- B RIS RBFAFE TR A A IRIFE R LR

AWorm Immune Service Expertsystem for denial of service attacks

o S e poE A K



- B 5 PR PRIFITHF T A LB IRAR R ROk R

=

it SR thERE: §AeEL

EF R E R IFAR Ao @R R 2 A h 2 v 37
RARIFAH DA 2 S ARTARP F A A 2 ¢ A VODKA Kk §Tet & 7 5 e
3 Ee R EE A - VODKA 2 —0iF 3 s e Benioiig B 2 > BUEF AT

R RS o ¥ R R 0T 1 A RS L T o AT
B R R RN e DMEAE v S L S CLEl P R R e
oo RERMENA > L AERA R RFEFIFLDTRERR T KBS
SRSk SLenE B o R

ﬁ#$%?3m<%%iﬂﬁkmﬁ’%%ﬁ%%g%@%%ﬂﬁ&#ﬂﬁ
FAFHFAPM TS Flta R0 2 RS0 JIB R F g b
WAGH BT AR D - B LB IRAAIE G A LB IR E R RE T S
PRz BHEP kR FIT L BREES 7 PR  KEF g Y i
,@’ﬁﬂﬁ+%ﬁ@ﬁ%%ﬁ@m%%ﬁ#@ﬁjﬁm~%%ﬁﬁwﬁﬁa ¥z B o B

415 6 VODKA % #5551 45 ) 7605 4 -

MaEF D iFh o s RREF P R 0 B R R



WISE: a Worm Immune Service Expert system for denial of

service attacks

Student: Cheng-Lin, Wu Advisor: Dr.Shian-Shyong Tseng

Department of Computer and Information Science
National Chiao Tung University

Hsinchu, Taiwan, 300, Republic of China

Abstract

With the rapid development of. Internet; the worm can spread and infect other
computers quickly. Besides, new: variant worm is evolving too fast, so we need some
efficient approaches to discover it. Therefore, we -use VODKA approach to help
experts discover these variant worms easily in.-this thesis. The Variant Object
Discovering Knowledge Acquisition (VODKA) is a method of finding a new object
from the inference results. And most of worm technological documents are
non-structured, so discovery of knowledge by data mining is not easy. We use a
Two-Phase Knowledge Acquisition methodology is proposed to acquire the concept
hierarchy of worm first and then to extract knowledge of worms based upon
hierarchical repertory grids adjustment from experts. Last, we will construct the
knowledge base of worm.

When worm infects the system, the users perceive some abnormal behaviors.
The users usually will usually input what he or she looks to the search engine on the
network and looks for the solution. Such a way consume large time look for correct

solutions. Consequently, we propose and implement a worm immune service expert



system (WISE) to the user. WISE contains three modules: diagnosis module, tutorial
module and discovery module for detecting the security status of machines, teaching
users how to defense threat of worms and learning variant worm by VODKA

respectively.

Keywords: worm, knowledge acquisition, VODKA, knowledge base, expert system.



WEfR S A Rw e RER R RN ERE G R L T K
BUAFLAA EPFRF Ao chip AR P M0 2 R0 BFYFSHE
R enEIT o GEFEERBAEE R R KT E o BES BB hr 34
AFRAARE - RERRBEFFCARE RIFEI TAPF IR LR
AErhwe {7 HE-

ForERMA IR L A EPTRAF EF S BATRE FIH
Fiod B T AFSHRLE B AT E L L BE AN foiB o s A

Be g 1t FAR o

PR ERHMARIEL TP A SN R P EHAREIFE P
WA CFTR RTE - REF PR T BRI LI A AL FE ok
FIRFPE N2 FIMES T ALK RRIPLE S RER K-

B AR R HA AR AR AR A L HRITOR RN

Fow 2 BALHIRE P BRERAEHY - RER o



Table of Content

Chapter 1 IntroducCtion .........ccoooiiiieiin i 1
Chapter 2 Related WOrK.........ccocviiiiiie e 3
2.1: WOrm Life CYCIE ..o 3
2.2: Brief OF WOIMS ...c.ooiiiii e 4
2.3: Host-based and Network-based Detection..........ccccccovvvviiviiinennn, 7
2.4 EMOCUD ..ottt 10
Chapter 3 The Framework of WISE ...........cccooiiiiiiiii, 12
3.1: Definition of HOSt Status.... ...t v 12
3.2: Definition of Worm-Knowledge CIass...............cccecvvvvervnrininennn, 17
3.3: The Overview of WASE system Architecture...............ccceeveenenn, 20
Chapter 4 Worm Knowledge Base Construction ............ccccceevevvennn. 24
4.1: Two Phase Knowledge ACQUISITION .........cccevvviieiiecie e, 24
4.2: Variant Worm Learning Module...........cccccovvviiiiiiiiinnin e, 38
Chapter 5 Implementation and Evaluations.............cccccceeeveiveninenen, 43
5.1: Implementation of Diagnosis Module .............cccoooveviiiiniinnnnenn, 44
5.2: Implementation of Tutorial Module........c...cccccoveviiiiiiiiinen, 44
5.3: EVAIUALION ... e 48
Chapter 6 Concluding Remarks .........cccccooeviiiiiiiienie e 50
BiDHOGrapny .....c..ooii 51

VI



List of Figures

Figure 2.1 Worm Life CYCle.......c.ccoviiviiiececc e 4
Figure 3.1: System status transitioN..........cccoccevieiiinie e, 13
Figure 3.2: The knowledge class ina rule base..........c.ccccoeveviiiininnns 18
Figure 3.3: Relationship of knowledge classes..........cccovveviiiiiiinnnnenn, 20
Figure 3.4: Architecture of WISE.............ccoooe i, 20
Figure 4.1: Concept hierarchy of Nimda...........cccooeviiiiiniinininin 28
Figure 4.2: Concept hierarchy of Code Red..........c.cccceevvevieiiciinenenn, 34
Figure 4.3: Acquisition Of WOIrM ........cccooiiiiiiinniese e, 35
Figure 4.4:Date type of EMCUD ... it oo, 36
Figure 4.5: Process in construing AOD T ciu. i e 36
Figure 4.6: The result of ADT ..., 36
Figure 4.7: The process in generating embedded rules....................... 37
Figure 4.8: The result of generated rules...........cccooveviiiiiiiciiciiein 37
Figure 4.9: An XML file Of rules........cccooviiiiiieniie e, 38
Figure 4.10:Setting before learning..........cccoeovevieiieiie i, 40
Figure 4.11: INfErence 10g.......ccoovviiiiiiiiieiie e 40
Figure 4.12: Process in Learning Stage..........cccoccvevveveesiiesiieeseesee s 42
Figure 5.1: Interface of WISE..........ccco i, 43
Figure 5.2: Symptoms of Nimda..........cccevvevieiiieiicciecee e, 46
Figure 5.3: Inference result of Nimda...........cccoooviiiiiiiiiin 46
Figure 5.4: Symptoms of Nimda.B ........c.ccccceeveieiieiie e, 47
Figure 5.5: Defense instruction of Nimda..........cccccovoiiiiiiiiiiininns 48

VI



List of Tables

Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 4.7:
Table 4.8:

Table of Nimda grid ... 30
Table of Basic information grid..........ccccccevieviievicieesnenn, 30
Table of Service grid ........cccoviiiiiiii e 31
Table of Exploitation grid..........cccccoecveviiiviiiie e 31
Table of Carrier grid.........cccooviiiiie e 31
Table of Symptoms grid..........cccoovviiieiiiie e 32
Merging Symptoms grid before splitting...........c..ccceene.. 34
Merging Symptoms grid after splitting ..........c.ccccevvevvnnnn. 34

VIl



List of Examples

Example 4.1: Example of Knowledge Hierarchy Construction......... 27
Example 4.2: Example of Concept Hierarchy to Repertory Grids....30
Example 4.3: Example of Hierarchical Grids Adjustment................. 33
Example 5.1: Diagnosis Example of Nimda ..........c.ccccevveviiieiinenenn, 45



List of Algorithms

Algorithm 2.1: EMCUD algorithm..........ccccooviiiiiniieee, 11
Algorithm 4.1: Worm Knowledge Base Construction Algorithm......25
Algorithm 4.2: Knowledge Hierarchy Construction Algorithm ........ 26
Algorithm 4.3: Concept Hierarchy to Repertory Grids Algorithm...29
Algorithm 4.4: Hierarchical Grids Adjustment Algorithm ................ 32
Algorithm 4.6: VODKA AIQOrithm ... 39



Chapter 1

Introduction

An Internet worm is a program that self-propagates across network exploiting
security or policy flaws in widely used services. It is not a new phenomenon, having
first gained widespread notice in 1988 [12]. We distinguish between worms and
viruses in that the latter infect non-mobile files and therefore require some sort of user
action to abet their propagation. As such, viruses tend to propagate more slowly. They
also have more mature defenses due to the presence of a large anti-virus industry that
actively seeks to identify and control their spread. As we know, Internet worms and
denial of service (DoS) attacks have had.a significant impact on businesses in recent
years. Most of enterprises adopt anti-virusisoftware .and hardware to protect important
information. But, when an unexpected worm appears, those protective mechanisms
can’t guarantee to protect perfectly. “Then the-new worm would infect the enterprise
and serious losses may result.

With the rapid development of Internet, the worm can spread and infect other
computers quickly. Besides, new variant worm is evolving too fast, so we need some
efficient approaches to discover it.The purpose of this thesis is to present a Worm
Immune Service Expert system (WISE) to diagnose host health and recovery from
infected as soon as possible. In addition, the contributions of this thesis are listed as
follows:

1) Construct worm knowledge base by two-phase knowledge acquisition

There are many technique documents about worm from Internet. Those

documents do not have formal structure, two-phase knowledge acquisition

methodology is hence applied to construct worm knowledge base.



