il o]

L L
25

A M= S L N M

— f@;z’&ilg%’;

Collaborative Defending System for Computer Worms

Moy oA i ET

h¥Erx gde 4

&+ = EJ

—_

e & A Ju o M

- B AIER L (TN I kA

Collaborative Defending System for Computer Worms

oA LETR Student : Yu-Sung Lee
hERER Y EE Advisor : Shian-Shyong Tseng
B o2+

AU ol
A

A Thesis
Submitted to Institute of Computer andInformation Science
College of Electrical Engineering and Computer Science
Natiorial Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

PEARA e &R

MEFAPREAGOFE 2 PEFALFIOREF PR RRESFEE
R b B REH R AP B AT F A 4 AR R £ 0 VODKA -
BERPRE S DB Fo VRS REREEFE R RS2
RAaEER B P AL ¥R 2 Yt B 0 VODKA # & e 5 (Context) F 3t *
Lo EIGER PR AT RS A s Bk 3k v ¢ o 2 2% 49 VODKA -
RUaEEL ST AN %iﬁﬁ%ﬂﬁPO*f AR R b AR
FRECPHRKGOFREFETE 3 FR Ty AE- SHE L35 5 5%
BOF A G AR e B BN — W TESN R RS TR Rk B
d %5 VODKA ehw s Fl > dsit a1 33 B85 244 o a bh B
Yt F BP0 #at ¥ A)a VODKA Y AT RFAE BARR > BRET

PR LN NBRITAANE RS A S SR TR T UR MRS

o

PSR AR BT BRI R R IE
3B E BB B RS DA BLAS RRIEA

Collaborative Defending System for Computer Worms

Student: Yu-Sung Lee Advisor: Dr. Shian-Shyong Tseng

Department of Computer and Information Science
National Chiao Tung University

Hsinchu, Taiwan, 300, Republic of China

Abstract

With the rapid growth of variant objects, domain experts might not be easy to
keep up with the dramatically increasing knowledge. Although Variant Object
Discovering Knowledge Acquisition (VODKA) is proposed to discover variant
objects in our real world, it still proyidestinsufficiént context information and results
in the heavy confirmation effort ‘'of domain experts. Hence, we propose extended
VODKA to supply more context information for helping experts make correct
decision in this thesis. However, several uncertain cases might not be discovered and
learned in local environment because the context information might be not enough to
determine whether it is a variant occurred in local or not. Therefore, a collaborative
analysis expert system is proposed to solve those local uncertain cases according to
the meta knowledge including environment factors and domain specific heuristic
criteria. The construction of meta knowledge is also proposed based upon the
Repertory Grid and Attributes Ordering Table to automatically generate
corresponding collaborative analysis rules. Finally, the collaborative defending
system for computer worms is implemented to evaluate extended VODKA. As a
result, the implementation of collaborative defending system can assist domain

experts to discover several sophisticated worms which can not be learned in the local

II

environment.

Keyword : Variant Objects, Knowledge Acquisition, Expert System, Computer
Worms, Variant Worms

I

AT

Rl A R R RS Al R H gL g

F_k

%**

TP
B

AL FLnA WA w cody A TR S AT S B0 B Y Tl 54

=
&

T FE g REABE B 3 ARG S BRSO L
BV $CH 0 3R G RCH S o E SR B RS o E R R A e Y
L3 i

BT RRRABHRTAS L 5 EHTRAS 35 S IMp MR F I

R S EPT R TR LR R A R R AT

w4

/IJ_ FE_ ’ ,ﬂ?%}é;}ﬁ—o

RS YT EE SN eI R R Y B AR
Lo RS EHAREEGP L R AR AR R R

KL B IS A A E ok A A AR

Bois A B PR AR $ A L B A b ST R

SR
= »
[ty
Ny
=

BEewm o w EAG ERORA RN EHRT O IFEAR Ko

v

Table of Contents

AN o 1Y 1 = o1 S 1]
Table of CONtENTS. ..o e e e e

TSy o) T 0T VI
List of TableS......ccoieii el VT
List of AlgOrithms.o e VI
TSy) =t e= 0]] =T IX
Chapter L. INTrodUCTION........ccoi et ne s 1
Chapter 2. Related WOIKK..........coovoiiiiee et 3
2.1. Life Cycle Of A WOTM ..c.ciiiiiiiiieiieeiiee et 3
2.2, Briet Of WOTIS. ..cocuiiiiiieiieiie ettt ettt e 4
2.3. The Difference Between Variant and Original Wormsc.ccoeevevveennennee. 6
2.4. Knowledge AcquiSTtiOn SYSEMS 1. ite e ettt e eeeerieeiieeieeereeieesreeieesaeeeeenenes 9
2.5. Problems of VODKA s i ittt 19
Chapter 3. Extended VODKAfor Collaborative Environment...............cccccveneee. 20
3.1. The Framework of Exténded VODKA Environmentcccccceeveeennenn. 20
3.2. Extended VODKA ... it ettt 21
3.3. Collaborative Analysis CENterccceeriieiiieniieeieenieeieeiee et 25
Chapter 4. Collaborative Defending System for Computer Worms. 33
4.1. The Framework of Extended VODKA for Variant Worm Discovering........ 34
4.2. Process in Local Extended VODKA.............cooiiiiiiiiciiiee e 35
4.3. Process in Collaborative Analysis Center............ceecueeveerieenieeniieenieeieenieeans 42
4.4, EVAIUATION ...ttt ettt ettt et et snbeeaee e 50
Chapter 5. Conclusion and FULUFre WOFK.cccooviieiieiiiie e 55
RETEIEINCES ...t bbbttt bbb reene s 56

Figure 2.1 :
Figure 2.2 :
Figure 2.3 :
Figure 2.4 :
Figure 3.1:
Figure 3.2 :
Figure 3.3 :
Figure 4.1 :
Figure 4.2 :
Figure 4.3 :
Figure 4.4 :
Figure 4.5
Figure 4.6:
Figure 4.7
Figure 4.8 :
Figure 4.9 :
Figure 4.10

List of Figures

Worm Life CycCle......ooiniii e 3
The Concept of VODKA Framework...............ooooviiiiiiiiiiiin.. 11
The Learning Flow of VODKA. ...t 13
The Decision Information to Experts..............coooiiiiiiiiiiiiian. . 18
The Framework of Extended VODKA Environment........................ 20
Extended VODKAo 22
Stage of Global Analysis Center..........ccovvuviiiiiiiiiiieiieeieeannennn, 25
The Collaborative Defending System for Computer Worms................ 33

Knowledge Decision Phase.............coooiiiiiiiiiiiiiiii e 36
System Profile of Local HOSt..........coviiiiiii e, 36
Infecting Path Table Acquisition............ccooviiiiiiiiiiiiii e 38
Stage of Global Analysis Center for Computer Worms....................... 42
Communication between Lecal and.Collaborative Analysis Center........ 43
Experiment Environment. . . . oviee oo odie oo 51
The Variation of Confidence of Dataset Baseline............................. 52
The Variation of Confidence of Dataset Normal.............................. 53
- The Variation of Confidence of Dataset Attack.......................... ... 53

VI

List of Tables

Table 2.1 : Infecting Path of CodeRed and Nimda......................coooiiiiiin, 7
Table 2.2 : Repertory Grid of Three Nimda Family Members.............................. 8
Table 2.3 : Repertory Grid of Two CodeRed Family Members...........ccccceennnnn.ne 8
Table 2.4 : The Repertory Grid of CodeRed Worm................coooiiiiiiiiiii i, 14
Table 2.5 : The AOT of CodeRed Worm.............oooiiiiiiiiiii e, 14
Table 2.6 : Partial Detection Rules Generated by EMCUD......................c.oeee.l. 15
Table 2.7 : Inference Log from Inference Engine...................coooiiiiiiiinn.. 15
Table 2.8 : The New Variant Acquisition Table of CodeRed.II........................... 16
Table 3.1 : Log Profile of Local HOSt............ooiiiiiiiii e 26
Table 3.2 : Log Profile of Global Log Database................cccooiiiiiiiiiiiiiinnn.n. 26
Table 3.3 : System Profile of Worm Domain of Local Host............................... 27
Table 4.1:Format of System Profile...............ooiiiiiii 37
Table 4.2 : System Profile of Local HOStahism ae. v vevevneieii 37
Table 4.3 : Infecting Path of CodeRed.ooecn oo il 39
Table 4.4 : System Profile of Loeal Host 1z ol oo e oo, 39
Table 4.5 : Infecting Path Table;of CodeRed Family.............................o.. 39
Table 4.6 : Inference Log from Inference Engine.. ..o................cooiiiiia. 40
Table 4.7 : System Profile of Local Host for Yaha.:.......................covinnennn 4l
Table 4.8 : Infecting Path Table of Yaha Family...................oooiiiiiiiinnn. 41
Table 4.9 : Log Profile of Yaha...........coooiiiii e 43
Table 4.10 : System Profile for Computer Worms...............ccovviiiiiiiiiiinn... 43
Table 4.11 : The Repertory Grid of Yaha, Sobig and Gaobot........................... 45
Table 4.12 : The AOT of Yaha, Sobig and Gaobot...............ccoviiiiiiiiiinnnn... 45
Table 4.13 : Partial Detection Rules Generated by EMCUD................c..cc.oe.a. 46
Table 4.14 : Mapping Table of Yaha, Sobig and Gaobot.............ccc..ooviiiiiinn..n. 46
Table 4.15 : System Profile of Three HOsts..........ccoviiiiiiiiiiieee 46
Table 4.16 : The Acquisition Table of Gaobot.................cooiiiiiiiiiiiii . 50

Vil

List of Algorithms

Algorithm 2.1 : The Algorithm of VODKA...... ..o,

Algorithm 4.1 : Infecting Path Table Construction Algorithm............................

