N B, %
e B 557
w

ART + if .2"GPRS 2 & fec &

ART Adaptability and GPRS Latency Improving

R A

—_—

UR ISR S i

Hi 2 5 @ Jo o pM & A K

ART # ig 1£2 GPRS 2t 42 e &
ART Adaptability and GPRS Latency Improving

VA S A Student : Wen-Ju Chu
hERER D RTK Advisor : Shyan-Ming Yuan

A Thesis
Submitted to Institute of Computer.and Information Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

PERRA e AR

ART ¥ if £ GPRS 2 ik chet §

 ENE L e TR

&

HER AREEOL 2R EFFRRYENEFFE > RA JAME 5 78R 250
fiFenai T 5o g kN FONET CF endiide » g cnimd B * A28 < E #4423 NET CF
SN S L TR R ﬁ AT ST A AR R AL SR 6 TR § PR
mPd T L2 B pdd pdrEeshad o @ FR_JME BT E Rt 4258 F]NET
CF %1 % pF2 Fig o

B0 R R 0 2P RART e B R A 0 J2ME 4% < 3 NET CF =+ & >
% ART T ST R BN GRBERE - > a iz BT 5T 88T
% ART 24 2 PR R THRAIE R * K46 2 % K3 Fadle B G A4
JOME 4= NET CF T 5 eh® e > $e B 48 ART 03 2 o

B ART T SR T ® /258 7 & BB RR AT T8 % 00 ART 3 4 an SV ART
server @ 3 ART client * 2+ o GPRS . p o Fé KB B e b = 5% > 2§ d 30
GPRS e 5] » e ApFR £ > @ 17 ART 30 4 7% 3 »x 5 en@ % 7] ART client o 34 i 42

¥ ART i Sveng b » fe - B B 2 H52 ART 304 & GPRS 1+ i i chp o

ART Adaptability and GPRS Latency Improving

Student: Wen-Ju Chu Advisor: Shyan-Ming Yuan

Department of Computer and Information Science

National Chiao Tung University

Abstract

Nowadays, the popularity of mobile devices enhances the development of mobile
application. J2ME was the most popular, platform for mobile applications originally, but the
growth of .NET platform requires.a lot of-porting of mobile applications from J2ME to .NET
platform. Since these two platforms are not-compatible, it is challenging in terms of porting
applications. Lacking of automatic or.semi-automatic transform tool between these two
platforms makes porting from J2ME to"NET becomes difficult and inefficient.

To solve problems mentioned above, we extend the appliance of ART from J2ME
to .NET platform. Therefore mobile applications developed by ART can be built just once and
can display and operate in both platforms. We analyze the difference between J2ME and .NET
in four parts: network communication, ART message handling, user interface display, and user

interaction handling. We provide methods of porting ART depending on these four parts.

Mobile applications running in ART send the executing result from ART server to ART
client by ART messages through network. GPRS is the most popular network on mobile
devices. Due to the low bandwidth and high latency of GPRS, transferring ART messages to
ART client is inefficient. Based on the characteristics of ART system, we represent two
algorithms to decrease the transferring time of ART messages through GPRS.

Acknowledgement

TR R B ek B R TR BARIRE S £ R B2 BE kR o
ipsl EAEY LS S{RMB E iz L F 2 0o R E v4E d STH AR i~ FR A%

PR FECEAY A I SR P R R FI AR R sk o

)3;%5‘3 FEERERI- AHEET CERA S PHEHFY s SRR ,yalpé;m]g,,,pz,; g;;@v
B#HADELEL A F2 8P Lodh s fF > b o BAERGER 0 R

Lz

a;
)4

s

f B RGBS e o BNE A X MRS E M 2 B L o

b

S

AinPERE e Bivt o YL b po1 T2 eBR zpENE
v R R Y 2 NG L B A R B R R P R A BRI L]
FEoom EORBREEALFEN S EALREF R L AR A SR]] Sk b

TP AR AP A R P a2 Do St

Table of Contents

ACKNOWIEAGEMENT ...t ee e re e e e anee s ii
Table OF CONTENTS.......ooiiiiiiieee e v
LIS OF FIQUIES ..ttt vi
LISt OF TaDIES ... e Vil
Chapter 1 INtrodUCTIONcooiii e 1
1.1. ART (Adaptive Remote Terminal)ccoocvoiiiiiiiiie e 2

1,20 IMIOTIVALION ..t 3

R T O o] 1= o8 {1 USSP ROPR 4

B @ 10 T a1 2 LA o] SRS 4
Chapter 2 Background and.RelatediWorks..............cccccvevveiieiie i 5
2.1. J2ME (Java 2 Platfornmy, MICro EQItION)ooveieeeecie e 5

2.2. .NET CF (.NET Compact Framework)cc.......cocerererienieniinieieeiesiese e 6

2.3. GPRS . e 8
Chapter 3 Porting ART Client from J2ME to .NET........c.cooveiieiiiciiecieenn, 11
3.1. Network COMMUNICALIONcoiveiiiiieieiic s 11

3.2. ART Message HanaliNg.......ccooiieeiieiieiieie e 12
3.2.1. Numeric Data Transformationccccooeerinereinineseseeeese e 13

3.2.2. String Data Transformationccoceiieiiie e 14

3.3, User INterface DiSPIaYc.ccueieeieiieii et 16

3.4, EVENE HANAIING ..o 21
3.4.1. EVeNt SUDSCIIPLION.cciiicc e 21

3.4.2. Paint Event Handling..........cooo oo 23
Chapter 4 GPRS Latency IMpProVing......cccccceieiiiieeneesee e se e siee e e 27

A0, TOSE B .ottt ettt e et e e e eeeeeeeeeeee e e eeeeeeeeeeeeeeeeneeenrrenrernean——ns 27

O N N o] o] 1T [0 OSSR 28

4.3. GPRS Latency Factors iN ART ..ot 29
4.3.1. Test Result Of Data SizZe.........coceoiiiieiiiiiiieiseese e 30

4.3.2. Test Result of the Nagle AlQOrithm ..., 31

4.4. Algorithms to Improve GPRS Latency in ART SyStem.........ccccoevvivieiieieciic e, 33
441, AIGOMTNM L oo 33

4.4.2. AIGOMItNM 2 .o e 35
Chapter 5 Conclusions and Future WOFKScccooveiiiiinnieniienee e 38
5.1, CONCIUSIONS ...ttt bbbt 38

