseessesessnns 45
Chapter 6 Conclusions and FUture WOrKS.............cccocovevieiieiieecieeenn, 46
6.1 CONCIUSIONS.viticiiitt et 46

6.2 FULUIE WOTKS ...t 48
Chapter 7 Bibliography ... 49
Appendix A Common Widget Interface.........ccccccvvviiiiiiiceiiniininn, 51

Vi

List of Figures

Figure 1-1: The concept of combining mobile application and mobile Web application.

.. 2
Figure 3-1: Workflow of building PUML-based applications.ccccceeverivenvnnnne. 11
Figure 3-2: The user-interface design environment in JBuilder.cccccoevvvvvennne. 12
Figure 3-3: The visualized editing environment of the toolKit.cc.cooviiienn, 13
Figure 3-4: Three categories of the t00IDOX.........ccccovviieii i 14

Figure 3-5: The structure pane which represents the structure of the source PUML file.

.. 14
Figure 3-6: The setup page of the PUML page generation wizard.cccccervrennne. 15
Figure 3-7: The helper dialog for defining 10gICUSAgE.cccevvererrveieercie e 18

Figure 3-8: The configuration dialog for extending. the transformation style sheet. ...19
Figure 3-9: The transform target-selection.dialog for ¢hoosing either one or multiple
(6210 [=] £ J U UPUUROTRRTITIG. ~ , . —erere AT 19
Figure 3-10: The simulator configuration dialog for extending the third-party mobile
SIMUIBLOTS. ...ttt 21
Figure 3-11: The simulating result in the NOKIA Mobile Browser Simulator............ 21

Figure 4-1: The toolkit architecture in the form of Model-View-Control design pattern.

Figure 4-2: The UML representation of the mediator design pattern of the toolkit. ...26

Figure 4-3: The widget architecture with regard to the JavaBeans.cccccoeveeee. 27
Figure 4-4: The structures for storing attribute constraints and used texts.................. 29
Figure 4-5: The process of generating a widget from the PUML tag element. 31
Figure 4-6: The smart position iINfErence area.ccocveverieeiienesie e 32
Figure 4-7: The architecture of JBUIIAEN.cccviveiiiieceee e 33

Vi

Figure 5-1: The example widget bean structure of the widget which represents the
“puml:user-interface” tag element in the PUML specification.............cccccccoeuee. 38
Figure 5-2: The example composition of two images to form a single cursor. 40

Figure 5-3: The sequence diagram of creating a new PUML document within JBuilder.

Figure 5-4: The sequence diagram of opening an existing PUML document within

JBUIITRT. oo 45

viii

Chapter 1 Introduction

1.1 Preface

Nowadays, almost every pedestrian carried about one mobile device at least.
These mobile devices such as mobile phone, Personal Digital Assistant (PDA),
notebook, etc. are rapidly proliferating with miscellaneous functions. Within these
functions, the Internet connectivity has significant influence since the mobile devices
can either execute various applications online or download the applications to execute
while offline. The first type of application is called “Mobile Web Application” while
the second type is called “Mobile Application’.Since these two types of applications
have many things in common, the demand of writing application once and executing
it no matter online or offline increases. The researches for an integrated development
toolkit which targets on authoring applications for' multiple mobile devices starts to

grow.

PUML (Pervasive User-interface Markup Language) [1] is an XML-based
language which describes a generic user-interface for the mobile application in the
abstract level. It can be transformed into various languages by using multiple XSLT [2]
style sheets. The target languages currently are manipulated in XHTML-MP [3],
WML [4], and J2ME MIDP [5], and they are all executable in the mobile environment.
Based on the PUML transformation framework, visualizing the user-interface
presentation of PUML and providing an integrated development environment will be

targeted in this thesis.

1.2 Motivation

Visualized Authoring Toolkit

Generic Application Description

L Ll

Mobile Application Mobile Web Application

-

Web Server

1

Mobile Devices Mobile Browser

Figure 1-1: The concept of combining mobile-application’and mobile Web application.

Nowadays, there are many existing toolkits for authoring multi-device Web
applications such as IBM Everyplace.toolkit-for. WebSphere Studio [6] and Microsoft
ASP .NET Web Matrix [7]. However, none of them provides the ability to author once
and generate both offline mobile applications and online mobile Web applications.
Authoring applications becomes a time-consuming work; therefore, it motivates us to
combine the development of both types of applications through authoring a single
generic application interface. Figure 1-1 draws a picture about this concept. The
single generic application interface is based on the XML-based mobile application
development kit [1] from our laboratory (DCSLab of CIS NCTU), it proposed PUML
as the user-interface transformation matrix, our toolkit can therefore adopt this
language to achieve the goal of writing once, and generating both types of
applications. Furthermore, for the sake of giving developers an easy-to-use and
integrated development environment, our toolkit is integrated into a mature toolkit to

gain more usability in accelerating the development process.

2

1.3 Research Objective

The research objectives can be categorized into the following four categories:
Rapidly development

Since PUML is not widely understood by every developer, the PUML document
is visualized into a composition of graphical user-interface widgets. Developers
therefore do not need to hand-write the PUML source code. The visualized toolkit
tries to give developers a “What You See Is What You Get (WYSIWYG)” interface
which can be used to generate corresponding PUML source code. This approach
makes developers who do not comprehend the PUML specification can still author a
PUML document. Furthermore, intuitive drag-and-drop operations are adopted over

the entire toolkit to compose the-application user-interface as easy as possible.
Extensibility

Extensibility always plays an important role in software component reuse. For
instance, once the PUML specification revises in the future, the extensible toolkit can
be updated simply through replacing some components. Moreover, once a new
transformation style sheet is released, the extensible toolkit can also add it to generate
a new language. Furthermore, new mobile simulators are to come out, the toolkit

should provide a way for adding them to increase the toolkit usability.
Integration

There are existing toolkits which provide tons of features in shortening the
development time. Integrating with one of these mature toolkits can utilize their

features and provide an integrated development environment at the same time.

Write once; generate multiple application user-interfaces

Authoring multiple applications with the same functionalities is annoying and
time-consuming, we try to save development time by writing a single generic
application based on PUML and then generating the user-interface and logic skeleton
of both mobile application and mobile Web application. The efforts of authoring

applications for multiple mobile devices can therefore be simplified.

1.4 Research Contribution

A toolkit is designed and implemented based on these objectives, there are many
problems encountered in the process. This paper provides not only solutions to these
problems but also a new blueprint, of . the authoring approach. Four major
contributions of this paper are listed below:

1. A toolkit is crafted to visualize the PUML document and carried with some
easy-to-use operations in a manner. of editing operations.

2. The toolkit architecture is designed-and constructed to be extensible.

3. The toolkit is integrated in the leading Java development software - Borland
JBuilder [8]. The integration process is also discussed and detailed for
referencing.

4. Three formats of languages are generated from a single PUML document to form

both mobile application and mobile Web application.

1.5 Outline of the Thesis

In Chapter 2, background and related works of developing the visualized toolkit
is introduced. In Chapter 3, components of the toolkit and the new authoring approach

for multiple mobile devices are depicted through vivid pictures. In Chapter 4,

architecture of the toolkit is described to give an overview over the entire toolkit. In
Chapter 5, implementations and problems encountered are detailed. In Chapter 6, we

dwell on conclusions and future works for referencing.

Chapter 2 Background and Related Works

2.1 Toolkit Design Concept

The toolkit proposed mainly targets on the usability and flexibility; it gives
developers an integrated development environment and some easy-to-use operations.
The complex stuff such as tag mapping and transformation are hided from developers,
developer can therefore develop the application user-interface as easily as developing

HTML using visualized toolkit such as Microsoft FrontPage.

2.2 User-interface Markup Language

There are many markup languages: for. describing the user-interface. PUML,
XUL, UIML, WML, XForms are among these languages, all of them has different
focuses and purposes. PUML is a.language first proposed by Shen [1] for describing
the user-interface of applications on mobile devices. It works as a media for
transforming the user-interface into various formats. In Shen’s work, the XSLT
mechanism is utilized to transform it into WML and J2ME MIDP for running in
WAP-enabled and J2ME-enabled mobile devices correspondingly. Since PUML is a
language with flat-structure, it is simple to transform and the transform results can
highly conform to the meaning of original PUML document. For this reason, PUML

is adopted as our base language for authoring applications on multiple mobile devices.

