if * % Visual Studio .NET *F z

S X G A E

A

A Multi User-Interface Generation Plug-in for

Visual Studio .NET

S N R Seb¢

hEyor T R TE K

ig * » Visual Studio .NET +2 5@ * %46 A2 %

A Multi User-Interface Generation Plug-in for Visual Studio .NET

LR - = &% Student : Chi-Han Kao

R R Advisor : Shyan-Ming Yuan

A Thesis
Submitted to Institute of Computer and Information Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

PEARAY e £

il

if * % Visual Studio NET + 2. 5 @ * ¥ i s 22 %

F24: % pis th R R

Rzl ~FFAHE 5 (F797) ALrL

20
A

EEFIWOIHR S LR TR BrABL R o ﬁ*‘uﬁi;‘é{??*fﬁ 3
AR H el 20 ARRT S PR T RN RN ED EATER o
EROE SRR F AT AE RS L& e FYt o A R
B B BE B AR 0 e LB T ST VR A o

AR ¢ o PSR B e i q*ﬁ » 7] Microsoft #7# 4 ern Visual
Studio .NET - iz # - 2 & NET = 27 > B s LFHF 1 8
(Integrated Development Environment) » # if# % 3 & * —“‘Ff I * Visual
Studio . NET & & ch@ kst » #5820 * F i 6 Z D> % 0 d A P o
L Ew AL A CF -~ J2ME ~ XHTML-MP f= WML 5 & 0@ * % /i 6 > & 4 42
REFEFORFEER o o AN REFHERS T 0 D RN PR
£ % %71 Visual Studio .NET # » @ % — §feh 4 iFR * & /i 6 PR > @ {3

FEEI T K AR 'ﬁ/?\i P E R AT T S BN PR o

il

A Multi User-Interface Generation Plug-in for Visual Studio .NET

Student: Chi-Han Kao Advisor: Shyan-Ming Yuan

Department of Computer and Information Science
National Chiao Tung University

Abstract

With the variety of the mobile devices, specifications between devices have
become more and more different. From the point view of programmers, in order
to execute the application-with the:same function on the different platform,
programmers have to rewrite the program in another language. The repeated
action of rewriting is meaningless and unnecessary for programmers. Therefore,
we want to provide a toolkit for programmers. The finished program can be
translated into the target language through the toolkit.

In this thesis, we choose the Integrated Development Environment — Visual
Studio .NET as the target IDE to embed our toolkit into it. Visual Studio .NET is
developed by Microsoft and it is used to edit the program executed on the .NET
platform. Users operate the IDE to edit the program, design the layout of the
User Interface with the IDE. According the layout designed by users, our toolkit
can generate the User Interface written in C#, J2ME, XHTML-MP and WML.
In terms of users, they only have to install our toolkit into Visual Studio .NET,
operate the IDE as usual, and they can get the User Interface written in their

desired programming language.

v

Acknowledgement

BoR O B R - R TR BT AP g
TEFOEAPT N AESADEE? EY oL AEH- R EP
EEescl R R kE 0 Fla PR T ERHR PP+ AL
PRESEH o 1R fy B hE 3 EHE 0 AR o

Bofs o A R R BIA YA o B P T 2D o iR
uﬁ%%ﬁ%ﬁﬁiﬂ%?%’@{£%§ﬁ¥ﬁ‘

2

SRS RN D

Table of Contents

ACKNOWIEAGEMENT ..ot v
Table of CONTENTS.....c.ooiiiiie e Vi
LiST OF FIQUIES ..o viii
LISt Of TADIES ..o IX
Chapter 1 INtroduCtiONccceeiiiiie e 1
Lol PIEACE ..o 1

L.2. IMOTIVATION Lottt ettt ettt e e st 1

1.3, ODJECIIVES cueeuiieiiees ittt eeite et e eite et e sate et esateesbeeseaeenseesateenseessneenseennseenne 2

L4, Organizationtu........ il coifiseeeeeeeeeeeeeeereeeeseeesssreeesseeessseeessseessssessnsses 3
Chapter 2 Background and Related YWOrksccccccvvevieiieicecinnenne, 4
2.1, Backgroundi ... s deie e eeieeesreeesieeenaeeesaeeereeesaeeesaeeeeaeeennreas 4
2.1.1. XML-based Mobile Application Development Kit....................... 4

2.1.2. Visual Studio NET......cccoiiiiiiiiiieeeeeeeeee e 5

MEXE (Mobile Execution Environment)cccoeeeeeviienieniieeneenieeeenne. 6

XML (Extensible Markup Language)cccceevveeeriieeiieeeieeciie e 8

2.2, Related WOTKSoouiiiiiiiiieieiieeeeeet et 9
2.2.1. CodeSMIth......c.ooiiiiiiii e 9

2.2.2. COAECRAIZEveeiieeiieiie ettt e 9
Chapter 3 1deas 0f DESIgNcovveiieiiece e 11
3.1, Ideas Of DESIZN....cc.ceeiiiiiiieiieiie ettt e 12

3.2. The Process of Embedding..........cccoueeviiieniiieniieeiieeeeee e, 23
Chapter 4 Implementationccccoeiieiieiiec s 27

vi

4.1. Introduction of Pervasive User-interface Markup Language................... 27

4.1.1. The design ideas of PUML...........cccccoiiiiiiieniiiiieiecieceeee e 28

4.1.2. All Elements included in PUMLccoooiiiiiiiiiieee, 28

4.1.3. Example of PUMLc.ccooiiiiiiiiiieeeeeee e 32

4.2. Implementation of the embedding............cccoeviiriiiniiiiiiniieeecee, 34
4.2.1. The toolkit be combined with the front-end IDE 35

4.2.2. The document transmission to the back-end toolkit.................... 41
Chapter 5 COMPAriSONcooieiiiiie e 43
5.1 COdECRAIZEeouviiieiiiieeieeieee ettt 43

520 CodeSMmIth...cc.ooiiiiiiiiiiiieeeee e 44
Chapter 6 Conclusion and Future Workccccccovvivvivicic e, 46
6.1, CONCIUSION....ifiaiiiiiiiniier i ettt et 46

6.2, Future WOrk oot e it 48

(STT o] [0l | = o e TS RURTR 50

vii

List of Figures

Figure 2-1
Figure 2-2
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 4-1
Figure 4-2
Figure 4-3

Figure 4-4

the structure of XML-based Mobile Application Development Kit......... 5
the develop environment of Visual Studio .NETc.ccccovieviiiinnnnnnne. 6
example of translating program from J2ME to WML..........cccccoceveenenn 11
the installing process of our toOIKitcccvveriiieiiiieiieciee e, 13
icon about our toolKit Programc.cceceeeiierieeiiienieeieeeie et 14
choosing the program that users have installed..........c...cccceeevieenennnnen. 15
uninstalling the program that user select............coccovceveniiniiiinienennn. 15
the controls users can select the control they want.............cccceevveeennenns 17
IDE after instill our toolkit program...........cccceceeeviienieniiieniieeiieieeieene 18
the result of Visual StudionNETccooooiiiiiiiice, 19
after installation, the tab*‘Items for PUML” been added to the IDE 21

the properties window: for the properties of the controls...................... 22

an example of the translation process...........ccceevvevieiiiienieeciienieeeene, 24
the layout of the applicationccceeeveieriiieriieecie e, 33
the PUML document of the application............ccocceeviieiiiiiiiinieniie, 33
the executable file after we package our toolkit..........cccoeevevieerieeenneens 35
the basic structure of the plug-incocoveeiiiiiiiiiiiieeee e, 36

viii

List of Tables

Table 4-1 the detail of all PUML elementsccccccevienirnienieneiiienienieeieceeenee 30
Table 4-2 IDTEntensibility2 Interfacecccovveeviiieiciiieeiieeeeeceee e 38
Table 5-1 Comparison of the translation toOIKitS........cccceecverieririiininiiiiencenne 45

X

Chapter 1 Introduction

1.1.Preface

As the mobile devices are developed vigorously in recent years, there are
thousands of devices have been published in the world. Therefore, many mobile
applications are coded in many different programming languages. There is a problem
for the people who develop the mobile application. If they want to operate mobile
applications with same function in various mobile execution environments, they have

to edit various versions of program by using different programming languages.

