

國 立 交 通 大 學

資訊科學系

碩 士 論 文

以串流為基礎具有交錯解壓縮

與病毒掃瞄的郵件代理伺服器

A Stream-based Mail Proxy with Interleaved

Decompression and Virus Scanning

研 究 生：陳思豪

指導教授：林盈達 教授

中 華 民 國 九 十 四 年 六 月

以串流為基礎具有交錯解壓縮與病毒掃瞄的郵件代理伺服器

A Stream-based Mail Proxy with Interleaved Decompression and Virus
Scanning

研 究 生： 陳思豪 Student : Szu-Hao Chen

指導教授： 林盈達 Advisor : Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2005

HsinChu, Taiwan, Republic of China

中華民國九十四年六月

以串流為基礎具有交錯解壓縮

與病毒掃瞄的郵件代理伺服器

學生 : 陳思豪 指導教授 :林盈達

國立交通大學資訊科學系

摘要

在閘道器或防火牆系統上防毒時有中央控管與提早擋下病毒等優點。但

管理一群電腦時，傳統的先存下整個資料再處理的方法會有資源耗損太快的問題

以及大量的檔案系統存取負荷。我們實作了一個以串流為基礎的郵件代理伺服

器，它以交錯執行分析 MIME、解碼、解壓縮、掃毒等步驟達到部分地處理郵件

而不是先將整封存起來。在實作上，我們整合了一些開放源碼的套件，並且使用

系統呼叫 select 將其實作成單一程序的多工伺服器。這個系統完全沒有存取檔

案系統時的負荷，並且使用較少量的記憶體。我們的評測程式說明了在許多種的

郵件上，我們的代理伺服器與先存檔再處理的代理伺服器(以 AMaViS 和 postfix

兩套件組成)比起來同時具有更好的速度與更少的系統資源使用率。在測試數據

中我們發現我們的代理伺服器在沒有任何處理單純轉送封包的情況下比傳統儲

存全部的方法快七倍；在有掃毒的情況下快三倍；在有掃毒且有解壓縮的情況下

快兩倍。我們的系統在記憶體的使用上，不論該連線所傳送的資料大小，對單一

連線皆維持一個定值，總使用量隨著連線數線性成長；但傳統的方法在儲存空間

上與連線數與資料大小皆成正比。

關鍵字: 串流，分段，線上，即時，病毒，掃毒，代理伺服器，交錯，解壓縮

 I

A Stream-based Mail Proxy with Interleaved

Decompression and Virus Scanning

Student: Szu-Hao Chen Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao Tung University

Abstract

Anti-virus systems nowadays might operate on access gateways for centralized

management and early blocking viruses. When serving a group of computers, the

traditional storage-based mechanism has the scalability problem due to its storage of

mails under processing. This work designs a stream-based mail proxy which

processes the mail segment by segment without the storage of the entire mail and

interleaves the MIME parsing, decoding, decompression and virus scanning. We

integrate and modify several existing open-source packages into the proxy and use the

system call select to achieve single-process concurrency. The benchmarking reveals

our proxy is seven times faster than in the storage-based mail proxy on simply

forwarding, and three times faster on virus scanning, and twice faster on both virus

scanning and decompression. Our proxy keeps constant memory consumption for

each connection and works without disk storage while the disk usage of AMaViS is

proportional to both the number of clients and the mail size.

Keywords: stream-based, segment, on-the-fly, virus, proxy, interleave,

decompression

 II

Contents

Abstract ... II
Contents ...III
List of Figures and Tables..IV
Chapter 1. Introduction ..1
Chapter 2. Problems and Design Issues...4
Chapter 3. System Architecture ...9

3.1 System overview..9
3.2 Processing workflow..11

Chapter 4. System Implementation ...14
4.1 Implementation Architecture ...14
4.2 Single process concurrency..16

Chapter 5. Performance Evaluation...18
5.1 Testbed ...18
5.2 Performance and the Impact of Different Mail Content18
5.3 Buffer Requirement ...21
5.4 Internal Bottleneck Analysis ..25

Chapter 6. Conclusions and Future Work...27
References..29

 III

List of Figures and Tables

Fig.1. Storage-based proxy - AMaViS……………….…………….………………….4
Fig.2. System overview………………………………………………………………10
Fig.3. Composition of a mail……………………………….………………………...11
Fig.4. Processing mail attachments…...……………………………………………...12
Fig.5. Implementation architecture…………………………………………………..15
Fig.6. Decompression implementation……………………………………………….16
Fig.7. Mail processing states…………………………………………………………17
Fig.8. Latency of sending one mail………………..…………………………………19
Fig.9. Throughput with virus scanning and decompression…...……………………..20
Fig.10. Space usage of memory and disk……………………….……………………21
Fig.11. Space usage of mail with different size………………………………………23
Fig.12. Percentage of processing time of stream-based proxy……………………….25
Fig.13. Percentage of processing time of AMaViS…….…………………………….26
Table 1. Compression formats…………………………………………………………7
Table 2. Programs related to AMaViS and postfix…………………………………..23
Table 3. Disk usage in AMaViS and postfix…………………………………………24
Table 4. Ratio of processing time……………………………………………………26

 IV

Chapter 1. Introduction

 Conventionally, anti-virus systems run on host computers. Since most infections

come from outside networks, blocking viruses on the access gateway appears to be a

trend. Such a gateway-based centralized management could reduce the cost of

maintaining the anti-virus system on a large number of host computers. Most of the

free E-mail service provider like Yahoo![26] has the virus scanning function which

needs a extra fee, and users may not take that service. To guarantee all users are

protected against viruses, it needs to do anti-virus on the access gateway. Virus

scanning on the gateway, however, can be storage-based or stream-based. The former

receives the entire mail content before scanning, while the latter scans the part that

has been received and sends it out immediately after the scanning. The storage-based

scanning has bad storage scalability. For example, if 10,000 connections send 500KB

files concurrently, the total storage occupied in the gateway would be 5GB. The

system needs large storage and hence is more costly.
 By interleaving the receiving, scanning and sending, the required memory buffer

size for a connection can be kept constant rather than proportional to the file size. All

the components in the processing flow should be also stream-based. For instance, the

mail content may be MIME encoded, compressed and encrypted. Fortunately, the

decoding and decompression can be stream-based, i.e. interleaved.

