

國 立 交 通 大 學

資訊科學系

碩 士 論 文

適用於 Visual Studio .NET 上之

多使用者介面產生器

A Multi User-Interface Generation Plug-in for

Visual Studio .NET

 研 究 生：高啟涵

 指導教授：袁賢銘 教授

適用於 Visual Studio .NET 上之多使用者介面產生器

A Multi User-Interface Generation Plug-in for Visual Studio .NET

研 究 生：高啟涵 Student：Chi-Han Kao

指導教授：袁賢銘 Advisor：Shyan-Ming Yuan

國 立 交 通 大 學

資 訊 科 學系

碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 ii

適用於 Visual Studio .NET 上之多使用者介面產生器

學生: 高啟涵 指導教授: 袁賢銘

國立交通大學資訊科學系﹙研究所﹚碩士班

摘 要

隨著手機的多樣化，各種設備間的規格也漸趨差異。就程式設計師而言，

相同功能的程式，為了在不同平台上執行，便必須以不同的程式語言重新撰寫。

這樣的行為對於程式開發者而言，是重覆而不必要的。因此，我們希望提供一

個轉換的工具，將撰寫好的程式，轉換成特定語言的版本。

在本篇論文中，我們選擇將轉換的功能嵌入到 Microsoft 所開發的 Visual

Studio .NET。這是一套在 .NET 平台下，開發程式的整合性開發工具

(Integrated Development Environment)，我們希望使用者利用 Visual

Studio .NET 本身的開發環境，拖拉使用者介面呈現的方法，而後我們的轉換工

具便可以產生相對應的 C#、J2ME、XHTML-MP 和 WML 版本的使用者介面，節省程

式設計師的開發時間。所以，從程式開發者的角度而言，只要將我們的轉換工

具安裝到 Visual Studio .NET 中，使用一樣的方式作使用者介面的開發，而後

便可以得到不同版本的使用者介面，節省在不同平台上開發程式的時間。

 iii

A Multi User-Interface Generation Plug-in for Visual Studio .NET

Student: Chi-Han Kao Advisor: Shyan-Ming Yuan

Department of Computer and Information Science
National Chiao Tung University

Abstract

With the variety of the mobile devices, specifications between devices have

become more and more different. From the point view of programmers, in order

to execute the application with the same function on the different platform,

programmers have to rewrite the program in another language. The repeated

action of rewriting is meaningless and unnecessary for programmers. Therefore,

we want to provide a toolkit for programmers. The finished program can be

translated into the target language through the toolkit.

In this thesis, we choose the Integrated Development Environment – Visual

Studio .NET as the target IDE to embed our toolkit into it. Visual Studio .NET is

developed by Microsoft and it is used to edit the program executed on the .NET

platform. Users operate the IDE to edit the program, design the layout of the

User Interface with the IDE. According the layout designed by users, our toolkit

can generate the User Interface written in C#, J2ME, XHTML-MP and WML.

In terms of users, they only have to install our toolkit into Visual Studio .NET,

operate the IDE as usual, and they can get the User Interface written in their

desired programming language.

 iv

Acknowledgement

首先，謝謝我們的指導老師 - 袁賢銘教授，給予我們很大的研

究空間，讓我們可以在無拘束的環境中學習。再來是碩二的同學們，

仁凱、小於、小武、林董，因為你們的陪伴，讓寫論文的日子不再

那麼難熬。以及指導我的高子漢學長，謝謝你的教導。

最後，我必須要感謝我的父母，謝謝你們的養育之恩。雖然你們

沒能看著我完成碩士班的學業，但是我希望藉著這篇論文，大聲的

告訴你們－我沒有辜負你們的期望!!

 v

Table of Contents

Acknowledgement .. v

Table of Contents... vi

List of Figures.. viii

List of Tables.. ix

Chapter 1 Introduction.. 1

1.1. Preface ... 1

1.2. Motivation ... 1

1.3. Objectives.. 2

1.4. Organization .. 3

Chapter 2 Background and Related Works .. 4

2.1. Background ... 4

2.1.1. XML-based Mobile Application Development Kit....................... 4

2.1.2. Visual Studio .NET.. 5

MExE (Mobile Execution Environment) .. 6

XML (Extensible Markup Language) ... 8

2.2. Related Works ... 9

2.2.1. CodeSmith ... 9

2.2.2. CodeCharge ... 9

Chapter 3 Ideas of Design ..11

3.1. Ideas of Design.. 12

3.2. The Process of Embedding.. 23

Chapter 4 Implementation .. 27

 vi

4.1. Introduction of Pervasive User-interface Markup Language 27

4.1.1. The design ideas of PUML.. 28

4.1.2. All Elements included in PUML... 28

4.1.3. Example of PUML .. 32

4.2. Implementation of the embedding... 34

4.2.1. The toolkit be combined with the front-end IDE 35

4.2.2. The document transmission to the back-end toolkit.................... 41

Chapter 5 Comparison .. 43

5.1. CodeCharge ... 43

5.2. CodeSmith ... 44

Chapter 6 Conclusion and Future Work ... 46

6.1. Conclusion... 46

6.2. Future Work... 48

Bibliography ... 50

 vii

List of Figures

Figure 2-1 the structure of XML-based Mobile Application Development Kit......... 5

Figure 2-2 the develop environment of Visual Studio .NET...................................... 6

Figure 3-1 example of translating program from J2ME to WML............................ 11

Figure 3-2 the installing process of our toolkit .. 13

Figure 3-3 icon about our toolkit program ... 14

Figure 3-4 choosing the program that users have installed 15

Figure 3-5 uninstalling the program that user select .. 15

Figure 3-6 the controls users can select the control they want................................. 17

Figure 3-7 IDE after instill our toolkit program... 18

Figure 3-8 the result of Visual Studio .NET... 19

Figure 3-9 after installation, the tab “Items for PUML” been added to the IDE 21

Figure 3-10 the properties window for the properties of the controls...................... 22

Figure 3-11 an example of the translation process ... 24

Figure 4-1 the layout of the application ... 33

Figure 4-2 the PUML document of the application.. 33

Figure 4-3 the executable file after we package our toolkit 35

Figure 4-4 the basic structure of the plug-in .. 36

 viii

List of Tables

Table 4-1 the detail of all PUML elements .. 30

Table 4-2 IDTEntensibility2 Interface ... 38

Table 5-1 Comparison of the translation toolkits ... 45

 ix

Chapter 1 Introduction

1.1. Preface

As the mobile devices are developed vigorously in recent years, there are

thousands of devices have been published in the world. Therefore, many mobile

applications are coded in many different programming languages. There is a problem

for the people who develop the mobile application. If they want to operate mobile

applications with same function in various mobile execution environments, they have

to edit various versions of program by using different programming languages.