2.3 Document Model

According to the XML-based PUML, the document model behind the program is
then to be a model which can represent the XML structure. The model is built through

6

parsing the source XML document. Following are three models which are addressed

with considerations about adopting them in the toolkit.

2.3.1 SAX

SAX [9] stands for Simple API for XML; it provides a programming interface
for applications that need to parse XML documents. The SAX model triggers SAX
events as it parses a XML document, therefore, it never creates a tree structure for the
document in memory. However, it is allowed to programmatically instruct it to create
our own data structure. Since SAX parser pushes data to the client application, it is
relatively lightweight to the DOM parsers. For the above reasons, SAX parser is used

as our major parser to create another model which can be stayed in memory.

2.3.2 XML DOM

XML Document Object Model. (DOM) [10] s first standardized by the World
Wide Web Consortium (W3C). It provides a standard set of objects for representing
XML documents and a standard interface for retrieving and manipulating them. XML
DOM views XML documents as a tree structure composing of multiple nodes. All of
these nodes are stayed in memory; therefore, a node can be accessed or modified at
anytime. However, a DOM tree node has many complex types and the node can not
be further extended in the standard Java DOM API. Therefore, using XML DOM
model will need to create another mechanism for mapping a node and a visualized
widget which wastes lots of memory space. As a result, XML DOM is not adopted as

our toolkit model.

2.3.3 JDOM

JDOM [11] is a Java representation of an XML document. It provides a way for
easy and efficient reading, manipulating, and writing XML documents. Moreover, it
also has a lightweight, fast, and optimized Java API. Furthermore, it integrates well
with both DOM and SAX models and allows us to build customized model which
extends the default JDOM model. For these reasons, JDOM is adopted as our final

document model representing the source PUML document.

2.4 JavaBeans

For the extensibility of the toolkit, the widget structure must be extensible to
tolerate future changes. Since the toolkit is completely written in Java, JavaBeans [12]
component architecture for Java 2 PBlatform, Standard Edition (J2SE) is therefore
adopted as the base structure of widgets in the toolkit. JavaBeans are reusable
software components that you can develop and assemble easily to create sophisticated
applications. In JavaBeans architecture, a component can be described with a “bean”
and a “bean descriptor”, the bean descriptor describes the bean class and the methods
provided in the bean. Moreover, with combination of Java reflection mechanism, it is
possible to create and manipulate widgets dynamically in the runtime. Accordingly,
the widget structure becomes extensible as well, once a new PUML element is
released, a corresponding widget can be developed rapidly through following

JavaBeans specification.

2.5 OpenTools API

Borland JBuilder is a leading product in developing Java applications; it provides

8

a complete application programming interface (API) for developing tools integrated
with JBuilder. The API is called OpenTools [13], it provides access to almost every
component inside JBuilder, and it is therefore possible to integrate our toolkit into
JBuilder as a plug-in. The OpenTools API is a full Java-based API with complete Java
document released. Furthermore, Borland also releases a simple tutorial for
developing OpenTools; the architecture of JBuilder can be comprehended easily

through it. For the above reasons, JBuilder is selected as our final integration target.

2.6 Related Works

The mobile application development has already been evolved in our laboratory
more than two years. One of the development kit proposed by Liu [14] is based on the
thin-client platform called ART (Adaptive Remote Terminal). The other kit proposed
by Shen [1] is based on the PUML and PGML. However, both Kits lack a visualized

development toolkit to develop the application-user-interface easily and quickly.

In the current market, there are some other products for visualizing the
development of multi-device applications. One is Microsoft’s ASP .NET Web Matrix
[7] which relies on runtime interpretation of a device-independent application.
Another is also Microsoft’s product — Visual Studio .NET [15] which provides an
integrated development environment and a rich set of widget controls. The other is the
IBM Everyplace toolkit for WebSphere Studio [6] which provides the ability to adjust

a part of the generic user-interface for a specific device.

As for the academic researches, there are many researches related to the
user-interface transformation mechanism design, however, few researches put their
focus on authoring multi-device applications. One of these researches is published in

[16]; a Platform-Independent Model for Applications (PIMA) is proposed to adapt the

9

user-interface in both design-time and runtime. It contains a generalization
mechanism for extracting a model from device-specific interfaces such as HTML. A
specialization mechanism that adapts the application to various target devices
automatically is also included. Another research is published in [17], a Multi-Device
Authoring Technology (MDAT) is proposed. The MDAT is a second-generation
technology based on the PIMA stated above, it combines both design-time and
runtime adaptation to provide a more complete authoring framework. Moreover, it is
also the base technology used in the IBM Everyplace toolkit for WebSphere Studio.
The other research is published in [18] which proposes a design environment for
adaptive multi-device user-interfaces and generates both HTML and WML languages.
From the authoring frameworks described above, the concepts of model-based user
interface development and multi-device development are referenced in the design of

our own authoring framework and toolkit.

10

Chapter 3 Authoring Framework

The workflow of authoring PUML-based applications can be separated into three
parts; one is designing the user-interface and defining the usage of the logic objects in
PUML. Another is transforming PUML files and generating multiple applications
with user-interface files and logic files separated. The other is writing the application

logic for each applications being generated. The whole development process is shown

in Figure 3-1.
User-interface User-interface
| Y V
I Logic Skeleton > Logic
PUML files — —
. One Application Full Application
with the usage
of logic /
N
components \ User-interface User-interface
7 Logic Skeleton > Logic
Zansforming One Application Full Application
and code Fill logic
generation code

Figure 3-1: Workflow of building PUML-based applications.

3.1 Overview

The entire toolkit is embedded in JBuilder as a plug-in; therefore, entire
authoring actions can be accomplished in this integrated development environment.
Developers can simply drag-and-drop to create a generic user-interface and rely on
JBuilder for constructing the application logic and testing the created applications.

Moreover, developers can add any simulator to the configuration file and then select

11

one of the simulators to simulate and test the transformed files.

The authoring framework of our toolkit contains designing user-interface,
defining logic usage, transforming, programming application logic, and simulating, all

of the details will be revealed in the following sections.

3.2 Designing User-interface

|CN AR e een bfe fouery gl HE al

Fils Edit Search Refastor Vie Run Team Wissrds Took Window Help
P-EHE-DEHE-& o~ B E YA

Emj

x @ Currency

£}
B E B currency jpx

Currency jx & Page1
&1l =Project Sources & P
tinter
- images - l'..m,r& Lk ’f T, [Hide sl dsta binding widgets
Q) ome P a2
p .
& wwnl Y 7
:2 %r Ast Label l -4 f/ |
E),
Az Link 5
[abll TestBiox Canvert Fram 7 Mame “alue
= name |boardz
il Picture - |title |Pagez
temBax Grou
v 8] P = UsD
=-[3] =pumluser-interface= ’?2 ftemBox
=B <£ng hoard= 58] Buiton 3 NTD
=
i |
;pauml.llslp.apars Convert To ?
wa Spumlitem=
=pumtlistpaper> (% UsD
22 =purmlitem=
wa Spumlitem=) NTD
An =purmllabel
fabl =pumktextnote
{58 =puml action=
2| =puml:change= Dallars 7
:::--@ =pumluse-ohject=
@B =puml param= F
- &2 =puml. param=
- B =puml: param=
ard=| Convert
An spurntisbel> q 7
(13 Deta Binding
-fabl =purnttextnate= @ [change
- [2B] =purnkactions 157 Ta Srippets i : : .
Design | Source | Transform View | History

Figure 3-2: The user-interface design environment in JBuilder.

The application user-interface is presented in PUML, an XML-based text file.
Since it takes a lot of time to hand-write PUML source code, we propose a visualized
toolkit to automatically generate PUML source code from editing a generic
user-interface to reduce the efforts. A generic user-interface is composed of many
widgets which can be dragged from the toolbox and dropped to the canvas. Figure 3-2
demonstrate the user-interface design environment in JBuilder, the circled part is the
proposed toolkit with visualized editing functionality.