2) Design and implement the WISE system.

This thesis describes the theoretical foundations of a system that discovers
variant objects using VODKA [15] and a practical approach of its implementation.
Finally, we build an environment of web service including the abilities of diagnosis,
tutorial, and learning to interact with users by collecting the significant worm

information to detect and protect the system security.

The rest of thesis is organized as follows. Chapter2 surveys the life cycle of
worm and the background knowledge of this work. Chapter 3 describes the whole
architecture and introduces three parts of the Worm Immune Service Expert system
(WISE) for denial-of-service attacks. Chapter 4 to Chapter 5, the details of worm
knowledge base construction and .WISE implementation, are described, respectively.

Chapter 6 gives conclusions of this.work.



Chapter 2
Related Work

The infection speed of the worm and the appearance frequency of the new
worms are quickly and shortly since the network becomes faster and faster. It
becomes one of the important issues to efficiently detect and defend the intrusion of
the worm. Before proposing our methods to defend those malicious worms, the life
cycle of computer worm will be presented in Section 2.1 and the background of worm
will be then introduced in Section 2.2. Section 2.3 compares the detection methods of
the worm that consist of host-based and network-based detection. Besides, some kinds
of worm defense products are provided on the market now, but which one is suitable
to be used for defending the worm. Therefore;all the advantages and disadvantages of

general antivirus softwares will-be ‘introduced inlast Section.

2.1: Worm L.ife Cycle

As mentioned above, in order to understand the threat posed by computer worms,
it is necessary to understand the life cycle of worm [5] shown in Figure 2.1. Each
worm agent begins with an Initialization Phase. This phase includes things like
installing software, determining the configuration of the local machine, instantiating
global variables, and beginning the main worm process. For a worm to infect a
machine, it must first discover that the other potential victim exists in Target Selection
Phase. There are a number of techniques by which a worm can discover new
machines to exploit like port scanning. Then a worm can either actively spread it from
machine to machine, or it can be carried along as part of normal communication

through the network in Network Reconnaissance Phase. After that, infected system



may appear many abnormal behaviors to attack user host in Attack Phase and infect
next victims in Infect Phase. Besides, different sorts of attackers will desire different
payloads to directly further their goals, so that make detect more hard. Therefore,
based upon the lifecycle of worm, we can identify the network propagating stage,

attacking stage, and infecting stage to help users to improve the security of system.

Target Scanning

b

Figure 2.1 Worm L.ife Cycle

2.2: Brief of Worms

The following list gives an idea of .the equalities and differences between some
of the prevailing definitions of worm and virus [13].

Virus: A self-replicating program. Some definitions also add the constraint that it
has to attach itself to a host program to be able to replicate. Often viruses are said to
reside only on the infected host computer, not replicating outside it.

Worm: Also a self-replication program, which does not need another program to
be able to replicate but instead is a stand-alone program. And usually performs
malicious actions, such as using up the computer's resources and possibly shutting the
system down. The difference between a worm and a virus is often said to be the way
they replicate, worms replicate over network connections, while viruses replicate on
the host computer.

We can know that the worm causes harm of system and Internet is bigger and

quicker than virus; therefore this thesis will focus on detecting the worm. Now,



several kinds of worm will be introduced and used to built in our knowledge base

In July 2001, the Code Red Worm [2] was released on the Internet. Code Red
affected Microsoft Index Server 2.0 and the Windows 2000 Indexing service on
computers running 11S 4.0 and 5.0 Web servers. The worm sent its code as an HTTP
request on port 80, which exploited known buffer-overflow vulnerability. The worm
also attempted a Denial of Service (DoS) against www.whitehouse.gov
(198.137.240.91) if the date was between the 20th and 28th of the month.

Code Red used a random number generator to get new victim IP addresses to
attack. The initial revision of Code Red hits the same machines over and over again
which limited the worm’s ability to spread. Code Red Il used a better random number
generator to create more target IP addresses by keeping the network portion of the IP
address, and then choosing a random host portion. of the IP address. This allows the
worm to spread itself faster within the same network.

A few months after Code-Rediwas-released, the Nimda worm [3] surfaced. It
took advantage of some similar vulnerabilities:as-Code Red, however, it was a hybrid
attack that contained both worm and virus characteristics. As a more advanced attack,
it could infect more systems and could infect systems in multiple ways. Nimda could
infect any computer running Microsoft Windows software by exploiting a flaw in
Outlook Express and known vulnerabilities in Microsoft's Internet Information
Services software (11S) 4 or 5, including the security hole left by Code Red II.

Nimda used randomly generated IP addresses to target vulnerable IIS servers
using TCP 80 (HTTP). It copied itself to the vulnerable web server as a DLL using
TFTP (UDP port 69), then created a listening port ready to transfer the copy of the
worm. The transfer of the worm used NetBIOS TCP ports 137-139 or TCP port 445.
Nimda then searched for all open network shares using Network Neighborhood.

Nimda also used TCP port 25 (SMTP) for sending email to other systems using

5



addresses taken from the infected system.

The Slammer worm [10] was released in January 2003. The primary impact of
Slammer was a consumption of network bandwidth. It infected systems at a rate not
seen before and saturated networks quickly. The worm created a Denial of Service
attack due to the large number of packets it sends. In some cases, networks
experienced 100% packet loss.

Slammer targeted systems running Microsoft SQL Server 2000 and Microsoft
Desktop Engine (MSDE) 2000. It took advantage of a buffer overflow vulnerability
that allowed a part of system memory to be overwritten, and then ran in the same
security context as the SQL Server service. Slammer used UDP for connection setup
so it did not have the overhead of the connection setup and management required by
TCP-based services. Code Red and Nimda took.advantage of flaws in TCP-based
services, which required a full three-way handshake before exchanging data. Slammer
flooded the network by continuously-sent-traffic consisting of 376 byte packets to
UDP port 1434 of randomly generated-IP.addresses.

In August 2003, the Blaster worm [11] hit the Internet, targeting Microsoft
Windows 2000 and XP systems in an attempt to take advantage of a recent published
Microsoft Windows RPC DCOM vulnerability. The Distributed Component Object
Model (DCOM) allows Microsoft software to communicate. This includes
communication with Internet protocols such as HTTP. A flaw in the RPC code was
exploited to cause a buffer overflow and the RPC service would fail. This allowed an
attacker to run code with System privileges which included the ability to install
programs, change data and create accounts with administrator rights.

Blaster used several ports on compromised systems as listening ports or to
execute commands. It scanned a random IP range looking for systems to infect on

TCP port 135, which is the port that the RPC process listens on. The traffic created by

6



Blaster saturated subnets with port 135 requests. TCP port 4444 was also a listening
port that allowed an attacker to issue remote commands through a hidden shell
process. UDP port 69 listened for requests to transmit the virus from computers that
were compromised by the RPC DCOM vulnerability. The worm also sent 40 byte
HTTP packets on port 80 to windowsupdate.com at the rate of 50 packets per second.
If it was unable to find a DNS entry for windowsupdate.com, Blaster used a broadcast
address of 255.255.255.255.

As mentioned above, we can know that worms always exploit vulnerable service
to attack the victims. And these victims will generate many abnormal behaviors to

denial of service in bandwidth consumption and resource consumption.

2.3: Host-based and Network-based:Detection

As we know, there are two"different types of technique in worm detection:
Host-based detection system and-Network-based detection system.

Host-based detection systems (HDS)'can be self-contained, sending alarm
information to the local console, or remotely managed by a manager/collector that
receives periodic updates and security data. A host-based implementation that
includes a centralized management platform makes it easier to upgrade the software.
HDS is ideal if a limited number of critical systems need protection, and they are
complementary to network-based detection system.

Network-based detection system (NDS) monitors activity on a specific network
segment. Unlike HDS, NDS are usually dedicated platforms with two components: a
sensor that passively analyzes network traffic and a management system that displays
alarm information from the sensor and allows security personnel to configure the

Sensors.



The basic premise is that it takes multiple layers of defense to protect against the
wide variety of attacks and threats. Not only can one product or technique not protect
against every possible threat, therefore requiring different products for different
threats, but having multiple lines of defense will hopefully allow one product to catch
things that may have slipped past the outer defenses. The following are example of
NDS and HDS solution.

Access Control Lists to Protect a Network from Worm/DoS Attacks [6] is one
kind of network-based detections. The use of access control lists (ACL’s) at the router
level is a critical network security practice to safeguard a network infrastructure from
worm/DoS attacks. ACL are presented for general monitoring and blocking of
malicious traffic, logging of potentially malicious traffic, blocking infected hosts,
filtering out malicious traffic from:-mission critical systems, and an emergency stop
ACL to block a significant worm/DoS attack: Though network-based detections can
avoid the diffusion of worm, it only relieves-worm propagation.

General antivirus softwares that are like-PC-cillin of Tread Micro and antivirus
of Symantec belong to host-based detection that find infected hosts and remove
malicious worm, so it can exterminate the worm propagation. There are
network-based detection systems (NDS) and there are host-based detection systems
(HDS). While it can be more expensive to implement HDS- especially in a large,
enterprise environment, | recommend host-based security wherever possible. Stopping
intrusions and infections at the individual workstation level can be much more
effective at blocking, or at least containing, threats.

Antivirus softwares that defend not only virus but also worm usually scan worm
through pattern matching. In general, antivirus softwares are good at detecting, but

they shouldn't be relied upon to provide a total defense. Many variant worm incidents



Therefore there are many weaknesses in general antivirus softwares. First, a
great deal of antivirus softwares are inclined to scan the systematic state automatically,
users do not know whether it is the correct solving the problem that the system
appears or not. Second, general antivirus softwares usually consider the factors in
single viewpoints like file scanning or system loophole scanning to warn users of the
danger. Third, general antivirus softwares need experts to find variant worm through
experimentations that is wasting time.