5.2, FULUIE WOTKS ...ttt bbb 39
REFEIENCES ... e 42

List of Figures

Figure 1-1: The Architecture 0f ART SYSIEMciiiiieiiie e 3
Figure 2-1: Java 2 Platform, Micro EItION.........cccoiiiiiiiiiice s 6
Figure 2-2: The GPRS Network arChiteCtUIecc.vcvereeiiee e 9
Figure 3-1: Establishing a socket connection in ART client on J2ME platform....................... 11
Figure 3-2: Establishing a socket connection in an ART client on .NET CF platform 12
Figure 3-3: The format of an ART MESSAGEcceeuiriiiiiiiiie et 13
Figure 3-4: US-ASCII ENCOING IN JAVA......cccveiiiieiiesieeie et ste e 15
Figure 3-5: ASCIH ENcOding iN .NETc..oiiiiiiiiiie ettt st 15
Figure 3-6: User Interface Components iN J2ZME...........cccooiiiiiieii e 17
Figure 3-7: An ART Client iIN J2ZME........ 5 i il e 20
Figure 3-8: AN ART CHent iN INET'CF.....c. it it se e e saesaeeneennes 20
Figure 3-9: Event Model in 2MEand-NET-CE.....ia e 22
Figure 3-10: Event SubsCription in J2ME . . i e 22
Figure 3-11: Event Subscription in .NET CFccooiiiiiiiiieee e 23
Figure 3-12: Canvas Displaying Process of an ART Client in J2ME.........c..cccocvvvviiieiniinennn. 24
Figure 3-13: Canvas Displaying Process of an ART Client in .NET CF.......c.ccccoeoviiiiiiiennnne 25
Figure 3-14: Modified Canvas Displaying Process of an ART Client in .NET CF.................. 26
Figure 4-1: Test Bed for GPRS atENCYcoiiiiiiieiieec e 28
Figure 4-2: GPRS Latency of Different Packet Size........cccccvvveieiiiiiieie e 31
Figure 4-3: The effect of the Nagle algorithm for GPRS latency in ART system.................... 32
Figure 4-4: GPRS latency of Algorithm 1 with Different Waiting Time in ART system......... 34
Figure 4-5: GPRS latency of Algorithm 2 with Different Waiting Time in ART system......... 36

Vi

List of Tables

Table 2-1: The comparison between J2ME CLDC MIDP and .NET CFcccccvvievvevieiiennen, 7
Table 3-1: The encoding tYPeS IN JAVAcccveiiiiiiiiie e 15
Table 3-2:The encoding types iN .NETcoioiiie e 15
Table 3-3: Ul Commands iN an ART MESSAJE.ccruererreerieaeesieesieaiesieesteeeesressseseessessseessesees 16
Table 3-4: User Interface Composition in .NET CF corresponds to J2ME.........c...cccccveevrrnnne. 18
Table 4-1: The Differences amount ART appliCationscccoviirreeniiiinnienene e 29
Table 4-2: Improvement of Algorithm 1 for GPRS LatencCycccccvvvevieeviesiiesiese e 34
Table 4-3: Algorithm 2 for GPRS Latency IMprovementccccocvvenieneneseencsee e 36
Table 4-4: Algorithm 2 for GPRS Bandwidth Savingccccccviveiiiiiineic e 37

Vvii

Chapter 1 Introduction

It is more and more common that people are checking emails and downloading other
information directly to their cell phones and PDAs. For developers, this means an increased
demand to create applications for mobile devices. ART [1] is an adaptable developing
platform for mobile applications; it makes the development of mobile applications more
rapidly. Mobile applications developed by ART are called ART app. (ART application), which
can be adapted to many kinds of displaying and operational methods. Mobile devices which
support J2ME MIDP [2] platform can display and operate ART app. by ART client. Mobile
devices do not support J2ME MIDP can display and operate ART app. by WAP, html browser.
Since the mobile devices of .NET CF [3].(.NET Compact Framework) platform get more and
more popular, but ART client can not execute-on..NET CF platform. Therefore we develop the
ART client for .NET CF platform in order to extend the display capability for mobile devices
of ART. Based on the ART architecture, we-describe-the porting issues in four parts: network
communication, ART message handling, useriinterface display, and user interaction handling.
We use C# language [4] in .NET platform because it was designed especially for .NET

platform.

Mobile applications running in ART send the executing result from ART server to ART
client by ART messages through network. ART client usually executes on mobile devices
which usually use IEEE 802.11 or GPRS [5] to communicate with ART server. For now,
GPRS is the most often used facility for most cell phones to access network. However, the
low bandwidth and high latency of GPRS makes it inefficient to transfer of ART messages.
Besides, ART messages are transferred through socket connection, since the default setting of

socket and network connection may not suit ART system, we adjust these settings based on

1

the characteristics of ART system and provide an algorithm to decrease the transferring time

of ART messages through GPRS.

1.1. ART (Adaptive Remote Terminal)

ART is a platform used to develop and execute the mobile applications. It is a
client-server model system, and clients communicate with servers by means of an
asynchronous message-delivery mechanism. Figure 1-1 shows the architecture of ART system.
The purposes of ART system are:

® To save time of developing mobile applications — the mobile applications can be

written once and run on every, platform. It can reduce providers’ porting effort and
the cost of program maintenance:

® To extend the computing power of mobile devices — we can serve lots of work which

cannot be supported just-within the-mobile devices by the stronger computing power

and richer resources on the server side.

Mobile applications developed by ART system are called ART app. (ART applications),
which execute on ART server. The executing results are sent to ART client by ART messages.
Users can send requests to the ART server by operating GUIs on the ART client. Then ART
server will run the application designate by the users’ requests and send the executing results
as response back to the client side through network connection. The client of ART generates

the new GUIs to display the executing results by server’s response.

ndow Window Asynchronous
' message
Canvas delivery
ART Client j‘ ": ART Server
Specific Platform J2SE

Figure 1-1: The Architecture of ART system

1.2. Motivation

The motivations of this paper are as‘follows:

® NET CF platform becomes mare and more popular — Owing to the popularity and
growing computing power of mobile devices, the needs of mobile applications
increase. However, the difference of maobile devices makes the development of
mobile applications difficult. J2ME and .NET CF are the main platforms for mobile
devices now. They have some similarities, but they are not compatible. They have
many differences, such as data format, user interface and supporting packages. If a
mobile application wants to execute on both J2ME and .NET CF, it must be written
for each platform. One of purposes of ART system is making mobile applications
display and operate on every platforms while write once. Therefore we extend the
displaying ability of ART to display and operate mobile applications in .NET CF
platform.

® High GPRS Latency — GPRS, which is widely used currently, enables mobile
devices to surf the Internet. However, low bandwidth and high latency of GPRS

makes operations of a mobile application spent most time in GPRS transferring.

Inefficient transferring of ART messages — In scenario 3 of [6], the experimental results
say that when the size of a packet becomes larger, its transmission time becomes shorter.
Since ART message size is very small, this makes its transferring inefficiently. More over, the
default network setting over application layer of OSI network model may not suit ART

system.

1.3. Objectives

The objectives of this paper are as follows:

® Expend adaptability of ART — ART system makes developers to write mobile
applications once and adapt to, different platforms and displaying methods. Now,
ART applications can be'displayed-and operated by WAP, html browser and J2ME
MIDP, we expend adaptability of ART to .NET CF platform.

® Decrease GPRS latency-of ART transferring — Owing to inefficient transferring of
ART messages through GPRS; we'observe the characteristics of ART messages
transferring in various ART applications and network setting of application layer. An

algorithm is provided to decrease GPRS latency of ART transferring.

1.4. Organization

The organization of this paper is as follows: Chapter 2 describes J2ME, .NET CF, GPRS
and related works about our research. Chapter 3 represents the issues of porting ART client
from J2ME to .NET CF. Chapter 4 shows the test plans and results of GPRS latency and the

algorithm to improve GPRS latency.

Chapter 2 Background and Related Works

2.1. J2ME (Java 2 Platform, Micro Edition)

The Java 2 Platform, Micro Edition is the edition of the Java 2 platform targeted at
consumer electronics and embedded devices, including mobile phones, pagers, personal

digital assistants, set-top boxes, and vehicle telematics systems.