To save the problem, the member of our lab — Shen, had proposed a toolkit
named “XML-based Mobile Application Development Kit” [1]. The toolkit is
designed in the concept “*Write Once; Run‘Anywhere”, the function of this toolkit is
translating the document to ‘the target language users assigned, and the translated
document can be executed in the mobile environment. The document is written in the
language we defined, and the translated document is written in the physical language
known by public. From now on, programmers only have to write the program once,
and our toolkit can translate the program to various languages in the public by using

our toolkit.

1.2.Motivation

Although the toolkit proposed by shen saves the problem of various mobile
execution environments, the environment for users to edit the document in the

language we defined is in the text mode. It is not convenient for users to edit the

document. We want users can edit the document in the WYSIWYG [2] development
environment. When users develop the User Interface (UI) of the mobile application,
they can get the layout of the User Interface immediately from the development

environment.

At first, we want to develop the development environment ourselves own. But
there is a problem about this development environment. Users who first operate the
development environment have to learn the skills about the environment. It is not

convenient for users.

In the next step, we find .that there are many integrated development
environment (IDE) haveibeen published in the world. In normal, programmers
usually use the IDE to-develop the program. This situation excites our thought to
embed our toolkit into the IDE known by public. In this way, programmers can use
the IDE they are familiar to”edit the document, and our toolkit can translate the

document to the target language they assigned.

1.3.0bjectives

Since our motivation is embedding the translation toolkit into the famous IDE,
we have to provide a convenient method for users to operate our toolkit.
Convenience is our objective. The meaning of the convenience can be divided into
two parts, we will describe as follow:

B Use Conveniently:

Because our toolkit is a third party development, it is not one part of the

target IDE at first. We have to provide a convenient method of using our toolkit.

The method of operating our toolkit is just like other operations in the IDE,
there is no different between our toolkit and other operations.
B [Install Conveniently:

As we mention above, our toolkit is a third-party development, how we can
embed our toolkit into the target IDE conveniently is important to users. We
would like to provide a simple installation for users. There are no unnecessary
steps in the installation process, and no complex steps in the process too. All the

installation is simple for users.

1.4.0rganization

The rest of this thesis is organized as follows. In the next chapter, we review a
few background and related workssThe characteristics of our implementation are
provided in Chapter 3. In Chaptet 4, we: will explain how to implement our
development in detail. After-that,.we will'compare our development with the other
programs which have the function are‘similar to us in Chapter 5. Final chapter is the

conclusions and future works.

Chapter 2 Background and Related Works

2.1.Background

2.1.1. XML-based Mobile Application Development Kit

This is the target toolkit we want to embed into the famous integrated
development environment. This toolkit is developed by shen[1]. The objective of this
toolkit is based on the concept “Write Once, Run Anywhere”. This concept is similar
with Java. The toolkit translates the program to the target language assigned by users

to achieve the objective “Write Once, Run Anywhere”.

This toolkit is capable of translating a program written in the extra language to
that of a certain mobile“environment.. The/language is in the abstract level, and the
method to describe the application ‘is to record all the information about this
application in the document written in XML[3] language. The document described
the mobile application can be translate to the program executed in many kinds of
mobile execution environment. The environment for example: WML /

WMLScript[4], 2ME MIDP[5]...and so on.

) | WML / WMLScript
| /'f
1
1 .'
P
. / J2ME MIDP
1
stT \.

Transformation .'

Mobile Application

Abstract Level Concrete Level

Figure 2-1 the structure of XML-based Mobile Application Development Kit

From Figure 2-1 the structure of the toolkit, we can find out that the description
of the mobile application are divided into two parts: One is the part of the User
Interface, and the other is,the logic computing of the application. In the abstract level,
the author design description languages based,on XML. The description language for
User Interface is named‘as PUMLE-(Pervasive User-interface Markup Language), and
the language for logic computing-is named as PGML (Pervasive loGic Markup

Language)

The author uses the mechanism of the XSLT[6] as the translation technology.
Using the XSLT translation mechanism, the toolkit can translate the document in the
abstract level to each kind of program in physical language, and the translated

program can be executed in it mobile environment.

2.1.2. Visual Studio .NET

Visual Studio .NET 2003 Professional[7] enables user to rapidly build a broad
range of applications for Microsoft Windows®, the Web, and devices. With intuitive

visual designers, high-performance data access tools, server-side visual designers,
5

native support for the Microsoft NET Compact Framework, and inherent support for
XML Web services, Visual Studio .NET 2003 Professional delivers improved

reliability, security, and performance.

Visual Studio .NET 2003 enables user to address today's most pressing
application development and deployment challenges, streamline business processes,
and realize new business opportunities. The unified Visual Studio .NET 2003
integrated development environment (IDE) and a choice of programming
languages—including Microsoft Visual Basic® NET 2003, Microsoft Visual
C++® NET 2003, Microsoft Visual C#® NET 2003, and Microsoft Visual
J#™ NET 2003—enable user to build applications using your existing skills. Figure

2-2 is the develop environméﬁ;c of Visugii Studio .NET.

% Microsoft Development Environment [design] - Start Page E]@
File Edit View Tools Window Help
- dd@ e -B v | 8 ToolsNewhacroProjeot - | BB

Teoliox __ ® x| St Page | o 1o x | (el T
]
Projects

-

Open an Existing Project

; pplication |
CPPniFom 2005317

GenPTUMLeade 2005/218 W B[Ru@C|hs i'

(etH TMLeontols 2005117

|DymemicHelp @ %
A
([} Help ~
e
TEAE - EREINE
E) Samples
Visual Stulin F35
([} Getting Started
Installing Help for Visual Studin ||
HRBHANR
B AR
I — =1 Wew Project | [Open Projert Bty v
5 Server Bxpl. 32 Toolhox - =t z < m | [
|G SeachReailts |
| Ready I | | 4

Figure 2-2 the develop environment of Visual Studio .NET

MEXE (Mobile Execution Environment)

MEXE[8][9] is the execution environment focused on the mobile devices. MEXE
6

is published by 3GPP. They claim that there are five types of mobile devices in
MEXE. If any mobile device belongs to the five types, this mobile device can be the

MEXE device too.

The objective of MEXE is to set a standard in the mobile execution environment.
This standard can be applied to the development of mobile application or the

software service, makes them more convenience and fast.

According to execution environment and computing capability of every mobile
device, MEXE divides the execution environment into five class marks. The five
calssmarks are listed as follow:

1. classmark 1 — WAP execution enyironment:

The mobile device 1in this execution environment has a lightweight
browser. The-browset_can.browse or execute the web pages written in
WML/WMLScript. The device must follow the WAP standard, and is
compatible with the wireless network environment.

2. classmark 2 — Personal Java execution environment:

In this execution environment, the computing power and the hardware
capability of the devices are better. This execution environment (is the Java
Virtual Machine) can execute the mobile application written in Personal
Java (PJava), it can supports more complex User Interface of the
application and the APIs.

3. classmark 3 — J2ME/CLDC execution environment

Devices in this execution environment are limited to the computing power
and the hardware capability itself. Devices can not display the complex User

Interface, and the screen of these devices have are usually smaller. So, the APIs

7

in J2ME is designed for this kind of mobile devices. The application be
executed in this environment is written in the language-J2ME.
4. classmark 4 — CLI compact execution environment

The application written in the programming language (embedded C++ for
example) of Microsoft can be executed in this environment.
5. classmark 5 — Virtual Palmtop network execution environment

The environment of this part uses the client-server architecture to execute
the application. The mobile device only display the User Interface, and the data
inputted by the user will be transmitted to the remote server for logic computing
through Internet. The result will be transmitted to the mobile device back, and

displayed on the screen with the suitable User Interface.

XML (Extensible:Markup-Language)

XML is an open meta-language, and it is text-based language. The structure and
the metadata of XML are based on the tags. Because it is text-based language, people
who read the document written in XML can easily read and understand it. In addition,
XML provide the ability of describing data, the structure data can be read by
machines.

Because XML is a meta-language, it can be used to create the other language
and generate a lot of application. There are lots of applications of XML now. For

example, XSLT, MateML, XPath, SOAP, and WML....and so on.

