I
2
Y
>

)
b
)

PRS- £ B ey
S5 & p o ER N IE BRE
A Stream-based Mail Proxy with Interleaved

Decompression and Virus Scanning

By o4 TRALR

hERE R K

RFERB A+-HWE FXA

PR A G U RREEE R AR DI I RRE

A Stream-based Mail Proxy with Interleaved Decompression and Virus

Scanning
ForoA D LR Student : Szu-Hao Chen
hEERR D HEL Advisor : Ying-Dar Lin

A S - S S §

oL 2

AThesis
Submitted to Institute of Computer and Information Science
College of Electrical Engineering and Computer Science
National Chiao Tung. University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer and Information Science
June 2005

HsinChu, Taiwan, Republic of China

P ERARA e R

FL o RLER RS TS | e
B2 2« FREAFE i
e

AREBRAP VIR PAPFG P A ARSI T RS SRR
FIL- H TGP BAOAGT B TREE AT 2§ TR S AR AT
R AR E KA e AP R IT - B R R AR R PR
TN AHERAE AT MIME R R
fodE R RE R ALk o T 0 ANPEEES S B hE o T DR H
gkirted gelect #HF X H - AT FIRE o 2B AR DT T
RRRPEN) gEo T E R it anelg o NP anTRIARN P T 3F § fAen
i b AR IR PR B A G AL T I PR B (02 AMaViS e postfix
AEEEX)RRERFEF {HFPERE] PO AT IRR Y F o ARG
AR RA PR PIRE BT PSR MR DT SR
TRNAT S B A R SNRT D R At A2 RS
Ped B e AP AR * Lo AR TR BE DT) o HEH -
MR AF- BTE R BPEFRNEAP AL R BRS ARG

b TR LR ST

yﬁgjgﬁ,gg,ﬁj,%ﬁ,@i,ﬁi,ﬁg@mﬁ’tﬁ’ﬁ@ﬁ

A Stream-based Mail Proxy with Interleaved

Decompression and Virus Scanning

Student: Szu-Hao Chen Advisor: Dr. Ying-Dar Lin
Department of Computer and Information Science

National Chiao Tung University

Abstract

Anti-virus systems nowadays might operate on access gateways for centralized
management and early blocking viruses. ,When serving a group of computers, the
traditional storage-based mechanism has'the scalability problem due to its storage of
mails under processing. This: work designs a stream-based mail proxy which
processes the mail segment by segment without the storage of the entire mail and
interleaves the MIME parsing, decoding, decompression and virus scanning. We
integrate and modify several existing open-source packages into the proxy and use the
system call select to achieve single-process concurrency. The benchmarking reveals
our proxy is seven times faster than in the storage-based mail proxy on simply
forwarding, and three times faster on virus scanning, and twice faster on both virus
scanning and decompression. Our proxy keeps constant memory consumption for
each connection and works without disk storage while the disk usage of AMaVis is

proportional to both the number of clients and the mail size.

Keywords: stream-based, segment, on-the-fly, virus, proxy, interleave,

decompression

Contents

AADSTIACT ...ttt et b et e e re e beeneenres I
(00 01 1=] 0 KT UP PR ORI PRTOPRTPPN Il
List Of FIQUIes and TabIesSoiiiiiiiiiieiee e e v
Chapter 1. INErOAUCTION ..c.viiiiiiec e e 1
Chapter 2. Problems and Design ISSUES.........coruerurrieerieriesieerieseesiee e 4
Chapter 3. SyStem ArChItECUIEcoviieiie e 9
3.1 SYSEEIM OVEIVIBWeeiiiiiieieeee sttt sttt sttt et sse e b e be s e nbeenbeenee e 9
3.2 Processing WOrKFIOW...........couoiiiiiiiieee e 11
Chapter 4. System IMplementation ..o 14
4.1 Implementation ArChItECTUIEcoeeiiiiiiie s 14
4.2 SINQGIe PrOCESS CONCUITENCYccueeueerieesieestesieesteeeesreesteeeesseesteesesseesseeeesseeses 16
Chapter 5. Performance EValuation...........cccoceiiiiiiiniieiese e 18
5 L TSR ...t et e ae s 18
5.2 Performance and the Impact of Different Mail Content.............cccceevenvenns 18
5.3 Buffer ReqUIFEMENT ...l il e 21
5.4 Internal Bottleneck AnalySIS ... fi it it 25
Chapter 6. Conclusions and FUture Worke ..o ot ve e 27
REferenCes.......coovvveeneecrineenen T g IO e 29

List of Figures and Tables

Fig.1. Storage-based proxy - AMaVIS........ooiiiiiii e e e 4
Fig.2. SYStEM OVEIVIEW. ve e iie e e e e iee e e e ee e e eeeaeeeenenneneneenena 10
Fig.3. Composition of amail....... ..o 11
Fig.4. Processing mail attaChments.............ccovvvie e iin i e 12
Fig.5. Implementation arChiteCture..........cooveiii i e e e e e ve e 15
Fig.6. Decompression implementation.............coooiviiiiiiiiiie e e e e e, 16
Fig.7. Mail processing StatesS........ovvuvreeieie i e e e e e ven e ieenee e ee e AT
Fig.8. Latency of sendingone mail.............cooiiiiiiiie i e 19
Fig.9. Throughput with virus scanning and deCOmMpPression............vevveeuevenvennenn, 20
Fig.10. Space usage of memory and disK...........c.coovveiie i 21
Fig.11. Space usage of mail with different size.............cccooveiii i, 23
Fig.12. Percentage of processing time of stream-based proxy...............ccoevvennne. 25
Fig.13. Percentage of processing time of AMaViS................ccoeeiveivie e en .. 26
Table 1. Compression formats... P ¢
Table 2. Programs related to AMaVi$S and postflx 245
Table 3. Disk usage in AMaViSand PostiiX... coiii. it 24