 This work implements a stream-based mail proxy with interleaved

decompressing and virus scanning. Several open-source packages are selected to be

integrated: Net::SMTP::Server[1] for SMTP protocol handler and another modified

version for POP3 protocol handler, ClamAV[2] for anti-virus, and Zlib[3] +

Compress::Zlib[4] for decompressing. For the better performance and lower memory

 1

usage, the system is implemented as a single-process concurrency proxy. After the

implementation, we perform a series of external and internal benchmarking. This

proxy is compared with AMaViS[5] in terms of throughput, latency, and the space

usage in memory and disk. We intent to answer the questions: (1) How can we

interleave decompression and virus scanning seamlessly, given the complex MIME

mail format? (2) By how much can the stream-based proxy improve the scalability

and the performance? (3) How heavy are the decompression and virus scanning

compared to other components?

Related Works

 Most commercial products are storage-based such as “InterScan messaging

Security Suite” from TrendMicro[6], Fortigate series from Fortinet[7], and “F-pod

series[8]” from FRISK Software. The open source project AMaViS is also

storage-based. Until March 2005, the only product that claimed itself stream-based is

the “Content Security Gateway” from CPSecure[9]. The open-source project

“Anomy”[10] is a mail sanitize tool used on the F-pod antivirus product. The MIME

parser in Anomy treats mails as a stream of data rather messages on disk. This concept

is close to ours, but Anomy processes the attachment as an entire file. One reason that

storage-based anti-virus systems still dominate the market is they can do versatile

mechanisms to handle an infected file, such as quarantine. The quarantine stores the

infected file so a user is able to retrieve the file. A standalone stream-based anti-virus

system simply drops the infected part of the file, and the file is destroyed. To achieve

functions like quarantine, the stream-based system can cooperate with another mail

storage server which duplicates mails without any content analyzing.

 There are several research topics about performance improvement by processing

segments instead of store-and-forward. The cut-through switch[19] sends the portion

of packet out before it receives the entire packet. The “segment-based proxy caching

 2

of multimedia streams”[20] treats the whole video as variable-size segments. About

the on-the-fly decompression in this paper, the implementation of “compression proxy

server”[18] discussed the compression/decompression mechanism on a web proxy.

 The rest of the work is organized as follows. Chapter 2 describes the

requirements and design issues. The system architecture and the system workflow are

presented in chapter 3. Chapter 4 gives the details of system implementation. We

evaluate both stream-based and storage-based systems by external and internal

benchmarking in chapter 5. Chapter 6 concludes this work.

 3

Chapter 2. Problems and Design Issues

Overheads in a storage-based mail proxy

MTA MTA

Port 25 Port 10026

AMaViS

Port 10025

Mail Mail Mail

MIME paser
and decoder

Part Part

File File

Decompression
program Virus Scanner

Sender SMTP server

proxy

 Fig.1 Storage-based proxy - AMaViS

Since AMaViS is a widely used storage-based mail proxy, we choose it to

observe the mechanism and overheads in a storage-based mail proxy. Figure 1 shows

the typical composition and the dataflow of AMaViS. AMaViS acts as an “interface”

daemon connecting two MTA (mail transport agent) daemons. An MTA daemon

receives mails from port 25. The AMaViS daemon scans the mail from the MTA. If

the mail doesn’t contain virus, the AMaViS daemon transmits it to another MTA

daemon which responds of sending the mail to the real target. The reasons of this

complicated three daemon architecture are: (1) The historical problem, the original

version of AMaViS is a script program called by MTA. It became a daemon for

performance issue. (2) To protect against mail loss. AMaVis is not a full-featured

SMTP server, it needs MTAs which respond of sending and receiving respectively to

prevent the unpredictable things.

There exist three distinct overheads: file access, inter-process communication

and process forking in AMaViS. These overheads are also examined with the

 4

performance results in Chapter 5.

 A storage-based mail proxy receives an entire file before starting to process it. It

often stores the file to a disk through the file system. Any processing could be slowed

down by the lengthy file system access and disk access. This overhead increases as

there are other processing stages like decompression and virus scanning, all involving

heavy file access. In Figure 1, the file access overhead is in all three daemons,

especially in AMaViS. AMaViS receives the mail and decodes attachments into files.

If the file needs to be decompressed, AMaViS calls the external program to

decompress it into another file. Finally, AMaViS calls virus scanner to scan those files.

Lots of file system access overhead in this processing.

 Since mails need to be transferred between the three daemons, there are several

inter-process communications. When AMaViS calls the external program to

decompress and scan viruses, the inter-process communications also occur because

the data need to be transferred between different processes.

 AMaViS and most MTAs use multiple processes to achieve the concurrency.

When there are many clients, per-client processes are forked in the three daemons.

Lots of the memory is occupied by these processes. The fork system call also brings

heavy overheads.