VI

Example 2.1 :
Example 4.1 :
Example 4.2 :
Example 4.3 :
Example 4.4 :

List of Examples

An Example of Learning Variant Worms...................ccovviiennnnn. 14
Infecting Path Table of CodeRed...............cooviiiiiiiiiiii 38
Mapping with System Profile and Infecting Path Table.................. 39
Uncertain Case in Local VODKA.........oooii 40
An Example to Trace Collaborative Analysis Rules..................... 45

IX

Chapter 1. Introduction

As we know, knowledge based system is an intelligent computer program that
uses knowledge and inference procedures to solve problems that are difficult enough
to require significant human expertise for their solution, such as disease diagnosis
[6][13], investment prediction [2], or science [1]. Inference is the way that computer
reasons according to the knowledge base which stores the domain expertise in the
computer recognizable format. Embedded Meaning Capturing and Uncertainty
Deciding (EMCUD) [7] was proposed to elicit the embedded meanings of knowledge
and guide experts to decide the certainty degree of each embedded rule with
embedded meaning for expending the coverage of generated rules. However, some
embedded rules may be with low/marginally-acceptable certainty factor (CF) values
due to the weak suggestions of domain experts, and new variants derived from the
well-known objects in many domains areinerementally developed due to the coming
age of the knowledge explosion. Hence, Variant Objects Discovering Knowledge
Acquisition (VODKA) [13] was proposed by Tseng et al, 2004 to collect sufficient
information, which is the related ambiguous attributes due to the marginally
acceptable CF values of original rules suggested by experts, for refining the original
knowledge base to enhance the classification ability.

Although VODKA is a well knowledge acquisition method for helping experts
clearly distinguish the new variants, a subset of the original object having some
different characteristics, from original object, it has some problems such as providing
insufficient context information resulting in the heavy confirmation effort of domain
experts and might still lack of the ability for sharing the information collecting in

autonomous area to notice the occurrence of variants. Hence, in the thesis we extend

VODKA including local and global enhancement, for helping domain experts

discovering variant objects.

1) Local enhancement - Extending VODKA for supplying more context information.

In order to reduce the conformation effort of experts, we extend VODKA to
provide more context information such as environment factors for helping experts
make the correct decision.

2) Global enhancement — Extending VODKA for a collaborative analysis mechanism
with expert system

Several uncertain cases might not be discovered and learned in local
environment because the context information might be not enough to determine
whether it is a variant occurred in local or not. Hence, a collaborative analysis
framework is proposed to handle these uncertain cases. The collaborative analysis
framework is a systematical analysis mechanism with expert system to discover
variant objects according to the meta knowledge including environment factors and
domain specific heuristic criteria.

Finally, we apply extended VODKA to discover variant worms for computer
worm domain. The recent computer worms, which are self-propagating computer
programs, are very difficult for experts to get and analyze the signatures because they
have incredible sophisticated characteristics [8]. These Internet worms could, in a
very short time, cause great damage to network and information infrastructure. In
order to evaluate our proposed extended VODKA, the collaborative defending system
for computer worms is implemented. As a result, the implementation of collaborative
defending system can assist domain experts to discover several sophisticated worms

which can not be learned in the local environment.

Chapter 2. Related Work

Before describing our research focus, life cycle of a worm, some brief
descriptions of computer worms and the difference between original and variant
worms will be first introduced. Furthermore, VODKA, a powerful method to learn the
evidence of variants based upon the inference log of embedded rules, will be then
introduced. Although VODKA is good for learning variants, it still has several
weaknesses. Hence, an example will be finally introduced to point out some problems

of VODKA.

2.1 Life Cycle of AWorm

A computer worm is definéd as arproeéss that can cause a copy of itself to
execute on another machine. In [3], it anatomized the life cycle of computer worm
including Initialization Phase, Target Scanning Phase, Attack Phase and Infection

Phase which are shown in Figure 2.1.

Target
Scanning
Phase

Infection
Phase

Attack
Phase

Initialization
Phase

Figure 2.1 : Worm L.ife Cycle

Each worm agent begins with an Initialization Phase. This phase includes things
like installing software, determining the configuration of the local machine,
instantiating global variables, and beginning the main worm process. In Target
Scanning Phase, worms must discover a machine to infect by using predefined

scanning techniques like sequential scanning, random scanning, pre-generated target

lists, etc. [15]. Then a worm can actively spread it from machine to machine. After
that, infected system may cause abnormal behavior to attack user host in Attack Phase
and infect next victim in Infection Phase. The initialization, scanning, attacking and

infection will continue cyclically.

2.2 Brief of Worms

Since worm is a self-replication program, it can be moved automatically from
one host to another resulting in great damage. Therefore, the thesis is focusing on
discovering variant worms to reduce the damage caused by worms. Several famous
worms which will be used in our thesis are introduced.

In July 2001, the Code Red Worm [4] was released on the Internet. Code Red
affected Microsoft Index Server.2.0 and the Windows 2000 Indexing service on
computers running IIS 4.0 and 5.0.Web servers. Once installed, it began scanning for
additional hosts to attack. Additionally; the-worm used a Distributed Denial of Service
Attack (DDoS) [12] against an IPof http://www.whitechouse.gov. Code Red used a
random number generator to get new IP addresses to attack. The initial revision of
Code Red hit the same machines over and over again which limited the worm’s ability
to spread. Code Red II used a better random number generator to create more target IP
addresses by keeping the network portion of the IP address, and then choosing a
random host portion of the IP address. This allows the worm to spread itself faster
within the same network.

In September 2001, the Nimda worm [5] was released on the internet. Again,
Nimda can attack IIS servers with known vulnerabilities, but uses a different set of
attack methods to do so. It took advantage of some similar vulnerabilities as Code
Red; however, it was a hybrid attack that contained both worm and virus

characteristics. As a more advanced attack, it could infect more systems and could

4

infect systems in multiple ways. Nimda could infect any computer running Microsoft
Windows software by exploiting a flaw in Outlook Express and known vulnerabilities
in Microsoft's Internet Information Services software (IIS) 4 or 5, including the
security hole left by Code Red II.

In February 2002, the Yaha Worm [11] was released on the Internet. The worm is
a mass- mailing worm that uses its own SMTP engine to send itself to email addresses
that exist in the Windows Address Book, the MSN Messenger contacts list, the Yahoo
pager contacts list, the ICQ contacts list, and files that have extensions that contain the
letters ‘ht’. When Yaha is executed, it does the following: It sends itself to all the
email addresses it finds in the infected system. It will modify registry key and attempt
to send mail using information from the registry key. Also it will copy itself to the
files, C:\Recycled\Msscra.exe and.C:\Recycled\Msmdm.exe.

In October 2002, the Gaobot, Worm [9] was released on the Internet. The worm
also attempts to spread to all computers on.the-network, using a utility that connects to
a remote computer on port 445. It copies.the Woinggg.exe file across the network, and
then executes it. It then connects to an IRC server and listens for commands. Upon
execution, W32.Gaobot.Worm performs the following actions: It copies itself as
%system%)\Sysldr32.exe, modifies register key, connects to an IRC server on one of
port 6667 and 9900, performs a Denial of Service attack on a specified server,
open/close the CD-ROM drive and post the CD-Key for the some games to an IRC

channel

In January 2003, the Sobig Worm [10] was released on the Internet. The worm
sends itself to all the addresses it finds in the .txt, .eml, .html, .htm, .dbx, and .wab
files. When the worm is executed, it does the following: It copies itself as

%Windir%\Winmgm32.exe,.creates a % Windir%\Winmgm32.exe process, with the

parameter of "start." and configures itself to start when you start Windows. The worm
stores the addresses to which it sends the email messages in the file

% Windir%\Sntmls.dat.

2.3 The Difference Between Variant and Original Worms

Based upon the worms described above, we can observe the difference between
variants and original worms is quite minor. The variant worms can be generated by
modifying the same malicious code which is easy to get in Internet. The differences
can be compared in generation and diversity, which will be detailedly described in the
followings. In the evolution of variant worms we can observe the relationship

between original and variant worms.

2.3.1 Generation

When an unsafe configuration is“discovered, hackers will start to generate new
malicious code to attack. When an original worm is released by hackers, some
anti-virus corporation like Symantec or Trend Micro will update their scanning engine
by new virus patterns to avoid attacking. Domain experts will extract specific binary
codes as the new virus patterns. These specific virus patterns are designed for this
new original worm. In order to evade pattern matching by these anti-virus
corporations, hackers usually modify the same source code of original worm. And
then a new variant is generated. At this time these anti-virus corporations will retrain
new virus pattern for variants to stop attacking and then hackers will generate another
variants. The hackers and anti-virus corporations are competing with each other.

These result in large amount variant worms in our real world.

2.3.2 Diversity

Because most variant worms are generated by slightly modifying the same
original programs, they inherit the same primary attributes of original worms. So we
can observe from technical documents that they usually have the same spreading ways
and similar symptoms. Hence, the diversity between the great part of original and
variant worms is in some ambiguous attribute value.

From this observation, domain experts will have this kind of prior knowledge to
assist classify computer worms due to the similar spreading ways and symptoms. In

Section 2.3.3 we introduce two real cases to verify our observation.

2.3.3 The Cases of Worm Family - CodeRed and Nimda

In order to clearly represent.the diversity between variant and original worms,
two real cases of famous worm family including €odeRed [4] and Nimda [5] are
discussed in the followings. Since the technical documents of computer worms are
usually unstructured, a formatted répresentation is needed for easily accumulating the
knowledge of worms. According to the above description, two kinds of attributes
including infecting path and symptoms are used to recognize the computer worms. We
use Table 2.1 to show the infecting path of CodeRed and Nimda. They own their
specific infecting path.

Table 2.1 : Infecting Path of CodeRed and Nimda

Worm_Name | Infecting Path

CVE-2001-0500(IndexServer2.0 and 11S6.0);

CodeRed CVE-2001-0506(1IS4.0 and IIS5.0)

Email;CVE-2001-0154(MIME Header);

Nimda CVE-2000-0884(IIS Web Server Folder Traversal);Data Share

Besides, the symptoms of Nimda family are listed as Table 2.2 with DoS Type,

New_ Guest, Function abnormal, Email Attachment, TCP Port, New File and

Open_Disk Share, etc. Data type of attributes are Boolean, String, Integer or sets.

According to Table 2.2, we can discover that Nimda family has the same primary

attributes and might have different value of other attributes between the variant

worms.