Table 4. Ratio of processing time. ... e i i i ee e eae e 20

Chapter 1. Introduction

Conventionally, anti-virus systems run on host computers. Since most infections
come from outside networks, blocking viruses on the access gateway appears to be a
trend. Such a gateway-based centralized management could reduce the cost of
maintaining the anti-virus system on a large number of host computers. Most of the
free E-mail service provider like Yahoo![26] has the virus scanning function which
needs a extra fee, and users may not take that service. To guarantee all users are
protected against viruses, it needs to do anti-virus on the access gateway. Virus
scanning on the gateway, however, can be storage-based or stream-based. The former
receives the entire mail content befere scanning, while the latter scans the part that
has been received and sends it out.immediately after-the scanning. The storage-based
scanning has bad storage scalability. ilFar-example, if*10,000 connections send 500KB
files concurrently, the total storage. occupied in the gateway would be 5GB. The
system needs large storage and hence is more costly.

By interleaving the receiving, scanning and sending, the required memory buffer
size for a connection can be kept constant rather than proportional to the file size. All
the components in the processing flow should be also stream-based. For instance, the
mail content may be MIME encoded, compressed and encrypted. Fortunately, the
decoding and decompression can be stream-based, i.e. interleaved.

This work implements a stream-based mail proxy with interleaved
decompressing and virus scanning. Several open-source packages are selected to be
integrated: Net::SMTP::Server[1] for SMTP protocol handler and another modified
version for POP3 protocol handler, ClamAV[2] for anti-virus, and ZIib[3] +

Compress::Zlib[4] for decompressing. For the better performance and lower memory

1

usage, the system is implemented as a single-process concurrency proxy. After the
implementation, we perform a series of external and internal benchmarking. This
proxy is compared with AMaViS[5] in terms of throughput, latency, and the space
usage in memory and disk. We intent to answer the questions: (1) How can we
interleave decompression and virus scanning seamlessly, given the complex MIME
mail format? (2) By how much can the stream-based proxy improve the scalability
and the performance? (3) How heavy are the decompression and virus scanning
compared to other components?
Related Works

Most commercial products are storage-based such as “InterScan messaging
Security Suite” from TrendMicro[6], Fortigate series from Fortinet[7], and “F-pod
series[8]” from FRISK Software. The open source project AMaViS is also
storage-based. Until March 2005, the only product that claimed itself stream-based is
the “Content Security Gateway” ifrom_-CPSecure[9]. The open-source project
“Anomy”[10] is a mail sanitize tool used on.the F-pod antivirus product. The MIME
parser in Anomy treats mails as a stream of data rather messages on disk. This concept
is close to ours, but Anomy processes the attachment as an entire file. One reason that
storage-based anti-virus systems still dominate the market is they can do versatile
mechanisms to handle an infected file, such as quarantine. The quarantine stores the
infected file so a user is able to retrieve the file. A standalone stream-based anti-virus
system simply drops the infected part of the file, and the file is destroyed. To achieve
functions like gquarantine, the stream-based system can cooperate with another mail
storage server which duplicates mails without any content analyzing.

There are several research topics about performance improvement by processing
segments instead of store-and-forward. The cut-through switch[19] sends the portion

of packet out before it receives the entire packet. The “segment-based proxy caching

2

of multimedia streams”[20] treats the whole video as variable-size segments. About
the on-the-fly decompression in this paper, the implementation of “compression proxy
server”’[18] discussed the compression/decompression mechanism on a web proxy.
The rest of the work is organized as follows. Chapter 2 describes the
requirements and design issues. The system architecture and the system workflow are
presented in chapter 3. Chapter 4 gives the details of system implementation. We
evaluate both stream-based and storage-based systems by external and internal

benchmarking in chapter 5. Chapter 6 concludes this work.

Chapter 2. Problems and Design Issues

Overheads in a storage-based mail proxy

proxy

Port 25 Port 10025 Port 10026
SMTP server

Sender MTA AMaViS MTA

@@ :@ :@ :O

W =1

—

Decompression P
program

Virus Scanner

N . 3
|

Fig.1 Storage-based proxy - AMaViS

Since AMaViS is a widely .used storage-based mail proxy, we choose it to
observe the mechanism and overheads in-a-storage-based mail proxy. Figure 1 shows
the typical composition and the dataflow. of AMaViS. AMaViS acts as an “interface”
daemon connecting two MTA (mail transport agent) daemons. An MTA daemon
receives mails from port 25. The AMaViS daemon scans the mail from the MTA. If
the mail doesn’t contain virus, the AMaViS daemon transmits it to another MTA
daemon which responds of sending the mail to the real target. The reasons of this
complicated three daemon architecture are: (1) The historical problem, the original
version of AMaViS is a script program called by MTA. It became a daemon for
performance issue. (2) To protect against mail loss. AMaVis is not a full-featured
SMTP server, it needs MTAs which respond of sending and receiving respectively to
prevent the unpredictable things.

There exist three distinct overheads: file access, inter-process communication

and process forking in AMaViS. These overheads are also examined with the

4

performance results in Chapter 5.

