
 

國 立 交 通 大 學 
 

資訊科學系 
 

碩 士 論 文 
 
 
 
 
 

一 個 基 於 蠕 蟲 的 合 作 式 防 禦 系 統 
 

Collaborative Defending System for Computer Worms 
 
 
 
 

研 究 生：李育松 

指導教授：曾憲雄  博士 

 

 

 
 
 

中 華 民 國  九 十 四  年 六 月



一個基於蠕蟲的合作式防禦系統 

Collaborative Defending System for Computer Worms 
 
 

研 究 生：李育松          Student：Yu-Sung Lee 

指導教授：曾憲雄          Advisor：Shian-Shyong Tseng 

 
 

國 立 交 通 大 學 
資 訊 科 學系 
碩 士 論 文 

 
 

A Thesis 

Submitted to Institute of Computer and Information Science 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 
Computer and Information Science 

 
June 2005 

 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國九十四年六月 



ㄧ個基於蠕蟲的合作式防禦系統 

研究生：李育松                                    指導教授：曾憲雄博士 

 

國立交通大學資訊科學系 

 

                        摘要 

 

隨著資訊科技不斷的演進，也伴隨著產生許多的變異物件。然而變異物件產

生速度不斷的加快，專家尋找變異物件所花費的精神也越加繁重。VODKA 是一

個發現變異物件的知識擷取方法，可以協助找出隱藏在真實世界中的變異物件。

然而隨著變異物件產生速度不斷的加快，VODKA 提供的情境(Context)資訊太

少，導致決策時需耗費較多的精神。因此，在本篇論文中，延伸之前的 VODKA，

使它能提供更多資訊輔助領域專家分析變異物件。也就是說，在本地端有些確認

程度(CF)較低的變異物件即使有情境資訊的輔助，在單一台機器上並不容易辨

識，容易有不確認的情況。因此，提出ㄧ個合作式的變異物件分析專家系統，藉

由多台 VODKA 的回報資訊，系統化的分析是否有變異物件產生。而在本篇論

文的應用實例中，將延伸型的 VODKA 應用在電腦蠕蟲這個領域，結果顯示，

實作此合作式的變異蠕蟲分析專家系統，分析多台的回報資訊，可以輔助領域專

家發掘本地端不易確認的複雜變異蠕蟲。 

關鍵字：變異物件、知識擷取、專家系統、電腦蠕蟲、惡意程式、變種蠕蟲
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Abstract 
 With the rapid growth of variant objects, domain experts might not be easy to 

keep up with the dramatically increasing knowledge. Although Variant Object 

Discovering Knowledge Acquisition (VODKA) is proposed to discover variant 

objects in our real world, it still provides insufficient context information and results 

in the heavy confirmation effort of domain experts. Hence, we propose extended 

VODKA to supply more context information for helping experts make correct 

decision in this thesis. However, several uncertain cases might not be discovered and 

learned in local environment because the context information might be not enough to 

determine whether it is a variant occurred in local or not. Therefore, a collaborative 

analysis expert system is proposed to solve those local uncertain cases according to 

the meta knowledge including environment factors and domain specific heuristic 

criteria. The construction of meta knowledge is also proposed based upon the 

Repertory Grid and Attributes Ordering Table to automatically generate 

corresponding collaborative analysis rules. Finally, the collaborative defending 

system for computer worms is implemented to evaluate extended VODKA. As a 

result, the implementation of collaborative defending system can assist domain 

experts to discover several sophisticated worms which can not be learned in the local 
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environment. 

Keyword : Variant Objects, Knowledge Acquisition, Expert System, Computer 
Worms, Variant Worms 
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Chapter 1. Introduction  
 

As we know, knowledge based system is an intelligent computer program that 

uses knowledge and inference procedures to solve problems that are difficult enough 

to require significant human expertise for their solution, such as disease diagnosis 

[6][13], investment prediction [2], or science [1]. Inference is the way that computer 

reasons according to the knowledge base which stores the domain expertise in the 

computer recognizable format. Embedded Meaning Capturing and Uncertainty 

Deciding (EMCUD) [7] was proposed to elicit the embedded meanings of knowledge 

and guide experts to decide the certainty degree of each embedded rule with 

embedded meaning for expending the coverage of generated rules. However, some 

embedded rules may be with low/marginally acceptable certainty factor (CF) values 

due to the weak suggestions of domain experts, and new variants derived from the 

well-known objects in many domains are incrementally developed due to the coming 

age of the knowledge explosion. Hence, Variant Objects Discovering Knowledge 

Acquisition (VODKA) [13] was proposed by Tseng et al, 2004 to collect sufficient 

information, which is the related ambiguous attributes due to the marginally 

acceptable CF values of original rules suggested by experts, for refining the original 

knowledge base to enhance the classification ability.  

Although VODKA is a well knowledge acquisition method for helping experts 

clearly distinguish the new variants, a subset of the original object having some 

different characteristics, from original object, it has some problems such as providing 

insufficient context information resulting in the heavy confirmation effort of domain 

experts and might still lack of the ability for sharing the information collecting in 

autonomous area to notice the occurrence of variants. Hence, in the thesis we extend 
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VODKA including local and global enhancement, for helping domain experts 

discovering variant objects.  

1) Local enhancement - Extending VODKA for supplying more context information. 

In order to reduce the conformation effort of experts, we extend VODKA to 

provide more context information such as environment factors for helping experts 

make the correct decision. 

2) Global enhancement – Extending VODKA for a collaborative analysis mechanism 

with expert system 

 Several uncertain cases might not be discovered and learned in local 

environment because the context information might be not enough to determine 

whether it is a variant occurred in local or not. Hence, a collaborative analysis 

framework is proposed to handle these uncertain cases. The collaborative analysis 

framework is a systematical analysis mechanism with expert system to discover 

variant objects according to the meta knowledge including environment factors and 

domain specific heuristic criteria. 

Finally, we apply extended VODKA to discover variant worms for computer 

worm domain. The recent computer worms, which are self-propagating computer 

programs, are very difficult for experts to get and analyze the signatures because they 

have incredible sophisticated characteristics [8]. These Internet worms could, in a 

very short time, cause great damage to network and information infrastructure. In 

order to evaluate our proposed extended VODKA, the collaborative defending system 

for computer worms is implemented. As a result, the implementation of collaborative 

defending system can assist domain experts to discover several sophisticated worms 

which can not be learned in the local environment.
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Chapter 2. Related Work 
 

Before describing our research focus, life cycle of a worm, some brief 

descriptions of computer worms and the difference between original and variant 

worms will be first introduced. Furthermore, VODKA, a powerful method to learn the 

evidence of variants based upon the inference log of embedded rules, will be then 

introduced. Although VODKA is good for learning variants, it still has several 

weaknesses. Hence, an example will be finally introduced to point out some problems 

of VODKA. 

 

2.1 Life Cycle of A Worm 

A computer worm is defined as a process that can cause a copy of itself to 

execute on another machine. In [3], it anatomized the life cycle of computer worm 

including Initialization Phase, Target Scanning Phase, Attack Phase and Infection 

Phase which are shown in Figure 2.1. 

                      Figure 2.1 : Worm Life Cycle 

Each worm agent begins with an Initialization Phase. This phase includes things 

like installing software, determining the configuration of the local machine, 

instantiating global variables, and beginning the main worm process. In Target 

Scanning Phase, worms must discover a machine to infect by using predefined 

scanning techniques like sequential scanning, random scanning, pre-generated target 
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lists, etc. [15]. Then a worm can actively spread it from machine to machine. After 

that, infected system may cause abnormal behavior to attack user host in Attack Phase 

and infect next victim in Infection Phase. The initialization, scanning, attacking and 

infection will continue cyclically. 

 

2.2 Brief of Worms 

Since worm is a self-replication program, it can be moved automatically from 

one host to another resulting in great damage. Therefore, the thesis is focusing on 

discovering variant worms to reduce the damage caused by worms. Several famous 

worms which will be used in our thesis are introduced. 

In July 2001, the Code Red Worm [4] was released on the Internet. Code Red 

affected Microsoft Index Server 2.0 and the Windows 2000 Indexing service on 

computers running IIS 4.0 and 5.0 Web servers. Once installed, it began scanning for 

additional hosts to attack. Additionally, the worm used a Distributed Denial of Service 

Attack (DDoS) [12] against an IP of http://www.whitehouse.gov. Code Red used a 

random number generator to get new IP addresses to attack. The initial revision of 

Code Red hit the same machines over and over again which limited the worm’s ability 

to spread. Code Red II used a better random number generator to create more target IP 

addresses by keeping the network portion of the IP address, and then choosing a 

random host portion of the IP address. This allows the worm to spread itself faster 

within the same network.  

