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Abstract—We propose a path for extending the technology
roadmap when currently considered technology boosters (e.g.,
strain, high-x/metal gate) reach their limits and physical gate
length can no longer be effectively scaled down. By judiciously en-
gineering the device parasitic resistance and parasitic capacitance,
and considering the impact of the interconnect wiring capacitance,
we propose scenarios of selective device structure scaling that will
enable technology scaling and contacted gate pitch scaling for
several generations beyond the currently perceived limits.

Index Terms—CMOS, contacted gate pitch, device geometry,
device scaling, footprint, parasitic.

I. INTRODUCTION

ECHNOLOGY boosters such as strain, high-x/metal gate

[1] have helped the continuation of the historic perfor-
mance trend down to 45-nm node. As device physical gate
length is reduced below 20 nm, gate length scaling becomes less
effective because of the increasing contribution of parasitic ca-
pacitance [2]-[4]. Furthermore, the shorter gate lengths must be
traded off against various leakage (subthreshold, gate, BTBT)
currents. In [3], the role of device pitch was explored at the
device level. Mueller et al. [4] discussed and modeled the layout
dependence of the parasitic capacitances and their impact on the
circuit performances. Deng et al. [5] explored the concept of
selective scaling and proposed new scaling scenarios substan-
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tiated by simulation and intuitive explanations, showing that
even if gate length scaling slows down, significant performance
gains can be achieved through aggressive scaling of the device
footprint selectively. In this paper, we propose new selective
scaling scenarios which extend the study to examine the effect
of detailed device features in both the lateral and vertical direc-
tions (contact sizes, overlay tolerances, gate heights, and plug
heights) on both the parasitic resistances and capacitances. In
particular, the impact of selective scaling of device structures on
the tradeoff between the parasitic capacitances (outer-fringe ca-
pacitance, gate-to-plug capacitance, plug-to-plug capacitance)
and parasitic resistance are quantified. Circuit-level simulations
are performed to verify the benefits of selective device structure
scaling. Guidelines for selective scaling are proposed, and a
more comprehensive and efficient selective scaling scenario
than was described in [5] is developed. A methodology for
extending technology scaling roadmap is introduced to con-
tinue the historic performance trend for several generations
even without scaling the gate length or sacrificing the contacted
gate pitch (or device density).

II. BACKGROUND OF CONTACTED GATE PITCH SCALING

Contacted gate pitch (Lpicn) is the main driver for cost and
performance. It has scaled along with general lithography from
1 pm through the 45-nm node [1], [6]. We introduce the concept
of selectively scaled footprint [5], which is analogous to aggres-
sive selective scaling of the gate length introduced in 0.35- to
0.25-pm era. Selective footprint scaling enables us to trade part
of parasitic capacitance (Cpa,) With extension series resistance
(Rext) and interconnect wiring lengths. The speed and power
efficiency are improved at the circuit level with a reduced wire
length and chip area [5]. This paper examines how to optimize
the selective scaling in device structures in general, in both the
horizontal (contact sizes, overlay tolerances) and the vertical di-
rections (gate heights, contact plug heights). We make the bold,
yet plausible, proposal that contact sizes, overlay tolerances,
and heights of gates and plugs should be aggressively reduced
(faster than general lithography) through process innovations.
For example, aggressive reduction of contact sizes and overlay
tolerance can potentially be achieved by self-assembly pattern-
ing techniques augmented by conventional photolithography.
Block copolymer [7] (an organic material similar to photoresist)
can self-organize into sub-20-nm holes that are self-registered
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Fig. 1. (a) Schematics of planar device with related parasitics. Inset is the
SEM photo of block copolymer self-assembled contact hole patterns. The holes
are self-aligned to the edge of a topography 40 nm deep. Holes are 19 nm +
1.8 nm with a pitch of 42 nm £ 2.7 nm. Lg. is the offset of the holes from
the edge. (b—d) Schematics of the three proposed scaling approaches. (b) Scale
contact size (Lcont). (¢) Scale contact plug height (Hpjyug). (d) Scale gate
height (H, gate). Dashed lines denote the structures before scaling.

to an existing 40-nm topography [inset of Fig. 1(a)] [8], [9]. In
addition, the reduction of the gate heights and plug heights are
enabled by metal gate technology [1].