A storage-based mail proxy receives an entire file before starting to process it. It
often stores the file to a disk through the file system. Any processing could be slowed
down by the lengthy file system access and disk access. This overhead increases as
there are other processing stages like decompression and virus scanning, all involving
heavy file access. In Figure 1, the file access overhead is in all three daemons,
especially in AMaViS. AMaViS receives the mail and decodes attachments into files.
If the file needs to be decompressed, AMaViS calls the external program to
decompress it into another file. Finally, AMaViS calls virus scanner to scan those files.
Lots of file system access overhead in this processing.

Since mails need to be transferred between the three daemons, there are several
inter-process communications. When AMaViS. calls the external program to
decompress and scan viruses, the.inter-process communications also occur because
the data need to be transferred between different. processes.

AMaViS and most MTAs use multiple processes to achieve the concurrency.
When there are many clients, per-client processes are forked in the three daemons.
Lots of the memory is occupied by these processes. The fork system call also brings

heavy overheads.
Requirements of a stream-based mail proxy

The most essential requirement of a stream-based mail proxy is that each
component in the proxy should be stream-based. The processing in a mail proxy
contains MIME parsing, decoding, decompressing, virus scanning, and encoding. The
proxy receives a part of a mail in a memory buffer, and then processes the buffer
according to its content. Some intermediate buffers may be required. For example,
decompressing and decoding need extra buffers. The processing is on the buffers

rather than on the entire file.

Concurrency strategy

The per-connection multi-process architecture uses too much memory. The
multi-threaded architecture is more feasible. A thread can be allocated either to
execute a specific function or to serve a connection. In the former strategy, each
processing function in the proxy has a corresponding thread which handles many
connections concurrently and also needs to synchronize with other threads. In the
latter, a thread is allocated for each connection instead. Each thread handles the mail
step by step, from protocol handling to virus scanning.

However, our implementation platform is on Perl. The creation of threads in Perl
uses as much memory as forking processes[11] and the Perl interpreter is also
duplicated, so the name of thread in Perl is “ithread” which means interpreter-level
thread. Finally we choose the single-process architecture with socket 1/0 multiplexing
to handle concurrency. Although the single-process architecture could not take
advantage over the multi-processor system and is more complicated to maintain the
code, it has the most economical‘memory usage and eliminates the context-switching
overheads. There is also no thread synchronizing and inter-process communication.
These could render high scalability in terms of the number of connections.

On-the-fly decompression

Storage-based systems need to store the decompressed files, which may be much
larger than the original files. A denial-of-service attack could send a file that is over
100 times larger after decompression. Storage-based systems thus often bypass or
block the file whose size might exceed a threshold after the decompression.

Lossless data compression methods are often the “adaptive dictionary”
algorithms, such as LZ77[21], LZ78[22] and LZW[23]. A word is added to a
dictionary when it appears for the first time. When the same word appears again, the

encoder substitutes a short code for it. The file can be later decompressed by indexing

on the dictionary. This sequential compression/decompression mechanism makes it
possible to decompress the portion of data in order. As long as the dictionary is
located at the beginning of the file and the proxy receives segments in order, the
stream-based decompressing by indexing should be feasible. Table 1 presents the
common compression formats. The BWT[24] algorithm is block-based since it
processes a block of data which is 900KB by default. The proxy need to queue the
data until the entire block is received. The self-extract file contain the decompress
program and the compressed data. The proxy need to identify the self-extract file and
decompress it on-the-fly. Some compressed file may be encrypted, the proxy can’t

process the encrypted file.

[Format Program |Algorithm File extent |Stream?

unix compress |compress |LZW Z Yes

gzip gzip Deflate .0z Yes
(LZ77+Huffman), ' }tgz

zip \Winzip Deflate Zip Yes

7zip 7-zip LZMA 1z Yes

rar WIinRAR |LZSS rar Yes

bzip2 bzip2 BWT bz2 Block-based

Iha Iha LZ78+Huffman Iha .1zh Yes

self-extract itself Depends on format |[.exe Yes *

Table 1 Compression formats

The original design objectives of file compression are not for the streaming
purpose. The ready-made programs and libraries all process an entire file. It makes
stream-based systems not so popular in the market. To do the on-the-fly
decompression, the system needs to modify low-level decompression libraries and
call the low-level API directly. For example, for the files with the *“.gz” extension, the
deflate function in ZIib[] is called instead of executing the gzip[12] program. The
detailed implementation is addressed in Chapter 4.

A file can be compressed more than once, i.e. recursively, and a compressed

7

archive may contain multiple compressed files. On-the-fly decompressing is
complicate to handle the recursive compression, because it needs to parse the
decompressed content continuously to check if another compressed file is there. A
compressed file creates a decompressing process and a parsing process which might
find another compressed file. When the archive contains multiple compressed files
with recursive compression, several decompressing and parsing process at the same
time and the data transfer between them is complicated. By contrast, the storage-based
system can simply solve this problem by recursive decompression using external
program sequentially.
Virus patterns across segment boundaries

The stream-based system scans individual buffers where segments of file content
are processed, but virus patterns may be across the.segment boundaries. There are two
solutions to this problem. The=System can keep.the state of the virus scanner, i.e.
which signature has its head matching-the-tail of last segment, through the entire
scanning. This solution needs to madify the virus scanner. Another solution uses a
mechanism called cushioned scanning[13]. A cushioned scan extends the buffer with
sufficiently large data from the tail of the previous scan buffer on the head side. That
is, data in the cushion buffer is scanned twice. The size of a cushion buffer should not
be shorter than the longest pattern in the virus database. The same problem also
occurs on decompressing, the decompression engine need to keep the decompressing

status of the file throughout the entire decompressing.

Chapter 3. System Architecture

In this chapter, we present the software architecture of the stream-based mail
proxy. The implementation of this architecture is described in chapter 4.