2.2.Related Works

2.2.1.CodeSmith

CodeSmith[10] is a FREEWARE template-based code generator that allows
user to generate code for any ASCII-based language. The code generated can be
customized by the use of properties. A property can be any .NET object that has a
designer (most built in .NET types have designers already) and can be as simple as a
boolean property that allows user to conditionally add or remove code from the
resultCodeSmith's syntax is almost identical to ASP.NET. So if users are familiar
with ASP.NET. Users can use the C#, VB.NET or JScript. NET languages in they

templates and they templates can output any ASCII-based language.

CodeSmith includes-a couple ways to generate code in batch. There is a Visual
Studio .NET 2003 custom tool/included that allows including templates that can
generate code based on multiple property sets. This custom tool effectively allows
CodeSmith to simulate generics in that users can have a template and create
specialized instances of that template by adding additional property sets. CodeSmith
is being released as freeware in an attempt to build a strong community of users and

templates.

2.2.2. CodeCharge

CodeCharge[11] Studio is the productive solution for visually creating Web
applications with minimal amount of coding. The support for virtually all databases,

web servers and web technologies makes CodeCharge Studio one of a kind. It is a

solution available for Web development.

Also included is CodeCharge Studio Add-In for FrontPage - the first product
that extends FrontPage functionality into an integrated web development
environment that makes it creating database-enabled web sites. It also can use the
external editor as the User Interface editor. For example, the IDE named
“DreamWeaver” which is developed by Macromedia is the external editor can

support CodeCharge to edit the User Interface..

10

Chapter 3 Ideas of Design

The toolkit that we developed is used to translate the program from one
language to another. For example, according to Figure 3-1, we can edit the program

in J2ME, and we can get the program written in WML through our toolkit[12][13].

Translation
Toolkit

Translation Process

Figure 3-1 example of translating program from J2ME to WML

This is the usage of our toolkit. In the toolkit, we define a language, which was
named Pervasive User-interface Markup Language (PUML). We will introduce the
language “PUML” roughly in this chapter, and we will detail the language in Chapter
Four. PUML is the intermediary language for translating; we can save the developing
time of writing the program with the same function but in the different language. It’s
convenient to get the program in the language we want through PUML. And if we

edit the program by PUML directly, we can save the translating time.

11

In the original method, we have to choose one language (not PUML) to edit the
program, and through the PUML language to translate the file to another language.
Our motivation is that users can write the program by PUML, and we can reduce the
translation process to once. However the major problem is that PUML is developed
by my colleague of our LAB, it’s not known to others. So, there must be a way for
user to edit the program in PUML easily, and they don’t have to know much about

PUML.

Our method is embedded the language “PUML” into the Integrated
Development Environment (IDE) that known to the public, and use the language to
edit the program. Our motivation is making users to edit the program written in
PUML, but they can editithe programtin the graphical User Interface environment.
Therefore, Users don’t have to undetrstand all the PUML language. The code of the
User Interface can be génerated by-our toolkit, and users can write the program in

PUML easily.

3.1.ldeas of Design

As we mentioned above, in order to make user convenient use PUML to edit the
program, there are some characteristic about our toolkit (embed PUML in IDE)
described as follow:

B Easy Install Easy Uninstall —

Because our toolkit is a third-party development, before user use
it, they have to install it first. But many software before user begin to
use it, they have to do lots niggling about setting. It’s very

inconvenient. We hope that all the things user need to do is to

12

download the toolkit installation file, double click the file, and the
install process is finished. So, we package our program as an
executable file. Users only have to download the installation file,
install the file just like other common application software we use;
Figure 3-2 is the installing process of our toolkit. We can see the
process from the picture, users only have to click the “Next” button,

and the installing process is finished.

1) GenPUMLcodeSetup

Select Installation Folder

The inztaller will inztall GenPUMLcodeS etup ta the following folder.

Toinztall in thiz folder, click "Mest'". To install to a difterent folder. enter it below or click "Browse'".

Folder:
C\Program FledmetoiGenP M Leodedetup) [Browse...]
| DikCost. |
Inztall GenPUMLcodeS etup for yourself, or for anyone who uges this computer;
() Everyone
&) Just me
Cancel I [< Back I | Mest

Figure 3-2 the installing process of our toolkit

After users finish the installation process, users can see the icon
about our toolkit from the IDE (We choose Visual Studio .Net as the
IDE toolkit), Figure 3-3 is the icon about our toolkit embedded in

Visual Studio .Net[14].

13

.

" Microsoft Development Environment [design] - Start Page

]G %)

Fil: Edit Tisw | T i Help
b«(@ GenPUMLeode - ToolsNewMacraProject - BT S R
et Lommand Bar Info 4 x ‘Solution Explorer o x
Ttens for paml =% Debug Processs. CHleAltP
Clipboard Bi
ROMRRRE B Comnect to Deyice line Resources My Profile
| |, Pointer 'l-,v Comnect to Database...
AddRemove Toolbox Hems..
1
Add-in Manager
Haeros 3 2005/3430
Activel Control Test Container 2005317
Creats GUID 2005/2418
Dotfuseator Community Editon LR
Error Lookup
ATLAMFC Trsce Tool 2 @Bs[M[@C (&l
QLEMZOM Cbject Tiswer ‘ Diymamic Help o ox
Spvtt @ [&l
External Tools... ([Belp]
ERE
Sl L% SRAEE
Optio... (5" Samples
Tignal Stndio S
({7} Getting Started
Installine Help for Vieval $tudin | =
FHRIEHANE ik
MR EISE R
oopen=
i 1
Visal Stodin NET
= B
. ‘ Hew Project | ‘ Open Project Vimal Stodio NET BIRRTHER M
Server Expl.. 3 Tnﬂlhnxr <l i B

) Search Reanlts

| A4

Figure 3-3 Icon about our tda,lklt prqgﬁm .

¥k 9 185 ol

Not only simple .

.t-'h:e.::_.,%i';stall process as possible, but also the
uninstall proces;?.ddie;l."When user want uninstall the program, they
don’t need to take many action about it. They just follow the steps of
uninstalling other common software as usual. The steps are as follow:
Entering “Control Panel” — Select “Add or Remove Program” —
Choose the program that we install — Select “Uninstall it”. And the
program will be uninstalled. Figure 3-4 is the picture about choosing

the program that user has installed. Figure 3-5 is the picture about the

uninstalling process.

14

L) BEREREA [:]@

_ EfisgaEs O BrEsD PR [5 vl
%%\2 &) CueFTE 50 XF #Av 089ME [
fEEAY 5] DAEMON Tools Fulv 059MB

(' Dreye SEH038 6.0 (EEHD) v 576.00ME
%g @ Dreve S80S 6.0 (BEEA) Bro0fOBrE Fulv 9285MBE
AW Mk Foh BDSMB
= CLF_-’)J GenPUMLcodeSetup Foifn 0.19ME
;3 ; ; BiEr et
g ety o Een e, S e o . 5 :
%ﬁ&s i E e BRI B - S5tk [E] = FEkE]
& Google Toolbar for Intermet Explorer el 0.59ME
@ B InsideVENE TS #v 2800ME ||
SEiEsh B K-Lie Codec Pack 2.27 Full #iv 321ME
%%%)E L LivelTpdate 1.80 (3 yimantec Corporation) Fuln 4 83MB
2 Micosoft NET Framework 1.1 F]v 1,008 00ME
8] Micmosoft NET Framework 1.1 Hotfix (KB886903)]+ 1,078 DOME
@ Micmosoft Activedwme 3.8 el 6.75MB
8 Microsoit Office XP Professional with FrontPage v 28000ME
|l Afimimo b Tinan] T WET Do dinbeibosdehle Dol oo 11 e FPRPEY:CY 5.v.-
Figure 3-4 choosing the program that users have installed
1
_ BaiReaE: O \BREHD HEFFRE): | £]
%%\2 [[Z) CuteFTE 5.0 KF #v DBIME A
] EAW 5! DAEMON Tacls Fuv o 059ME
- (' Dreys 5B 6.0 (EEHD) #iv 576.00ME
;ﬁ@ @ Dreye 52038 6.0 (AT BATIRS Hib 9285ME
EAW | oM GenFUMLoodeSorap Fih 005MB
i j5) GenPUMLcodeSetup i 0.19ME
© i | @
ﬁﬁuﬁ#ﬁ? EEE i BT RRIE
TTiF(A)
@ Google Toolbar for Intemet el 0.69MEB
@ B Lt E TS (CCLCLTLLLTITITIIITITITITITITLIT]] s sl
iRz | K-Lie Codec Pack 2.27 Full #iv 321ME
%%%)E | LivelUpdate 1.80 (Symantec Corporation) Fuln 4 .83MB
42 Microsoft NET Framework 1.1 F0v 1,008 00ME
{58! Microsoft NET Framework 1.1 Hotfix (KB886903) v 1,078 DOME
@ Micmsoft Activedme 3.8 el 6.75MB
B Microsoit Office XP Professional with FrontPage v 280 DOMB
| LB 3t Wicane] T M Do imboibiastehla Dosleocn 14 Gl i 8)

