

國 立 交 通 大 學

資訊科學系

碩 士 論 文

一 個 基 於 蠕 蟲 的 合 作 式 防 禦 系 統

Collaborative Defending System for Computer Worms

研 究 生：李育松

指導教授：曾憲雄 博士

中 華 民 國 九 十 四 年 六 月

一個基於蠕蟲的合作式防禦系統

Collaborative Defending System for Computer Worms

研 究 生：李育松 Student：Yu-Sung Lee

指導教授：曾憲雄 Advisor：Shian-Shyong Tseng

國 立 交 通 大 學
資 訊 科 學系
碩 士 論 文

A Thesis

Submitted to Institute of Computer and Information Science

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer and Information Science

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

ㄧ個基於蠕蟲的合作式防禦系統

研究生：李育松 指導教授：曾憲雄博士

國立交通大學資訊科學系

 摘要

隨著資訊科技不斷的演進，也伴隨著產生許多的變異物件。然而變異物件產

生速度不斷的加快，專家尋找變異物件所花費的精神也越加繁重。VODKA 是一

個發現變異物件的知識擷取方法，可以協助找出隱藏在真實世界中的變異物件。

然而隨著變異物件產生速度不斷的加快，VODKA 提供的情境(Context)資訊太

少，導致決策時需耗費較多的精神。因此，在本篇論文中，延伸之前的 VODKA，

使它能提供更多資訊輔助領域專家分析變異物件。也就是說，在本地端有些確認

程度(CF)較低的變異物件即使有情境資訊的輔助，在單一台機器上並不容易辨

識，容易有不確認的情況。因此，提出ㄧ個合作式的變異物件分析專家系統，藉

由多台 VODKA 的回報資訊，系統化的分析是否有變異物件產生。而在本篇論

文的應用實例中，將延伸型的 VODKA 應用在電腦蠕蟲這個領域，結果顯示，

實作此合作式的變異蠕蟲分析專家系統，分析多台的回報資訊，可以輔助領域專

家發掘本地端不易確認的複雜變異蠕蟲。

關鍵字：變異物件、知識擷取、專家系統、電腦蠕蟲、惡意程式、變種蠕蟲

 I

Collaborative Defending System for Computer Worms

Student: Yu-Sung Lee Advisor: Dr. Shian-Shyong Tseng

Department of Computer and Information Science

National Chiao Tung University

Hsinchu, Taiwan, 300, Republic of China

Abstract
 With the rapid growth of variant objects, domain experts might not be easy to

keep up with the dramatically increasing knowledge. Although Variant Object

Discovering Knowledge Acquisition (VODKA) is proposed to discover variant

objects in our real world, it still provides insufficient context information and results

in the heavy confirmation effort of domain experts. Hence, we propose extended

VODKA to supply more context information for helping experts make correct

decision in this thesis. However, several uncertain cases might not be discovered and

learned in local environment because the context information might be not enough to

determine whether it is a variant occurred in local or not. Therefore, a collaborative

analysis expert system is proposed to solve those local uncertain cases according to

the meta knowledge including environment factors and domain specific heuristic

criteria. The construction of meta knowledge is also proposed based upon the

Repertory Grid and Attributes Ordering Table to automatically generate

corresponding collaborative analysis rules. Finally, the collaborative defending

system for computer worms is implemented to evaluate extended VODKA. As a

result, the implementation of collaborative defending system can assist domain

experts to discover several sophisticated worms which can not be learned in the local

 II

environment.

Keyword : Variant Objects, Knowledge Acquisition, Expert System, Computer
Worms, Variant Worms

 III

誌謝

能順利的完成此篇論文，最首要感謝我的指導教授，曾憲雄博士，曾教授在

我碩士班的兩年期間相當耐心的指導我的論文研究；從他身上學習到許多領導處

事的技巧，寶貴的經驗讓我獲益匪淺，不甚感激。同時也感謝我的口試委員，黃

國禎教授，蔡文能教授，和陳年興教授，他們給予的寶貴意見，讓我的論文研究

更有價值。

 接下來要感謝林順傑學長，兩年期間讓我學會許多理論知識及實務技巧，也

給予了我許多對於此篇論文的寶貴意見，接受我的詢問和探討，和協助我論文修

改工作，深表感激。

 此外必須感謝實驗室學長平日的諸多協助，特別是王慶堯學長及曲衍旭學

長。同時也感謝實驗室同窗夥伴，黃柏智、吳政霖、邱成樑、陳瑞言、陳君翰、

宋昱璋、林易虹等人在生活上和課業上的友情支持，深表感激。

 最後我也要感謝我的家人對於我的支持與鼓勵，讓我在面對挫折的時候能夠

繼續向前，也讓我有足夠的動力完成此篇論文，深表感激。

 IV

Table of Contents

摘要……………………………………………………..…………….……………..I
Abstract………………………………………….………………….……..…………II
誌謝…………………..……………………………………………………………IV
Table of Contents………………………………………………………...…………..V
List of Figures………………….……………………………………….…………...VI
List of Tables…………………………………………………………….….……...VII
List of Algorithms…………………………………….……………………….….VIII
List of Examples………………………………………………………….…………IX
Chapter 1. Introduction...1
Chapter 2. Related Work...3

2.1. Life Cycle of A Worm...3
2.2. Brief of Worms..4
2.3. The Difference Between Variant and Original Worms6
2.4. Knowledge Acquisition Systems ..9
2.5. Problems of VODKA..19

Chapter 3. Extended VODKA for Collaborative Environment.............................20
3.1. The Framework of Extended VODKA Environment20
3.2. Extended VODKA ..21
3.3. Collaborative Analysis Center ..25

Chapter 4. Collaborative Defending System for Computer Worms.33
4.1. The Framework of Extended VODKA for Variant Worm Discovering........34
4.2. Process in Local Extended VODKA...35
4.3. Process in Collaborative Analysis Center ...42
4.4. Evaluation ...50

Chapter 5. Conclusion and Future Work. ...55
References...56

 V

List of Figures

Figure 2.1：Worm Life Cycle……………………………………………….…………3
Figure 2.2：The Concept of VODKA Framework……..…………………………….11
Figure 2.3：The Learning Flow of VODKA………..………………………………..13
Figure 2.4：The Decision Information to Experts…...……………………………….18
Figure 3.1：The Framework of Extended VODKA Environment……………………20
Figure 3.2：Extended VODKA………………………………………………………22
Figure 3.3：Stage of Global Analysis Center………………………………………...25
Figure 4.1：The Collaborative Defending System for Computer Worms………....…33
Figure 4.2：Knowledge Decision Phase…….………………………………….…….36
Figure 4.3：System Profile of Local Host……………………..……………………..36
Figure 4.4：Infecting Path Table Acquisition…………………………………….…..38
Figure 4.5：Stage of Global Analysis Center for Computer Worms….………….…...42
Figure 4.6：Communication between Local and Collaborative Analysis Center.….…43
Figure 4.7：Experiment Environment……….…………………………………….….51
Figure 4.8：The Variation of Confidence of Dataset Baseline……….……………….52
Figure 4.9：The Variation of Confidence of Dataset Normal……….………………..53
Figure 4.10：The Variation of Confidence of Dataset Attack…………………...……53

 VI

List of Tables

Table 2.1：Infecting Path of CodeRed and Nimda…………………………………....7
Table 2.2：Repertory Grid of Three Nimda Family Members………………………...8
Table 2.3：Repertory Grid of Two CodeRed Family Members………......…………...8
Table 2.4：The Repertory Grid of CodeRed Worm………………………..………....14
Table 2.5：The AOT of CodeRed Worm……..……………………………...………..14
Table 2.6：Partial Detection Rules Generated by EMCUD…………………..………15
Table 2.7：Inference Log from Inference Engine…………………….………………15
Table 2.8：The New Variant Acquisition Table of CodeRed.II……………….……..16
Table 3.1：Log Profile of Local Host……………………..………………….………26
Table 3.2：Log Profile of Global Log Database………….…………………………..26
Table 3.3：System Profile of Worm Domain of Local Host…….……………………27
Table 4.1：Format of System Profile……………….…………………………………37
Table 4.2：System Profile of Local Host……….….…………………………………37
Table 4.3：Infecting Path of CodeRed………………………….…………………….39
Table 4.4：System Profile of Local Host……………………………………………..39
Table 4.5：Infecting Path Table of CodeRed Family…………...……………….……39
Table 4.6：Inference Log from Inference Engine……………………………………40
Table 4.7：System Profile of Local Host for Yaha………………………...................41
Table 4.8：Infecting Path Table of Yaha Family……………………………....……..41
Table 4.9：Log Profile of Yaha………………………………………………….……43
Table 4.10：System Profile for Computer Worms………………………………….43
Table 4.11：The Repertory Grid of Yaha, Sobig and Gaobot………………….…..45
Table 4.12：The AOT of Yaha, Sobig and Gaobot……….…………………………45
Table 4.13：Partial Detection Rules Generated by EMCUD……………..….………46
Table 4.14：Mapping Table of Yaha, Sobig and Gaobot…………....………..………46
Table 4.15：System Profile of Three Hosts……………………………….…….……46
Table 4.16：The Acquisition Table of Gaobot…………………………………..……50

 VII

List of Algorithms

Algorithm 2.1：The Algorithm of VODKA………………………………………….12

Algorithm 4.1：Infecting Path Table Construction Algorithm……………………….38

 VIII

List of Examples

Example 2.1：An Example of Learning Variant Worms…..…………………...…….14
Example 4.1：Infecting Path Table of CodeRed……………………………………..38
Example 4.2：Mapping with System Profile and Infecting Path Table…………...…39
Example 4.3：Uncertain Case in Local VODKA………..……………………..……40
Example 4.4：An Example to Trace Collaborative Analysis Rules………………...45

 IX

Chapter 1. Introduction

As we know, knowledge based system is an intelligent computer program that

uses knowledge and inference procedures to solve problems that are difficult enough

to require significant human expertise for their solution, such as disease diagnosis

[6][13], investment prediction [2], or science [1]. Inference is the way that computer

reasons according to the knowledge base which stores the domain expertise in the

computer recognizable format. Embedded Meaning Capturing and Uncertainty

Deciding (EMCUD) [7] was proposed to elicit the embedded meanings of knowledge

and guide experts to decide the certainty degree of each embedded rule with

embedded meaning for expending the coverage of generated rules. However, some

embedded rules may be with low/marginally acceptable certainty factor (CF) values

due to the weak suggestions of domain experts, and new variants derived from the

well-known objects in many domains are incrementally developed due to the coming

age of the knowledge explosion. Hence, Variant Objects Discovering Knowledge

Acquisition (VODKA) [13] was proposed by Tseng et al, 2004 to collect sufficient

information, which is the related ambiguous attributes due to the marginally

acceptable CF values of original rules suggested by experts, for refining the original

knowledge base to enhance the classification ability.