Table 2.2 : Repertory Grid of Three Nimda Family Members

Object]])
) Nimda.A Nimda.B Nimda.E
Attribute
DoS Type Email Flood Email Flood Email Flood
New_Guest True True True

Function Abnormal

Word ~ WordPad

Word ~ WordPad

Word ~ WordPad

Email Attachment

readme.exe;readme.wavs

readme.com

puta!!scr

Sample.exe

TCP_Port 25;80;137;138;139;445 +125;80;137:;138;139;445|25;80;137;138;139;445
meXXXXX.tmp.exe;
New _Files meXXXXX.tmp.exe meXXXXX.tmp.exe CSRSS.EXE;
httpodbec.dll
Open_Disk Share True True True

In this case, Attribute(Email Attachment, New File) are the ambiguous value

which could be changed with a new variants.

Table 2.3 : Repertory Grid of Two CodeRed Family Members

Object
] CodeRed.A CodeRed.B
Attribute
DoS Type TCP Flood TCP Flood
Threads 100 600
Backdoor X True
TCP_Port 80 80

Table 2.3 shows some major attributes of CodeRed family. Based upon the Table
2.3, we observe the CodeRed.B and CodeRed.A have similar symptoms. The
difference between them is the number of automatically created threads and the
creation of new attribute backdoor.

According to infecting path and symptoms, worms could be classified after
analyzing the infected machines in laboratory. For example, if a new worm uses the
same IIS Server Buffer Overflow, CVE-2001-0500 and CVE-2001-0506, and the
major symptoms are the same as CodeRed Family, domain experts will classify this

new worm into CodeRed family as a variant worm.

2.4 Knowledge Acquisition Systems

VODKA [14] is proposed to learn new variant objects from analyzing the
acceptable embedded meaning of knowledge.-The.embedded knowledge is elicited by
EMCUD [7] from the existing repertory grids.-In order to understand these knowledge
acquisition systems, firstly we describe knewledge acquisition and three kinds of
knowledge acquisition approaches in Section 2.4.1. In Sections 2.4.2 and 2.4.3 two

knowledge acquisition systems, EMCUD and VODKA, will be introduced.

2.4.1 Knowledge Acquisition

In order to obtain the knowledge of a special domain, knowledge acquisition is
proposed to transfer the expertise of domain experts into knowledge bases. General
speaking, there are three kinds of approaches for knowledge acquisition.
1. Interviewing experts by experienced knowledge engineers.

After interviewing the domain expert, knowledge engineers explicitly code the
knowledge. But, it might be time consuming for the domain expert and knowledge

engineers to understand each other.

2. Machine learning.

Given training cases, the machine learning approach will automatically learn
some rules. But it still has two disadvantages. Firstly, there might be few or no
available training cases in many application domains. Moreover, it is hard to
understand the relation among cases.

3. Knowledge acquisition systems.

The knowledge acquisition system involves interviewing with the help of
knowledge acquisition tools. It helps knowledge engineers work better in interviewing
experts. Besides, deeper knowledge can be elicited using this approach such as
repertory grid technique which gets domain experts to rank objects against concepts.
The knowledge acquisition system solves the problem of communication between

domain experts and knowledge engineers without'the required training cases.

2.4.2 EMCUD (Embedded Meaning. Capturing and Uncertainty
Deciding)

EMCUD, a knowledge acquisition system, is proposed to elicit the embedded
meanings of knowledge from the existing repertory grids. Additionally, it will also
guide experts to decide the certainty degree of each rule with embedded meaning for
extending the coverage of generated rules. To capture the embedded meanings of the
resulting grids, the Attribute Ordering Table (AOT), which is used to record the
relative importance of each attribute to each object, is employed. There are three kinds
of values in each AOT entry, a pair of attribute and object, "X", "D" or an integer; "X"
means no relationship existing between the attribute and the object, "D" means the
attribute dominates the object and an integer is represented for the relative important
degree of the attribute to the object. The larger the integer is, the more important the

attribute is to the object.

10

Using AOT, the original rules generate some rules with embedded meaning, and
the Certainty Factor (CF) of each rule, which is between -1 and 1, could be
determined to indicate the degree of supporting the inference result. The higher CF is,

the more reliable the result is.

2.4.3 VODKA (Variant Objects Discovering Knowledge Acquisition)

Although EMCUD and other similar approaches could be rerun to acquire such
knowledge from domain experts again to distinguish new variants from old objects, it
might be costly and hard to obtain the knowledge due to the lack of sufficient
information about variants. Therefore, the idea is to analyze the inference behaviors of
weak embedded rules to construct'the new variants acquisition table. In [14], a new
iterative knowledge acquisition.. methodology, -Variant Objects Discovering
Knowledge Acquisition (VODKA); is—proposed to provide the ability of grid

evolution.

Adjust

Embedded
Rule Base

'Experts Inference Engine y |
(DRAMA) Real Instances
” » Meta - >
Knowledge
Log
Uﬁ& Collecting

53
L
2 User

Stage I:

20RJIAIUT IO

e
New Variants Stage II:
New Variants _ | Acquisition gelu
»> o > Knowledge
Acquiring Table Learning
~_
: Y
Main Stage III:
Acquisition :Update Extended Knowledge
Table EMCUD Polishing

Figure 2.2 : The Concept of VODKA Framework

11

Because the embedded rules with diverse CF values represent the different
supports to classify objects, the ones with marginally acceptable CF might be
triggered by some candidate of a new variant. In order to analyze the behaviors of
these embedded rules, a VODKA framework is shown in Figure 2.2 in which each
iteration consists of three stages: Log Collecting Stage, Knowledge Learning Stage,
and Knowledge Polishing Stage. Initially, the embedded rule base will be created
according to the original main acquisition table using EMCUD or VODKA. Then in
each iteration the inference behaviors (facts/attribute-value pairs) will be collected to
discover the candidates of the variants during Stage I according to the meta
knowledge. The attribute-value pair will be treated as an item and a set of negated
attribute-value pairs will be treated as a transaction to discover the association
between interesting (minor) attribute-value pairs‘in Stage II. Consequently, the new
variants acquisition table based-on.the discovered knowledge could be generated by
interacting with domain experts-through-the-new vartants acquiring procedure. Finally,
the rules of new variants will be ‘incrementally “generated and the main acquisition
table will be iteratively adjusted using E-EMCUD in Stage IIl. The algorithm of

VODKA is shown as follows.

Algorithm 2.1: The Algorithm of VODKA

Input: The original main acquisition table T and embedded rule base RB.
Output: The rules with embedded meaning about variants.
Stage I: Collect all facts of the weak embedded rules as real inference log of the RB.
Stage II: Generate the new variants acquisition table T°.
Stepl: Discover large itemsets L using the inference log.

Step2: Generate T’ using L and additional attributes provided by experts.

12

Stage I11: Use E-EMCUD to generate rules of new variants.
Step1: Generate rules according to T°.

Step2: Merge T’ into original main acquisition table T.

2.4.4 The Learning Flow of VODKA

Figure 2.3 shows the learning flow of VODKA. We periodically analyze the
inference log to discover variant objects. If the CF is higher, we can determine a new
object immediately. If the CF is an acceptable value, find frequent itemsets and ask
experts if these are variant objects or not. After decision process of domain experts,
they will tell us variants or not. And VODKA provides some operations to let experts
quickly generate new variant acquisition table. Finally, use EMCUD to generate

original and embedded rules to enhance our embedded rule base.

Inference
Engine
1

Inference
Log

T High Acceptable
! ; >0.8 0.4<CF<0.8
i Decision ! -
' Process ! Ongmal Inference
! ! Object Frequency
! |
High Low
Frequent
i Variant Or ltemsets End
” Not?
e
Y
Yes No
. Acquisition
ration
Operations Table

Change Data Type? «—p
Add New Attribute?

Original Rule
Embedded Rules

Figure 2.3 : The Learning Flow of VODKA

13

2.4.5 An Example of Learning Variant Worms
In Example 2.1, we apply VODKA to learn variant worms. By this example, we
introduce the learning mechanism of VODKA and then indicate the weakness of

VODKA.

Example 2.1 : An Example of Learning Variant Worms
The Repertory Grid is used to acquire original worm and an AOT represents the
relative importance to attributes. After generating repertory grid and AOT, we can use

EMCUD to generate original and embedded rules listed in Table 2.6.

Table 2.4: The Repertony Grid of CodeRed Worm

Attribute g CodeRed (01)

100-Thread(Ay) True

System_Reboot (A,) X
DoS Type (As) TCP Flood

Email Attachment(Ay) X
Antivirus_Firewall Abnormal(As) X

TCP_Port (Ay) {80}
New_File(A7) X

Table 2.5: The AOT of CodeRed Worm

Attribute OREt] CodeRed (0)
A 2
A, X
A; 1
Ay X
As X
Ag 3
A, X

14

Table 2.6: Partial Detection Rules Generated by EMCUD

| IF Part Then Part CF
Rule # A A, As As As As A, Object
Ry True - TCP flood - - {80} - CodeRed 0.7
Ry, True - —TCP flood - - {80} - CodeRed 0.5
R, False - TCP flood - - {80} - CodeRed 0.4

In this example, assume the fired sequence of some embedded rules of CodeRed

worms are given as follows.

Table 2.7 : Inference Log from Inference Engine

Rule# | A} | A, As Ay | As Ag Ay Object CF
Ri» 600 | - | TCPflood | - - {80} - CodeRed | 0.4
Ri» 600 | - | TCPflood | - - {80} - CodeRed | 0.4
Ri; 100 | - - - - {80} - CodeRed | 0.5
Ri, 600 | - | TCP flood%|: - - {80} - CodeRed | 04
Ri, 150 | - | TCP flood [|—% - {80} - CodeRed | 04
Ry, 100 | - - - - {80} - CodeRed | 0.5
Ri» 600 | - | TCPflood | "= - {80} - CodeRed | 0.4
Ri» 600 | - | TCP flood.| - - {80} - CodeRed | 0.4
R;, 600 - TCP flood - - {80} - CodeRed 0.4
R, 300 - TCP flood - - {80} - CodeRed 0.4

Assume the minimal support is set to 30%, the frequent itemsets will be obtained.

For example, if a the frequent itemset L1=(A;=600) is satisfied, the VODKA will ask
the expert to confirm such itemset if it belongs to certain variant.