12

3.2.1 Toolkit Composition

P 1
@ 208 [[] Hide contained widgets
Pairt 1 E
K Painter N [Hidle all data binding widgets
Fage El =T
" N M’,-: |:| Showy all hided widgets
An Label l N <
- ,&‘Af :
Ast Uink =
[2Bl TextBox Canvert From 7 Mame Walue
) name userinterface
Rl=te Convert To 7 project project
{1 temBox Group wersion 14
.p_.: ftemBiox Dallars 7
Button
i
Page2
Resuit :
i
£33 Data Binding
@ Tag Snippets

Figure 3-3: The visualized editing environment of the toolkit.

The visualized toolkit depicted in Figure 3-3 is mainly composed of four parts.
At the left side is a toolbox containing three different categories as depicted in Figure
3-4. The first category contains widgets for constructing user-interface. The second
category contains widgets for binding the user-interface and the data objects. The last
category initially contains no widgets; it is designed for developers to add some edited
widgets tags. At the center is a canvas where widgets can be added to construct a
generic user-interface. At the top-right corner is a visual control pane which contains
some controls related to the widget visibility on the canvas. At the bottom-right corner
IS an attributes pane, it shows editable attributes of the selected widget and organize

them in a table for quickly referencing and editing.

13

s o g

@ (3 zer Interface @ lzer Interface
k Poirter 4 (- Data Bincling
Page R Poirter &
Ast Label ™4 Change h Painter
2t Link i3 Use-Object < » =pumllabel name="|
[2b1 TextBox =2 Paratn
[Picture

|:| ftemBox Group
E: ftemBox
Button

£33 Data Binding

@ Tag Snippets @ Tag Snippets

Figure 3-4: Three categories of the toolbox.

.

=3 =pumluzser-interface=
=+

...... A =pumllabels

...... st =pumla=

..... {abll =pumltextnote=
=t =pumlliztpaper=
ol e
ek va Spumliterns

----- =puml:action=

Figure 3-5: The structure pane which represents the structure of the source PUML file.

The visualized toolkit has another part resided in the down-left side of Figure 3-2;
it is enlarged in Figure 3-5. This part is constructed from PUML source file in a tree
structure; this is due to the natural tag-based tree structure of an XML document.
Developers who familiar with the PUML tags can quickly reference corresponding

widget on the canvas by selecting the node in this tree structure pane.

3.2.2 Preparation

Before editing the generic user-interface in JBuilder, there are two steps need to

be performed. The first step is creating an empty project inside JBuilder; the JBuilder

14

project is a basic container containing a variety of source components. These source
components are organized into a tree which is shown in JBuilder’s project view as
depicted in the top-left corner of Figure 3-2. The second step is creating a PUML file
from the wizard shown in Figure 3-6. After filling those fields, a PUML file will be
created and attached to the project tree as a node. Designers can then double-click the

created node, and the visualized toolkit will be shown for authoring.

O 5T Syl Syl iy il 3
Multi-Device Mobile Application Wizard
@ Input the directory and file natne for the neyy puml file and chooze the page

atnount in the drop-down list to create the puml file, you can also add
addition pages from the toolbox.

File Mame: Urititlect il

Page amourt; 1

[ol][Cancel H Help J

Figure 3-6: The setup page of the PUML page generation wizard.

3.2.3 Visualized Editing

There are plenty of features that we added to facilitate developers to build a
user-interface quickly and easily. These features are categorized following based on

the control operations:
Drag-and-Drop / Click-and-Drop

Through the mouse actions, developers can easily drag a widget from the toolbox
and drop it onto the canvas. The widget will then be added in the position where the

mouse button is released. Furthermore, if developers want to add a certain widget

15

continuously, the first step is to click a widget he preferred in the toolbox, the second
step is to move the cursor to a position in the canvas and click again to add the
selected widget on the canvas. Developers can then repeat the second step to add the

same widget continuously.

The actions described above are all foolproof; developers can only drop a widget
onto the legal parent of the widget. Put the widget in a wrong position will not be
allowed and the cursor will turn into a forbidden cursor to provide a clear hint. In this

way, developers who do not familiar with PUML tags can avoid tag errors as well.

An additional feature in the drag-and-drop is in the opposite way, developers can
drag a widget from the canvas to the toolbox. The toolbox contains a category called
“Tag Snippets” which is used to heold widgets, in the form of PUML tags. Since
developers may want to store a:widget with modified attributes for using in the next
time, tags in the “Tag Snippets™.can be saved and manipulated through a popup menu

showed by clicking the right mouse button.

Widget Selection

Developers can select a widget on the canvas simply by clicking on the widget.
All feasible visual control items will then become selectable at the top-right corner,
and all editable attributes of the selected widget will be shown in the attribute editing

table at the bottom-right corner.

Move / Move and Copy

After dragging-and-dropping a widget onto the canvas, developers may want to
change the position of a widget. Therefore, moving a widget on the canvas is also
feasible by selecting a widget and then moves it through dragging the mouse. In

addition, while moving a widget, developers can also press and hold the “Ctrl” key in

16

the keyboard to get an identical widget in the target position. The previous operation
is called “move and copy” which works the same as standard copy and paste

operation using the keyboard.

Cut/ Copy / Paste

The visualized toolkit also involves the usage of the standard keyboard editing
actions. Developers can cut, copy, and paste a widget on the canvas either through

corresponding keyboard stroke or the popup menu by clicking the right mouse button.

Visualized Control

The visualized control includes three basic controls over showing/hiding widgets
on the canvas. The first control controls, if a.selected widget should display all of the
widgets it contains. The second one controls.if.all of the data binding widgets on the
canvas should be displayed. Since'the data binding widgets will not be showed after
transforming to various formats,-developers-can make these widgets invisible to get a
closer look to the final user-interface after transformation. The last control is
responsible for showing all of the hided widgets at one time, no matter it is hided

from selecting the first or the second control.

Attribute Editing

All of the editable attributes will be showed in the attribute table. Developers can
rapidly get to the position of an attribute for editing, and the modified attribute value
will reflect its change to the corresponding widget on the canvas. In this way,

developers can get instant visual feedback of the editing result.

Source Editing

If developers want to modify the source code of a PUML file, he can click on the

17

bottom tab to change to the source view. The source view displays a PUML file with
different highlight colors to make developers reference any editing position as soon as
possible. Once developers complete the editing in the source view, they can change
back to the design view, and all of the changes he made in the source view will be

reflected to the canvas in the design view to provide a consistent view.

3.3 Defining Logic Usage

This button can change a component's attribute value inany page through the logic ohject
wau filled below:,

1. The name of the page which contains the component you want to change. (ex. board1)

2. The name of the component which you wart to change it's attribute. (ex. textnote1)

3. The name of the attribute which you want to change it's value. (ex. value)

4. The name of the logic ohject which you want to use. (ex. Logic1)

3. The name of the method inthe logic object which you want to execute. (ex. sum)

6. The names of the components which you want to pass its' values in to the method

as parameters. (ex. textnotel | textnote2)

1. Page Matne ;

2. Component Mame
3. Aftribute Mame

4. Logic Class Mame :
3. Method Mame :

G. Parameters ;

| ow || concal |

Figure 3-7: The helper dialog for defining logic usage.

The defining logic usage operation is used to bind a user-interface component to
a logic object behind; this operation is also related to the data binding widgets in the
toolbox. Developers can drag-and-drop data binding widgets to the canvas as well,
however, in order to let developers who do not familiar with the usage of the data
binding widgets can also define the logic usage, another helper dialog is created to
provide the information about defining logic usage as depicted in Figure 3-7. The

logic usage is defined in a way of “changing what attribute of what component in

18

what page through using what method of what logic object?”, developers only need to
fill the five “what” statement and then the logic skeleton can be generated in the

defined way.

3.4 Transforming

LSO S A TS T Srs

Config PUML Transformers

Select a transformer from list to showy it's detail.

~transformer List

J2ME
bl

Al
ST A-J5P [Remove]

~transformer Detail

Matre : | KHTML-MP-JSP |
File Pth : |:ketwalkerI.mdwadWPUMLQ)(HTML-MP-JSP.xsl |[]
Extension : | isp |

[ok ” cancel H Help]

Figure 3-8: The configuration dialog for extending the transformation style sheet.

r ST ITS ATV S T 7T e ETEN RN TS

Select tranzform targets from the list below

KHTRL-MP-JSP

Transtorm ” Cancel]

Figure 3-9: The transform target selection dialog for choosing either one or multiple targets.