In order to enhance these weaknesses, this thesis provides some methods. We
build a web environment of interacting with users and make the users faster finding
worm information, so the users can-input symptoms what he found and save the time
of search worm relevant information in ‘Internet.. And we consider the factors in
multiple aspects including file system,-system-loophole and network flow, etc. Hence,
the result of diagnosis can accurately know. whether the system is being infected by
the worm or not, then we will tell the user how to kill the worm; therefore users can
study more knowledge about worm. Besides, we can assist expert to find variants via
learning module so it make experts to save a lot of time to experiment.

With the technology revolution, mankind’s ability to generate new data has
rapidly increased. But our capability to analyze knowledge from this mass of data
could not keep up with the knowledge explosion. As we know, a knowledge system is
an intelligent computer program that uses knowledge and inference procedures to
solve problems that are difficult enough to require significant human expertise for
their solution. In order to construct our worm knowledge base, we use Embedded

Meaning Capturing and Uncertainty Deciding (EMCUD) [9] to interact with experts.



EMCUD can be used to elicit the embedded meanings of knowledge from the existing

hierarchical repertory grids. The details are shown in Section 2.4.

2.4: EMCUD

In the past few years, many knowledge acquisition systems were developed to
rapidly build prototypes and to improve the quality of the elicited explicit knowledge.
The traditional approach of knowledge acquisition from domain experts is via
interviewing. However, deeper knowledge can be elicited using knowledge
acquisition systems. Up until now, several models have been proposed for handling
uncertainties in expert systems. One of the most fruitful models of uncertain
reasoning is the EMYCIN Certainty Factor (CF) model. Furthermore, the CF model
which was first used in the medical expert.system EMYCIN [7] decides the degree of
belief of a rule. To extract rules withmembeddéd meaning, Embedded Meaning
Capturing and Uncertainty Deciding (EMCUD) [9] knowledge acquisition based on
Personal Construct Theory [8]was-proposed. EMCUD can be used to elicit the
embedded meanings of knowledge from the existing hierarchical repertory grids.
Additionally, it will also guide experts to decide the certainty degree of each rule with
embedded meaning for expending the coverage of generated rules. To capture the
embedded meanings of the resulting grids, the Attribute Ordering Table (AOT),
which is used to record the relative importance of each attribute to each object, is
employed. There are three different values in each AOT entry, a pair of attribute and
object, "X", "D" or an integer; "X" means no relationship existing between the
attribute and the object; "D" means that the attribute dominates the object; integer is
represented for the relative important degree of the attribute to the object. The larger
integer number means the attribute is more important to the object.

Using AOT [9], the original rules generate some rules with embedded meaning,

10



and the Certainty Factor (CF) of each rule, which is between -1 and 1, could be
determined to indicate the degree of supporting the inference result. The higher CF is,

the more reliable the result is. The EMCUD algorithm is listed as follows.

Algorithm 2.1: EMCUD algorithm

Input: The hierarchical grids.

Output: The guiding rules with embedded meaning.

Stepl: Build the corresponding AOT with each grid of the hierarchical multiple
grids.

Step2: Generate the possible rules with embedded meaning.

Step3: Select the accepted rules with embedded meaning through the
interaction with experts.

Step4: Generate automatically the CF of each rule with embedded meaning.

To decide the CF of each embedded rule, we have to firstly decide the upper
and the lower bounds of CF values|of accepted embedded rules. CF values of each
rule can be automatically determined by fuzzy mapping function. Thus, the useful
embedded rules with corresponding’ CF values' could be used to cover more

uncertainty cases.

11



Chapter 3
The Framework of WISE

As we know, there are many antivirus softwares that can discover worm, virus or
Trojan horse in our system. Although these antivirus softwares are developed to
protect our system well, it is hard to automatically discover the new worm without
updating their signature database. In order to overcome the weakness, the Worm
Immune Service Expert system (WISE) is proposed to enhance the commercial
antivirus products with their well-performance instead of replacing them. WISE is a
knowledge-based system. Unlike pattern matching system, it does not need to write
the program again, and therefore is suitable for worm, which is usually variant
quickly that updates knowledge.base frequently. Besides, WISE contains embedded
meanings of knowledge that will be introduced in next chapter, so WISE can easily
capture some variant worms that-in. order to-avoid signature-based detection system to
modify characteristic less.

In order to diagnose precisely, we will define system statuses that describe in
Section 3.1. Section 3.2 will model the knowledge class of worm according to the

worm life cycle. Section 3.3 will introduce the architecture of WISE.

3.1: Definition of Host Status

According to the life cycle of worm, we know that worms have distinct
behaviors in different stages. In order to realize threat of worm, we model system
status into five states that is proposed to diagnosis system security level in real world.
The system status diagram is shown in Figure 3.1.

The N and C indicate that the current system status is Normal and Candidate,

12



respectively, are proposed to represent the system does not have service that can be
exploited by worm; otherwise, it may be used for entry of worm intrusion. The system
in Candidate state is moved to Vulnerability state when security center announces that
some vulnerable alerts appear and systematic administrator is unable to mend in time.
If administrators can patch loophole before infected by worm then status will be
returned from V state to C state, else the status in V state will be moved into D state.
It means that system is in Damage state and infected by malicious worm. In order to
move to normal state, administrators must remove the malicious worm and patch the

loophole in the system to avoid infecting another machine.

Target Selection Reconfigure Patch

Reconnaissancw Exploited V
Remove
arrier

Remove Remove

Propagation

Retard

Figure 3.1: System status transition

We regard the system transition as a behavior; it can be divided into attack and
defense transition. For these classes of transition we will refer to [14] in 2003 and
modify it. The details will be shown as follows:

Attack transition includes target selection, reconnaissance, exploited, carrier,
activated and propagation.

Attack 1) Target selection: Target selection means look for whether victims exist or
not. There are a number of techniques by which a worm can discover new
machines to exploit: random scanning, pre-generated target lists, internal

13



target lists, external target lists, and passive. [14]

Scanning: Scanning entails probing a set of addresses to identify vulnerable hosts.
Two simple forms of scanning are sequential (working through an address
block using an ordered set of addresses) and random (trying addresses out
of a block in a pseudo-random fashion).

Pre-generated target lists: An attacker could obtain a target list in advance, creating a

“hit-list” of probable victims.

Internal target lists: Many applications contain information about other hosts

providing vulnerable services.

External target lists: An external target list is one, which is maintained by a separate
server, such as a matchmaking service’s metaserver. (A
metaserver keegps a list of all the servers, which are currently
active. For-example, the- Gamespy service maintains a list of
servers for several different.games.)

Passive: A passive worm does not ‘seek.out vietim machines. Instead, they either wait
for potential victims to contact the worm or rely on user behavior to discover
new targets.

Attack _2) Reconnaissance: Scanning service that is victims offered usually uses

technique of port scanning. Service includes client, server and client-server.

Client: Client programs request service from a server by sending it a message such as
Netscape or Internet Explorer. Referring back to the Web example, a Web
browser is a client we use everyday to request Web pages. For example, when
you clicked the link to read this article, your browser sent a message to a Web
server. In response, your browser received the html page you are now reading.
A Web browser represents many client programs, which manage the graphical

user interface (GUI) or display portion of an application; determining the

14



presentation of the service provided by an application.

Server: A server is used to manage and provide special services like 11S or Apache.
Servers are generally passive as they wait for a client request. During these
waiting periods servers can perform other tasks or perform maintenance.
Unlike the client, the server must continually run because clients can request
service at any time. Clients on the other hand only need to run when they
require service.

Client-Server: Such as in peer-to-peer networks, each machine provides services and

consumes services.

Attack_3) Exploited: Use of vulnerability to violate policy. Attacks exploit tricks to
attack the service that victims offered such as buffer overflow, wrong
configuration, back door;‘etc.

Buffer overflow: A buffer overflow. exploit works by feeding the program specially
crafted input content-that-is-designed to overflow the allocated data
storage buffer and change the data that follows the buffer in
memory.

Wrong configuration: User's mistake caused by themselves. The user keeps the thing
at their peril and will be prima-facie liable for the consequences
of the hijacking / configuration (inadequate security) and any
damage which arises as a natural consequence of this.

Back door: Back door (or "trap door"”, "wormhole™). A hole in the security of a system
deliberately left in place by designers or maintainers. The motivation for
such holes is not always sinister; some operating systems, for example,
come out of the box with privileged accounts intended for use by field
service technicians or the vendor's maintenance programmers.

Attack_4) Carrier: The means by which propagation occurs can also affect the speed

15



and stealth of a worm including self-carried, second channel, and embedded.
[14]

Self-Carried: A self-carried worm actively transmits itself as part of the infection

process.

Second Channel: Some worms, such as Blaster, require a secondary communication
channel to complete the infection. Although the exploit uses RPC,
the victim machine connects back to the infecting machine using
TFTP to download the worm body, completing the infection process.

Embedded: An embedded worm sends itself along as part of a normal communication

channel, either appending to or replacing normal messages.

Attack_5) Activated: The means by which a worm is activated on a host also
drastically affects how.rapidly a worm. can spread, because some worms
can arrange to be activated nearly- immediately whereas others may wait
days or weeks to be activated.[14]

Human Direct: The slowest activation-approach requires a worm to convince a local

user to execute the local copy of the worm.

Human Indirect: Similarly, many worms are activated when the user performs some
activity not normally related to a worm, such as resetting the machine,
logging in and therefore executing login scripts, or opening a remotely
infected file.

Scheduled Process: The next fastest worms activate using scheduled system

processes.

Self-Activation: The worms that are fastest activated are able to initiate their own
execution by exploiting vulnerabilities in services that are always on
and available (e.g., Code Red exploiting 1IS Web servers).

Attack_6) Propagation: After infected by worm, there are many abnormal behaviors

16



generated including denial of service, worm maintenance, etc.