Requirements of a stream-based mail proxy

 The most essential requirement of a stream-based mail proxy is that each

component in the proxy should be stream-based. The processing in a mail proxy

contains MIME parsing, decoding, decompressing, virus scanning, and encoding. The

proxy receives a part of a mail in a memory buffer, and then processes the buffer

according to its content. Some intermediate buffers may be required. For example,

decompressing and decoding need extra buffers. The processing is on the buffers

rather than on the entire file.

 5

Concurrency strategy

 The per-connection multi-process architecture uses too much memory. The

multi-threaded architecture is more feasible. A thread can be allocated either to

execute a specific function or to serve a connection. In the former strategy, each

processing function in the proxy has a corresponding thread which handles many

connections concurrently and also needs to synchronize with other threads. In the

latter, a thread is allocated for each connection instead. Each thread handles the mail

step by step, from protocol handling to virus scanning.

 However, our implementation platform is on Perl. The creation of threads in Perl

uses as much memory as forking processes[11] and the Perl interpreter is also

duplicated, so the name of thread in Perl is “ithread” which means interpreter-level

thread. Finally we choose the single-process architecture with socket I/O multiplexing

to handle concurrency. Although the single-process architecture could not take

advantage over the multi-processor system and is more complicated to maintain the

code, it has the most economical memory usage and eliminates the context-switching

overheads. There is also no thread synchronizing and inter-process communication.

These could render high scalability in terms of the number of connections.

On-the-fly decompression

 Storage-based systems need to store the decompressed files, which may be much

larger than the original files. A denial-of-service attack could send a file that is over

100 times larger after decompression. Storage-based systems thus often bypass or

block the file whose size might exceed a threshold after the decompression.

 Lossless data compression methods are often the “adaptive dictionary”

algorithms, such as LZ77[21], LZ78[22] and LZW[23]. A word is added to a

dictionary when it appears for the first time. When the same word appears again, the

encoder substitutes a short code for it. The file can be later decompressed by indexing

 6

on the dictionary. This sequential compression/decompression mechanism makes it

possible to decompress the portion of data in order. As long as the dictionary is

located at the beginning of the file and the proxy receives segments in order, the

stream-based decompressing by indexing should be feasible. Table 1 presents the

common compression formats. The BWT[24] algorithm is block-based since it

processes a block of data which is 900KB by default. The proxy need to queue the

data until the entire block is received. The self-extract file contain the decompress

program and the compressed data. The proxy need to identify the self-extract file and

decompress it on-the-fly. Some compressed file may be encrypted, the proxy can’t

process the encrypted file.

Format Program Algorithm File extent Stream?
unix compress compress LZW .Z Yes
gzip gzip Deflate

(LZ77+Huffman)
.gz
.tgz

Yes

zip Winzip Deflate .zip Yes
7zip 7-zip LZMA .7z Yes
rar WinRAR LZSS .rar Yes
bzip2 bzip2 BWT .bz2 Block-based
lha lha LZ78+Huffman .lha .lzh Yes
self-extract itself Depends on format .exe Yes *

Table 1 Compression formats

The original design objectives of file compression are not for the streaming

purpose. The ready-made programs and libraries all process an entire file. It makes

stream-based systems not so popular in the market. To do the on-the-fly

decompression, the system needs to modify low-level decompression libraries and

call the low-level API directly. For example, for the files with the “.gz” extension, the

deflate function in Zlib[] is called instead of executing the gzip[12] program. The

detailed implementation is addressed in Chapter 4.

A file can be compressed more than once, i.e. recursively, and a compressed

 7

archive may contain multiple compressed files. On-the-fly decompressing is

complicate to handle the recursive compression, because it needs to parse the

decompressed content continuously to check if another compressed file is there. A

compressed file creates a decompressing process and a parsing process which might

find another compressed file. When the archive contains multiple compressed files

with recursive compression, several decompressing and parsing process at the same

time and the data transfer between them is complicated. By contrast, the storage-based

system can simply solve this problem by recursive decompression using external

program sequentially.

Virus patterns across segment boundaries

 The stream-based system scans individual buffers where segments of file content

are processed, but virus patterns may be across the segment boundaries. There are two

solutions to this problem. The system can keep the state of the virus scanner, i.e.

which signature has its head matching the tail of last segment, through the entire

scanning. This solution needs to modify the virus scanner. Another solution uses a

mechanism called cushioned scanning[13]. A cushioned scan extends the buffer with

sufficiently large data from the tail of the previous scan buffer on the head side. That

is, data in the cushion buffer is scanned twice. The size of a cushion buffer should not

be shorter than the longest pattern in the virus database. The same problem also

occurs on decompressing, the decompression engine need to keep the decompressing

status of the file throughout the entire decompressing.

 8

Chapter 3. System Architecture

In this chapter, we present the software architecture of the stream-based mail

proxy. The implementation of this architecture is described in chapter 4.

The system is designed to achieve the following goals:

Scalability: Stream-based processing is used to interleave file decompressing and

virus scanning on file segments without storing the entire file. The buffer space

requirement is greatly reduced. Hence, a large number of connections can be support.

Performance: A storage-based system like AMaViS often calls external commands to

decompress files and scan viruses. Also, AMaViS needs to cooperate with MTAs, and

so totally three daemons are on the system at the same time. The stream-based system

calls the shared library to decompress and scan viruses. It is implemented in a

single-process architecture. The overheads in context-switching and inter-process

communication are eliminated. Also, stream-based processing eliminates the file

access overheads which is especially large in AMaViS daemon described in chapter 2.

Extensibility: The system should be able to easily integrate new network protocols for

extension because of separated modules. Besides the SMTP and POP3, other mail

service like IMAP could be integrated in the future.

Transparency: The system monitors transparently every connection between the

internal and external networks. No awareness of the system is needed.