The transformation process is accomplished by using multiple style sheets. For

the extensibility, transform targets can be further extended through the dialog shown

19

in Figure 3-8. Developers can trigger a transformation process by clicking the
“Transform Mobile Applications” in the “Run” menu of JBuilder, a small dialog will

then jump out for developers to select transformation targets as shown in Figure 3-9.

3.5 Programming Application Logic

After multiple applications being generated, developers can write application
logic inside the generated logic skeleton. Currently, three formats of logic skeletons
are generated. One is J2ME MIDP which is used for user-interface generated in J2ME
MIDP, another is WML Script [19] which is used for user-interface generated in
WML, and the other is Java which is used for user-interface generated in

XHTML-MP embraced in JSP.

3.6 Simulating

Once the application logic s filled, developers can build and test their
applications in JBuilder. However, developers may want to preview the final outlook
on the mobile simulator, therefore, our toolkit provides a configuration dialog as
depicted in Figure 3-9 for adding an installed simulator which is executable through
the command line interface. Furthermore, since JBuilder is widely used in the world,
there are many leading mobile simulator providers provide their own plug-in for
JBuilder. For instance, Openwave has provided their Openwave SDK plug-in for
JBuilder [21]. Once simulators are set up, developers can select the “Run Mobile
Simulator” option under the “Run” menu, a dialog will pop up for the developer to
choose one or more simulators to simulate a opened file. Figure 3-11 shows the
snapshot of simulating the generated WML files through NOKIA Mobile Browser

Simulator [22].

20

Config Mobile Simulators

Select & simulstor from list to showy it's detail.

~Simulator List- -
Al

Remove

~Simulator Detail

Marne : Mokia Mobile Browser Simulatar
Execution Path | 2sMokia_Mokile_Browser_Simulator inmb.exe E

Parameters :

[O]l Cancel H Help]

Figure 3-10: The simulator configuration dialog for extending the third-party mobile simulators.

File Edit Zeamch Refagmr View Em]ect Bon Teamn Wizgards Took ﬂMow Help

N-ES -DES @0~ @ 5|8 peorbeog Eunn2-[Er -k-to-(d-¢« &m-
| @Currency
B &= (F] Currency jpx =l 1 <oxml version="1.0" encoding="UTF-572> @

2 < !DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WHL 1.3//EN" "heop:/ /g -
<Tmkr &
4 <card id="userInterface_index™ ontimer="#preietting”> i
@_ 5 <timer value="1" />

- 6 </ card>

7 <card id="preietting” ontimer="#boardl™>

EJ Currency jpx
-] =<Project Source=

|- o/ %) 8

<enevent type="onenterforward”>
<refreshs
<setvar nawe="boardl labell showText" ralue="Convert From ?™|

<setvar name="boardl listpaperl itenl" ralue="U5D7 f>

- % card
% card

<setvar name="boardl listpaperl itenzZ" ralus="NTD" f>

<setvar nawe="boardl labelZ showText” ralue="Convert To 7 /1

<setvar name="hoardl listpaperZ iteml” vaelue="U3D" /=

<setvar nape="hoardl listbaverZ itemz” relue="NTD" />

Currency il

Source 'Transform View | History |
=
=

Executing CMokiaDevices MNokia_Mobile_Browser_Simulatoriimb xe DoZurrencyisrcivwmhCurrency sl

wlator Messages

Figure 3-11: The simulating result in the NOKIA Mobile Browser Simulator.

21

Chapter 4 Toolkit Architecture

Design Canvas Component

Tree Structure Component

Attribute Table
Component

Message Message Message

Controller

= - Model

¥ -"'\ e
e LR

Figure 4-1: The toolkit architecture in the form of Model-View-Control design pattern.

The architecture of our toolkit follows the design principle of the MVC
(Model-View-Controller) design pattern as depicted in Figure 4-1. In this chapter,
each part of the architecture will be detailed in this chapter; furthermore, the way of

integrating the toolkit into JBuilder will be detailed as well.

4.1 Model

A model is a structure which maintains the application data under the surface.
The toolkit basically contains two kinds of models inside, one is the document model
which represents a single PUML document, and the other is the view model which
manipulates the data inside each view.

22

4.1.1 Document Model Design

For the sake of abstracting a PUML document into visualized widgets on the
screen, an internal model is needed to represent the structure of the source PUML
document. Since PUML is an XML-based language, it can be easily parsed and built
into a DOM (Document Object Model) tree. DOM tree is composed of various kinds
of nodes such as element node, text node, entity node, etc.; however, the only node we
concerned about is the element node. Since each element node corresponds to a tag in
a PUML document, what left behind is to make the connection between a DOM

element node and a corresponding widget on the screen.

The link between the DOM element node and the widget can be connected
through a unique identification. in this way,-both.of them need to add an identification
field for mapping between ‘each other. Unfortunately, in the Java reference
implementation of DOM, it is not-allowed to make an extension to the DOM element
node to add an identification field. For this reason, we use another third-party API
called JDOM instead. JDOM provides an easy way to extend both the element node
and the builder of the DOM tree, therefore, building a DOM tree and adding unique

identifications to element nodes can be processed at the same time.

4.1.2 View Model Design

As shown in Figure 4-1, there are mainly three view components in the toolkit;
each of them has its own view model inside. Following sections describe the design of

each view model in detail.

Tree Structure Model

23

Since the document model already contains a unique identification in each
element node, the model of tree structure view can be generated from the document
model in order. A tree structure model provides not only the tag text but also an icon
corresponding to the widget icon in the toolbox; in addition, the unique identification
is retrieved from the element node in the document model and added to each tree node.
Moreover, for the purpose of quickly retrieving a node in the structure model, there is
a map mapping between the unique identification and the tree node. In this way,
change events can instantly update to the corresponding tree node to provide

immediate feedback on the screen.

Design Canvas Model

The design canvas contains arious visualized widgets on it; each widget
maintains its own data model behind. In-this way, the only thing the design canvas
model does is to maintain a map mapping between the unique identification and the
widget, therefore, accessing the widget can be done through directly retrieving instead
of searching through entire widget structure. However, a unique identification still
needs to be included in the widget for mapping purpose; hence every change to the
document model can be mapped to a corresponding widget for reflecting the change

on its outlook.

Attribute Table Model

The attribute table model changes while the selected widget on the canvas
changes. Each attribute of the selected widget is corresponded to an element attribute
inside the document model. An element attribute is basically composed of a name and
a value; however, some constraints must be added to ensure its correctness. These

constraints will be described later in this chapter as an extensible structure design of

24

the widget. At this point, what the most significant is that there is also a unique
identification added in the model to let the attribute modifications can be correctly

respond to the widget with the same identification on the canvas.

4.2 View

A view is a visualized representation of the internal data model. The views

related to the document model in the toolkit are described below.

Tree Structure View

The tree structure view is composed of multiple tree nodes, and each tree node
represents a tag element in the document model. A tree node visualizes the tag
element with an icon following with a string which comes from the qualified name of
the tag element and is enclosed between “<’ and “>”. The tree nodes in this form
simplify the representation of the source document; hence developers can pick out any
node as soon as possible. In this way, this view not only provides access facilities but

also a whole view over the structure of the source document.

Design Canvas View

A design canvas on the screen is composed of various widgets which are
visualized with its own outlook. For the sake of customizing each outlook of the
widget, the widget structure is designed as a base container containing a visualized
component. The base container is responsible for drawing the selection border of the
widget while the visualized component is in charge of drawing the outlook and
holding the data inside. In this way, every component can perform its own works to

form a visualized view out of the document model.

Attribute Table View

25

The attribute table view provides an organized presentation of the element
attributes, the table is formed in two columns and many rows according to the number
of attributes. The first column shows the attribute names while the second column
shows the attribute value, moreover, the cell in the second column provides a
customizable editor for editing the attribute value. In this regard, developers can edit

the attribute value more easily and quickly.