To save the problem, the member of our lab – Shen, had proposed a toolkit

named “XML-based Mobile Application Development Kit” [1]. The toolkit is

designed in the concept “Write Once, Run Anywhere”, the function of this toolkit is

translating the document to the target language users assigned, and the translated

document can be executed in the mobile environment. The document is written in the

language we defined, and the translated document is written in the physical language

known by public. From now on, programmers only have to write the program once,

and our toolkit can translate the program to various languages in the public by using

our toolkit.

1.2. Motivation

Although the toolkit proposed by shen saves the problem of various mobile

execution environments, the environment for users to edit the document in the

language we defined is in the text mode. It is not convenient for users to edit the

 1

document. We want users can edit the document in the WYSIWYG [2] development

environment. When users develop the User Interface (UI) of the mobile application,

they can get the layout of the User Interface immediately from the development

environment.

At first, we want to develop the development environment ourselves own. But

there is a problem about this development environment. Users who first operate the

development environment have to learn the skills about the environment. It is not

convenient for users.

In the next step, we find that there are many integrated development

environment (IDE) have been published in the world. In normal, programmers

usually use the IDE to develop the program. This situation excites our thought to

embed our toolkit into the IDE known by public. In this way, programmers can use

the IDE they are familiar to edit the document, and our toolkit can translate the

document to the target language they assigned.

1.3. Objectives

Since our motivation is embedding the translation toolkit into the famous IDE,

we have to provide a convenient method for users to operate our toolkit.

Convenience is our objective. The meaning of the convenience can be divided into

two parts, we will describe as follow:

 Use Conveniently:

Because our toolkit is a third party development, it is not one part of the

target IDE at first. We have to provide a convenient method of using our toolkit.

 2

The method of operating our toolkit is just like other operations in the IDE,

there is no different between our toolkit and other operations.

 Install Conveniently:

As we mention above, our toolkit is a third-party development, how we can

embed our toolkit into the target IDE conveniently is important to users. We

would like to provide a simple installation for users. There are no unnecessary

steps in the installation process, and no complex steps in the process too. All the

installation is simple for users.

1.4. Organization

The rest of this thesis is organized as follows. In the next chapter, we review a

few background and related works. The characteristics of our implementation are

provided in Chapter 3. In Chapter 4, we will explain how to implement our

development in detail. After that, we will compare our development with the other

programs which have the function are similar to us in Chapter 5. Final chapter is the

conclusions and future works.

 3

Chapter 2 Background and Related Works

2.1. Background

2.1.1. XML-based Mobile Application Development Kit

This is the target toolkit we want to embed into the famous integrated

development environment. This toolkit is developed by shen[1]. The objective of this

toolkit is based on the concept “Write Once, Run Anywhere”. This concept is similar

with Java. The toolkit translates the program to the target language assigned by users

to achieve the objective “Write Once, Run Anywhere”.

 This toolkit is capable of translating a program written in the extra language to

that of a certain mobile environment. The language is in the abstract level, and the

method to describe the application is to record all the information about this

application in the document written in XML[3] language. The document described

the mobile application can be translate to the program executed in many kinds of

mobile execution environment. The environment for example: WML /

WMLScript[4], J2ME MIDP[5]…and so on.

 4

Figure 2-1 the structure of XML-based Mobile Application Development Kit

From Figure 2-1 the structure of the toolkit, we can find out that the description

of the mobile application are divided into two parts: One is the part of the User

Interface, and the other is the logic computing of the application. In the abstract level,

the author design description languages based on XML. The description language for

User Interface is named as PUML (Pervasive User-interface Markup Language), and

the language for logic computing is named as PGML (Pervasive loGic Markup

Language)

The author uses the mechanism of the XSLT[6] as the translation technology.

Using the XSLT translation mechanism, the toolkit can translate the document in the

abstract level to each kind of program in physical language, and the translated

program can be executed in it mobile environment.

2.1.2. Visual Studio .NET

Visual Studio .NET 2003 Professional[7] enables user to rapidly build a broad

range of applications for Microsoft Windows®, the Web, and devices. With intuitive

visual designers, high-performance data access tools, server-side visual designers,
 5

native support for the Microsoft .NET Compact Framework, and inherent support for

XML Web services, Visual Studio .NET 2003 Professional delivers improved

reliability, security, and performance.

Visual Studio .NET 2003 enables user to address today's most pressing

application development and deployment challenges, streamline business processes,

and realize new business opportunities. The unified Visual Studio .NET 2003

integrated development environment (IDE) and a choice of programming

languages—including Microsoft Visual Basic® .NET 2003, Microsoft Visual

C++® .NET 2003, Microsoft Visual C#® .NET 2003, and Microsoft Visual

J#™ .NET 2003—enable user to build applications using your existing skills. Figure

2-2 is the develop environment of Visual Studio .NET.

Figure 2-2 the develop environment of Visual Studio .NET

 MExE (Mobile Execution Environment)

MExE[8][9] is the execution environment focused on the mobile devices. MExE
 6

is published by 3GPP. They claim that there are five types of mobile devices in

MExE. If any mobile device belongs to the five types, this mobile device can be the

MExE device too.

 The objective of MExE is to set a standard in the mobile execution environment.

This standard can be applied to the development of mobile application or the

software service, makes them more convenience and fast.

 According to execution environment and computing capability of every mobile

device, MExE divides the execution environment into five class marks. The five

calssmarks are listed as follow:

1. classmark 1 – WAP execution environment:

The mobile device in this execution environment has a lightweight

browser. The browser can browse or execute the web pages written in

WML/WMLScript. The device must follow the WAP standard, and is

compatible with the wireless network environment.

2. classmark 2 – Personal Java execution environment:

In this execution environment, the computing power and the hardware

capability of the devices are better. This execution environment (is the Java

Virtual Machine) can execute the mobile application written in Personal

Java (PJava), it can supports more complex User Interface of the

application and the APIs.