III. SELECTIVE DEVICE STRUCTURE SCALING: EFFECTS
ON PARASITIC CAPACITANCES AND SERIES RESISTANCES

We first focus on the delay merit at the device level. The
tradeoff between the series resistances and parasitic capaci-
tances determines the device speed. We decompose possible
selective scaling scenarios into two categories: (I) Reducing the
distance between the gate edge to the inner edge of the contact
plug (Lgc); (I) reducing the lateral size of the contact hole
(Lcont), the contact plug height (Hpiug), and the gate height
(Hgate). For category (I), the series resistance is reduced be-
cause of the shorter source/drain extension region, obtained by
sacrificing the parasitic capacitances; while, for category (II),
the parasitic capacitances are effectively reduced, by trading
off the contact series resistance. Furthermore, both (I) and (II)
efficiently reduce the layout pitch, which directly shortens the
interconnect length. Fig. 1(a) shows a schematic of the device
structure with the geometric parameters labeled.

A. Reducing L,

We start with a detailed analysis of the total gate capac-
itance (Cge) and S/D node capacitance (Csq) by both 3-D
and 2-D simulations. A full 3-D simulation [10] accurately
captures the 3-D fringing capacitance (Fig. 2) from the gate to
contact plugs. The geometric parameters of the nominal case
used for simulation are listed in Table II. The parameters are
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Fig.2. Due to the increased portion of the elliptical shape of the E-field for the
shorter Lgc (< 20 nm), (solid lines) 3-D predicted capacitance values become
much lower, compared with (dashed lines) 2-D counterparts.

chosen based on 65-nm technology. The reason for using a
65-nm technology for analysis rather than 45-nm technology
is explained in Section IV. Further discussions about more
advanced technologies are given in Section VI with an extended
roadmap. For the total gate capacitance (Cy,) and the S/D node
capacitance (Csq) which take into consideration the parasitic
components, 2-D slot approximation of the plug matches the
3-D results quite well at long Lg, but overestimates the para-
sitic capacitances at short Ly, (Fig. 2). The reason is that for
short Ly (< 15 nm), the fringing effect is significant enough
that the elliptical shape of the E-field cannot be ignored as in
the 2-D case, as shown by the inset of Fig. 2. It is important
to be clear about the range where 3-D simulation is necessary
to minimize computational cost with an acceptable accuracy.
3-D simulations shows negligible difference between cylindri-
cal plugs and square pillar plugs for Ly, > 15 nm, and even for
Ly =5 nm, the cylindrical plugs give only 6% less Cy and
7% less Csq than square pillar plugs.

Fig. 3 shows the components of Cye and Cyq as a function
of Lg.. The intrinsic gate capacitance is only ~50% of Cyg,
the total gate capacitance. Parasitic capacitances are contributed
by the outer-fringe capacitance (Couter—fringe ), the gate-to-plug
capacitance (Cgate—plug), and the plug-to-plug capacitance
(Cplug—plug)- The Couter—fringe and Cgate—plug are responsible
for ~40%. At small L, the rapid increase of capacitance is
due to Cgate—plug. This is shown numerically in Fig. 3 and can
also be explained by the analytical model described in [11]. In
[11], Cgate—plug is decomposed into normal and fringing parts.
The normal part is roughly inversely proportional to L., while
the fringing part is inversely proportional to the logarithms of
Lyg.. Both parts increase when L. decreases.

To first order, the increase in Cyg (Csq) Will be less than 8%
(15%) of the nominal values for “typical” devices (designed
with standard design rules) if L, is larger than 0.4 x gate height
(Hgate). For Lge < 0.4 Hgyyte, there is significant performance
loss due to increasing parasitic capacitance.

