Bl T 1 A

YRR S IR

A Unified Framework for Service Deployment,
Composition;and Validation

FoyoA i RRE

B R BT R

MENE - P B T

PP PRFAINE > b 2 BRFET L2 R EF T
A Unified Framework for Service Deployment, Composition,
and Validation

P N1 4 Student : Jing-Tang Zhuang
T FRE AR Advisor : Jing-Ying Chen
A - S R N A
AR kR 3
A Thesis

Submitted to Institute of Computer Science and Engineering
College ‘of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

April 2007

Hsinchu, Taiwan, Republic of China

PEARAY, LS Er

B ¥ X # KX £
HEtLax 22X EFRENEEHEE

(REBZEAZEITNEARABXEZLEZRER)

ARHEBAAZRMEX 0 HRANER LR EBRE T AR R R A
B HRERE £ SHRFELEMIB
WXAE C BABMAHAE, abRRETEIBATH

HEHI T REH

HEE
ANBEARZEE UELE - BERERIIBREAEEBERELLE
Eip A ReEEN TERLEE - AEAN) 2HL 0 REARE RSN

MREZBE BIXBRLREEHEREALE ZEFF RS - R HE
RE R - R RBAAACEEE RS - ERHEAA S R EERES
EERREN EEFRITE LT ME - TR -

WA X LR AR E R

ARREEHAERE AL EREAR | R
AR I 4 1 4 2 | R
¥ AERE

2z 9
PPN I S

vERE ql # ¢ A |2 8

= v B3 N 2
HEtainxEHnEnsEs

(REBHEABITNEXEFHE#E2ZRER)

ABRBEMBEZEMH > ARAAPBRILIBEREENHNERTZ L7
o PEERE 2 BHRARLILMIBX -
WXAEB ABMAINE, AL RRETF L LR H AT
BEHIKR T REHA

W EE

ANGBREE UEEB - BEBHRALITBRE AN EEE ™%
BREZ RO, 28 OB R LA EZ Y BXRiB AL
Bl ZAE/F M AN s EHRME NERMELOESRALEN 2158
TR E R Ep -

WX AHAANCEFELE BT FFHNRTFEAMERF R FEQIOM
Bz — o BEXIEA MR EE_ F
A____BABNH -

H# OAHERE

42 %
ﬁ%%z:-ﬂf 1 x

TERE 4L £ ¢ A (> @

HEXESHEHALTAXETHELERHME

ID:GT009223592
$%ﬁi%%%z: XAHBRBALERITBREETMHERIRL 90 24
RE A5 ﬁ ,Eé.’d 22:5\.!-&3-,(‘&—?—"/\#9
WXALE C BERGEIE, A RBRE SR HEETE
FEHR RER

BE BB BRMABREZEHZ ERHXAX (4BE) kLB - BIEEHRA

FEZ4E 0 RIRMIR - SRSk M&%‘tﬁiﬁwéﬁﬁﬁmfﬁﬁi
FIMXEY > BFBHMIALZ LR XRBE FR UL REB Y X 24
FHENMAAFES A MG 2% Fk %% F#H AT EP -

M OFHARAEEFAMEZ R ERE -ME - TRRIIEP L5I% X AR EFH# k48 MR PIE o

BHEAHEERE
¢

)

REEL: Dr

RBqtE ¢ A |>8

J 17 % 3 K 2
W 52 AT fE - B

\Q

= = e L,)
mX TR EZTETECH
AR ARA T AR BE PR o2 o 7

Fr#2 3 . A Unified Framework for Service Deployment,

Composition and Validation

B EREIE, MERBETEXRFMEN

ENFAEEHRAKE FEAZ A GIHERT -

Y gﬁg
/ T A
£ 7 B L]
#—.
s % (%
\/\/§4 -~ \//LA\//
I O g ~)

+x F — H =—+X

&
>
=

pAo® PR G+ ™ % . w & 32 gowm T L oz % ooy g oqr

g4 ER# g midg L

PR EE ATk - TR L PR E R P Rt - BRI RS
FTREST L REFREA PEHMG S (I LBEHIR) B AR BT P ek

JRAAE s g * o Rd o F BRI ES R iR e 7 MR T ok Re
oo LA £ R S0 AT R SR RE S AR AL B
B R IRF R AR A PR M EH RO T E - T RS LR HE AR AR
AAHAIRIEEEEL PR AP R E R O HE RSB Fie- H Y 22
PR o f EI P A PR - BATHIRI e SRR o HPRAR IR eh

POAPRIE R~ g e TP LRV S BT o A i - e i B
2o xR L ER IR T TR R o A FHEAALY o AL F R - L p
PRIy & ripliehl & RFRFA PRz o

A Unified Framework for Service Deployment, Composition, and Validation

Student : Jing-Tang Zhunag Advisors : Dr. Jing-Ying Chen

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

Service-oriented computing is the latest technology innovation aiming at establishing a
universal interoperability platform on top of which individuals and companies can acquire and
assemble reusable services into service-oriented-.applications easily. However, developing
service-oriented applications involves:not onlysservice acquisition and composition, but also
other important software engineering:activities such as-analysis, design, testing, deployment, or
even run-time management. EXisting service-oriented architectures such as Web Services fall
short when these supporting activities‘are concerned.-To truly realize the component principle
underpinning service-oriented computing, weargue that standards and conventions are needed to
facilitate most, if not all of these activities in platform- and vendor-neutral ways. To tackle this
fundamental problem, we propose a generic service-oriented architecture which standardizes the
role of service containers, so that service development, composition, and run-time management
can also be expressed, making it possible to streamline development process with minimized
vendor dependencies. Based on the architecture, we also develop a framework that permits

automatic service composition and verification.

B i

LS B RS
‘%/ Afrﬁ\éfgl— ’
oo

1
J

i
K

mm*’piww&ﬁ%m@%&#m
RAm i A A 7 sl
RAEZLS) PREEHEE
wEFIFF A EEL L

h =

SRR
(N P

-+

B

&TiﬁﬁWlﬂﬁﬁﬁﬁﬁﬂﬁ|/£
N r Azl S R N i L A i g
BT 4 B sl ot R e
AR C S S -) R
RS 2t Eh 28 "H - E2 2B P A
FE AR SR EAREET LR RRLPE 2 H L
WETEE SR FTEEL _ﬁgypg\g CH YL Nk
S o P PFS RGP o BRI T I pER o -
mﬂMiﬁTém4§%%o
B od R RHABAE
T EAF R S B R

\’figgg\, ~
L5 B4 Tﬁx-—%‘%‘rﬂﬁﬂi
PR R F A
FIRA o A e g 8

R
8
S G RE- BRGAL B
FRES ﬁk_’gé_}?r‘/‘;{'\ FIRA o
a— . VIS
,_'E # Y

2007 & 4

Table of Contents

B e [
ADSTFACT ...t nree e i
EEy - RSP OPRPR i
Table of CONTENTS ..o v
LIS OF FIQUIES ... be e nnees vi
Chapter 1. INtrodUCTIONccuveiiiiie e 1
Chapter 2. Universal Virtual WOrkspace............cccovviinnieiiniienie e 4
Chapter 3. Ontology-based Resource Description and Composition........... 6
Chapter 4. Towards Automatic'Service Compostion and Validation...... 10
Chapter 5. Implementation...........ccoov e 13
Chapter 6. Discussions and Related WOork...........cccoovviniininnnncencen, 21
Chapter 7. Conclusion and Future Workc.ccccevveiieiiieinccc e, 29
RETEIENCES ...t 30