Although VODKA is a well knowledge acquisition method for helping experts

clearly distinguish the new variants, a subset of the original object having some

different characteristics, from original object, it has some problems such as providing

insufficient context information resulting in the heavy confirmation effort of domain

experts and might still lack of the ability for sharing the information collecting in

autonomous area to notice the occurrence of variants. Hence, in the thesis we extend

 1

VODKA including local and global enhancement, for helping domain experts

discovering variant objects.

1) Local enhancement - Extending VODKA for supplying more context information.

In order to reduce the conformation effort of experts, we extend VODKA to

provide more context information such as environment factors for helping experts

make the correct decision.

2) Global enhancement – Extending VODKA for a collaborative analysis mechanism

with expert system

 Several uncertain cases might not be discovered and learned in local

environment because the context information might be not enough to determine

whether it is a variant occurred in local or not. Hence, a collaborative analysis

framework is proposed to handle these uncertain cases. The collaborative analysis

framework is a systematical analysis mechanism with expert system to discover

variant objects according to the meta knowledge including environment factors and

domain specific heuristic criteria.

Finally, we apply extended VODKA to discover variant worms for computer

worm domain. The recent computer worms, which are self-propagating computer

programs, are very difficult for experts to get and analyze the signatures because they

have incredible sophisticated characteristics [8]. These Internet worms could, in a

very short time, cause great damage to network and information infrastructure. In

order to evaluate our proposed extended VODKA, the collaborative defending system

for computer worms is implemented. As a result, the implementation of collaborative

defending system can assist domain experts to discover several sophisticated worms

which can not be learned in the local environment.

 2

Chapter 2. Related Work

Before describing our research focus, life cycle of a worm, some brief

descriptions of computer worms and the difference between original and variant

worms will be first introduced. Furthermore, VODKA, a powerful method to learn the

evidence of variants based upon the inference log of embedded rules, will be then

introduced. Although VODKA is good for learning variants, it still has several

weaknesses. Hence, an example will be finally introduced to point out some problems

of VODKA.

2.1 Life Cycle of A Worm

A computer worm is defined as a process that can cause a copy of itself to

execute on another machine. In [3], it anatomized the life cycle of computer worm

including Initialization Phase, Target Scanning Phase, Attack Phase and Infection

Phase which are shown in Figure 2.1.

 Figure 2.1 : Worm Life Cycle

Each worm agent begins with an Initialization Phase. This phase includes things

like installing software, determining the configuration of the local machine,

instantiating global variables, and beginning the main worm process. In Target

Scanning Phase, worms must discover a machine to infect by using predefined

scanning techniques like sequential scanning, random scanning, pre-generated target

 3

lists, etc. [15]. Then a worm can actively spread it from machine to machine. After

that, infected system may cause abnormal behavior to attack user host in Attack Phase

and infect next victim in Infection Phase. The initialization, scanning, attacking and

infection will continue cyclically.

2.2 Brief of Worms

Since worm is a self-replication program, it can be moved automatically from

one host to another resulting in great damage. Therefore, the thesis is focusing on

discovering variant worms to reduce the damage caused by worms. Several famous

worms which will be used in our thesis are introduced.

In July 2001, the Code Red Worm [4] was released on the Internet. Code Red

affected Microsoft Index Server 2.0 and the Windows 2000 Indexing service on

computers running IIS 4.0 and 5.0 Web servers. Once installed, it began scanning for

additional hosts to attack. Additionally, the worm used a Distributed Denial of Service

Attack (DDoS) [12] against an IP of http://www.whitehouse.gov. Code Red used a

random number generator to get new IP addresses to attack. The initial revision of

Code Red hit the same machines over and over again which limited the worm’s ability

to spread. Code Red II used a better random number generator to create more target IP

addresses by keeping the network portion of the IP address, and then choosing a

random host portion of the IP address. This allows the worm to spread itself faster

within the same network.

In September 2001, the Nimda worm [5] was released on the internet. Again,

Nimda can attack IIS servers with known vulnerabilities, but uses a different set of

attack methods to do so. It took advantage of some similar vulnerabilities as Code

Red; however, it was a hybrid attack that contained both worm and virus

characteristics. As a more advanced attack, it could infect more systems and could

 4

infect systems in multiple ways. Nimda could infect any computer running Microsoft

Windows software by exploiting a flaw in Outlook Express and known vulnerabilities

in Microsoft's Internet Information Services software (IIS) 4 or 5, including the

security hole left by Code Red II.

 In February 2002, the Yaha Worm [11] was released on the Internet. The worm is

a mass- mailing worm that uses its own SMTP engine to send itself to email addresses

that exist in the Windows Address Book, the MSN Messenger contacts list, the Yahoo

pager contacts list, the ICQ contacts list, and files that have extensions that contain the

letters ‘ht’. When Yaha is executed, it does the following: It sends itself to all the

email addresses it finds in the infected system. It will modify registry key and attempt

to send mail using information from the registry key. Also it will copy itself to the

files, C:\Recycled\Msscra.exe and C:\Recycled\Msmdm.exe.

In October 2002, the Gaobot Worm [9] was released on the Internet. The worm

also attempts to spread to all computers on the network, using a utility that connects to

a remote computer on port 445. It copies the Woinggg.exe file across the network, and

then executes it. It then connects to an IRC server and listens for commands. Upon

execution, W32.Gaobot.Worm performs the following actions: It copies itself as

%system%\Sysldr32.exe, modifies register key, connects to an IRC server on one of

port 6667 and 9900, performs a Denial of Service attack on a specified server,

open/close the CD-ROM drive and post the CD-Key for the some games to an IRC

channel

In January 2003, the Sobig Worm [10] was released on the Internet. The worm

sends itself to all the addresses it finds in the .txt, .eml, .html, .htm, .dbx, and .wab

files. When the worm is executed, it does the following: It copies itself as

%Windir%\Winmgm32.exe,.creates a %Windir%\Winmgm32.exe process, with the

 5

parameter of "start." and configures itself to start when you start Windows. The worm

stores the addresses to which it sends the email messages in the file

%Windir%\Sntmls.dat.

2.3 The Difference Between Variant and Original Worms

 Based upon the worms described above, we can observe the difference between

variants and original worms is quite minor. The variant worms can be generated by

modifying the same malicious code which is easy to get in Internet. The differences

can be compared in generation and diversity, which will be detailedly described in the

followings. In the evolution of variant worms we can observe the relationship

between original and variant worms.

2.3.1 Generation

When an unsafe configuration is discovered, hackers will start to generate new

malicious code to attack. When an original worm is released by hackers, some

anti-virus corporation like Symantec or Trend Micro will update their scanning engine

by new virus patterns to avoid attacking. Domain experts will extract specific binary

codes as the new virus patterns. These specific virus patterns are designed for this

new original worm. In order to evade pattern matching by these anti-virus

corporations, hackers usually modify the same source code of original worm. And

then a new variant is generated. At this time these anti-virus corporations will retrain

new virus pattern for variants to stop attacking and then hackers will generate another

variants. The hackers and anti-virus corporations are competing with each other.

These result in large amount variant worms in our real world.

 6

2.3.2 Diversity

 Because most variant worms are generated by slightly modifying the same

original programs, they inherit the same primary attributes of original worms. So we

can observe from technical documents that they usually have the same spreading ways

and similar symptoms. Hence, the diversity between the great part of original and

variant worms is in some ambiguous attribute value.

From this observation, domain experts will have this kind of prior knowledge to

assist classify computer worms due to the similar spreading ways and symptoms. In

Section 2.3.3 we introduce two real cases to verify our observation.

2.3.3 The Cases of Worm Family - CodeRed and Nimda

In order to clearly represent the diversity between variant and original worms,

two real cases of famous worm family including CodeRed [4] and Nimda [5] are

discussed in the followings. Since the technical documents of computer worms are

usually unstructured, a formatted representation is needed for easily accumulating the

knowledge of worms. According to the above description, two kinds of attributes

including infecting path and symptoms are used to recognize the computer worms. We

use Table 2.1 to show the infecting path of CodeRed and Nimda. They own their

specific infecting path.

 Table 2.1：Infecting Path of CodeRed and Nimda

Worm_Name Infecting_Path

CodeRed

CVE-2001-0500(IndexServer2.0 and IIS6.0);

CVE-2001-0506(IIS4.0 and IIS5.0)

Nimda

Email;CVE-2001-0154(MIME Header);

CVE-2000-0884(IIS Web Server Folder Traversal);Data Share

 7

Besides, the symptoms of Nimda family are listed as Table 2.2 with DoS_Type,

New_Guest, Function_abnormal, Email_Attachment, TCP_Port, New_File and

Open_Disk_Share, etc. Data type of attributes are Boolean, String, Integer or sets.