Denial of Service: DOS attack will make normal routines paralyzed such as
spam-relays, Internet remote control, Internet DOS, data damage
etc.

Worm Maintenance: Past worms such as W32/sonic have included a crude update

mechanism: querying web sites for new code.

Defense transition includes reconfigure, patch, remove and retard.

Defense_1) Reconfigure: Disable unnecessary or vulnerable services that make the
virus unable to invade.

Defense_2) Patch: If administrators can patch loophole before infected by worm,
worm can still not invade system though the service utilized. Otherwise,
attacker can use those.weaknesses to get privilege of administrator and
destroy.

Defense_3) Remove: Worm will add, delete.or modify files to file system. If we want
to return to normal status, we must recover the infected file and remove
worms that exist in system.

Defense_4) Retard: When a new worm generated, security center may not offer the
solution in time. They will slow down the abnormal flow that worm

produces in the network to get more time and solve the problem.

3.2: Definition of Worm Knowledge Class

A Rule-Base can record various knowledge concepts in a specific domain and
each Knowledge Class (KC) in the Rule-Base represents different concept of the
domain knowledge.

Since the knowledge of worms consists lots of concepts according to worm life

17



cycle, we model six knowledge classes of worm. A KC consists of rules, relations
with other KCs and fact declarations as shown in Figure 3.2. The working model is
composed of different KCs and the transferences (e.g., Trigger, Acquire, Reference,
and Extension-of, etc) between KCs. The relationships between KCs are divided into
two kinds-dynamic and static. The former two (e.g., Trigger and Acquire) are dynamic
because they are activated conditionally in the action part of a rule, while the latter

two are static.

Rule-Base (Knowledge-Classes)

4 N N\

Rule Rule me» Knowledge-Class
acts
Relation\ refergneem| Knowledge-Class

espondent . '
, Action Abioh Acquire/Trigger » Knowledge-Class
|

- S J

Figure 3.2: The knowledge class in a rule base

The knowledge classes can assist experts to construct knowledge base easily, and
representation of worm by knowledge class can make knowledge engineer or domain
expert more understandable, maintainable and reusable. These six knowledge classes
list as follows:

KC_Basic information: This knowledge class includes discovery date, target
selection, operating system etc; such as identity card that
can know the brief information of worm.

KC_Service: Often worm will scan ports of the victim. The main purpose is to

find out whether the victim had some service that may be invaded by

the worm. Usually KC_Service can be divided into client, server and

18



client-server.

KC_Exploitation: Worm will exploit some techniques such as buffer overflow,
wrong configuration, backdoor to attack normal service to get
privilege in order to reproduce. In other words, if some service
has loophole then the worm can invade the user's machine by
this way.

KC_Carrier: This knowledge class describes how to carry the worm body into victim
machine. Therefore, we will check whether worm is hided in system.
KC_Symptoms: According to attackers and their motivation will cause different
propagations and symptoms. This class describes that the abnormal
behavior appearing after being infected.
KC_Defense instruction: Last knowledge class describes how to recover system to the
normal-status and make system become stronger.
Figure 3.3 shows the relationship-of-knowledge classes. As mentioned in Section
2.4, distinct system status will refer-to-different knowledge classes. We list the profile

of knowledge classes below.

® |If KC_service=false then status=N

® |f KC_service=true then Trigger KC_exploitation

® If KC_service=true and KC_exploitation=false then status=C

® If KC service=true and KC_exploitation=true and KC_carrier=false then
status=V and Trigger KC_defense instruction

® If KC_carrier=true then Trigger KC_symptoms

® If KC_carrier=true and KC_symptoms=false then status=l and Trigger

KC_defense instruction

® If KC_carrier=true and KC_symptoms=true then status= D and Trigger

KC_defense instruction

19



Acquire
Basic o Defense
. — Exploitation - . .
nformatio Trigger Trigger instruction

Refere / Refere Reffrence
@@ @ -
Target D
Selection/ +=* Exgensiqn-of
Buffer C
overflow .
Recovery
worm

CIerence

Compromise,
security
setting

.

Figure 3.3: Relationship of knowledge classes

3.3: The Overview of WISEssystem Architecture
In order to reach the deficiency of general.antivirus softwares described above,
we build a worm immune service expert system. The architecture is shown in Figure

3.4. The WISE system architecture consists of three parts.

Worm Immune Service Expert system(WISE)

L —_—

-

Diagnosis U_’

Technique documents

Inference engine Tutorial g
< “ r - e
L=}

.| Knowled ﬁ Discovery {
’@se Log data y
A 7y

A

"

Experts v.s Knowledge engineers

Construct knowledge base
by Two Phase KA

Varian Worm Learning Module (VODKA)

Figure 3.4: Architecture of WISE

20



Part 1: Construct knowledge base by Two Phase Knowledge Acquisition

We can get the worm domain know-how from Internet. These technological
documents are non-structured, so we cannot elicit knowledge by text mining. As
mentioned above, the concept of worm can be built based on the acquisition of
knowledge. Two Phase Knowledge Acquisition [1] (Tp-KA) acquires the knowledge
hierarchy and constructs the hierarchical grids in the first phase, and then transforms
the knowledge hierarchy into maintainable and traceable format and extracts guiding
rules from the hierarchical grids in the second phase. The detail will be introduced in

Chapter 4.

Part 2: Apply learning module to learn new variant worms

Now, new variant worms are evolving too-fast to keep up by experts or security
center. Hence, how to collect sufficient relevant information to help experts notice the
occurrence of variants and reuse the original rule base becomes one of important
issues in knowledge acquisition field. We apply a new knowledge acquisition
methodology, Variant Objects Discovering Knowledge Acquisition (VODKA)
methodology, where each iteration including three stages (Log Collecting Stage,
Knowledge Learning Stage, and Knowledge Polishing Stage) to iteratively discover
the variants derived from original worm.

Part 3: Build the environment of WISE with users and domain experts

When worm infects the system, the users perceive some abnormal behaviors
such as reboot of operating system, abnormal function of application program etc.
These symptoms perhaps can utilize the probe to find out, but not all. The users
usually will usually input what he or she looks to the search engine on the network
and looks for the solution. Such a way consume large time look for correct solutions

from the disorderly and unsystematic web pages. Consequently, we provide a web

21



interface to interact to the user and also collect information of symptoms what the user
cannot see by the probe.

As mentioned above, WISE is proposed to the persons of two kinds mainly. One
is the user who might be infected by worm another one is the administrator of
security-related organizations.

If worm infects system then the user will scan host computer by general antivirus
softwares or look for help from the network. WISE can collect information that
detected by general antivirus softwares and found by the user. After inference engine
of DRAMA [16] inference, the result diagnosed will be passed to the user and teach
them how to remove worm and recover to normal state. Hence, the user can obtain
enough knowledge about the worm and avoid following the same old catastrophic
road.

Besides the biodiversity of the. natural through gene mutation, most of intrusion
behaviors become more complicated-because- of ‘eombining several signatures of
previous intrusions. However, thelack. of enough information about variants may
result in the difficulty of observing the occurrence of new variants for human experts.
Hence, how to collect sufficient relevant information to help experts notice the
occurrence of variants and reuse the original rule base becomes one of important
issues. Therefore, we will use a new iterative knowledge acquisition methodology,
Variant Objects Discovering Knowledge Acquisition (VODKA) methodology to assist
domain experts in discovering new variant worm.

Therefore, this part contains three modules: diagnosis module, tutorial module
and discovery module.

In diagnosis module, we can collect symptoms by probing or inputting with users.
After infer by inference engine and knowledge base, WISE will diagnose whether

worm infects host or not or whether worm can invade host or not.

22



In tutorial module, we will tell users how to recover system. Therefore, users can
not only remove the threat of worm but also learn the knowledge of worm.
In discovery module, we will assist domain experts to discover new variant worm

through inference log and refine knowledge base quickly.

23



Chapter 4

Worm Knowledge Base Construction

Since the knowledge is rapidly growing, many knowledge acquisition methods
have been proposed to capture domain knowledge. The goal of knowledge acquisition
is to elicit expertise from domain experts. One of knowledge acquisition methods is
that knowledge engineers acquire the useful knowledge by interviewing with domain
experts. Knowledge engineers must have enough background of the domain
knowledge; otherwise it may misunderstand what domain experts are talking about.
Another knowledge acquisition method is the machine learning. It will learn out some
rules automatically, but it needs some. .available training cases. The knowledge
acquisition system solves the problem offcommunication between domain experts and
knowledge engineers without the required training cases.

We can get much worm information-‘from technique documents in Internet, but
these documents mostly are non-structured and therefore we cannot analyze it with
methodology of text mining. In this thesis, we use a knowledge acquisition
methodology to acquire worm knowledge and construct a worm knowledge base to

assist us in diagnosing system status.

4.1: Two Phase Knowledge Acquisition

Two-phase Knowledge Acquisition (Tp-KA) [4] is proposed to help teachers
acquire the knowledge hierarchy and the relevant teaching strategy from experts
systematically and effectively. Tp-KA is also useful in other domains, which exist the
knowledge hierarchy and rule-based knowledge. Therefore, we use Tp-KA to
construct worm knowledge base.

The first phase is to construct the knowledge hierarchy and the hierarchical grids

24



incrementally. The second phase is to extract the rules with meaning-embedded [9]

from the hierarchy grids. The algorithm is shown as follows:

Algorithm 4.1: Worm Knowledge Base Construction Algorithm

Input: The worm domain know-how.

Output: The knowledge base of the guiding rules.

® Phasel:

Stepl: Execute Knowledge Hierarchy Construction Algorithm to construct the
knowledge hierarchy.

Step2: Execute Concept Hierarchy to Repertory Grids Algorithm to construct
and fill up the hierarchical repertory grids according to the knowledge
hierarchy of each worm constructed in Stepl.