In September 2001, the Nimda worm [5] was released on the internet. Again, 

Nimda can attack IIS servers with known vulnerabilities, but uses a different set of 

attack methods to do so. It took advantage of some similar vulnerabilities as Code 

Red; however, it was a hybrid attack that contained both worm and virus 

characteristics. As a more advanced attack, it could infect more systems and could 
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infect systems in multiple ways. Nimda could infect any computer running Microsoft 

Windows software by exploiting a flaw in Outlook Express and known vulnerabilities 

in Microsoft's Internet Information Services software (IIS) 4 or 5, including the 

security hole left by Code Red II.  

 In February 2002, the Yaha Worm [11] was released on the Internet. The worm is 

a mass- mailing worm that uses its own SMTP engine to send itself to email addresses 

that exist in the Windows Address Book, the MSN Messenger contacts list, the Yahoo 

pager contacts list, the ICQ contacts list, and files that have extensions that contain the 

letters ‘ht’. When Yaha is executed, it does the following: It sends itself to all the 

email addresses it finds in the infected system. It will modify registry key and attempt 

to send mail using information from the registry key. Also it will copy itself to the 

files, C:\Recycled\Msscra.exe and C:\Recycled\Msmdm.exe.  

In October 2002, the Gaobot Worm [9] was released on the Internet. The worm 

also attempts to spread to all computers on the network, using a utility that connects to 

a remote computer on port 445. It copies the Woinggg.exe file across the network, and 

then executes it. It then connects to an IRC server and listens for commands. Upon 

execution, W32.Gaobot.Worm performs the following actions: It copies itself as 

%system%\Sysldr32.exe, modifies register key, connects to an IRC server on one of 

port 6667 and 9900, performs a Denial of Service attack on a specified server, 

open/close the CD-ROM drive and post the CD-Key for the some games to an IRC 

channel 

In January 2003, the Sobig Worm [10] was released on the Internet. The worm 

sends itself to all the addresses it finds in the .txt, .eml, .html, .htm, .dbx, and .wab 

files. When the worm is executed, it does the following: It copies itself as 

%Windir%\Winmgm32.exe,.creates a %Windir%\Winmgm32.exe process, with the 
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parameter of "start." and configures itself to start when you start Windows. The worm 

stores the addresses to which it sends the email messages in the file 

%Windir%\Sntmls.dat. 

 

2.3 The Difference Between Variant and Original Worms   

 Based upon the worms described above, we can observe the difference between 

variants and original worms is quite minor. The variant worms can be generated by 

modifying the same malicious code which is easy to get in Internet. The differences 

can be compared in generation and diversity, which will be detailedly described in the 

followings. In the evolution of variant worms we can observe the relationship 

between original and variant worms. 

 

2.3.1 Generation 

When an unsafe configuration is discovered, hackers will start to generate new 

malicious code to attack. When an original worm is released by hackers, some 

anti-virus corporation like Symantec or Trend Micro will update their scanning engine 

by new virus patterns to avoid attacking. Domain experts will extract specific binary 

codes as the new virus patterns. These specific virus patterns are designed for this 

new original worm. In order to evade pattern matching by these anti-virus 

corporations, hackers usually modify the same source code of original worm. And 

then a new variant is generated. At this time these anti-virus corporations will retrain 

new virus pattern for variants to stop attacking and then hackers will generate another 

variants. The hackers and anti-virus corporations are competing with each other. 

These result in large amount variant worms in our real world. 
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2.3.2 Diversity 

 Because most variant worms are generated by slightly modifying the same 

original programs, they inherit the same primary attributes of original worms. So we 

can observe from technical documents that they usually have the same spreading ways 

and similar symptoms. Hence, the diversity between the great part of original and 

variant worms is in some ambiguous attribute value.  

From this observation, domain experts will have this kind of prior knowledge to 

assist classify computer worms due to the similar spreading ways and symptoms. In 

Section 2.3.3 we introduce two real cases to verify our observation. 

 

2.3.3 The Cases of Worm Family - CodeRed and Nimda  

In order to clearly represent the diversity between variant and original worms, 

two real cases of famous worm family including CodeRed [4] and Nimda [5] are 

discussed in the followings. Since the technical documents of computer worms are 

usually unstructured, a formatted representation is needed for easily accumulating the 

knowledge of worms. According to the above description, two kinds of attributes 

including infecting path and symptoms are used to recognize the computer worms. We 

use Table 2.1 to show the infecting path of CodeRed and Nimda. They own their 

specific infecting path. 

     Table 2.1：Infecting Path of CodeRed and Nimda 

Worm_Name Infecting_Path 

CodeRed 

CVE-2001-0500(IndexServer2.0 and IIS6.0); 

CVE-2001-0506(IIS4.0 and IIS5.0) 

Nimda 

Email;CVE-2001-0154(MIME Header); 

CVE-2000-0884(IIS Web Server Folder Traversal);Data Share
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Besides, the symptoms of Nimda family are listed as Table 2.2 with DoS_Type, 

New_Guest, Function_abnormal, Email_Attachment, TCP_Port, New_File and 

Open_Disk_Share, etc. Data type of attributes are Boolean, String, Integer or sets. 

According to Table 2.2, we can discover that Nimda family has the same primary 

attributes and might have different value of other attributes between the variant 

worms.  

       

Table 2.2：Repertory Grid of Three Nimda Family Members 

           Object 
Attribute 

Nimda.A Nimda.B Nimda.E 

DoS_Type Email Flood Email Flood Email Flood 
New_Guest True True True 

Function_Abnormal Word、WordPad Word、WordPad Word、WordPad 

Email_Attachment 
readme.exe;readme.wav;

readme.com 
puta!!scr Sample.exe 

TCP_Port 25;80;137;138;139;445 25;80;137;138;139;445 25;80;137;138;139;445

   New_Files meXXXXX.tmp.exe meXXXXX.tmp.exe 
meXXXXX.tmp.exe;

CSRSS.EXE; 
httpodbc.dll 

Open_Disk_Share True True True 

 

In this case, Attribute(Email_Attachment, New_File) are the ambiguous value 

which could be changed with a new variants. 

 

        Table 2.3：Repertory Grid of Two CodeRed Family Members 

            Object 
Attribute 

CodeRed.A CodeRed.B 

DoS_Type TCP Flood TCP Flood 
Threads 100 600 

Backdoor X True 
TCP_Port 80 80 
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Table 2.3 shows some major attributes of CodeRed family. Based upon the Table 

2.3, we observe the CodeRed.B and CodeRed.A have similar symptoms. The 

difference between them is the number of automatically created threads and the 

creation of new attribute backdoor.  

According to infecting path and symptoms, worms could be classified after 

analyzing the infected machines in laboratory. For example, if a new worm uses the 

same IIS Server Buffer Overflow, CVE-2001-0500 and CVE-2001-0506, and the 

major symptoms are the same as CodeRed Family, domain experts will classify this 

new worm into CodeRed family as a variant worm.  

 

2.4 Knowledge Acquisition Systems 

 VODKA [14] is proposed to learn new variant objects from analyzing the 

acceptable embedded meaning of knowledge. The embedded knowledge is elicited by 

EMCUD [7] from the existing repertory grids. In order to understand these knowledge 

acquisition systems, firstly we describe knowledge acquisition and three kinds of 

knowledge acquisition approaches in Section 2.4.1. In Sections 2.4.2 and 2.4.3 two 

knowledge acquisition systems, EMCUD and VODKA, will be introduced.  

 

2.4.1 Knowledge Acquisition 

 In order to obtain the knowledge of a special domain, knowledge acquisition is 

proposed to transfer the expertise of domain experts into knowledge bases. General 

speaking, there are three kinds of approaches for knowledge acquisition. 

1. Interviewing experts by experienced knowledge engineers. 

 After interviewing the domain expert, knowledge engineers explicitly code the 

knowledge. But, it might be time consuming for the domain expert and knowledge 

engineers to understand each other. 
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 2. Machine learning. 

 Given training cases, the machine learning approach will automatically learn 

some rules. But it still has two disadvantages. Firstly, there might be few or no 

available training cases in many application domains. Moreover, it is hard to 

understand the relation among cases. 

3. Knowledge acquisition systems. 

 The knowledge acquisition system involves interviewing with the help of 

knowledge acquisition tools. It helps knowledge engineers work better in interviewing 

experts. Besides, deeper knowledge can be elicited using this approach such as 

repertory grid technique which gets domain experts to rank objects against concepts. 

The knowledge acquisition system solves the problem of communication between 

domain experts and knowledge engineers without the required training cases. 