Figure 3-5 uninstalling the program that user select

So, it is convenient for users who want to use our toolkit to
install the program in the IDE that they are used to edit programs. And

the uninstall process is also convenient for user. There are no other

15

install/uninstall steps that user have to learn. All they have to do are
“click the button”.
B Tight Combination

When users finish the installation, our toolkit becomes one part
of the IDE. Our purpose is to embed our toolkit into the famous IDE,
and for users to operate the IDE that they are used to editing the
program they want. It is obvious that the toolkit doesn’t be combined
well if it is too complex for users. That is to say, the way for using the
toolkit we developed should be as simple as possible. However, when
users design the User Interface of the application, they can drag
controls to the design form from the IDE, Figure 3-6 is an example
how users can edit a button with the IDE, and they don’t have to
worry about. the code- of the UI controls. According to the User
Interface (Ul) controlsthey' design, users can see the PUML code
form the IDE automatieally. They just have to click one button from

the IDE. Therefore, it is easy for users to use our toolkit.

16

" WindowsApplication] - Microsoft Visual Basic NET [design] - Forml vb [Design]* .=}
File Edit View Project Build Debug Dats Format Took Window Help

G- | @ - . » Debug - g ToolsMewMeomProjert - BE T

Toalbox B X || StrtPaz: Formlwh [Degign]tl purnl zeml 4 b 3¢ | Solufion Explorer - Windows.. B X
Items for poml o: ‘g 0 EB|F |3

Eﬁ“’ - 50 Form1 == 3 Solution ‘Windowskpplicationl' 1
SR LU E N s B R s S D D S D S = ¥ WindowsApplication]
Windows Forms g CE i EEEEE s e + (5] References

R Pointer e Buttonl o G o e e g %] Assemblylnfo vb

A Label - —I e [E Forml b
ALkaabel/a-

-

jabl TextBo T e R R IL

= Mainklen

W CheckBox

@ RodioBution e -

[*] GrompBes 3 . T A I
[FicturBox ZFc Ga| @ @B s
D Panel Froperties 4 x
5 Datatrid |Fnrml Systern. Windows Forms: ij
EH ListBox B | A

o ; e 24

[5f] CheckedListBox

ER ComtoBox Cursor Defanlt d
& Font PMingL4Tl, 9pt i

e ForeColor Il ContmlTex
Sl FormBorderstyl Sizable
DateTimePicker Text Form1
78] MonthCelendar =] -
44 HierolBar Text
& wrom. A
Clipbossd Ring S The text contained in the contrl
General
Bl Server Bapl . 32 Toalhox " 5! Boperties | @) Dymamic Help
@ Search Results |
Ready

Figure 3-6 the controls users can select the controlithey want

B Familiar Develop Environment

We want users to use the IDE they like to edit the program. This
is why we decide to embed our toolkit into the famous IDE toolkit
(like Visual Studio .NET). If we develop our own IDE for editing
PUML program, we can control the style of the IDE. But users that
first use the IDE, they have to learn how to use the IDE. It is not
convenient for user to use the IDE we develop. So, we make the
toolkit embedded into the famous IDE, users who want to edit PUML
program can use the IDE that they know. Figure 3-7 is the IDE
“Visual Studio .NET” after we install our toolkit. The Environment of
the IDE is the same as before we install our toolkit into it. And the
way to use the IDE to edit PUML program is the same as the program

17

of other languages.

- Wi lication! - Microsoft Yisual Basic MET [desiga] - Farml v [Design])=
Ele Edd Yiew Poxet Buld Debvz Do Foomet Tooks Wmdow Heb

\'ED' -2 3 a ﬁ- & y Debug LAl] Tools NewMac oFmmct - ; £ =g Q' =

Toclbax g % {1az= Forml b Design] | ol sl |+ % |[Saon Explorer - Windows.. § %
Teaus for piand EREE S

gm &8 Solution WendowsApplicationd’ (|
Rpo = Z0 WindowsApplicationl

Wi ore: Famms + (] Refamnces

& Pomber] Asmmblylnovh

A Label B Fomal +b

A LinkLabel

b Bution

[l TextBose

& Msinken

W CheckBox e

£ BadioButon al e Ay = 5 ..

w v [EA) >

b s

s | B 2 Qi Ru@C | a:
[Panel EmpRnE 2 x
5] DamGd {le Mmﬂuﬂwsmmj
B Eiplie] e T e R T S =

[ChechedLisBox AL

=8 CombaBosx 1= -l
B oy AcceptBution (none)

e e CengelBution (o)

ET’“ “1 KeyPreviev Fal

abCombrol 2 S
S A R R Langoage (Deefanlt)

R Date TimePicker = Localizsble | Falee 1
BT} Mon#Calender & =4
94 HEcrollBax Mix

............
Clipboasd Ring =
Gomeral

B forr Bl 32 Toolhos B Fropertes | @ Dvmoe ey
G Sench Remults

R‘aaﬂy

| 1
I =

Figure 3-7 IDE after instill ou:toolkit program

B Click and Generation

In the characteristic “Tight Combination”, we describe that our

toolkit is combined with Visual Studio .NET through a button we

build in the Visual Studio .NET, and we also describe what the

relationship between our toolkit and the IDE - Visual Studio .NET is.

In this characteristic, we will explain the result after users press the

button we build in the IDE. Figure 3-8 is the result of Visual

Studio .NET after the button of our toolkit has been pressed by users.

We can see the PUML document from Figure 3-8, the document is

generated by our toolkit automatically after the button has been

18

pressed. And the document is generated according to the controls on

the design form that users want. Not only the PUML tags of the

controls, but also the properties of the controls. User set the properties

in the properties window, after they finish the setting, click the

generation button in Visual Studio .NET, our toolkit will generate the

PUML document, including the tags about all the controls and the

properties of each control that users set in the properties window.

" WindowsApplication] - Microsoft ¥isual Basic NET [design] - puml snl*

BEX

File Edit View

E-tn-2Hd

Project Buidd Debug Table Tools Window Help

p Debug

v | & Tools NewhdacroPmject

El

BERR T

Toolbox 4 x [Sart Page | Forml vb [Design]* puml aoml* 4 b % || Macro EKPIOWT I x
Ttens fox puml [<Feml wersion=1.0 encoding=UTF-87= —| 7 Macmos
== <punl suser-interface version="1.2"name=userInterfacel project=projectl amlns:punl=http:. 24 = B AddInWithTwoMacro
| K Pointer <pum] shoard name="boardl"> . cSHARP
action <puml caction MAHE="Buttonl" showTexi="Butionl"goto=""» =
: </punl zaction= = }y_inacms
use-obiect </punl -hoard» Hodule]
param </puml user-interfaces = Recordingtodule
33 addBTH
‘32 addHTML ToThe Toolbd
3 addTMLword
33 delete
I getPUMLIHle
0 Macral
=2 show(UID
+ (23 Samples
[£] _u | (=]
ZPc |Ghs. BM&C |l
Properties a x
| DocumENT =
22 8|
=
encoding TTF-87
targetichema
Mise
Cliphoard Ring -
General R | 3
% Herver Expl.. 92 Toolbox E XML | @ Data i Properties | @ Domennic Help
@ Hearch Results
Ready
Figure 3-8 the result of Visual Studio .NET after the button of our toolkit has been pressed by users

B FEasy Drag-and-Drop

As we mention above, users can drag controls from the toolbox

19

(left side of the IDE) to the design form, and they can see the layout
of the controls immediately. It is convenient for users to design the
User Interface of the application. Not only the layout of the controls,
but also the action of the controls. When users finish the UI design of
the application, they must have to decide what action each control will
be taken. The action will be taken when the control is triggered by

End Users.