Step3: Execute Hierarchical Grids Adjustment Algorithm to construct the
hierarchical repertory grids according to hierarchical grids combined in
Step2.

® Phase2:

Stepl: Execute Embedded: Meaning Capturing and Uncertainty Deciding
Algorithm (EMCUD) tos extract._guiding rules from the hierarchical
repertory grids.

Step2: Store the ontological rule”and  the meaning-embedded rules into

knowledge base.

In Phasel, three corresponding algorithms, Knowledge Hierarchy Construction
Algorithm, Concept Hierarchy to Repertory Grids Algorithm, and Hierarchical Grids
Adjustment Algorithm are described in part 1, Section part 2, and Section part 3,
respectively. In Section part 4 describes Embedded Meaning Capturing and

Uncertainty Deciding Algorithm.

Part 1: Knowledge Hierarchy Construction
To construct the concept hierarchy for worm domains, cooperation between
domain experts and knowledge engineers is required. The following Knowledge

25



Hierarchy Construction Algorithm (KHC) can guide the constructing process of

knowledge hierarchy.

Algorithm 4.2: Knowledge Hierarchy Construction Algorithm

Input: The worm domain know-how and skeletal of worm.
Output: The concept hierarchy format of worm.
Stepl: List all elementary knowledge objects according to technical documents.
Step2: While the knowledge hierarchy is not completed, ask the domain experts
to proceed the following sub-steps:
Step2.1: List the meta-knowledge objects based on some of built knowledge
objects.
Step2.2: Establish the directed links among the meta-knowledge objects and
the built knowledge abjects.
Step3: Visit all knowledge hierarchy.
Step4:If the knowledge hierarchy belong to one of worm’s skeletal, then go to
Step4.1, else go to Step4.2.
Step4.1: Establish the directed links among the worm’s skeletal and the
knowledge hierarchy.

Step4.2: Build new skeletal object about the knowledge hierarchy.

Step5:If there exists any unvisited node, then go to Step3.

26



Example 4.1: Example of Knowledge Hierarchy Construction

In this example, we want to construct the concept hierarchy of Nimda. According
to KHC Algorithm, domain experts extract knowledge objects after assimilating

technologic documents of wormKnowledge objects of Nimda

Discovery date: 2001/09

Worm Length: 57,344 bytes

Target selection: Scanning

OS: Windows98

OS: WindowsMe

OS: Windows2000

OS: WindowsNT

OS: WindowsXP

I1S Exploitation: Web traversal

IE Exploitation: MIME header  Network Neighborhood: Wrong
configuration

New user account: guest

New file: Load.exe; Admin.dll

Modify file:System.ini; Riched20.dll

Send email

Email_attend file: readme.exe

Word,WordPad abnormal

Treatment:removal tool:Symantec

Treatment:removal tool: Trend Micro

Prevent: patch update: MS01-020; MS01-044, ...

Figure 4.1 (a) shows the elementary knowledge hierarchy from knowledge object
and Figure 4.1 (b) is the skeletal of worm. After interacting to domain expert, we can

build a concept hierarchy of Nimda as shown in Figure 4.1 (c).

27



i
R

ot ed 1

Word, Wordpad abnormal

(@) ()
E1CW SMm

() () ' o) TS CHED o

.
, Bickdoor>
' Ciso1020> \_ From Symantee>
@4‘@ Caven) @ >
e B iy

—
FEET

Exploitation

Cauest D
Gt osaim, e aa S

©

Figure 4.1: Concept hierarchy of Nimda

Part 2: Concept Hierarchy to Repertory Grids

Due to experts cannot easily understand concept hierarchy of worm intuitively;
we use repertory grids to represent the knowledge. Repertory grids, based on Kelly’s
Personal construct theory [8], which reports how people make sense of the world, can
be used as knowledge acquisition tools in the development of expert systems. The
technique assists in identifying different objects in a domain and distinguishing
among these objects. A single repertory grid represented as a matrix whose columns
have elements object (labels) and whose rows have construct attribute (labels) can
classify a class of objects, or individuals. Now, several models have been proposed for
handling uncertainties in expert systems. EMYCIN [7] Certainty Factor (CF) model
which was first used in the medical expert system decides the degree of belief of a

rule.In the worm of concept hierarchy is shown in Figure 4.3(c), each node of the

28



hierarchy indicates a knowledge object in accordance with characteristics of worm
characteristic. The parent node can be considered as the meta-knowledge of the child
node. For each knowledge object, a repertory grid is used to describe its properties,
with the objects as column headers and attributes as row headers of the grid. Based
upon the concept hierarchy, the hierarchical relationship between the parent grid and
the child grid is determined. Thus, the following Concept Hierarchy to Repertory
Grids Algorithm (CH2RD) is proposed to construct and fill up the hierarchical
multiple grids according to the knowledge concept hierarchy built in the first stage of
the first phase in the cooperation of experts with knowledge engineers. The algorithm

is shown as follows:

Algorithm 4.3: Concept Hierarchy to'Repertory Grids Algorithm

Input: The worm map in concept hierarchy format.

Output: The hierarchy repertory grids.

Stepl: Visit the hierarchy according to-Depth First Search algorithm
Step2:1F this node’s is left node then go to Step3, else go to Step6.
Step3:IF parent is skeletal then go to Step4, else go to Stepé.

Step4: Elicit attribute from the node value, and the pair of [attribute, worm] of
the grid is equal to “True”.

Step5: Go to Step8.

Step6: Elicit attribute from the node’s parent value.

Step7: Fill in the values of all the node parent’s children of the grid.
Step8: If there exists any unvisited node, then go to Step1l.

Step9: Stop.

29



Example 4.2: Example of Concept Hierarchy to Repertory Grids

For the ontological lattice shown in Figure 4.1(c), CH2RD Algorithm constructs
the following grids.

The Nimda grid shows in Table 4.1. It contains six attributes: Basic information,
Service, Exploitation, Carrier, Symptoms and Defense instruction.

Table 4.1: Table of Nimda grid

Level 1 Nimda

Basic information |{Discovery date; Length; Target selection; OS}

Service {lIS; IE; Network Neighborhood}

Exploitation {MIME header; Web traversal; Wrong configuration}
Carrier {New file; Modify file}

Symptoms {Word, WardPad_abnormal; Send email; New user account }

Defense instruction|{Patch; Remove}

The Basic information grid “showsin “Table 4.2 contains four attributes:
Discovery date, Length, Target selection and OS. This grid is descendant of Nimda
grid by Basic information attribute.

Table 4.2: Table of Basic information grid

Level 2 Nimda

Discovery date  |2001/09

Length 57344 bytes

Target selection |Scanning

OS Windows

The Service grid shows in Table 4.3. It contains two attributes: IE, 11S and

30



Network Neighborhood. This grid is descendent of Nimda grid by Service attribute.

Table 4.3: Table of Service grid

Level 2 Nimda
IE True
1S True

Network Neighborhood |True

The Exploitation grid shows in Table 4.4. It contains four attributes: MIME
header, Web traversal and Wrong configuration. This grid is descendant of Nimda
grid by Exploitation attribute.

Table 4.4: Table of Exploitation grid

Level 2 Nimda
MIME header True
Web.traversal True

Wrong configuration |{True

The Carrier grid shows in Table 4.5. It contains three attributes: New file and
Modify file. This grid is descendant of Nimda grid by Carrier attribute.

Table 4.5: Table of Carrier grid

Level 2 Nimda
New file {Admin.dll; Load.exe; Droped.dll}
Modify file {Riched.dll; System.ini}

The Symptoms grid shows in Table 4.6. It contains two attributes: Word, Word

Pad abnormal, Send email and New user account. This grid is descendant of Nimda

31



grid by Symptoms attribute.

Table 4.6: Table of Symptoms grid

Level 2 Nimda

Word, Word Pad abnormal | True

Send email {Attach file}

New user account Guest

Part 3: Hierarchical Grids Adjustment

With the growth of time, there is more and more worm too. We can construct
repertory grids of each worm through CH2RD Algorithm, but each worm has its own
characteristic and constructing concept hierarchy by KHC Algorithm is not the same.
After merging repertory grids of gvery worm In each knowledge class, we find grids
exist some relation between attributes. Therefore; i order to avoid conflicting rule,
we purpose a Hierarchical Grids Adjustment-Algorithm (HGA) to split repertory grid
into hierarchical grid of incremental- knowledge of worm.The relation between
attributes includes Sibling Relation, Parent-child Relation and Ancestor-descendent
Relation. When expert finds Sibling Relation between attributes, a parent shall be
created. That is to say, expert can use a high level attribute to describe these child
attributes and make knowledge easier to maintain. If there are Parent-child Relation or
Ancestor-descendent Relation between attributes, we shall split repertory grid into
hierarchical grids to avoid redundant inference. Briefly, two different layers of
attributes are in the same layer and then shall be split into different grids and generate

meta-rule to describe their relationship. The algorithm is shown as follows:

Algorithm 4.4: Hierarchical Grids Adjustment Algorithm

32



Input: The repertory grids.
Output: The hierarchy repertory grids.
Stepl: While the hierarchy grid is not completed, ask the domain experts to
proceed the following steps2-3:
Step2: Get a pair of attribute (A, B) to ask expert whether it exist the following
relation.
Sibling Relation: If A and B can combine then go to Step2.1.
Step2.1: Elicit the parent attribute by expert and the new pair of [parent attribute,
worm] of the grid is equal to “{A U B U Parent. Values}”.
Step2.2: Push down the pair of [A, worm] and [B, worm] to lower grid.
Parent-child Relation: If B belongs with A’s subset then go to Step2.3.
Step2.3: The pair of [A, worm]'of the grid is.equal to “{B U A. Values}”.
Step2.4: Push down the pair-0f [B, worm].to lower grid.
Ancestor-descendent Relation: If-B-belongs with attribute A’s value that is C
subset then go to Step2.5.
Step2.5: The pair of [C, worm] of the grid is equal to “{B U C. Values}”.
Step2.6: Push down the pair of [B, worm] lower than [C, worm] grid.