Reducing Ly, reduces the series resistances, mainly due
to shortening of the source/drain extension region. With the
same supply voltage and channel structures, reducing the series
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Fig. 3. (a) Gate capacitance, (b) S/D node capacitance, and their breakdown

including Miller effect versus gate to plug edge distance Lgc. The minimum
Lygc is about 0.4Hgate to keep Cgg(Csq) within 8% (15%) of the nominal
values for typical devices, respectively.

resistances increases the on-current. Ultrathin Body Silicon-on-
Insulator (UTBSOI) devices and bulk devices are built with
Taurus Devices, following the conventional design parameters
(Tables II and III). By reducing L. gradually without changing
the other parameters, the on-current is improved by 10% for
UTBSOI and 8% for bulk devices. The on-current improvement
saturates for very small L,. when the source/drain extension
region is too short to contribute significantly to the total series
resistance. For a very rough estimation, the resistance of the
extension region can be approximated to be proportional to the
length of the extension region and inversely proportional to
the junction depth. For further studies, Kim et al. [12] has care-
fully modeled the series resistances.

B. Reducing Contact Size, Plug Height, and Gate Height

Selectively scaling the device structure (the contact size,
plug height, and gate height) in all three directions can reduce
the parasitic capacitance. To illustrate the concept, we studied
three scaling scenarios [Fig. 2(b—d)] and their combinations:
A) reducing the planar dimensions of S/D contacts by half;
B) reducing the S/D contact plug height by half; and C) reduc-
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Fig. 4. (a) Gate capacitance, (b) S/D node capacitance, and their breakdown

with different selective scaling scenarios. Lgc is 10 nm. Scaling down the gate
height is the most effective way of reducing device parasitic capacitance.

ing the gate height by half. The rest of this paragraph gives a
first-order qualitative analysis, followed by quantitative results
in the next paragraph. Scenario “A” does not reduce either Cy,
or Csq. However, it potentially reduces the interconnect length
by shrinking the circuit area. Scenario “A” may increase the
contact resistance sharply at very advanced technology nodes,
due to limitations related to the transfer length as discussed
later. Scenario “B” reduces Cyq by reducing Chlug—plug, but
does not reduce Cy,. Reducing Hy,¢e (Scenario “C”) is effec-
tive in reducing both Cg, and Csq. The effect of any other
structure scaling scenarios without changing the L. can be
evaluated as a combination/superposition of the effects of these
three basic scaling scenarios.

Three-dimensional simulation are performed with Lg. =
10 nm at the 65-nm node, to capture the impacts on the
capacitances by reducing contact size, plug height, and gate
height to half of the typical values as listed in Table II. Fig. 4
shows device gate capacitance [Fig. 4(a)], S/D node capaci-
tance [Fig. 4(b)], and their components with different selective
scaling scenarios. The height of each bar indicates the absolute
values of the total gate capacitance (Cgg) or the total S/D node
capacitance (Cyq), while the percentage numbers correspond
to their contributions from different components. The effect of
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TABLE 1
EFFECTS OF SELECTIVE SCALING SCENARIOS ON PARASITICS PER UNIT GATE WIDTH
Coverl@p Couter-ﬁnge Cg&@g Culm-_g_p_lug RC+RDQg Lnitch

Scenario A - l 1 1 |

Scenario B - - (N ! -

Scenario C - | 1L 1 - -
scaling scenarios A, (A +B), (A+C), and (A+ B+ C) are 1.1
shown in Fig. 4. Sain i W «(I) Reducing L, Only

As verified by Fig. 4, to the first order, scenario “A” does £ e #N
not reduce either Cgg or Cyq; scenario “B” reduces Csq by 5 \
reducing Cplug—plug, but does not reduce Cygg to the first order; 2 105 M+ amn »
reducing Hy,¢e (Scenario “C”) is effective in reducing both Cy, g Selectively
and Cyq. As a general rule, the most effective way to reduce the ~ § Scaled Device
device parasitic capacitance is to reduce the height of the lowest g 1 Structure
components, e.g., the gate height for a planar bulk device, or <Z’5
the raised S/D and gate height for UTBSOI. That is confirmed —A— UTBSOI
by the simulation result that (A + C) is more effective than —S— Planar Bulk
(A+ B? in terms of reducing thg parasiti.c capacitaqces. 09200 150 200 250
The impacts of these selective scaling scenarios on the Contacted Gate Pitch L_. . (nm)

parasitics are summarized in Table I. At the device level, pren
the effectiveness of reducing parasitic capacitances is, in de- @
scending order: (B+C)>(A+B+C)>C>(A+C)> 15 A UTBSO!