3. classmark 3 – J2ME/CLDC execution environment

Devices in this execution environment are limited to the computing power

and the hardware capability itself. Devices can not display the complex User

Interface, and the screen of these devices have are usually smaller. So, the APIs

 7

in J2ME is designed for this kind of mobile devices. The application be

executed in this environment is written in the language-J2ME.

4. classmark 4 – CLI compact execution environment

The application written in the programming language (embedded C++ for

example) of Microsoft can be executed in this environment.

5. classmark 5 – Virtual Palmtop network execution environment

The environment of this part uses the client-server architecture to execute

the application. The mobile device only display the User Interface, and the data

inputted by the user will be transmitted to the remote server for logic computing

through Internet. The result will be transmitted to the mobile device back, and

displayed on the screen with the suitable User Interface.

 XML (Extensible Markup Language)

XML is an open meta-language, and it is text-based language. The structure and

the metadata of XML are based on the tags. Because it is text-based language, people

who read the document written in XML can easily read and understand it. In addition,

XML provide the ability of describing data, the structure data can be read by

machines.

Because XML is a meta-language, it can be used to create the other language

and generate a lot of application. There are lots of applications of XML now. For

example, XSLT, MateML, XPath, SOAP, and WML….and so on.

 8

2.2. Related Works

2.2.1. CodeSmith

CodeSmith[10] is a FREEWARE template-based code generator that allows

user to generate code for any ASCII-based language. The code generated can be

customized by the use of properties. A property can be any .NET object that has a

designer (most built in .NET types have designers already) and can be as simple as a

boolean property that allows user to conditionally add or remove code from the

resultCodeSmith's syntax is almost identical to ASP.NET. So if users are familiar

with ASP.NET. Users can use the C#, VB.NET or JScript.NET languages in they

templates and they templates can output any ASCII-based language.

CodeSmith includes a couple ways to generate code in batch. There is a Visual

Studio .NET 2003 custom tool included that allows including templates that can

generate code based on multiple property sets. This custom tool effectively allows

CodeSmith to simulate generics in that users can have a template and create

specialized instances of that template by adding additional property sets. CodeSmith

is being released as freeware in an attempt to build a strong community of users and

templates.

2.2.2. CodeCharge

CodeCharge[11] Studio is the productive solution for visually creating Web

applications with minimal amount of coding. The support for virtually all databases,

web servers and web technologies makes CodeCharge Studio one of a kind. It is a

 9

solution available for Web development.

Also included is CodeCharge Studio Add-In for FrontPage - the first product

that extends FrontPage functionality into an integrated web development

environment that makes it creating database-enabled web sites. It also can use the

external editor as the User Interface editor. For example, the IDE named

“DreamWeaver” which is developed by Macromedia is the external editor can

support CodeCharge to edit the User Interface..

 10

Chapter 3 Ideas of Design

The toolkit that we developed is used to translate the program from one

language to another. For example, according to Figure 3-1, we can edit the program

in J2ME, and we can get the program written in WML through our toolkit[12][13].

Figure 3-1 example of translating program from J2ME to WML

This is the usage of our toolkit. In the toolkit, we define a language, which was

named Pervasive User-interface Markup Language (PUML). We will introduce the

language “PUML” roughly in this chapter, and we will detail the language in Chapter

Four. PUML is the intermediary language for translating; we can save the developing

time of writing the program with the same function but in the different language. It’s

convenient to get the program in the language we want through PUML. And if we

edit the program by PUML directly, we can save the translating time.

 11

In the original method, we have to choose one language (not PUML) to edit the

program, and through the PUML language to translate the file to another language.

Our motivation is that users can write the program by PUML, and we can reduce the

translation process to once. However the major problem is that PUML is developed

by my colleague of our LAB, it’s not known to others. So, there must be a way for

user to edit the program in PUML easily, and they don’t have to know much about

PUML.

Our method is embedded the language “PUML” into the Integrated

Development Environment (IDE) that known to the public, and use the language to

edit the program. Our motivation is making users to edit the program written in

PUML, but they can edit the program in the graphical User Interface environment.

Therefore, Users don’t have to understand all the PUML language. The code of the

User Interface can be generated by our toolkit, and users can write the program in

PUML easily.

3.1. Ideas of Design

As we mentioned above, in order to make user convenient use PUML to edit the

program, there are some characteristic about our toolkit (embed PUML in IDE)

described as follow:

 Easy Install Easy Uninstall –

Because our toolkit is a third-party development, before user use

it, they have to install it first. But many software before user begin to

use it, they have to do lots niggling about setting. It’s very

inconvenient. We hope that all the things user need to do is to

 12

download the toolkit installation file, double click the file, and the

install process is finished. So, we package our program as an

executable file. Users only have to download the installation file,

install the file just like other common application software we use;

Figure 3-2 is the installing process of our toolkit. We can see the

process from the picture, users only have to click the “Next” button,

and the installing process is finished.

Figure 3-2 the installing process of our toolkit

After users finish the installation process, users can see the icon

about our toolkit from the IDE (We choose Visual Studio .Net as the

IDE toolkit), Figure 3-3 is the icon about our toolkit embedded in

Visual Studio .Net[14].

 13

Figure 3-3 Icon about our toolkit program

Not only simple the install process as possible, but also the

uninstall process does. When user want uninstall the program, they

don’t need to take many action about it. They just follow the steps of

uninstalling other common software as usual. The steps are as follow:

Entering “Control Panel” → Select “Add or Remove Program” →

Choose the program that we install → Select “Uninstall it”. And the

program will be uninstalled. Figure 3-4 is the picture about choosing

the program that user has installed. Figure 3-5 is the picture about the

uninstalling process.

 14

Figure 3-4 choosing the program that users have installed

Figure 3-5 uninstalling the program that user select

So, it is convenient for users who want to use our toolkit to

install the program in the IDE that they are used to edit programs. And

the uninstall process is also convenient for user. There are no other

 15

install/uninstall steps that user have to learn. All they have to do are

“click the button”.