VODKA will ask the following questions

VODKA : Does the attribute-value pair (A;=600) belong to any new variant object?
/* Decision Process of experts*/

Expert © Yes

VODKA : What is the name of the new variant object?

Expert : CodeRedII

15

VODKA : Is the data type of A required to be changed?

Expert - YES

VODKA : What data type do you want to change? 1.Boolean 2.Integer 3.Float 4.String

5.Set of values 6. Range of values

Expert - 2

VODKA : Is any new attribute required to be added?

Expert © No

VODKA : Can the Single Value data type be used to change the original Boolean data
type of A;?

Expert - YES

VODKA : What is the new name and new value set of the attribute A;?

Expert : Threads, (100, infinite).

Therefore, the new variant acquisition table of CodeRed.II shown in Table 2.8

will be generated.

Table 2.8 : The New Variant Acquisition Table of CodeRed.lIl

Object
Attribute CodeRed CodeRedIl
Threads (A)) 100 600
System_Reboot (A,) X X
DoS Type (A3z) TCP flood TCP flood
Email Attachment(A4) X X
Antivirus_Firewall Abnormal(As) X X
TCP_Port (Ag) {80} {80}
New_File (A7) X X

16

Consequently, an original rule and an embedded rule will be generated by
EMCUD.
IF (Threads=600) AND (DoS Type=TCP flood) AND (TCP={80}) THEN
CodeRed.II CF=0.8
IF — (Threads=600) AND (DoS Type=TCP flood) AND (TCP={80}) Then

CodeRed.Il CF=0.4

2.4.6 The Inefficiency of VODKA

Although VODKA could help expert identify variants derived from original
worms, the first step, “VODKA asks does the certain attribute-value pair belong to
any new variant object?” will cause much effort of expert. For example, domain
experts need to consult more information to make a decision due to the simple
questions asked by VODKA.=But VODKA provides only the inference log of
frequently fired embedded rules which-includes less information to assist expert.
Hence, we anatomize the process ‘effort of domain experts. Firstly, they must know
the environment setting of local system. Besides, the symptoms of the host are also
important to experts decide whether the attack happens or not. However, these two
decision information, environment factors and symptoms, could be used to assist
experts make the suitable decision.

After considering above information, we can get the following decision

information.

17

Vulnerable!! Environment

CVE-2001-0506 Factors
(11S5.0 BufferOverflow)

CodeRed LC |
Thread=600 onsult

VODKA ——» F
2.Analyze

Thread?
Significant attributes?

Symptoms

Figure 2.4 : The Decision Information to Experts

Firstly, we can consult system profile (environment factors) of local host to
identify if any possible vulnerabilities could be exploited to infect our system, which
is called infecting path. If the infecting path is available, it might have high possibility
to be infected by some malicious worms. Therefore the following message could be
obtained for recording such information.

No patch I1S5.0 BufferOverflow (CVE-2001-0506)

=>CodeRed worm family has the way-to.exploit

=>increase CF

Secondly, the detected attributes will be examined whether attribute is
significant or not to decide the degree of the recognition of worms.
The embedded rule of R, is fired when conditions partially match Az and As. Now
we want to know the attribute-value pair (Thread=600) is a significant attribute or not.

=>the attribute (symptom) is like a CodeRed worm

=> increase CF

Experts might have lower confidence for some embedded rules R;, for
recognizing worms. However, they might incrementally enhance the confidence
according to above information provided and concluded the variant is recognized.
However, not all of such case could be stronger to make a decision immediately,

several cases might happen fewer and confuse experts to make a correct decision.

18

This is called uncertain case.

2.5 Problems of VODKA

As mentioned above, two issues are concluded to point out the weakness of
VODKA.
1. Information insufficiency

Some information can be collected ahead, but VODKA provides insufficient
information. This increases domain experts’ effort when determining variant objects.
2. Hard to make a decision

Some cases are hard to make a decision due to insufficient information. Our
collected embedded knowledge may be disturbed by some legitimate software like
mass email software, P2P , etc. .During this sittation the answer may be uncertain
due to the weakness of embedded knowledge or information insufficiency.

So, the thesis mainly focused ‘on-selving, the above problems. Therefore, we
propose a methodology to extend VODKA including local and global enhancement.
1. Local enhancement - Extending VODKA for supplying more context
information

With the rapid growth of variant objects, insufficient context information will
increase confirmation effort of experts. Therefore, we enhance VODKA to provide
more context information to reduce confirmation effort of experts.
2. Global enhancement - Extending VODKA for a collaborative analysis
mechanism

We propose a collaborative analysis mechanism to solve local uncertain cases
when discovering variant objects. By the collaborative analysis framework, VODKAs
can have the ability to share information. And then, domain experts can make

decisions with global views instead of local views.

19

Chapter 3. Extended VODKA for Collaborative

Environment

Since VODKA [14] has been proposed to learn the variants from the original
objects according to the inference log of embedded rules, it still has some problems
such as providing insufficient context information resulting in the heavy effort of
domain experts. However, some information in each domain could be prepared in
advance for assisting expert to easily recognize the new suggested variants. Moreover,
several uncertain cases might not be discovered in local environment because of
insufficient context information. Before, VODKA is lack of collaborative ability to
share local collected information of uficertain ¢ases to learn more variants in different
environment. Therefore, the extended VODKA for collaborative environment is

proposed to collect more and more information from multiple VODKAs.

3.1 The Framework of Extended VODKA Environment

s
lntrnet Q\

Collaborative Analysis Center

LAN

Figure 3.1 : The Framework of Extended VODKA Environment

20

Figure 3.1 shows the framework of extended VODKA environment, where each
local sensor deployed with VODKA learning module is to discover variant objects
with adopting Knowledge-Base. However, some embedded rules with low CF might
be not enough to conclude any results in local VODKA even if it consults more
context information including the environment variables, etc. However, some variant
objects may appear anywhere in network environment regardless of embedded rules
with high CF or low CF. As we know, the embedded knowledge of higher CF can be
discovered in local but the lower CF can not. By collecting and analyzing information
of all uncertain cases periodically in collaborative analysis center, the information

from multiple VODKAs could help experts make a decision easily with global views.

3.2 Extended VODKA

In order to enhance VODKA ;.- we consider environment factors of domain to help
experts making correct decision. REirStly;—we, supply the environment factors as
context information for experts. Seeondly, if the collected information is not enough
to make decision by experts, such weak embedded knowledge will be reported to

collaborative analysis center for further analysis.

To clearly describe our extended VODKA, Figure 3.2 shows the extended

VODKA including two parts (the Environment Factors, the Collaborative Analysis

Center) to help experts recognize the new variants.

21

Adjust
Embedded

o Rule Base
Experts
/ Real ||
- ! , Mota g Instances
(<]
Knowledge ;__" Stage I:
Inference g Log
. = .
Engine Inference Log § @ Collecting
(DRAMA
7 User
. New Variants
Decision Ferainty New Acquisiti

i > | Variants |—| AcQUISIION Stage II:
Environment < Process Acquiring Table Knowledge

Factors Consult Learning

Unertainty
Context
Information v - \
ain Und,
Report Acquisition Pl Extended Stage IIL:
Engine Table EMCUD Knowle@ge
| Updating
]
y

Collabor;tive Stage IV:
Acn:rl]yé'rs Collaborative

Analysis

: Dotted blocks represent extended block

Figure 3:2 . Extended VODKA

The whole framework extends .three-'stages to four stages including Log
Collecting Stage, Knowledge Learning ' Stage, Knowledge Updating Stage,
Collaborative Analysis Stage, as shown in the dotted blocks, where represent the
extended components. Each stage is described as follows.

Stage | : Log Collecting

In Log Collecting Stage, the related inference log about embedded rules with

marginal acceptable CF is collected. And the inference log which is collected from

inference engine will be learned in knowledge learning Stage.

Stage 11 : Knowledge Learning
In knowledge learning stage, the candidate knowledge from inference log will be

learned using data miming technology. In addition to ask experts to decide which new

22

variant objects the candidate knowledge belongs to, the extended framework will
consider more context information to reduce confirmation efforts of experts. If the
context information is enough to make a decision, a new variant will be confirmed
and the knowledge base will be updated in Knowledge Update Stage. Otherwise,
experts will say “uncertainty” and then we will report to Collaborative Analysis

Center for further analysis.

Stage 111 : Knowledge Updating

If the variants are generated by Knowledge Learning Stage, the new original and
embedded rules will be obtained using extended EMCUD with the new acquired
repertory grid and corresponding AOT. And then the embedded rule base will be

updated to refresh the original knowledge.

Stage 1V : Collaborative Analysis

The Collaborative Analysis Center. will explain the uncertain knowledge learned
by local VODKA. In this Stage, more information of multiple local VODKAs could
be obtained to collect more evidence of variants. Hence, the decision confidence can
be accumulated based upon the meta knowledge including environment factors and

domain specific heuristic criteria.

3.2.1 Environment Factors

Because each variant object has its own growing environment, VODKA does not
consider the environment factors. We give a verification of the environment factors,
which can be used to help expert make a decision. For example, the computer worm
domain, which is a self-propagating program via a network to threat the Internet very

much, is one of the domains with dynamic environment configurations. With the

23

evolution, large amount of variant worms are generated by hackers. And each worm
has its own growing systems or applications(environments). The extended VODKA
provides such information to help deciding variant objects. When making a decision,
environment factors will be the context information for experts to reduce their
confirmation effort of searching such information. The environment factor may be
represented in many kinds of explanation to fit different domain. It could be a system

configuration, network configurations, etc.

We give an example of CodeRed worm family which uses the buffer Overflow of
IIS Server (CVE-2001-0500; CVE-2001-0506). As a result, the IIS Servers with
vulnerability of CVE-2001-0500 and CVE-2001-0506 are the growing environment
of CodeRed worms. In other words, CodeRed family will not grow without these
conditions. So the vulnerable environment of IIS. Servers is context information for

experts to decide variant objects-of CodeRed-

3.2.2 Collaborative Analysis Center

With the additional context information, some variants might be too
sophisticated to discover and learn in local environment because the context
information might be not enough to determine whether it is a variant occurred in local
or not. Therefore, more information should be collected to overcome such problem to
learn the variants. Hence, such un-decidable inference log will be transferred to
collaborative analysis center for analyzing and learning since the variants may occur
anywhere. Finally, the collaborative analysis center could learn and make more
correct decisions with global views according to meta knowledge including
environment factors and domain specific heuristic criteria. More details about

collaborative analysis center will be represented in following section.