4.3 Controller

T s
EditMediator EditView Adapter

=hrveadcasiEvenict o ovoddd +hrouelvastEvenit) - void
=i Fiew .-ﬂr.r.;.';l.'n:'rf_,l v +haernille Evenii - vedel

L~ 0527 [

| - - |

S -
| e |
e
| - e |
- ey
-~ .
| - - |
- T
] - -]
FomiMadel Canvas
- — 0% — - - -

-Arruy List editSupport -EditMediator editMediator
hroadeastEvent(}: void HeroadeastEvent() | void
FaddEditView Adapter() © void HhandleEvent]) - void

I |
L I

for ench EdiViewAdapter eva in editSupport Il‘ editMediator. brosdeastEvent) ﬁ

evi handleEditEvent{)

Figure 4-2: The UML representation of the mediator design pattern of the toolkit.

A controller is a mechanism that handles the interaction between the views and
the model. The controller designs in the toolkit utilize the mediator design pattern as
depicted in Figure 4-2. The mediator design pattern in the toolkit is mainly composed
of two interfaces; one is EditMediator while the other is EditViewAdapter.
The EditMediator maintains a list of EditViewAdapters and is in charge of
broadcasting incoming events to every EditViewAdapters in the list. Each
EditViewAdapter represents the view which intends to receive or broadcast the

change event, in this way, changes on each view can be reflected to another view for

26

keeping the views display the data in consistent.

In the toolkit, EditMediator is implemented by the document model,
therefore, EditMediator can update the document model whenever the event
message is received before broadcasting the message to all registered
EditViewAdapters. EditViewAdapter is implemented by each view
component which handles the incoming event by itself. Through the mediator design
pattern, the document model can work as a central coordinator between different
views, furthermore, the correctness of the data model can be ensured while the data is

changed in any views.

4.4 Other Mechanisms

There are many components.to form.the whole toolkit architecture; following is
some remarkable designs in the toolkit which make the toolkit more flexible, friendly,
and easy-to-use.

4.4.1 Extensible Widgets

Widget Bean

Widget User Interface Descriptions

Widget Wrapper
Widget Bean

Figure 4-3: The widget architecture with regard to the JavaBeans.

Since the version of PUML specification changes over time, the design of a
widget which represents a PUML tag element must be extensible to increase the
software usability. For this reason, JavaBeans component framework described in the
second chapter is conducted into the widget design, each widget is regarded as a

pluggable component in the toolkit and the composition of an extensible widget is

27

illustrated in Figure 4-3.

Widget User-Interface

The widget user-interface is a component which is responsible for drawing a
customized outlook; however, this component is not essential since we provide a
default user-interface component for those widgets without any user-interface
components. While adding a widget to the design canvas, the widget user-interface
component will be wrapped inside a wrapper component. The wrapper component not
only provides a unify interface to access the widget it contains but also draws a dotted
border while the widget is selected, developers can then visually identify the selected

widget in this manner.

Widget Bean

The widget bean follows the JavaBeans design principle to store data inside and
expose access methods outside through the-widget bean description. In the toolkit, a
widget bean’s field contains not only‘all'of the attributes of its corresponding PUML
tag element but also other values which provide necessary information about drawing

the widget user-interface.

Nevertheless, for the purpose of mapping a widget to the corresponding PUML
tag element, the widget bean is therefore required to implement a common interface
which is listed at Appendix A. The common interface provides five essential
information to the program inside, the first is the qualified name of the corresponding
PUML tag element, the second is whether a tag element passed in is a legal parent of
the contained tag element, the third is whether the widget is a container which can
contain other widgets inside, the fourth is whether the widget is able to contain the

data binding widgets, and the last one is whether the widget itself is a data binding

28

widget. Through the common information provided in the program, we can add or
modify any widgets to conform to future changes of the PUML specification with less

effort.

Widget Bean Description

Each widget bean exposes its access methods through a widget bean description.
The widget bean descriptions are loaded while the toolkit starts up, hence the content
of a widget bean could be accessed while running the toolkit. Moreover, the
constraints of the attributes embraced in each PUML tag element will also be
described inside the corresponding widget bean description. The program can

therefore verify the editing attribute result according to the constraints.

4.4.2 The Attribute Constraints

Key String . Key ArrayList
(puml:board, name) * . Attribute (puml:board, name) ———1——> board]
pum?-board, name "| Constraints pum’.board, name oar
(puml:label, name) (puml:label, name) myBoard
board2
Attribute Constraints Table Used Attribute Value Table

Figure 4-4: The structures for storing attribute constraints and used texts.

The attribute constraints in the toolkit contains two items, one is the “Required”
constraint which describes if an attribute value needs to be set with an non-empty
value, the other is the “Unique” constraint which describes if an attribute needs to
have an unique value over entire PUML document. Once the “Unique” is set as true,

the attribute values must be stored to avoid overlapping and ensure the uniqueness.

The toolkit preserves two tables for storing attribute constraints and used

attribute values as depicted in Figure 4-4. Both tables utilize the name of tag element

29

and the attribute name as a pair to form the reference key. The attribute constraints
table stores every attribute constraints while the used attribute value table stores thee
attribute value only when the attribute has the “Unique” constraint set as true.
Furthermore, if the attribute has “Unique” constraint set as true, the toolkit
automatically generates a unique value when creating a widget on the design canvas.
At the same time, the toolkit does not allow developers input an attribute value which
conflicts with any existing attribute value. In this way, the toolkit can prevent possible

errors before transforming the PUML document into other formats.

4.4.3 Drag-and-Drop Framework

A drag and drop operation is a data transfer request that has been specified by a
gesture with a graphical pointing, device;-and ‘what the operation does in the
background is simply transferring the data from the drag source to the drop target.
There are mainly two scenarios 10 drag-and-drop. components in the toolkit, one is to
drag a button from the toolbox onto the design canvas, and the other is to drag a
widget from the design canvas onto the toolbox. Since the drag-and-drop framework
has already integrated into Java, it is quite easy to add transfer handling mechanism
into every visualized components, however, the transferring data still needs
customizations, therefore, a string represents the class path of the widget bean is
transferred in the first scenario, and a widget object is transferred in the second
scenario. The transferring data is designed to contain the least information required
for the overall performance. Through the drag-and-drop framework, developers can

operate the toolkit without knowing how the data being transferred in the background.

30

4.4.4 Widget-Generation Framework

On the one hand, the created PUML document can be saved for next time usage;
on the other hand, generating visualized widgets back to design canvas while opening
a saved PUML document is required as well. The widget generation framework
recursively generates all of the widgets from each tag element, a widget-generation
process is not only used in opening a document, the actions such as move, paste, and

drag-and-drop widgets are also utilize this process for code-reusing purpose.

pumilabel o

Widget Bean
Creating a sample widget from the following PUML element:
<puml:label name=labell showText=demo bold=true italic=true/>

demo <_d&7m

Widget Wrapper

Widget Bean

Figure 4-5: The process of generating a widget from the PUML tag element.

A widget-generation process example is depicted in Figure 4-5; the first step is to
generate a widget bean according to the tag element name. The second step is to set
fields of the widget bean according to all available attributes in the tag element.
Following step is to generate a widget user-interface component according to the
widget bean and wrap the component inside a widget wrapper at last. The example

widget can then be added to its legal parent widget in the design canvas.

31

4.4.5 Collapsible and Disguisable Widgets

A collapsible widget is allowed to have some child widgets in it, and the child
widgets can be visible or invisible according to the options in the visual control pane.
Once the child widgets are hided, the parent widget will adjust its size to the
minimum size it allows. It will be look like the widget is collapsed and that is where

the word “collapsible” comes from.

The disguisable widget is mainly to indicate the data binding widgets which will
not show in the final transformed user-interface. The reason why it shows on the
generic user-interface is to make developers using familiar drag-and-drop operations
in adding widgets. The data binding, widgets can be easily selected and their attributes
can be edited in the same way. Therefore,-through cantrolling the visibility of the data
binding widgets, we can utilizezexisting features on the one side and still preserve the

outlook of the generic user-interface.on the other side.