 Tight Combination

When users finish the installation, our toolkit becomes one part

of the IDE. Our purpose is to embed our toolkit into the famous IDE,

and for users to operate the IDE that they are used to editing the

program they want. It is obvious that the toolkit doesn’t be combined

well if it is too complex for users. That is to say, the way for using the

toolkit we developed should be as simple as possible. However, when

users design the User Interface of the application, they can drag

controls to the design form from the IDE, Figure 3-6 is an example

how users can edit a button with the IDE, and they don’t have to

worry about the code of the UI controls. According to the User

Interface (UI) controls they design, users can see the PUML code

form the IDE automatically. They just have to click one button from

the IDE. Therefore, it is easy for users to use our toolkit.

 16

Figure 3-6 the controls users can select the control they want

 Familiar Develop Environment

We want users to use the IDE they like to edit the program. This

is why we decide to embed our toolkit into the famous IDE toolkit

(like Visual Studio .NET). If we develop our own IDE for editing

PUML program, we can control the style of the IDE. But users that

first use the IDE, they have to learn how to use the IDE. It is not

convenient for user to use the IDE we develop. So, we make the

toolkit embedded into the famous IDE, users who want to edit PUML

program can use the IDE that they know. Figure 3-7 is the IDE

“Visual Studio .NET” after we install our toolkit. The Environment of

the IDE is the same as before we install our toolkit into it. And the

way to use the IDE to edit PUML program is the same as the program

 17

of other languages.

Figure 3-7 IDE after instill our toolkit program

 Click and Generation

In the characteristic “Tight Combination”, we describe that our

toolkit is combined with Visual Studio .NET through a button we

build in the Visual Studio .NET, and we also describe what the

relationship between our toolkit and the IDE - Visual Studio .NET is.

In this characteristic, we will explain the result after users press the

button we build in the IDE. Figure 3-8 is the result of Visual

Studio .NET after the button of our toolkit has been pressed by users.

We can see the PUML document from Figure 3-8, the document is

generated by our toolkit automatically after the button has been

 18

pressed. And the document is generated according to the controls on

the design form that users want. Not only the PUML tags of the

controls, but also the properties of the controls. User set the properties

in the properties window, after they finish the setting, click the

generation button in Visual Studio .NET, our toolkit will generate the

PUML document, including the tags about all the controls and the

properties of each control that users set in the properties window.

Figure 3-8 the result of Visual Studio .NET after the button of our toolkit has been pressed by users

 Easy Drag-and-Drop

As we mention above, users can drag controls from the toolbox

 19

(left side of the IDE) to the design form, and they can see the layout

of the controls immediately. It is convenient for users to design the

User Interface of the application. Not only the layout of the controls,

but also the action of the controls. When users finish the UI design of

the application, they must have to decide what action each control will

be taken. The action will be taken when the control is triggered by

End Users.

We have to point out our purpose again: our toolkit embedded in

the IDE is making users to edit program easily. And it is not

convenient for users when they edit the action of each control; they

need to write all the code by themselves. Therefore, after users finish

the installation of our toolkit, the toolbox of their IDE will be added

one tab named “Items for PUML”. Figure 3-9 is the tab “Items for

PUML” added to the toolbox. There are three items in the tab -

<action>, <use-object>, <param>. Each item may be used by users

when they design the action of each control. Because these items are

used for the action of the controls, when users change the window to

the user interface design form, the tab “Items for PUML” in the

toolbox will disappear automatically. This function can avoid the error

operations from the users.

 20

Figure 3-9 after installation, the tab “Items for PUML” has been added to the toolbox of the IDE

 Visional Set Property

After users drag the controls to the design form of the IDE, they

have to set the properties of the controls they choose. They can set

properties in the properties window at the right side of the IDE. Figure

3-10 is the properties window where users can set the properties of the

controls.

 21

Figure 3-10 the properties window for users to set the properties of the controls they choose

 These are the characters when users operate the IDE that embedded our

toolkit. Users can easily edit the program they want with the IDE; the way to use the

IDE is the same after they install the toolkit we develop. After users finish the

program, they can use our toolkit to generate the program in the language they want.

And users can see the result from the emulator of the IDE. This is our purpose to

embed the toolkit we develop into the IDE that known to public. In the next part, we

will explain the steps about embedding the toolkit into Visual Studio.NET. The

embedding process includes two parts – combine the toolkit with the front-end

environment, and send the document to the back-end translation engine

 22

3.2. The Process of Embedding

The embedding process of our toolkit into Visual Studio .NET can separate into

two parts. One is the front-end environment combination. The other is binding the

document that front-end environment generated with the back-end translation engine.

In the front-end combination with Visual Studio .NET, we have to detect all the UI

controls that users put on the design form[15]. The action “detect UI controls”

contains several things, we describe as follow:

 The number of controls:

When users use the IDE (in our implementation, the target IDE is

Visual Studio .NET) to edit the User Interface of the application, they

often modify the User Interface layout of the application. At the

moment user triggers the IDE, ask to generate PUML code according

to the controls they design, our toolkit have to know the modification

about the controls. For example, user may add a button on the design

form of the IDE, when generating the PUML code, toolkit have to

detect that there is new control added to the form, and generate the

PUML code of the button in the PUML document.

 The modification of the controls:

When design the application layout, user not only modifies the

controls, but also the attributes of the controls. After detecting the

modification of the controls, toolkit has to generate the attributes of

each control.

 23

After users finish the UI design of the PUML document, the next step is

translating the PUML file to the language they wants. In the process of translation,

the machine that users operate must to be connected with the Internet. Nowadays, it

is not difficult for computers to be connected with Internet; therefore; we design our

translation engine as Web Services, and the machine can send the document to the

translation engine through Internet.

The reason we decide to make our translation engine as Web Services is that we

can simplify the process of embedding our toolkit into the IDE. When users need the

service of translation, they send the document they edit to the engine through the

internet. After translation engine gets the document sanded by users, the engine

translates the document to the language that the user wants. Finally, the engine sends

the document been translated to the machine that the user operate, and the IDE

displays the document sanded back though the emulator. Users can see the result

from the emulator, decide whether the User Interface is they want or not by the result

displayed by the emulator. Figure 3-11 is an example about the translation process.

Figure 3-11 an example of the translation process

 24

 There are five steps of the translation; we describe each action of the steps that

users take as follow:

1. Users edit the document with the IDE - Visual Studio .NET. The IDE

that users use has been embedded the translation toolkit we developed,

and the way to use the IDE to edit the User Interface of the

application is the same as usual.