24

3.3 Collaborative Analysis Center
Since local sensors might not have enough information to learn the sophisticated
variants, the collaborative analysis center collected all un-decidable inference log to
learn and discover such variants with global views.
The collaborative center consists of three stages including Evidence Collecting

Stage, Variants Analysis Stage, Knowledge Updating Stage.

Inference Engine

(DRAMA) Variantp EMCUD

Log | H DataBas Exji”s
|| Meta
Rule KnOBV;ISng
Envi L Environment
oo | T oaasae
Evidence Collecting Variants Analysis Knowledge Updating
Stage | Stage 11 Stage 111

Figure 3.3 : Stage of Global Analysis Center

3.3.1 Evidence Collecting Stage

In Evidence Collecting Stage, the inference Log periodically collected from local
sensors and the Environment Factors of each sensor registered initially are collected
and stored into database. Inference Log is designed to transfer during a regular period
of time, which the period could be adjusted dynamically, but environment factors
would be updated when changing from local sensors.

The format of inference log profile and environment factors are described as

follows.

25

1. Log Profile
In order to collect uncertain knowledge from local hosts and store it in LOG
Database, the log format, consisting of rule name, collecting attribute values and CF

of rules, of local sensor is designed.

Table 3.1 : Log Profile of Local Host

Ri; Att, Att, .. Atte | CF(Ryy)

When the inference log is reported from Local VODKA to Collaborative center,
the sensor ID of local host and the reporting time will be appended to these records.
The format is listed below where the Time field record the reporting time
(T1,T5,Ts,...) from local sensors, ID field records the IP address of local hosts, R;j;
means the j-1 embedded rule of object i and R; 1$-the original rule of object i, Atty is
the value of k™ attribute, CF records the Certainty Factor of each rule.

Table 3.2 + Log.Profile-of Global Log Database

Time 1D Ri,j Atty Att, .. Attty CF(Ri,j)

2. Environment Factors

For different domain, experts can define their own environment factors they want
to refer.

For example, in the worm domain world, worms will exploit the wrong
configuration of victim system to infect. Hence, the environment factor is system
profile from local sensors including the IP addresses, the Operation system version,
the provided services, the patching level, etc. Hence the local system profile will be
collected as our environment factor for worm domain. If the system exists some
vulnerabilities with some service, it might have the risk to be infected by

corresponding worms. The information of system profile shown as follows will be

26

consulted to help expert making decision in global center.

Table 3.3 : System Profile of Worm Domain of Local Host

ID (0N} (Application <-> Vulnerability)

140.113.*.* Windows Xp Internet Explorer5.5 <-> CVE-2001-0154(MIME header)

ID : 140.113.*.* : the local IP address

OS : the operation system

(Application <-> Vulnerability)= Internet Explorer5.5 <-> CVE-2001-0154
Internet Explorer5.5 with MIME header vulnerability

CVE-2001-0154 is the standard vulnerability name defined by CVE.

So, collaborative analysis center will receive log and related environment factors

as decision information and keep them in global database.

3.3.2 Variants Analysis Stage

With the technology revolution, new-wvatiant objects can be generated rapidly
than before. If we do not have a systematical and automatic analysis mechanism, we
must be busy in discovering new variants. Hence, the expert system technology is
used to solve these problems.

In the construction of rule base, a confidence value from experts’ views is used
to be accumulated. During the inference process, if the accumulated confidence of
certain object meets a predefined confidence threshold. A variant object is discovered
by our system.

About the construction of rule base, we will describe it detailedly in Section

3.3.4.

27

3.3.3 Knowledge Updating Stage

After analyzing the inference log, several variants could be discovered. When a
new variant is determined, the original and embedded rules of the new variant will be
generated using EMCUD. Therefore, the defending knowledge about new variant will
be updated into the original knowledge base.

In order to well-maintain the collaborative analysis center, the meta knowledge
should be constructed in advance and the systematical process to construct such meta

rules is needed.

3.3.4 Meta Knowledge Constructing

For different domain, different expertise should be extracted to handle multiple
reports from local sensor with VODKA module:.Hence, domain experts can define
their domain criterions to construct.meta rules, named collaborative analysis rules, in
variant analysis stage. Moreover, each rule.-would be appended with a value named
confidence value. It means the raccumulated confidence of experts when
corresponding condition of variants is matched. If it is defined higher, large number of
alerts might cause experts much effort. If it is defined lower, the system would
generate slowly or miss variants. Hence, it must be well defined. If the reporting
inference log satisfies certain collaborative analysis rules, the confidence value of
each object will be increased to record the behaviors of such report. Hence, the
confidence value of each object can be easily accumulated to monitor the distributed
behavior of variants when corresponding rules are fired. When confidence value of
each object exceeds a predefined confirmable threshold, it possibly represents a
variant appeared.

Besides, different domain can increase their criterions. Now we will introduce

some basic criterions to construct collaborative analysis rules listed as follows.

28

Criterion 1 : Accumulate confidence according to the importance of attributes

Every report of candidate variant object has different importance. The
importance can be seen in original AOT defined by experts. Hence, every report will
accumulate our degree of confidence and the conjunction of attributes has different
confidence value. If candidate variant object has more important attributes to this
object class, we have higher confidence about this report.

To generate collaborative analysis rules, the information of AOT, which records
the relative importance of each attribute to each object, will be reused to define the
important degree of attributes. The attributes can be mapped into three parts including
major attributes, secondary attributes and minor attributes. However, minor attributes
which mean less important attributes to this object class can be ignored. Major
attributes mean the important attributes for recognizing the object class and secondary
attributes mean they could be negated to capture,embedded meanings. If the events
satisfying whole major attributes and secondary attributes, confidence obtained is
higher than only satisfying major attributes.

For example, assume the range of AOT values is from 1 to 5, D and X.
According to the importance of attributes, we map {D, 5, 4} to major attributes M, {3,
2} to secondary attributes Sand {1, X} to minor attributes. And then a confidence

value of collaborative analysis rule will be normalized by the following formula.

(Confhigh - Conf,ow)
object = ConfIow +
(W, +W, +...+W,)

Conf * (SUM (Wj))

Notation:
Confyign : the highest accumulation of confidence.
Conf,y, : the lowest accumulation of confidence.

Confgpiect : the confidence of this collaborative analysis rule of object.

29

If the collaborative analysis rules only match major attributes, the Confopjec: 1S
equal to Confj,y. If the collaborative analysis rules match major and secondary
attributes, the Confopject 1S equal to Conpign. If the collaborative analysis rules match
major and partial secondary attributes, the Confipiecc is equal to formula.

Hence, the Criterionl means we accumulate more confidence when the reports
match more importance attributes to this object class.

According to these methods we can generate collaborative rules defined to
different objects and the general form of meta rule matched criterionl is shown as

follows.

MRI: IF (M_fully) AND (S_fully)

Then increase Confypiet by ConfigitAND “set flaggpjee: = 1

MR2: IF (flagopject =0) AND (M_ fully) AND (S partial)

2. X&) {Conf, 4, — Conf,,,,)

el O (W AW, W,) *(sumiw,) AND

Then increase Conf

set flagopject = 1

MR3: IF (flagobject =0) AND (M_fully)

Then increase Confypiect by Confiow AND reset flagopject = 0

Notation :
M_fully : major attributes fully match
S fully : secondary attributes fully match
S partial : secondary attributes partially match
Confopieet - the confidence value of each object is initially set to 0
Confygn - the highest accumulation of confidence

Confl,y * the lowest accumulation of confidence

30

Flaggyiect - A flag to each object is initialized to 0. Its goal is to infer the first
matching rule.
Wi+Wo+t.. .+ W & the sum of all AOT value of secondary attributes

SUM(W;) : the sum of AOT value of partially matching secondary attributes

Criterion 2 : Consider environment factors

Each variant object will have its own environment factors. If the system
environment is matched, the confidence to make a decision will also increase.
Notation :

Object.ID.SystemProfile = Environment(Object) : It means that if system

(ID.SystemProfile) has the growing environment for this object, our confidence

will increase Confsygiemprofile

MR4: IF Object.ID.SystemProfile.= Environment(Object)

Then increase Confypect by Confsysemprotile

Criterion 3 : A predefined threshold of discovering variant objects
If the accumulated confidence of certain object exceeds the threshold from
expert views, a variant object is discovered from our system.

VOthreshold : the threshold of discovering variant objects

MRS5: IF Confypiee > VOthreshold

Then discover variant object

Criterion 4 : Atimeout period to reduce confidence
A Half-life condition is used to reduce false alarm since some adventitious cases

are observed. According to above criterions, the confidence value will increase

31

unlimitedly. However, if we can not confirm a variant object after a long period of
time, we will decrease our confidence because it may be considered as a noise.

The criterion is listed as follows.

MR6: IF Timeperios=THperiod

Then decrease CFgpjec to half

Notation :
Timeperiod - the time from previous reducing time

THperioa - A predefined time interval to reduce confidence

In this chapter, we propose a methodology of using Extended VODKA to learn
variant objects more efficiently. Moreoyet; VODKA is a learning tool which can be
appended to any knowledge-base system.In order to verify our methodology we

apply VODKA to computer worim domain-as-our example in next Chapter.

32

Chapter 4. Collaborative Defending System for

Computer Worms

The easy access and wide usage of the Internet make it more convenient for
technical research and information exchange. Most of intrusion behaviors become
more complicated because of combining several signatures of previous intrusions.
The recent computer worms, which are self-propagating computer programs across a
network exploiting security or policy flaws in widely-used services, are very difficult
for experts to get and analyze the signatures because they have incredible
sophisticated characteristics [8]. With the evolution of original worm, large amount of
variant worms are continually generated to-infect our computers. Because Extended

VODKA can help us to discover these variant worms, we apply it to this domain in

< &

the chapter.