Step3: If there exists any unvisited attribute pair, and then go to Step2.

Step4: Expert confirms the hierarchy repertory grids.

Example 4.3: Example of Hierarchical Grids Adjustment
Figure 4.2 shows the concept hierarchy of Code Red constructing by KHC
Algorithm, and Table 4.7 merged with symptoms grid of Nimda and Code Red after

CH2RD Algorithm.

33



CodeRed

instruction
) A Number 0
T (P (i (e s G G kD G G
ate clection overflow
vl From
, Wi D

Figure 4.2: Concept hierarchy of Code Red

Table 4.7: Merging Symptoms grid before splitting

Level 2 Nimda Code Red
Word, Word Pad abnormal |True X

Send email {Attach file} X

Reboot X True

DoS X TCP_port
Number of threads X 100

Therefore, we can find that the attribute of “Send email” is a subset of “DoS”,
Parent-child Relation is found by expert and original grid split into hierarchy grid in
Table 4.8 through HGA Algorithm.

Table 4.8: Merging Symptoms grid after splitting

Level 2 Nimda Code Red
Word, Word Pad abnormal |True X

Reboot X True

DoS Send email TCP_port
Number of threads X 100

34



Level 3 Nimda Code Red

Send large email {Attach file} X

TCP_port X 80

Part 4: Embedded Meaning Capturing and Uncertainty Deciding

In order to make rule to generate easily, we implement EMCUD [9] to assist
experts to generate original rules and embedded rules. We apply the first phase of
Worm Knowledge Base Construction algorithm to derive the knowledge of worm and
fill the repertory grids in acquisition table that is shown in Figure 4.3. The data types

support in system are shown as follows and in Figure 4.4.

Boolean : True or False
i'nl,',t.'l\ H:“.,
Single value san Integerﬁﬂoat;_ir Stxmgﬁ-
Set of values  : a set of 'lntéééfj f&at or-S.Fﬂng, e.g., {1,2,4,5}, {Admin.dll;

g—

Load. ezge}

Range of value  :arange of mﬁegeﬁsor“ﬂoat numbers, e.g., {1.5-3.4}, [12-18].
_

Fiel) el B! Selag dbest |
nunu:maﬂ-J'r.m Shiarine
Takls | AT | Datamrm_ |

Figure 4.3:Acquisition of worm

35



Fll W) Bl Setag dbes

Disid| 1w~ | ¢ 8

Figure 4.4:Date type of EMCUD

To capture the embedded meanings of the result grid, EMCUD constructs an
Attribute-Ordering Table (AOT) to record the importance of each attribute to each

object. Figure 4.5 shows the process of deciding the relative degrees of importance for

attributes to object of each column and Figure 4.6 shows the result of AOT.

PR =

Figure 4.5: Process in construing AOT
. )

Fiellh Eisl) EmE) Semey dbem
Disiw| &[imia~ x| 1] 8
[T | [T T matanrm |

e =
el _Fred

| - I
M B R K
poas et ]
T s, i

Figure 4.6: The result of AOT

To capture embedded meanings from the original rules after finishing the table of

36



acquisition table, AOT and Data type. The process of generating embedded rules is

shown in Figure 4.7.

= E-EMCUD E)B)&X) = Ermcup EBX

FileF EditE) EunuE) Setting About FileF EditE) RuniR) Setting About

D@ %[%@o[~| »| 2| 8 D@ %|m=(@|o[~| »| 2| 8
Select One Decide CF3 Upper Bound
[F (Semd_Email=True) AN (Emadl_attach_file=read me exe) AND IF (Semd_Emsil=True) AND {Email_attach_file=readme exe) LN {
HOTISFER=Web_Traversl),is it possible for Himda to be implied? [13%EiR=Web_Traversal) THEN Nimda

I

(* fecept " Reject 0K |

Figure 4.7: The process in generating embedded rules

After running of EMCUD, we can get the original and embedded rules of each
object with Certainty Factor (CF) in Figure 4.8. At the same time we will generate a
XML file that records the rules generated by:EMCUD is shown in Figure 4.9. This

file used for knowledge base of DRAMN‘IEQG];"--: L % .

:
L "
| =]

B rule_il_then 11 - [£5K

EXD WHE S50 8T Ne
IF (Send_Emall=True) AHD (Emall_attach_#file-readne .cued AHD (1 DSHRE-Web_Traversal) THEH Hinda GF=0.8 -
IF HOT{Srmd_Fmadl=True) AHD (Email_attach_flle=rradne.exe) AHD (DTS5RE-Yreb_Traversal) THEH Himda GF-8.733333333
IF (Send_Email=True) AHD HOT(Email_attach_file=rradne.cxe) AHD {1158 -Yrb_Travrersal) THEH Himda GF=@.060806066
IF (Send_Enall=True) AHD (Frall_attach_file=readme .exe) AHD m'lﬂl'lir" =Heb_Traversal) THEN Himda CF=@.6
IF HOT{Spmd_Fmail=True) AKD HOT{Email_attach_file=readme.poe) AKD (TIS 3 =keh_Traversal) THEH Hinda CF=0.&
IF MOT{Zemd Fmadl=Teue) AHD (Cmadl_attach Filesrpadee.pxe) AMD HOT(TIS] =Wph_ Traversal) THEH Himda CF=0.503030
IF (Send Frail=True) AMD HOT(Fmail_attach_File=readne.pxe) AMD HOT(T1S 08 sUeh_Traversal) THEH Hinda CF=0.N6S6&6
IF HOT{Seeml_Fmail=Tewe) &HS HOT{Cmail_atbach_File=readme o) AHD HOT{]TEEEH =Tl _Traversal) THCH Himla EF=8.%

-

b *

Figure 4.8: The result of generated rules

37



] 1.0° encoding="bgs* 7>
DOCTYRE QORAME fLidw Sturcd B fulf dosrypd. . )

Rl tamee "Wimda® s
rarme="Nimda® type="Sidng® vaue=Talse® porubibty="1% />
srne="Semd_Lmadl® type="Boolean” valee="Trua" p bifity="1" />
snp="MNumber_of_threads® tyoe="Intaqaer” valuse="8" o Sty ="1"
p="DCOM_RPCEHFA" type="Booluan” =T ibality="1"
[ s "Byrsborm_ Rabool® bypes"Maalaan® «alue="K" | ihty="1" /=
name="Lmall_attach_file" type="Oowlaan” value="raadmaaxa gossibiity="1" />

e="I1SEH" tvpe="Etring" value="Wab_Travirial® possibility="1" /
amesTR0" wesght="1" cortainty-factors™ 1.0

sllxpraddion aperators"and">
Evprossian operators"and*s
pressian operatar="=" )
CcENpression operators"Fact” vakies"Bemd_Emall®
elzpradiicn operater="Consl” valus="Trua" lype="Rooleran" />

¢ poratars"s
CEMpression operat Fact” value="Emall_attach_fle" /
cEuprassion oparators"Const™ vaussraadme.axe” types"Boolean” /

ArGEEIAN Oparatar="="

Expra n operator="Fact” value="TISERHA" />

wlxgpr r o aperator="Canst® valuve="Wab_Travarsal® Lype="Biring® /=
< Lwpre i

Figure 4.9: An XML file of rules

4.2: Variant Worm Learning Module

Since the embedded rules with diverse CE values represent the different supports
to classify objects, some candidate of a| new wvariant might trigger the ones with
marginally acceptable CF. In order to analyze the behaviors of these embedded rules,
An iterative Variant Objects Discovering Knowledge Acquisition (VODKA) [15]
framework in which each iteration consists of three stages: Log Collecting Stage,
Knowledge Learning Stage, and Knowledge Polishing Stage. Initially, the embedded
rule base will be created according to the original main acquisition table using
EMCUD or VODKA. Then in each iteration the inference behaviors
(facts/attribute-value pairs/raw) will be collected to discover the candidates of the
variants during Stage | according to the meta-knowledge. The attribute-value pair will
be treated as an item and a set of negated attribute-value pairs will be treated as a
transaction to discover the association between interesting (minor) attribute-value
pairs in Stage Il. Consequently, interacting with domain experts through the new
variants acquiring procedure could generate the new variants acquisition table based

on the discovered knowledge. Finally, the rules of new variants will be incrementally

38



generated and the main acquisition table will be iteratively adjusted using E-EMCUD
to achieve the ability of grid evolution in Stage I1l. The algorithm of VODKA [15] is

shown as follows.

Algorithm 4.5: VODKA Algorithm

Input: The original main acquisition table T and embedded rule base RB.
Output: The rules with embedded meaning about variants.
Stage I: Collect all facts of the weak embedded rules as real inference log of the
RB.

Stage I1: Generate the new variants acquisition table T".

Stepl: Discover large itemsets L using the inference log.

Step2: Generate T’ using L and additional attributes provided by experts.
Stage I11: Use E-EMCUD to generate rules of new variants.

Stepl: Generate rules according,.to T':

Step2: Merge T’ into original main.acquisition table T.

VODKA has been implemented-based-upon DRAMA, an object-oriented
inference engine with NORM (New- Oriented-original Rule-based Model) knowledge
representation providing high maintainability, reusability, sharability, and abstraction
for rule-based system and the E-EMCUD has also been implemented to refine the
embedded rule base.