2. After users design the User Interface of their program by putting

controls on the design form of the IDE, our toolkit can generate the

code of the PUML language according to the controls that users put

automatically. In this step, users can edit what action of the control is

when it is triggered.

3. When users finish their program, they can click the button we build in

the IDE to translate the program. After users click the button, our

toolkit will transmit the PUML document to the translation engine

through Internet.

4. Translation engine gets the document form the toolkit embedded in

the IDE, it translate the document to the language users want, and

send the translated document to the toolkit back.

5. When the toolkit receives the translated document, it will display the

result to users through the emulator.

 25

In this part, we have described the combination process of our toolkit. First of

all, we need to know what controls users have dragged on the design form, our

toolkit have to generate the document corresponding to the controls on the design

form of the IDE. The generated document includes the tags of the controls and the

attributes of the controls that users set in the properties window.

In the following chapter, we will introduce the language “PUML” at first. After

the part of “PUML”, we will explain the implementation how we embed our toolkit

into Visual Studio .NET, and transmit the document to the back-end translation

engine.

 26

Chapter 4 Implementation

In this chapter, we will introduce the core implementation – Pervasive

User-interface Markup Language. After PUML is the section of the combination of

our toolkit and the IDE.

4.1. Introduction of Pervasive User-interface Markup

Language

PUML is a language for describing the User Interface of the application. When

we divide mobile application into two parts: User Interface and Logic Computing,

the responsibility of PUML is to describe the User Interface.

PUML is a XML-based language for describing the User Interface. PUML have

to follow all the rules in XML, and inherit all the characteristics about XML. We get

some ideas from XUL, UIML, and WML to design PUML. Besides the part we learn

from other languages described above, PUML also contains our own ideas of design.

These ideas make PUML more suitable for rendering the User Interface in the mobile

environment. We will introduce these ideas in later of this chapter.

After a PUML document has been translated by the translation engine, we can

get the program written in the other language, and the program can be executed in

the mobile environment. That is to say, the User Interface described in the PUML

document will be translated to the target language. When the translated document is

executed in the mobile environment, it will render the layout of the User Interface in

 27

the PUML document.

4.1.1. The design ideas of PUML

Before design PUML, the author has compared several XML-based languages

for describing the User Interface. The languages are XUL, UIML, and WML. After

comparison these three description method, the author has some conclusion about the

language “PUML”. The author figures out the characteristics that PUML must be

included. These characteristics are as follow:

 The number of the elements must be simplified

 The language we design is with the notion of variables. It can be recorded

the state of each control by variables in the User Interface. Moreover, the

state of each control also can be as the parameter in the logically

computing environment.

 Controls must be connected with the part of logically computing

environment by event-driven method.

 Because the language is described the User Interface in the mobile device,

the connection between each control in the UI must be simple.

We adopt the concept of the tag “card” in WML to meet the characteristic of the

small screen in the mobile device

4.1.2. All Elements included in PUML

In order to satisfy the characteristics of PUML, the number of the elements must be

as simplify. From the other hand to think about each element in PUML, it must be

applied to as many controls as possible. The control must be represented by our

element meaningful, and the elements can be mapped to the User Interface in all

 28

kinds of target language.

 The principle we used to design the elements in our PUML is described in the

following part:

1. Extract all the common User Interface controls from all languages in

the mobile computing environment. The language may be WAP,

Personal Java, J2ME, and CLI.

2. Make all the common controls abstract.

3. Map the abstraction of the controls to the elements of our PUML, use

our elements to represent the controls.

First of all, the common controls we extracted are: UI container, image, label,

text field, choice group, and the button about event-driven. And then we make these

common User Interface controls abstract. We will map the process of abstraction to

the condition in our living..

We can think the User Interface as the notice board. On the notice board, we

post something to remind us. They may be the label, text note, and picture posted on

the board.

In our PUML, the elements from the process of abstraction are : <board>,

<picture>, <label>, <textnote>, <listpaper>, and <item>. The meaning of the

elements we describe as follow:

 <board> → This element is mapped to the notice board, and it is the

 29

UI container.

 <picture> → This tag is mapped to the picture on the board, and it is

 used for images.

 <label> → This tag is mapped to the label, and it is used for

characters.

 <textnote> → This tag is mapped to the notepaper, and it is used for

text field.

 <listpaper> → This tag is used for the selection, and it is mapped to

the choice group..

 <item> → This tag is mapped to the items of the selection, and it

is used for the items of the choice group.

 Besides the basic elements we have described above, there still have other

elements used to describe the state about the User Interface. The element

<user-interface> is used for the information. Elements <logic-objects>, <object>, are

used for computing the logic of the program, and elements <action>, <use-object>,

<param> are related to the event-driven method. Table 4-1 is the detail of the

elements.

Table 4-1 the detail of all PUML elements

Element Description

Core UI Related Elements

<user-interface> This is the root element of each PUML

document. This element is described

about the User Interface of the PUML

 30

document

<board> The core element of PUML. This is the

basic unit of the UI container.

<picture> This element is used for the picture

element displayed in the User Interface.

It is similar to the image in the browser

window.

<label> This element is used to display the text

in the User Interface. It is the same as

the label of the Windows environment.

<textnote> This element is used to represent the text

in the single line. It is equivalent to the

TextField in the Windows environment.

<listpaper> This element is used for the selection in

the User Interface. It is the same as the

Choice Group or Choice List in the

Windows.

<item> It is used to represent the items in the

<listpaper> element.

Event-Driven Related Elements

<action> There are two child elements :

<user-object>, <change>. In the content

of the <action> element, the three types

of the child element can be used by the

need of the logic computing, or be

 31

applied to the way how the User

Interface be bowered. This element

usually represents as Button or

Command.

<use-object> This element is used to represent the

logic object. We can assign the method

used to the logic object

<param> It is used to represent the parameter of

logic computing.

<change> It is used to change the UI component

state of the element. For example : it can

be used to change the String displayed

on the screen.

4.1.3. Example of PUML

It is very easy to edit the PUML document. Programmer use the concept of the notice

board we have described above to edit the document, the layout of programmer can

be generated easily by dragging the controls to the form. In the following is the

simple example of using the IDE to edit the PUML document. Figure 4-1 is the

layout of the PUML document we edit, and Figure 4-2 is the PUML document after

we assign the action of the controls. In this example, it is a user log-in page, users

have to input the name and sex in the page. After the button is pressed, the page will

send the information about the user to the part of logic computing in the back-end,

and the screen will be changed to the other User Interface.