List of Figures

Figure 1. Universal Virtual WOrKSPACEccueiieriiiiiiieiieie et 4
Figure 2. A service-oriented arChiteCtUIE...........cooiiiiiiieiee s 5
Figure 3. An on-line boOK reader SCENAIIO.ccueiieiiereeie e e e se e see e 7
Figure 4. A simple teStiNg SCENAIIO.........cciviieiie ettt e e ns 11
Figure 5. Screen shot of our framework ... 13
Figure 6. Space management liSt ..o 14
Figure 7. An audioplayer application eXamplecccovveiiiii i 15
Figure 8. An audioplayer diagram fOr QVBIAQgE USEIc.vrerieierierieniesiesieeeeee e 16
Figure 9. An audioplayer diagram.for sKilled USercccooiviieieieice e 18
Figure 10. An audioplayer testing Glag A il i 18
Figure 11-1. TestPlan diagram...........c i 20
Figure 11-2. TeStPIan diagram.........ccccviiiiieiiie s 21
Figure 12. Results Of teStplan SCIIPL.........oiiiiieiieiece e 22
Figure 13. myGrid Taverna WOrkDENCh ... 25
Figure 14. Framework of Knopflerfish ... 28

Chapter 1. Introduction

Service-oriented computing (SOC) is becoming the most prominent distributed
computing paradigm recently, attempting to establish a component-based infrastructure on top
of which service providers and application developers can develop and deploy self-contained,
reusable services, and combine these services to form larger services or service-oriented
applications. Today, many approaches to service-oriented architecture (SOA) have been
proposed, each realizing SOC differently. However, they all need to support service
composition sufficiently in order to make it easy for developer to adapt or compose services
into larger services or applications with relatively less efforts. With this property, SOC
promises to offer companies the flexibility and agility they need — both are crucial factors in
current IT industry where requirements changes are frequent and time to market pressure is
high.

Still, developing service-oriented -applications; involves more than simply obtaining
services and snapping them together.”To deliver.a final system that meets what end users want,
other important software engineering activities including: requirements engineering, analysis,
design, testing, deployment, and even run<time-management are still required. On the other
hand, most SOC approaches emphasize on enabling mechanisms in a bottom-up fashion. For
example, the Web Services [1] protocol stack as represented by XML, SOAP, and WSDL are
the foundation of the Web Services architecture, based on which higher-level standards for
service composition or orchestration such as WS-BPEL [2] from OASIS or WS-CDL from
Wa3C are developed. Such a layered, bottom-up architecture design is also common in many
other distributed computing platforms. However, such design also has consequences that may
go against the component principle behind SOC, where people are supposed to be able to
flexibly and conveniently assemble services into useful applications for their own use,
regardless how these services are built and on which platforms they are run. When multiple
approaches to service composition are allowed, for example, both service providers and
consumers need to “take sides,” and will gradually fragment the service market into multiple
camps with hard-to-cross boundaries. This issue cannot be resolved by simply asking service
providers to provide the same kinds of services for different composition approaches. First of
all, doing so limits the flexibility and availability of services from the service consumer

perspective. Moreover, different composition approaches will also affect the other upstream

and downstream software engineering activities, which in turn incur significant cost for both

service providers and consumers in a multiplying effect.

The same arguments regarding composition above also hold when other downstream
activities such as deployment and run-time management are concerned. Since standards
corresponding to these activities have yet to be defined and developed, they can only be
conducted in a platform- or vender-specific ways. Consider a typical situation where a
developer chooses the popular Axis Web service container [3] as the target platform for
service development and deployment. Within the Axis development environment, the
developer needs to configure and deploy individual services using XML configuration files
defined by Axis. Since Axis has no notion of service composition, that is, mechanisms to
allow the developer to combine services at deployment time, even when all the services are
developed in house specifically targeting Axis, the developer either has to define his/her own
composition mechanism and embeds it into the service implementation, or has to rely on other

composition standards and commercial packages such as WS-BPEL.

To fully exploit the potential of:SOC, we believe the underlying SOA not only should
center on service composition, but alse should provide common standards and conventions
that can cover most, if not all important software engineering activities for the development of
service-oriented applications. One ‘should be able.to streamline these activities in a
platform-neutral manner as much as possible “without being locked down to specific

implementation technologies.

In addition, we also believe that future SOC should target not only skilled developers but
also ordinary users. In other words, the future Internet is not necessary a simple
producer-consumer platform where software developers and end users play their assigned
producer and consumer roles, respectively. Instead, users with different skills and expertise
can contribute to the global SOC environment differently. To state more generally, we
envision the next-generation, service-oriented Internet as a universal, virtual workspace
(UVW), in which people create and share arbitrary resources — not just simple Web contents
but also more complex software artifacts — on the Internet and make them accessible to

others.

In this thesis, we are concerned with requirements and challenges towards the ultimate

UVW goal, which demands not only robust infrastructure support for the development,

deployment, and assembly of diverse software artifacts, but also effective strategies and

mechanisms that can handle the implied complexity.

We propose a more comprehensive SOA to overcome some of the obstacles mentioned
above. For example, our SOA standardizes the role of service containers, which are
responsible of governing the definition, instantiation, customization, composition, and other
lifecycle activities for the services they host in a coordinated manner. In addition, our SOA
includes a canonical, XML-based description format that serves as the basis for service
description, discovery, and composition. In particular, service containers can instantiate
run-time services and manage the inter-connections among them based on their corresponding
descriptions. Finally, our SOA also include the role of resource repositories where service
containers can upload and/or download arbitrary types of resources, including their

descriptions.

In addition to the fundamental SOA, other higher-level facilities and applications are also
being developed. For example, current:approach to service composition is primarily
interface-based. There is no additional mechanism that'can assure the correctness and quality
of individual services. To address this-issue, we develop-a testing-based framework on top of
our SOA. The framework uses standardized test scripts as supplement information to existing,

syntax-based service interface description, to permit service validation at semantics level.

The rest of the thesis is organized as follows. In chapter 2 we describe our approach
towards the UVW goal. In chapter 3 we describe our framework for service description and
composition. In chapter 4 we describe a testing-based approach to automatic service
composition and validation. In chapter 5 we describe further implementation details using a
motivating example. In chapter 6 we discuss some of the design considerations and related

work, and finally conclude this thesis in chapter 7.

Chapter 2. Universal Virtual Workspace

The vision of UVW is depicted in Figure 1, in which people collaborate by sharing
information and software artifacts. Like WWW, the UVW is based on a universal resource
space in which resources of arbitrary types are identifiable through URIs. Because resources
may also embed references to other resources, the resource space in fact forms a globally
interconnected network, in a way mimicking the hyperlinked Web pages and multimedia
resources in WWW. In addition, UVW also includes the notion of resource deployment such
that end users can download resources from repositories into their local machines respectively,

obtain updates afterwards, or even “upload” their changes.