4.4.6 Smart Position Inference

The layout of a generic user-interface is in a vertical way for fitting into the small
screen size of mobile devices. In this vertical layout scenario, smart position inference

mechanism is added to facilitate the layout arrangement.

o o |
R
LY Widget One (2}
Ll _: :
e

9 |
N B _
>} Widget Two ©!
e ——— I
| |

e J

Figure 4-6: The smart position inference area.

32

While adding a widget onto the design canvas, there are mainly three areas
which could be put on. Figure 4-6 depicts these areas with a dashed line circled
around and a number marked on each area. Once the developer drag-and-drop a
widget to the area marked with @, the widget will be added above “Widget One” in
Figure 4-6. In the same way, the widget will be added between “Widget One” and
“Widget Two” while drag-and-drop it to the area marked with @. Obviously, the
widget will show up under “Widget Two” while drag-and-drop it to the area marked
with ©. Although it seems simple to add a widget according to the position above,
before, under, or after a certain widget, the insertion action actually requires finding
out what widget to insert before and then insert the widget with size and position
adjustments. Developers therefore do not need to know what happened in the
background, simply drag-and-drop'te a position and get an intuitive result is the goal

we have achieved.

4.5 Integration with JBuilder

-~
User) Common
Experience Propemesj [Classes] [Help j
-
g ™ ~
Source Editor H
v (e, [o)
and Runtime
Editors - Processes
Designers H
Build
- /’
' ™
Content Message
JoT Manager View
Code .
Generation Browser Status View
Wizard
Framework Pro]ect View Action
Framework
A
¢ *\
OpenTools Node System
Launcher
Wersion Control Virtual Flle System
l\ (vcs) (VFS))

Figure 4-7: The architecture of JBuilder.

33

The integration with JBuilder is mostly relied on the highly extensible API
(Application Program Interface) provided with JBuilder. The API is officially called
OpenTools; it provides the ability to access almost all of the JBuilder resources in the
runtime. Moreover, JBuilder also provides an integrated environment for creating and

testing the tools developed by the OpenTools API.

Before describing details about the integration within JBuilder, the architecture
of JBuilder will be introduced briefly. Figure 4-7 draws a picture about the
architecture of JBuilder; it is classified into six categories as following. The “Core”
category manages the subsystems about OpenTools, files, and projects. The
“Browser” category provides a framework for interacting with projects and files on
the screen. The “Views and Editors” category provides tools for manipulating source
codes. The “Common Processed” category -handles the compiling and running of
projects. The “Code Generation™ category provides a wizard framework and the
infrastructure to generate code.“The-*User-Experience” category manages the user
preferences and provides some facilitate “utilities. The integration of our toolkit
involves all categories stated above except the “User Experience” category. Since
each component may be involved with many categories, following integration details

will be described in a component-based fashion.

4.5.1 PUML Node

The PUML node is a node representing the PUML document in the JBuilder.
Since PUML is an XML-based language, the PUML node extends the XML node in
the OpenTools API to have the source code editor with highlight colors. Natively,
JBuilder does not support a file with “.puml” extension; the PUML node will register

this extension into JBuilder and also provide an icon representing the PUML

34

document in the project pane. Since the XML node only provides the source editor,
our visualized toolkit is therefore integrated into it as a design view to provide

visualized editing facilities.

45.2 PUML Viewer

The PUML viewer includes a factory which provides a design viewer and a
structure viewer. The factory not only maintains the viewer lifecycle but also control
the activation and deactivation of each viewer. The viewers provided here will be our
visualized toolkit components instead of default text viewers. Therefore, the design
viewer will show our editing screen in a tab along with the source tab, and the

structure viewer will show our tree view.of the PUML document as well.

45.3 Wizard

The wizards we integrated into JBuilder basically include three wizard pages.
One is for generating default PUML document, the other two is for configuring
transformation style sheets and mobile simulators in the toolkit. The PUML generator
wizard register itself into JBuilder, hence developers can create a PUML document
through the “new project” dialog. The transformer and simulator wizards utilize the
wizard framework in JBuilder to keep their outlook consistent with JBuilder. Both
wizards are integrated under the “Tools” menu; developers can easily trigger the
configuration wizards through the added menu items. After the configuration is done,
all configurations will be saved into the hard disk. Therefore, without restarting
JBuilder, newly added transformers or simulators can be chose immediately while

selecting transform targets or simulate devices.

35

Chapter 5 Implementation

In this chapter, we will go deep into the implementation details of the toolkit.
The ways to solve the problems we encountered will be detailed as well. The
third-party API used in the toolkit includes JDOM and OpenTools which are all
Java-based with complete Java API documents. Since JBuilder is written in Java, we
also choose Java as our programming language to implement entire toolkit. The
implementation of a GUI (Graphical User Interface) toolkit is quite complicated in
logic sequences; therefore, we describe the details according to the components which

are classified into model, view, and controller categories.

5.1 Model

The model described herezincludes the most essential JDOM model, the way to
parse the source document into. a-JDOM: model, and the implementation of a

customized widget model.

5.1.1 JDOM Model

The biggest problem of utilizing JDOM API is encountered while integrating
with JBuilder. JBuilder currently runs an old version of JDOM API in the runtime;
however, the old version does not conform to our requirement of customizing element
node. Therefore, the new JDOM API is needed to bundle into JBuilder, unfortunately,
while using the new JDOM API in the runtime, the class used will be referenced to
the old JIDOM API originally in JBuilder instead of the new one, this is due to the new
API has the same package path with the old one. For this reason, the source of new

JDOM APl is modified with different package paths, after recompiling and

36

repackaging the new JDOM API, it can be used without errors.

5.1.2 JDOM Factory

The JDOM factory extends Defaul tJDOMFactory in JDOM API to provide
customized JDOM elements. All of the methods for creating JDOM elements is
overrode by this factory, therefore, the customized JDOM elements can be created
instead of default JDOM elements during parsing into a JDOM tree. Furthermore,
while creating each element, the factory also put them into an element cache in the
model. The element cache is implemented through a hash map which uses the unique
identifier inside each customized JDOM element as a key to retrieve the

corresponding element in the cache.

5.1.3 Customized Widget

Each customized widget has.a bean object’ in the core; the object follows
JavaBeans principle with a pair of “get” and *“set” method for each field. The
user-interface for a widget is also written in the core bean object for simplicity,
therefore, each core bean object must extend either “JPanel” or “JComponent”
object of the Java Swing API [23] to have a customized outlook. There is no easy way
to design a customized outlook; each abstract outlook is designed through composing
either squares or circles. Moreover, a customized outlook also needs to respond to the
change of attribute value, in this regard, a “set” method of the widget bean may tell
the user-interface to repaint its outlook while an attribute has been changed. For the
extensibility, the widget bean also implements a common interface described in 4.4.1.
Furthermore, a widget bean description object is accompanied with each core bean

object, the description object provides the way of accessing the fields in the core bean

37

object, the icon representing the widget in the toolbox, and the constraints of each

property. Figure 5-1 shows the structure of an example widget bean.

mdwad.puml.designer.widget
Javax.swing
PumiWidget
JPanel |-c:]— 1subclasses =12} ‘ﬂ]
|
mdwad.puml.designer.widget
Userlinterfacewidget mdwad.puml.designer
- —{Canvas
@\/ m_hame ;. String
Bp m_project : String mdwad.puml.designer.dnd
@\/ m_version : String
_'E',\/ m_pumiTag : String cu:'_——-—I WidgetWrapperDropper |
“» gethlame_(;. String java.awt

“» getPraoject() ; String S
% getPumiTagr) © String I S | |
% getversion() ; String

% izContainer() ; boolesn

% izDataBindabler) | boolesn

*» izDataBindingyidget(. hoolean
% isLegalParent(] : boolean - — —==| VerticalCascadeLayout |
® zetharme [void

® zetProject() | void

* zetversion() ; void

¥ Userlnterfaceyidget) ; void

| Color || Dimension || Lﬂyautﬂhnager|

mdwad.puml.util

Figure 5-1: The example widget bean structure of the widget which represents the

“puml:user-interface” tag element in the PUML specification.