3.1 System overview

 9

User

Dispatcher

SMTP Server

SMTP proxy

(1)
(2)

(4)
SMTP handler

MIME parser
and decoder

On-the-fly
Decompression

Engine

Virus Scanner

Daemon_SMTP

(3)

User

Dispatcher

POP3 Server

POP3 proxy

(1)
(2)

(4)
POP3 handler

MIME parser
and decoder

On-the-fly
Decompression

Engine

Virus Scanner

Daemon_POP3

(3)

(a)SMTP

(a)POP3

Fig.2 System overview

Figure 1 shows the overview of our system. The thin line represents the direction of

protocol, while the bold line represents the direction of mail transmission. First, a

dispatcher intercepts the packets from user and redirects them to the corresponding

protocol handler. For example, the dispatcher redirects connections with destination

port 25 to the SMTP daemon. The SMTP/POP3 handler communicates to the user and

the server simultaneously. After the protocol communication, the mail is ready to be

sent. The direction of mail transmission is the difference between SMTP and POP3.

The data may be encoded or compressed. The attachments in a mail are encoded with

MIME encoding, so the service about electronic mail like POP3 and SMTP need a

MIME parser. The decoded attachment may be a compressed file, and the on-the-fly

decompression engine decompresses it. After preprocessing, the system has a block or

segment of partial data from the attached file. The system scans it with the virus

scanner. If there is no virus, the original data read from the sender is forwarded to the

receiver. If the mail contains the virus, the proxy can break the connection

immediately and send a notification to user.

 10

3.2 Processing workflow

This section presents the detailed workflow of processing one mail which is the

same in SMTP and POP3. A MIME encoded mail is composed by several pairs of the

MIME header and the MIME body after the mail header. The MIME header is

different from the mail header. Figure 3 shows the composition of a mail. The mail

body and several attachments are encoded into MIME body by several encoding

methods defined in RFC 2045[25]. Common encoding methods of a MIME body are

UUE, Base64, quoted-printable, etc. The MIME header contains the information of

MIME body, such as the encoding method, the data type, and the filename of the

attachment.

AttachmentAttachmentBodyHeader AttachmentAttachmentBodyHeader

MIME Body
MIME
Body

MIME
header

MIME
header

MIME
header

MIME
Body

Fig.3 Composition of a MIME encoded mail
Processing the mail header

irst part in every mail. The mail header parser reads the

header f

y. A body parser can be put here to

checks the body if it is a spa

The mail header is the f

rom raw buffer and checks if this mail is MIME encoded. If it is MIIME

encoded, the MIME parser is ready for parsing the MIME header and the MIME

body.

Process mail body

The mail body is after mail header immediatel

m, and if it contains malicious links or JAVA/VB scripts.

The body parser may modify the mail body to remove these malicious things. Since

we only care about the virus in attachments, the mail body is simply forwarded to the

destination. There is no body parser in our implementation.

Process mail attachments

 11

MIME parser
MIME header MIME Body

MIME
decoder
MIME Body

MIME
decoder

decoded

Virus
scanner
decoded

Virus
scanner

decoded

Decompressing
engine

Receive

decompressed

Virus
scanner

MIME
Body
End?

MIME Body

Send out
MIME Body

Send out

Receive

Receive
MIME Body

MIME
Decoder MIME

Body

Send out

MIME Body

Send out
MIME Body

Send out

File
recognizer

MIME
Body
End?

MIME
Body
End?

Mail
End?

No

No

No

Yes

Yes

Yes

No

Yes

jpg, txt, wav

exe, dll, doc.

(a) jpg, txt, wav…

(b) exe, dll, doc…

(c) tgz, zip…

tgz, zip (recusive)

Fig.4. Process mail attachments

 Attachments are mostly encoded and may be compressed. Figure 4 shows the

total workflow of processing attachments. First, the MIME parser gets the file name

from the MIME header. According to the file name, the proxy processes the

attachment in three ways: (a) The non-malicious files, identified by the file extension,

can be ignored because they could not have viruses, like “*.jpg” and “*.txt”. (b) The

file type needs to be scanned for viruses such as executable files types like “*.exe”

and other file types like “*.doc”. (c) If its type shows the file is compressed. The

proxy needs to do decompressing before scanning. The decompressed data should

also be recognized weather it may contain viruses. There is a “file recognizer” can

analyze the decompressed data to decide the later process. If the decompressed data

contains another compressed file, the system needs to decompress recursively. The

sizes of intermediate buffers such as “decoded” and “decompressed” are not directly

proportional to the size of the attachment. These buffers are created per mail. The size

of “decompressed” buffer is decided by the compression ratio and the content being

decompressed.

 When the virus scanner finds viruses in the attachment, the proxy drop the

remaining data of the attachment. The destination will receive a broken attachment.

 12

The user on the destination is free from viruses.

 13

Chapter 4. System Implementation

 The system runs on a PC with Linux kernel version 2.6.10. It is implemented in

Perl[] because of its outstanding string processing ability and various existing

program libraries in Perl modules. Zlib[] is the most widely used

compression/decompression library in the UNIX-like operation system. We use

ClamAV[] as our virus scanner, since it is the only active open-source virus scanner at

present.

4.1 Implementation Architecture

 Figure 5 presents the architecture of our implementation. The bold texts are the

name of modules in our system, and some names appeared in Figure 1. The names in

parentheses are the existing open-source packages used in that component. All parts

run within a single process in the user space. The arrows represent the relationship

between components. For example, the “virus scanner interface” calls ClamAV to

scan a buffer by calling scanbuf() in the ClamAV shared library. Except that the Zlib

and ClamAV are shared libraries written in C, the other components are implemented

in Perl or Perl modules.