Universal Virtual Workspace

=N
A A [} 1
Resource reaistries 2

container

B

resource

E

descriptor

O

service

[]

agent

Resource repositories

download
update

—_———————

©
©

Workbench A Workbench B

Figure 1. Universal virtual workspace

Because some of the resources are software artifacts that are executable themselves or are
components of other executable artifacts, end users can also create application instances and
interact with them accordingly. Therefore, the UVW also entails a universal service
composition and execution platform. To realize such an execution platform, a more detailed
SOA, as depicted in Figure 2, is proposed. As shown in the figure, on top of the “persistent”

resource space is the dynamic service space that comprises mutually interacting run-time

objects, called services, which perform tasks upon requests. Both resources and services are

managed by containers.

/ container mter-contémer channel\

~ v ~ -, i ~

\
1
1
I
I
1
1
1
1
I
I
I
I
1
T
1
1
[}
T
I
1
1
1
1
1

D)

1
1
1
1
1
1
1
1
1
1
1
1
1
.-"|
1
1
1
1
1
1
T
1
1
1
1
\

Figure 2. A service-oriented architecture

More importantly, as also indicated in Figure 2, each service is associated with exactly
one resource, where the association:is interpreted and maintained by the managing container.
(Accordingly, we may use the term‘service or resource interchangeably in what follows.) A
service can access another service directly if both are in the same memory space, or via some
kind of communication channel. In either case, the container is responsible of establishing the
suitable channel between the two services, rather than letting them establish links on their

own.

Containers can be implemented differently, and they join and leave the global service
space continuously. Some containers are long running at server side accepting requests;
others may be transient at client side interacting with users. A container may offer different
levels of management capabilities to different classes of users — although there are basic
operations all containers need to support. Note that although containers are also services, their

instantiation and management are system dependent.

A container can also serve as a resource repository as well as a resource registry. In
addition, a container may also present itself to the user as a workbench through which the user
can access and assemble services. The services being assembled may be locally hosted by the

workbench, or they may reside in remote containers and accessed through network

communication. The locally hosted services are instantiated by first downloading their
associated resources from some remote containers into the local container, and then let the

local container interpret these resources correspondingly.

Note that there are also software applications that are not managed by containers but
serve as intermediaries between end users and services. We refer agents to these software

entities.

Chapter 3. Ontology-based Resource Description and

Composition

An important design objective of our SOA is to provide a resource description framework
in which resources can be defined or annotated using canonical descriptors that can also be
tailored for different application domains. In what follows we refer to these resource
descriptors as metaphors. Unlike existing approaches to resource description such as RDF
and OWL that are commonly used in the Semantic Web community, our description
framework imposes only syntactical constraints on the contents of and the inter-relations
among metaphors, but leave their interpretation to the containers. Furthermore, our SOA also
requires that service composition is achieved through syntactically valid metaphor
composition (see below). In this chapter we describe our approach to resource description and
composition using a simplified example, which can illustrate most of the characterizing

features of our SOA.

Consider a simplified scenario in which an organization proposes an e-book ontology that
describes relevant terminology, data types, software interfaces, and so on, with the goal to
enable a service market where end. users can--assemble their own book readers using
components available in the UVW, browse book:databases provided by others, or even create
their personalized book databases. To simplify further, assume the e-book domain contains
only three types of entities, namely, book viewers, book entry browsers, and book databases.
Figure 3 depicts an example that includes three containers, i.e. User, Book.org, and Book.com,
each maintaining different types of resources in the e-book domain. As indicated in the figure,
Book.org maintains the three fundamental resource types, while Book.com provides a
database implementation conforming to the book database type. Finally, User manages

resources implementing those viewers, as well as a top-level GUI frame.

P I e

/ User ook.com;
! :
i | myBookBrowser BookDB !
1 7/
Ve ' s~ oo---
I \gv sl
| ~
E bookViewer Book.org
i 1BookDB
! b
' IBookViewer
v | entryBrowser \\

\ ,

N 'S_/’ ' IEntryBrowser

Figure 3. An on-line book reader scenario

Naturally, we choose a subset of well-formed XML documents as metaphors. In general,
a metaphor can contain arbitrary contents without restrictions, because the semantics is
defined elsewhere by its creator. However, we allocate a special namespace with some
reserved “keywords” that can be embedded- inside metaphors to constrain their structures

without semantic implications. For simplicity; in what follows the prefix “m” is assumed to be

bound to such a meta-level namespace:

To illustrate the syntax of metaphors, ‘consider the metaphors denoting 1BookDB,

BookDB, myBookBrowser, and bookViewer given below:

<IBookDB> <!-- //Book.org/ -->
<m:is m:iuri="//ws.org/WebService”/>
<wsdl m:uri="_/bookdb._wsdl”/>
</BookDB>

<BookDB> <!-- in Book.com -->
<m:is m:zuri="//Book.org/1BookDB”/>
<access url="http://Book.com/bookdb”/>
</BookDB>

<myBookBrowser> <!-- //User/ -->
<m:is m:uri="//meta/java/Object”/>
<class name="my.BookBrowser’/>
<db m:uri="//Book.com/BookDB" />
<bv m:zuri="./bookViewer"/>
<eb m:-uri="./entBrowser'/>
</myBookBrowser>
<bookViewer> <!-- //User/ -->

<m:is m:zuri=""//Book.org/1BookViewer”/>

<m:is m:uri="//meta/java/Object”/>

<class name="my.BookViewer”/>
</bookViewer>

In the example metaphors above, the bold-faced “keywords” are meta-level constructs
used to describe relations among resources. In particular, m:is indicates the is-a relation
between the current resource and the target resource identified by the m:uri attribute. There
are also other basic constructs used to constrain the metaphor contents of and relations among
resources. For example, the metaphor denoting the resource at “//ws.org/WebService” is

sketched below:

<WebService> <l-- //ws.org/ -->
<m:rel name="wsdl” m:-uri="//meta/File”/>
<m:elem tag=""url”>
<m:attr name="url” type="URL”/>
</m:elem>
</WebService>

In the example above, m:rel imposes a constraint that any resource conforming to
WebService (via is-a relation) should have a “wsdl’ relation with a WSDL document, as
indicated by the <wsdl> element of 1BookDB. Similarly, m:elem and m:attr place some

constraints over the structure and content of the metaphor.

Specifically, a metaphor is associated with a globally unique URI and can contain several
URI-valued m:uri attributes within. These relative or absolute URIs serve as references to
other existing resource. m:rel is a top-level element of a metaphor to constrain the relations
from the metaphor to others. Syntactically, it states that the metaphor may have a certain
number of top-level elements with specific tag prescribed by the “card” and “tag” attributes
of the m:rel attribute, respectively. Furthermore, its m:uri attribute also constrains the type of
the metaphor it can be related to (see below). m:elem and m:attr elements constrain the
“data” part of metaphors with intuitive meaning. Finally, m:is is a top-level element of a
metaphor used to indicate that the metaphor should inherit everything from the metaphor
referenced to by its m:uri attribute and conform to its constraints. For brevity, we also call the
latter the type of the former. Metaphors may be invalid if they contain constraints that conflict

with each other.