 

2.4.2 EMCUD (Embedded Meaning Capturing and Uncertainty 

Deciding)  

EMCUD, a knowledge acquisition system, is proposed to elicit the embedded 

meanings of knowledge from the existing repertory grids. Additionally, it will also 

guide experts to decide the certainty degree of each rule with embedded meaning for 

extending the coverage of generated rules. To capture the embedded meanings of the 

resulting grids, the Attribute Ordering Table (AOT), which is used to record the 

relative importance of each attribute to each object, is employed. There are three kinds 

of values in each AOT entry, a pair of attribute and object, "X", "D" or an integer; "X" 

means no relationship existing between the attribute and the object, "D" means the 

attribute dominates the object and an integer is represented for the relative important 

degree of the attribute to the object. The larger the integer is, the more important the 

attribute is to the object. 
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Using AOT, the original rules generate some rules with embedded meaning, and 

the Certainty Factor (CF) of each rule, which is between -1 and 1, could be 

determined to indicate the degree of supporting the inference result. The higher CF is, 

the more reliable the result is.  

 

2.4.3 VODKA (Variant Objects Discovering Knowledge Acquisition)  

 

Although EMCUD and other similar approaches could be rerun to acquire such 

knowledge from domain experts again to distinguish new variants from old objects, it 

might be costly and hard to obtain the knowledge due to the lack of sufficient 

information about variants. Therefore, the idea is to analyze the inference behaviors of 

weak embedded rules to construct the new variants acquisition table. In [14], a new 

iterative knowledge acquisition methodology, Variant Objects Discovering 

Knowledge Acquisition (VODKA), is proposed to provide the ability of grid 

evolution.  

                      

               Figure 2.2：The Concept of VODKA Framework  
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Because the embedded rules with diverse CF values represent the different 

supports to classify objects, the ones with marginally acceptable CF might be 

triggered by some candidate of a new variant. In order to analyze the behaviors of 

these embedded rules, a VODKA framework is shown in Figure 2.2 in which each 

iteration consists of three stages: Log Collecting Stage, Knowledge Learning Stage, 

and Knowledge Polishing Stage. Initially, the embedded rule base will be created 

according to the original main acquisition table using EMCUD or VODKA. Then in 

each iteration the inference behaviors (facts/attribute-value pairs) will be collected to 

discover the candidates of the variants during Stage I according to the meta 

knowledge. The attribute-value pair will be treated as an item and a set of negated 

attribute-value pairs will be treated as a transaction to discover the association 

between interesting (minor) attribute-value pairs in Stage II. Consequently, the new 

variants acquisition table based on the discovered knowledge could be generated by 

interacting with domain experts through the new variants acquiring procedure. Finally, 

the rules of new variants will be incrementally generated and the main acquisition 

table will be iteratively adjusted using E-EMCUD in Stage III. The algorithm of 

VODKA is shown as follows.  

 

Algorithm 2.1: The Algorithm of VODKA  

Input: The original main acquisition table T and embedded rule base RB.  

Output: The rules with embedded meaning about variants.  

Stage I: Collect all facts of the weak embedded rules as real inference log of the RB.  

Stage II: Generate the new variants acquisition table T’.  

  Step1: Discover large itemsets L using the inference log.  

  Step2: Generate T’ using L and additional attributes provided by experts.  
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Stage III: Use E-EMCUD to generate rules of new variants.  

  Step1: Generate rules according to T’.  

  Step2: Merge T’ into original main acquisition table T.  

 

2.4.4 The Learning Flow of VODKA 

Figure 2.3 shows the learning flow of VODKA. We periodically analyze the 

inference log to discover variant objects. If the CF is higher, we can determine a new 

object immediately. If the CF is an acceptable value, find frequent itemsets and ask 

experts if these are variant objects or not. After decision process of domain experts, 

they will tell us variants or not. And VODKA provides some operations to let experts 

quickly generate new variant acquisition table. Finally, use EMCUD to generate 

original and embedded rules to enhance our embedded rule base.   

              

Figure 2.3：The Learning Flow of VODKA 
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2.4.5 An Example of Learning Variant Worms 

In Example 2.1, we apply VODKA to learn variant worms. By this example, we 

introduce the learning mechanism of VODKA and then indicate the weakness of 

VODKA.  

 

Example 2.1：An Example of Learning Variant Worms 

The Repertory Grid is used to acquire original worm and an AOT represents the 

relative importance to attributes. After generating repertory grid and AOT, we can use 

EMCUD to generate original and embedded rules listed in Table 2.6. 

 

             Table 2.4: The Repertory Grid of CodeRed Worm  
                          Object
Attribute CodeRed (O1) 

100-Thread (A1) True 
System_Reboot (A2) X 

DoS_Type (A3) TCP Flood 
Email_Attachment(A4) X 

Antivirus_Firewall_Abnormal(A5) X 
TCP_Port (A6) {80} 
New_File(A7) X 

 

                 Table 2.5: The AOT of CodeRed Worm  
        Object
Attribute CodeRed (O1) 

A1 2 

A2 X 

A3 1 

A4 X 

A5 X 

A6 3 

A7 X 
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        Table 2.6: Partial Detection Rules Generated by EMCUD  
IF Part Then Part CF 

Rule # A1 A2 A3 A4 A5 A6 A7 Object  
R1,0 True - TCP flood - - {80} - CodeRed 0.7 
R1,1 True - ¬TCP flood - - {80} - CodeRed 0.5 
R1,2 False - TCP flood - - {80} - CodeRed 0.4 

 

In this example, assume the fired sequence of some embedded rules of CodeRed 

worms are given as follows. 

 

Table 2.7：Inference Log from Inference Engine 

Rule # A1 A2 A3 A4 A5 A6 A7 Object CF 

R1,2 600 - TCP flood - - {80} - CodeRed 0.4 

R1,2 600 - TCP flood - - {80} - CodeRed 0.4 

R1,1 100 - - - - {80} - CodeRed 0.5 

R1,2 600 - TCP flood - - {80} - CodeRed 0.4 

R1,2 150 - TCP flood - - {80} - CodeRed 0.4 

R1,1 100 - - - - {80} - CodeRed 0.5 

R1,2 600 - TCP flood - - {80} - CodeRed 0.4 

R1,2 600 - TCP flood - - {80} - CodeRed 0.4 

R1,2 600 - TCP flood - - {80} - CodeRed 0.4 

R1,2 300 - TCP flood - - {80} - CodeRed 0.4 

 

Assume the minimal support is set to 30%, the frequent itemsets will be obtained. 

For example, if a the frequent itemset L1=(A1=600) is satisfied, the VODKA will ask 

the expert to confirm such itemset if it belongs to certain variant.  

VODKA will ask the following questions 

VODKA：Does the attribute-value pair (A1=600) belong to any new variant object? 

/* Decision Process of experts*/ 

Expert：Yes  

VODKA：What is the name of the new variant object? 

Expert：CodeRedII 
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VODKA：Is the data type of A1 required to be changed? 

Expert：YES 

VODKA：What data type do you want to change? 1.Boolean 2.Integer 3.Float 4.String 

5.Set of values 6. Range of values 

Expert：2 

VODKA：Is any new attribute required to be added? 

Expert：No 

VODKA：Can the Single Value data type be used to change the original Boolean data     

         type of A1? 

Expert：YES 

VODKA：What is the new name and new value set of the attribute A1? 

Expert：Threads, (100, infinite). 

 

Therefore, the new variant acquisition table of CodeRed.II shown in Table 2.8 

will be generated. 

 

Table 2.8：The New Variant Acquisition Table of CodeRed.II 

                       Object 
Attribute 

CodeRed CodeRedII 

Threads (A1) 100 600 
System_Reboot (A2) X X 

DoS_Type (A3) TCP flood TCP flood 
Email_Attachment(A4) X X 

Antivirus_Firewall_Abnormal(A5) X X 
TCP_Port (A6) {80} {80} 
New_File (A7) X X 
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Consequently, an original rule and an embedded rule will be generated by 

EMCUD. 

IF (Threads=600) AND (DoS_Type=TCP flood) AND (TCP={80}) THEN 

CodeRed.II CF=0.8 

IF ﹁ (Threads=600) AND (DoS_Type=TCP flood) AND (TCP={80}) Then 

CodeRed.II CF=0.4  

 

2.4.6 The Inefficiency of VODKA  

Although VODKA could help expert identify variants derived from original 

worms, the first step, “VODKA asks does the certain attribute-value pair belong to 

any new variant object?” will cause much effort of expert. For example, domain 

experts need to consult more information to make a decision due to the simple 

questions asked by VODKA. But VODKA provides only the inference log of 

frequently fired embedded rules which includes less information to assist expert. 

Hence, we anatomize the process effort of domain experts. Firstly, they must know 

the environment setting of local system. Besides, the symptoms of the host are also 

important to experts decide whether the attack happens or not. However, these two 

decision information, environment factors and symptoms, could be used to assist 

experts make the suitable decision.  

After considering above information, we can get the following decision 

information. 
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     Figure 2.4：The Decision Information to Experts 

Firstly, we can consult system profile (environment factors) of local host to 

identify if any possible vulnerabilities could be exploited to infect our system, which 

is called infecting path. If the infecting path is available, it might have high possibility 

to be infected by some malicious worms. Therefore the following message could be 

obtained for recording such information.  