The system is designed to achieve the following goals:
Scalability: Stream-based processing is used to interleave file decompressing and
virus scanning on file segments without storing the entire file. The buffer space
requirement is greatly reduced. Hence, a large number of connections can be support.
Performance: A storage-based system like AMaViS often calls external commands to
decompress files and scan viruses. Also,, AMaViS needs to cooperate with MTAs, and
so totally three daemons are on the systemiat the same time. The stream-based system
calls the shared library to decompress and scan viruses. It is implemented in a
single-process architecture. The overheads-in" context-switching and inter-process
communication are eliminated. Also, stream-based processing eliminates the file
access overheads which is especially large in AMaViS daemon described in chapter 2.
Extensibility: The system should be able to easily integrate new network protocols for
extension because of separated modules. Besides the SMTP and POP3, other mail
service like IMAP could be integrated in the future.
Transparency: The system monitors transparently every connection between the

internal and external networks. No awareness of the system is needed.

3.1 System overview

(a)SMTP SMTP proxy Daemon_SMTP
veer On-the-fly SMTP Server
> (1) Decompression|)
Engine
@ »| | MIME parser >\
3) and decoder 4)
SMTP handler
(@)POP3 POP3 proxy Daemon_POP3
User On-the-fly POP3 Server
3P (1) Decompression|)
Engine
x P Dispatcher gl (2) S
@ < MIME parser | |g
(4) and decoder (3)
POP3 handler

Fig.2 System overview

Figure 1 shows the overview of our system. The thin line represents the direction of
protocol, while the bold line represents,the direction of mail transmission. First, a
dispatcher intercepts the packets'from-user and redirects them to the corresponding
protocol handler. For example,-the dispatcher redirects connections with destination
port 25 to the SMTP daemon. The SMTP/POP3 handler communicates to the user and
the server simultaneously. After the protocol communication, the mail is ready to be
sent. The direction of mail transmission is the difference between SMTP and POP3.
The data may be encoded or compressed. The attachments in a mail are encoded with
MIME encoding, so the service about electronic mail like POP3 and SMTP need a
MIME parser. The decoded attachment may be a compressed file, and the on-the-fly
decompression engine decompresses it. After preprocessing, the system has a block or
segment of partial data from the attached file. The system scans it with the virus
scanner. If there is no virus, the original data read from the sender is forwarded to the
receiver. If the mail contains the virus, the proxy can break the connection

immediately and send a notification to user.

10

3.2 Processing workflow

This section presents the detailed workflow of processing one mail which is the
same in SMTP and POP3. A MIME encoded mail is composed by several pairs of the
MIME header and the MIME body after the mail header. The MIME header is
different from the mail header. Figure 3 shows the composition of a mail. The mail
body and several attachments are encoded into MIME body by several encoding
methods defined in RFC 2045[25]. Common encoding methods of a MIME body are
UUE, Base64, quoted-printable, etc. The MIME header contains the information of
MIME body, such as the encoding method, the data type, and the filename of the

attachment.

| Header ' Body ' Attachment ' Attachment |

MIME | MIMEMIME MIME | MIME
headeri Body | header | MIME-Body header | Body

Fig.3 Composition of a MIME encoded mail

Processing the mail header

The mail header is the first part in.every-mail. The mail header parser reads the
header from raw buffer and checks if this mail is MIME encoded. If it is MIIME
encoded, the MIME parser is ready for parsing the MIME header and the MIME
body.
Process mail body

The mail body is after mail header immediately. A body parser can be put here to
checks the body if it is a spam, and if it contains malicious links or JAVA/VB scripts.
The body parser may modify the mail body to remove these malicious things. Since
we only care about the virus in attachments, the mail body is simply forwarded to the
destination. There is no body parser in our implementation.

Process mail attachments

11

(@) jpg, txt, wav...

—Receive

(b)|exe, dll, doc,

Virus Mo 7
scanner Send out

decodeg” MIME Body~

MIME
decoder |

IME Bod

MIME iarser

A

A

(c)|tgz, zip...
- MIME Virus Send out
Receive scanner

Decompressing
engine

tgz, zip (recusive)

Fig.4. Process mail attachments

Attachments are mostly encoded and may be compressed. Figure 4 shows the
total workflow of processing attachments. First, the MIME parser gets the file name
from the MIME header. According to the file name, the proxy processes the
attachment in three ways: (a) The non-malicious files, identified by the file extension,
can be ignored because they could net-have-viruses, like “*.jpg” and “*.txt”. (b) The
file type needs to be scanned for viruses such as executable files types like “*.exe”
and other file types like “*.doc”. (c) If its type shows the file is compressed. The
proxy needs to do decompressing before scanning. The decompressed data should
also be recognized weather it may contain viruses. There is a “file recognizer” can
analyze the decompressed data to decide the later process. If the decompressed data
contains another compressed file, the system needs to decompress recursively. The
sizes of intermediate buffers such as “decoded” and *“decompressed” are not directly
proportional to the size of the attachment. These buffers are created per mail. The size
of “decompressed” buffer is decided by the compression ratio and the content being
decompressed.

When the virus scanner finds viruses in the attachment, the proxy drop the

remaining data of the attachment. The destination will receive a broken attachment.

12

The user on the destination is free from viruses.

13

Chapter 4. System Implementation

The system runs on a PC with Linux kernel version 2.6.10. It is implemented in
Perl[] because of its outstanding string processing ability and various existing
program libraries in Perl modules. Zlib[] is the most widely used
compression/decompression library in the UNIX-like operation system. We use
ClamAVT[] as our virus scanner, since it is the only active open-source virus scanner at

present.