In general, metaphors can be created to annotate other actual resources, or they can be

resources themselves (i.e. self-describing). In fact, it is common to create metaphors to
capture high-level concepts without explicitly defining their semantics, and use them
immediately to describe other existing resources. In other words, metaphors together form a
user-definable ontology, or more precisely, multiple ontologies within the UVW. Because of
the integral deployment mechanism in our SOA, it is straightforward for people to publish
their own ontologies for the problem domains that concern them; public ontologies can also
be created and maintained on a community basis so that containers or service developers

joining the same community can interoperate and communicate.

The examples above also highlight our approach to service composition, which is
achieved through metaphor composition, provided that all syntactical constraints among
metaphors are satisfied, and the semantic implications are agreed upon by the participating
containers. Take myBookBrowser as an example; it suggests that the container should
instantiate a service using the class named “my.book.BookBrowser”. In addition, when
the service needs to access its component services, it can ask the container by supplying

corresponding relation names (db, bv, eb) without worrying about how they are instantiated.

Because metaphor syntax and semantics are-domain- and container-specific, there is no
restriction about how services should be, instantiated, assembled, or managed. This feature is
essential to fulfill the requirement that the platform can support arbitrary domains and users
of varying background suitably. However, " reusability and interoperability can be

compromised when, for example, similar but incompatible languages are created.

What we want is a virtual service assembly platform that promotes reuse. It is
“recommended” that the manager-worker separation principle is enforced such that services
are like workers who concentrate only on what they are designed for without worrying about
how their supporting “colleagues” are created and accessed — all these tasks are the
responsibility of the container, thus making services more focused and reusable. In the
example above, all services should not hardcode the knowledge of where they or their

colleagues are in their computation logic.

With the principle in mind, service composition can be encapsulated into templates for
reuse. Service composition can further be encapsulated into templates for reuse. Simply
speaking, templates are “unfinished” metaphors with constraints to be fulfilled; hence their

forms may range from simple to complex. Skilled users may create complex templates

10

combining services with sophisticated gluing logic but with straightforward “parameters” for
end users to fill. Different containers can offer different, possibly unique templates for clients.
As a simple example, to help promoting the database service, Book.com can also provide a

GUI frame and a template for others to download:

<BookBrowser> <!-- //Book.com/ -->
<m:is m:uri="//meta/java/Object”/>
<class name=""com.Book.BookBrowser”/>
<db m:uri="./BookDB"/>
<m:rel name="bv” m:uri="//meta/java/Object'/>
<m:rel name="eb” m:uri="//meta/java/Object"/>
</BookBrowser>

11

Chapter 4. Towards Automatic Service Composition and

Testing

The SOA described thus far can already enable a generic and flexible platform for service
deployment and composition, but is nevertheless too developer-oriented. To make it possible
for ordinary people to assemble services into quality systems, additional supports are needed.
In this chapter we describe one such support that is simple yet effective. The idea is that, in
addition to core data and service types, the domain initiator can also publish test scripts as
supplement information. When a community forms in which people agree upon the syntax
and semantics of these supplement information, it becomes possible to perform composition

and validation automatically with proper tool assistance.

In our testing framework, test scripts are divided into general and template-specific ones.
The former are for unit and integration testing against public interfaces, while the latter may
contain implementation-specific information and are mainly for validating template instances.
In either case, a test script includes necessary: information regarding the interfaces or

templates it is designed for.

Figure 4 illustrates our testing framework schematically. As the figure shows, the user is
investigating candidate services of types A'and B, respectively. First, with tool assistance
from the workbench, the user obtains candidate services a;, a;, by and b, with their
corresponding service types, respectively. Similarly, general test scripts that are associated
with A and B can also be gathered automatically (i.e. t3, tp, t3). With the candidate services
and test scripts at hand, a test plan can be synthesized and executed automatically which tests
various combinations of services to see whether they are functioning correctly or can work
with each other properly. The kinds of tests performed and the degrees of thoroughness

depend on the test scripts and can vary dramatically without limit.

12

services

test plan
ty ay
t1 a,
_______ synthesizes, executes t, b,
[t2 b2
ﬁ%*m ... t3 ap b1
..................... t3 a]_ b2
test scriots) tts @ b
._ test scripts & 2 b,
collects t2(A)
t2(B)
t3(A, B)
;/

Figure 4. A simple testing scenario

Intuitively, template-specific test scripts are simply- those against instances of specific
templates; therefore they may exploit implementation details specific to the template. Still,
the same unit testing and integration testing that involve general test scripts as outlined

previously are still needed for the parameter services of the template instance.

Consider the same e-book example described previously. In addition to the template for
instantiating the (proprietary) book viewer, Book.com can also publish additional test scripts

which we simplify below:

<BookBrowserTest> <I--//Book.com/-->

<m:is m:uri="//Test.org/Test’/>

<needs name="’bookViewer” m:uri="//Book.org/1BookViewer”/>
<needs name="entryBrowser” m:uri="//Book.org/l1EntryBrowser”/>
<bookBrowser m:uri="//Book.com/BookBrowser”/>

<m:is m:uri="//meta/java/Object”/>

<class name=""com.Book.BrowserTest”/>

</BookBrowserTest>

These test scripts assume that Book.com’s own book database is used, but are still generic
with respect to which book viewer and entry browser are used. With this information

available, our testing framework can search for all conforming book viewers and entry

13

browsers available locally and automatically create a test plan that cover all possible

combinations for the book browser template.

In this example, generic test scripts are still needed. For example, standard or
implementation-specific scripts for unit testing that test individual services, such as the
database and the book viewer above, can all be gathered automatically and included in the test
plan. This is particularly useful for users who want to create their own applications or
templates without relying on pre-existing templates. Because of our syntax-based description
framework, it is not difficult to develop more user-friendly tools that help users create

syntactically correct metaphors.

14

Chapter 5. Implementation

Based on service-oriented architecture described previously, we have developed a
framework that permits automatic service composition and verification through testing. The
functions of the framework include browsing and downloading existing components, and
combining components to form a desired application. In addition, it supports automatic
testing by automatically synthesizing test plans based on user-provided test cases. Figure 5

below shows the screen shot of our framework:

- [Code Root

o= 7 code.audiobank.lab
o= [code.audioplayer
o= 9 code buddhasudio
o= [code.core

o=] code.ibhank

o= [code.labDocurnent
o= [code.multimedia
o= [code.pilifudio

o= [code.reqistry

o [code.user

o= [code.audio.org

o= [code.test.org

o=] celab.metaphor

o= [celab.common

o=] code.labAudio

o= [code_ejava rmanager
o= [code.main

Ejl’Ja\raSpace [TestSpace rWindowSpace

| [[

¢ [Simple Java Application

: [sudioJavaBrowserresre
[AudioRlayer.resre

[AudioxPErowser.resrc
[OlderPlayer.resrc

[BuddhaPlayer.resrc

[LabPlayer.resrc

[y PiliPIayer.resre

||| space | Registry

Ed

SpaceResrc

Information

\Simple Java Application

It's used to open Simple Java Application Controller

“Ahwindow Application

[window Apllication

S Testahle Java

IControl the testable resources

Figure 5. Screen shot of our framework

To illustrate various functionality of our framework we will use a motivating example
below. Consider an audioplayer application domain that is similar to the e-book application

domain described in previous chapters.