N

Collaborative Analysis Center
for Computer Worms

LAN

Figure 4.1 : The Collaborative Defending System for Computer Worms
As mentioned above, the collaborative defending system for computer worms

shown in Figure 4.1 is proposed to learn more variants from multiple sensors with

33

VODKA. In the computer worm domain, the sensor is named WISE, which is a worm
immune service expert system. WISE is to help us diagnose our system far away from
worm attacking. It uses the VODKA to be a learning module to increase knowledge of
variant worms. Besides, a collaborative analysis center for computer worms is used to
analyze the uncertain cases of variants in local.

Section 4.1 introduces the framework of Extended VODKA for variant worms
discovering. Section 4.2 introduces the learning process in local VODKA. Section 4.3
introduces the collaborative analysis center to analyze the uncertainty of local
VODKA. Section 4.4 evaluates our collaborative defending system for computer

worms.

4.1 The Framework of Extended VODKA for Variant Worm
Discovering

As we know, worms will infect wrong-configured system. And each worm family
has different infecting way to infect.-If the.system is vulnerable, worms will have
environments to grow. Therefore, the system configuration, system profile is referred
to as the environment factors. In computer worm domain, the environment factors
include the infecting path and system profile will be considered.

However, some behaviors of worms look like normal behaviors such as mailing
softwares, P2P , etc.. It might result in the uncertain decision even if we consult
additional infecting path and system profile, which can be collected and used to
analyze and solve the local uncertainty. Hence, if the uncertainty continually exists,

we will deal with these problems with global views in Section 4.3.

34

4.2 Process in Local Extended VODKA

Extended VODKA considers context information. Therefore, the context
information such as infecting path analysis, are proposed to reduce the confirmation
effort of domain experts. The infecting path analysis is the environment factors for
computer worm domain.

Now we will introduce them as follows.

4.2.1 Knowledge Decision Phase

The environment factors in Stagell described in Figure 3.2 in computer worm
domain can be treated as infecting path analysis. Because most variant worms use the
same vulnerabilities to exploit, the system can be determined to have vulnerabilities
by mapping Infecting Path Table and System Profile. Such context information will be
consulted to make a decision.

Figure 4.2 shows that if- we icapture-candidate embedded knowledge from
VODKA. Before confirming by éxperts, we will analyze first and supply context
information for suggesting experts. The infecting path analysis will tell us vulnerable
or not by mapping infecting path of original worms and system profile of local host.
With the context information, we have two conditions- certainty or uncertainty.
Certainty means the evidence is powerful enough to confirm. Uncertainty means the

evidence is not enough.

35

Table : Infecting Path Table Table : Data Format of System Profile
Worm_Name | Infecting_ Path | | ID | OS | (Application<->Vulnerability) |

LaI Host

System
Profile

Candidate Infecting - (Application<-> . 1.Certain
Knowledge > Path [P “yuneniity) > Deljls'lton (Variant)
ni
Infecting Path 2.Uncertain
Analysis
ﬁ
Experts

Figure 4.2 : Knowledge Decision Phase

The generation of the context information which will decrease the weakness of

VODKA are described as follows.

4.2.1.1 Infecting Path Analysis s=System.Profile and Infecting Path
Table
A. System Profile

Some worms are designed to infect'wrong configured system and some worms
exploit vulnerabilities of system or applications. If we have not patched our system

frequently, it is easy to be infected by specific worms based upon the vulnerability of

System
Profile

local host recorded in system profile.

Figure 4.3 : System Profile of Local Host

How to get System Profile ?
When installing VODKA, the local system profile including ID, OS version and

vulnerable applications can be recorded. Once the system profile is modified,

36

VODKA will update it at the same time.
Now, the system profile is defined according to the worm domain.
Data format of System Profile

Definition :

Table 4.1 : Format of System Profile

ID oS (Application <-> Vulnerability)

140.113.*.* Windows Xp | Internet Explorer5.5 <-> CVE-2001-0154(MIME header)

Notation :

ID : Host IP

OS : Operation System

(Application <-> Vulnerability) : This.tepresents which application is vulnerable
Data Type

ID : IPv4

OS : String

(Application <-> Vulnerability) - String

The following is a simple example to show our system profile

Table 4.2 : System Profile of Local Host

ID oS (Application <-> Vulnerability)

140.113.* * Windows Xp | InternetExplorer5.5 <-> CVE-2001-0154(MIME header)

ID : 140.113.*.* : the local IP address
OS ' The operation system is Windows XP
(Application<->Vulnerability)=(InternetExplorer5.5<->CVE-2001-0154)
means
InternetExplorer5.5 with MIME header vulnerability

CVE-2001-0154 is the standard name defined by CVE

37

B. Infecting Path table
Because most variant worms use the same vulnerabilities to infect the system,
the infecting path table to acquire vulnerabilities of original worms is proposed.

Infecting Path table

Technical |n1f_eit|ing
documents able N @
Acquisition
Infecting Path table

Figure 4.4 : Infecting Path Table Acquisition

The infecting path table will be generated in Log collecting Stage. It
accompanies with the generation of original rules (original worm). A simple
knowledge acquisition is also proposed to acquire the infecting path of original
worms.

The infecting table construction algorithm is shown as follows:

Algorithm 4.1: Infecting Path:Table Construction Algorithm

Input: The worm domain know-how:and skeletal of worm
Output: The Infecting Path of worm
Stepl: List all elementary knowledge objects according to technical documents.

Step2: Transfer each infecting path into the Infecting Path Table.

The following example is given to construct infecting path table of CodeRed.
Example 4.1 : Infecting Path Table of CodeRed

In this example, we construct infecting path table of CodeRed. Domain experts
will extract infecting path of each original worm from technical documents. Therefore,

the CVE-2001-0500, which is the Indexing Service2.0 and 11S6.0 vulnerability, and

the CVE-2001-0506, 11S4.0 and IIS5.0 vulnerability, are exploited by CodeRed will

be extracted in Stepl. Then in Step2, the knowledge objects will be stored into

38

Infecting Path Table, shown in Table 4.1, with the pair of original name of Worm and
the Infecting Paths exploited by the worm, where the data type are both string.
Hence, we can obtain the following infecting path table of CodeRed after the process.

Table 4.3 : Infecting Path of CodeRed

Worm Name | Infecting Path

CVE-2001-0500 (Indexing Service2.0 and I1S6.0)
CodeRed CVE-2001-0506 (11S4.0 and IIS5.0)

C. Mapping with System Profile and Infecting Path Table

If local VODKA learns a new variant worm, it may map with system profile and
infecting path table of this new variant worm. If the system is vulnerable, the decision
confidence will be increased.

The following example is given to illustrate how to map with system profile and

infecting path table.

Example 4.2 : Mapping with System Profile:and Infecting Path Table
Hence, VODKA now can suggest expert that a new variant worm derived from
original CodeRed is learned. By mapping with system profile and infecting path table,

we can know the system is vulnerable for CodeRed.

Table 4.4 : System Profile of Local Host

ID oS (Application <-> Vulnerability)
140.113.87.175 | WinXp | IIS4.0 <-> CVE-2001-0506

Mapping

Table 4.5 : Infecting Path Table ofCodeRed Family

Worm_name Infecting Path
CodeRed CVE-2001-0509"" (Indexing Service2.0 and 11S6.0)
CVE-2001-0§66 (11S4.0 and I1S5.0)

39

Hence, we can know the IIS4.0 has the vulnerability CVE-2001-0506 for

CodeRed through such simple mapping. Therefore, the system is vulnerable and the

decision confidence is increased.

4.2.1.2 Decision Information for Experts

The decisions information of infecting path analysis will be proposed to help
experts make correct decisions. Hence, the confirmation effort of experts to decide
variant worms could be reduced. Our suggestion is listed as follows.

Suggestion : System Profile matches infecting path of variant worms or not

According to our suggestion, experts will have two decisions.
1) Certain
It is a variant worm and then we will generate knowledge by EMCUD.
2) Uncertain
It is an uncertain case and will be transferred to collaborative analysis center.

In order to clearly show our decision flow, we give an example to illustrate our idea.

Example 4.3 : Uncertain Case in Local VODKA

The Repertory Grid, AOT and partial embedded rules for Yaha are listed in
Example 3.1. Now we have receive inference log as follows :

Table 4.6 : Inference Log from Inference Engine

Rule# | A, A, A; Ay As Object | CF
Rys Email flood | Project.exe True {25} | Tcpsvs32.exe | Yaha 0.4
Ry Email flood | Project.exe True {25} | Tcpsvs32.exe Yaha 0.4
R,; Email flood | readme.exe | False | {25} | svhoot.exe Yaha 0.53
Ry Email flood | Project.exe True {25} | Tcpsvs32.exe Yaha 0.4
Ry Email flood | Project.exe True {25} | Tcpsvs32.exe | Yaha 0.4
Rys Email flood | readme.exe | false {25} | svhoot.exe Yaha 0.53

40

Ry Email flood | Project.exe True {25} | Tcpsvs32.exe | Yaha 0.4
Ry Email flood | Project.exe True {25} | Tcpsvs32.exe | Yaha 0.4
Ry Email flood | Project.exe True {25} | Tcpsvs32.exe | Yaha 0.4
Ry Email flood | Project.exe True {25} | Tcpsvs32.exe | Yaha 0.4

The large itemset L2=(A,= Project.exe,As=Tcpsvs32.exe) and minimal support
30% is satisfied.
VODKA will ask the following questions
VODKA : Does the attribute-value pair (A,= Project.exe) AND (As=Tcpsvs32.exe)
belong to any new variant object?

/*VODKA process in the background*/

Suggestion :
Table 4.7 : System Profile of Local Host for Yaha
ID oS (Application <-> Vulnerability)
140.113.87.175 WinXp | OQutlook<->none
Mapping
Table 4.8 : Infecting Path tgble of'Yaha Family
Worm_name Infecting'Path /
Yaha Email ; CVE-2081-0154(MIME Header)

The result shows that one of infecting path is not existed. But the normal

communication of Email is a path to infect.

VODKA :
Suggestion : System without any vulnerability but Email is the way to infect.
Expert : Uncertain

Experts say uncertain because the context information is not enough and the
embedded knowledge with low CF may be caused by improperly operation. The local
host may possibly install mass mailer software and the firewall may be temporarily

abnormal. Hence, we transfer this uncertain case to the collaborative analysis center.