B > (A + B) > Not Scaled > A. Since Scenario “A” effec-
tively reduces the chip area, the interconnect length is reduced.
Consequently, the reduction of interconnect capacitance on
the critical path improves the circuit speed. When intercon-
nect capacitance at the circuit level is also considered, this
order becomes: (A+B+C)>(B+C)>(A+C)>C>
B > (A +B) > A > Not Scaled, because a smaller device
footprint helps reduce the interconnect capacitance. Reducing
the contact size has some secondary effect on the capacitance,
such as increasing Cgate—plug and Cplug—plug-

Fig. 5 shows the on-current and gate capacitances for se-
lectively scaled structures, normalized to those of the typical
devices, for both SOI and bulk devices. A complete device is
built using Taurus Device [14], with the geometric parameters
as in Table IT and the doping profiles as in Table III. The channel
structure remains the same for different Lyi¢cn, thus the mag-
nitude of the on-current reveals the difference in the parasitic
resistances in a reverse way. Reducing the plug height and the
gate height do not change the series resistance to first order.

In our simulation for the 65-nm technology (Fig. 5), the con-
tact resistance is not very sensitive to the contact size for device
structure scaling scenarios for current-generation technologies.
However, for future technologies, it is quite possible that re-
ducing the contact size can dramatically increase the series
resistance. We use the transmission line model [13] to estimate
this impact: Reont = \/MCOth(Lsilicide V RS/pC)- Here,
Reont 1s the contact resistance between the diffusion layer and
the silicide layer, in units of ohm. R is the sheet resistance per
square of the underlying heavily doped silicon layer in units of
ohm/LJ, pc is the specific contact resistivity between the metal
and the diffusion layer, in units of ohm square centimeter. A
transfer length [; = \/pc/Rs is defined [13]. The calculated
transfer length for our 65-nm technology devices is around 60
and 30 nm for NMOS and PMOS, respectively. Most current
paths end within a length of /;, which means the contact resis-
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Fig. 5. (a) On-current and (b) gate capacitance versus Lp;¢cp, for both planar
bulk CMOS and UTBSOI in 65-nm node with (I) reducing Lgc only and (I) +
(II) selectively scaled device structure. The currents corresponding to (I) + (II)
are of the same magnitudes as (I), only with a displacement in Lp;¢cp, axis.

tance only slightly depends on the length of the silicide region
(Lsilicide), When Lgpicide is greater than ;. However, once
Lgiticide 18 less than [;, a sharp increase of contact resistance
is expected if Lgiicide 1 further reduced. Typically, Lgilicide
is proportional to the technology feature size. To overcome
this contact resistance issue, Lgijicige has to be relaxed, since
Liijicide 18 less than I; in the advanced technologies.

Generally, the device structure should be selectively scaled
in the following ways. 1) Reduce the vertical electrode heights,
particularly the height of the lower electrode, i.e., Hgate.
2) Moderately reduce the overlay tolerance (Lgc). A rule of
thumb for Lg is about 0.4 Hg,e. 3) Reduce the lateral contact
size down to the level of the transfer length. In the following
sections, we show examples to illustrate the effectiveness of
selective device structure scaling for improving device and
circuit level performance.
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TABLE II
GEOMETRIC PARAMETERS USED FOR THE TYPICAL CASE OF 65-nm TECHNOLOGY DEVICES
Lvolv Lgc Lcom Lsilicidc Hgmc Hnluz tox kox Lsub
35nm 80nm 65nm 130nm 70nm 210nm 1.2nm 3.9 100nm
TABLE III
KEY PARAMETERS FOR DEVICE DOPING PROFILES
UTBSOI bulk
body thickness 15nm S/D junction depth 35nm
p-channel doping 5.4x1018cm3 S/D peak doping 1x10%cm3
n-channel doping 5.25x10 ¥ cm3 S/D extension junction | 11nm
depth
poly doping 5x10™cem S/D extension peak 2x10%0cm3
doping
S/D peak doping 5x10%¢m3 p-channel peak doping | 6x1018¢m3
n-channel peak doping | 1.8x10™cm?3
poly doping 1x1020¢cm-3