First, to establish the audioplayer application domain, one need to determine what kinds
of artifacts should actually be deployed. In this example, it is assumed that software artifacts
are Java classes; hence they assume the existence of a JVM and some core libraries such as

Swing library on the user’s machine. Unlike other deployment standards such as OSGi, our

15

framework does not limit the types of artifacts to be deployed. For example, it is possible to
design different application domains which include Web pages or other multimedia resources.
To distinguish different classes of artifacts recognized and managed by our framework, the
domain initiator need to indicate which Space the domain artifacts belong to. A space in our
framework is basically an artifact manager that recognizes a special class of artifacts and
manages them accordingly. Figure 6 below shows a list of spaces that our framework

recognizes.

¢ Code Browser F'E'E'
View
2
¢] Code Root JavaSpace | TestSpace = WindowSpace
o [code.audiobank lab — T i)
o=] codé.audioplayer I,'j lﬂ {[l
o= [code buddhaAudio '? 3 Simple Java Application
o= (= code.core [AudioJavaBrowser resre
o [code.ibank [AudioPlayer.resre
& [code labDocument [) AudioxPBrowser resre
o [code multimedia [OiderPlayer resre
o] code piliAudio ['j BuddhaPlayer resrc
o [code registry [LabPlayer resrc
o= [code.user [PiliP1aver resre

& [code audio.org
& [codeteslorg

o= [cclab.metaphor
o] cclab.common e e e e e e e e e e et e St ettt ettt et et et et et et et et et F e S e el L —
o~) codelabAudio |
& [code.ejava manage'

& [code.main Space | Registry
o
SpaceResrc | Information
Window Application Window Apllication
Testable Java |Conlrol the testable resources

I
I
I
I
I
I
I
I
Simple Java Application |its used to open Simple Java Appilcation Controlier I
I
|
I
|
I
|
I
|

Figure 6. Space manager

For our audio player example, we assume a simple Java space where classes and other
relevant resources such as audio files, icons, and so on are recognized. Figure 7 depicts a
specific audio player instance consisting of three major entities: Database, Player and
Browser. Database stores the music resources; Player plays the audio resources stored in

Database; Browser is the main user interface providing usual audio player operations.

16

£ Music TP Browser E@@
TN
o seven_buddha resr)

S
o @ walkresic RIS

Lo sword resre
\ £ Music XP Browser E]@g]
Music Database 5 [T
~—

\
7
'
7
P b
Playgr/ p =

7

i A
Audio Player

Figure 7. An audioplayer application example

Figure 8 illustrates a component composition. by an average user using a template.
According to the template that may be provided by some organizations or service providers,
the user can simply choose the components whaose types are constrained by the template. As
Figure 8 shows, there is an Aduio.org organization, and it defines three public interfaces for
implementation. There are three companies: Company A provides an AudioJavaBrowser
component implementing the interface IAudioBrowser, and BuddhaDB implementing the
interface 1AudioDB. Similarly, Company B provides AudioXDBrowser implementing the
interface 1AudioBrowser, as well as LabDB implementing the interface 1AudioDB. Finally,

Company C just provides an AudioPlayer component that implements the interface
IAudioPlayer.

17

———— -

_________________ . . ComC |
s N . !
{ Average User L] audioptayer |
I e \ J
1 - - 1 - e
1 1 \— Le-—" N P
| . lAudioPlayer 1 | ! use R -~
b N : : Audjo.org \
! TS TS TS T TS \ 1 1 :
E E 1AudioDB E\\ E E [IAudioPlaver] \
| N - - \k !
' e \ AN E lAndioRrowser]
: . . 1 1 \ 1 1
LB) Nse augions | |
\ \ / ! ,I
S e dse N/ ool _-
pm———- it O A it ot -~.
%)
Com . Com A

\

)
\l AudioJavaBrows&r]

I
}
L}
N
[}
1
1
}
1
1

N - ——————

1
1
}
1
1
[}
1
1
1

\
[BuddhaDB]

Figure 8. An audioplayer.template for average user

The actual metaphors that describe. the inter-relations among these different types of
artifacts are explained below. First; we show the metaphors that represent the public

interfaces below:

<lAudioPlayer m:uri="//Audio.org/lAudioPlayer”>
<doc uri="http://Audio.org/l1AudioPlayer.html”/>
</1AudioPlayer>

<lAudioBrowser m:uri="//Audio.org/lAudioBrowser’>
<doc uri="http://Audio.org/lAudioBrowser_html”/>
</1AudioBrowser>

<lAudioDB m:uri="//Audio.org/l1AudioDB”>
<doc uri="http://Audio.org/l1AudioDB.html”/>
</1AudioDB>

In the metaphors above, the m:uri attributes indicate the global URIs of the public
interfaces, respectively. What these interfaces imply are outside the scope of metaphors. In
this case, their semantics should be consulted based on their corresponding documents

indicated in the doc elements, respectively.

18

With these public interfaces, templates for specific audio players can be created.

Consider the template below:

<AudioPlayerTmpl>
<m:rel name="player” m:uri="//Audio.org/l1AudioPlayer”/>
<m:rel name="browser” m:uri="//Audio.org/l1AudioBrowser”/>
<m:rel name="db” m:uri="//Audio.org/lAudioDB”/>
<main class=""code.audioplayer.AudioPlayerFrame'/>
</AudioPlayerTmpl>

The template suggests that we can simply choose suitable implementations and plug them
together to make up an audio player. The “class” attribute of the main element in the template
indicates that there exists a Java class implementation (that s,
code.audioplayer.AudioPlayerFrame) in the user’s environment such that for a
given instantiation of the template, a corresponding Java object can be instantiated, which
will then contact other component services supplied in the template instance. For example, the
template instance below shows that a service (instantiated based on) AudioXPBrowser from
Com B, BuddhaDB from Com A, and' AudioPlayer from Com C are used to fulfill the

required parameters of the template:-lAduioBrowser; IAudioDB and IAudioPlaye.