41

4.3 Process in Collaborative Analysis Center

Collaborative analysis center will collect uncertain cases from local VODKAs
like Example 4.3.

As we know, worm attacking is a network behavior. Therefore, the uncertain case
from local VODKA can be clearly explained in collaborative analysis center. If we

collect more evidences, we have more confidence to recognize a new variant worm.

4.3.1 The Framework of Collaborative Analysis Center
The framework of collaborative analysis center for computer worms is listed as
follows. It consists of three stages, Evidence Collecting Stage, Worm Analysis Stage

and Knowledge Updating Stage.

Inference Engine Variant
Ot || werms | [| EMCUD

LOG %

Log T DataBase Experts

|| Meta

Jn Rule

System Profile N DataBase
Evidence Collecting Worm Analysis Knowledge Updating
Stage I Stage 11 Stage 111

Figure 4.5 : Stage of Global Analysis Center for Computer Worms
Stage | : Evidence Collecting
The Log and System Profile are transferred to our collaborative analysis center
directly. The log from each VODKA is reported periodically to collaborative analysis
center. However, System Profile would not be changed periodically. We receive the
report of System Profile when the configuration of local host is changed. We have the

following format of log and system profile.

42

Table 4.9 : Log Profile of Yaha

Time

ID

Rij

Ay

A, Aj

As | As CF(R))

Tl

140.113.87.175

Ry

Email flood

Project.exe | True

{25} | Tcpsvs32.exe | 0.4

Table 4.10 : System Profile for Computer Worms

ID

(0N}

(Application <-> Vulnerability)

140.113.87.175

Windows XP

RPC<->CAN-2

003-0352

Figure 4.6 shows the communication between local and collaborative analysis

center. And the files are transferred asynchronously. Log is reported periodically and

system profile is event-driven.

VODKA

Real || | |
Instance

ERTAREIT |

Inference Engi

@

%

Knowledge
Base

Inference
Log

Learning
Mechanism

Stagell : Worm Analysis Stage

4

Collaborative
Analysis Center

Figure 4.6 : Communication between Local and Collaborative Analysis Center

In this Stage we will use expert system to help us systematically analyzing

reports. It also can reduce the confirmation effort from experts. We apply extended

VODKA to worm domain and we can add more criterions based on the nature of

worms. In addition to three basic criterions described in Chapter 3, we know that

worms will continually infect other machines, and infecting is the nature for them. So

43

we can add a new criterion for worms about single or multiple reports. If we only
receive reports of single host, we do not have enough evidence to verify a variant
worm. Of course, domain experts may have their decision ideas about to discover
variant worms. At this time they can dynamically add more criterions to fit their

requirements.

Now we describe the additional criterion for worm domain.
Additional criterion : Single or multiple reports

As mentioned above, worm attack is network behavior. The reports of variant
worms would not be only one. If we only receive reports of single host, our decision
confidence is the same as local host. It means the confidence will not be accumulated.
Therefore this criterion is to know the reports to accumulate our confidence are from
single host or multiple hosts.
Notation :
Object.ID : the IP of this report
Object.HostIP : the IP set of reporting the same object

Flaggpjecthost : Initialized to 0, set to 1 when receiving different IP

MR: IF Object.ID <> Object.HostIP

Then Set Flagobjecthostzl

According to this criterion, we must modify Criterion3 to correctly discover
variant worms. It means if reports from only one host are not considered.

We add “Flagobjecthost=1"" to fit our requirement.

MRS: IF Confopject > VOthreshold AND Flagopject host=1

Then discover variant worms

44

Stagelll : Knowledge Updating Stage

When we discover a variant worm, we will acquire the attribute and attribute

values and generate relative Repertory Grid and AOT. And feed them to EMCUD to

generate defending rules. At the same time we will update our knowledge base.

4.3.2 Run through An Example

In this example, Yaha is an uncertain case described in Example 4.3. Besides

Yaha, we also receive reports of Sobig and Gaobot. The example will trace how to

analyze with collaborative rules.

Example 4.4 : An Example to Trace Collaborative Analysis Rules

Table 4.11 is the repertory grid of Yaha, Sobig and Gaobot.

Table 4.12 is the AOT of Yaha, Sobig and Gaobot.

Table 4.13 is the partial detecting rules generated by EMCUD.

Table 4.11 : The Repertory Grid of Yaha;Sobig and Gaobot

Object Yaha (O)) Sobig(0s) | Gaobot(Os)

Attribute

DoS Type (A)) Email Flood Email flood X

Backdoor (A;) X True X

Email Attachment(A3) Loveletter.doc.pif Sample.pif X

Antivirus_Firewall Abnormal(Ay) True X True

TCP_Port (As) {25} {25} {80,135,445}

New_File(Ag) <wEHRESDH Al Winmgm32.exe Bla.exe

Table 4.12 : The AOT of Yaha, Sobig and Gaobot

Object
Attribute

Yaha (O;) | Sobig(O,) | Gaobot(Os)

Ay

D

D

X

Ay

Az

Ay

As

Ag

D[W W[— [K4

3
2
X
3
1

— (OO || X

45

Table 4.13 : Partial Detection Rules Generated by EMCUD

IF Part Then Part | CF
Rule #
A A, A, A, As As Object
Rip | Email flood - Loveletter.doc.pif | True {25} <kEEE>H A1 Yaha 0.8
Ry, Email flood - 7 Loveletter.doc.pif | True {25} <kFEE>H I Yaha 0.7
R;, | Email flood - Loveletter.doc.pif | True {25} q <EEEESD dII Yaha 0.6
Ry; | Email flood - Loveletter.doc.pif | True {25} <kEEE>DH I Yaha 0.5
R4 | Email flood - Loveletter.doc.pif | False {25} <kEEE>H I Yaha 0.4
Ryo | Email flood | True Sample.pif - {25} Winmgm32.exe Sobig 0.8
Ry Email flood | True Sample.pif - {25} 7 Winmgm32.exe Sobig 0.7
Ry, | Email flood | True 7 Sample.pif - {25} Winmgm32.exe Sobig 0.6
Rys | Email flood | True 7 Sample.pif - {25} 7 Winmgm32.exe Sobig 0.4
Rsp - - - True {80,135,445} Bla.exe Gaobot | 0.7
Rs, - - - True {80,135,445} 1 Bla.exe Gaobot | 0.6
Rs, - - - True | q {80,135,445} Bla.exe Gaobot | 0.5

According to the importance of-attributes, we map+{D, 5, 4} to major attributes M,

{3,2} to secondary attributes S."After mapping, we can get Table 4.14

Table 4.14 : Mapping Table of Yaha, Sobig and Gaobot

A A, As Ay As Ag object

M - - M M S Yaha

M M S - M - Sobig
- - - M M - Gaobot

Table 4.15 : System Profile of Three Hosts

ID (0N} Application<->Vulnerability
140.113.87.175 Windows XP RPC<->CAN-2003-0352
140.113.87.174 Windows 2000 none

140.113.167.101 WindowsXP RPC<->CAN-2003-0352

46

Constructing collaborative rules from all criterions
In this example, we will use formula to calculate Confpec; Of each rule and set

(Confyigh=0.2), (Confiow=0.1), (Confsysemprofie=0.3), (flagopiec=0) and (Confypjec= 0).

Collaborative analysis rules for Yaha

IF (DoS=Email Flood) AND (Antivirus Firewall abnormal=True) AND
(TCP port={25}) AND (New file=svchook.dll)
Then (Confyah= Confyap, +0.2) AND (flagyan.=1)
IF (flagyan,=0) AND (DoS=Email Flood) AND
(Antivirus Firewall abnormal=True) AND (TCP port={25})
Then (Confyap,= Confyap, + 0:1)

IF (flagy.n,.=1) Then (flagyan.=0)

Collaborative analysis rules for Sobig

IF (DoS=Email Flood) AND (Backdoor=True) AND (TCP port={25}) AND
(Attachment=Sample.gif)
Then (Confsgpig= Confsepig +0.2) AND (flagsepig=1)
IF (flagsonigc=0) AND (DoS=Email Flood) AND (Backdoor=True) AND
(TCP port={25})
Then (Confgepig= Confsgpig +0.1)

IF (flagsobig=1) Then (flagsepig=0)

47

Collaborative analysis rules for Gaobot

IF (Antivirus Firewall abnormal=True) AND (TCP port={80,135,445})
Then COnfGaobot: COnfGaobot +0.1

IF ID.SystemProfile = { CAN-2003-0352 ; CAN-2003-0003}

Then COnfGaobot: COnfGaobot + 0.3

Collaborative rules for discovering variant worms

Initialize flagobject hos=0

IF (Confy,n,>=0.8) AND (flagyahanos=1)Then (VariantWorm=Yaha)
IF (Confsopig™>=0.8) AND (flagsobighos=1) Then (VariantWorm=Sobig)

IF (ConfGaehor>=0.8) AND (flagGaobothost=1) Then (VariantWorm=Gaobot)

The flag, flagpiectnost means the confidence .45 accumulated from single host(=0) or

multiple host(=1).

Collaborative rules for timeout period

IF (Timeperiod=3T)
Then (Confy,n,= 0.5 * Confy;,) AND (Confyan,= 0.5 * Confyana) AND

(Confyan,= 0.5 * Confyana)

After generating collaborative analysis rules of Yaha, Sobig and Gaobot, the

inference engine is driven with reports from local hosts.

48

Data collecting
The reports are collected from local VODKAs (Take three hosts as examples).
We select useful attributes from log database to trace our example. And they are Time,

ID and six attributes.