4.1 Implementation Architecture

Figure 5 presents the architecture of-euriimplementation. The bold texts are the
name of modules in our system, and some_names appeared in Figure 1. The names in
parentheses are the existing open-source packages used in that component. All parts
run within a single process in the user‘space. The arrows represent the relationship
between components. For example, the “virus scanner interface” calls ClamAV to
scan a buffer by calling scanbuf() in the ClamAV shared library. Except that the Zlib
and ClamAV are shared libraries written in C, the other components are implemented
in Perl or Perl modules.

When the kernel receives the packets, netfilter redirects the packets with
destination port 25 (used by SMTP) or port 110 (used by POP3) to the port our proxy
server is listening on. The proxy server accepts the connection and identifies a socket
handler. After the SMTP handler communicates with the socket handler from SMTP
sender, it connects to the SMTP target to get another socket handler. With both the

source and target socket handlers, a mail processor is created. The mail processor is

14

written as a module which can be created as an object in run time.

SMTP/POP3 Handler| | Mail Processor
(Net::SMTP) — | MIME Parser
I new() (Anomy)
smtp() BASE64 Decoder
IO Multiplexing (MIME::Base64) Decompress
while loop Decompress engine
10::Select i i
() mive interface _ gzread() (2lib)
Parser() | | (Compress::Zlib)
select() . Virus
Proxy Server V|r;1nst§rcf222er Scanner
(I0::Socket) (Mail::ClamAv) | [scanbuf0 (ClamAV)

| redirect() write() User

. Kernel
B receive Dispatcher send
receive [PispaCher | send =

Fig.5 Implementation architecture

The mail processor handles the entire mail, including parsing MIME, reading the
buffer from the source socket, scanning the buffer and writing the buffer to the target
socket. The MIME parser in the mail processor is.an open-source package “Anomy”
which is a mail sanitizer. Because every connection ereates a mail processor object, it
becomes the main overhead in the -memory-when there are a large number of
connections. The mail processor is‘independent of any protocol. To monitor the POP3
service, we can simply use the POP3 handler to cooperate with the mail processor.
The detailed workflow of the mail processor is presented in section 3.2.

The italic type of the open-source package in Figure 6 means the codes of that
package are modified for our purpose, including Net::SMTP::Server, Compress::Zlib
and Zlib. Because of 10 multiplexing, we modify Net::SMTP::Server to process one
line a time whenever a socket is selected. Compress::Zlib is a Perl module and an
interface to call the Zlib shared library in Perl. Zlib fails if it reads the end of data
stream which does not equal to the end of file. We remove this limit in Zlib to make
partial decompression possible. Other packages without modification can be upgraded
to newer versions if the arguments of the functions used in the package remain their

original definition.

15

g 0 d()
@ m handler_ou open rLZIingzrea decompresse}i/

Fig.6 Decompression implementation

Figure 6 shows the detailed implementation of decompression. The system
supports the files compressed by the Zlib at first in our implementation. Gzopen and
gzread are functions in the Zlib shared library. Because Zlib is designed to
decompress an entire file, it opens the file handler by gzopen function before any
decompressing using gzread. The system treats the handler “handler_out” as the file
opened by Zlib, and input the decoded data into the handler “handler_in.” The handler
“handler_in” connects with the handler *“handler_out” by the inter-process
communication mechanism called Pipe. The handler “handler_in” needs to be set as
“non-blcoking 1/0”, and therefore we are able to input the decoded data to the handler
“handler_in” and decompress data from the handler “handler_out” in turn. The
combination of handler_in, Pipe, and “handler_out” can be seen as a queue which is
capable of reading and writing-at any time.-This mechanism is applicable to all to

every compression libraries originally designed to handle an entire file.

4.2 Single process concurrency

We implement the server as a single process and use select() to achieve
concurrency, because both of the multi-process and multi-thread mechanisms in Perl
consume lots of memory resource. The detailed reason is described in chapter 2.

Because only one process handles all clients in turn, we need to keep the state of
every client. Every time when 1/0 multiplexing selects a client to handle, the system
calls the corresponding function according to the state of clients. The functions in
Figure 6 are smtp() and MIME parser(). We can derive Figure 7 to show all states of a

client from all the mail processing situations in chapter 3. Except that the SMTP and

16

“quit or next” states are related to the SMTP protocol, other states are kinds of the
MIME parsing states. "Bypass”, “scan” and “decompress” handle the attachment in

three ways described in Section 3.2.

mail header

first body

Without MIME

dangerous compressed

attachment
o) i
d

ata end

quit or next

send next malil
Fig.7 Mail processing states

To achieve short response time, the processing time in each state should be short.
The SMTP protocol handler handles one protocol message at a time in the SMTP state.
The system reads only 8KB :data each time when handling the three types of
attachment. In AMaViS, however; the MTA receives all mails and store them to the
disk first. Then AMaViS processes mails sequentially. If there is a large file in front of
many small mails, small mails need to wait until the large one has been finished. The
average processing latency in the storage-based proxy may be long because the large
mail blocks the small mail. The stream-based proxy often has shorter latency and

servers clients fairly.

17

Chapter 5. Performance Evaluation

5.1 Testbed

We compare our stream-based mail proxy with AMaViS that is a storage-based
mail proxy. We install these two proxies on a PC with 1GHz Pentiumlll CPU, 512MB
SDRAM, 20GB hard disk and 100Mbps Ethernet network. The operating system is
Linux with kernel version 2.6.10. We use Perl 5.8.5 to run both proxies which are
both implemented in Perl. Both proxies use ClamAV 0.83 as the virus scanning engine.
Because AMaViS is an interface to cooperate with two MTAs, we use Postfix since it
fully supports AMaVis.