No patch IIS5.0 BufferOverflow (CVE-2001-0506) 

=>CodeRed worm family has the way to exploit 

=>increase CF 

Secondly, the detected attributes will be examined whether attribute is 

significant or not to decide the degree of the recognition of worms. 

The embedded rule of R1,2 is fired when conditions partially match A3 and A5. Now 

we want to know the attribute-value pair (Thread=600) is a significant attribute or not.  

 =>the attribute (symptom) is like a CodeRed worm 

 => increase CF 

Experts might have lower confidence for some embedded rules R1,2 for 

recognizing worms. However, they might incrementally enhance the confidence 

according to above information provided and concluded the variant is recognized. 

However, not all of such case could be stronger to make a decision immediately, 

several cases might happen fewer and confuse experts to make a correct decision. 
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This is called uncertain case.  

 

2.5 Problems of VODKA 

 As mentioned above, two issues are concluded to point out the weakness of 

VODKA. 

1. Information insufficiency 

Some information can be collected ahead, but VODKA provides insufficient 

information. This increases domain experts’ effort when determining variant objects. 

2. Hard to make a decision 

Some cases are hard to make a decision due to insufficient information. Our 

collected embedded knowledge may be disturbed by some legitimate software like 

mass email software, P2P , etc.  During this situation the answer may be uncertain 

due to the weakness of embedded knowledge or information insufficiency. 

So, the thesis mainly focused on solving the above problems. Therefore, we 

propose a methodology to extend VODKA including local and global enhancement.  

1. Local enhancement - Extending VODKA for supplying more context 

information 

With the rapid growth of variant objects, insufficient context information will 

increase confirmation effort of experts. Therefore, we enhance VODKA to provide 

more context information to reduce confirmation effort of experts. 

2. Global enhancement - Extending VODKA for a collaborative analysis 

mechanism 

We propose a collaborative analysis mechanism to solve local uncertain cases 

when discovering variant objects. By the collaborative analysis framework, VODKAs 

can have the ability to share information. And then, domain experts can make 

decisions with global views instead of local views. 
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Chapter 3. Extended VODKA for Collaborative 

Environment 
 

Since VODKA [14] has been proposed to learn the variants from the original 

objects according to the inference log of embedded rules, it still has some problems 

such as providing insufficient context information resulting in the heavy effort of 

domain experts. However, some information in each domain could be prepared in 

advance for assisting expert to easily recognize the new suggested variants. Moreover, 

several uncertain cases might not be discovered in local environment because of 

insufficient context information. Before, VODKA is lack of collaborative ability to 

share local collected information of uncertain cases to learn more variants in different 

environment. Therefore, the extended VODKA for collaborative environment is 

proposed to collect more and more information from multiple VODKAs. 

 

3.1 The Framework of Extended VODKA Environment 

             

         Figure 3.1：The Framework of Extended VODKA Environment 
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Figure 3.1 shows the framework of extended VODKA environment, where each 

local sensor deployed with VODKA learning module is to discover variant objects 

with adopting Knowledge-Base. However, some embedded rules with low CF might 

be not enough to conclude any results in local VODKA even if it consults more 

context information including the environment variables, etc. However, some variant 

objects may appear anywhere in network environment regardless of embedded rules 

with high CF or low CF. As we know, the embedded knowledge of higher CF can be 

discovered in local but the lower CF can not. By collecting and analyzing information 

of all uncertain cases periodically in collaborative analysis center, the information 

from multiple VODKAs could help experts make a decision easily with global views. 

 

3.2 Extended VODKA 

In order to enhance VODKA, we consider environment factors of domain to help 

experts making correct decision. Firstly, we supply the environment factors as 

context information for experts. Secondly, if the collected information is not enough 

to make decision by experts, such weak embedded knowledge will be reported to 

collaborative analysis center for further analysis.  

 

 To clearly describe our extended VODKA, Figure 3.2 shows the extended 

VODKA including two parts (the Environment Factors, the Collaborative Analysis 

Center) to help experts recognize the new variants. 
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Figure 3.2 : Extended VODKA 

 

The whole framework extends three stages to four stages including Log 

Collecting Stage, Knowledge Learning Stage, Knowledge Updating Stage, 

Collaborative Analysis Stage, as shown in the dotted blocks, where represent the 

extended components. Each stage is described as follows. 

Stage I : Log Collecting 

In Log Collecting Stage, the related inference log about embedded rules with 

marginal acceptable CF is collected. And the inference log which is collected from 

inference engine will be learned in knowledge learning Stage. 

  

Stage II : Knowledge Learning 

In knowledge learning stage, the candidate knowledge from inference log will be 

learned using data miming technology. In addition to ask experts to decide which new 
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variant objects the candidate knowledge belongs to, the extended framework will 

consider more context information to reduce confirmation efforts of experts. If the 

context information is enough to make a decision, a new variant will be confirmed 

and the knowledge base will be updated in Knowledge Update Stage. Otherwise, 

experts will say “uncertainty” and then we will report to Collaborative Analysis 

Center for further analysis.  

 

Stage III：Knowledge Updating 

 If the variants are generated by Knowledge Learning Stage, the new original and 

embedded rules will be obtained using extended EMCUD with the new acquired 

repertory grid and corresponding AOT. And then the embedded rule base will be 

updated to refresh the original knowledge.  

 

Stage IV：Collaborative Analysis 

 The Collaborative Analysis Center will explain the uncertain knowledge learned 

by local VODKA. In this Stage, more information of multiple local VODKAs could 

be obtained to collect more evidence of variants. Hence, the decision confidence can 

be accumulated based upon the meta knowledge including environment factors and 

domain specific heuristic criteria. 

 

3.2.1 Environment Factors 

Because each variant object has its own growing environment, VODKA does not 

consider the environment factors. We give a verification of the environment factors, 

which can be used to help expert make a decision. For example, the computer worm 

domain, which is a self-propagating program via a network to threat the Internet very 

much, is one of the domains with dynamic environment configurations. With the 
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evolution, large amount of variant worms are generated by hackers. And each worm 

has its own growing systems or applications(environments). The extended VODKA 

provides such information to help deciding variant objects. When making a decision, 

environment factors will be the context information for experts to reduce their 

confirmation effort of searching such information. The environment factor may be 

represented in many kinds of explanation to fit different domain. It could be a system 

configuration, network configurations, etc. 

    

We give an example of CodeRed worm family which uses the buffer Overflow of 

IIS Server (CVE-2001-0500; CVE-2001-0506). As a result, the IIS Servers with 

vulnerability of CVE-2001-0500 and CVE-2001-0506 are the growing environment 

of CodeRed worms. In other words, CodeRed family will not grow without these 

conditions. So the vulnerable environment of IIS Servers is context information for 

experts to decide variant objects of CodeRed. 

 

3.2.2 Collaborative Analysis Center 

With the additional context information, some variants might be too 

sophisticated to discover and learn in local environment because the context 

information might be not enough to determine whether it is a variant occurred in local 

or not. Therefore, more information should be collected to overcome such problem to 

learn the variants. Hence, such un-decidable inference log will be transferred to 

collaborative analysis center for analyzing and learning since the variants may occur 

anywhere. Finally, the collaborative analysis center could learn and make more 

correct decisions with global views according to meta knowledge including 

environment factors and domain specific heuristic criteria. More details about 

collaborative analysis center will be represented in following section.  
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 3.3 Collaborative Analysis Center 

Since local sensors might not have enough information to learn the sophisticated 

variants, the collaborative analysis center collected all un-decidable inference log to 

learn and discover such variants with global views.  

The collaborative center consists of three stages including Evidence Collecting 

Stage, Variants Analysis Stage, Knowledge Updating Stage.  

Evidence Collecting 
Stage I

Log

Variants Analysis 
Stage II

Environment 
Factors

EMCUD

Knowledge Updating 
Stage III

Knowledge 
Base

LOG
DataBase

Variants

Update

Inference Engine
(DRAMA)

Environment
DataBase

Rule
 Base

Experts

Meta 
Rule

  
Figure 3.3：Stage of Global Analysis Center  

 

3.3.1 Evidence Collecting Stage 

In Evidence Collecting Stage, the inference Log periodically collected from local 

sensors and the Environment Factors of each sensor registered initially are collected 

and stored into database. Inference Log is designed to transfer during a regular period 

of time, which the period could be adjusted dynamically, but environment factors 

would be updated when changing from local sensors. 

The format of inference log profile and environment factors are described as 

follows.  
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1. Log Profile 

In order to collect uncertain knowledge from local hosts and store it in LOG 

Database, the log format, consisting of rule name, collecting attribute values and CF 

of rules, of local sensor is designed.  