IV. INVERTER DELAY IMPROVEMENT

To validate the concept of selective device structure scaling,
we use mixed-mode device/circuit simulations (Taurus [14])
to optimize FO4 inverter delay for both planar bulk CMOS
and UTBSOI. The nominal devices are built with the key
parameters listed in Tables II and III. For the group labeled
“Reducing L. only,” we gradually reduce Lg. with all the
other parameters unchanged. For the group labeled “Selectively
scaled device structure,” we gradually reduce Lg., while halv-
ing Lecont, Hgate’ and leug~

First, we analyze the behavior of the saturation on-current
and the device capacitances as a function of the distance (Lyq)
between the gate edge and the S/D contact stud for both
planar bulk CMOS and UTBSOI with the scaling scenarios:
(I) reducing Ly only and (I) + (II) 3-D (A + B + C) selec-
tively scaled device structure. We choose 65-nm technology
rather than the up to date 45-nm technology mainly because
reliable compact device model is available to us only up to
65-nm node. Moreover, 65- and 45-nm technologies are similar
in the way that the contact size scaling is not expected to
increase the series resistance significantly. Clearly, reducing the
distance L, results in a tradeoff between higher on-current
due to reduced series resistance [Fig. 5(a)] and higher parasitic
capacitance [Fig. 5(b)]. The maximum on-current improvement
of the scaled device over the device with the standard digital
circuit design rule (identified as “typical device” in the fol-
lowing) is about 10%. When evaluating dynamic performance
(circuit speed), capacitance effects are also significant. Three-
dimensional device structure scaling (A + B + C) is able to
reduce the gate capacitance by about 10% as compared to that
of the typical device [Fig. 5(b)]. The general trend for bulk
CMOS and UTBSOI are similar.

A four-stage inverter chain is used to examine the dynamic
performance for both planar bulk CMOS and UTBSOI. Circuit
simulations are performed using device/circuit mixed-mode
numerical simulation in Taurus Device [14]. The device width
ratio between pFET and nFET is designed at 1.5 to balance the
pull-up and the pull-down delay. The inverter delay (7) is eval-
uated between the 50% to 50% points. A tradeoff between the
on-current and capacitances exists when sizing the dimensions
of S/D region. Up to 5% higher speed can be obtained simply
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Fig. 6. FO4 delay versus Lpitcn for both planar bulk CMOS and UTBSOI
with (I) reducing Lgc only and (I) + (II) selectively scaled device structures.

by pushing the gate to silicide distance Lgs (Lge = Lgs + A, A
is the distance from the silicide edge to the plug edge.) smaller
(Fig. 6). With 3-D selective structure scaling (A + B + C), the
inverter speed is about 15% faster for both the planar bulk
device and UTBSOI, compared with devices with standard
layout rules (Lgq = 12 \). At the design point with minimum
FO4 delay, the on-current improvement over typical device is
about 7%, and the total device length is about Lgq9 = 6.6\
which is 45% smaller (isolated device) layout area than the
typical device.