The J2ME technology consists of a virtual machine and a set of APIs defined through
the Java Community Process®™ program by expert groups that include leading device

manufacturers, software vendors and service providers.

Figure 2-1 has shown :the J2ME -architecture, which comprises a variety of
configurations, profiles, and optional packets:-They 'cooperate to build complete Java runtime
environments. Each combination of the three is optimized for the memory, processing power,
and 1/0 capabilities of a related category of devices. The following describes the three parts:
® Configurations comprise a virtual machine and a minimal set of low-level APIs.
They provide base functionalities for a particular range of devices that share similar
characteristics. Currently, there are two configurations: the CLDC [7] (Connected
Limited Device Configuration) and the CDC (Connected Device Configuration).

® A profile provides a set of higher-level APIs that further define the application
life-cycle model, the user interface, and access to device-specific properties. It
combines with a configuration to provide a complete runtime environment for a
specific kind of device. For example, MIDP [8] (Mobile Information Device Profile)

combines with CLDC provides the complete runtime environment for mobile

phones and entry-level PDAs.
® Optional packets offer standard APlIs targeted at a certain kind of technology. They

extend the capabilities of the Java platform.

Servers & Servers & High-end PDAs Mobile Smart
enterprise personal TV set-top boxes phones & cards
computers computers Embedded devices entry-level

PDAs

Platform, | Platform,
Enterprise| Standard

Edition ~ Edition
(J2EE) (J2SE)

g =4 =

Java 2 Platform, Micro Edition (J2ME)

Figure 2-1: Java 2 Platform, Micro Edition

source: http://java.sun.com

2.2. NET CF ((NET Compact Framework)

The .NET CF (.NET Compact Framework) is a development and execution environment

for managed applications on Windows Mobile devices, it is designed specifically for

resource-constrained devices, such as PDAs (personal digital assistant) and smart mobile

phones. The .NET CF is a subset of Microsoft’s .NET Framework.

The Microsoft’s .NET Framework is an integral Microsoft Windows® component for
building and running Window’s applications. It has two main parts: the common language
runtime (CLR) and a unified set of class libraries, including ASP.NET for Web applications
and Web services, Windows Forms for smart client applications, and ADO.NET for loosely

coupled data access.

additional optional packages

Items J2ME CLDC MIDP .NET CF

Device requirement Powerless Powerful

Platforms Most mobile platform Pocket PC, Windows CE
Language support Java C#, VB.NET

Byte code compatibility | Not compatible with J2SE Standard .NET CLR

API compatibility Partial *J2SE-T7API - with | Subset of .NET

Native APIs P/Invoke N/A

Development tools JDK, JBuilder, etc. VS.NET 2003
Specification process Community Microsoft

User interface Less Ul components More Ul components
Communication ability | HTTP(s) Sockets, HTTP(s), SOAP

Table 2-1: The comparison between J2ME CLDC MIDP and .NET CF

Code that requires the CLR at run-time in order to execute is referred to as managed
code. The CLR is responsible for managing execution of code that runs on the .NET
Framework. Managed code is compiled down to a combination of MSIL (Microsoft
Intermediate Language) and metadata. These are merged into a Pre Execution Environment

(PE) file, which can then be executed on any CLR-capable machine. When you run this
7

executable, the JIT starts compiling the IL down to native code. The result is that all .NET
Framework components run as native code. The table 2-1 shows the comparison between

J2ME CLDC MIDP and .NET CF.

2.3. GPRS

The General Packet Radio Service (GPRS) is a packet data service in GSM to access
packet data networks across a mobile telephone network. It supplements today's Circuit
Switched Data and Short Message Service. The main benefits of GPRS are that it reserves
radio resources only when there is data to send and it reduces reliance on traditional

circuit-switched network elements.

GPRS facilitates several new applications.that have not previously been available over
GSM networks due to the limitations in speed of Circuit Switched Data (9.6 kbps) and
message length of the Short Message Service (160 characters). GPRS will fully enable the
Internet applications you are used to on your desktop from web browsing to chat over the
mobile network. Other new applications for GPRS, profiled later, include file transfer and
home automation - the ability to remotely access and control in-house appliances and

machines.

Theoretical maximum speeds of GPRS up to 171.2 kilobits per second (kbps), This is
about three times as fast as the data transmission speeds possible over today's fixed
telecommunications networks and ten times as fast as current Circuit Switched Data services

on GSM networks.

Enabling GPRS on a GSM network requires the addition of two core modules, the
Gateway GPRS Service Node (GGSN) and the Serving GPRS Service Node (SGSN), as
shown in Figure 2-3. As the word Gateway in its name suggests, the GGSN acts as a gateway
between the GPRS network and Public Data Networks such as IP and X.25. GGSNs also
connect to other GPRS networks to facilitate GPRS roaming. The Serving GPRS Support
Node (SGSN) provides packet routing to and from the SGSN service area for all users in that

service area.

. Other PLMN _/

---- Signaling Interface
— Signaling and Data-Transfer Interface

Figure 2-2: The GPRS network architecture

source: 3GPP http://www.3gpp.org/ftp/Specs/html-info/23060.htm

In addition to adding multiple GPRS nodes and a GPRS backbone, some other technical

changes that need to be added to a GSM network to implement a GPRS service. These include

http://www.3gpp.org/ftp/Specs/html-info/23060.htm

the addition of Packet Control Units; often hosted in the Base Station Subsystems, mobility
management to locate the GPRS Mobile Station, a new air interface for packet traffic, new

security features such as ciphering and new GPRS specific signaling.

10

Chapter 3 Porting ART Client from J2ME
to .NET

How an ART app. can be used on mobile devices depends on the capability of mobile
devices. For example, on J2ME platform, an ART client is executed as a J2ME MIDP
application to show and use ART applications. For some mobile devices without supporting

J2ME, ART app. can be shown and used in WAP or http browser as well.

To execute an ART client on .NET CF platform to operate ART applications, this research
ports an ART client from J2ME platform to .NET CF platform. According to the architecture
of ART clients, four porting issues, network communication, ART message handling, user

interface display and event handling, will be discussed next.

3.1. Network Communication

ART is a client-server model system which means an ART client communicates with an
ART server through a socket connection. There are some differences between J2ME and .NET
at establishing a socket connection. Figure 3-1 shows how to establish a socket connection in

an ART client of J2ME platform:

1 connection=(StreamConnection) Connector. open("socket://127.0.0.1:8001");
2 DataOutputStream os = connection. openDataOutputStream();
3 DatalnputStream is = connection. openDatalnputStream();

Figure 3-1: Establishing a socket connection in ART client on J2ME platform

11

In J2ME, the IP and port of an ART server in the Connector.open() method are set to
establishing a socket connection. The instance of DataOutputStream lets the ART client write
primitive Java data types to an output stream in a portable way. The instance of
DatalnputStream allows the ART client to read primitive Java data types from an underlying

input stream in a machine-independent way.

Figure 3-2 shows how to establish a socket connection in an ART client on .NET CF
platform. The approach to establish a socket connection in .NET is similar to in J2ME.
Among many classes of stream handling in .NET CF, this research chooses BinaryWriter class
to replace DataOutputStream class, and BinaryReader class for replace DatalnputStream class

due to the ability of handling primitive data types in these two classes.