According to Table 2.2, we can discover that Nimda family has the same primary

attributes and might have different value of other attributes between the variant

worms.

Table 2.2：Repertory Grid of Three Nimda Family Members

 Object
Attribute

Nimda.A Nimda.B Nimda.E

DoS_Type Email Flood Email Flood Email Flood
New_Guest True True True

Function_Abnormal Word、WordPad Word、WordPad Word、WordPad

Email_Attachment
readme.exe;readme.wav;

readme.com
puta!!scr Sample.exe

TCP_Port 25;80;137;138;139;445 25;80;137;138;139;445 25;80;137;138;139;445

 New_Files meXXXXX.tmp.exe meXXXXX.tmp.exe
meXXXXX.tmp.exe;

CSRSS.EXE;
httpodbc.dll

Open_Disk_Share True True True

In this case, Attribute(Email_Attachment, New_File) are the ambiguous value

which could be changed with a new variants.

 Table 2.3：Repertory Grid of Two CodeRed Family Members

 Object
Attribute

CodeRed.A CodeRed.B

DoS_Type TCP Flood TCP Flood
Threads 100 600

Backdoor X True
TCP_Port 80 80

 8

Table 2.3 shows some major attributes of CodeRed family. Based upon the Table

2.3, we observe the CodeRed.B and CodeRed.A have similar symptoms. The

difference between them is the number of automatically created threads and the

creation of new attribute backdoor.

According to infecting path and symptoms, worms could be classified after

analyzing the infected machines in laboratory. For example, if a new worm uses the

same IIS Server Buffer Overflow, CVE-2001-0500 and CVE-2001-0506, and the

major symptoms are the same as CodeRed Family, domain experts will classify this

new worm into CodeRed family as a variant worm.

2.4 Knowledge Acquisition Systems

 VODKA [14] is proposed to learn new variant objects from analyzing the

acceptable embedded meaning of knowledge. The embedded knowledge is elicited by

EMCUD [7] from the existing repertory grids. In order to understand these knowledge

acquisition systems, firstly we describe knowledge acquisition and three kinds of

knowledge acquisition approaches in Section 2.4.1. In Sections 2.4.2 and 2.4.3 two

knowledge acquisition systems, EMCUD and VODKA, will be introduced.

2.4.1 Knowledge Acquisition

 In order to obtain the knowledge of a special domain, knowledge acquisition is

proposed to transfer the expertise of domain experts into knowledge bases. General

speaking, there are three kinds of approaches for knowledge acquisition.

1. Interviewing experts by experienced knowledge engineers.

 After interviewing the domain expert, knowledge engineers explicitly code the

knowledge. But, it might be time consuming for the domain expert and knowledge

engineers to understand each other.

 9

 2. Machine learning.

 Given training cases, the machine learning approach will automatically learn

some rules. But it still has two disadvantages. Firstly, there might be few or no

available training cases in many application domains. Moreover, it is hard to

understand the relation among cases.

3. Knowledge acquisition systems.

 The knowledge acquisition system involves interviewing with the help of

knowledge acquisition tools. It helps knowledge engineers work better in interviewing

experts. Besides, deeper knowledge can be elicited using this approach such as

repertory grid technique which gets domain experts to rank objects against concepts.

The knowledge acquisition system solves the problem of communication between

domain experts and knowledge engineers without the required training cases.

2.4.2 EMCUD (Embedded Meaning Capturing and Uncertainty

Deciding)

EMCUD, a knowledge acquisition system, is proposed to elicit the embedded

meanings of knowledge from the existing repertory grids. Additionally, it will also

guide experts to decide the certainty degree of each rule with embedded meaning for

extending the coverage of generated rules. To capture the embedded meanings of the

resulting grids, the Attribute Ordering Table (AOT), which is used to record the

relative importance of each attribute to each object, is employed. There are three kinds

of values in each AOT entry, a pair of attribute and object, "X", "D" or an integer; "X"

means no relationship existing between the attribute and the object, "D" means the

attribute dominates the object and an integer is represented for the relative important

degree of the attribute to the object. The larger the integer is, the more important the

attribute is to the object.

 10

Using AOT, the original rules generate some rules with embedded meaning, and

the Certainty Factor (CF) of each rule, which is between -1 and 1, could be

determined to indicate the degree of supporting the inference result. The higher CF is,

the more reliable the result is.

2.4.3 VODKA (Variant Objects Discovering Knowledge Acquisition)

Although EMCUD and other similar approaches could be rerun to acquire such

knowledge from domain experts again to distinguish new variants from old objects, it

might be costly and hard to obtain the knowledge due to the lack of sufficient

information about variants. Therefore, the idea is to analyze the inference behaviors of

weak embedded rules to construct the new variants acquisition table. In [14], a new

iterative knowledge acquisition methodology, Variant Objects Discovering

Knowledge Acquisition (VODKA), is proposed to provide the ability of grid

evolution.

 Figure 2.2：The Concept of VODKA Framework

 11

Because the embedded rules with diverse CF values represent the different

supports to classify objects, the ones with marginally acceptable CF might be

triggered by some candidate of a new variant. In order to analyze the behaviors of

these embedded rules, a VODKA framework is shown in Figure 2.2 in which each

iteration consists of three stages: Log Collecting Stage, Knowledge Learning Stage,

and Knowledge Polishing Stage. Initially, the embedded rule base will be created

according to the original main acquisition table using EMCUD or VODKA. Then in

each iteration the inference behaviors (facts/attribute-value pairs) will be collected to

discover the candidates of the variants during Stage I according to the meta

knowledge. The attribute-value pair will be treated as an item and a set of negated

attribute-value pairs will be treated as a transaction to discover the association

between interesting (minor) attribute-value pairs in Stage II. Consequently, the new

variants acquisition table based on the discovered knowledge could be generated by

interacting with domain experts through the new variants acquiring procedure. Finally,

the rules of new variants will be incrementally generated and the main acquisition

table will be iteratively adjusted using E-EMCUD in Stage III. The algorithm of

VODKA is shown as follows.

Algorithm 2.1: The Algorithm of VODKA

Input: The original main acquisition table T and embedded rule base RB.

Output: The rules with embedded meaning about variants.

Stage I: Collect all facts of the weak embedded rules as real inference log of the RB.

Stage II: Generate the new variants acquisition table T’.

 Step1: Discover large itemsets L using the inference log.

 Step2: Generate T’ using L and additional attributes provided by experts.

 12

Stage III: Use E-EMCUD to generate rules of new variants.

 Step1: Generate rules according to T’.

 Step2: Merge T’ into original main acquisition table T.

2.4.4 The Learning Flow of VODKA

Figure 2.3 shows the learning flow of VODKA. We periodically analyze the

inference log to discover variant objects. If the CF is higher, we can determine a new

object immediately. If the CF is an acceptable value, find frequent itemsets and ask

experts if these are variant objects or not. After decision process of domain experts,

they will tell us variants or not. And VODKA provides some operations to let experts

quickly generate new variant acquisition table. Finally, use EMCUD to generate

original and embedded rules to enhance our embedded rule base.

Figure 2.3：The Learning Flow of VODKA

 13

2.4.5 An Example of Learning Variant Worms

In Example 2.1, we apply VODKA to learn variant worms. By this example, we

introduce the learning mechanism of VODKA and then indicate the weakness of

VODKA.

Example 2.1：An Example of Learning Variant Worms

The Repertory Grid is used to acquire original worm and an AOT represents the

relative importance to attributes. After generating repertory grid and AOT, we can use

EMCUD to generate original and embedded rules listed in Table 2.6.

 Table 2.4: The Repertory Grid of CodeRed Worm
 Object
Attribute CodeRed (O1)

100-Thread (A1) True
System_Reboot (A2) X

DoS_Type (A3) TCP Flood
Email_Attachment(A4) X

Antivirus_Firewall_Abnormal(A5) X
TCP_Port (A6) {80}
New_File(A7) X

 Table 2.5: The AOT of CodeRed Worm
 Object
Attribute CodeRed (O1)

A1 2

A2 X

A3 1

A4 X

A5 X

A6 3

A7 X

 14

 Table 2.6: Partial Detection Rules Generated by EMCUD
IF Part Then Part CF

Rule # A1 A2 A3 A4 A5 A6 A7 Object
R1,0 True - TCP flood - - {80} - CodeRed 0.7
R1,1 True - ¬TCP flood - - {80} - CodeRed 0.5
R1,2 False - TCP flood - - {80} - CodeRed 0.4

In this example, assume the fired sequence of some embedded rules of CodeRed

worms are given as follows.

Table 2.7：Inference Log from Inference Engine

Rule # A1 A2 A3 A4 A5 A6 A7 Object CF

R1,2 600 - TCP flood - - {80} - CodeRed 0.4

R1,2 600 - TCP flood - - {80} - CodeRed 0.4

R1,1 100 - - - - {80} - CodeRed 0.5

R1,2 600 - TCP flood - - {80} - CodeRed 0.4

R1,2 150 - TCP flood - - {80} - CodeRed 0.4

R1,1 100 - - - - {80} - CodeRed 0.5

R1,2 600 - TCP flood - - {80} - CodeRed 0.4

R1,2 600 - TCP flood - - {80} - CodeRed 0.4

R1,2 600 - TCP flood - - {80} - CodeRed 0.4

R1,2 300 - TCP flood - - {80} - CodeRed 0.4

Assume the minimal support is set to 30%, the frequent itemsets will be obtained.

For example, if a the frequent itemset L1=(A1=600) is satisfied, the VODKA will ask

the expert to confirm such itemset if it belongs to certain variant.