For fairness, we configure® AMaViS in. the.following way: (1) disable the
anti-spam function since our stream-based-proxy does not check the spam mail, (2)
run ClamAV in the daemon mode which“is-faster than the command line mode, (3)
disable the cache mechanism since AMaViS bypasses the same mail processed before
within a configurable time.

We prepare two types of mails as the mail traffic in our benchmarking to test
different processing mechanisms. The first is the mail with 1MB executable
attachment and will not to be scanned for virus or decompressed. The proxy simply
forwards this mail. The second is the mail attaching the compressed file from the
previous 1MB executable file. The compression ratio is 37%. The size of the first mail
is 2.71 times of the second mail. Because both proxy scans the decompressed

attachment, these two mail have the same content to be scanned.

5.2 Performance and the Impact of Different Mail Content

18

To understand the difference in performance between the stream-based mail
proxy and the storage-based mail proxy, we measure latency and throughput. Three
types of mail traffic are used.

Since AMaViS receives the mail and stores it to the hard disk first before
processing, the mail sender finishes sending before the start of receiving on the target.
We need to log the end of receiving on the target rather than the end of sending on the
mail sender. The mail sender and the target receiver are run on the same computer, so
we are sure that the times logged on sender and receiver use the same time clock.

Latency is the time from the start of sending one mail to the end of receiving on
the target MTA. When the proxy is used, the mail is held by the proxy for a while. We

observe the latency with our proxy, AMaViS and without the proxy environment.

External Benchmarking - Latency

2000

= 1500
£ © F+O (original)
>
% 1000 B F+O (compressed)
3 O F+V+0 (original)
500 O F+D+V+0 (compressed)
0 | — |
N0 Proxy AMaViS stream-based

F: forwarding O: other mail processing V: virus scanning D: decompression
Fig.8 Latency of sending one mail

Figure 9 shows the results of latency. The forwarding time are tested on both
mails in three proxy environments. The latency is 102 ms without extra processing or
the proxy. When the proxy simply forwards the mails, our proxy takes 213 ms and
105 ms, while AMaViS takes 1553 ms and 780 ms. Compared with virus scanning
and decompressing, the latency of the our proxy mail in our proxy is 518 ms and 527
shorter than 1802 ms and 1267 of AMaViS. The result also means AMaVisS is more

sensitive of mail size than our proxy. Significantly, our proxy has short latency in all

19

types of mails we tested.

Throughput is defined as the total mail size divided by the elapsed time. A large
number of identical mails are sent through the proxy and the total elapsed time is
measured. The size of a mail is different from that of the file attached since Base64
encoding expands the size of the file being attached to 1.33 times. We use the size of
the mail to calculate the throughput. To achieve the maximum throughput, we use
more than twenty clients on the sender sending to our proxy concurrently. Since
AMaViS receives all mails and then processes sequentially regardless of the number
of clients, a large number of clients do not have larger throughput on AMaVis.

The throughput of our proxy when the proxy simply forwards maisl is 65.2 Mbps
which is very close to the throughput of 69.93 Mbps without any proxy. AMaViS gets
the throughput of 9.51 Mbps even when it disables both anti-virus and anti-spam

functions. We can conclude that-the storage-based architecture itself is a bottleneck.

External Benchmarking - Throughput

25
20 F

Oscan

B decompress

10 —

O decompress_E

Average Throughput (Mbps)
O

AMaViS Stream-based

Fig.9 Throughput with virus scanning and decompression
Figure 10 shows the throughput with virus scanning and decompression. With
virus scanning but without decompression, our proxy has 21.79 Mbps. Dropping from
65.2Mbps in simple forwarding implies virus scanning is the bottleneck. AMaViS gets
6.9 Mbps with virus scanning, slightly dropped from 9.51 Mbps in simple forwarding.
The mail with a compressed attachment has two throughput values. The higher one is

the “effective throughput”, denoted with “_E”, to represent the throughput in scanning

20

the decompressed file, calculated with the decompressed attachment size instead of
the mail size. Because the file size to scan for viruses is the decompressed attachment
size, the effective throughput represents the real throughput of virus scanning.

From external benchmarking, we conclude the following points. (1)Our proxy
has a much better performance the AMaViS. (2) The storage-based architecture itself

is a bottleneck. (3) Virus scanning takes more time than decompression.

5.3 Buffer Requirement

We evaluate the total buffer size by monitoring the disk and memory
consumption of two proxies while there are variable clients. Each client sends one

mail attaching a 300K file compressed from a 1MB file. Figure 11 shows the result.

Internal Benchmark - Space Usage 1
800
700 3
. 600 /‘?‘ —— AMaViS_mem
8 500 [Qg
= 400 —=— AMaViS_disk
;}ﬁ 300 —— AMaViS_total
200 | —— Stream_mem
100
0
0 20 40 60 80
Clients

Fig.10 Space usage of memory and disk
“AMaViS_mem” and “AMaViS_disk” mean the memory usage and disk usage,
respectively, on AMaViS and postfix. Because AMaViS needs to cooperate with
postfix, we count them both. ”AMaViS_total” is the sum of “AMaViS_mem” and
“AMaViS_disk”. “Stream_mem” means the memory usage of our proxy. Since we
don’t use any temporary file, there is no disk usage of our proxy. We can figure out
the storage-based proxy uses much more space on both memory and disk than our

stream-based proxy.