1 TepClient client = new TepClient();

2 client. Connect(“127.0.0. 1™, 8001);

3 NetworkStream connection- = client.GetStream();

4 BinaryWriter os = new BinaryWriter(cennection);
5 BinaryReader ins = new BinaryReader(connection);

Figure 3-2: Establishing a socket connection in an ART client on .NET CF platform

3.2. ART Message Handling

An ART client communicates with an ART server using ART messages, in the format
shown in Figure 3-3. An ART message includes the information about how to control and
display an ART application. An ART client controls an ART application by generating a
related ART messages, transforming it into byte array and sending to the ART server via

socket.

12

isSRaw (Boolean)

Length of sourcelD (int) sourcelD (String)
Length of destinationID (int) destinationlID (String)
Length of owner (int) owner (String)
Length of group (int) group (String)

Length of appName (int) appName (String)
Length of uiName (int) uiName (String)

Function (int)

If (isRaw) rawData (byte[])
If (! isRaw) length of data (int) If (!isRaw) data (String)

If (!isRaw) length of dataExtra (String) | If (! isRaw) dataExtra (String)

Figure 3-3: The format of an ART message

An ART server runs on Java platform, however, an ART client runs either on J2ME
or .NET CF platform. Some differences between-Java and .NET platform about data
transformation influence ART message handlings. The following subsections discuss these
differences in two parts: numeric data-and. string data, and how to handle ART messages

correctly between Java and .NET platform.

3.2.1. Numeric Data Transformation

In the process of sending and receiving numeric data via sockets, numeric data in ART
messages should taken care of conversion issues in terms of what type of machine is on the
other end of a connection. Specifically, how to convert numeric data from the local machine's
format (host order) to the industry standard format for sending sockets data (network order) is

needed to know.

The byte order of sockets data is the same big-endian as the one in the J2SE and J2ME.
13

On .NET platform, the byte order may be big-endian or little-endian, depend on the local
machine’s format (host order). In order to send and receive data through socket correctly,
socket data should be transformed between network order and host order on .NET
platform. .NET platform supplies the following methods to transform numeric data from host

order to network order:

IPAddress.HostToNetworkOrder(int)
IPAddress.HostToNetworkOrder(short)

IPAddress.HostToNetworkOrder(long)

Similarly the following methods transform numeric data from network order to host order:

IPAddress.NetworkToHostQrder (int)
IPAddress.Network ToHostOrder:(short)

IPAddress.NetworkToHostOrder: (long)

3.2.2. String Data Transformation

In order to send and receive ART messages correctly between an ART server and an
ART client, string data should be encoded by the character set with the same definition. Both
of Java and .NET provide many methods of converting arrays and strings of Unicode
characters to and from arrays of bytes encoded for another character set. The character sets of

Java and .NET are shown in table 3-1 and 3-2.

14

US-ASCII Seven-bit ASCII, ak.a. 1S0646-US, ak.a. the Basic Latin block of the
Unicode character set

1S0-8859-1 ISO Latin Alphabet No. 1, a.k.a. ISO-LATIN-1

UTF-8 Eight-bit UCS Transformation Format

UTF-16BE Sixteen-bit UCS Transformation Format, big-endian byteorder

UTF-16LE Sixteen-bit UCS Transformation Format, little-endian byteorder

UTF-16 Sixteen-bit UCS Transformation Format, byteorder identified by an optional
byte-order mark

Table 3-1: The encoding types in Java

ASCI T An encoding for the ASCII (7 bit) character set. ASCII characters are limited

to the lowest 128 Unicode characters, from U+0000 to U+007f.
Defaul t An encoding for the m'scurrent ANSI character set
Unicode An encoding for m&%ﬁﬁbm little-endian byte order.
UTF7 An encoding fogpﬁe EJ‘T@E fo _gg&%k*:_
UTFS An encoding f: theﬂir;fﬁ&m’t

Table%}aﬁﬁe enco- I éy;pes in .NET
e

String=new String(byte[] bytes, “UTF-8")
byte[]=StringName.getBytes(“UTF-8")

Figure 3-4: US-ASCII Encoding in Java

String=Encoding.UTF8.GetString(byte[])
byte[]=Encoding.UTF8.GetBytes(string)

Figure 3-5: ASCII Encoding in .NET

US-ASCII and UTF-8 character sets in Java corresponded to each of ASCII and UTF8

15

character sets in .NET. ART system uses UTF-8 and UTF8 character set in Java and .NET
platform respectively to encode string data of ART messages. Figure 3-4 and 3-5 show

individual program of encoding in Java and .NET.

3.3. User Interface Display

An ART server sends to an ART client ART messages with Ul (user interface)
commands. Table 3-3 shows the Ul commands in an ART message. An ART client generates
the user interface components based on the commands inside ART messages. Based on the
ART client of J2ME MIDP, this research establishes the rules to convert user interface

components from J2ME MIDP to .NET CF.

Command Description

FORM_CREATE Create a form to show user interface.
FORM_ADD_BUTTON Add abutton'tn a form.

FORM_APPEND TEXTFIELD Add an editable text field in a form.
FORM_APPEND_CHOICEGROUP Add a choice group in a form.
CANVAS_CREATE Create a canvas to show 1mages.
CANVAS_PAINT Add an image to a canvas.
CHOICEGROUP_APPEND Add a choice item 1n a choice group.
CHOICEGROUP_SETCURRENTSELECTED | Set a choice item as selected in a choice group.
CHOICEGROUP_SETTITLE Set the title of a choice group.
CHOICEGROUP_DELETE Delete a choice item in a choice group.
TEXTFIELD_SETSTRING Set the content of a text field.

INIT_FINISH Add the ART system menu in a form or canvas.
DISPLAY_CHANGE Display a form or canvas.

Table 3-3: Ul Commands in an ART message

J2ME and .NET CF platform have many user interface components. The

javax.microedition.lcdui package provides a set of features for implementation of user
16

interfaces for MIDP applications. Figure 3-6 shows the relationship of the classes for creating

user interfaces in J2ME MIDP used in ART.

The user interface objects shown on the display device are contained within a
Displayable object, such as Canvas, List, Alert and Form. At any time an application have at
most one Displayable object to show on the display device through which user interaction

occurs.

Screen class is a common superclass of all high-level user interface classes. A Form is a
Screen that contains an arbitrary mixture of items, such as editable text fields and choice

groups. In general, it contains any subclass of the Item class.

Command class is a construct.that encapsulates-the semantic information of an action.
This means that Command contains only-information-about “command" not the actual action
that happens when a command is activated. Besides, Command class may be contained within

a Displayable object.

0..n
1.0 ltem
Command Displayable 7v<
Canvas Screen ChoiceGroup

List Alert Form

Figure 3-6: User Interface Components in J2ME

17

In .NET framework, System.Windows.Forms namespace contains classes for creating
Microsoft Windows-based applications. Most classes within the System.Windows.Forms
namespace derive from the Control class. The Control class provides the base functionality

for all controls displayed on a Form which represents a window within an application.

However, some classes in J2ME, such as List and Alert, have not been defined in .NET.
This research combines essential objects of .NET to compose such classes in J2ME. Table 3-4

shows the user interface compositions in .NET CF which corresponds to the ones in J2ME.