Event | Time ID Al A2 A3 A4 AS A6
El Tl 140.113.87.175 Email flood - Ravs.scr T {25} WinServices.exe
E2 T1 140.113.87.174 | Email flood - Patch.exe T {25} -
E3 Tl 140.113.167.101 | Email flood T | Password.gif | - {25} mscch32.exe
E4 T2 140.113.87.175 - - - T {80;135;445} msgconf.exe
E5 T2 140.113.87.174 | Email flood T Peace.scr - {25} WinServices.exe
E6 T2 140.113.167.101 - - - T {80;135;445} MSRUN.exe

Now, we trace each report to see the change of confidence.
E1 : matching first collaborative rules of Yaha
Confy,,=0+0.2=0.2

E2 : matching second collaborative rules-of Yaha
Confyap,=0.2+0.1=0.3

E3 : matching first collaborative rules of Sobig
Confsopig=0+0.2=0.2

E4 : matching collaborative rules of Gaobot
Confgaopor=0+0.2=0.2

This case will consider system profile of local host
We can discover E4 has vulnerability.

We increase Confgaopoi=0.2+0.3=0.5

ES5 : matching first collaborative rules of Yaha
Confyyh,=0.3+0.2=0.5

E6 : matching collaborative rules of Gaobot
ConfGaobor=0.5+0.2=0.7

Confgaohe=0.7+0.3=1.0 > 0.8 => Alert Gaobot Variant

49

Knowledge updating phase
When discovering a new variant, we generate the new acquisition table of

Gaobot.B.

Table 4.16 : The Acquisition Table of Gaobot

Object
) Gaobot.B
Attribute
Antivirus_Firewall Abnormal(Ay) True
TCP_Port (As) {80,135,445}
. {msgconf.exe;
New_File(Ag)
- MSRUN.exe}

Hence, an original rule and and embedded rule are listed as follows.
“IF (Antivirus Firewall abnormal=True) AND. (TEP port={80,135,445}) AND (New
file={msgconf.exe; MSRUN.exe}) THEN Gaobot.B CF=0.7
“IF (Antivirus Firewall abnormal=True)7AND (TCP port={80,135,445}) AND

1 (New file={msgconf.exe; MSRUN.exe})-FHEN Gaobot.B CF=0.4

4.4 Evaluation

4.4.1 Experiment Environment

In the experiment, we deployed Extended VODKA to eight WISE sensors
located in two subnets and a collaborative analysis center with expert system helps us
analyzing local uncertain cases systematically. The experiment environment is shown

as Figure 4.7.

50

i/

N

Internet

/‘/’ Collaborative Analysis Center
. for Computer Worms

WISE

2y

NS

LAN

Figure 4.7 : Experiment Environment
Before the expert system is activated, we must set parameters listed as follows:
Confyign : 0.2
Confloy : 0.1
Confsystemprofite : 0.15
THperiod : 30 minutes of half-life period

VOihreshold : 0.8 of alert threshold

After that, in order to verify that our collaborative defending system can discover
variant worms effectively and precisely from VODKAs, the three kinds of datasets are
used including Baseline, Normal with some legitimate software and Attack.

A. Baseline

The dataset is gained from the eight sensors when the system is initially installed
without any heavy load of software.

B. Normal with some legitimate software

The dataset is gained after some software like P2P, FTP, email software, etc. are

51

installed. They might generate doubtful data temporarily like worms.
C. Attack
The dataset is gained after a new variant worm is inserting and attacking our

machines.

4.4.2 Results

The result presents the variation of confidence as time goes on. This can observe
a variant worm appear or not when the confidence exceeds a predefined threshold 0.8.
A. Baseline

From Figure 4.8, we can observe the variation of confidence is quite slight.

Baseline
1

03 —&— CodeRed

_ . Nimda
8 06 —%— Yaha
O 04 Sobig
0.2 —*— Blaster

0 —&— Welchia
10:10 10:20 10:30 10:40 10:50 11:00 11:10 11:20 11:30 |~ Beagle

—— Sasser

Time (2005/06/29) Gaobot

Figure 4.8 : The Variation of Confidence of Dataset Baseline

B. Normal with some legitimate software
In the normal state, the dataset is generated by some legitimate software. And
then we might observe the variation of confidence of nine worms. During the period

of 90 minutes, no alert is triggered by our system.

52

Normal

—¢— CodeRed

1 Nimda

0.8 T Yaha

- i Sobig

5 0.6 —X— Blaster
< 04 F 4 —&— Welchia

0.2 /' /$ —+— Beagle

0 * * * % Sasser
19:10 19:20 19:30 19:40 19:50 20:00 20:10 20:20 20:30 Gaobot

Time (2005/06/30)
Figure 4.9 : The Variation of Confidence of Dataset Normal
C. Attack

When a new variant worm which is not existed in our knowledge base at 13:20
was released, we found the confidence,value of Gaobot increasing rapidly. Besides
one sensor is infected by Gaobet, the worm will“also infect other system with the
same vulnerability. This will cause the confidence value to increase rapidly. At 13:50,
a variant worm of Gaobot is discovered by-our system and then we obtain frequent
itemset to ask experts to confirm such itemset. Finally, EMCUD is used to generate

the defending rules for the variant worm of Gaobot.

Attack
1

05 —— CodeRed

5 . Nimda
g 06 —8— Yaha
O 04 Sobig
0.2 . —*— Blaster

0 —&— Welchia
13:10 13:20 13:30 13:40 13:50 14:00 14:10 14:20 14:30 |~ Beagle

—— Sasser

Time (2005/07/02) Gaobot

Figure 4.10 : The Variation of Confidence of Dataset Attack

53

4.4.3 Discussion
The correctness of Collaborative Defending System

In order to test the robustness of our criterions, three kinds of datasets are used to
test the reaction ability of collaborative defending system.

In Figure 4.8, the variation of confidence is less accumulated by the dataset of
baseline. The result is clear and system work well. However, it is not enough to test
the correctness of our criterions. Hence, the dataset of Normal with some normal
software, generated by installing P2P, FTP, E-mail software, etc., can observe the false
alarm rate of our criterions. Although the dataset might suddenly generate doubtful
attack data temporarily, the result of Figure 4.9 shows that the system is reacted
accurately. However, this does not prove our system can discover variant worm
properly. Hence, we insert a variant worm, Gaobot. to test the correctness and reaction
time. In Figure 4.10, the result-shows our system can detect the new variant worm,
Gaobot immediately.

The influence of parameters

Theoretically speaking, the value of parameters will affect the alert time and the
discovery frequency. Hence, the confidence of each rule must be well defined. For
example, if they are higher, large number of alerts may cause experts much effort. If
they are lower, variant worms would be missed or generate alerts slowly. In the
experiment, the value of parameters in the experiment environment would be defined
higher than in the real world for increasing the reaction time of the fewer sensors. In
order to reduce the false alarm of higher value, we reduce the half-life time to thirty
minutes. Therefore, we can avoid the confidence value increasing unlimitedly and

reduce some noise.

54

Chapter 5. Conclusion and Future Work

In the thesis, we propose a methodology to extend VODKA to help domain
experts discover variant objects easily. First, to reduce the conformation effort of
experts, we extend VODKA to consult more context information, such as
environment factors, for helping experts make the correct decision. Although more
information is provided, experts may still feel uncertain to confirm the occurrence of
variant object in local environment. And then a collaborative analysis framework is
proposed to handle uncertain cases for further enhancement. The collaborative
analysis framework is a systematical analysis mechanism based upon expert system to
discover variant objects according to, the. meta knowledge including environment
factors and domain specific heuristic criteria.

Furthermore, the defending “system for computer worms is implemented to
evaluate our proposed extended VODKA:-Aceording to the variation of confidence,
we can easily solve the local uncertain cases using the collaborative analysis rules.

In our knowledge base, we can only learn parts of worms in real world. However,
with the rapid growth of variant worms, we need to enrich our knowledge base to
discover more variant worms. More defending knowledge can help to reduce the

threat posed by worms.

55

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

P. Crowther and J. Hartnett,”Using repertory grids for knowledge acquisition
for spatial expert system” Proceeding on In Intelligent Information System,

November 1996.

2

A. Dixit and E. Pindyck, “Investment under uncertainty.” Princeton NJ.
Princeton University Press, 1994.

Dan Ellis, McLean, “Worm Anatomy and Model.” Proceedings of the ACM
workshop on Rapid Malcode, 2003

Chien Eric. “Code Red Worm.” Symantec Security Response, July 2003,
http://securityresponse.symantec.com/avcenter/venc/data/codered.worm.html
Chien Eric. “W32.Nimda.A@mm.” Symantec Security Response, July 2003,
http://securityresponse.symantec.com/avcenter/venc/data/w32.nimda.a@mm.ht
ml

G.J. Hwang and S.S. Tseng,.”On buildingra medical diagnostic system of acute
exanthema.” Journal of =Chinese -Institute. of Engineers, Vol. 14, No. 2,
185-195,1991

G. J. Hwang and S.S. Tsengy ’EMCUD: A knowledge acquisition method

which captures embedded meanings under uncertainty.” International Journal of

Man-Machine Studies, Vol. 33, NO. 4, pp. 431-451, 1990.

D.M. Kienzle, M. C. Elder, “Recently worms: a survey and trends.” WORM’03,
October 2003
Douglas Knowles. “W32.Gaobot.Worm.” Symmantec Security Response,
October 2002,
http://securityresponse.symantec.com/avcenter/venc/data/w32. hllw.gaobot.html
Douglas Knowles. “W32.Sobig.Worm.” Symantec Security Response, January
2003,
http://securityresponse.symantec.com/avcenter/venc/data/w32.sobig.a@mm.ht
ml
Douglas Knowles. “W32.Yaha.Worm.” Symmantec Security Response, January
2004,
http://securityresponse.symantec.com/avcenter/venc/data/w32.yaha@mm.html
F. Lau, S.H. Rubin, M.H. Smith, L. Traikoyic, “Distributed Denial of Service
Attacks”, 2000 IEEE International Conference on Volume 3, 8-11 Oct. 2000
Page(s):2275 - 2280 vol.3

56

[13] E.H. Shortliffe and B.G. Buchanan, “A model of inexact reasoning in medicine.

Math. Bioscience, Vol. 23, pp. 351-379, 1975
[14] S.S. Tseng, S.C. Lin and L.H. Liu, “VODKA: Variant Objects Discovering

Knowledge Acquisition”, submitted to ITHCS Oct. 2004.
[15] Nicholas Weaver, Vern Paxson, Stuart Staniford, Robert Cunningham , “A
Taxonomy of Computer Worms”, Proceedings of the 2003 ACM workshop on

Rapid Malcode, October 2003

57