Each widget bean object is contained by a widget wrapper which provides a
unify access toward multiple widget components and handles the mouse operations
before delegating them to the contained widget. The widget wrapper extends
“JPanel” component in the Java Swing API to provide a container for the contained
widget, furthermore, it also has customized outlook for drawing the selection border
while being selected. Therefore, the lack of a widget bean, a widget bean description,
or a widget wrapper will not be allowed to construct a concrete widget with

customized outlook on the screen.

38

5.2 View

The influential view component is the layout manager which is customized and
using through the entire toolkit. The foldable widgets and the dynamic combined

cursors will also be detailed in this section.

5.2.1 Layout Manager

The layout of components inside a container is managed by a layout manager.
There are many existing layout manager in Java, however, none of them conforms to
our layout requirements. Therefore, we especially designed three different layout
managers - VerticalBorderlkayout, WerticalCascadelLayout, and
VerticalFillLayout. All* these layout. managers arrange components in a
vertical fashion. The first layout extends the contained component’s width to the
parent component’s width and the contained component’s height remains the same.
Moreover, it can set one component to be extensible in height; therefore, the
extensible component will extend its height to the remained height in the container.
For example, the toolbox utilizes this layout to make each category foldable, once a
category is expanded; it is set to be the extensible component in this layout manager.
The second layout is quite different from the first one, it layouts components only by
using the preferred size of each component, therefore, the size of each contained
component can remains the same. This layout is mainly used to layout the widgets in
the design canvas. The last layout is similar to the first one, the only difference is that
it can not set the extensible component; therefore, this layout only extends the
component size in horizontal. For instance, the widget button container in the toolbox

utilizes this layout to adjust the width of each widget button to fit the container width

39

when dragging the split bar.

5.2.2 Foldable Widget

The widget which contains one or more child widgets inside can be foldable
through the visual control items. The visual control item makes contained widgets
visible or invisible through setting the visible property of the contained component.
Although the layout manager handles all the layout stuff, we still need to notify the
layout manager of the parent component to re-layout while folding the widget.
However, notifying only the parent component is not enough, the parent of the parent
component may also needs to layout. The layout manager of each parent component is
therefore called recursively until the root contqivner. In fact, while adding, moving, and

pasting widgets on the design cgh:\)as, th’u‘“ glgyout fhanagers will also be called in this

way to provide a concrete and proper layout-of widgets.

f

J

5.2.3 Composite Cursor’

+ 1

9x9 EENE NN EEE N
16 x 16

i

32 x 32

Figure 5-2: The example composition of two images to form a single cursor.

After selecting a widget in the toolbox, the cursor of mouse will change to a
cursor with cross hair and a small icon while moving on the design canvas. The cross

hair indicates the widget under the cursor can add the selected widget while the small

40

icon represents the selected widget. The purpose of adding an icon beside the cross
hair is to facilitate the developer of knowing which widget is to be added now. In
order to construct this cursor, we composite a cross hair image with an icon of the
selected widget button to form a new image. The trickiest part here is to combine a 9
x 9 image and a 16 x 16 image to a 32 x 32 image. Since the image size less than 32 x
32 will be extended to this size and the image result may have mosaic pixel look, the
above two images will be combined into a 32 x 32 image with unused pixels being
filled with a transparency color. Figure 5-2 shows an enlarged example of this

composite cursor where the grid line is drew one pixel apart.

5.3 Controller

The controller controls views and model through designer events, therefore, the
designer event will be detailed.-Other featured operations related to the controller will

be detailed as well.

5.3.1 Designer Event

The designer event is used as a material to transfer between the views and the
controller. The designer event is classified into four categories — InsertEvent,
RemoveEvent, SelectionEvent, and UpdateEvent. The InsertEvent,
RemoveEvent, and SelectionEvent is understand obviously from the literal
meaning, they are triggered while adding, deleting, and selecting a widget on the
canvas. The UpdateEvent is used while modifying an attribute value. All of these
four events extend the DesignerEvent to have a unified access interface. The
DesignerEvent has a field for identifying the event type; furthermore, it also

indicates the source component which triggered the event. In this way, the component

41

which receives the event can judge if it should handle the event.

5.3.2 Drag-and-Drop

The Java drag-and-drop framework is adopted to realize the visual drag-and-drop
operation. The special part of this operation lies on the judgment of whether a drop
target component can accept the dragging source component. The judgment happens
while a drag gesture enters a component’s range; it takes the target component’s
PUML tag and the source component’s parent PUML tags to compare. Once the two
tags matches, the drop operation is accepted and the cursor changes to a cross hair
icon to indicate the drop operation is allowed. However, once these two tags don’t
match, the drop operation is not allowed.and the cursor will turn into a forbidden icon.
Therefore, the drag-and-drop framework:becomes. more intelligent than ever, and
developers can arrange components on the design canvas without worrying placing

them in the wrong place.

5.3.3 Cut/Copy and Paste

The cut and copy operations on the widget are designed to utilize the widget
generation framework which is capable of generating a widget from a PUML tag
element. Both cut and copy operation duplicate the selected PUML tag element and
all of its children. The duplicated one will then be stored in a temp clipboard. What
differs from each other is that a cut operation will remove the selected widget, and a

remove event will be trigged at first to notify the change.

The paste operation pastes widgets from the clipboard; however, it is not a real
paste operation. Instead, it generates the corresponding widgets from the PUML tag

elements. The reason we doesn’t store a whole widget is because of the widget is a

42

complex structure and there are some fields must be unique inside the program scope.
Using the widget generation framework can prevent this problem and ensures the

integrity of widgets.

5.4 Others

In this section, the most essential implementation details are picked out to
describe. Moreover, the sequence of creating and opening the document will be

depicted to give you a basic concept of the program flow.

5.4.1 Synchronization of Views

Since there are design view, tree view,:and source view in the toolkit, the
synchronization of these views is quite influential to give developers a unify look over
the source document. The design view and tree view:is already synchronized through
the mediator design pattern. However, the source view is the only view which does
not included in the design pattern, this is due to the mapping of text and model is quite
difficult and complex, therefore, we adopt another way to synchronize the source view.
The way is to generate the source code in source view while changing form design
view to source view and vice versa. For the sake of reducing the generation times, the
generation will happen only when a view has been modified, therefore, the source
code will be generated only when the design view has any modifications take place

and the widgets will be regenerated only when the source view has been modified.

5.4.2 Configuration Files

There are mainly three configuration files in the toolkit, one is for the toolbox

components, another is for the transformers, and the other is for the simulators. These

43

configuration files are put in a folder under the user’s home directory. The toolbox
configuration records all the widgets which are to be loaded while initializing the
toolbox. The transformer and simulator configurations record the detail information of
transformers and simulators correspondingly. The configuration files are read/wrote
through the “Properties” object in Java API, however, this object has a problem of
reading Unicode strings, therefore, the configuration file is wrote through the object

serialization mechanism in Java to preserve the original encoding.

5.4.3 Create a PUML document

wizard: PumlWizard projecizJBProject pumlNode: FileMNode buf: Buffer browser: Browser
fimish() | nxakeFileUrl{project, dirName, fileName) | |
_ - — —

createMode(project, dirMame, fileName)

l setActiveNoded node)
| -

T | T

I I |
Figure 5-3: The sequence diagram of creating a new PUML document within JBuilder.

getMNodel filePathLrl)
i
Jﬁ"i"f'“_" ____________ pumiNode
getzenerated(ode{page Amount) -i-
(] |
! getBuffer(}
t -
but |
&
=TT "[________ sefContenticontent)
-
|
|
I
I

1
|
|
|
|

Figure 5-3 shows the sequence of creating a new PUML document using the
wizard. After confirming to generate a new file, the wizard first composite the file
URL from the user input, then create a new node which represents the PUML source
document. Each file node has a buffer for storing the modification history; therefore,
the buffer will be retrieved to set its content using the default PUML source code.

Finally, the browser instance of JBuilder will be called to set the active node to the

44

created node, in this way, JBuilder will open the new node and initialize each views

representing the new PUML node after all.