J2ME MIDP .NET CF

Form Form

Canvas Form

List ListBox within Form
Alert Label=within Form
TextField TextBox with Button

ChoiceGroup(single choice mode)

RadroButton and Label within Panel

ChoiceGroup(multiple choice mode)

CheckBox and Label within Panel

Command

Menultem within MainMenu

Table 3-4: User Interface Composition in .NET CF corresponds to J2ME

Form class in .NET CF represents a window or dialog box that makes up an

application's user interface. Its functions are the same as the Form class in 2ME MIDP,

Canvas class in J2ME MIDP is a base class for writing applications that handle
low-level events and issue graphics calls for drawing to the display. In .NET CF, Form class
can display graphics in a window within an application. Therefore, it can also be used to

replace the J2ME MIDP’s Canvas class.

18

List class in 2ME MIDP contains a list of choices. In .NET CF, ListBox class displays a
list of items that users can select by clicking. Therefore, a ListBox within a Form in .NET CF

is to replace the List class in J2ME MIDP.

Alert in J2ME MIDP shows data to users and waits for a certain period of time before
proceeding to the next screen. .NET Label provides descriptive text to users and is to replace

Alert class in J2ME MIDP.

TextField in J2ME MIDP is an editable text component with a button to set text placed
into a Form. TextBox in .NET CF allows the user to enter text in an application. A .NET CF
focused Button can be clicked by using the ‘mouse, ENTER key, or SPACEBAR. The
combination of a TextBox and a-Button in .NET CF reaches the same function of a TextField

in J2ME MIDP.

ChoiceGroup in J2ME MIDP is a group of selectable elements intended to be placed
within a Form. The group can be created with a mode that allows a single choice only or
multiple choices. In .NET CF, RadioButton and CheckBox are used for single choice and
multiple choices respectively. RadioButton allows users to choose from mutually exclusive
options. CheckBox lets users pick a combination of options. A Panel in .NET CF can contain
other user interface objects such as RadioButton and CheckBox. Radio buttons in a Panel
constitute a group in .NET CF for users to choose at most one choice at a time, like the
ChoiceGroup of single choice mode in J2ME MIDP. .NET CF Check boxes in a Panel
constitute a group for users to select multiple choices at a time, which is the same as

ChoiceGroup of multiple choice mode in 2ME MIDP.

19

Command in J2ME MIDP can be mapped onto the available physical buttons on a
device. Some commands that cannot be mapped onto physical buttons are placed in a menu
and the label "Menu" is mapped onto one of the programmable buttons. MainMenu in .NET
CF represents a container for the menu structure of a form. It can be added to the menu bar of
the form automatically in .NET CF. Menultem in .NET CF represents an individual item
displayed within a MainMenu. J2ME MIDP Command is replaced with Menultem in .NET
CF because these .NET CF components have fixed position on devices. Figure 3-7, 3-8 shows
the position of Command and Menultem for “Start” and “Exit” in an ART client in J2ME

MIDP and .NET CF respectively.

l.:'E;;r flapn, list
F il =

hasdag
pushpLzzle
test
weather
wweatherbal:

Start Exit 9 |A

Figure 3-7: An ART Client in J2ME Figure 3-8: An ART Client in .NET CF

In J2ME MIDP, Layout Manager controls the size and position of components in a
container. However, .NET CF has no Layout Manager to control the size and position of
components in a container. The size and position of components must be set by developers

in .NET, which should be taken care of in translating user interface components from J2ME

20

to .NET CF.

3.4. Event Handling

J2ME and .NET CF has the same event model [9] [10], as shown in figure 3-9. An event
source generates events, which is usually a component of user interface. A listener is an object
interested in some specific events. The listener subscribes the event with interest to an event
source. An event is propagated from an event source object to a listener object by invoking a

method on the listener.

During porting an ART client from J2ME to .NET CF, there are two differences between

them in event handling, the process:of event subscription and the handling of paint event.

3.4.1. Event Subscription

J2ME has defined the interface of listeners for event sources. A class implements this
specific interface is considered to subscribe the event generated by the corresponding event
source. In .NET CF, the listener is defined by developers, and an event is subscribed by a
user-defined method of the listener. For example, figure 3-10, and 3-11 represents how to
subscribe an event in J2ME and .NET CF respectively. In figure 3-10, the event source is
okCommand and CommandListener is the listener interface of Command class. SystemMenu
class subscribes to okCommand by implementing CommandListener. SystemMenu overwrites
commandAction, an event handler interface of Command class, to process the event generated
by okCommand. The commandAction method processes events generated by all commands
defined in SystemMenu. In order to differentiate the event sources with each distinct actions,

an event source in the commandAction method should be checked during processing an event,
21

as line 4 of figure 3-10.

(3)Process Even 2)Dispatch Event

1 public class SystemMenu ¢ o1 dListener {

2 private Command okCo ul' g |

3 public void commandAc i-.", """IHEEE Displayable d) {
4 if (¢ == okCommand) ¥

5 eeeeen

6 ¥

T

8 }

Figure 3-10: Event Subscription in J2ME

Figure 3-11 shows the code of .NET CF migrated from figure 3-10. The event source is
okCommand and the listener is okCommandAction defined by developers. In line 3,
okCommandAction subscribes the click event of okCommand. Compared with J2ME, .NET
CF event sources with distinct action are differentiated by assigning to different listener

methods.

22

1 public class SystemMenu {
2 private Menultem okCommand:
3 okCommand.Click+=new EventHandler (okCommandAction) ;

4 public void okCommandAction(object sender, System.EventArgs e){

Figure 3-11: Event Subscription in .NET CF

3.4.2. Paint Event Handling

In J2ME, a paint event handler is executed at J2ME system thread, while in .NET CF, it
Is executed at the thread who creates the event source of the paint event. The following shows

the affection to ART system.

A Canvas object in J2ME shows image data in an ART client. In J2ME, the paint event
is generated when a Canvas object is ‘actually. visible on the output device. Then, the paint
event handler is called to render the Canvas. Figure 3-12 shows the Canvas displaying process
of ART client in J2ME. In figure 3-12, “Server” represents the ART server; “MesgHandler”
and “System Ul thread” are executed in an ART client, the former handles ART messages
received from the ART server and the other is J2ME system thread which handles Ul events.
First, MesgHandler receives an ART message from an ART server to create and show canvas
object, then the method of showing canvas, Canvas.Show(), is called and then go back to the
state of waiting to get ART messages from the ART server. When Canvas.Show() is called, it
triggers the System Ul thread to create a paint event of canvas. System Ul thread then

executes paint event handler. Notice the paint event handler is executed at System Ul thread.

23

Server MesgHandler System Ul Thread
trigger
N YA /
Y N
ART Server ART Client

Figure 3-12: Canvas Displaying Process of an ART Client in J2ME

1 A0
In .NET CF, a paint event occws when the» @mponent of user interface is redrawn. An

I«"\.h\. o

-~ =l
ART client on .NET CF platferin ;L‘afcan\@ class inherited from Form class to

represent image data and overnd@? theb) .‘
- s !.E:,;

eve tr}_mdler of Form class which triggers .NET
system to create a paint event of Forfm’tcrshaw n%@e data in Canvas class.