                  Table 3.1：Log Profile of Local Host 

Ri,j Att1 Att2 … Attk CF(Ri,j) 

 

When the inference log is reported from Local VODKA to Collaborative center, 

the sensor ID of local host and the reporting time will be appended to these records. 

The format is listed below where the Time field record the reporting time 

( T1,T2,T3,… ) from local sensors, ID field records the IP address of local hosts, Ri,j 

means the j-1 embedded rule of object i and Ri,0 is the original rule of object i, Attk is 

the value of kth attribute, CF records the Certainty Factor of each rule. 

                 Table 3.2：Log Profile of Global Log Database  

Time ID Ri,j Att1 Att2 … Attk CF(Ri,j)

 

2. Environment Factors 

For different domain, experts can define their own environment factors they want 

to refer.  

For example, in the worm domain world, worms will exploit the wrong 

configuration of victim system to infect. Hence, the environment factor is system 

profile from local sensors including the IP addresses, the Operation system version, 

the provided services, the patching level, etc. Hence the local system profile will be 

collected as our environment factor for worm domain. If the system exists some 

vulnerabilities with some service, it might have the risk to be infected by 

corresponding worms. The information of system profile shown as follows will be 
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consulted to help expert making decision in global center. 

    Table 3.3：System Profile of Worm Domain of Local Host  

ID OS (Application <-> Vulnerability) 

140.113.*.* Windows Xp Internet Explorer5.5 <-> CVE-2001-0154(MIME header) 

 ID：140.113.*.*：the local IP address 

 OS：the operation system 

 (Application <-> Vulnerability)= Internet Explorer5.5 <-> CVE-2001-0154 

Internet Explorer5.5 with MIME header vulnerability 

CVE-2001-0154 is the standard vulnerability name defined by CVE. 

 

So, collaborative analysis center will receive log and related environment factors 

as decision information and keep them in global database.  

 

3.3.2 Variants Analysis Stage 

With the technology revolution, new variant objects can be generated rapidly 

than before. If we do not have a systematical and automatic analysis mechanism, we 

must be busy in discovering new variants. Hence, the expert system technology is 

used to solve these problems. 

 In the construction of rule base, a confidence value from experts’ views is used 

to be accumulated. During the inference process, if the accumulated confidence of 

certain object meets a predefined confidence threshold. A variant object is discovered 

by our system. 

About the construction of rule base, we will describe it detailedly in Section 

3.3.4. 
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3.3.3 Knowledge Updating Stage 

After analyzing the inference log, several variants could be discovered. When a 

new variant is determined, the original and embedded rules of the new variant will be 

generated using EMCUD. Therefore, the defending knowledge about new variant will 

be updated into the original knowledge base.  

 In order to well-maintain the collaborative analysis center, the meta knowledge 

should be constructed in advance and the systematical process to construct such meta 

rules is needed.  

 

3.3.4 Meta Knowledge Constructing  

For different domain, different expertise should be extracted to handle multiple 

reports from local sensor with VODKA module. Hence, domain experts can define 

their domain criterions to construct meta rules, named collaborative analysis rules, in 

variant analysis stage. Moreover, each rule would be appended with a value named 

confidence value. It means the accumulated confidence of experts when 

corresponding condition of variants is matched. If it is defined higher, large number of 

alerts might cause experts much effort. If it is defined lower, the system would 

generate slowly or miss variants. Hence, it must be well defined. If the reporting 

inference log satisfies certain collaborative analysis rules, the confidence value of 

each object will be increased to record the behaviors of such report. Hence, the 

confidence value of each object can be easily accumulated to monitor the distributed 

behavior of variants when corresponding rules are fired. When confidence value of 

each object exceeds a predefined confirmable threshold, it possibly represents a 

variant appeared.  

Besides, different domain can increase their criterions. Now we will introduce 

some basic criterions to construct collaborative analysis rules listed as follows.  
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Criterion 1：Accumulate confidence according to the importance of attributes 

Every report of candidate variant object has different importance. The 

importance can be seen in original AOT defined by experts. Hence, every report will 

accumulate our degree of confidence and the conjunction of attributes has different 

confidence value. If candidate variant object has more important attributes to this 

object class, we have higher confidence about this report. 

To generate collaborative analysis rules, the information of AOT, which records 

the relative importance of each attribute to each object, will be reused to define the 

important degree of attributes. The attributes can be mapped into three parts including 

major attributes, secondary attributes and minor attributes. However, minor attributes 

which mean less important attributes to this object class can be ignored. Major 

attributes mean the important attributes for recognizing the object class and secondary 

attributes mean they could be negated to capture embedded meanings. If the events 

satisfying whole major attributes and secondary attributes, confidence obtained is 

higher than only satisfying major attributes.  

For example, assume the range of AOT values is from 1 to 5, D and X. 

According to the importance of attributes, we map {D, 5, 4} to major attributes M, {3, 

2} to secondary attributes Sand {1, X} to minor attributes. And then a confidence 

value of collaborative analysis rule will be normalized by the following formula. 

       
( )
( ) ( )( )j

k

lowhigh
lowobject WSUM

WWW
ConfConf

ConfConf ∗
+++

−
+=

...21

  

Notation: 

Confhigh : the highest accumulation of confidence. 

Conflow : the lowest accumulation of confidence. 

Confobject : the confidence of this collaborative analysis rule of object. 
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If the collaborative analysis rules only match major attributes, the Confobject is 

equal to Conflow. If the collaborative analysis rules match major and secondary 

attributes, the Confobject is equal to Conhigh. If the collaborative analysis rules match 

major and partial secondary attributes, the Confobject is equal to formula. 

Hence, the Criterion1 means we accumulate more confidence when the reports 

match more importance attributes to this object class. 

According to these methods we can generate collaborative rules defined to 

different objects and the general form of meta rule matched criterion1 is shown as 

follows. 

 

MR1: IF (M_fully) AND (S_fully)  

     Then increase Confobject by Confhigh AND set flagobject = 1 

MR2: IF (flagobject =0) AND (M_fully) AND (S_partial) 

     Then increase 
( )
( ) ( )( )j

k

lowhigh
lowobject WSUM

WWW
ConfConf

ConfConf ∗
+++

−
+=

...21

 AND 

          set flagobject = 1 

MR3: IF (flagobject =0) AND (M_fully)  

     Then increase Confobject by Conflow AND reset flagobject = 0 

Notation： 

M_fully：major attributes fully match 

S_fully：secondary attributes fully match 

S_partial：secondary attributes partially match 

Confobject：the confidence value of each object is initially set to 0 

Confhigh：the highest accumulation of confidence 

Conflow：the lowest accumulation of confidence 
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Flagobject：A flag to each object is initialized to 0. Its goal is to infer the first  

         matching rule. 

W1+W2+…+Wk：the sum of all AOT value of secondary attributes 

SUM(Wj)：the sum of AOT value of partially matching secondary attributes 

 

Criterion 2：Consider environment factors 

Each variant object will have its own environment factors. If the system 

environment is matched, the confidence to make a decision will also increase. 

Notation： 

Object.ID.SystemProfile = Environment(Object) ： It means that if system 

(ID.SystemProfile) has the growing environment for this object, our confidence 

will increase ConfSystemProfile

MR4: IF Object.ID.SystemProfile = Environment(Object) 

     Then increase Confobject by ConfSystemProfile

 

Criterion 3：A predefined threshold of discovering variant objects 

If the accumulated confidence of certain object exceeds the threshold from 

expert views, a variant object is discovered from our system. 

VOthreshold：the threshold of discovering variant objects 

 

MR5: IF Confobject > VOthreshold  

     Then discover variant object 

 

Criterion 4：A timeout period to reduce confidence 

A Half-life condition is used to reduce false alarm since some adventitious cases 

are observed. According to above criterions, the confidence value will increase 
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unlimitedly. However, if we can not confirm a variant object after a long period of 

time, we will decrease our confidence because it may be considered as a noise.  

The criterion is listed as follows. 

MR6: IF Timeperiod=THperiod

     Then decrease CFobject to half  

 

Notation： 

Timeperiod：the time from previous reducing time 

THperiod：A predefined time interval to reduce confidence 

 

In this chapter, we propose a methodology of using Extended VODKA to learn 

variant objects more efficiently. Moreover, VODKA is a learning tool which can be 

appended to any knowledge-base system. In order to verify our methodology we 

apply VODKA to computer worm domain as our example in next Chapter. 
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Chapter 4. Collaborative Defending System for 

Computer Worms 
 

The easy access and wide usage of the Internet make it more convenient for 

technical research and information exchange. Most of intrusion behaviors become 

more complicated because of combining several signatures of previous intrusions. 