VODKA will ask the following questions

VODKA：Does the attribute-value pair (A1=600) belong to any new variant object?

/* Decision Process of experts*/

Expert：Yes

VODKA：What is the name of the new variant object?

Expert：CodeRedII

 15

VODKA：Is the data type of A1 required to be changed?

Expert：YES

VODKA：What data type do you want to change? 1.Boolean 2.Integer 3.Float 4.String

5.Set of values 6. Range of values

Expert：2

VODKA：Is any new attribute required to be added?

Expert：No

VODKA：Can the Single Value data type be used to change the original Boolean data

 type of A1?

Expert：YES

VODKA：What is the new name and new value set of the attribute A1?

Expert：Threads, (100, infinite).

Therefore, the new variant acquisition table of CodeRed.II shown in Table 2.8

will be generated.

Table 2.8：The New Variant Acquisition Table of CodeRed.II

 Object
Attribute

CodeRed CodeRedII

Threads (A1) 100 600
System_Reboot (A2) X X

DoS_Type (A3) TCP flood TCP flood
Email_Attachment(A4) X X

Antivirus_Firewall_Abnormal(A5) X X
TCP_Port (A6) {80} {80}
New_File (A7) X X

 16

Consequently, an original rule and an embedded rule will be generated by

EMCUD.

IF (Threads=600) AND (DoS_Type=TCP flood) AND (TCP={80}) THEN

CodeRed.II CF=0.8

IF ﹁ (Threads=600) AND (DoS_Type=TCP flood) AND (TCP={80}) Then

CodeRed.II CF=0.4

2.4.6 The Inefficiency of VODKA

Although VODKA could help expert identify variants derived from original

worms, the first step, “VODKA asks does the certain attribute-value pair belong to

any new variant object?” will cause much effort of expert. For example, domain

experts need to consult more information to make a decision due to the simple

questions asked by VODKA. But VODKA provides only the inference log of

frequently fired embedded rules which includes less information to assist expert.

Hence, we anatomize the process effort of domain experts. Firstly, they must know

the environment setting of local system. Besides, the symptoms of the host are also

important to experts decide whether the attack happens or not. However, these two

decision information, environment factors and symptoms, could be used to assist

experts make the suitable decision.

After considering above information, we can get the following decision

information.

 17

 Figure 2.4：The Decision Information to Experts

Firstly, we can consult system profile (environment factors) of local host to

identify if any possible vulnerabilities could be exploited to infect our system, which

is called infecting path. If the infecting path is available, it might have high possibility

to be infected by some malicious worms. Therefore the following message could be

obtained for recording such information.

No patch IIS5.0 BufferOverflow (CVE-2001-0506)

=>CodeRed worm family has the way to exploit

=>increase CF

Secondly, the detected attributes will be examined whether attribute is

significant or not to decide the degree of the recognition of worms.

The embedded rule of R1,2 is fired when conditions partially match A3 and A5. Now

we want to know the attribute-value pair (Thread=600) is a significant attribute or not.

 =>the attribute (symptom) is like a CodeRed worm

 => increase CF

Experts might have lower confidence for some embedded rules R1,2 for

recognizing worms. However, they might incrementally enhance the confidence

according to above information provided and concluded the variant is recognized.

However, not all of such case could be stronger to make a decision immediately,

several cases might happen fewer and confuse experts to make a correct decision.

 18

This is called uncertain case.

2.5 Problems of VODKA

 As mentioned above, two issues are concluded to point out the weakness of

VODKA.

1. Information insufficiency

Some information can be collected ahead, but VODKA provides insufficient

information. This increases domain experts’ effort when determining variant objects.

2. Hard to make a decision

Some cases are hard to make a decision due to insufficient information. Our

collected embedded knowledge may be disturbed by some legitimate software like

mass email software, P2P , etc. During this situation the answer may be uncertain

due to the weakness of embedded knowledge or information insufficiency.

So, the thesis mainly focused on solving the above problems. Therefore, we

propose a methodology to extend VODKA including local and global enhancement.

1. Local enhancement - Extending VODKA for supplying more context

information

With the rapid growth of variant objects, insufficient context information will

increase confirmation effort of experts. Therefore, we enhance VODKA to provide

more context information to reduce confirmation effort of experts.

2. Global enhancement - Extending VODKA for a collaborative analysis

mechanism

We propose a collaborative analysis mechanism to solve local uncertain cases

when discovering variant objects. By the collaborative analysis framework, VODKAs

can have the ability to share information. And then, domain experts can make

decisions with global views instead of local views.

 19

Chapter 3. Extended VODKA for Collaborative

Environment

Since VODKA [14] has been proposed to learn the variants from the original

objects according to the inference log of embedded rules, it still has some problems

such as providing insufficient context information resulting in the heavy effort of

domain experts. However, some information in each domain could be prepared in

advance for assisting expert to easily recognize the new suggested variants. Moreover,

several uncertain cases might not be discovered in local environment because of

insufficient context information. Before, VODKA is lack of collaborative ability to

share local collected information of uncertain cases to learn more variants in different

environment. Therefore, the extended VODKA for collaborative environment is

proposed to collect more and more information from multiple VODKAs.

3.1 The Framework of Extended VODKA Environment

 Figure 3.1：The Framework of Extended VODKA Environment

 20

Figure 3.1 shows the framework of extended VODKA environment, where each

local sensor deployed with VODKA learning module is to discover variant objects

with adopting Knowledge-Base. However, some embedded rules with low CF might

be not enough to conclude any results in local VODKA even if it consults more

context information including the environment variables, etc. However, some variant

objects may appear anywhere in network environment regardless of embedded rules

with high CF or low CF. As we know, the embedded knowledge of higher CF can be

discovered in local but the lower CF can not. By collecting and analyzing information

of all uncertain cases periodically in collaborative analysis center, the information

from multiple VODKAs could help experts make a decision easily with global views.

3.2 Extended VODKA

In order to enhance VODKA, we consider environment factors of domain to help

experts making correct decision. Firstly, we supply the environment factors as

context information for experts. Secondly, if the collected information is not enough

to make decision by experts, such weak embedded knowledge will be reported to

collaborative analysis center for further analysis.

 To clearly describe our extended VODKA, Figure 3.2 shows the extended

VODKA including two parts (the Environment Factors, the Collaborative Analysis

Center) to help experts recognize the new variants.

 21

Embedded
Rule Base

Real
Instances

Inference
Engine

(DRAMA)
Inference Log

Experts

Decision
Process

Meta
Knowledge

New Variants
Acquisition

Table
U

ser Interface

User

Adjust

Extended
EMCUD

Main
Acquisition

Table

Update

New
Variants

Acquiring

Certainty

Report
Engine

Collaborative
Analysis
Center

Unertainty

Consult

: Dotted blocks represent extended block

Context
Information

Environment
Factors

Figure 3.2 : Extended VODKA

The whole framework extends three stages to four stages including Log

Collecting Stage, Knowledge Learning Stage, Knowledge Updating Stage,

Collaborative Analysis Stage, as shown in the dotted blocks, where represent the

extended components. Each stage is described as follows.

Stage I : Log Collecting

In Log Collecting Stage, the related inference log about embedded rules with

marginal acceptable CF is collected. And the inference log which is collected from

inference engine will be learned in knowledge learning Stage.

Stage II : Knowledge Learning

In knowledge learning stage, the candidate knowledge from inference log will be

learned using data miming technology. In addition to ask experts to decide which new

 22

variant objects the candidate knowledge belongs to, the extended framework will

consider more context information to reduce confirmation efforts of experts. If the

context information is enough to make a decision, a new variant will be confirmed

and the knowledge base will be updated in Knowledge Update Stage. Otherwise,

experts will say “uncertainty” and then we will report to Collaborative Analysis

Center for further analysis.

Stage III：Knowledge Updating

 If the variants are generated by Knowledge Learning Stage, the new original and

embedded rules will be obtained using extended EMCUD with the new acquired

repertory grid and corresponding AOT. And then the embedded rule base will be

updated to refresh the original knowledge.

Stage IV：Collaborative Analysis

 The Collaborative Analysis Center will explain the uncertain knowledge learned

by local VODKA. In this Stage, more information of multiple local VODKAs could

be obtained to collect more evidence of variants. Hence, the decision confidence can

be accumulated based upon the meta knowledge including environment factors and

domain specific heuristic criteria.

3.2.1 Environment Factors

Because each variant object has its own growing environment, VODKA does not

consider the environment factors. We give a verification of the environment factors,

which can be used to help expert make a decision. For example, the computer worm

domain, which is a self-propagating program via a network to threat the Internet very

much, is one of the domains with dynamic environment configurations. With the

 23

evolution, large amount of variant worms are generated by hackers. And each worm

has its own growing systems or applications(environments). The extended VODKA

provides such information to help deciding variant objects. When making a decision,

environment factors will be the context information for experts to reduce their

confirmation effort of searching such information. The environment factor may be

represented in many kinds of explanation to fit different domain. It could be a system

configuration, network configurations, etc.

We give an example of CodeRed worm family which uses the buffer Overflow of

IIS Server (CVE-2001-0500; CVE-2001-0506). As a result, the IIS Servers with

vulnerability of CVE-2001-0500 and CVE-2001-0506 are the growing environment

of CodeRed worms. In other words, CodeRed family will not grow without these

conditions. So the vulnerable environment of IIS Servers is context information for

experts to decide variant objects of CodeRed.

3.2.2 Collaborative Analysis Center

With the additional context information, some variants might be too

sophisticated to discover and learn in local environment because the context

information might be not enough to determine whether it is a variant occurred in local

or not. Therefore, more information should be collected to overcome such problem to

learn the variants. Hence, such un-decidable inference log will be transferred to

collaborative analysis center for analyzing and learning since the variants may occur

anywhere. Finally, the collaborative analysis center could learn and make more

correct decisions with global views according to meta knowledge including

environment factors and domain specific heuristic criteria. More details about

collaborative analysis center will be represented in following section.