 32

Figure 4-1 the layout of the application

Figure 4-2 the PUML document of the application

 33

4.2. Implementation of the embedding

In the pervious part, we have introduced the language we develop. Because the

language is the basis of our implementation, we have to make readers understand the

language. After readers have understood the language, we can begin the next phase

of our implementation.

 The implementation of embedding the toolkit into the IDE can divide into two

parts, we will describe as follow:

1. The combination with the front-end IDE:

In this process, users can choose the control from the

toolbox of the IDE, and drag the control to the design form. After

they put the controls on the form, the layout of the User Interface

is presented. The job of our toolkit is to generate the PUML code

according to the controls on the form, therefore, our

implementation in this phase is to determine what the controls

users have choose, and what the value of the attributes in each

control are.

2. The transmission to the back-end translation engine:

The action that users take in this phase will be the

translation of the PUML document. Users press the button we

build in the IDE, and our toolkit will send the document to the

translation engine. In the process of our implementation, we

connect the IDE with the translation engine through Internet. In

 34

this way, we can simplify the process of installation.

 We have introduced the two parts of our implementation, in the following

section, we will detail the implementation in each part. In section 4.2.1, we will

introduce the detail about the toolkit to be combined with the front-end IDE. And

section 4.2.2 is the content about the transmission sand back to the translation

engine.

4.2.1. The toolkit be combined with the front-end IDE

Making users write the program in PUML easily is our motivation. “Easily”

means users can install our toolkit in to the IDE easily, they write the program easily,

and they get the result in the language they want easily. In order to simply the

installation process of our toolkit, we package our toolkit as a plug–in. Figure 4-3 is

the executable file after we package our toolkit.

Figure 4-3 the executable file after we package our toolkit

Users who want to use our toolkit can download the plug-in we have packaged,

double click the executable file, and the installation is finished. This is the reason that

we package our toolkit as a plug-in.

In the Figure 4-4, we demonstrate the structure of the basic plug-in which be

plugged into Visual Studio .NET. This plug-in implements the IDTExtensibility2
 35

interface, which serves as the main conduit for plug-in communication. It

implements the interface’s five methods-OnConnection, OnStartupComplete,

OnAddInsUpdate, OnBeginShutdown, and OnDisconnection. There’s no Main

method because it is destined to become a DLL. Instead, the OnConnection method

serves as the plug-in’s entry point.

Figure 4-4 the basic structure of the plug-in

 As we know now, an implementation of IDTExtensibility2 lies at the core of

our plug-in. Visual Studio .NET calls the methods on this interface whenever it needs

to apprise an plug-in of important events, such as when another plug-in is loaded or

unloaded, or when Visual Studio .NET is about to shut down. The communication

isn’t just one-way, either: through the IDTExtensibility2 interface, the plug-in has
 36

access to and control over the entire Visual Studio .NET automation object model.

We will describe the implementation of IDTExtensibility2 interface in the following

section:

 OnConnection:

By far the most important of the IDTExtensibility2 methods,

OnConnection provides a plug-in with the main object reference

it needs to communicate directly with the IDE.

 OnStratupComplete:

The OnStrarupComplete event fires only in plug-in that

load when Visual Studio .NET starts. An plug-in that loads at

startup can’t always rely on OnConnection for its initialization-if

the plug-in arrives too early, it will fail when it tries to access a

Visual Studio .NET component that hasn’t loaded. In such cases,

the plug-in can use OnStratupComplete to guarantee that Visual

Studio .NET is up and running first.

 OnAddInsUpdate:

The OnAddInsUpdate event fires when an plug-in joins or

leaves the Visual Studio .NET environment. A plug-in can use

this event to enforce dependencies on other plug-ins. The lack of

useful parameters reveals OnAddInsUpdate’s passive-aggressive

nature-it interrupts the plug-in to tell it that the state of some

plug-in triggered the event. If you need to know the plug-in

responsible for the event, you have to discover its identity on

your own.

 OnBeginShutdown:

This event fires only when the IDE shuts down while an

 37

plug-in is running. Although an IDE shutdown might get

canceled along the way, OnBeginShutdown doesn’t provide a

cancellation mechanism, so a plug-in should assume that

shutdown is inevitable and perform its cleanup routines

accordingly. A plug-in that manipulates IDE state might use the

event to restore the original IDE settings.

 OnDisconnection:

This event is similar to OnBeginShutdown in that is signals the

end of a plug-in’s life; it differs form OnBeginShutdown in that

the IDE isn’t necessarily about to shut down. OnDisconnection

also provides more information to an plug-in than

OnBeginShutdown does.

 The detail of the IDTEntensibility2 interface we have described above, and we

summary the methods of the IDTEntensibility2 interface in Table 4-2.

Table 4-2 IDTEntensibility2 Interface

Method Description

OnConnection Called when the plug-in is loaded.

OnStratupComplete Called when Visual Studio .NET finishes

loading.

OnAddInsUpdate Called whenever a plug-in is loaded or

unloaded from Visual Studio .NET.

OnBeginShutdown Called when Visual Studio .NET is

closed.

 38

OnDisconnection Called when the plug-in is unloaded.

This is the basic structure of the plug-in. From now on, we can add the functions

we want into the basic plug-in. After install the plug-in, the function of Visual

Studio .NET will be increased.

 In this combination phase, we need to determine what the controls has been

dragged on the form by users. Because some of the controls have it own sub controls,

in the process of determination, we need to find the sub controls. For example, when

we edit the selection list, we will drag a Choice Group to the form, add several items

on the Choice Group, and we have a selection list on the form. The Choice Group

has its own sub controls. In the process of determination, we have to find out the

entire sub controls that the Choice Group has. In the following is the algorithm how

we determine the controls and the sub controls that they have. We name the

algorithm for determination as Determination.

Determination (Control control) {

 if(control.SubContros = flase){

 generate the PUML code of this control,

and the attributes of this control

} else {

 Determination (control.SubCollection);

}

}

 For each control of the collection {

 39

 Determination (control);

}

In the algorithm above, we have a collection of the controls on the form. The

collection is the record of the controls; we use this collection to get all the controls.