The recent computer worms, which are self-propagating computer programs across a 

network exploiting security or policy flaws in widely-used services, are very difficult 

for experts to get and analyze the signatures because they have incredible 

sophisticated characteristics [8]. With the evolution of original worm, large amount of 

variant worms are continually generated to infect our computers. Because Extended 

VODKA can help us to discover these variant worms, we apply it to this domain in 

the chapter.                                                                          
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Figure 4.1：The Collaborative Defending System for Computer Worms  

As mentioned above, the collaborative defending system for computer worms 

shown in Figure 4.1 is proposed to learn more variants from multiple sensors with 
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VODKA. In the computer worm domain, the sensor is named WISE, which is a worm 

immune service expert system. WISE is to help us diagnose our system far away from 

worm attacking. It uses the VODKA to be a learning module to increase knowledge of 

variant worms. Besides, a collaborative analysis center for computer worms is used to 

analyze the uncertain cases of variants in local.  

Section 4.1 introduces the framework of Extended VODKA for variant worms 

discovering. Section 4.2 introduces the learning process in local VODKA. Section 4.3 

introduces the collaborative analysis center to analyze the uncertainty of local 

VODKA. Section 4.4 evaluates our collaborative defending system for computer 

worms. 

 

4.1 The Framework of Extended VODKA for Variant Worm 

Discovering                        

As we know, worms will infect wrong configured system. And each worm family 

has different infecting way to infect. If the system is vulnerable, worms will have 

environments to grow. Therefore, the system configuration, system profile is referred 

to as the environment factors. In computer worm domain, the environment factors 

include the infecting path and system profile will be considered. 

However, some behaviors of worms look like normal behaviors such as mailing 

softwares, P2P , etc.. It might result in the uncertain decision even if we consult 

additional infecting path and system profile, which can be collected and used to 

analyze and solve the local uncertainty. Hence, if the uncertainty continually exists, 

we will deal with these problems with global views in Section 4.3. 
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4.2 Process in Local Extended VODKA 

Extended VODKA considers context information. Therefore, the context 

information such as infecting path analysis, are proposed to reduce the confirmation 

effort of domain experts. The infecting path analysis is the environment factors for 

computer worm domain. 

Now we will introduce them as follows. 

 

4.2.1 Knowledge Decision Phase 

The environment factors in StageII described in Figure 3.2 in computer worm 

domain can be treated as infecting path analysis. Because most variant worms use the 

same vulnerabilities to exploit, the system can be determined to have vulnerabilities 

by mapping Infecting Path Table and System Profile. Such context information will be 

consulted to make a decision.  

Figure 4.2 shows that if we capture candidate embedded knowledge from 

VODKA. Before confirming by experts, we will analyze first and supply context 

information for suggesting experts. The infecting path analysis will tell us vulnerable 

or not by mapping infecting path of original worms and system profile of local host. 

With the context information, we have two conditions- certainty or uncertainty. 

Certainty means the evidence is powerful enough to confirm. Uncertainty means the 

evidence is not enough.  

      

 35



           Figure 4.2 : Knowledge Decision Phase 

The generation of the context information which will decrease the weakness of 

VODKA are described as follows. 

 

4.2.1.1 Infecting Path Analysis - System Profile and Infecting Path 

Table 

A. System Profile  

Some worms are designed to infect wrong configured system and some worms 

exploit vulnerabilities of system or applications. If we have not patched our system 

frequently, it is easy to be infected by specific worms based upon the vulnerability of 

local host recorded in system profile. 

                       

     Figure 4.3 : System Profile of Local Host 

How to get System Profile ? 

When installing VODKA, the local system profile including ID, OS version and 

vulnerable applications can be recorded. Once the system profile is modified, 
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VODKA will update it at the same time. 

Now, the system profile is defined according to the worm domain. 

Data format of System Profile 

Definition：  

      Table 4.1：Format of System Profile 

ID OS (Application <-> Vulnerability) 
140.113.*.* Windows Xp Internet Explorer5.5 <-> CVE-2001-0154(MIME header) 

 

Notation： 

ID：Host IP 

 OS：Operation System 

( Application <-> Vulnerability )：This represents which application is vulnerable 

Data Type 

 ID：IPv4 

 OS：String 

 ( Application <-> Vulnerability )：String 

 

The following is a simple example to show our system profile 

  Table 4.2：System Profile of Local Host 

ID OS (Application <-> Vulnerability) 
140.113.*.* Windows Xp InternetExplorer5.5 <-> CVE-2001-0154(MIME header) 

 ID：140.113.*.*：the local IP address 

 OS：The operation system is Windows XP 

 (Application<->Vulnerability)=(InternetExplorer5.5<->CVE-2001-0154) 

means 

        InternetExplorer5.5 with MIME header vulnerability 

CVE-2001-0154 is the standard name defined by CVE 
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B. Infecting Path table 

Because most variant worms use the same vulnerabilities to infect the system, 

the infecting path table to acquire vulnerabilities of original worms is proposed. 

Infecting Path table 

                

    Figure 4.4：Infecting Path Table Acquisition 

The infecting path table will be generated in Log collecting Stage. It 

accompanies with the generation of original rules (original worm). A simple 

knowledge acquisition is also proposed to acquire the infecting path of original 

worms. 

The infecting table construction algorithm is shown as follows: 

Algorithm 4.1: Infecting Path Table Construction Algorithm 

Input: The worm domain know-how and skeletal of worm 

Output: The Infecting Path of worm 

Step1: List all elementary knowledge objects according to technical documents. 

Step2: Transfer each infecting path into the Infecting Path Table.  

 

The following example is given to construct infecting path table of CodeRed. 

Example 4.1：Infecting Path Table of CodeRed 

In this example, we construct infecting path table of CodeRed. Domain experts 

will extract infecting path of each original worm from technical documents. Therefore, 

the CVE-2001-0500, which is the Indexing Service2.0 and IIS6.0 vulnerability, and 

the CVE-2001-0506, IIS4.0 and IIS5.0 vulnerability, are exploited by CodeRed will 

be extracted in Step1. Then in Step2, the knowledge objects will be stored into 
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Infecting Path Table, shown in Table 4.1, with the pair of original name of Worm and 

the Infecting Paths exploited by the worm, where the data type are both string.  

Hence, we can obtain the following infecting path table of CodeRed after the process. 

Table 4.3：Infecting Path of CodeRed 

Worm_Name Infecting_Path 

CodeRed 
CVE-2001-0500（Indexing Service2.0 and IIS6.0） 
CVE-2001-0506（IIS4.0 and IIS5.0） 

 

C. Mapping with System Profile and Infecting Path Table 

 If local VODKA learns a new variant worm, it may map with system profile and 

infecting path table of this new variant worm. If the system is vulnerable, the decision 

confidence will be increased. 

 The following example is given to illustrate how to map with system profile and 

infecting path table. 

 

Example 4.2：Mapping with System Profile and Infecting Path Table 

Hence, VODKA now can suggest expert that a new variant worm derived from 

original CodeRed is learned. By mapping with system profile and infecting path table, 

we can know the system is vulnerable for CodeRed. 

 Table 4.4：System Profile of Local Host 

 

 

 

Table 4.5：Infecting Path Table of CodeRed Family 

ID OS (Application <-> Vulnerability) 
140.113.87.175 WinXp IIS4.0 <-> CVE-2001-0506 

Worm_name Infecting Path 
CodeRed CVE-2001-0500（Indexing Service2.0 and IIS6.0） 

CVE-2001-0506（IIS4.0 and IIS5.0） 

Mapping 
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Hence, we can know the IIS4.0 has the vulnerability CVE-2001-0506 for 

CodeRed through such simple mapping. Therefore, the system is vulnerable and the 

decision confidence is increased. 

 

4.2.1.2 Decision Information for Experts 

The decisions information of infecting path analysis will be proposed to help 

experts make correct decisions. Hence, the confirmation effort of experts to decide 

variant worms could be reduced. Our suggestion is listed as follows. 

Suggestion：System Profile matches infecting path of variant worms or not  

 

According to our suggestion, experts will have two decisions. 

1) Certain 

It is a variant worm and then we will generate knowledge by EMCUD. 

2) Uncertain 

It is an uncertain case and will be transferred to collaborative analysis center. 

In order to clearly show our decision flow, we give an example to illustrate our idea. 

 

Example 4.3：Uncertain Case in Local VODKA 

The Repertory Grid, AOT and partial embedded rules for Yaha are listed in 

Example 3.1. Now we have receive inference log as follows： 

             Table 4.6：Inference Log from Inference Engine 

Rule # A1 A2 A3 A4 A5 Object CF 

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4 

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4 

R2,3 Email flood readme.exe False {25} svhoot.exe Yaha 0.53 

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4 

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4 

R2,3 Email flood readme.exe false {25} svhoot.exe Yaha 0.53 
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R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4 

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4 

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4 

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4 

The large itemset L2=(A2= Project.exe,A5=Tcpsvs32.exe) and minimal support 

30% is satisfied. 