 When the kernel receives the packets, netfilter redirects the packets with

destination port 25 (used by SMTP) or port 110 (used by POP3) to the port our proxy

server is listening on. The proxy server accepts the connection and identifies a socket

handler. After the SMTP handler communicates with the socket handler from SMTP

sender, it connects to the SMTP target to get another socket handler. With both the

source and target socket handlers, a mail processor is created. The mail processor is

 14

written as a module which can be created as an object in run time.

Kernel

User

receive Dispatcher
(netfiler)

send

SMTP/POP3 Handler
(Net::SMTP)

IO Multiplexing
while loop
(IO::Select)

Proxy Server
(IO::Socket)

BASE64 Decoder
(MIME::Base64)

Mail Processor
MIME Parser

(Anomy)

Decompress
interface

(Compress::Zlib)

Virus scanner
interface

(Mail::ClamAV)

Virus
Scanner
(ClamAV)

Decompress
engine

(Zlib)

redirect()

select()

smtp()

gzread()MIME
Parser()

new()

scanbuf()

write()

Fig.5 Implementation architecture

 The mail processor handles the entire mail, including parsing MIME, reading the

fer from

 of that

buf the source socket, scanning the buffer and writing the buffer to the target

socket. The MIME parser in the mail processor is an open-source package “Anomy”

which is a mail sanitizer. Because every connection creates a mail processor object, it

becomes the main overhead in the memory when there are a large number of

connections. The mail processor is independent of any protocol. To monitor the POP3

service, we can simply use the POP3 handler to cooperate with the mail processor.

The detailed workflow of the mail processor is presented in section 3.2.

 The italic type of the open-source package in Figure 6 means the codes

package are modified for our purpose, including Net::SMTP::Server, Compress::Zlib

and Zlib. Because of IO multiplexing, we modify Net::SMTP::Server to process one

line a time whenever a socket is selected. Compress::Zlib is a Perl module and an

interface to call the Zlib shared library in Perl. Zlib fails if it reads the end of data

stream which does not equal to the end of file. We remove this limit in Zlib to make

partial decompression possible. Other packages without modification can be upgraded

to newer versions if the arguments of the functions used in the package remain their

original definition.

 15

 Figure 6 shows

.2 Single proces

supports the files comp

gzread are functions

decompress an entire

decompressing using g

opened by Zlib, and inp

“handler_in” connects

communication mecha

“non-blcoking I/O”, an

“handler_in” and deco

combination of handler

capable of reading and

every compression libra

4

 We implement th

concurrency, because b

consume lots of memor

 Because only one

every client. Every tim

calls the corresponding

Figure 6 are smtp() and

client from all the mail

Pipe Zlibdecoded handler_in handler_out
gzopen()

decompressed
gzread()

t pression. The system

s concurrency

e process and use select() to achieve

he detailed implementation of decom

ressed by the Zlib at first in our implementation. Gzopen and

in the Zlib shared library. Because Zlib is designed to

file, it opens the file handler by gzopen function before any

zread. The system treats the handler “handler_out” as the file

ut the decoded data into the handler “handler_in.” The handler

 with the handler “handler_out” by the inter-process

nism called Pipe. The handler “handler_in” needs to be set as

d therefore we are able to input the decoded data to the handler

mpress data from the handler “handler_out” in turn. The

_in, Pipe, and “handler_out” can be seen as a queue which is

 writing at any time. This mechanism is applicable to all to

ries originally designed to handle an entire file.

e server as a singl

oth of the multi-process and multi-thread mechanisms in Perl

y resource. The detailed reason is described in chapter 2.

process handles all clients in turn, we need to keep the state of

e when I/O multiplexing selects a client to handle, the system

 function according to the state of clients. The functions in

 MIME parser(). We can derive Figure 7 to show all states of a

 processing situations in chapter 3. Except that the SMTP and

Fig.6 Decompression implementation

16

“quit or next” states are related to the SMTP protocol, other states are kinds of the

MIME parsing states. ”Bypass”, “scan” and “decompress” handle the attachment in

three ways described in Section 3.2.

SMTP

mail header

first body

MIME header

text/plainbypassscan decompress

dangerous
attachment

compressed
attachment

quit or next

Without MIME

send next mail

data end

Fig.7 Mail processing states

 To achieve short respon n each state should be short. se time, the processing time i

The SMTP protocol handler handles one protocol message at a time in the SMTP state.

The system reads only 8KB data each time when handling the three types of

attachment. In AMaViS, however, the MTA receives all mails and store them to the

disk first. Then AMaViS processes mails sequentially. If there is a large file in front of

many small mails, small mails need to wait until the large one has been finished. The

average processing latency in the storage-based proxy may be long because the large

mail blocks the small mail. The stream-based proxy often has shorter latency and

servers clients fairly.

 17

Chapter 5. Performance Evaluation

5.1 Testbed

 We compare our stream-based mail proxy with AMaViS that is a storage-based

mail proxy. We install these two proxies on a PC with 1GHz PentiumIII CPU, 512MB

SDRAM, 20GB hard disk and 100Mbps Ethernet network. The operating system is

Linux with kernel version 2.6.10. We use Perl 5.8.5 to run both proxies which are

both implemented in Perl. Both proxies use ClamAV 0.83 as the virus scanning engine.

Because AMaViS is an interface to cooperate with two MTAs, we use Postfix since it

fully supports AMaViS.

 For fairness, we configure AMaViS in the following way: (1) disable the

anti-spam function since our stream-based proxy does not check the spam mail, (2)

run ClamAV in the daemon mode which is faster than the command line mode, (3)

disable the cache mechanism since AMaViS bypasses the same mail processed before

within a configurable time.