The collection has some function we can use, such as we can extract one of the

controls from the collection, get the sub controls from the target control, and count

the number of the controls.

 At the first of the algorithm, we extract each control from the collection,

determine whether the control we get has sub controls or not. If not, we can generate

the PUML code of this control on the document. If the control has sub controls, we

have to recursive call the algorithm Determination (). Until the control inputted into

the algorithm has no sub controls, we can take the generation action to generate the

PUML code.

Because the situation of adding sub controls is not complex, we can do the recursive

call in our algorithm and don’t have to worry about the problem of complexity. We

take an example to explain the addition situation of the sub controls. In our elements

of PUML, <picture>, <label>, and <textnote> this three element have no sub

elements to be added on. The element <listpaper> represents a selection list, and the

element <item> is the item of the list added on the element <listpaper>. If the control

represented the element <listpaper> is inputted into the algorithm Determination(),

the algorithm will recursive call itself, and the sub control is inputted into

Determination() will be the element <item>. Because the element <item> has no sub

controls to be added on it, the recursive process will be stopped. After the code of

 40

element <item> has been generated, the code of the <listpaper> will be generated in

follow. This is the example about when the algorithm will stop. Because the sub

controls added on the control are limited, there is nothing to worry about the

complexity of the algorithm Determination(). If we define the parameter n as the

number of the controls, the complexity of the algorithm will be O(n*n).

4.2.2. The document transmission to the back-end toolkit

Because the transmission to the target language is based on the PUML

document, we have to send the PUML document to the translation toolkit. The target

language we provide can be divided into two parts: One is the web-based language;

the other is the local-side language.

The web-based languages supported by our translation toolkit are XHTML MP

and WML. This function is reused from our colleague; we deploy the toolkit as the

web service. The requirement of using our web-base translation is the internet

connection. After users finish the User Interface design, they press the button to

transmit the PUML document to the toolkit we deployed on the internet. The toolkit

can translates the PUML document to the target language we supported, and

transmits the result back to users.

The other part is the local-side languages. The term “local-side” means the

entire program is executed on the machine. The target languages we support in this

part is C# and J2ME. The requirement of this function is the XSLT style sheet.

Through the style sheet, users can get the User Interface in their assigned language.

 41

The translation in this part needs no network connection. Users only have to

download the style sheet, put the style sheet in the machine. In the process of the

translation, our toolkit will generate the target language through the style sheet

automatically.

 42

Chapter 5 Comparison

In this chapter, we will compare our plug-in with CodeSmith and CodeCharge

which we have introduced in Chatper 2. The comparison will from the point of

convenience to compare these three translation toolkit. Before the table of the

comparison, we will describe the advantages and drawbacks each of them.

5.1. CodeCharge

If people are developing data-driven interactive Web sites or enterprise Internet

and Intranet systems, CodeCharge Studio provides a way to build users applications

with support for virtually all databases, web servers and web technologies. The

advantages and drawbacks are listed as follow:

 Advantage:

1. Variety Languages – the target language CodeCharge supported are

ASP, JSP, PHP, Perl, ColdFusion, and ASP.NET.

2. Graphic User Interface (GUI) workspace – It is a WYSIWYG editor.

Users interact with the GUI workspace of the IDE during the process

of using CodeCharge Studio. It is convenient for users.

 Drawbacks:

1. Incomplete external editor – Although CodeCharge provides the IDE

for users to edit the program, it is not convenience for users who want

to use the IDE they favorite to edit the program. The process of using

the external editor is to trigger the editor users like in the CodeCharge

 43

IDE. After users finish the program with their favorite editor, they

have to back the IDE of CodeCharge for translation.

Unnecessary installation – As we mention above, users who want to translate

the program, they have to return to the IDE of CodeCharge. That means all the

translation is based on the IDE of CodeCharge. If users who like to use the IDE they

favorite to edit the program, use the translation ability of CodeCharge only, they have

to install the entire program of CodeCharge (including the IDE interface).

 5.2. CodeSmith

The syntax of the templates used for Codesmith is very similar to ASP.NET. In

ASP.NET, users can use delimiters to separate code that will execute on the server

from HTML and JavaScript code that will be sent to the browser. In Codesmith, users

use delimiters to separate the code executed by the template from the code that will

be generated.

 Advantages:

1. Well Combination – Users can operate CodeSmith in Visual

Studio .Net as a custom tool. This custom tool effectively allows

CodeSmith to simulate generics in that you can have a template and

create specialized instances of that template by adding additional

property sets.

2. Known Languages – CodeSmith can let users to edit the program in

C#, VB.NET or JScript.NET languages. Users can choose the

language they familiar with, and use the language to edit the program.

There is no need to learn a new language.

 Drawbacks:

 44

1. Inconvenient UI Design – CodeSmith don’t provide a visual

environment for users to edit the User Interface of the application.

Users have to edit the UI in the text mode.

2. No Emulator – When people finish their programs, there is no

emulator provided. Users can’t get the result from the emulator

immediately.

Table 5-1 Comparison of the translation toolkits

 Our plug-in CodeCharge CodeSmith

Operation Easy Easy Normal

Combination Good Bad Normal

Installation Easy Easy Easy

UI Design Good Good None

Emulator Yes Yes No

Target IDE VS .Net 1. FrontPage

2. DreamWeaver

3. Itself own

1. VS .Net

2. Itself own

 45

Chapter 6

Conclusion and Future Work

6.1. Conclusion

In the above chapter, we have introduced all the things about this paper. First of

all, we have described the translation toolkit developed by our lab colleague. The

motivation of this toolkit is similar with the concept of Java. The author wants the

concept “Write Once, Run Anywhere” being realized in the mobile environment. The

usage of the toolkit is to translate the document written in the language we defined,

and users can assign the target language they want to translate the document. The

translated document can be executed in the mobile environment according to the

language users assign. This is the usage of our toolkit.

 But there is a drawback about this toolkit. When users edit the document in the

language we defined, they need to work in the environment of characters. There is no

IDE for users to edit the document conveniently. In this paper, our motivation is to

provide a convenient IDE with users. A lot of IDE have been published in the world,

there is no need to develop the IDE our own for the language we define. We can

simply embed our toolkit into the famous IDE. Users who want to edit the document

we define can install our toolkit, use the IDE they are familiar to edit the document.