We have to point out our purpose again: our toolkit embedded in
the IDE is making users to edit program easily. And it is not
convenient for users when they edit the action of each control; they
need to write all the code by themselves. Therefore, after users finish
the installation of our toolkit,-the toolbox of their IDE will be added
one tab named “Items_for PUML”. Figure 3-9 is the tab “Items for
PUML” added to the toolbox. There are three items in the tab -
<action>, <use-object>, <param>. Each item may be used by users
when they design the action of each control. Because these items are
used for the action of the controls, when users change the window to
the user interface design form, the tab “Items for PUML” in the
toolbox will disappear automatically. This function can avoid the error

operations from the users.

20

" WindowsApphcationl - Microsoft Yisual Basic NET [design] - puml xoml*

%]

<pum] -user-interface version="1_2"nane=userInterfacel project=projectl xmlns puml=http:. *

Ll Tools NewMacmoProject

4F X

| Macm Explorer

File Edit Wiew Project Build Debug Table Tools Window Help
ET R TR A= p Debuz

Toolbox B X | StartPage | Forml vb [Design]* puml xaml*

Ttems for puml | <Faml version=1.0 encoding=UTF-87>
& Pointer <puml hoard name="hoardl"

action <pum] zaction NAME="Buitonl" showText="Buttonl"goto="":
2 2 <fpunl zactions

use-biect il b

param </punl suser-interfaces

Cliphoard Ring J

General [e]

g server Expl . 92 Toalbox E XML | @ Data

(@) SeachResalls |

Ready

| s

FEHRF .

i ﬂ Macios
AddInWithTwoMacro
cSHARF
Myacmos

Modulel
= RecordinzModule
42 addBTN
43 add HTML To The Toolbd
3 add KMLword
A3 delete
A3 getPUTMLEe
43 Maeral
43 showGUID
+ Samples

+
4

¥

ikl ||
ZFc | lehs @M &gl
Mg
| DOCUMENT
B | 8
=
encoding
targetichema

b

i

TTE-87

Mise

i Properties | @) Divnamic Help |

Figure 3-9 after installation, the tab “Items for PUML” has been added to the toolbox of the IDE

B Visional Set Property

After users drag the controls to the design form of the IDE, they

have to set the properties of the controls they choose. They can set

properties in the properties window at the right side of the IDE. Figure

3-10 is the properties window where users can set the properties of the

controls.

21

Properties o
|Buttun1 Sarstern. Wind owes Forms B j

=g

& Font PMingLil, 9pt = |
ForeColor - Comntool Tex
Image [] (noney

Tmagedlizn MiddleCenter
Imagelndex [] (none)

Tmagelist (nome)

RightToLeft Mo

Tewt Buttonl

Texthlign MiddleCenter
B

A e Diop Falze
Confexthfenn | (none)
DialogResult None

Enabled True

Tablndex 0

TabStop Troe -]
Text

The fet contained in the contool.

F Properties | @) Domamic Help

Figure 3-10 the properties'window for-users to set the properties of the controls they choose

These are the characters when users operate the IDE that embedded our
toolkit. Users can easily edit the program they want with the IDE; the way to use the
IDE is the same after they install the toolkit we develop. After users finish the
program, they can use our toolkit to generate the program in the language they want.
And users can see the result from the emulator of the IDE. This is our purpose to
embed the toolkit we develop into the IDE that known to public. In the next part, we
will explain the steps about embedding the toolkit into Visual Studio.NET. The
embedding process includes two parts — combine the toolkit with the front-end

environment, and send the document to the back-end translation engine

22

3.2.The Process of Embedding

The embedding process of our toolkit into Visual Studio .NET can separate into
two parts. One is the front-end environment combination. The other is binding the
document that front-end environment generated with the back-end translation engine.
In the front-end combination with Visual Studio .NET, we have to detect all the Ul
controls that users put on the design form[15]. The action “detect UI controls”

contains several things, we describe as follow:

B The number of controls:

When users use the IDE (in our implementation, the target IDE is
Visual Studio .NET) to edit.the User Interface of the application, they
often medify the User Interface layout of the application. At the
moment user triggersthe IDE; ask to generate PUML code according
to the controls they design; our toolkit have to know the modification
about the controls. For example, user may add a button on the design
form of the IDE, when generating the PUML code, toolkit have to
detect that there is new control added to the form, and generate the

PUML code of the button in the PUML document.

u The modification of the controls:
When design the application layout, user not only modifies the
controls, but also the attributes of the controls. After detecting the
modification of the controls, toolkit has to generate the attributes of

each control.

23

After users finish the UI design of the PUML document, the next step is
translating the PUML file to the language they wants. In the process of translation,
the machine that users operate must to be connected with the Internet. Nowadays, it
is not difficult for computers to be connected with Internet; therefore; we design our
translation engine as Web Services, and the machine can send the document to the

translation engine through Internet.

The reason we decide to make our translation engine as Web Services is that we
can simplify the process of embedding our toolkit into the IDE. When users need the
service of translation, they send the document they edit to the engine through the
internet. After translation engine gets the document sanded by users, the engine
translates the document to,the language that the user wants. Finally, the engine sends
the document been translated to the.machine that the user operate, and the IDE
displays the document 'sanded back though-the emulator. Users can see the result
from the emulator, decide whether the-User Interface is they want or not by the result

displayed by the emulator. Figure 3-11 is an example about the translation process.

iy

IDE
Translation
Toolkit
— Web Services
Emulator

Figure 3-11 an example of the translation process

24

There are five steps of the translation; we describe each action of the steps that

users take as follow:

1.

Users edit the document with the IDE - Visual Studio .NET. The IDE
that users use has been embedded the translation toolkit we developed,
and the way to use the IDE to edit the User Interface of the

application is the same as usual.

After users design the User Interface of their program by putting
controls on the design form of the IDE, our toolkit can generate the
code of the PUML language according to the controls that users put
automatically. In this step,users can edit what action of the control is

when it is friggered.

When users finish their-program, they can click the button we build in
the IDE to translate the program. After users click the button, our
toolkit will transmit the PUML document to the translation engine

through Internet.

Translation engine gets the document form the toolkit embedded in
the IDE, it translate the document to the language users want, and

send the translated document to the toolkit back.

When the toolkit receives the translated document, it will display the

result to users through the emulator.

25

In this part, we have described the combination process of our toolkit. First of
all, we need to know what controls users have dragged on the design form, our
toolkit have to generate the document corresponding to the controls on the design
form of the IDE. The generated document includes the tags of the controls and the

attributes of the controls that users set in the properties window.

In the following chapter, we will introduce the language “PUML” at first. After
the part of “PUML”, we will explain the implementation how we embed our toolkit
into Visual Studio .NET, and transmit the document to the back-end translation

engine.

26

Chapter 4 Implementation

In this chapter, we will introduce the core implementation — Pervasive
User-interface Markup Language. After PUML is the section of the combination of

our toolkit and the IDE.

4.1.Introduction of Pervasive User-interface Markup

Language

PUML is a language for describing the User Interface of the application. When
we divide mobile application into_two parts: User Interface and Logic Computing,

the responsibility of PUML is to deseribe the User Interface.

PUML is a XML-based language for describing the User Interface. PUML have
to follow all the rules in XML, -and inherit all the characteristics about XML. We get
some ideas from XUL, UIML, and WML to design PUML. Besides the part we learn
from other languages described above, PUML also contains our own ideas of design.
These ideas make PUML more suitable for rendering the User Interface in the mobile

environment. We will introduce these ideas in later of this chapter.

After a PUML document has been translated by the translation engine, we can
get the program written in the other language, and the program can be executed in
the mobile environment. That is to say, the User Interface described in the PUML
document will be translated to the target language. When the translated document is

executed in the mobile environment, it will render the layout of the User Interface in

27

the PUML document.