In Log Collecting Stage, the meta rule MR; is used to count the fired frequency
of each embedded rule (Ci;). The meta rule MR, means that all facts (attribute-value
pairs) of the embedded rules with marginally acceptable CF lower than strong CF
bound threshold (THcg) are logged as a record, (Rij, A1, Az, ....,Aq, CF(Rij). The
meta rule MR3; means that if there exists one weak embedded rule with fired frequency
exceeding the warning line threshold (THcnt), new variants may be discovered using
the iterative process of VODKA. The meta rule MR, means that VODKA will be

executed periodically to refresh the new variants acquisition table. The TimeOut will

39



be reset when Rys or Ruq is triggered. Therefore, we must set the threshold and the
file of rules and tables for the Knowledge Learning Stage in Figure 4.10. Figure 4.11

shows the inference log to collect by inference engine [15] .

MRy: IF R;jj is fired THEN Increase C;; by one.

MR2: IF CF(Rij) < THcr, THEN Log Rij.

MRs: IF Cij > THent AND CF(Rij) < THer THEN Run New Variants Acquiring
Algorithm to acquire the new variants acquisition table and Reset TimeOut.

MRy: IF TimeOut = THperiog Then Run New Variants Acquiring Algorithm and
Reset TimeOut.

W Learn from real world

Set inference frequency threshold

Threshold:  70%

Kl I

Setembedded mole's CF threshold

Threshold: 06 %

Kl [ o
Pule file name 1o unle_file. bt 0pen
Log tils name CAWonm_log e apen
Tahls fils name |Cereample_2 tef Open

Start Leamn Bt

Figureu4.10;isﬂetvting~before learning

SET SEY EN0 WA ERD
ilma 00, True, True.readne, ree Vea_Traversal
i Irie, Irue.resdne. roe, W _Traversal
True, Trae resdne eoe Veb_Traversal
i, True, Trae, parle_sxe, Usb_Traveral
Bimda 27, Troe, True parlu.coe, Ueb_Iraveesl
Mimda A2, Troe, frue parle.exe Veb_Triversal
Codplird 23,100, True Rufier_meriloe

Minds 87, Troe, Irae. parlu.rae, Ueb_Traveria]
Simda 00, True, Trae.resine. exe Wed_Traversal
Btlmata 21, True, True, cangle. eue, e _Traversal
wimdy 02, Tree, Erue, cangle.ene Vel _Traverial
Wimdi B2, True True. parle.exe Ueb_Triversal

Figure 4.11: Inference log

In the Knowledge Learning Stage, the new variants acquisition table will be
generated through interacting with domain experts based upon the observation of
inference log.

After generating the large itemsets from inference log, new variants acquisition

table might be elicited by interacting with domain experts based upon the new

40




variants acquiring algorithm. The object class using unclear attributes would be split
accordingly, if the experts reconfirm the addition of the new variant object that shows
in Figure 4.12(a). Thus, one of three recommendations including no change,
modifying the data types of minor attributes that shows in Figure 4.12(b), adding new
attributes that shows in Figure 4.12(c), will be further given to adjust the main
acquisition table.

Add a New Object

\;\I‘) Iz an object with the attribute { Emadl attach file=puorhexe Jposible a variant of Mimda

ol

1 IF (Large Email=True)fuzer account_abnommal=Tme)(Emad attach file=NOT
\J) purkcexe)l exploitaion=Web_Traversl) THEN NimdaBE

Nimda:Emadl_attach_file=readme exe
New Data twpe:Bet_of_walues

Modify data valne [5_(|
Wimda:Email_attach_file=readme exe
Wew Data tvpe:Set_of walues %
Hri#

| {zample exe putal lacr}

(b)

41



1 ) Do vounwant to add new attribute??

Add new atiribute

TWhat attrbute do wow want to add for Ninda

% RiH

Figure 4.12: Process in Learning Stage

In Knowledge Polishing Stage, Extended EMCUD (E-EMCUD) generates new
embedded rules and adjust original embedded: rule base. Therefore, we can gracefully

update the embedded rule base Lising tha}“s}mallfnewl variants acquisition table instead

of the whole large main acquisitidn tabIeLAfter Knowiedge Polishing Stage, system of

VODKA will also generate an XM L file of ad'justihg from original knowledge base.

42



Chapter 5

Implementation and Evaluations

At the time of the writing: (1) the main operating system deployed is Microsoft
Windows XP; (2) the expert system tool is DRAMA enterprise 2.5; (3) the web server
packages deployed is Apache Tomcat 4.1; (4) the implementation of VODKA is in
Microsoft Visual Basic 6.0. Interested users could refer to the web site (e.g.,

http://140.113.87.155/WISE/index.jsp) for further details.

Users can connect the site to get advices on worm immune service expert system.
At present, worm diagnosis module, tutorial module and learning module are
available. Learning module has been introduced in Chapter 4. In the following, we
will mainly focus on the worm diagnosis ‘modu‘le and tutorial module. Figure 5.1
shows the user interface of WISE.

In Section 5.1 and Section 5.2, the implementation of diagnosis module and

tutorial module, are described, respectiVer. The evaluation of WISE will be presented

in Section 5.3.
H Kde Lab Enowlndge Acyurbon System - Mgzl labuel Explove
TEE EHE BN0 Sk TAD HND ar
5 D@ G Pue Jormex @me @ 2- %3 EH
AL | ] hp 4011307, 155 D00 WISE findec ip v EuE e
i TR \ . . e
__ r— Worm Immune Service Expert system(WISE)

N\

g
p=a
Degigned and lmplemented by Cheng-Lin W
Advizor: Shian-Shyong Teeng

National Chiac Tung University

S g
e §"} (%] * o [RA] @ (%A
- T:(j\' & 2 e

WA

Figure 5.1: Interface of WISE

43



5.1: Implementation of Diagnosis Module

When the users perceive that worms may infect system, they will look for
answers from the Search Engine, e.g., Google. Although the users will find the
solutions eventually, they will also spend much time to find these relevant results due
to lack of domain knowledge. Therefore, we provide a diagnosis module to assist the
users to solve the problems.

In diagnosis module, we will diagnose through bottom-up method. In other
words, WISE will make use of system profile or abnormal behavior to judge whether
could be invaded or infected by worm. First, we must collect the symptoms of user
machine that can be gained from general antivirus products detected, probe or users
perceived. According to these symptoms, from clients, WISE can provide the
appropriate solutions based on the inferred result in OORB. The solutions of WISE
contain reconfiguration, patch-and removal. If the worms have not invaded the
existing loopholes in the user system,.then-defense. instruction of reconfiguration or
patch will be applied. Therefore, we can reach the preventing in advance. In another
case, if the worms have invaded the existing loopholes in the user system, we will
give advise of reconfiguration, patch and removal. Otherwise, if worms have infected
the user system and the existing loopholes have been patched later, then defense
instruction of removal will be only suggested. So the users can learn how to defense

these malicious attacks.

5.2: Implementation of Tutorial Module

When general antivirus products probe that worms infect machine, those
products will automate to remove worms. Therefore, users of infected machine only

know that system may be safe but know nothing about knowledge of worm. WISE

44



will provide the relevant domain knowledge of worms that infect user machine and
tell users how to recover from infected status. So users not only remove the threat of
worms but also learn the worm at the same time.

In tutorial module, we will diagnose through top-down method. In other word,
WISE will list the information of worm, service, exploitation, carrier, symptoms and
defense instruction of worm that had been introduced in Chapter 3 and the detail
contents of each item will be listed next. WISE will use tree structure to represent the

characteristics of each worm and thereby, users can understand each worm easily

Example 5.1: Diagnosis Example of Nimda

We use Nimda as an example and capture the symptoms of Nimda that contain
exploitation of 11S Web traversal, new files with Load.exe and Admin.dll, modify files
of Riched20.dll and System.ini=communication portin 137 and 445, send large email
with attach file of Readme.exe,-new:iuser-account of Guest and abnormal application
program in user machine. Those symptoms.shows in Figure 5.2. After inferring in
inference engine of DRAMA, Figure 5.3 shows the diagnosis result and the suitable

defense instruction.

45



3 Kde Lab Knowledge Acquistion System - Microsoft Internet Explorer

#EEQ FHD WRD BSEW TED HED

Qi=a- O H[EG O Jomex @we @ - 2 5 H

D) | ] hetpo140 113 B7 155 B080/MTSEAndex jop v|1§i EE

)

Service & Expl

Select exploitation in Service

Server:IS & Exploitation: Web traversal

[ server:llS & Exploitation:Index Server Buffer overflow

[ server:II$ & Exploitation: WebDav Buffer overflow

[ Server:SQL & Exploitation:Resolution Service Buffer overflow
[ server:MSDE & Exploitation:Resolution Service Buffer overflow
O Client:IE & Exploitation:MIME header

[ Client:RPC & Exploitation:DCOM Buffer overflow

[ Client:SMTP & Exploitation:Wrong configuration

[ Client:Windows & Exploftation:L3 453 Buffer overflow |
[ Client/Server:Network Neighborhood & Exploitation:Wrong configuration [,}S

Carrier

O EEmEE

of Nimda

3 Ede Lab Knowledge Acquistion Sysiem - Microsofi Infernet Explorer

#EO REEO BRO FREW ITAD HAE o

QtF- O @G P fraon: @xe @ 2

LD | ] hitp:#140.112.87 1558080/ WISEfindex jsp V\ SN
8
Email Flood
Subject : none

Attach File : Readme.exe
From : none

Denail of Service
TCP : none;
UDP : none;
ICMP : false
Windows Update : false
Reboot - false
Crash : false
HNumber of thread :
Copy or Paste Disable : false
Mew user account - Guest
Application Abnormal : Word; Wordpad;

[n
WISE: The inference results

Probability that the Nimda worm infects is 100%
The Defense Instruction is -

1.Click here to download the Firnimda.com file. Save the file to a convenient location, such as
your download folder or the Windows desktop.