VODKA will ask the following questions 

VODKA：Does the attribute-value pair (A2= Project.exe) AND (A5=Tcpsvs32.exe) 

belong to any new variant object? 

/*VODKA process in the background*/ 

Suggestion : 

              Table 4.7：System Profile of Local Host for Yaha 

 

 

              Table 4.8：Infecting Path table of Yaha Family 

ID OS (Application <-> Vulnerability) 
140.113.87.175 WinXp Outlook<->none 

Worm_name Infecting Path 
Yaha Email；CVE-2001-0154(MIME Header) 

Mapping 

The result shows that one of infecting path is not existed. But the normal 

communication of Email is a path to infect. 

 

VODKA： 

Suggestion：System without any vulnerability but Email is the way to infect. 

Expert：Uncertain 

Experts say uncertain because the context information is not enough and the 

embedded knowledge with low CF may be caused by improperly operation. The local 

host may possibly install mass mailer software and the firewall may be temporarily 

abnormal. Hence, we transfer this uncertain case to the collaborative analysis center. 
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4.3 Process in Collaborative Analysis Center  

Collaborative analysis center will collect uncertain cases from local VODKAs 

like Example 4.3. 

As we know, worm attacking is a network behavior. Therefore, the uncertain case 

from local VODKA can be clearly explained in collaborative analysis center. If we 

collect more evidences, we have more confidence to recognize a new variant worm.  

 

4.3.1 The Framework of Collaborative Analysis Center 

The framework of collaborative analysis center for computer worms is listed as 

follows. It consists of three stages, Evidence Collecting Stage, Worm Analysis Stage 

and Knowledge Updating Stage. 

        Figure 4.5 : Stage of Global Analysis Center for Computer Worms  

Stage I：Evidence Collecting 

The Log and System Profile are transferred to our collaborative analysis center 

directly. The log from each VODKA is reported periodically to collaborative analysis 

center. However, System Profile would not be changed periodically. We receive the 

report of System Profile when the configuration of local host is changed. We have the 

following format of log and system profile.  
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               Table 4.9：Log Profile of Yaha 

Time ID Ri,j A1 A2 A3 A4 A5 CF(Ri,j) 

T1 140.113.87.175 R2,5 Email flood Project.exe True {25} Tcpsvs32.exe 0.4 

 

  Table 4.10：System Profile for Computer Worms 

ID OS (Application <-> Vulnerability) 

140.113.87.175 Windows XP RPC<->CAN-2003-0352 

 

Figure 4.6 shows the communication between local and collaborative analysis 

center. And the files are transferred asynchronously. Log is reported periodically and 

system profile is event-driven. 

   Figure 4.6：Communication between Local and Collaborative Analysis Center 

 

StageII：Worm Analysis Stage 

In this Stage we will use expert system to help us systematically analyzing 

reports. It also can reduce the confirmation effort from experts. We apply extended 

VODKA to worm domain and we can add more criterions based on the nature of 

worms. In addition to three basic criterions described in Chapter 3, we know that 

worms will continually infect other machines, and infecting is the nature for them. So 
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we can add a new criterion for worms about single or multiple reports. If we only 

receive reports of single host, we do not have enough evidence to verify a variant 

worm. Of course, domain experts may have their decision ideas about to discover 

variant worms. At this time they can dynamically add more criterions to fit their 

requirements. 

 

Now we describe the additional criterion for worm domain. 

Additional criterion : Single or multiple reports 

As mentioned above, worm attack is network behavior. The reports of variant 

worms would not be only one. If we only receive reports of single host, our decision 

confidence is the same as local host. It means the confidence will not be accumulated. 

Therefore this criterion is to know the reports to accumulate our confidence are from 

single host or multiple hosts. 

Notation : 

Object.ID : the IP of this report 

Object.HostIP : the IP set of reporting the same object 

Flagobject.host : Initialized to 0, set to 1 when receiving different IP 

MR: IF Object.ID <> Object.HostIP 

     Then set Flagobject.host=1  

 

According to this criterion, we must modify Criterion3 to correctly discover 

variant worms. It means if reports from only one host are not considered. 

We add “Flagobject.host=1” to fit our requirement.  

MR5: IF Confobject > VOthreshold AND Flagobject.host=1 

     Then discover variant worms 
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StageIII : Knowledge Updating Stage 

When we discover a variant worm, we will acquire the attribute and attribute 

values and generate relative Repertory Grid and AOT. And feed them to EMCUD to 

generate defending rules. At the same time we will update our knowledge base. 

4.3.2 Run through An Example 

In this example, Yaha is an uncertain case described in Example 4.3. Besides 

Yaha, we also receive reports of Sobig and Gaobot. The example will trace how to 

analyze with collaborative rules. 

Example 4.4 : An Example to Trace Collaborative Analysis Rules 

 Table 4.11 is the repertory grid of Yaha, Sobig and Gaobot. 

 Table 4.12 is the AOT of Yaha, Sobig and Gaobot. 

 Table 4.13 is the partial detecting rules generated by EMCUD. 

Table 4.11 : The Repertory Grid of Yaha, Sobig and Gaobot 

                      Object 
Attribute 

Yaha (O1) Sobig(O2) Gaobot(O3) 

DoS_Type (A1) Email Flood Email flood X 
Backdoor (A2) X True X 

Email_Attachment(A3) Loveletter.doc.pif Sample.pif X 
Antivirus_Firewall_Abnormal(A4) True X True 

TCP_Port (A5) {25} {25} {80,135,445}
New_File(A6) <****>b.dll Winmgm32.exe Bla.exe 

              Table 4.12 : The AOT of Yaha, Sobig and Gaobot  

     Object 
Attribute 

Yaha (O1) Sobig(O2) Gaobot(O3) 

A1 D D X 
A2 X 3 X 
A3 1 2 X 
A4 3 X D 
A5 3 3 D 
A6 2 1 1 
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 Table 4.13 : Partial Detection Rules Generated by EMCUD  

IF Part Then Part CF 
Rule # 

A1 A2 A3 A4 A5 A6 Object  

R1,0 Email flood - Loveletter.doc.pif True {25} <****>b.dll Yaha 0.8

R1,1 Email flood - ┐Loveletter.doc.pif True {25} <****>b.dll Yaha 0.7

R1,2 Email flood - Loveletter.doc.pif True {25} ┐<****>b.dll Yaha 0.6

R1,3 Email flood - Loveletter.doc.pif True {25} <****>b.dll Yaha 0.5

R1,4 Email flood - Loveletter.doc.pif False {25} <****>b.dll Yaha 0.4

R2,0 Email flood True Sample.pif - {25} Winmgm32.exe Sobig 0.8

R2,1 Email flood True Sample.pif - {25} ┐Winmgm32.exe Sobig 0.7

R2,2 Email flood True ┐Sample.pif - {25} Winmgm32.exe Sobig 0.6

R2,5 Email flood True ┐Sample.pif - {25} ┐Winmgm32.exe Sobig 0.4

R3,0 - - - True {80,135,445} Bla.exe Gaobot 0.7

R3,1 - - - True {80,135,445} ┐Bla.exe Gaobot 0.6

R3,2 - - - True ┐{80,135,445} Bla.exe Gaobot 0.5

 

According to the importance of attributes, we map {D, 5, 4} to major attributes M, 

{3,2} to secondary attributes S. After mapping, we can get Table 4.14 

                

Table 4.14 : Mapping Table of Yaha, Sobig and Gaobot 

A1 A2 A3 A4 A5 A6 object 
M - - M M S Yaha 
M M S - M - Sobig 
- - - M M - Gaobot 

 

Table 4.15 : System Profile of Three Hosts 

ID OS Application<->Vulnerability 
140.113.87.175 Windows XP RPC<->CAN-2003-0352 
140.113.87.174 Windows 2000 none 
140.113.167.101 WindowsXP RPC<->CAN-2003-0352 
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Constructing collaborative rules from all criterions 

In this example, we will use formula to calculate Confobject of each rule and set 

(Confhigh=0.2), (Conflow=0.1), (ConfSystemProfile=0.3), ( flagobject=0) and (Confobject= 0).  