<myAudioPlayerFrame>
<m:is m:uri="_/AudioPlayerTmpl”/>
<player m:uri="_./myAudioPlayer”/>
<browser m:uri=""./myAudioXPBrowser’’/>
<db m:uri="_/buddhaAudioDB/>
</myAudioPlayerFrame>

<myAudioPlayer>
<m:is m:uri="//Audio.org/lAudioPlayer'/>
<main class="code.audioplayer.AudioPlayer"/>

</AudioPlayer>
<myAudioXPBrowser>
<m:is m:uri="//Audio.org/lAudioBrowser'/>
<main class=""code.audioplayer.ui.AudioXPBrowser"'/>
</myAudioXPBrowser>
<buddhaAudioDB>

<m:is m:uri="//Audio.org/l1AudioDB"/>
<main path="/code.buddhaAudio/resource'/>

</buddhaAudioDB>

19

Consider another case where the user is skilled enough to develop their own components
in Java, and just uses one or more external components from other companies. For example,
as shown in Figure 9, the user develops MyBrowser and MyPlayer, and chooses BuddhaDB

from Company A that implements the 1AudioDB interface.

-

e mm e - . ComC .

’ \ 1

/ H \ 1 !

| Skilled User ! | [AudioPlayer] :

1 | |\ /I

| e

1 1 PR <

: : I, \\

! \ ! . Audjo.org .

1 1 I ~ 1

L R Y, NS 3! 1 1

1 1 I 1 1

: DB E | : [IAudioPlayer)

I/ N e m = - 1 1

! \i \ |AudioBrowser, | |

: use | I

" J ! IAudioDR)}
Com . Com \
1 LR 1
:[AudioXPBrowser i B [AudioJavaBro\Nser] !
1 1 1 1
:[| ahDB] y BuddhaDB ,:

- e - = ——

Figure 9. An audioplayer diagram for skilled user

After composing components, we have to test the composition. As mentioned previously,
automatic testing can also be supported when creating a particular application domain so that
it becomes possible to verify the correctness and conformance of individual components as
well as their composition. Below we use the same audio player application domain to

illustrate our testing framework implementation.

Consider the testing related concepts depicted in Figure 10 that are part of the audio

player domain.

20

Test.org

TestPlan

TestCase

e ———

e ————————

———— == ——— -, —— - ——

N ———————

i\ [TestDB]

Figure 10. An audioplayer testing diagram

In the figure, there is an organization Test.org which defines the standard concepts

TestPlan and TestCase related to testing. Thereare also two companies Audio A and Audio B

who participate in the domain and provide test, cases-TestPlayer and TestDB, respectively,

that implement the interface TestCase.from Test.org. Furthermore, suppose by implementing

the TestCase interface it means that thel test case can:be used to test individual or some

combination of components whose types are indicated in the “SUT” (System Under Test)

attributes of its “needs” elements. For example, the TestPlayer test case from Audio A shown

below indicates that it can be used to test components of |AudioPlayer type:

<TestPlayer m:uri="//AudioA/TestPlayer”>
<m:is m:uri="//Test.org/TestCase'"/>
<java class="AudioA.test.TestPlayer'/>
<needs SUT="//Audio.org/lAudioPlayer" as="player”/>

</TestPlayer>

It is not difficult to see that the corresponding metaphor denoting TestCase looks like:

<TestCase m:uri="//Test.org/TestCase”>
<m:elem tag=""java’>
<m:attr name="class” type="String”’/>
</m:elem>
<m:elem tag=""needs” card="*">
<m:attr name="SUT” type="URI"/>
<m:attr name="’as” type="String”’/>
</m:elem>

21

</TestCase>

Note that unlike the previous examples where the requirement of Java implementation are
not implied, here to automate testing, TestCase also imposes the requirement that any test
case should be implemented as a Java class, so that related test cases designed for specific
SUTSs can be gathered automatically by the framework and corresponding test plans can be
synthesized and executed automatically. Below shows a simplified test case implementation

in Java that helps illustrate our approach.

public class TestPlayer extends TestCase {
public void runTest() {
testAuthor();
}
public void testAuthor() {
lIAudioPlayer player = getPlayer();
assertNotNul I (player.getName());
}
private lAudioPlayer getPlayer() {
return (lAudioPlayer)getContext('player'™);

}
+

The Java implementation above alse indicates that when a test case is executed, it will
obtain the SUT it runs against from its execution context, by supplying a pre-defined name

(i.e. “player”) that is also specified in the TestPlayer metaphor.

To perform testing, test plans need to be created first. A test plan is essentially a file
describing the set of components and different but feasible combinations among them for
testing. Because the number of combinations can be quite large, our framework can assist
user to create test plans based on the components he/she is working on. Below shows an

example test plan using the audio player example above:

22

Test Plan
) System tnder Test.
Loatl tye: R TC1 Player DB
o " run1 player0]
TC1 (Player) ~ N AudioPlayer run2 player1
TestPlayer | /- .
|/ [Paer®i| | TC2 Player _DB_|
h OlderPlayer runt db2
TC2 (DB) e run2 db3
TestDB ““ﬂ TC3 Player DB
" K| LebDB " rand” Tplayerd " db2]
TC8 {Flayer, BB) | % — T run2 player1 db2
TestDBPI ' A V.1 rund player0 db3
| €s ayer} W BuddhaDB rund player1 db3

-. '+

Figure 11 TestPlan diagram

In this example, there are three test cases: TestPlayer, TestDB and TestDBPlayer, and
four SUTSs: AudioPlayer with ID 0,-OlderPlayer with 1D-1, LabDB with ID 2 and BuddhaDB
with ID 3. TestPlayer just needs an_lAudioPlayer-type SUT, and it will test the players with
ID 0 and 1. The setup is similar for TestDB. However, TestDBPlayer needs two kinds of
SUTs, i.e. 1AdudioPlayer and IAudioDB, so it needs to consider all combinations among
available SUTSs. A possible test plan is shown below, which depicts the four SUTs with their
corresponding IDs: AudioPlayer, OlderPlayer, BuddhaDB and LabDB.

<testplan>
<suts>
<sut 1d=""0" m:uri="/local/java/AudioPlayer'/>
<sut 1d=""1" m:uri="/local/javasOlderPlayer'/>
<sut 1d="2" m:uri="/local/java/BuddhaDB/"'/>
<sut 1d="'3" m:uri="/local/java/LabDB/"/>
</suts>

</testplan>

The produced test plan is shown below:

23

<mytp 1 xmins:m="m">
<mis m:uri="code-test.org/resource/TestPlan.resrc'/>
<testplan>
<suts>
<sutid="0" m:uri="code.audioplayerfresource/ava/AudioPlayer.resrc"/>
<sutid="1"m:uri="code.audioplayerfresource/ava/ClderPlayer.resrc’/>

TeSt P Ia n <sutid="2"m:uri="code. buddhaAudio/ resrc"f>

<sutid="3"m:uri="code.labAudio/ resrc"/>

TC1 Player DB tostomses

- _I.'Jrﬁ T _p'la}e—ro' T <tc z'lrtlr:i:”code.audic‘crglrescurceftesﬂestDBPlayer‘resrc”name=’TestDBPIayer">
run2 olaver1 <setid="0"name="player’ need="yes"/>
> y ,7 Run1 <setid="2"name="db" need="no"/>

e frun>
z # <run>
I [C_z — e‘g’_e{ —. _Dgr R <setid="t"name="player” need="yes"/>
runi db? ’? Run2| <setig="2"name="db" need="na"r>
” -~ frun>
run2 P - db3 Pl <run>
P - <setid="0"name="player” need="yes"/>
7 g - ’7 Run3 <setid="3"name="db" need="no"/>
TC3 _Player-~ DB_+7
- un>