21

In the system, there are two kinds of buffer requirement: the runtime process
space and the mail-storage space. The runtime process space is required when the
forking of process and absolutely is in the memory. In a per-connection multi-process
architecture, the runtime process space is directly proportional to the number of
clients. The mail-storage space is required when the proxy processes the mail, and it
might be in the disk or the memory. The mail-storage space is often directly
proportional to both the mail size and the client number in the storage-based system.

The memory usage glows enormously in the combination of AMaViS and postfix
because of the complicated communication between the three daemons described in
Chapter 2. The memory usage in AMaVis and postfix is the runtime process space.
Both of postfix and AMaViS have multiple processes, and they fork the corresponding
number of processes to handle clients. First postfix daemon receives mails from the
clients and sends mails to AMaViS, and second postfix daemon receives mails from
AMaViS and sends mails to real target. The-number-of AMaVisS is configured before
running the proxy and is a fixed number in.system run time. The number of postfix
child processes is the sum of the number of clients and the number of AMaViS. An
SMTP sending program is used to send mail to AMaViS processes by the first postfix
daemon and the real target by the second postfix daemon. Table 1 lists all programs
related to AMaViS and postfix, including the size and the number of the processes.
We use X to represent the number of clients and Y to represent the number of

AMaViS child processes. The memory usage of AMaViS and postfix is
(4491+2859) * (X+Y) +4259*2Y+20430*Y+19000+2759+7463
The memory usage grows about 7350KB per client in AMaViS and postfix, it is the

sum of the “smtpd” program memory usage and the “cleanup” program memory
usage. The number of “Cleanup” processes is corresponding to the number of

“smtpd” processes which increases as the increasing of the number of clients.

22

Program Description Size Number
smtpd Postfix SMTP server child process 4491 | X+Y
cleanup Process the queue received by smtpd 2859 | X+Y
smtp Postfix SMTP sender 4259 | 2Y
AMaVisS child AMaViS child process 20430 | Y
AMaViS master | AMaVisS listening on port 10025 19000 |1
Postfix master Postfix listening on port 25 and 10026 2759 |1
Clamd ClamAV daemon 7463 |1

X : The number of clients Y: The number of AMaViS child processes(fixed during run-time)

Table 2 Programs related to AMaViS and postfix

1

|

Size(MB

140

20
00
80
60
40
20

Internal Benchnarking - Space Usage 2

& || —— Amavis_disk_0.3->1
A " —— Stream_mem_0.3->1
/ —&— Amavis_disk_1->5
—>— Stream_mem_1->5
0O 10 20 30 40 50 60 70 &0

Clients

Figure 12 removes “AMaViS_mem” and “AMaViS _total” in Figure 12, and adds
another result tested by mails attaching a 1MB file compressed from a 5MB file. The
disk usage “AMaViS_disk” is used to store mails being processing and is the
mail-storage space. The disk usage in storage-based proxy is directly proportaional to
the mail size. We can see the difference in AMaViS when using different mail size.
Our proxy remains the same memory usage no matter how large the mail size is
because of the streaming operation with interleaved decompression and virus
scanning. Our proxy has 13.7MB runtime process space in memory when there is no

client. The runtime process space in our proxy does not increase as the increasing of

Fig.11 Space usage of mails with different sizes

23

the number of clients, because of the single-process architecture. The memory usage
in our proxy only increases 176KB per client and the increasing is the mail-storage
space. The 176KB is the mail processor described in section 4.1, it is composed of

buffers and variables to record mail states.

Description Size Number
Postfix | Store all mails on disk 452 (mail size) X
AMaVisS | Save the mail being processed 452 Y

Decompress the file 1032 (decompressed) | Y

Copy the files from the archive | <1032 Y
X : The number of clients Y: The number of AMaViS child processes(fixed during run-time)

Table 3 Disk usage in AMaViS and postfix

Table 2 lists the detailed disk usage when using the mail attaching a 300K file
decompressed from a 1MB file. After postfix receives all the mails, AMaViS saves
one copy of each mail in its repository. Then:AMaViS calls the external program to
decompress the file from the ariginal”archives; and copy the selected type of files
from archives to scan for viruses. We ¢an.use another equation to calculate the disk
usage in AMaVisS and postfix as

(Mail Size) *X + (Mail Size + 2*(Decompressed Size)) * Y

We monitor the memory space usage and disk usage on both proxies to
determine the requirement of the runtime process space and the mail-storage space.
The runtime process space of AMaViS grows enormously as the increasing of the
number of clients, because of the complicated architecture. The mail-storage space of
AMaVisS is in the disk and is directly proportional to both the number of clients and
the mail size. The runtime process space of our proxy is about 13.7MB regardless of
the number of clients, because of the single-process architecture. The mail-storage
space of our proxy is in memory and is about 176KB per client regardless of the mail

size.

24

5.4 Internal Bottleneck Analysis

To verify the bottleneck more clearly, we use the Perl module Devel::Profile[16]
to record the processing time of every function in our proxy. We tested several mails
attaching 1MB executable file and attaching decompressed file of that 1MB
executable file. From Figure 12 we can clearly figure out the bottleneck is virus
scanning which takes above 60% of the execution time. Although the decompression
is not the main bottleneck in our proxy, given two identical size mails, one is
compressed and the other is not, the compressed one takes more time on scanning for
viruses because the proxy scans the file size after the decompression. The main
bottleneck in virus scanning is matching the virus patterns. If we can improve the
string matching algorithm in virus scanper, the throughput of our proxy can be
improved. Figure 13 shows the internal_processing'time of AMaViS. The file system
access overheads are in virus scanning, decompression, receiving, sending, and IPC.
If we set the ratio of decompression:to.1,-the‘ratio of processing time is presented in

Table 4.