 

Collaborative analysis rules for Yaha 

IF (DoS=Email Flood) AND (Antivirus Firewall abnormal=True) AND  

(TCP port={25}) AND (New file=svchook.dll)   

Then  (ConfYaha= ConfYaha + 0.2) AND (flagYaha=1) 

IF (flagYaha=0) AND (DoS=Email Flood) AND  

(Antivirus Firewall abnormal=True) AND (TCP port={25})    

Then  (ConfYaha= ConfYaha + 0.1) 

IF (flagYaha=1) Then  (flagYaha=0) 

 

Collaborative analysis rules for Sobig 

IF (DoS=Email Flood) AND (Backdoor=True) AND (TCP port={25}) AND

(Attachment=Sample.gif)   

Then  (ConfSobig= ConfSobig +0.2) AND (flagSobig=1) 

IF (flagSobig=0) AND (DoS=Email Flood) AND (Backdoor=True) AND  

(TCP port={25}) 

Then (ConfSobig= ConfSobig +0.1) 

IF (flagSobig=1) Then  (flagSobig=0) 
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Collaborative analysis rules for Gaobot 

IF (Antivirus Firewall abnormal=True) AND (TCP port={80,135,445}) 

Then ConfGaobot= ConfGaobot +0.1 

IF ID.SystemProfile = { CAN-2003-0352 ; CAN-2003-0003}  

Then ConfGaobot= ConfGaobot + 0.3    

 

Collaborative rules for discovering variant worms 

Initialize flagobject.host=0 

IF (ConfYaha>=0.8) AND (flagYaha.host=1)Then (VariantWorm=Yaha) 

IF (ConfSobig>=0.8) AND (flagSobig.host=1)Then (VariantWorm=Sobig) 

IF (ConfGaobot>=0.8) AND (flagGaobot.host=1)Then (VariantWorm=Gaobot) 

 

The flag, flagobject.host means the confidence is accumulated from single host(=0) or 

multiple host(=1). 

 

Collaborative rules for timeout period 

IF (Timeperiod=3T)  

Then (ConfYaha= 0.5 * ConfYaha) AND (ConfYaha= 0.5 * ConfYaha) AND

(ConfYaha= 0.5 * ConfYaha) 

 

After generating collaborative analysis rules of Yaha, Sobig and Gaobot, the 

inference engine is driven with reports from local hosts. 
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Data collecting 

The reports are collected from local VODKAs (Take three hosts as examples).  

We select useful attributes from log database to trace our example. And they are Time, 

ID and six attributes. 

Event Time ID A1 A2 A3 A4 A5 A6 

E1 T1 140.113.87.175 Email flood - Ravs.scr T {25} WinServices.exe

E2 T1 140.113.87.174 Email flood - Patch.exe T {25} - 

E3 T1 140.113.167.101 Email flood T Password.gif - {25} mscch32.exe 

E4 T2 140.113.87.175 - - - T {80;135;445} msgconf.exe 

E5 T2 140.113.87.174 Email flood T Peace.scr - {25} WinServices.exe

E6 T2 140.113.167.101 - - - T {80;135;445} MSRUN.exe 

Now, we trace each report to see the change of confidence. 

E1：matching first collaborative rules of Yaha 

ConfYaha=0+0.2=0.2 

E2：matching second collaborative rules of Yaha 

ConfYaha=0.2+0.1=0.3 

E3：matching first collaborative rules of Sobig 

Confsobig=0+0.2=0.2 

E4：matching collaborative rules of Gaobot 

ConfGaobot=0+0.2=0.2 

This case will consider system profile of local host 

We can discover E4 has vulnerability. 

We increase ConfGaobot=0.2+0.3=0.5 

E5：matching first collaborative rules of Yaha 

ConfYaha=0.3+0.2=0.5 

E6：matching collaborative rules of Gaobot 

ConfGaobot=0.5+0.2=0.7 

ConfGaobot=0.7+0.3=1.0 > 0.8  => Alert Gaobot Variant 
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Knowledge updating phase 

When discovering a new variant, we generate the new acquisition table of 

Gaobot.B. 

 

              Table 4.16 : The Acquisition Table of Gaobot 

                     Object 
Attribute 

Gaobot.B 

Antivirus_Firewall_Abnormal(A4) True 
TCP_Port (A5) {80,135,445}

New_File(A6) 
{msgconf.exe; 
MSRUN.exe}

 

Hence, an original rule and and embedded rule are listed as follows. 

“IF (Antivirus Firewall abnormal=True) AND (TCP port={80,135,445}) AND (New 

file={msgconf.exe; MSRUN.exe}) THEN Gaobot.B CF=0.7 

“IF (Antivirus Firewall abnormal=True) AND (TCP port={80,135,445}) AND 

┐(New file={msgconf.exe; MSRUN.exe}) THEN Gaobot.B CF=0.4 

 

4.4 Evaluation 

 

4.4.1 Experiment Environment 

In the experiment, we deployed Extended VODKA to eight WISE sensors 

located in two subnets and a collaborative analysis center with expert system helps us 

analyzing local uncertain cases systematically. The experiment environment is shown 

as Figure 4.7.  
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                Figure 4.7：Experiment Environment 

Before the expert system is activated, we must set parameters listed as follows: 

Confhigh : 0.2 

Conflow : 0.1 

ConfSystemProfile : 0.15 

THperiod : 30 minutes of half-life period 

VOthreshold : 0.8 of alert threshold 

 

After that, in order to verify that our collaborative defending system can discover 

variant worms effectively and precisely from VODKAs, the three kinds of datasets are 

used including Baseline, Normal with some legitimate software and Attack. 

A. Baseline 

 The dataset is gained from the eight sensors when the system is initially installed 

without any heavy load of software.  

B. Normal with some legitimate software 

 The dataset is gained after some software like P2P, FTP, email software, etc. are 

 51



installed. They might generate doubtful data temporarily like worms. 

C. Attack 

 The dataset is gained after a new variant worm is inserting and attacking our 

machines. 

 

4.4.2 Results 

The result presents the variation of confidence as time goes on. This can observe 

a variant worm appear or not when the confidence exceeds a predefined threshold 0.8. 

A. Baseline 

 From Figure 4.8, we can observe the variation of confidence is quite slight.  
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Figure 4.8：The Variation of Confidence of Dataset Baseline 

 

B. Normal with some legitimate software 

In the normal state, the dataset is generated by some legitimate software. And 

then we might observe the variation of confidence of nine worms. During the period 

of 90 minutes, no alert is triggered by our system.  
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         Figure 4.9：The Variation of Confidence of Dataset Normal 

C. Attack 

When a new variant worm which is not existed in our knowledge base at 13:20 

was released, we found the confidence value of Gaobot increasing rapidly. Besides 

one sensor is infected by Gaobot, the worm will also infect other system with the 

same vulnerability. This will cause the confidence value to increase rapidly. At 13:50, 

a variant worm of Gaobot is discovered by our system and then we obtain frequent 

itemset to ask experts to confirm such itemset. Finally, EMCUD is used to generate 

the defending rules for the variant worm of Gaobot. 
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   Figure 4.10：The Variation of Confidence of Dataset Attack 
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4.4.3 Discussion 

The correctness of Collaborative Defending System 

In order to test the robustness of our criterions, three kinds of datasets are used to 

test the reaction ability of collaborative defending system. 

In Figure 4.8, the variation of confidence is less accumulated by the dataset of 

baseline. The result is clear and system work well. However, it is not enough to test 

the correctness of our criterions. Hence, the dataset of Normal with some normal 

software, generated by installing P2P, FTP, E-mail software, etc., can observe the false 

alarm rate of our criterions. Although the dataset might suddenly generate doubtful 

attack data temporarily, the result of Figure 4.9 shows that the system is reacted 

accurately. However, this does not prove our system can discover variant worm 

properly. Hence, we insert a variant worm, Gaobot to test the correctness and reaction 

time. In Figure 4.10, the result shows our system can detect the new variant worm, 

Gaobot immediately. 

The influence of parameters 

Theoretically speaking, the value of parameters will affect the alert time and the 

discovery frequency. Hence, the confidence of each rule must be well defined. For 

example, if they are higher, large number of alerts may cause experts much effort. If 

they are lower, variant worms would be missed or generate alerts slowly. In the 

experiment, the value of parameters in the experiment environment would be defined 

higher than in the real world for increasing the reaction time of the fewer sensors. In 

order to reduce the false alarm of higher value, we reduce the half-life time to thirty 

minutes. Therefore, we can avoid the confidence value increasing unlimitedly and 

reduce some noise. 
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Chapter 5. Conclusion and Future Work 
 

In the thesis, we propose a methodology to extend VODKA to help domain 

experts discover variant objects easily. First, to reduce the conformation effort of 

experts, we extend VODKA to consult more context information, such as 

environment factors, for helping experts make the correct decision. Although more 

information is provided, experts may still feel uncertain to confirm the occurrence of 

variant object in local environment. And then a collaborative analysis framework is 

proposed to handle uncertain cases for further enhancement. The collaborative 

analysis framework is a systematical analysis mechanism based upon expert system to 

discover variant objects according to the meta knowledge including environment 

factors and domain specific heuristic criteria.  

 Furthermore, the defending system for computer worms is implemented to 

evaluate our proposed extended VODKA. According to the variation of confidence, 

we can easily solve the local uncertain cases using the collaborative analysis rules. 

 In our knowledge base, we can only learn parts of worms in real world. However, 

with the rapid growth of variant worms, we need to enrich our knowledge base to 

discover more variant worms. More defending knowledge can help to reduce the 

threat posed by worms. 
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