- 1B32S

Figure 3-13 shows the Canvas displaying process of an ART client in .NET CF. The
difference between J2ME MIDP and .NET CF in paint event handling is that the paint event
handler in NET must be executed at MesgHandler thread, because in .NET CF, the paint event
handler is executed at the thread who creates the paint event source. In an ART client, Canvas
object is the paint event source, which is created by MesgHandler thread. However,
MesgHandler is blocked at the state of waiting to get ART messages from the ART server and
can not execute the paint event handler. It causes a Canvas object can not be displayed on an

ART client.

24

Server MesgHandler .NET System

\ J N\ _
\/

ART Server ~ ART Client

A_"l\.:_' . J,:"

Figure 3-13: CanvagDisplaylmgPchess of an ART Client in .NET CF

A

;'|'-\.“'~';

. I ;
- @M=ESHrY

To resolve the problem metg ied- previ
?__; o ..""rh;

creator of Canvas object. Therefore, Wl@Mngy tEread is generated to create Canvas object and
the modified process of Canvas displaying as shown in figure 3-14. The Invoke() method is
called in MesgHandler thread to create a Canvas object in WinMngr thread. The usage of the

Invoke() method in MesgHandler thread is as follows, which means to execute

wm.mesgHandler method in the thread who owns the wm object:

wm. Invoke(new EventHandler(wm.mesgHandler));

The wm.mesgHandler() method creates a Canvas object. The wm object is created in
WinMngr thread, which is an instance of Control class which defines components with visual

representation. In .NET CF, the Invoke() method of a Control object executes an event

25

handler on the thread that owns the control's underlying window handle. Since the WinMngr
creates the wm object, it is the owner of wm object; therefore, wm.mesgHandler() method is
executed in WinMngr thread to create a Canvas object. Since the WinMngr thread becomes
the creator of a Canvas object and the paint event handler can be executed in WinMngr thread,

a Canvas object can be displayed correctly on an ART client in .NET CF.

MesgHandler wWinMngr .NET System

N)\ —
Y YT

ART Server ART Client

Figure 3-14: Modified Canvas Displaying Process of an ART Client in .NET CF

26

Chapter 4 GPRS Latency Improving

An ART client must communicate with an ART server through network. GPRS is the
most popular facility to access network among many mobile devices. However, GPRS latency
is very high. It takes 600ms-3000ms for the downlink, 400ms-1300ms on the uplink [11], and
1000ms or more on round-trip latencies [11]. There are many factors influencing GPRS
latency. For ART, data size and the Nagle algorithm are main factors that affect the GPRS
latency. To decrease the GPRS latency in ART system, this research executes many
experiments to evaluate the effect of data size and the Nagle algorithm. According to these
experiments, this research also represents two algorithms to improve the GPRS latency in

ART system.

4.1. Test Bed

Figure 4-1 shows the test environment‘of this research for GPRS latency. The laptop
communicates with the PC through the GPRS and Ethernet network. There are a client
running on the laptop and a server running on the PC. Besides, the laptop connects to the
Sony Ericsson P900 cell phone through infrared rays to act as a GPRS mobile terminal.
According to GSM and GPRS architecture, the BSs (base stations) are connected to the BSC
(base station controller) linked to the SGSN (Serving GPRS Support Node), and then the
SGSN is linked to the GGSN (Gateway GPRS Support Node) to connect to the Ethernet. The
measurements presented in the paper were all performed over Chunghwa Telecom GPRS

network.

27

Figure 4-1: Test Bed for GPRS latency

4.2. ART Applicationss"

Many kinds of applications- ban b_e Qxeéﬁied on ART system. The following three ART
applications with different charac"ter‘isticéﬁv’vﬁhrosén for test:
® Pushpuzzle - It is a game t‘hat intéracts with a user. Initially, it shows a graph on an
ART client. When a user presses a button on a device to play the game, the ART
client generates an ART message with the user action and sends to the ART server.
The ART server executes this application according to the ART message and sends
the result as response back to the ART client which shows the result on the device. A
user can repeat the action mentioned above to interact with this application.
® Chat — It is a chat room application that has lots of Uls (user interface) to show in
the ART client. All Uls are generated during start-up. Therefore, the ART server
sends amount of ART messages to the ART client to start up Chat. Each ART

message contains one Ul generation command. Users can create new group or join

an exist group to talk to each other. A user types words at an editable text field

28

within the “say” window. The ART client sends the ART message with user input
content to the ART server that retransmits this ART message to other ART clients in
the same chat group.

® RemoteDesk — It is an application for displaying the screen and controlling the
mouse position of the ART server from the ART client. ART messages associated
with this application usually have larger data size. A user presses an arrow button on
device to change the mouse position of the ART server which sends its screen of
current mouse position as response to the ART client.

The differences amount these applications are as shown in table 4-1.

Characteristics Average Size of ART Number of ART
Message Messages when
Initial

Pushpuzzle Interaction withrUser 212 bytes 7
Chat Large amount of * ART | 105 bytes 24

messages
RemoteDesk | ART message with large | 11103 bytes 7

data

Table 4-1: The Differences amount ART applications

4.3. GPRS Latency Factors in ART

ART messages are transferred through socket connections over TCP. To improve GPRS
latency of ART system, this paper evaluates two factors as follows:

® Data Size —ART message size is usually small, and its average size is about 300

bytes. Too small a data may cause inefficiency (i.e. there may be little data compared

to lots of header). When small data packets are sent on TCP, TCP congestion may

occur because of frequently acknowledgements. Larger data is therefore more
29

efficient. In some research, the packet size on TCP affects the network latency [12].
This research experiments on data size to get the optimal value.

The Nagle Algorithm [13] — It was designed to reduce LAN and other network
congestion from TCP applications. The Nagle algorithm works by aggregating data
on the sending side of TCP applications. It accumulates sequences of small messages
into larger TCP packets before data reaches the wire, and thereby prevents the
generation of unnecessary large numbers of small packets. When the Nagle
algorithm works as designed, TCP applications utilize network resources more
efficiently. Applications can enable or disable the Nagle algorithm with the
TCP_NODELAY socket option. All of Windows, Linux, and Java systems all
normally enable the Nagle algorithm by default. However, in some cases, the Nagle
algorithm has a negative effect on application performance. This paper experimented

on its effect in ART system.over GPRS.

4.3.1. Test Result of Data Size

This paper designed a test plan as follows to evaluate the effect of data size: The client

sent a packet to the server, which echoed with this packet to the client. The GPRS latency was

measured at the application layer in the client. Its value was the time during a client sent a

packet and got the echoed packet. The range of packet size varied from 50 to 2000 bytes at

50-byte increment. Each packet was sent to the server one hundred times. The client sent the

next packet until it receives the previous packet echoed from server. The test has been

repeated four times. Figure 4-2 shows its result. Each line represents the complete test

mentioned above. Each point represents the average round-trip GPRS latency of a particular

packet size. The GPRS latency increases with packet size increasing from 50 to 1450 bytes,

but suddenly decreases at size 1500 bytes.