 We prepare two types of mails as the mail traffic in our benchmarking to test

different processing mechanisms. The first is the mail with 1MB executable

attachment and will not to be scanned for virus or decompressed. The proxy simply

forwards this mail. The second is the mail attaching the compressed file from the

previous 1MB executable file. The compression ratio is 37%. The size of the first mail

is 2.71 times of the second mail. Because both proxy scans the decompressed

attachment, these two mail have the same content to be scanned.

5.2 Performance and the Impact of Different Mail Content

 18

 To understand the difference in performance between the stream-based mail

proxy and the storage-based mail proxy, we measure latency and throughput. Three

types of mail traffic are used.

 Since AMaViS receives the mail and stores it to the hard disk first before

processing, the mail sender finishes sending before the start of receiving on the target.

We need to log the end of receiving on the target rather than the end of sending on the

mail sender. The mail sender and the target receiver are run on the same computer, so

we are sure that the times logged on sender and receiver use the same time clock.

 Latency is the time from the start of sending one mail to the end of receiving on

the target MTA. When the proxy is used, the mail is held by the proxy for a while. We

observe the latency with our proxy, AMaViS and without the proxy environment.

External Benchmarking - Latency

0

500

1000

1500

2000

no proxy AMaViS stream-based

L
at

en
cy

 (
m

s)

F+O (original)

F+O (compressed)

F+V+O (original)

F+D+V+O (compressed)

F: forwarding O: other mail processing V: virus scanning D: decompression

Fig.8 Latency of sending one mail

 Figure 9 shows the results of latency. The forwarding time are tested on both

mails in three proxy environments. The latency is 102 ms without extra processing or

the proxy. When the proxy simply forwards the mails, our proxy takes 213 ms and

105 ms, while AMaViS takes 1553 ms and 780 ms. Compared with virus scanning

and decompressing, the latency of the our proxy mail in our proxy is 518 ms and 527

shorter than 1802 ms and 1267 of AMaViS. The result also means AMaViS is more

sensitive of mail size than our proxy. Significantly, our proxy has short latency in all

 19

types of mails we tested.

 Throughput is defined as the total mail size divided by the elapsed time. A large

number of identical mails are sent through the proxy and the total elapsed time is

measured. The size of a mail is different from that of the file attached since Base64

encoding expands the size of the file being attached to 1.33 times. We use the size of

the mail to calculate the throughput. To achieve the maximum throughput, we use

more than twenty clients on the sender sending to our proxy concurrently. Since

AMaViS receives all mails and then processes sequentially regardless of the number

of clients, a large number of clients do not have larger throughput on AMaViS.

 The throughput of our proxy when the proxy simply forwards maisl is 65.2 Mbps

which is very close to the throughput of 69.93 Mbps without any proxy. AMaViS gets

the throughput of 9.51 Mbps even when it disables both anti-virus and anti-spam

functions. We can conclude that the storage-based architecture itself is a bottleneck.

 External Benchmarking - Throughput

0

5

10

15

20

25

AMaViS Stream-based

A
ve

ra
ge

 T
hr

ou
gh

pu
t

(M
bp

s)

scan

decompress

decompress_E

Fig.9 Throughput with virus scanning and decompression

 Figure 10 shows the throughput with virus scanning and decompression. With

virus scanning but without decompression, our proxy has 21.79 Mbps. Dropping from

65.2Mbps in simple forwarding implies virus scanning is the bottleneck. AMaViS gets

6.9 Mbps with virus scanning, slightly dropped from 9.51 Mbps in simple forwarding.

The mail with a compressed attachment has two throughput values. The higher one is

the “effective throughput”, denoted with “_E”, to represent the throughput in scanning

 20

the decompressed file, calculated with the decompressed attachment size instead of

the mail size. Because the file size to scan for viruses is the decompressed attachment

size, the effective throughput represents the real throughput of virus scanning.

 From external benchmarking, we conclude the following points. (1)Our proxy

onitoring the disk and memory

has a much better performance the AMaViS. (2) The storage-based architecture itself

is a bottleneck. (3) Virus scanning takes more time than decompression.

5.3 Buffer Requirement

 We evaluate the total buffer size by m

consumption of two proxies while there are variable clients. Each client sends one

mail attaching a 300K file compressed from a 1MB file. Figure 11 shows the result.

Internal Benchmark - Space Usage 1

0
100
200
300
400
500
600
700
800

0 20 40 60 80

Clients

Si
ze

 (
M

B
) AMaViS_mem

AMaViS_disk

AMaViS_total

Stream_mem

 “AMaViS_mem

respectively, on AM

postfix, we count th

“AMaViS_disk”. “S

don’t use any tempo

the storage-based pr

stream-based proxy.

” usage and disk usage,

Fig.10 Space usage of memory and disk

 and “AMaViS_disk” mean the memory

aViS and postfix. Because AMaViS needs to cooperate with

em both. ”AMaViS_total” is the sum of “AMaViS_mem” and

tream_mem” means the memory usage of our proxy. Since we

rary file, there is no disk usage of our proxy. We can figure out

oxy uses much more space on both memory and disk than our

21

 In the system, there are two kinds of buffer requirement: the runtime process

63

The memo

space and the mail-storage space. The runtime process space is required when the

forking of process and absolutely is in the memory. In a per-connection multi-process

architecture, the runtime process space is directly proportional to the number of

clients. The mail-storage space is required when the proxy processes the mail, and it

might be in the disk or the memory. The mail-storage space is often directly

proportional to both the mail size and the client number in the storage-based system.

 The memory usage glows enormously in the combination of AMaViS and postfix

because of the complicated communication between the three daemons described in

Chapter 2. The memory usage in AMaVis and postfix is the runtime process space.