 24

 3.3 Collaborative Analysis Center

Since local sensors might not have enough information to learn the sophisticated

variants, the collaborative analysis center collected all un-decidable inference log to

learn and discover such variants with global views.

The collaborative center consists of three stages including Evidence Collecting

Stage, Variants Analysis Stage, Knowledge Updating Stage.

Evidence Collecting
Stage I

Log

Variants Analysis
Stage II

Environment
Factors

EMCUD

Knowledge Updating
Stage III

Knowledge
Base

LOG
DataBase

Variants

Update

Inference Engine
(DRAMA)

Environment
DataBase

Rule
 Base

Experts

Meta
Rule

Figure 3.3：Stage of Global Analysis Center

3.3.1 Evidence Collecting Stage

In Evidence Collecting Stage, the inference Log periodically collected from local

sensors and the Environment Factors of each sensor registered initially are collected

and stored into database. Inference Log is designed to transfer during a regular period

of time, which the period could be adjusted dynamically, but environment factors

would be updated when changing from local sensors.

The format of inference log profile and environment factors are described as

follows.

 25

1. Log Profile

In order to collect uncertain knowledge from local hosts and store it in LOG

Database, the log format, consisting of rule name, collecting attribute values and CF

of rules, of local sensor is designed.

 Table 3.1：Log Profile of Local Host

Ri,j Att1 Att2 … Attk CF(Ri,j)

When the inference log is reported from Local VODKA to Collaborative center,

the sensor ID of local host and the reporting time will be appended to these records.

The format is listed below where the Time field record the reporting time

(T1,T2,T3,…) from local sensors, ID field records the IP address of local hosts, Ri,j

means the j-1 embedded rule of object i and Ri,0 is the original rule of object i, Attk is

the value of kth attribute, CF records the Certainty Factor of each rule.

 Table 3.2：Log Profile of Global Log Database

Time ID Ri,j Att1 Att2 … Attk CF(Ri,j)

2. Environment Factors

For different domain, experts can define their own environment factors they want

to refer.

For example, in the worm domain world, worms will exploit the wrong

configuration of victim system to infect. Hence, the environment factor is system

profile from local sensors including the IP addresses, the Operation system version,

the provided services, the patching level, etc. Hence the local system profile will be

collected as our environment factor for worm domain. If the system exists some

vulnerabilities with some service, it might have the risk to be infected by

corresponding worms. The information of system profile shown as follows will be

 26

consulted to help expert making decision in global center.

 Table 3.3：System Profile of Worm Domain of Local Host

ID OS (Application <-> Vulnerability)

140.113.*.* Windows Xp Internet Explorer5.5 <-> CVE-2001-0154(MIME header)

 ID：140.113.*.*：the local IP address

 OS：the operation system

 (Application <-> Vulnerability)= Internet Explorer5.5 <-> CVE-2001-0154

Internet Explorer5.5 with MIME header vulnerability

CVE-2001-0154 is the standard vulnerability name defined by CVE.

So, collaborative analysis center will receive log and related environment factors

as decision information and keep them in global database.

3.3.2 Variants Analysis Stage

With the technology revolution, new variant objects can be generated rapidly

than before. If we do not have a systematical and automatic analysis mechanism, we

must be busy in discovering new variants. Hence, the expert system technology is

used to solve these problems.

 In the construction of rule base, a confidence value from experts’ views is used

to be accumulated. During the inference process, if the accumulated confidence of

certain object meets a predefined confidence threshold. A variant object is discovered

by our system.

About the construction of rule base, we will describe it detailedly in Section

3.3.4.

 27

3.3.3 Knowledge Updating Stage

After analyzing the inference log, several variants could be discovered. When a

new variant is determined, the original and embedded rules of the new variant will be

generated using EMCUD. Therefore, the defending knowledge about new variant will

be updated into the original knowledge base.

 In order to well-maintain the collaborative analysis center, the meta knowledge

should be constructed in advance and the systematical process to construct such meta

rules is needed.

3.3.4 Meta Knowledge Constructing

For different domain, different expertise should be extracted to handle multiple

reports from local sensor with VODKA module. Hence, domain experts can define

their domain criterions to construct meta rules, named collaborative analysis rules, in

variant analysis stage. Moreover, each rule would be appended with a value named

confidence value. It means the accumulated confidence of experts when

corresponding condition of variants is matched. If it is defined higher, large number of

alerts might cause experts much effort. If it is defined lower, the system would

generate slowly or miss variants. Hence, it must be well defined. If the reporting

inference log satisfies certain collaborative analysis rules, the confidence value of

each object will be increased to record the behaviors of such report. Hence, the

confidence value of each object can be easily accumulated to monitor the distributed

behavior of variants when corresponding rules are fired. When confidence value of

each object exceeds a predefined confirmable threshold, it possibly represents a

variant appeared.

Besides, different domain can increase their criterions. Now we will introduce

some basic criterions to construct collaborative analysis rules listed as follows.

 28

Criterion 1：Accumulate confidence according to the importance of attributes

Every report of candidate variant object has different importance. The

importance can be seen in original AOT defined by experts. Hence, every report will

accumulate our degree of confidence and the conjunction of attributes has different

confidence value. If candidate variant object has more important attributes to this

object class, we have higher confidence about this report.

To generate collaborative analysis rules, the information of AOT, which records

the relative importance of each attribute to each object, will be reused to define the

important degree of attributes. The attributes can be mapped into three parts including

major attributes, secondary attributes and minor attributes. However, minor attributes

which mean less important attributes to this object class can be ignored. Major

attributes mean the important attributes for recognizing the object class and secondary

attributes mean they could be negated to capture embedded meanings. If the events

satisfying whole major attributes and secondary attributes, confidence obtained is

higher than only satisfying major attributes.

For example, assume the range of AOT values is from 1 to 5, D and X.

According to the importance of attributes, we map {D, 5, 4} to major attributes M, {3,

2} to secondary attributes Sand {1, X} to minor attributes. And then a confidence

value of collaborative analysis rule will be normalized by the following formula.

()
() ()()j

k

lowhigh
lowobject WSUM

WWW
ConfConf

ConfConf ∗
+++

−
+=

...21

Notation:

Confhigh : the highest accumulation of confidence.

Conflow : the lowest accumulation of confidence.

Confobject : the confidence of this collaborative analysis rule of object.

 29

If the collaborative analysis rules only match major attributes, the Confobject is

equal to Conflow. If the collaborative analysis rules match major and secondary

attributes, the Confobject is equal to Conhigh. If the collaborative analysis rules match

major and partial secondary attributes, the Confobject is equal to formula.

Hence, the Criterion1 means we accumulate more confidence when the reports

match more importance attributes to this object class.

According to these methods we can generate collaborative rules defined to

different objects and the general form of meta rule matched criterion1 is shown as

follows.

MR1: IF (M_fully) AND (S_fully)

 Then increase Confobject by Confhigh AND set flagobject = 1

MR2: IF (flagobject =0) AND (M_fully) AND (S_partial)

 Then increase
()
() ()()j

k

lowhigh
lowobject WSUM

WWW
ConfConf

ConfConf ∗
+++

−
+=

...21

 AND

 set flagobject = 1

MR3: IF (flagobject =0) AND (M_fully)

 Then increase Confobject by Conflow AND reset flagobject = 0

Notation：

M_fully：major attributes fully match

S_fully：secondary attributes fully match

S_partial：secondary attributes partially match

Confobject：the confidence value of each object is initially set to 0

Confhigh：the highest accumulation of confidence

Conflow：the lowest accumulation of confidence

 30

Flagobject：A flag to each object is initialized to 0. Its goal is to infer the first

 matching rule.

W1+W2+…+Wk：the sum of all AOT value of secondary attributes

SUM(Wj)：the sum of AOT value of partially matching secondary attributes

Criterion 2：Consider environment factors

Each variant object will have its own environment factors. If the system

environment is matched, the confidence to make a decision will also increase.

Notation：

Object.ID.SystemProfile = Environment(Object) ： It means that if system

(ID.SystemProfile) has the growing environment for this object, our confidence

will increase ConfSystemProfile

MR4: IF Object.ID.SystemProfile = Environment(Object)

 Then increase Confobject by ConfSystemProfile

Criterion 3：A predefined threshold of discovering variant objects

If the accumulated confidence of certain object exceeds the threshold from

expert views, a variant object is discovered from our system.

VOthreshold：the threshold of discovering variant objects

MR5: IF Confobject > VOthreshold

 Then discover variant object

Criterion 4：A timeout period to reduce confidence

A Half-life condition is used to reduce false alarm since some adventitious cases

are observed. According to above criterions, the confidence value will increase

 31

unlimitedly. However, if we can not confirm a variant object after a long period of

time, we will decrease our confidence because it may be considered as a noise.

The criterion is listed as follows.

MR6: IF Timeperiod=THperiod

 Then decrease CFobject to half

Notation：

Timeperiod：the time from previous reducing time

THperiod：A predefined time interval to reduce confidence

In this chapter, we propose a methodology of using Extended VODKA to learn

variant objects more efficiently. Moreover, VODKA is a learning tool which can be

appended to any knowledge-base system. In order to verify our methodology we

apply VODKA to computer worm domain as our example in next Chapter.

 32

Chapter 4. Collaborative Defending System for

Computer Worms

The easy access and wide usage of the Internet make it more convenient for

technical research and information exchange. Most of intrusion behaviors become

more complicated because of combining several signatures of previous intrusions.