Since our motivation is convenience, the process of embedding our toolkit should be

as simply as possible. The conveniences of embedding process are described as

follow:

 46

 Easy-to-Use:

Users who want to edit the document in our language can use the

IDE they like. The target IDE we choice in our implementation is

Visual Studio .NET. We package our toolkit as an executable file,

users only have to download the file, install it into the IDE, and they

can use the toolkit our developed. The operation of using the IDE is

the same as before, there is no need to change the behavior of

operating the IDE. Users can operate the IDE as usual, and they can

edit the document in our language.

 Easy-to-Install

Because our toolkit is a third-party development, users have to

install our toolkit before they use it. We package our toolkit as an

executable file for users to install our toolkit conveniently. The

installation process is simply click the button “Next” (if users don’t

want to change any default setting), and the installation process is

finished. There is no need to set any class path, or connecting to any

SDK after install our package. This is very convenient. After

installation, our toolkit has been embedded into the IDE, and users

can use our toolkit easily.

According to the characteristics we have described above, it is convenience for

users no matter in the process of operation or the installation. The method of

operating the IDE is the same as before. We embed our translation toolkit into the

IDE, users operate the IDE as usual. The IDE embedded with our toolkit can

generate the PUML code according to the dragged controls on the form. After users

 47

have installed our plug-in, they can convenience edit the document in our language,

and reduce the repeat action of developing.

6.2. Future Work

After we package our toolkit as a plug-in, users can convenience install and use our

toolkit. But the target IDE in our implementation is Visual Studio .NET now, there

still have lots of famous IDE published. We wish the target IDE that embedded with

our toolkit could be supported more widely and the developing works can be more

easily, so we propose a few future works that enhance our plug-in more complete.

We describe as follow:

 Increase the number of IDEs:

As we mention above, the target IDE we focus to embed our toolkit

now, is Visual Studio .NET which is an IDE developed by Microsoft. There

are still many famous IDE Published in the world, and users not operate

the IDE we focus to edit the program. In other word, there are still lots of

people not use Visual Studio .NET to develop the program. Since we hope

users to operate the IDE they familiar to edit the document in the language

we define, we can enhance our plug-in suitable for embedding into other

IDEs. This is the one part that we can still enhance.

 Improve the combination of the IDE:

Although the IDE embedded with out toolkit can edit the document in

the language we define, but the controls that supported by the IDE are

limited to the basic User Interface controls. With the device computing

power increasing, the application executed in the mobile device becomes

more and more complex; therefore, the function of our toolkit will be

 48

enhanced. So, the combination between the IDE and our toolkit must be

improved too. In this reason, we have to make our plug-in more combined

with the IDE.

In order to make our plug-in more convenience and complete, we hope to

strengthen the parts we described above, make our development more complete.

 49

 Bibliography

[1] 沈聖博, "XML-based Mobile Application Development Kit", 國立交通

 大學，碩士, 民國 93 年 6 月

[2] Ono, K.; Koyanagi, T.; Abe, M.; Hori, M.; Applications and the Internet,

 2002. (SAINT 2002). Proceedings. 2002 Symposium on 28 Jan.-1 Feb.

 2002 Page(s):150 - 159

[3] Extensible Markup Language , W3C

 http://www.w3.org/XML/

[4] WAP Forum, OMA, Open Mobile Alliance

http://www.wapforum.org/index.htm

[5] Sun Microsystems Inc , Java 2 Platform Micro Edition

http://java.sun.com/j2me/

[6] XSL Transformations (XSLT) Version 1.0, W3C Recommendation 16

November 1999

http://www.w3.org/TR/xslt

[7] Microsoft Visual Studio Developer Center

 http://msdn.microsoft.com/vstudio/

[8] MexE forum

 http://www.MExEforum.org

[9] 3GPP

 http://www.3gpp.org

[10] CodeSmith

 http://www.codesmithtools.com/

[11] CodeCharge , YesSoftware,Inc

 50

http://www.yessoftware.com/products/product_detail.php?product_id=1

[12] Nikola MitroviĆ and Eduardo Mena, "Adaptive User Interface for Mobile

Devices", IIS Department, University of Zaragoza, Maria de Luna 3, 50018

Zaragoza, Spain

[13] Johan Plomp, Robbie Schaefer, and Wolfgang Mueller, "Comparing

Transcoding Tools for Use with a Generic User Interface Format", Extreme

Markup Languages 2002 Conference

[14] MSDN , Visual Studio.NET Extensibility

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart

/ html/vstchExtensibilityArticles.asp

[15] Johnson Brian , Skibo Craig , “Inside Visual Studio .NET＂, Redmond,

Washington :Microsoft Press,c2003.

[16] Chris Von See and Nitin Keskar, "XSLT Developer's Guide"

[17] XML Path Language (XPath) Version 1.0, http://www.w3.org/TR/xpath, W3C

Recommendation 16 November 1999

[18] Anna Maria Jankowska, and Andrzej Dabkowski, "Content Adaptation Tag

Library – An Approach for User Interface Adaptation for Different

Devices", European University Viadrina, Chair of Business Informatics

[19] Kris Luyten and Karin Coninx, "An XML-based runtime user interface

description language for mobile computing devices", 2001 Springer-Verlag

[20] 吳仁凱, " A Visualized Kit for Developing Applications on Multiple Mobile

Devices ", 國立交通大學，碩士, 民國 94 年 6 月

[21] Les Smith , “Writing Add-Ins for Visual Studio .NET” , APress 2002

[22] Microsoft , Visual Studio Industry Partner(VSIP)

http://msdn.microsoft.com/vstudio/extend/

[23] Microsoft Visual Studio .NET , Microsoft Java Language Conversion

 51

Assistant

http://msdn.microsoft.com/vstudio/downloads/tools/jlca/

[24] Code Generation Network

http://www.codegeneration.net/tiki-index.php

[25] David De Loveh, Dan Maharry, Bill Sempf, Don Xie , “Effective Visual

Studio .Net ” , WROX PRESS 2002

[26] Kathleen Dollard , “Code Generation in Microsoft .NET” , APress 2004

[27] Jack Herrington , “Code Generation in Action” , MANNING 2003

 52