5.4.4 Open a PUML document

VIOWir: murdil: builder: designer: CAMYHES]
PumlDesignVicwer PumilModel SAXBuilder Designer Pane Canvas
T T T T T
cresteViewoer | J_ I
Component() (] readToMuodel

(inputStream) LT TR
Stream)

I

I

I

ncument DesignerPane I initDesigner |
I

I

(model) 1 (muodel)

[

crwtl"ﬁ"idul:tﬁI"rﬂml.'m:'u a

loop

createWidgets(
pumlElement,
parentComp)

|
|
|
T T | T T

Figure 5-4: The sequence diagram of epening'an-existing PUML document within JBuilder.

Figure 5-4 depicts the sequence diagram: of opening a saved PUML document.
After double-clicking on the PUML node in the project pane, the PUML document
model will be created at first through the builder object, once the model is build
without error, the visual designer will be initialized. As depicted by a loop rectangle in
Figure 5-4, the design view creates the widgets from the PUML document model in a
recursive way. However, if by any chance the building process has an error occurred,
the design view will continue the initialization process. What different is that the error
message will show on the design canvas instead of creating widgets. Therefore,
developers still can modify the source code in the source view according to the error
message, once the source is modified without error, the design view will be

reinitialized again to provide visualized editing facility.

45

Chapter 6

Conclusions and Future Works

In this paper, we propose a visualized toolkit within an integrated development
environment for authoring a single generic application to generate both mobile
application and mobile Web application. Base on the existing PUML transformation
technology from our laboratory, this paper focuses on the design issues in crafting a
visualized toolkit in JBuilder instead of detailing the transformation of both
application types. In this chapter, we make some conclusions related to the objectives
described in section 1.3, and some future works are listed to provide a direction for

future extensions.

6.1 Conclusions

The main purpose of crafting this toolkit is'to reduce the efforts of developing
applications for multiple mobile devices. For this reason, we discuss them in four
criteria: rapidly development, extensibility, integration, and write once, generate

multiple application user-interfaces.

From the rapidly development aspect, it is important to reduce the efforts of
learning how to use a new toolkit for developers. Therefore, the toolkit is provided
with the intuitive drag-and-drop operations as the interaction medium. Developers can
develop the user-interface of application in the same fashion as developing in other
visualized editing software. Multiple views over a single document is designed based
on the mediator design pattern, developers can perform operations in any views they
familiar with. The visualized control over the foldable widget can facilitate developers
of editing widgets without dragging the scrollbar. Furthermore, the defining logic

46

helper dialog can even help developers generating the code skeleton in multiple logic

files without creating files by themselves.

From the extensibility aspect, widgets are designed in an extensible fashion
based on JavaBeans technology, in this way; new widgets can be added easily to
reduce development efforts in the future. In the mean while, the extension mechanism
of future transformation style sheets and mobile simulators is added as well.
Therefore, the toolkit can maximize the software reusability simply through

preserving some extension frameworks for future add-ons.

From the integration aspect, providing an integrated development environment
for developers is quite essential since they can perform all the editing or testing works
inside a single environment. Our teolkit is integrated into the leading software —
JBuilder, which is originally designed for| developing Java applications. In this way,
we can not only extend the function of JBuilder, butalso utilize the existing features

of JBuilder to provide developers'with more facilities.

From the write once, generate multiple application user-interfaces aspect; it is
completely feasible through our toolkit by using the PUML technology. Although
there are existing software for writing once and generating multiple mobile Web
applications, however, none of them can also generate locally executable mobile
application with the same generic application interface. Therefore, our toolkit
provides another choice for developers who want to develop both types of
applications at once. For instance, assuming an express deliver delivers goods to the
destination. The deliver may wants to change the goods status record while offline
and then send all the updated records at once while online. These two types of
applications can be created through authoring our single generic application interface,

and it indeed saves some development time and efforts in this way.

47

6.2 Future Works

There are mainly two directions for improving the toolkit in the future, one is in
adding some more transformation target languages, the other is in completing the

logic content generation instead of logic skeleton generation.

Since the extension of adding new transformation targets is preserved, it is
possible to add some more transformation targets. For instance, Microsoft C# .NET is
one of the languages used for Microsoft’s smart device application and it has similar
syntax with Java language, therefore, it may be used as another mobile application
language. Compact HTML (CHTML) is a tag-based language for i-Mode mobile

phones and it may be used as another-mobile \Web application language.

Currently, the logic of multiple applications is generated only with the code
skeleton. Developers still need to fillievery-application logic contents. We wonder that
the logic content can also be transformed for-each target applications, in this way; it
will indeed achieve the target of write once and generate multiple applications with

both user-interfaces and logic descriptions.

48

Chapter 7 Bibliography

[1]

[2]
3]

[4]

[5]

[6]

[7]
[8]
[9]
[10]
[11]
[12]

[13]

[14]

Sheng-Po Shen, Shyan-Ming Yuan, “XML-based Mobile Application
Development Framework”, i & 28 %ﬁ%ﬂ%ﬁﬁﬂ E’Eﬁfﬁ » Sf@l 93
=6k

W3C, XSL Transformations (XSLT) Version 1.0, http://www.w3.org/TR/xslt

OMA, XHTML Mobile Profile (XHTML-MP) Specification,

http://www.openmobilealliance.org/tech/affiliates/wap/wap-277-xhtmimp-2001

1029-a.pdf
OMA, Wireless Markup Language (WML) Version 1.3 Specification,

http://www.openmobilealliance.org/tech/affiliates/wap/wap-238-wml-20010911

-a.pdf

Sun Microsystems, Java 2 Platform Micro Edition (J2ME) Mobile Information

Device Profile (MIDP), http://java.sun.com/products/midp/

IBM, Everyplace Toolkit for\WebSphere-Studio,

http://www.ibm.com/software/pervasive/everyplace toolkit/

Microsoft, The ASP.NET Web Matrix Project, http://www.asp.net/webmatrix/

Borland, JBuilder, http://www.borland.com/jbuilder/

Simple API for XML (SAX), http://www.saxproject.org/

W3C, Document Object Model (DOM), http://www.w3.0rg/DOM/

JDOM, http://www.jdom.org/

Sun Microsystems, JavaBeans, http://java.sun.com/products/javabeans/

Borland, JBuilder OpenTools,

http://info.borland.com/jbuilder/resources/jbopentools.html

Yun-sheng Liu, Shyan-Ming Yuan, “ART-based Mobile Application
Development Kit”, i 4 a5 F%Eﬁéﬁﬁifaﬁﬁj ?’EF% » S 93 F 6 K|

49

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Microsoft, Visual Studio .NET, http://msdn.microsoft.com/vstudio/

Guruduth Banavar, Lawrence D. Bergman, Yves Gaeremynck, Danny Soroker,
Jeremy Sussman, “Tooling and system support for authoring multi-device
applications”, The Journal of System and Software, vol. 69, 2004, 227-242
Banavar, G., Bergman, L., Cardone, R., Chevalier, V., Gaeremynck, Y., Giraud,
F., Halverson, C., Hirose, S., Hori, M., Kitayama, F., Kondoh, G., Kundu, A.,
Ono, K., Schade, A., Soroker, D., Winz, K., “An authoring technology for
multidevice Web applications “, Pervasive Computing, IEEE, Volume 3, Issue 3,
July-Sept. 2004, pp.83 - 93

John Grundy, Biao Yang, "An environment for developing adaptive,
multi-device user interfaces”, Proceedings of the Fourth Australian user
interface conference on User interfaces 2003, Volume 18, February 2003
OMA, WMLScript Language.Specification,

http://www.openmobilealliance.orgltech/affiliates/wap/wap-193-wmlscript-200

01025-a.pdf

Sun Microsystems, Java 2 Platform Standard Edition (J2SE),

http://java.sun.com/j2se/

Openwave, Integrating Openwave simulators with Borland JBuilder Enterprise,

http://developer.openwave.com/dvi/tools and sdk/ide integration/borland/borl

and-ide.htm
Nokia, Nokia Mobile Browser Simulator,

http://www.forum.nokia.com/main/0,6566,034-13,00.html

Sun Microsystems, Java Foundation Classes (JFC/Swing),

http://java.sun.com/products/jfc

50

Appendix A Common Widget Interface

public interface PumlWidget {
public String getPumlTag(Q);
public boolean isLegalParent(String tag);
public boolean isContainer();
public boolean isDataBindable();

public boolean isDataBindingWidget();

51