The recent computer worms, which are self-propagating computer programs across a

network exploiting security or policy flaws in widely-used services, are very difficult

for experts to get and analyze the signatures because they have incredible

sophisticated characteristics [8]. With the evolution of original worm, large amount of

variant worms are continually generated to infect our computers. Because Extended

VODKA can help us to discover these variant worms, we apply it to this domain in

the chapter.

Collaborative Analysis Center
for Computer Worms

PC

PC

PC

Server

Server

WISE

VODKA

WISE

VODKA

WISE

VODKA

WISE

VODKA

WISE

VODKA

Figure 4.1：The Collaborative Defending System for Computer Worms

As mentioned above, the collaborative defending system for computer worms

shown in Figure 4.1 is proposed to learn more variants from multiple sensors with

 33

VODKA. In the computer worm domain, the sensor is named WISE, which is a worm

immune service expert system. WISE is to help us diagnose our system far away from

worm attacking. It uses the VODKA to be a learning module to increase knowledge of

variant worms. Besides, a collaborative analysis center for computer worms is used to

analyze the uncertain cases of variants in local.

Section 4.1 introduces the framework of Extended VODKA for variant worms

discovering. Section 4.2 introduces the learning process in local VODKA. Section 4.3

introduces the collaborative analysis center to analyze the uncertainty of local

VODKA. Section 4.4 evaluates our collaborative defending system for computer

worms.

4.1 The Framework of Extended VODKA for Variant Worm

Discovering

As we know, worms will infect wrong configured system. And each worm family

has different infecting way to infect. If the system is vulnerable, worms will have

environments to grow. Therefore, the system configuration, system profile is referred

to as the environment factors. In computer worm domain, the environment factors

include the infecting path and system profile will be considered.

However, some behaviors of worms look like normal behaviors such as mailing

softwares, P2P , etc.. It might result in the uncertain decision even if we consult

additional infecting path and system profile, which can be collected and used to

analyze and solve the local uncertainty. Hence, if the uncertainty continually exists,

we will deal with these problems with global views in Section 4.3.

 34

4.2 Process in Local Extended VODKA

Extended VODKA considers context information. Therefore, the context

information such as infecting path analysis, are proposed to reduce the confirmation

effort of domain experts. The infecting path analysis is the environment factors for

computer worm domain.

Now we will introduce them as follows.

4.2.1 Knowledge Decision Phase

The environment factors in StageII described in Figure 3.2 in computer worm

domain can be treated as infecting path analysis. Because most variant worms use the

same vulnerabilities to exploit, the system can be determined to have vulnerabilities

by mapping Infecting Path Table and System Profile. Such context information will be

consulted to make a decision.

Figure 4.2 shows that if we capture candidate embedded knowledge from

VODKA. Before confirming by experts, we will analyze first and supply context

information for suggesting experts. The infecting path analysis will tell us vulnerable

or not by mapping infecting path of original worms and system profile of local host.

With the context information, we have two conditions- certainty or uncertainty.

Certainty means the evidence is powerful enough to confirm. Uncertainty means the

evidence is not enough.

 35

 Figure 4.2 : Knowledge Decision Phase

The generation of the context information which will decrease the weakness of

VODKA are described as follows.

4.2.1.1 Infecting Path Analysis - System Profile and Infecting Path

Table

A. System Profile

Some worms are designed to infect wrong configured system and some worms

exploit vulnerabilities of system or applications. If we have not patched our system

frequently, it is easy to be infected by specific worms based upon the vulnerability of

local host recorded in system profile.

 Figure 4.3 : System Profile of Local Host

How to get System Profile ?

When installing VODKA, the local system profile including ID, OS version and

vulnerable applications can be recorded. Once the system profile is modified,

 36

VODKA will update it at the same time.

Now, the system profile is defined according to the worm domain.

Data format of System Profile

Definition：

 Table 4.1：Format of System Profile

ID OS (Application <-> Vulnerability)
140.113.*.* Windows Xp Internet Explorer5.5 <-> CVE-2001-0154(MIME header)

Notation：

ID：Host IP

 OS：Operation System

(Application <-> Vulnerability)：This represents which application is vulnerable

Data Type

 ID：IPv4

 OS：String

 (Application <-> Vulnerability)：String

The following is a simple example to show our system profile

 Table 4.2：System Profile of Local Host

ID OS (Application <-> Vulnerability)
140.113.*.* Windows Xp InternetExplorer5.5 <-> CVE-2001-0154(MIME header)

 ID：140.113.*.*：the local IP address

 OS：The operation system is Windows XP

 (Application<->Vulnerability)=(InternetExplorer5.5<->CVE-2001-0154)

means

 InternetExplorer5.5 with MIME header vulnerability

CVE-2001-0154 is the standard name defined by CVE

 37

B. Infecting Path table

Because most variant worms use the same vulnerabilities to infect the system,

the infecting path table to acquire vulnerabilities of original worms is proposed.

Infecting Path table

 Figure 4.4：Infecting Path Table Acquisition

The infecting path table will be generated in Log collecting Stage. It

accompanies with the generation of original rules (original worm). A simple

knowledge acquisition is also proposed to acquire the infecting path of original

worms.

The infecting table construction algorithm is shown as follows:

Algorithm 4.1: Infecting Path Table Construction Algorithm

Input: The worm domain know-how and skeletal of worm

Output: The Infecting Path of worm

Step1: List all elementary knowledge objects according to technical documents.

Step2: Transfer each infecting path into the Infecting Path Table.

The following example is given to construct infecting path table of CodeRed.

Example 4.1：Infecting Path Table of CodeRed

In this example, we construct infecting path table of CodeRed. Domain experts

will extract infecting path of each original worm from technical documents. Therefore,

the CVE-2001-0500, which is the Indexing Service2.0 and IIS6.0 vulnerability, and

the CVE-2001-0506, IIS4.0 and IIS5.0 vulnerability, are exploited by CodeRed will

be extracted in Step1. Then in Step2, the knowledge objects will be stored into

 38

Infecting Path Table, shown in Table 4.1, with the pair of original name of Worm and

the Infecting Paths exploited by the worm, where the data type are both string.

Hence, we can obtain the following infecting path table of CodeRed after the process.

Table 4.3：Infecting Path of CodeRed

Worm_Name Infecting_Path

CodeRed
CVE-2001-0500（Indexing Service2.0 and IIS6.0）
CVE-2001-0506（IIS4.0 and IIS5.0）

C. Mapping with System Profile and Infecting Path Table

 If local VODKA learns a new variant worm, it may map with system profile and

infecting path table of this new variant worm. If the system is vulnerable, the decision

confidence will be increased.

 The following example is given to illustrate how to map with system profile and

infecting path table.

Example 4.2：Mapping with System Profile and Infecting Path Table

Hence, VODKA now can suggest expert that a new variant worm derived from

original CodeRed is learned. By mapping with system profile and infecting path table,

we can know the system is vulnerable for CodeRed.

 Table 4.4：System Profile of Local Host

Table 4.5：Infecting Path Table of CodeRed Family

ID OS (Application <-> Vulnerability)
140.113.87.175 WinXp IIS4.0 <-> CVE-2001-0506

Worm_name Infecting Path
CodeRed CVE-2001-0500（Indexing Service2.0 and IIS6.0）

CVE-2001-0506（IIS4.0 and IIS5.0）

Mapping

 39

Hence, we can know the IIS4.0 has the vulnerability CVE-2001-0506 for

CodeRed through such simple mapping. Therefore, the system is vulnerable and the

decision confidence is increased.

4.2.1.2 Decision Information for Experts

The decisions information of infecting path analysis will be proposed to help

experts make correct decisions. Hence, the confirmation effort of experts to decide

variant worms could be reduced. Our suggestion is listed as follows.

Suggestion：System Profile matches infecting path of variant worms or not

According to our suggestion, experts will have two decisions.

1) Certain

It is a variant worm and then we will generate knowledge by EMCUD.

2) Uncertain

It is an uncertain case and will be transferred to collaborative analysis center.

In order to clearly show our decision flow, we give an example to illustrate our idea.

Example 4.3：Uncertain Case in Local VODKA

The Repertory Grid, AOT and partial embedded rules for Yaha are listed in

Example 3.1. Now we have receive inference log as follows：

 Table 4.6：Inference Log from Inference Engine

Rule # A1 A2 A3 A4 A5 Object CF

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4

R2,3 Email flood readme.exe False {25} svhoot.exe Yaha 0.53

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4

R2,3 Email flood readme.exe false {25} svhoot.exe Yaha 0.53

 40

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4

R2,5 Email flood Project.exe True {25} Tcpsvs32.exe Yaha 0.4

The large itemset L2=(A2= Project.exe,A5=Tcpsvs32.exe) and minimal support

30% is satisfied.

VODKA will ask the following questions

VODKA：Does the attribute-value pair (A2= Project.exe) AND (A5=Tcpsvs32.exe)

belong to any new variant object?

/*VODKA process in the background*/

Suggestion :

 Table 4.7：System Profile of Local Host for Yaha

 Table 4.8：Infecting Path table of Yaha Family

ID OS (Application <-> Vulnerability)
140.113.87.175 WinXp Outlook<->none

Worm_name Infecting Path
Yaha Email；CVE-2001-0154(MIME Header)

Mapping

The result shows that one of infecting path is not existed. But the normal

communication of Email is a path to infect.

VODKA：

Suggestion：System without any vulnerability but Email is the way to infect.

Expert：Uncertain

Experts say uncertain because the context information is not enough and the

embedded knowledge with low CF may be caused by improperly operation. The local

host may possibly install mass mailer software and the firewall may be temporarily

abnormal. Hence, we transfer this uncertain case to the collaborative analysis center.

 41

4.3 Process in Collaborative Analysis Center

Collaborative analysis center will collect uncertain cases from local VODKAs

like Example 4.3.