<setid="1"name="player”" need="yes"/>
- ? Rund4 <setid="3"name="db" need="no"/>
<frun>

run2” player!” db2 -
<fte>

- -
- -
run 3 play_eLO - db3 <tc m:uri="code.audio.org/resourceftest/TestPlayer.resrc” name="TestPlayer"
rund- -playert db3 jun>
Run1 <getid="0"name="player" need="na"f>
run>
run>
Run2 <setid="1"name="player’need="na">
frun=>

v
)

&ftck

Figure 12 An é)iémple test plan

As an example, the test plan above indicates that the testcase TestDBPlayer has to run
four times. For example, the runl in ‘TestDBPlayer will use the player with ID 0 and the

database with ID 2. The output after executing the test plan is given below:

TestF1{flTestCase with name: TestDB
ITestcase FE 1 fificombination of suts
sut: name: db with ID: 3
TestEEfHfailure?: 0
IETestE &2 : BRIh

[f:Testcase F55 2 filicombination of suts
sut: name: db with ID: 2
HTestREEFfailure?: 0 TestF2{flTestCase with name: TestPlayer
HTestEERRIN? : BYTh H;Testcase F# 1 fificombination of suts

sut: name: player with ID: 1
HTestEEHHFfailure?: 1

HTestEEBRII? 1 K

iTestcase FE5 2 fificombination of suts
sut: name: player with ID: 0
HTestEF{HHLailure?: 0
HTest @2 EELN? : BRIl

Figure 13. Results of a test plan execution

24

Chapter 6. Discussion and Related Work

We have implemented the SOA and the testing framework based on the popular Eclipse

platform [4]. Here we summarize some of the important features of our implementation

without going further into details:

All resources, including metaphors, are managed as files and organized as
Eclipse-managed projects. It is possible that some metaphors may be invalid at a
given point it time, although the user can perform various consistency checks

periodically.

Deployment is achieved through Eclipse’s built-in version control system (i.e. CVS).
Because public resource registries and repositories are also projects downloaded into
user’s workspace, our SOA does not require additional communication protocols for

service discovery and deployment,

Except the metaphor mechanism-and file-based storage for resources, the SOA is
generic with respect to allowable resource types. For example, Java-based and
C-based software artifacts can ico-exist-within the same SOA, so are two different

testing frameworks for the same types of Java-based artifacts.

Our testing framework implements both Java-based and scenario-based test scripts.
Java-based test scripts are implemented as JUnit test cases plus the associated
metaphors describing their required service types to facilitate automatic testing. As
discussed in the previous chapter, some test scripts can be generic and considered
part of the public contract that service implementation should conform to, or
vendor-specific and may be bundled with particular implementations.
Scenario-based test scripts are conceptually similar, except that they express the
expected input/output or message exchanges using XML, thereby providing a more

technology-neutral framework.

The vision of UVW is inspired by the concept of “intercreativity” envisioned by Tim

Berners-Lee [5] when architecting WWW [6], where people collaborate by creating and

posting Web contents for others to see. This together with the emerging service-oriented

computing trend have led us to the conclusion that Internet is transforming into a common

25

medium for people to participate in, rather than just a consumer-producer platform where
most people are restricted to access information and services provided by software

developers.

An important reason we believe WWW will be a good model for extension is not just
because of its ubiquity, but also because of its architectural simplicity that helped propelled
the Web. This is reflected by the service space underpinning our SOA that differentiates our
approach from existing ones. One advantage is that our SOA can support diverse application
domains and distributed computing technologies on a community basis, which is a
fundamental requirement for UVW. As the e-book example suggests, for example, resources
available for composition are not limit to Web services, and can also include downloadable
Java classes that run locally and interact with end users via GUIs. From this perspective, our
SOA combines the concepts from “server-side” distributed computing technologies and the
“client-side” deployment frameworks that are common in modern Web browsers or operating
systems. Similarly, our SOA can also support “light-weight” application domains such as P2P
file sharing that may not require too much infrastructure overhead. Unlike WWW, however,
our SOA is more of a distributed computing platform holding software artifacts and services,

and permit service composition.

Virtualization has been one of the fundamental principles underpinning computer science
and information technology, as seen in“‘many research areas including programming
languages, operating systems, etc. Virtualization of distributed, heterogeneous resources is
recently re-signified by the grid computing [7, 8, 9] research and closely related peer-to-peer
computing. One major goal is to utilize otherwise idle, disparate computing resources by
joining them into workhorses that approximate super computers. Furthermore, the concept of
virtual organization also stresses that the primary emphasis is on effective utilization of
distributed resources across organizational boundaries while respecting the authority and
policies of individual organizations. This is what differentiates grid computing from

distributed operating systems research.

myGrid [10] is one of the famous open source Grid applications that aim to provide a
high-level service-oriented middleware to support in-silico biological experiments.
Interestingly, myGrid includes the Taverna workbench as one of its core component, which
allows biologists, rather than developers, to create workflows connecting third-party Web

services via more intuitive, graph-based user interfaces. The workbench supports individual

26

scientists by providing personalization facilities related to resource selection, data
management and process enactment. Figure 14 illustrates myGrid Taverna workbench. On the
top-left, it shows available services for use. User can choose the desired services, add them to
the workflow diagram, and set the process between services to compose a workflow with

graph-based user interface.

) Taverna Workbench v1.5.0.0

Fil: Tools Workilows Advenced Help
| [Design| b Results & 456

Search ; Watch loads i Save diagromm %y Refresh | |[# Configure diagram
=, Available Frocessors
2

(= Loosl Jova witeets

@ BEF seripting host

-4 ibstractProvessor - Processor for sbstract taskdeseriptions
~@@ Rshell - Run R seripts through Rerve

4@ Notifisation Processor

. @ Beanshell scripting host

() WEDL @ hitp:ffwww ebiae vkivembl X EMBL wedl

(=) WEDL @ hitp:ffwww ebiae vkicollabimygridservice L /govizoViz. pwsMesd,
() WEDL @ hitp:ffeoep.zenome jp/KEGG wall

(=) WSDL @ http:fwww ebiac nkivslsricesfurn Dbfetchfwadl

(=) WSDL @ hitp:ffsoap bind calwsd Vbind wsdl

; WEDL @ hitp:Aeutils nebinlm nih govdentrez/entilssnap/utils wadl
Biomanrt ssrvice @ http:Awww binmart org/hiomart

Binmaby @ hitp:mobycentral iapture ube cakgi-bindOBY05Amobycsnt]

Soaplab @ http:fMwww.ebiec ukisaplablembossdiervices! Ca I C u I ate

--_‘, SeqHoumnd @ seghound. blueprintorg

< >
[dvanced model explorer
Workflow | 7

== Add Nested Workflow | [] Offline
Workflow abject Retres Delay Back. | Thre OUtPUtData1 OUtp UtData2
() eample
5 Workflow inputs
() Workflow outputs
v v
+-wg# CutputDatal

#1- wgd OutpoiDated

Result1 Result2

coocooo
coocooo
[SR

@ InputData.
=+ [Dt links
-7 InpuData result-calculate-inp

-7 OutpuiDatal pammeters-Rest
- Z” OutputDataZ paramsters-Resu
" celenlate output-OutputDatal
L F eelenlate output-OutputDatal

=) Comira] links

<

v

Rendering done.