30

7000

6000

5000

4000 s

3000

latency(msec)

2000

1000

50
150
250
350
450
550
650
750
850
950

1150
1250
1350
1450
1550
1650
1750
1850
1950

The Nagle algorithm is enabled by default on Windows, Linux, and Java systems. This
test set the TCP_NODELAY socket option to zero at an ART server to disable the Nagle
algorithm. The Nagle algorithm was enabled at an ART client as result of the fact that a J2ME
MIDP version ART client did not have the TCP_NODELAY socket option to enable or
disable the Nagle algorithm. Those ART applications mentioned at section 4.2 were used for

this test.

Figure 4-3 shows the effect of the Nagle algorithm for GPRS latency in ART system.

The value of GPRS latency was measured at the ART client. The x axis stands for the

31

operations of ART applications in the ART client. The number behind an operation is the
amount of ART messages need in this operation. Line of “Original ART” represents the GPRS
latency with the Nagle algorithm being enabled. The other line represents the GPRS latency
with the algorithm being disabled. Clearly, disabling the Nagle algorithm makes the lower
GPRS latency in most operations, but this is not always the case. The reason is that the ART
client usually waits for the response of the ART server to show operation result to users, but
the Nagle algorithm does not send the data to network immediately. For example, in
Pushpuzzle, when a user presses “down” button on the device, the ART client sends this user
action as a request to the ART server and waits for the response, but the response of ART
server does not send to the ART client immediately with the Nagle algorithm. In such cases,

disabling the Nagle algorithm makes lower GPRS latency.

—&—Original ART —#— Disable Nagle

25000

20000 /\

15000 |

10000 /\

5000 p
9

latency(msec)

app. List(2)
pushpuzzle init(7) F
pushpuzzle down(2)
pushpuzzle up(2) |
pushpuzzle right(2) F
pushpuzzle left(2) F
app. List(2) F
chat init(24) F
chat new group(3) F
chat say init(3) F
chat say save(2) F
chat say ok(3) |
app. List(2) |
mouse init(7) F
mouse up(2) F
mouse down(2)
mouse left(2)

mouse right(2)

ART app. operations

Figure 4-3: The effect of the Nagle algorithm for GPRS latency in ART system

Contrarily, the “chat init” operation has higher GPRS latency with disabling the Nagle

32

algorithm. The reason is that the ART server sends out a lot of ART messages (the exactly
number of ART messages is 24) once for the ART client initializing the Chat. Under this
circumstance, the Nagle algorithm helps aggregate ART messages to a larger packet which
can be sent more efficiently. The other operations only need to receive one or two ART

messages for fulfilling their tasks.

4.4. Algorithms to Improve GPRS Latency in ART system

Consequently, based on the previous test result, two conclusions were made as follows:
® Data size of 1500 bytes has the lower GPRS latency.
® Disabling the Nagle algorithm can reduce the GPRS latency when an operation has
little ART messages to deliver. However,. it also increases the GPRS latency if an
operation has a large amount of ART .messages to deliver.
According to these two conclusions, this-research comes up with two following algorithms to
improve GPRS latency by disabling the.Nagle algorithm and aggregate ART messages at a

period of time in the ART server.

4.4.1. Algorithm 1

In a period of time T, an ART server aggregates ART messages which will be sent to an
ART client. When the ART server receives a request ART message from the ART client, a
delay timer of value T begins to count down. When the delay timer expires, the ART
messages are concatenated to a larger data and sent to the ART client immediately. If the total
accumulated size of ART messages exceeds more than 1500 bytes before the delay timer

expires, they are also sent to the ART client immediately.

33

—— Original ART —#— Disable Nagle algol wait 100 algol wait 200 —*— algol wait 300 —®—algol wait 400 —+— algol wait 500

25000

20000

15000 |

10000

GPRS Latency(msec)

5000
<

app. List(2)
pushpuzzle init(7) F
pushpuzzle down(2) F
pushpuzzle up(2) F
pushpuzzle right(2) |
pushpuzzle left(2) F
app. List(2) F
chat init(24) F
chat new group(3) |
chat say init(3) F
chat say save(2)
chat say ok(3) |
app. List(2) F
mouse init(7)
mouse up(2)
mouse down(2) F
mouse left(2)

mouse right(2)

ART app. operations

Figure 4-4: GPRS latency of Algorithm 1 with Different Waiting Time in ART system

Avg. Latency(sec) | Improvement (%)

Original ART | 8.388 --

Disable Nagle | 4.904 41.53%
Wait 100ms 4.355 48.09%
Wait 200 ms | 4.276 49.02%
Wait 300 ms | 4.282 48.95%
Wait 400 ms | 4.414 47.38%
Wait 500 ms | 4.555 45.69%

Table 4-2: Improvement of Algorithm 1 for GPRS Latency

Figure 4-4 shows the GPRS latency evaluation of algorithm 1 with different waiting

time T. Table 4-2 represents the average latency and improving percentage from figure 4-4.

34

Waiting time 200 ms causes the lower GPRS latency in most ART application operations.

Compared with the original ART system, algorithm 1 decreases the GPRS latency about 45%.

4.4.2. Algorithm 2

Different operations of ART applications use different fields of ART messages. Some
fields are not used for specific ART application operations. Useless fields are taken off from
ART messages for each ART application operation. For some ART messages sent to an ART
client at the same time, the fields of ART messages with the same values can be merged to

minimize the ART messages.

In a period of time T, an ART: server merges:ART messages by the field with the same
value. When the ART server receives a request ART-message from the ART client, a delay
timer of value T begins to count-down.-\When-the delay timer expired, the ART messages are

merged to a larger data and sent to the /ART client.immediately.

Figure 4-5 represents GPRS latency of algorithm 2 with different waiting time in ART
system. Table 4-3 shows the average latency and improving percentage from figure 4-5.
Waiting time 200 ms causes the lower GPRS latency in most ART application operations.

Compared with the original ART system, algorithm 2 decreases the GPRS latency about 45%.

35

GPRS Latency(msec)

—— QOriginal ART —#— Disable Nagle

algo2 wait 100 —< algo2 wait 200 —*— algo2 wait 300 —®—algo2 wait 400 —— algo2 wait 500

25000

20000

15000

10000

5000

OA — — — — — — — — — — — — — —
g i ART :pp. operations
2
Figure 4-5: GPRS latency o i ifferent Waiting Time in ART system
|
X : Improvement (%)

Original ART | 8.3 -

No wait 4.904 41.53%

Wait 100ms 4.308 48.64%

Wait 200 ms | 4.256 49.26%

Wait 300 ms | 4.380 47.78%

Wait 400 ms 4414 47.37%

Wait 500 ms | 4.523 45.23%

Table 4-3: Algorithm 2 for GPRS Latency Improvement

36

mouse down(2)

mouse left(2)

mouse right(2)

Avg. Latency(sec)

Saving bytes

Original ART | 97200 -

Wait 100ms 95316 1884(1.94%)
Wait 200 ms 95224.75 1975.25(2.03%)
Wait 300 ms 95225.625 1974.375(2.03%)
Wait 400 ms 95191.75 2008.25(2.07%)
Wait 500 ms 95182 2018(2.08%)

Table 4-4: Algorithm 2 for GPRS Bandwidth Saving

37

Chapter 5 Conclusions and Future Works

5.1. Conclusions

This paper represents four porting issues from J2ME to .NET CF and two algorithms to
improve the GPRS latency. The porting issues include network communication, ART message

handling, user interface display and user interaction handling.