The reduced junction capacitance for bulk device with se-
lective structure scaling has trivial impact (< 3%) on speed
because Cplugfplug, Cgatcfplug’ Coutcrffringc, and C’ovcrlap
are the largest components of Cgq. This also explains the
similarity of the trend between bulk CMOS and UTBSOL
Mobility degradation due to reduced stress of the smaller active
area (~50 MPa less stress by reducing Lg. by 65 nm) is
smaller than 4.5% [15], [16] which corresponds to less than
3% on-current degradation. As a result, even though the stress-
dependent mobility is ignored in our analysis, the general trend
and the conclusions addressed in this paper remain valid. For
more advanced technologies which depend heavily on strain-
induced mobility enhancement, the reduction of drive-current
with reduced stress must be further studied.
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TABLE 1V
SUMMARY OF PARAMETERS USED FOR ITRS TECHNOLOGY PROJECTION [2005]. THE RC DELAY IS EXPECTED TO SCALING ACCORDING TO ITRS
ROADMAP. THE TOTAL RESISTANCE R IS THE SUM OF THE CHANNEL RESISTANCE (Rchan), THE EXTENSION RESISTANCE (Rext),
AND THE CONTACT RESISTANCE (R¢). THE Rchan IS ASSUMED TO BE ABOUT 70% OF THE TOTAL RESISTANCE IN A
WELL-DESIGNED DEVICE UNDER THE TYPICAL LAYOUT RULES. THE EXTENSION RESISTANCE, CONTACT RESISTANCE,
AND CAPACITANCE ARE COMPUTED BASED ON THE PARAMETERS LISTED HERE

Technology node nm 90 65 45 32 22 16 11
Metal 1 half pitch (contacted) nm 90 65 45 32 22 16 11
Supply voltage (Vaq) v 12 1 1] o9 o8| 07| 06
Contact junction depth (X;) nm 55| 38.5| 275(19.8| 154|121 11
Silicide thickness (tjicige) nm | 275(1925[1375| 99| 7.7|6.05| 55
Physical gate length (Lgate) nm 50 35 25 18 14 11 10
Drain extension junction depth (Xjext) nm 1751225 | 875| 63| 49|385| 35
Contact maximum resistivity (p¢) ohm-cm? | 3e-8 | 3e-8| 3e-8|3e-8]|1e-8]|1e-8 | 1e-8
V. CIRCUIT-LEVEL IMPROVEMENT 600 & . ' ' » '
—&— typical
The performance improvement at the circuit macrolevel is sk (1)+(11)
larger than the inverter delay discussed above because a smaller 500 | === (])+(ll) with relaxed contact size
device footprint results in a smaller layout area and reduces
the interconnect capacitance. We verify this for UTBSOI by £ 400 1
a full custom 53-bit multiplier using both the conventional 3
layout and the optimized footprint (Lsq = 7A, the minimum E
e . .. . . S 300 E
point in Fig. 6), in a similar way as described in [5]. Compared =,
with the multiplier made with typical devices (Lsq = 12)), the g
multiplier built with the selectively scaled devices (Lgq = 7A) * 200 o . 1
occupies 30% less layout area, operates at 25% higher speed Limited by RC einain
(~10% comes frf)m the shorter mterconnects)', and consumes 100+ Relaxed silicide length 4
10% less dynamic power due to the smaller interconnect ca- (L_... )isrequired
. . .. silicide
pacitance of the smaller circuit layout area. The principles of 0 ‘ s ‘ .
selective structure scaling for bulk devices are the same as 11 16 22 32 45 65 90
UTBSOI, and the amount of improvement in the device level Technology node (nm)

and simple circuit level are very similar for UTBSOI and bulk
devices. Since the major difference for a circuit macrolevel
analysis is the reduction of wiring capacitances due to the
tighter pitches, we expect the bulk devices have the similar
improvement at the system level with the Lyq = 7 footprint.

VI. EXTENDING THE TECHNOLOGY ROADMAP

Fig. 8 shows a scaling scenario in which aggressive Lpich
scaling compensates for the slower than 0.7x per node Lgate
scaling. With selective device structure scaling in both the
horizontal (reducing contact size and L) and vertical (reduced
gate and plug height) directions, the technology roadmap can
be extended to the 11-nm node with physical gate length no
shorter than 10 nm. The parameters used for the projection
are listed in Table IV. Lyic, scaling is bounded by parasitic
capacitance and contact resistance. Scaling the length of the
S/D silicide (Lgiicide) below the current transfer length causes
rapid increase of contact resistance R, below 45-nm technol-
ogy node (Fig. 7). In order not to degrade the on-current for
aggressively scaled devices, a relaxed silicide length (Lgijicide)
in source/drain contact regions has to be used once Lgjjicide
becomes comparable to or less than the transfer length. As
shown in Fig. 7(b), the contact resistance with the silicide
length reduced by half becomes much larger than that of the
typical device beyond 45-nm technology. For the extended
technology roadmap, we relax Lgjjicige in @ way that the total
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T T T T T
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Half-size contact & silicide length (LSilici de)