4.1.1. The design ideas of PUML

Before design PUML, the author has compared several XML-based languages
for describing the User Interface. The languages are XUL, UIML, and WML. After
comparison these three description method, the author has some conclusion about the
language “PUML”. The author figures out the characteristics that PUML must be

included. These characteristics are as follow:

B The number of the elements must be simplified

B The language we design is with the notion of variables. It can be recorded
the state of each:control by variables in the User Interface. Moreover, the
state of each. control also- can' be as the parameter in the logically
computing environment.

B Controls must be .connected with the part of logically computing
environment by event-driven method.

B Because the language is described the User Interface in the mobile device,
the connection between each control in the UI must be simple.

We adopt the concept of the tag “card” in WML to meet the characteristic of the

small screen in the mobile device

4.1.2. All Elements included in PUML

In order to satisfy the characteristics of PUML, the number of the elements must be
as simplify. From the other hand to think about each element in PUML, it must be
applied to as many controls as possible. The control must be represented by our

element meaningful, and the elements can be mapped to the User Interface in all

28

kinds of target language.

The principle we used to design the elements in our PUML is described in the

following part:

1. Extract all the common User Interface controls from all languages in
the mobile computing environment. The language may be WAP,
Personal Java, J2ME, and CLI.

2. Make all the common controls abstract.

3. Map the abstraction of the controls to the elements of our PUML, use

our elements to represent the controls.

First of all, the common controls we. extracted are: Ul container, image, label,
text field, choice group,-and the button-about event-driven. And then we make these
common User Interface controls abstract: ' We will map the process of abstraction to

the condition in our living..

We can think the User Interface as the notice board. On the notice board, we

post something to remind us. They may be the label, text note, and picture posted on

the board.

In our PUML, the elements from the process of abstraction are : <board>,
<picture>, <label>, <textnote>, <listpaper>, and <item>. The meaning of the

elements we describe as follow:

B <board> — This element is mapped to the notice board, and it is the

29

UI container.

B <picture> — This tag is mapped to the picture on the board, and it is
used for images.

B <label> — This tag is mapped to the label, and it is used for
characters.

B <textnote> — This tag is mapped to the notepaper, and it is used for
text field.

B <listpaper> — This tag is used for the selection, and it is mapped to
the choice group..

B <item> — This tag is mapped to the items of the selection, and it

is used for the items of the choice group.

Besides the basic -elements we -have described above, there still have other
elements used to deseribes the state. about the User Interface. The element
<user-interface> is used for the information. Elements <logic-objects>, <object>, are
used for computing the logic of the program, and elements <action>, <use-object>,
<param> are related to the event-driven method. Table 4-1 is the detail of the

elements.

Table 4-1 the detail of all PUML elements

Element Description

Core Ul Related Elements

<user-interface> This is the root element of each PUML

document. This element is described

about the User Interface of the PUML

30

document

<board>

The core element of PUML. This is the

basic unit of the Ul container.

<picture>

This element is used for the picture
element displayed in the User Interface.
It is similar to the image in the browser

window.

<label>

This element is used to display the text
in the User Interface. It is the same as

the label of the Windows environment.

<textnote>

This element is used to represent the text
in the single line. It is equivalent to the

TextField in the Windows environment.

<listpaper>

This element is used for the selection in
the User Interface. It is the same as the
Choice Group or Choice List in the

Windows.

<item>

It is used to represent the items in the

<listpaper> element.

Event-Driven Related Elements

<action>

There are two child elements

<user-object>, <change>. In the content
of the <action> element, the three types
of the child element can be used by the

need of the logic computing, or be

31

applied to the way how the User
Interface be bowered. This element
usually represents as Button or

Command.

<use-object>

This element is used to represent the
logic object. We can assign the method

used to the logic object

<param> It is used to represent the parameter of
logic computing.
<change> It is used to change the Ul component

state of the element. For example : it can
be used to change the String displayed

on the screen.

4.1.3. Example of PUML

It is very easy to edit the PUML document. Programmer use the concept of the notice

board we have described above to edit the document, the layout of programmer can

be generated easily by dragging the controls to the form. In the following is the

simple example of using the IDE to edit the PUML document. Figure 4-1 is the

layout of the PUML document we edit, and Figure 4-2 is the PUML document after

we assign the action of the controls. In this example, it is a user log-in page, users

have to input the name and sex in the page. After the button is pressed, the page will

send the information about the user to the part of logic computing in the back-end,

and the screen will be changed to the other User Interface.

32

B Login page

- zlect your s e i
GoupBoxl e

Figure 4-1 the layout of the application

<user-interface narwe="LoginInput’ werzsion="1.2"
¥xmlns="http://dosvi.cis.nctu.edu. cu/Project/ pervasive/ PUTML ">
<logic-objects:
<object name="login"™ source="Login.poml™/>
</ logic-ohjects>
<hoard namwe="loginBoard™ title="login page® seglOo="07":>
<label name="showMsgl" showText="input your name:"™/ >
<texthote type="text"” nsgne="Uzerlame"™/>
<listpaper inawe="isex" mode="zingle’:>
<item showText="hoy"/>
<item showText="gicl"™ />
</ listpaper:>

<action hame="enter®™ showText="ENTER":>
<use-object name="login"™ method="verify":
<param select="Userlams"/>
<parsin select="igex"/ />
<param type="3tring™ value="Location-NCTU"™/ >
</fuse-objectr

<nexthoard goto="mainBoard™/ >
<faction>
</hoard:>

<hoard name="mainboard™ title="main page™:>
< !—content—>x

< /board:>
<fuser—-interfaces

Figure 4-2 the PUML document of the application

33

4.2.Implementation of the embedding

In the pervious part, we have introduced the language we develop. Because the
language is the basis of our implementation, we have to make readers understand the
language. After readers have understood the language, we can begin the next phase

of our implementation.

The implementation of embedding the toolkit into the IDE can divide into two

parts, we will describe as follow:

1. The combination with the front-end IDE:

In+this process,~users can choose the control from the
toolbox of the IDE, and drag the control to the design form. After
they-put the'controls on'the form, the layout of the User Interface
is presented. The job of our toolkit is to generate the PUML code
according to the controls on the form, therefore, our
implementation in this phase is to determine what the controls
users have choose, and what the value of the attributes in each

control are.

2. The transmission to the back-end translation engine:

The action that users take in this phase will be the
translation of the PUML document. Users press the button we
build in the IDE, and our toolkit will send the document to the
translation engine. In the process of our implementation, we

connect the IDE with the translation engine through Internet. In

34

this way, we can simplify the process of installation.

We have introduced the two parts of our implementation, in the following
section, we will detail the implementation in each part. In section 4.2.1, we will
introduce the detail about the toolkit to be combined with the front-end IDE. And
section 4.2.2 is the content about the transmission sand back to the translation

engine.

4.2.1.The toolkit be combined with the front-end IDE

Making users write the program in PUML easily is our motivation. “Easily”
means users can install our toolkit in to the IDE easily, they write the program easily,
and they get the result in:the language-they want easily. In order to simply the
installation process of our toolkit, we.package our toolkit as a plug—in. Figure 4-3 is

the executable file after we package ourtoolkit.

Figure 4-3 the executable file after we package our toolkit

Users who want to use our toolkit can download the plug-in we have packaged,
double click the executable file, and the installation is finished. This is the reason that

we package our toolkit as a plug-in.