2.If you are on a network or you have a full-time connection to the Internet, disconnect the
computer from the network and the Internet. Disable or password protect file sharing before you
reconnect computers to the network or to the Internet. Because this worm spreads by using
shared folders on networked computers, 10 ensure that the worm does not reinfect the computer
after it has been removed, Symantec suggests sharing with read-only access or using password

protection.

HEak: 3.Download the appropriate Microsoft patches to patch vulnerable systems. These patches can
be found here:
htip e w. microsoft.comfiechnetfsecurity/bulletin/ms 00-078 .asp

&=m | Y

|

Figure 5.3: Inference result of Nimda

46



We know that general variant worms will modify few characteristics to avoid
detecting by antivirus softwares — Nimda.B for example. The difference between
Nimda and Nimda.B is email attach file but knowledge base of WISE does not
include knowledge of Nimda.B now. Figure 5.4 shows the inference result of
Nimda.B. We can see that WISE will tell the users the infected probability of Nimda,
hence users can prevent in advance. According to knowledge class of service,
exploitation, carrier and symptoms, calculation formula of probability is shown as
follows and the distribution of percentage according to the destruction degree in the
worm life cycle.

Probability=(service and exploitation)*20%-+(carrier)*35%+ (symptoms)*45%

A Kde Lab Knowledge Acquistion System - Microsoft Internet Explorex [- =[]
F-

o
O+ - Q- -H A G Puerewe: @ue @ 2 5= M

5100 | €] hio 140,11 3.67.155 8080/ WIS Efndeos fop v| B nz EE >
Email Flood
Subjeet : nonc

Attach File : putallscr

ICMP : false

Windows Update : false

Reboot : false

Crash : false

Number of thread -

Copy or Paste Disable : false

New user account © Guest

Application Abnormal : Word; Wordpad;

WISE: The inference results
Probability that the Nimda worm infects is 100%
The Defense Instruction is -

1.Click here to download the Fixnimda.com file. Save the file to a convenient location, such as [%
your download folder or the Windows desktop.
2.If you are on a network or you have a full-time ion to the Internet, di: the

computer from the network and the Internet. Disable or password protect file sharing before you
reconnect computers to the network or to the Internet. Because this worm spreads by using -
shared folders on networked computers, to ensure that the worm does not reinfect the computer
after it has been removed, Symantec suggests sharing with read-only access or using password

protection.
B 3.Download the appropriate Microsoft patches 10 patch volnerable systems. These patches can
e found here:
http-ffeww microsoft.comftechnetsecurity/bulletin/ms00-078.a5

&5 © RS

2

Figure 5.4: Symptoms of Nimda.B
If we find that worms in the user system, WISE will teach the user how to kill
malicious worms and recover to normal state. Besides, the users can search relevant
information of worm through search engine in tutorial module to get the worms’

symptoms and defense instruction.

47



a Kde Lab Knowledge Acquishion System - Microzofl Inlernet Explorer

#BRE &HE WA RHSEW TAD SHEE ar
QLrr-© HEG Lus Jrane @me @ 3- %=
##4HD) | ] hitp:#140.113.87. 1558080/ WISEdndex jsp v| B iE e

Email Flood

3

Subject : none
Attach File : Readme.exe
From : none
Denail of Service
TCP - 25;
New user account © Guest
Application Abnormal : 'Word;Wordpad;

1.Click here to download the Fixnimda.com file. Save the file to a convenient location, such as your
download folder or the Windows desktop.
2.If you are on a network or ¥ou have a full-ime connection to the Intemet, disconnect the computer
from the network and the Internet. Disable or password protect file sharing before ¥ou reconnect
computers to the network or to the Intemet. Because this worm spreads by using shared folders on [}s
networked compuiers, to ensure that the worm does not reinfect the computer after it has been removed,
Symantec suggests sharing with read-only access or using password protection.
3.Download the appropriate Microsoft patches to patch vulnerable s¥stems. These patches can be found
hexe:
hitp-fArww.microsoft.comftechnetfSecurity/bulletin/ms 00-078.asp
http/fwrww. microsoft.comAechnetSecurity/bulletin/MS01 -020.a5p
http/fwrww. microsoft.comAechnetSecurity/bulletin/MS01 -044 .asp
4.1f you see errors when you start programs such as Microsoft Word, or the programs will not start, you
need to extract the Riched20.dl1l file. {As an alternative, ¥ou can reinstall the operating s¥stem and the

affected programs.)
The Detail can see
hitp-ifsecurityresponse.s ymantec.com/favcenter/yenc/datafw 32 nimda.a @ mm, removal. tool. html A
isU2SEIm s e el
& = O EEEE
g,

Figure 5.5: ﬂéfenfe_'nstructrbn of Nimda

As we know, most antl\-/i‘ﬂ‘Isj. prodiﬁ; dgtea worms by file scanning or
vulnerability scanning. Consequently, thé)'/ “I:'glck for diagnosing in multiple views.
According to the worm life cycle, different symptoms will appear in different periods.
Therefore, WISE will consider including file scanning, vulnerability scanning, users
views and network flows. As integrating with multiple aspects, we can clear tell the
users what defense instructions should be executed. And we can also avoid human
carelessness and make the result more accurate. So we can prevent in advance,
besides detecting the malicious worms afterward.

Now new variant worms will modify fewer characteristics in order to escape
from the antirust products detecting. This way is impractical in the WISE system

because our WISE system contains embedded meaning from original worms. For this

reason, we can detect those worms with less variability before the worms cause the

48



injury to the network.
Therefore, WISE is useful for enhancing the accuracy of antivirus products and

assisting the users or domain experts to find the malicious worms.

49



Chapter 6

Concluding Remarks

Problem of worms is very dangerous and varies greatly in Internet and the
damage caused by these attacks is measured in billions of dollars. Although there are
many antivirus products in the market, these products cannot guarantee to provide
enough protection when unexpected worms appeared.Unlike traditional system, WISE
system is a knowledge base system. It is suitable for applying in worms that evolve
quickly; thereby we can refine knowledge base easily without rewriting the programs
and fast prevent the infection of the virus. Besides, WISE system will integrate with
multi-aspects in worm life cycle e.g., file scanning, loophole scanning, network flows,
etc. and predict rationally those variant worms. that. have not presented by extracting
the embedded meanings. Hence, we can enhance the“accuracy of current commercial
Antivirus products.

In this thesis, we design and implement a Worm Immune Service Expert system
(WISE) to assist users and experts to discover worm easily. Our main contributions
are: (1) To propose and implement a unifying framework (diagnosis, tutorial,
knowledge base construction and refined, etc.) for supporting discovery of worms
using web interface and expert system technology. (2) To define system status for
helping detection of worms. (3) To use a Two-Phase Knowledge Acquisition
algorithm for constructing the worm knowledge base.However, there are still some
interesting problems that could be further discussed. To begin with, VODKA might
be an interesting research topic. We need to assist experts to make a decision of new

variant worm through some prior knowledge.

50



Bibliography

[1] Chang-Jiun Tsai, “A Study of Knowledge Management for Computer-Assisted
Instruction Expert System*, 2002

[2] Chien, Eric. “Code Red Worm.” Symantec Security Response. 29 July 2003.
URL:http://securityresponse.symantec.com/avcenter/venc/data/codered.worm.html.
(30 July 2003)

[3] Chien, Eric. “W32.Nimda.A@mm.” Symantec Security Response. 11 July 2003.
URL.:http://securityresponse.symantec.com/avcenter/venc/data/w32.nimda.a@mm.
html (30 July 2003) [4] C. J. Tsai and S. S. Tseng, “Building A CAL Expert System
Based Upon Two-phase Knowledge Acquisition,” Expert Systems with Applications:
An Int’l Jour., Vol. 22, No. 3, pp. 235-248, 2002,

[5] Dan Ellis, McLean, "Worm Anatomy and Model””ACM workshop on Rapid

Malcode, 2003

[6] Dennis Eck CCNA, ”Access Control'Lists to Protect a Network from Worm/DoS
Attacks” GSEC Practical Assignment Version 1.4, Option 1, 2003

[7] E.H. Shortliffe and B.G. Buchanan, “A model of inexact reasoning in medicine.”
Math. Bioscience, Vol. 23, pp. 351~379, 1975.

[8] G. A. Kelly, “The psychology of personal constructs.” Vol. 1 NY:W.W
Norton,1955

[9] GJ. Hwang and S.S. Tseng, “EMCUD: A knowledge acquisition method which
captures embedded meanings under uncertainty.” International Journal of
Man-Machine Studies, Vol. 33, No. 4, pp. 431-451, 1990.

[10] Knowles, Douglas. “W32.SQLExp.Worm.” Symantec Security Response. 04

February 2003. URL.:

51



http://securityresponse.symantec.com/avcenter/venc/data/w32.sglexp.worm.html
(29 July 2003)

[11] Knowles, Douglas et al. “W32.Blaster. Worm.” Symantec Security Response. 29
August 2003.
URL:http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.

worm.html (25 September 2003)

[12] Mark Eichin and Jon Rochlis. With Microscope and Tweezers: "An Analysis of
the Internet Virus of November 1988. In IEEE Computer Society Symposium on
Security and Privacy, 1989.

[13] Martin Karresand, ”Separating Trojan Horses, Viruses, and Worms- A Proposed
Taxonomy of Software Weapons” IEEE Workshop, 2003.

[14] Nicholas Weaver, Vern Paxson; Stuart Stanifard and Robert Cunningham, “A
Taxonomy of Computer Worms” ACM workshop on Rapid Mallcode, 2003

[15] Shun-Chieh Lin, Shian-Shyong Tseng-and-Li-Hao Liu, VODKA: Variant Objects
Discovering Knowledge Acquisition;.unpublished.

[16] Y. T. Lin, S. S. Tseng, and C. F. Tsai. “Design and implementation of new
object-oriented rule base management system,” Journal of Expert Systems with

Applications, Vol. 25, Iss. 3, pp.369-385. 2003.

52