30!
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A o, .
- .,
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Components of Rgg o5 (OhM-um)

100 -

---------

.....................

65 90
Technology node (nm)
(b)

Fig. 7. (a) Rseries and (b) its components as a function of technology nodes.
R, increase quickly with half-size contact scaling. A relaxed contact silicide
length (Lsilicide) should be used for future technology nodes in order not to
degrade on-current.

series resistance after selective scaling is no larger than that
for the conventional layout, as indicated by the solid line in
Fig. 7(a). The main limiter of the transfer length is the specific
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(R¢) or both. By device selective structure scaling, the historic performance
trend can continue for another two to three generations even without gate length
scaling. The suggested technology scaling path is denoted by dashed curve.

contact resistivity, which is difficult to reduce with present
techniques. We therefore assume that the transfer length does
not scale significantly along with the technology [17], [18].
Potentially, the specific contact resistivity can be reduced by
further increasing the doping concentration in the diffusion
layer or lowering the barrier heights by choosing a different
metal or silicide [17]-[19]. Metal source/drain with fermi-level
depinning in the Schottky junctions, is a possible candidate to
reduce source/drain resistance [20]-[23]. The Ly, scaling is
bounded by the relaxed Lg;jicige in more advanced technologies.
Fig. 8 marks the Lpi;cn boundary within which the device
on-current is greater than or equal to the values for “typical”
devices with zero or trivial parasitic capacitance penalty. The
extended scaling path requires tight pitch patterning, tight
overlay tolerances, small contact holes, and a short gate height
processes. They are all potential yield limiters. On the other
hand, the benefits of selective device structure scaling are
significant. Novel nanofabrication techniques are needed to
realize the substantial benefits offered by Lt scaling and
parasitics engineering. The potential candidates of such fabri-
cation techniques include diblock copolymer for small contact
sizes and overlay tolerance, and metal gate process for low
gate height.

VII. CONCLUSION

In this paper, we propose a new device scaling scenario for
sub-45-nm technology node high-performance CMOS technol-
ogy. We postulate that even with the gate length remaining
essentially the same, selectively scaling the device structure
will provide significant circuit-level performance improvement
from technology generation to technology generation. The
benefit comes from optimizing the tradeoff between series
resistances and parasitic capacitances and the reduction of the
interconnect capacitances. By shrinking the lateral distance
between the gate edge and the source/drain contact edge, the
parasitic capacitance increases but both the series resistance and
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interconnect capacitance decreases. By vertically lowering the
gate heights and plug heights and reducing the contact sizes, the
parasitic capacitance and interconnect capacitance are reduced
with the penalty of series resistance. For small benchmark
circuits, such as inverter chains, and a fully custom designed
53-bit multiplier, the selectively scaled device with reduced
footprint achieves smaller layout area, higher speed, and energy
efficiency. The results are verified by 2-D and 3-D electrostatic
simulation [10] (for capacitances), Taurus Device [14] and
analytical calculation [12] (for series resistances), Taurus mix-
mode simulation [14] (for inverter chains) and complex circuit
simulation as in [5] (for 53-bit multiplier). This paper provides
a strong incentive to develop innovative technologies, such as
small contacts, tight tolerances, low-x spacers [24], low gate
and plug height integration schemes [25], and low specific
contact resistivity source/drain technology [18], [19], such as
metal S/D with unpinned Fermi level [20], [22], [23].

APPENDIX

The key parameters used for simulations are listed in
Tables II-1V.
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