Both of postfix and AMaViS have multiple processes, and they fork the corresponding

number of processes to handle clients. First postfix daemon receives mails from the

clients and sends mails to AMaViS, and second postfix daemon receives mails from

AMaViS and sends mails to real target. The number of AMaViS is configured before

running the proxy and is a fixed number in system run time. The number of postfix

child processes is the sum of the number of clients and the number of AMaViS. An

SMTP sending program is used to send mail to AMaViS processes by the first postfix

daemon and the real target by the second postfix daemon. Table 1 lists all programs

related to AMaViS and postfix, including the size and the number of the processes.

We use X to represent the number of clients and Y to represent the number of

AMaViS child processes. The memory usage of AMaViS and postfix is

(4491+2859) * (X+Y) +4259*2Y+20430*Y+19000+2759+74

ry usage grows about 7350KB per client in AMaViS and postfix, it is the

sum of the “smtpd” program memory usage and the “cleanup” program memory

usage. The number of “Cleanup” processes is corresponding to the number of

“smtpd” processes which increases as the increasing of the number of clients.

 22

0

20

40

60

80

100

120

140

0

S
iz

e(
M

B
)

 Figure 12 rem

mber Program Description Size Nu
smtpd Postfix SMTP server child process 4491 X+Y
cleanup Process the queue received by smtpd 2859 X+Y
smtp Postfix SMTP sender 4259 2Y
AMaViS child AMaViS child process 20430 Y
AMaViS master rt 10025 AMaViS listening on po 19000 1
Postfix master Postfix listening on port 25 and 10026 2759 1
Clamd ClamAV daemon 7463 1
X : The number of clients (fixed du run me) Y: The number of AMaViS child processes ring -ti

another result test

disk usage “AM

mail-storage spac

the mail size. We

Our proxy remai

because of the

scanning. Our pro

client. The runtim

Internal Benchnarking - Space Usage 2

10 20 30 40 50 60 70 80

Clients

Amavis_disk_0.3->1

Stream_mem_0.3->1

Amavis_disk_1->5

Stream_mem_1->5

igure 12, and adds

Fig.11 Space usage of mails with different sizes

Table 2 Programs related to AMaViS and postfix

oves “AMaViS_mem” and “AMaViS_total” in F

ed by mails attaching a 1MB file compressed from a 5MB file. The

aViS_disk” is used to store mails being processing and is the

e. The disk usage in storage-based proxy is directly proportaional to

 can see the difference in AMaViS when using different mail size.

ns the same memory usage no matter how large the mail size is

streaming operation with interleaved decompression and virus

xy has 13.7MB runtime process space in memory when there is no

e process space in our proxy does not increase as the increasing of

23

the number of clients, because of the single-process architecture. The memory usage

in our proxy only increases 176KB per client and the increasing is the mail-storage

space. The 176KB is the mail processor described in section 4.1, it is composed of

buffers and variables to record mail states.

 Description Size Number

Postfix on disk mail size) Store all mails 452 (X

Save the mail being processed 452 Y

Decompress the file 1032 (decompressed) Y

AMaViS

Copy the files from the archive <1032 Y

X : The num iS (fixed during -time) ber of clients Y: The number of AMaV child processes run

 Table 2 lists th

 We mo

decompressed from

one copy of each m

decompress the file

from archives to sca

usage in AMaViS an

(Mail S

nitor th

determine the requir

The runtime proces

number of clients, b

AMaViS is in the di

the mail size. The ru

the number of clien

space of our proxy i

size.

e ttaching a 300K file

ail Size + 2*(Decompressed Size)) * Y

 proxies to

Table 3 Disk usage in AMaViS and postfix

 detailed disk usage when using the mail a

a 1MB file. After postfix receives all the mails, AMaViS saves

ail in its repository. Then AMaViS calls the external program to

 from the original archives, and copy the selected type of files

n for viruses. We can use another equation to calculate the disk

d postfix as

ize) *X + (M

e memory space usage and disk usage on both

ement of the runtime process space and the mail-storage space.

s space of AMaViS grows enormously as the increasing of the

ecause of the complicated architecture. The mail-storage space of

sk and is directly proportional to both the number of clients and

ntime process space of our proxy is about 13.7MB regardless of

ts, because of the single-process architecture. The mail-storage

s in memory and is about 176KB per client regardless of the mail

24

5.4 Internal Bottleneck Analysis

 use the Perl module Devel::Profile[16] To verify the bottleneck more clearly, we

to record the processing time of every function in our proxy. We tested several mails

attaching 1MB executable file and attaching decompressed file of that 1MB

executable file. From Figure 12 we can clearly figure out the bottleneck is virus

scanning which takes above 60% of the execution time. Although the decompression

is not the main bottleneck in our proxy, given two identical size mails, one is

compressed and the other is not, the compressed one takes more time on scanning for

viruses because the proxy scans the file size after the decompression. The main

bottleneck in virus scanning is matching the virus patterns. If we can improve the

string matching algorithm in virus scanner, the throughput of our proxy can be

improved. Figure 13 shows the internal processing time of AMaViS. The file system

access overheads are in virus scanning, decompression, receiving, sending, and IPC.

If we set the ratio of decompression to 1, the ratio of processing time is presented in

Table 4.