As we know, worm attacking is a network behavior. Therefore, the uncertain case

from local VODKA can be clearly explained in collaborative analysis center. If we

collect more evidences, we have more confidence to recognize a new variant worm.

4.3.1 The Framework of Collaborative Analysis Center

The framework of collaborative analysis center for computer worms is listed as

follows. It consists of three stages, Evidence Collecting Stage, Worm Analysis Stage

and Knowledge Updating Stage.

 Figure 4.5 : Stage of Global Analysis Center for Computer Worms

Stage I：Evidence Collecting

The Log and System Profile are transferred to our collaborative analysis center

directly. The log from each VODKA is reported periodically to collaborative analysis

center. However, System Profile would not be changed periodically. We receive the

report of System Profile when the configuration of local host is changed. We have the

following format of log and system profile.

 42

 Table 4.9：Log Profile of Yaha

Time ID Ri,j A1 A2 A3 A4 A5 CF(Ri,j)

T1 140.113.87.175 R2,5 Email flood Project.exe True {25} Tcpsvs32.exe 0.4

 Table 4.10：System Profile for Computer Worms

ID OS (Application <-> Vulnerability)

140.113.87.175 Windows XP RPC<->CAN-2003-0352

Figure 4.6 shows the communication between local and collaborative analysis

center. And the files are transferred asynchronously. Log is reported periodically and

system profile is event-driven.

 Figure 4.6：Communication between Local and Collaborative Analysis Center

StageII：Worm Analysis Stage

In this Stage we will use expert system to help us systematically analyzing

reports. It also can reduce the confirmation effort from experts. We apply extended

VODKA to worm domain and we can add more criterions based on the nature of

worms. In addition to three basic criterions described in Chapter 3, we know that

worms will continually infect other machines, and infecting is the nature for them. So

 43

we can add a new criterion for worms about single or multiple reports. If we only

receive reports of single host, we do not have enough evidence to verify a variant

worm. Of course, domain experts may have their decision ideas about to discover

variant worms. At this time they can dynamically add more criterions to fit their

requirements.

Now we describe the additional criterion for worm domain.

Additional criterion : Single or multiple reports

As mentioned above, worm attack is network behavior. The reports of variant

worms would not be only one. If we only receive reports of single host, our decision

confidence is the same as local host. It means the confidence will not be accumulated.

Therefore this criterion is to know the reports to accumulate our confidence are from

single host or multiple hosts.

Notation :

Object.ID : the IP of this report

Object.HostIP : the IP set of reporting the same object

Flagobject.host : Initialized to 0, set to 1 when receiving different IP

MR: IF Object.ID <> Object.HostIP

 Then set Flagobject.host=1

According to this criterion, we must modify Criterion3 to correctly discover

variant worms. It means if reports from only one host are not considered.

We add “Flagobject.host=1” to fit our requirement.

MR5: IF Confobject > VOthreshold AND Flagobject.host=1

 Then discover variant worms

 44

StageIII : Knowledge Updating Stage

When we discover a variant worm, we will acquire the attribute and attribute

values and generate relative Repertory Grid and AOT. And feed them to EMCUD to

generate defending rules. At the same time we will update our knowledge base.

4.3.2 Run through An Example

In this example, Yaha is an uncertain case described in Example 4.3. Besides

Yaha, we also receive reports of Sobig and Gaobot. The example will trace how to

analyze with collaborative rules.

Example 4.4 : An Example to Trace Collaborative Analysis Rules

 Table 4.11 is the repertory grid of Yaha, Sobig and Gaobot.

 Table 4.12 is the AOT of Yaha, Sobig and Gaobot.

 Table 4.13 is the partial detecting rules generated by EMCUD.

Table 4.11 : The Repertory Grid of Yaha, Sobig and Gaobot

 Object
Attribute

Yaha (O1) Sobig(O2) Gaobot(O3)

DoS_Type (A1) Email Flood Email flood X
Backdoor (A2) X True X

Email_Attachment(A3) Loveletter.doc.pif Sample.pif X
Antivirus_Firewall_Abnormal(A4) True X True

TCP_Port (A5) {25} {25} {80,135,445}
New_File(A6) <****>b.dll Winmgm32.exe Bla.exe

 Table 4.12 : The AOT of Yaha, Sobig and Gaobot

 Object
Attribute

Yaha (O1) Sobig(O2) Gaobot(O3)

A1 D D X
A2 X 3 X
A3 1 2 X
A4 3 X D
A5 3 3 D
A6 2 1 1

 45

 Table 4.13 : Partial Detection Rules Generated by EMCUD

IF Part Then Part CF
Rule #

A1 A2 A3 A4 A5 A6 Object

R1,0 Email flood - Loveletter.doc.pif True {25} <****>b.dll Yaha 0.8

R1,1 Email flood - ┐Loveletter.doc.pif True {25} <****>b.dll Yaha 0.7

R1,2 Email flood - Loveletter.doc.pif True {25} ┐<****>b.dll Yaha 0.6

R1,3 Email flood - Loveletter.doc.pif True {25} <****>b.dll Yaha 0.5

R1,4 Email flood - Loveletter.doc.pif False {25} <****>b.dll Yaha 0.4

R2,0 Email flood True Sample.pif - {25} Winmgm32.exe Sobig 0.8

R2,1 Email flood True Sample.pif - {25} ┐Winmgm32.exe Sobig 0.7

R2,2 Email flood True ┐Sample.pif - {25} Winmgm32.exe Sobig 0.6

R2,5 Email flood True ┐Sample.pif - {25} ┐Winmgm32.exe Sobig 0.4

R3,0 - - - True {80,135,445} Bla.exe Gaobot 0.7

R3,1 - - - True {80,135,445} ┐Bla.exe Gaobot 0.6

R3,2 - - - True ┐{80,135,445} Bla.exe Gaobot 0.5

According to the importance of attributes, we map {D, 5, 4} to major attributes M,

{3,2} to secondary attributes S. After mapping, we can get Table 4.14

Table 4.14 : Mapping Table of Yaha, Sobig and Gaobot

A1 A2 A3 A4 A5 A6 object
M - - M M S Yaha
M M S - M - Sobig
- - - M M - Gaobot

Table 4.15 : System Profile of Three Hosts

ID OS Application<->Vulnerability
140.113.87.175 Windows XP RPC<->CAN-2003-0352
140.113.87.174 Windows 2000 none
140.113.167.101 WindowsXP RPC<->CAN-2003-0352

 46

Constructing collaborative rules from all criterions

In this example, we will use formula to calculate Confobject of each rule and set

(Confhigh=0.2), (Conflow=0.1), (ConfSystemProfile=0.3), (flagobject=0) and (Confobject= 0).

Collaborative analysis rules for Yaha

IF (DoS=Email Flood) AND (Antivirus Firewall abnormal=True) AND

(TCP port={25}) AND (New file=svchook.dll)

Then (ConfYaha= ConfYaha + 0.2) AND (flagYaha=1)

IF (flagYaha=0) AND (DoS=Email Flood) AND

(Antivirus Firewall abnormal=True) AND (TCP port={25})

Then (ConfYaha= ConfYaha + 0.1)

IF (flagYaha=1) Then (flagYaha=0)

Collaborative analysis rules for Sobig

IF (DoS=Email Flood) AND (Backdoor=True) AND (TCP port={25}) AND

(Attachment=Sample.gif)

Then (ConfSobig= ConfSobig +0.2) AND (flagSobig=1)

IF (flagSobig=0) AND (DoS=Email Flood) AND (Backdoor=True) AND

(TCP port={25})

Then (ConfSobig= ConfSobig +0.1)

IF (flagSobig=1) Then (flagSobig=0)

 47

Collaborative analysis rules for Gaobot

IF (Antivirus Firewall abnormal=True) AND (TCP port={80,135,445})

Then ConfGaobot= ConfGaobot +0.1

IF ID.SystemProfile = { CAN-2003-0352 ; CAN-2003-0003}

Then ConfGaobot= ConfGaobot + 0.3

Collaborative rules for discovering variant worms

Initialize flagobject.host=0

IF (ConfYaha>=0.8) AND (flagYaha.host=1)Then (VariantWorm=Yaha)

IF (ConfSobig>=0.8) AND (flagSobig.host=1)Then (VariantWorm=Sobig)

IF (ConfGaobot>=0.8) AND (flagGaobot.host=1)Then (VariantWorm=Gaobot)

The flag, flagobject.host means the confidence is accumulated from single host(=0) or

multiple host(=1).

Collaborative rules for timeout period

IF (Timeperiod=3T)

Then (ConfYaha= 0.5 * ConfYaha) AND (ConfYaha= 0.5 * ConfYaha) AND

(ConfYaha= 0.5 * ConfYaha)

After generating collaborative analysis rules of Yaha, Sobig and Gaobot, the

inference engine is driven with reports from local hosts.

 48

Data collecting

The reports are collected from local VODKAs (Take three hosts as examples).

We select useful attributes from log database to trace our example. And they are Time,

ID and six attributes.

Event Time ID A1 A2 A3 A4 A5 A6

E1 T1 140.113.87.175 Email flood - Ravs.scr T {25} WinServices.exe

E2 T1 140.113.87.174 Email flood - Patch.exe T {25} -

E3 T1 140.113.167.101 Email flood T Password.gif - {25} mscch32.exe

E4 T2 140.113.87.175 - - - T {80;135;445} msgconf.exe

E5 T2 140.113.87.174 Email flood T Peace.scr - {25} WinServices.exe

E6 T2 140.113.167.101 - - - T {80;135;445} MSRUN.exe

Now, we trace each report to see the change of confidence.