In the Figure 4-4, we demonstrate the structure of the basic plug-in which be

plugged into Visual Studio .NET. This plug-in implements the IDTExtensibility2
35

interface, which serves as the main conduit for plug-in communication. It
implements the interface’s five methods-OnConnection, OnStartupComplete,
OnAddInsUpdate, OnBeginShutdown, and OnDisconnection. There’s no Main
method because it is destined to become a DLL. Instead, the OnConnection method

serves as the plug-in’s entry point.

public class Basic : IDTExtensikbilitwyd
{

public woid OnConnection(object application,
ext ConnectMode connectMode,
object addInInst,
ref Array custom)

public woid OnStartupComplete (ref Array custom)
{
b

public woid OnBeginShutdown(ref Array custom)
{
b

public woid OnblddInsUpdate (ref Array custom)
{
b

pubblic woid OnlDisconnection(ext DisconnectMode remowveMods,
ref Array custom)

{

b

Figure 4-4 the basic structure of the plug-in

As we know now, an implementation of IDTExtensibility2 lies at the core of
our plug-in. Visual Studio .NET calls the methods on this interface whenever it needs
to apprise an plug-in of important events, such as when another plug-in is loaded or
unloaded, or when Visual Studio .NET is about to shut down. The communication

isn’t just one-way, either: through the IDTEXxtensibility2 interface, the plug-in has
36

access to and control over the entire Visual Studio .NET automation object model.
We will describe the implementation of IDTEXxtensibility2 interface in the following
section:

B OnConnection:

By far the most important of the IDTExtensibility2 methods,
OnConnection provides a plug-in with the main object reference
it needs to communicate directly with the IDE.

B OnStratupComplete:

The OnStrarupComplete event fires only in plug-in that
load when Visual Studio .NET starts. An plug-in that loads at
startup can’t always rely on OnConnection for its initialization-if
the plug-in arrives too.early, it will fail when it tries to access a
Visual Studio .NET component that hasn’t loaded. In such cases,
the plug-in-can-use-OnStratupComplete to guarantee that Visual
Studio ‘NET is up-and running first.

B OnAddInsUpdate:

The OnAddInsUpdate event fires when an plug-in joins or
leaves the Visual Studio .NET environment. A plug-in can use
this event to enforce dependencies on other plug-ins. The lack of
useful parameters reveals OnAddInsUpdate’s passive-aggressive
nature-it interrupts the plug-in to tell it that the state of some
plug-in triggered the event. If you need to know the plug-in
responsible for the event, you have to discover its identity on
your own.

B OnBeginShutdown:

This event fires only when the IDE shuts down while an

37

plug-in is running. Although an IDE shutdown might get
canceled along the way, OnBeginShutdown doesn’t provide a
cancellation mechanism, so a plug-in should assume that
shutdown is inevitable and perform its cleanup routines
accordingly. A plug-in that manipulates IDE state might use the

event to restore the original IDE settings.

B OnDisconnection:

This event is similar to OnBeginShutdown in that is signals the
end of a plug-in’s life; it differs form OnBeginShutdown in that
the IDE isn’t necessarily about to shut down. OnDisconnection
also provides more information to an plug-in than

OnBeginShutdown dogs.

The detail of the IDTEntensibility2 interface we have described above, and we

summary the methods of the IDTEntensibility2 interface in Table 4-2.

Table 4-2 IDTEntensibility2 Interface

Method

Description

OnConnection

Called when the plug-in is loaded.

OnStratupComplete Called when Visual Studio .NET finishes

loading.

OnAddInsUpdate

Called whenever a plug-in is loaded or

unloaded from Visual Studio .NET.

OnBeginShutdown

Called when Visual Studio .NET is

closed.

38

OnDisconnection Called when the plug-in is unloaded.

This is the basic structure of the plug-in. From now on, we can add the functions
we want into the basic plug-in. After install the plug-in, the function of Visual

Studio .NET will be increased.

In this combination phase, we need to determine what the controls has been
dragged on the form by users. Because some of the controls have it own sub controls,
in the process of determination, we need to find the sub controls. For example, when
we edit the selection list, we will drag a Choice Group to the form, add several items
on the Choice Group, and we have a selection list on the form. The Choice Group
has its own sub controls. .Jn the process of determination, we have to find out the
entire sub controls that the. Choice Group has. In the following is the algorithm how
we determine the controls land-the.sub controls that they have. We name the

algorithm for determination as Determination.

Determination (Control control) {
if(control.SubContros = flase){
generate the PUML code of this control,
and the attributes of this control

} else {

Determination (control.SubCollection);

For each control of the collection {

39

Determination (control);

In the algorithm above, we have a collection of the controls on the form. The
collection is the record of the controls; we use this collection to get all the controls.
The collection has some function we can use, such as we can extract one of the
controls from the collection, get the sub controls from the target control, and count

the number of the controls.

At the first of the algorithm, we extract each control from the collection,
determine whether the control we get has sub controls or not. If not, we can generate
the PUML code of this control on the document. If the control has sub controls, we
have to recursive call the algorithm Determination (). Until the control inputted into
the algorithm has no sub contrels, we-can take the generation action to generate the

PUML code.

Because the situation of adding sub controls is not complex, we can do the recursive
call in our algorithm and don’t have to worry about the problem of complexity. We
take an example to explain the addition situation of the sub controls. In our elements
of PUML, <picture>, <label>, and <textnote> this three element have no sub
elements to be added on. The element <listpaper> represents a selection list, and the
element <item> is the item of the list added on the element <listpaper>. If the control
represented the element <listpaper> is inputted into the algorithm Determination(),
the algorithm will recursive call itself, and the sub control is inputted into
Determination() will be the element <item>. Because the element <item> has no sub

controls to be added on it, the recursive process will be stopped. After the code of

40

element <item> has been generated, the code of the <listpaper> will be generated in
follow. This is the example about when the algorithm will stop. Because the sub
controls added on the control are limited, there is nothing to worry about the
complexity of the algorithm Determination(). If we define the parameter n as the

number of the controls, the complexity of the algorithm will be O(n*n).

4.2.2. The document transmission to the back-end toolkit

Because the transmission to the target language is based on the PUML
document, we have to send the PUML document to the translation toolkit. The target
language we provide can be divided into two parts: One is the web-based language;

the other is the local-side language.

The web-based languages supported by-our translation toolkit are XHTML MP
and WML. This function 18:teused from our colleague; we deploy the toolkit as the
web service. The requirement of using our web-base translation is the internet
connection. After users finish the User Interface design, they press the button to
transmit the PUML document to the toolkit we deployed on the internet. The toolkit
can translates the PUML document to the target language we supported, and

transmits the result back to users.

The other part is the local-side languages. The term “local-side” means the
entire program is executed on the machine. The target languages we support in this
part is C# and J2ME. The requirement of this function is the XSLT style sheet.

Through the style sheet, users can get the User Interface in their assigned language.

41

The translation in this part needs no network connection. Users only have to
download the style sheet, put the style sheet in the machine. In the process of the
translation, our toolkit will generate the target language through the style sheet

automatically.

42

Chapter 5 Comparison

In this chapter, we will compare our plug-in with CodeSmith and CodeCharge
which we have introduced in Chatper 2. The comparison will from the point of
convenience to compare these three translation toolkit. Before the table of the

comparison, we will describe the advantages and drawbacks each of them.

5.1. CodeCharge

If people are developing data-driven interactive Web sites or enterprise Internet
and Intranet systems, CodeCharge Studio provides a way to build users applications
with support for virtually all databases, web servers and web technologies. The

advantages and drawbacks are listed-as:follow:

B Advantage:

1. Variety Languages — the target language CodeCharge supported are
ASP, JSP, PHP, Perl, ColdFusion, and ASP.NET.

2. Graphic User Interface (GUI) workspace — It is a WYSIWYG editor.
Users interact with the GUI workspace of the IDE during the process

of using CodeCharge Studio. It is convenient for users.

B Drawbacks:

1. Incomplete external editor — Although CodeCharge provides the IDE
for users to edit the program, it is not convenience for users who want
to use the IDE they favorite to edit the program. The process of using

the external editor is to trigger the editor users like in the CodeCharge

43

IDE. After users finish the program with their favorite editor, they

have to back the IDE of CodeCharge for translation.

Unnecessary installation — As we mention above, users who want to translate
the program, they have to return to the IDE of CodeCharge. That means all the
translation is based on the IDE of CodeCharge. If users who like to use the IDE they
favorite to edit the program, use the translation ability of CodeCharge only, they have

to install the entire program of CodeCharge (including the IDE interface).

5.2. CodeSmith

The syntax of the templates used for Codesmith is very similar to ASP.NET. In
ASP.NET, users can use delimiters to separate code that will execute on the server
from HTML and JavaScript coderthat will be sent to the browser. In Codesmith, users
use delimiters to separate the code executed by the template from the code that will
be generated.