Internal Benchmarking - Processing Time of stream-based

0
10
20
30

40
50
60
70

sc
an

 vi
ru

s

de
co

m
pr

es
s

pa
rse

 M
IM

E

re
ce

iv
e m

ail

se
nd

 m
ail

ha
nd

le
SM

TP
se

lec
t

de
co

de

pe
rc

en
ta

g
e

(%
)

compressed

original

 Fig.12 percentage of processing time in stream-based mail proxy

25

Internal Benchmarking - Processing Time of AMaViS

0
5

10
15
20
25
30
35
40
45
50

sc
an

 vi
ru

s

de
co

m
pr

es
s

M
IM

E P
/D

re
ce

iv
e m

ail

se
nd

 m
ail

ha
nd

le
SM

TP

IP
C w

ith
 P

os
tfi

xe
s

ot
he

rs

Pe
rc

en
ta

ge
 (

%
)

compressed

original

 s
Stream-based 6

AMaViS 2

Fig.13 percentage of processing time in AMaViS

can decompress Handle MIME receive send IPC
.3 1 (55ms) 1.44 0.32 0.22
.88 1 (96ms) 1.63 1 0.63 4.25

Table 4 Ratio of processing time

26

Chapter 6. Conclusions and Future Work

 In this work, we design and implement a stream-based mail proxy with

interleaved decompression and virus scanning to avoid storing an entire mail. Without

storing the entire mail, we eliminate the file system access and save the buffer usage.

Several benchmarking experiments compare the storage-based proxy with our

stream-based proxy in performance and space usage. An internal profiling analyzes

the bottleneck of our system.

 The external benchmarking shows our proxy has shorter latency and higher

throughput in both mail with the original file attached and mail with compressed file

attached. When the proxy just forwards the mail to the target, the decreased

percentage of the throughput is 6.7% from 69.93 Mbps to 65.2 Mbps in our proxy

while it is 86.4% form 69.93 Mbps to 9.51 Mbps in AMaViS. Our proxy has 21.79

Mbps more than 6.9 Mbps in AMaViS when scanning mail for the virus, and has 8.05

Mbps more than 3.82 when scanning and decompression. In the space usage, our

proxy grows 176KB per client in memory while the storage-based proxy grows

7350KB, and our proxy does not use any temporary file on disks while the disk usage

of storage-based proxy is directly proportional to both the number of client and the

mail size. Consequently, our proxy is better on both speed and space usage. The file

size to be scanned for viruses dominates the processing time in both proxies, and virus

scanning is the main bottleneck in our system.

 This system is feasible for the embedded system environment without a hard disk

and is more scalable than the traditional storage-based proxy. Designing a better

algorithm or a hardware accelerator of string matching in the virus scanner can speed

up the system. Anti-spam is another useful function in the mail proxy, and we can do

 27

it when processing mail body. Another way to improve system is that implement the

system in C instead of Perl. C is faster but has a worse string processing ability.

 28

References

[1] Perl module: Net::SMTP::Server, http://search.cpan.org/~macgyver/SMTP-Ser

ver-1.1/Server.pm .

[2] Clam AntiVirus, http://www.clamav.net/ .

[3] Zlib, http://www.gzip.org/zlib/ .

[4] Perl module: Comperss::Zlib, http://search.cpan.org/~pmqs/Compress-Zlib-1.3

4/Zlib.pm .

[5] AMaVis – A Mail Virus Scanner, http://www.amavis.org/ .

[6] Trend Micro, http://www.trendmicro.com .

[7] FORTINET, http://www.fortinet.com/ .

[8] F-pod Antivirus, http://www.f-prot.com/ .

[9] CP Secure, http://www.cpsecure.com/ .

[10] The Anomy mail tools, http://mailtools.anomy.net/ .

[11] Things you need to know before programming Perl ithreads, http://qs321.p

air.com/~monkads/index.pl?replies=1&node_id=288022&displaytype=print .

[12] gzip, http://www.gzip.org/ .

[13] Yevgeniy Miretskiy, Abhijith Das, Charles P. Wright, and Erez Zadok, “A

vfs: An On-Access Anti-Virus File System”, The 13th USENIX Security Sy

mposium, 2004.

[14] RFC 3548 - The Base16, Base32, and Base64 Data Encodings, http://www.

faqs.org/rfcs/rfc3548.html .

[15] The C10K problem, http://www.kegel.com/c10k.html .

[16] Perl module: Devel::Profile, http://search.cpan.org/~jaw/Devel-Profile-1.04/Pr

ofile.pm .

 29

[17] Ying-Dar Lin, Chih-Wei Jan, Po-Ching Lin, and Yuan-Cheng Lai,“An Int

 egrated Proxy Architecture for Anti-Virus, Anti-spam, Intrusion Detection, a

 nd Content Filter”

[18] Chi-Hung Chi, Jing Deng, Yan-Hong Lim, “Compression Proxy Server: D

esign and Implementation”, USENIX Internet Technologies & Systems, 19

99

[19] P Kermani, L Kleinrock, “Virtual Cut-Through: A New Computer Commun

ication Switching Technique” - Computer Networks 3, 1979

[20] K. Wu, P. S. Yu and J. L. Wolf, “Segment-based Proxy Caching of Multi

media Streams”, WWW’2001, pp. 36-44.

[21] Ziv, J., Lempel, A., ‘‘A universal algorithm for sequential data compressio

n,’’ IEEE Transactions on Information Theory, IT-23:337-343, 1977.

[22] Ziv, J., Lempel, A., “Compression of individual sequences via variable-rat

e coding,” IEEE Transactions on Information Theory, IT-24, 5, 1978.

[23] Welch, T.A., “A technique for high-performance data compression,” Comp

uter 17, 6 (June 1984), 8-19.

[24] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compressio

n algorithm,” Digital SRC Report 124, 1994.

[25] RFC 2045 - Multipurpose Internet Mail Extensions (MIME) Part One: For

mat of Internet Message Bodies, http://www.faqs.org/rfcs/rfc2045.html .

[26] Yahoo! Mail, http://mail.yahoo.com/ .

 30