Internal Benchmarking - Processing Time of stream-based
70
60
50 |
40 1 E compressed
30 [
20 |
10 1

M original

percentage (%)

Fig.12 percentage of processing time in stream-based mail proxy

25

(1
()

Internal Benchmarking - Processing Time of AMaViS

— NN LWL
O

Percentage (%)

OO NN OWLDN

B compressed

M original

Fig.13 percentage of processing time in AMaViS

scan | decompress | Handle MIME | receive | send IPC
Stream-based | 6.3 1 (55ms) 1.44 0.32 0.22
AMaViS 2.88 1 (96ms) 1.63 1 0.63 | 4.25

Table 4 Ratio of processing time

26

Chapter 6. Conclusions and Future Work

In this work, we design and implement a stream-based mail proxy with
interleaved decompression and virus scanning to avoid storing an entire mail. Without
storing the entire mail, we eliminate the file system access and save the buffer usage.
Several benchmarking experiments compare the storage-based proxy with our
stream-based proxy in performance and space usage. An internal profiling analyzes
the bottleneck of our system.

The external benchmarking shows our proxy has shorter latency and higher
throughput in both mail with the original file attached and mail with compressed file
attached. When the proxy just .forwards the mail to the target, the decreased
percentage of the throughput is 6.7% from 69.93 Mbps to 65.2 Mbps in our proxy
while it is 86.4% form 69.93 Mbps t0°9.51 Mbps in AMaViS. Our proxy has 21.79
Mbps more than 6.9 Mbps in AMaViS-when scanning mail for the virus, and has 8.05
Mbps more than 3.82 when scanning and decompression. In the space usage, our
proxy grows 176KB per client in memory while the storage-based proxy grows
7350KB, and our proxy does not use any temporary file on disks while the disk usage
of storage-based proxy is directly proportional to both the number of client and the
mail size. Consequently, our proxy is better on both speed and space usage. The file
size to be scanned for viruses dominates the processing time in both proxies, and virus
scanning is the main bottleneck in our system.

This system is feasible for the embedded system environment without a hard disk
and is more scalable than the traditional storage-based proxy. Designing a better
algorithm or a hardware accelerator of string matching in the virus scanner can speed

up the system. Anti-spam is another useful function in the mail proxy, and we can do

27

it when processing mail body. Another way to improve system is that implement the

system in C instead of Perl. C is faster but has a worse string processing ability.

28

References

[1] Perl module: Net::SMTP::Server, http://search.cpan.org/~macgyver/SMTP-Ser

ver-1.1/Server.om .

[2] Clam AntiVirus, http://www.clamav.net/ .

[3] Zlib, http://www.gzip.org/zlib/ .

[4] Perl module: Comperss::Zlib, http://search.cpan.org/~pmqs/Compress-Zlib-1.3

4/Zlib.pm .

[5] AMaVis — A Mail Virus Scanner, http://www.amavis.org/ .

[6] Trend Micro, http://www.trendmicro.com .

[7] FORTINET, http://www.fortinet.com/ .

[8] F-pod Antivirus, http://www.f-prot.com/. .

[9] CP Secure, http://www.cpsecure.com/-—.

[10] The Anomy mail tools, http://mailtools.anomy.net/ .

[11] Things you need to know before programming Perl ithreads, http://qs321.p

air.com/~monkads/index.pl?replies=1&node id=288022&displaytype=print .

[12] gzip, http://www.gzip.org/ .

[13] Yevgeniy Miretskiy, Abhijith Das, Charles P. Wright, and Erez Zadok, “A
vfs: An On-Access Anti-Virus File System”, The 13th USENIX Security Sy
mposium, 2004.

[14] RFC 3548 - The Basel6, Base32, and Base64 Data Encodings, http://www.

faqs.org/rfcs/rfc3548.html .

[15] The C10K problem, http://www.kegel.com/c10k.html .

[16] Perl module: Devel::Profile, http://search.cpan.org/~jaw/Devel-Profile-1.04/Pr

ofile.om .

29

[17] Ying-Dar Lin, Chih-Wei Jan, Po-Ching Lin, and Yuan-Cheng Lai, “An Int
egrated Proxy Architecture for Anti-Virus, Anti-spam, Intrusion Detection, a
nd Content Filter”

[18] Chi-Hung Chi, Jing Deng, Yan-Hong Lim, “Compression Proxy Server: D
esign and Implementation”, USENIX Internet Technologies & Systems, 19
99

[19] P Kermani, L Kleinrock, “Virtual Cut-Through: A New Computer Commun
ication Switching Technique” - Computer Networks 3, 1979

[20] K. Wu, P. S. Yu and J. L. Wolf, “Segment-based Proxy Caching of Multi
media Streams”, WWW?2001, pp. 36-44.

[21] Ziv, J., Lempel, A., “A universal algorithm for sequential data compressio
n,” IEEE Transactions on Information Theory, 1T-23:337-343, 1977.

[22] Ziv, J., Lempel, A., “Compression of Andividual sequences via variable-rat
e coding,” IEEE Transactions won-Information Theory, 1T-24, 5, 1978.

[23] Welch, T.A., “A technique for high-performance data compression,” Comp
uter 17, 6 (June 1984), 8-19.

[24] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compressio
n algorithm,” Digital SRC Report 124, 1994,

[25] RFC 2045 - Multipurpose Internet Mail Extensions (MIME) Part One: For

mat of Internet Message Bodies, http://www.fags.org/rfcs/rfc2045.html .

[26] Yahoo! Mail, http://mail.yahoo.com/ .

30