B Advantages:

1. Well Combination — Users can operate CodeSmith in Visual
Studio .Net as a custom tool. This custom tool effectively allows
CodeSmith to simulate generics in that you can have a template and
create specialized instances of that template by adding additional
property sets.

2. Known Languages — CodeSmith can let users to edit the program in
C#, VB.NET or JScript NET languages. Users can choose the
language they familiar with, and use the language to edit the program.
There is no need to learn a new language.

B Drawbacks:

44

Inconvenient Ul Design — CodeSmith don’t provide a visual
environment for users to edit the User Interface of the application.
Users have to edit the Ul in the text mode.

No Emulator — When people finish their programs, there is no
emulator provided. Users can’t get the result from the emulator

immediately.

Table 5-1 Comparison of the translation toolkits

Our plug-in CodeCharge CodeSmith

Operation Easy Easy Normal

Combination Good Bad Normal

Installation Easy Easy Easy

UI Design Good Good None

Emulator Yes Yes No

Target IDE VS Net 1. FrontPage 1. VS Net
2. DreamWeaver 2. Itself own
3. Itself own

45

Chapter 6

Conclusion and Future Work

6.1.Conclusion

In the above chapter, we have introduced all the things about this paper. First of
all, we have described the translation toolkit developed by our lab colleague. The
motivation of this toolkit is similar with the concept of Java. The author wants the
concept “Write Once, Run Anywhere” being realized in the mobile environment. The
usage of the toolkit is to translate the document written in the language we defined,
and users can assign the target language they want to translate the document. The
translated document can be| executed in the mobile environment according to the

language users assign. Fhis 1s the usage of our toolkit.

But there is a drawback about this toolkit. When users edit the document in the
language we defined, they need to work in the environment of characters. There is no
IDE for users to edit the document conveniently. In this paper, our motivation is to
provide a convenient IDE with users. A lot of IDE have been published in the world,
there is no need to develop the IDE our own for the language we define. We can
simply embed our toolkit into the famous IDE. Users who want to edit the document
we define can install our toolkit, use the IDE they are familiar to edit the document.
Since our motivation is convenience, the process of embedding our toolkit should be
as simply as possible. The conveniences of embedding process are described as

follow:

46

Easy-to-Use:

Users who want to edit the document in our language can use the
IDE they like. The target IDE we choice in our implementation is
Visual Studio .NET. We package our toolkit as an executable file,
users only have to download the file, install it into the IDE, and they
can use the toolkit our developed. The operation of using the IDE is
the same as before, there is no need to change the behavior of
operating the IDE. Users can operate the IDE as usual, and they can
edit the document in our language.
Easy-to-Install

Because our toolkit is a third-party development, users have to
install our toolkit before they use it. We package our toolkit as an
executable file for users to-install our toolkit conveniently. The
installation precess.is-simply-click the button “Next” (if users don’t
want to change.any default setting), and the installation process is
finished. There is no need to set any class path, or connecting to any
SDK after install our package. This is very convenient. After
installation, our toolkit has been embedded into the IDE, and users

can use our toolkit easily.

According to the characteristics we have described above, it is convenience for

users no matter in the process of operation or the installation. The method of

operating the IDE is the same as before. We embed our translation toolkit into the

IDE, users operate the IDE as usual. The IDE embedded with our toolkit can

generate the PUML code according to the dragged controls on the form. After users

47

have installed our plug-in, they can convenience edit the document in our language,

and reduce the repeat action of developing.

6.2. Future Work

After we package our toolkit as a plug-in, users can convenience install and use our
toolkit. But the target IDE in our implementation is Visual Studio .NET now, there
still have lots of famous IDE published. We wish the target IDE that embedded with
our toolkit could be supported more widely and the developing works can be more
easily, so we propose a few future works that enhance our plug-in more complete.

We describe as follow:

B Increase thenumber of IDEs:

As we mention above,.the target IDE we focus to embed our toolkit
now, is Visual-Studio-NET which'is an IDE developed by Microsoft. There
are still many famous IDE Published in the world, and users not operate
the IDE we focus to edit the program. In other word, there are still lots of
people not use Visual Studio .NET to develop the program. Since we hope
users to operate the IDE they familiar to edit the document in the language
we define, we can enhance our plug-in suitable for embedding into other
IDEs. This is the one part that we can still enhance.

B Improve the combination of the IDE:

Although the IDE embedded with out toolkit can edit the document in
the language we define, but the controls that supported by the IDE are
limited to the basic User Interface controls. With the device computing
power increasing, the application executed in the mobile device becomes

more and more complex; therefore, the function of our toolkit will be

48

enhanced. So, the combination between the IDE and our toolkit must be
improved too. In this reason, we have to make our plug-in more combined

with the IDE.

In order to make our plug-in more convenience and complete, we hope to

strengthen the parts we described above, make our development more complete.

49

Bibliography

[1] ?ﬁiﬁfﬁl, "XML-based Mobile Application Development Kit", [/ 4]
A g, W93 # 6
[2] Ono, K.; Koyanagi, T.; Abe, M.; Hori, M.; Applications and the Internet,
2002. (SAINT 2002). Proceedings. 2002 Symposium on 28 Jan.-1 Feb.
2002 Page(s):150 - 159
[3] Extensible Markup Language , W3C

http:/www.w3.org/ XML/

[4] WAP Forum, OMA, Open Mobile Alliance

http://www.wapforum.org/index.htm

[5] Sun Microsystems Inc , Java2:Platform Micro Edition

http://java.sun.com/j2me/

[6] XSL Transformations (XSLT) Version'1.0, W3C Recommendation 16
November 1999
http://www.w3.org/TR/xslt

[7] Microsoft Visual Studio Developer Center
http://msdn.microsoft.com/vstudio/

[8] MexE forum

http:// www.MExEforum.org

[9] 3GPP
http://www.3gpp.org

[10] CodeSmith
http://www.codesmithtools.com/

[11] CodeCharge , YesSoftware,Inc

50

http://www.yessoftware.com/products/product_detail.php?product id=1

[12] Nikola MitroviC and Eduardo Mena, "Adaptive User Interface for Mobile

[13]

[14]

Devices", IIS Department, University of Zaragoza, Maria de Luna 3, 50018
Zaragoza, Spain

Johan Plomp, Robbie Schaefer, and Wolfgang Mueller, "Comparing
Transcoding Tools for Use with a Generic User Interface Format", Extreme
Markup Languages 2002 Conference

MSDN , Visual Studio.NET Extensibility

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart

/ html/vstchExtensibilityArticles.asp

[15] Johnson Brian , Skibo Craig , “Inside Visual Studio .NET” , Redmond,

[16]

[17]

[18]

Washington :Microgoft Press,c2003.

Chris Von See and Nitin Keskar, "XSET Developer's Guide"

XML Path Language(XPath) Version 1.0, http://www.w3.0rg/TR/xpath, W3C
Recommendation 16:Nevember1999

Anna Maria Jankowska, and Andrzej Dabkowski, "Content Adaptation Tag
Library - An Approach for User Interface Adaptation for Different

Devices", European University Viadrina, Chair of Business Informatics

[19 1 Kris Luyten and Karin Coninx, "An XML-based runtime user interface

[20]

[21]

[22]

[23]

description language for mobile computing devices", 2001 Springer-Verlag
BT E, " A Visualized Kit for Developing Applications on Multiple Mobile
Devices ", [4 ip 25 ﬁEJj , Nl 94 = 6 k|

Les Smith , “Writing Add-Ins for Visual Studio .NET” , APress 2002
Microsoft , Visual Studio Industry Partner(VSIP)
http://msdn.microsoft.com/vstudio/extend/

Microsoft Visual Studio .NET , Microsoft Java Language Conversion

51

Assistant

http://msdn.microsoft.com/vstudio/downloads/tools/jlca/

[24] Code Generation Network

http://www.codegeneration.net/tiki-index.php

[25] David De Loveh, Dan Maharry, Bill Sempf, Don Xie , “Effective Visual
Studio .Net ” , WROX PRESS 2002
[26] Kathleen Dollard , “Code Generation in Microsoft .NET” , APress 2004

[27] Jack Herrington , “Code Generation in Action” , MANNING 2003

52