In network communication, the methods of establishing a socket connection in J2ME
and .NET CF are the same. BinaryWriter and BinaryReader classes in .NET CF are chosen to

replace DataOutputStream and DatalnputStream in J2ME respectively.

In ART message handling, numeric and string data in ART message are transferred to
byte first and then transmitted by a socket-connection. The value of numeric data has byte
order issue on different executed platforms. The byte order on Java platform is big-endian,
and so as in socket. Bytes read from a socket can transfer to numeric data directly on Java
platform. However, the byte order on .NET depends on hosts. This paper uses
IPAddress.NetworkToHostOrder() method to transform byte from network order to host order.
For string data in ART messages, both of Java and .NET provide many methods of converting
arrays and strings of Unicode characters to and from arrays of bytes encoded for another
character set. The string data in an ART message should be encoded by the character set with

the same definition.

In user interface display, the user interface composition in .NET CF corresponding to

J2ME was discussed. The .NET CF does not have a layout manager which is provided by

38

J2ME. User interface component in .NET CF should be arranged additionally.

In user interaction handling, J2ME and .NET has the same event model. The paint event
in J2ME is handled by system Ul thread, however, in .NET CF, the paint event is handled by
the owner thread of event sources. For an ART client, the MesgHandler is the owner thread of
canvas which brings paint events. In .NET, the MesgHandler thread can not execute the paint
event handler. Therefore, the WinMngr thread on ART client .NET platform is added as the
owner of canvas object for handling paint events. The MesgHandler thread uses the Invoke()

method to create a canvas object in WinMngr thread.

To reduce the GPRS latency, this research discusses about the effect of data size and the
Nagle algorithm at first. According'to problems found in the evaluation, this paper provides
two algorithms to decrease the GPRS latency.-These-two algorithms suggest an ART server
disable the Nagle algorithm and send-ART-messages to an ART client either when ART
messages are aggregated more than 1500 bytes-or'when the delay timer T is expired. The test
result shows the delay timer T with 200 milliseconds causes the lower GPRS latency in most

ART application operations.

5.2. Future Works

There are several different directions to explore in future development of ART. ART
was aimed at personal use at first even though an ART Server can serve various users
simultaneously. If ART is expected to be accepted and deployed widely, it must be more

mature. Therefore, a few future works that enhance ART still need to be done.

® Security
39

The checks on users’ identifications by CommMngr are very crude. This paper has made
only few attempts on the security which is not the issue expected to be solved in this research.
Hence ART will be probably exposed to malicious parties if ART Servers are attached to
Internet. ART must be able to secure itself in the future.

In order to integrate with available and existent technologies another important work will
be adopting AAA (Authentication, Authorization and Accounting) technology that is
maintained by the Authentication, Authorization and Accounting Working Group of IETF and

applied in mobile computing area popularly.

® Toward Web Service

An ART app. may access resources or service of another third party, but it is not
constructed the inverse way. A non=ART program.is not able to know where or how to get
ART services (ART App.).

In terms of scalability and trend, ART-should provide an approach compatible with W3C
Web service. Web services provide a-standard means of interoperating between different
software applications which run on a variety of platforms and/or frameworks. Much attention
has been paid to introduce mobile computing to Web Service.

Because of the following reasons, supporting Web service will be a good choice.

1. Web service is a very popular and open standard.

2. ART supports HTTP protocol and handles much XML-based actions (e.g.

converting functions).
3. Java platform with which ART server is built already supports Web service.

4. With Web service, ART may be close to enterprise use.

® Hardware implementation

Besides ART server is installed on desktop computers, system providers are
40

expected to support ART server on some embedded systems. Embedded systems have
several common characteristics, which distinguish such systems from other computing
systems such as specific-functioned, tightly constrained, reactive and real time. These
characteristics are also suitable for the server side environment, too.

System providers might not want to supply any service but ART, and the
performance and the real time user experience are what they only concern. Under this
situation, a general purpose computer (i.e. PC) is not a good choice. Therefore, it is

suggested that system providers support ART server on embedded systems as well.

41

References

[1] #+= =, % B4, "An Adaptive Mobile Application Development Framework”, = <

A BT FERERMALITSHY > AR £6

[2] Sun Microsystems, “Java 2 Platform, Micro Edition (J2ME)”,

http://java.sun.com/j2me/

[3] Microsoft, “.NET Compact Framework (.NET CF)”

http://msdn.microsoft.com/smartclient/understanding/netcf/

[4] Microsoft, “The C# language” http://msdn.microsoft.com/vcsharp/programming/language/

[5] 3GPP, “23.060 GPRS; Service description”

http://www.3gpp.org/ftp/Specs/html-info/23060.htm

[6] Hye-Sun Hurl and Youn-Sik-Hong, “Performance Analysis of Multimedia Data

Transmission with PDA over-an Infrastructure Network” ICCSA (3) 2004: 1002-1009
[7] Sun Microsystems, “CLDC”, http://java.sun.com/products/cldc/

[8] Sun Microsystems, “Mobile Information Device Profile (MIDP)”,

http://java.sun.com/products/cldc/

[9] Sun Microsystems, “Java AWT: Delegation Event Model”,

http://java.sun.com/j2se/1.3/docs/guide/awt/designspec/events.html

[10] Microsoft, ”Event Handling in Windows Forms”,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconevent

handling.asp

[11] Rajiv Chakravorty, Joel Cartwright, lan Pratt, “Practical Experience with TCP over

GPRS” Proceedings IEEE GLOBECOM 2002, November 2002, Taipei, Taiwan.

42

http://java.sun.com/j2me/
http://msdn.microsoft.com/smartclient/understanding/netcf/
http://java.sun.com/products/cldc/

[12] Calveras, A., Paradells, J.; Gomez, C.; Catalan, M.; Valles, J.C. “Optimizing TCP
parameters over GPRS and WLAN real networks”, Communications, Computers and
signal Processing, 2003. PACRIM. 2003 IEEE Pacific Rim Conference on, Volume: 2,

28-30 Aug. 2003 Pages: 663 - 666 vol.2

[13] Nagle, J., “Congestion Control in IP/TCP Internetworks” RFC 896, Ford Aerospace and

Communications Corporation, January 1984.

43

	my-cover2.pdf
	my-content3.pdf
	ART Adaptability and GPRS Latency Improving.pdf
	1.1. ART (Adaptive Remote Terminal)
	1.2. Motivation
	1.3. Objectives
	1.4. Organization
	2.1. J2ME (Java 2 Platform, Micro Edition)
	2.2. .NET CF (.NET Compact Framework)
	2.3. GPRS
	3.1. Network Communication
	3.2. ART Message Handling
	3.2.1. Numeric Data Transformation
	3.2.2. String Data Transformation
	3.3. User Interface Display
	3.4. Event Handling
	3.4.1. Event Subscription
	3.4.2. Paint Event Handling

	4.1. Test Bed
	4.2. ART Applications
	4.3. GPRS Latency Factors in ART
	4.3.1. Test Result of Data Size
	4.3.2. Test Result of the Nagle Algorithm

	4.4. Algorithms to Improve GPRS Latency in ART system
	4.4.1. Algorithm 1
	4.4.2. Algorithm 2

	5.1. Conclusions
	5.2. Future Works