E1：matching first collaborative rules of Yaha

ConfYaha=0+0.2=0.2

E2：matching second collaborative rules of Yaha

ConfYaha=0.2+0.1=0.3

E3：matching first collaborative rules of Sobig

Confsobig=0+0.2=0.2

E4：matching collaborative rules of Gaobot

ConfGaobot=0+0.2=0.2

This case will consider system profile of local host

We can discover E4 has vulnerability.

We increase ConfGaobot=0.2+0.3=0.5

E5：matching first collaborative rules of Yaha

ConfYaha=0.3+0.2=0.5

E6：matching collaborative rules of Gaobot

ConfGaobot=0.5+0.2=0.7

ConfGaobot=0.7+0.3=1.0 > 0.8 => Alert Gaobot Variant

 49

Knowledge updating phase

When discovering a new variant, we generate the new acquisition table of

Gaobot.B.

 Table 4.16 : The Acquisition Table of Gaobot

 Object
Attribute

Gaobot.B

Antivirus_Firewall_Abnormal(A4) True
TCP_Port (A5) {80,135,445}

New_File(A6)
{msgconf.exe;
MSRUN.exe}

Hence, an original rule and and embedded rule are listed as follows.

“IF (Antivirus Firewall abnormal=True) AND (TCP port={80,135,445}) AND (New

file={msgconf.exe; MSRUN.exe}) THEN Gaobot.B CF=0.7

“IF (Antivirus Firewall abnormal=True) AND (TCP port={80,135,445}) AND

┐(New file={msgconf.exe; MSRUN.exe}) THEN Gaobot.B CF=0.4

4.4 Evaluation

4.4.1 Experiment Environment

In the experiment, we deployed Extended VODKA to eight WISE sensors

located in two subnets and a collaborative analysis center with expert system helps us

analyzing local uncertain cases systematically. The experiment environment is shown

as Figure 4.7.

 50

 Figure 4.7：Experiment Environment

Before the expert system is activated, we must set parameters listed as follows:

Confhigh : 0.2

Conflow : 0.1

ConfSystemProfile : 0.15

THperiod : 30 minutes of half-life period

VOthreshold : 0.8 of alert threshold

After that, in order to verify that our collaborative defending system can discover

variant worms effectively and precisely from VODKAs, the three kinds of datasets are

used including Baseline, Normal with some legitimate software and Attack.

A. Baseline

 The dataset is gained from the eight sensors when the system is initially installed

without any heavy load of software.

B. Normal with some legitimate software

 The dataset is gained after some software like P2P, FTP, email software, etc. are

 51

installed. They might generate doubtful data temporarily like worms.

C. Attack

 The dataset is gained after a new variant worm is inserting and attacking our

machines.

4.4.2 Results

The result presents the variation of confidence as time goes on. This can observe

a variant worm appear or not when the confidence exceeds a predefined threshold 0.8.

A. Baseline

 From Figure 4.8, we can observe the variation of confidence is quite slight.

Baseline

0

0.2

0.4

0.6

0.8

1

10:10 10:20 10:30 10:40 10:50 11:00 11:10 11:20 11:30

Time (2005/06/29)

C
on

f

CodeRed

Nimda

Yaha

Sobig

Blaster

Welchia

Beagle

Sasser

Gaobot

Figure 4.8：The Variation of Confidence of Dataset Baseline

B. Normal with some legitimate software

In the normal state, the dataset is generated by some legitimate software. And

then we might observe the variation of confidence of nine worms. During the period

of 90 minutes, no alert is triggered by our system.

 52

Normal

0

0.2

0.4

0.6

0.8

1

 19:10 19:20 19:30 19:40 19:50 20:00 20:10 20:20 20:30

Time (2005/06/30)

C
o
nf

CodeRed

Nimda

Yaha

Sobig

Blaster

Welchia

Beagle

Sasser

Gaobot

 Figure 4.9：The Variation of Confidence of Dataset Normal

C. Attack

When a new variant worm which is not existed in our knowledge base at 13:20

was released, we found the confidence value of Gaobot increasing rapidly. Besides

one sensor is infected by Gaobot, the worm will also infect other system with the

same vulnerability. This will cause the confidence value to increase rapidly. At 13:50,

a variant worm of Gaobot is discovered by our system and then we obtain frequent

itemset to ask experts to confirm such itemset. Finally, EMCUD is used to generate

the defending rules for the variant worm of Gaobot.

Attack

0

0.2

0.4

0.6

0.8

1

13:10 13:20 13:30 13:40 13:50 14:00 14:10 14:20 14:30

Time (2005/07/02)

C
on

f

CodeRed

Nimda

Yaha

Sobig

Blaster

Welchia

Beagle

Sasser

Gaobot

 Figure 4.10：The Variation of Confidence of Dataset Attack

 53

4.4.3 Discussion

The correctness of Collaborative Defending System

In order to test the robustness of our criterions, three kinds of datasets are used to

test the reaction ability of collaborative defending system.

In Figure 4.8, the variation of confidence is less accumulated by the dataset of

baseline. The result is clear and system work well. However, it is not enough to test

the correctness of our criterions. Hence, the dataset of Normal with some normal

software, generated by installing P2P, FTP, E-mail software, etc., can observe the false

alarm rate of our criterions. Although the dataset might suddenly generate doubtful

attack data temporarily, the result of Figure 4.9 shows that the system is reacted

accurately. However, this does not prove our system can discover variant worm

properly. Hence, we insert a variant worm, Gaobot to test the correctness and reaction

time. In Figure 4.10, the result shows our system can detect the new variant worm,

Gaobot immediately.

The influence of parameters

Theoretically speaking, the value of parameters will affect the alert time and the

discovery frequency. Hence, the confidence of each rule must be well defined. For

example, if they are higher, large number of alerts may cause experts much effort. If

they are lower, variant worms would be missed or generate alerts slowly. In the

experiment, the value of parameters in the experiment environment would be defined

higher than in the real world for increasing the reaction time of the fewer sensors. In

order to reduce the false alarm of higher value, we reduce the half-life time to thirty

minutes. Therefore, we can avoid the confidence value increasing unlimitedly and

reduce some noise.

 54

Chapter 5. Conclusion and Future Work

In the thesis, we propose a methodology to extend VODKA to help domain

experts discover variant objects easily. First, to reduce the conformation effort of

experts, we extend VODKA to consult more context information, such as

environment factors, for helping experts make the correct decision. Although more

information is provided, experts may still feel uncertain to confirm the occurrence of

variant object in local environment. And then a collaborative analysis framework is

proposed to handle uncertain cases for further enhancement. The collaborative

analysis framework is a systematical analysis mechanism based upon expert system to

discover variant objects according to the meta knowledge including environment

factors and domain specific heuristic criteria.

 Furthermore, the defending system for computer worms is implemented to

evaluate our proposed extended VODKA. According to the variation of confidence,

we can easily solve the local uncertain cases using the collaborative analysis rules.

 In our knowledge base, we can only learn parts of worms in real world. However,

with the rapid growth of variant worms, we need to enrich our knowledge base to

discover more variant worms. More defending knowledge can help to reduce the

threat posed by worms.

 55

References

[1] P. Crowther and J. Hartnett,”Using repertory grids for knowledge acquisition

for spatial expert system” Proceeding on In Intelligent Information System,

November 1996.

[2] A. Dixit and E. Pindyck, ”Investment under uncertainty.” Princeton NJ.
Princeton University Press, 1994.

[3] Dan Ellis, McLean, “Worm Anatomy and Model.” Proceedings of the ACM
workshop on Rapid Malcode, 2003

[4] Chien Eric. “Code Red Worm.” Symantec Security Response, July 2003,
http://securityresponse.symantec.com/avcenter/venc/data/codered.worm.html

[5] Chien Eric. “W32.Nimda.A@mm.” Symantec Security Response, July 2003,
http://securityresponse.symantec.com/avcenter/venc/data/w32.nimda.a@mm.ht
ml

[6] G. J. Hwang and S.S. Tseng, ”On building a medical diagnostic system of acute

exanthema.” Journal of Chinese Institute of Engineers, Vol. 14, No. 2,

185-195,1991

[7] G. J. Hwang and S.S. Tseng, ”EMCUD: A knowledge acquisition method

which captures embedded meanings under uncertainty.” International Journal of

Man-Machine Studies, Vol. 33, NO. 4, pp. 431-451, 1990.

[8] D.M. Kienzle, M. C. Elder, “Recently worms: a survey and trends.” WORM’03,
October 2003

[9] Douglas Knowles. “W32.Gaobot.Worm.” Symmantec Security Response,
October 2002,

http://securityresponse.symantec.com/avcenter/venc/data/w32. hllw.gaobot.html
[10] Douglas Knowles. “W32.Sobig.Worm.” Symantec Security Response, January

2003,
http://securityresponse.symantec.com/avcenter/venc/data/w32.sobig.a@mm.ht
ml

[11] Douglas Knowles. “W32.Yaha.Worm.” Symmantec Security Response, January
2004,
http://securityresponse.symantec.com/avcenter/venc/data/w32.yaha@mm.html

[12] F. Lau, S.H. Rubin, M.H. Smith, L. Traikoyic, “Distributed Denial of Service
Attacks”, 2000 IEEE International Conference on Volume 3, 8-11 Oct. 2000
Page(s):2275 - 2280 vol.3

 56

[13] E.H. Shortliffe and B.G. Buchanan, “A model of inexact reasoning in medicine.

Math. Bioscience, Vol. 23, pp. 351-379, 1975
[14] S.S. Tseng, S.C. Lin and L.H. Liu, “VODKA: Variant Objects Discovering

Knowledge Acquisition”, submitted to IJHCS Oct. 2004.
[15] Nicholas Weaver, Vern Paxson, Stuart Staniford, Robert Cunningham , “A

Taxonomy of Computer Worms”, Proceedings of the 2003 ACM workshop on
Rapid Malcode, October 2003

 57