Figure 14. myGrid Taverna workbench

The workflow can be saved as XML-based description, which is illustrated below:

<s:scufl xmlns:s="http://org.embl_ebi.escience/xscufl/0.lalpha"
version="0.2" log="0">

<s:workflowdescription
Isid="urn:Isid:net.sf.taverna:wfDefinition:544956f5-42dc-47e3-bbca-d4
ffcecl3fObauthor=""" title=""example'/>

<s:processor name="OutputDatal’''>

<s:arbitrarywsdl>
<s:wsdl>http://eutils_ncbi._nlm_nih.gov/entrez/eutils/soap/eutils._wsdl
</s:wsdl>
<s:operation>run_eSearch_MS</s:operation>

</s:arbitrarywsdl>

27

</s:processor>

<s:processor name="calculate">

<s:description>RENCI impl for blast service</s:description>

<s:biomobywsdl>

<s:mobyEndpoint>http://mobycentral .icapture.ubc.ca/cgi-bin/MOBY05/moby
central .pl</s:mobyEndpoint>

<s:serviceName>Blastn</s:serviceName>

<s:authorityName>biomoby.renci.org</s:authorityName>

</s:biomobywsdl>

</s:processor>

<s:processor name="'InputData'>

<s:seqghound>

<s:method>SHound3DExists</s:method>
<s:server>seghound.blueprint.org</s:server>
<s:jsegremserver>skinner.blueprint.org:8080</s:jseqremserver>
<s:path>/cgi-bin/seqrem</s:path>
<s:jseqrempath>/jseghound/jseqrem</s: jseqrempath>

</s:seghound>

</s:processor>

<s:link source="InputData:result” sink="calculate:input” />
<s:link source="OutputDatal:parameters' sink="Resultl:Ffirst_url" />
<s:link source="OutputData2:parameters” sink="Result2:sbegin' />
<s:link source="calculate:output” sSink=z"OutputDatal:parameters" />

Recently, this trend in user-centric, collaborative computing has gained some momentum.
Consider the widespread use of Web*applications such as blogs and Wikipedia [11]. These
applications provide easy-to-use interfaces that allow people to create contents such as
opinions and photos for others to see. Equally importantly, they provide storage and content
management facilities under the hood. Although the user interfaces are often limited (for ease
of use), these applications already provide sufficient functionality people want. As a result,
the simplicity helps these applications gain huge user base in a short period of time, which is

often attributed by Web 2.0 [12] promoters as network effect.

Web 2.0’s emphasis on sharing and collaboration among end users, not developers,
coincides with our view. On the other hand, the tendency of Web 2.0 application developers
to centralize their proprietary implementation behind (high-performance) servers — a key
characteristic for Web 2.0 companies to stay ahead — is in contrast to our UVW goal. As a
result, Web 2.0 does not consider too much about a common computing infrastructure, or
about the assembly of third-party modules, and the issue of software deployment and

maintenance are considered irrelevant.

28

Our approach to describing and interpreting resources via metaphors provides a
composition framework that promotes domain-specific, language-based component reuse, in
the sense that new types of resources are conceived with corresponding languages defined and
interpreters developed. Specifically, in the resource space, new resources can be created for a
given domain (generic or domain specific); in this case, custom language syntax can be
defined for the customization of a certain class of resource. In the service space, new
communities or domains can be created by equipping containers with differentiating
interpreters. The access interface to the container, the composition mechanisms, and the

corresponding assembly languages are all extensible.

In short, our approach to composition is syntax-based in nature. This is in contrast to
most Al-based composition approaches, e.g. the Semantic Web [13, 14] movement and
related models such as OWL-S [15], where the main focus is on the development of
languages for describing the properties and capabilities of Web services in unambiguous,
computer-interpretable form, in order to facilitate automatic reasoning, negotiation, and

dynamic integration of Web services.

Our approach also differs from.another popular ‘trend, i.e. workflow-based service
composition (e.g. WS-BPEL and W3C"“CDL), which emphasizes on support for
cross-organization business processes that are crucial in the coming e-commerce era.
Nevertheless, most workflow-based approaches are “server-side” technologies targeting
developers and service providers. In contrast, the UVW unifies the server side and the client
side, where end users and developers are among the many groups of people in the potentially
complex ecosystem. In other words, the UVW can be characterized as a global, integrated

development environment supporting “programmers” of various skills and needs.

This software engineering perspective also highlights many important factors that are
missing in current Al-based or workflow-based composition approaches. For example,
evaluating whether a service performs its duty as it claims to, or managing the versions of
component services in a composite service are often beyond the scope of these composition

approaches, but are still within our scope.

As another example, one important issue related to service instantiation and management
is deployment. Deployment mechanisms are also an important area that receives many

research and development efforts recently. Popular Web browsers, for example, often provide

29

plug-in mechanisms that download executable resources such as Java Applets or Flesh
applications and manage them behind the scene for the user. Other deployment mechanisms
outside the Web arena are also common; examples include the plug-in architecture of the
popular Eclipse IDE, or the Java-based middleware OSGi [16] for component integration, or
the Maven project that streamlines software building process by acquiring required libraries

across network based on project profiles.

The OSGi Service Platform provides a general-purpose Java framework that supports the
deployment of applications (called bundles) and provides the functions to change the
composition dynamically without restarting. A bundle comprise of Java classes and other
resources such as manifest file describing the information about the bundle to provide
functions (services) and to be exported as Java ARchive (JAR) files are the only entities for
deploying Java-based applications. A bundle can contain zero or more services and be
downloaded, installed, updated and removed in an OSGi environment. A service published in
a bundle can be searched and installed in OSGi environment by other bundles for exploiting.
Take the Knopflerfish project for example. Knopflerfish is a non-profit organization and aims
to develop and distribute easy to use open source implementations of the OSGi frameworks,
as well as related build tools and applications. Figure 15 illustrate the Knopflerfish framework
with graphical user interface. For example, on-the left side of the figure shows the bundles
that have been installed and can be started .and.stopped. User can search and install bundles
that have been published and registered to bundle repository from the center part (Bundle

Repository). Moreover, users can update and uninstall bundles.

30

#* Knopflerfish 0SG1 deskiop (knopflerfish)

File Edit Bundles View Help

D2 PH@®)>»m 2 2@ Start Jevel: THTTP oot .,‘
_ Bundle Repository
4 bl i i - X & Repository URLs
Systen Bundle Log Service CM Service Console W measurement LB hittp i/ ww. knopflerfish, org/repof repasitary, xral
W metatype-LIB
% position-LIB Total nurnber of bundles: 56
~ % upnp-AF
: P : o 4 il LIB Select 5 bundle frarm the bundle repocitory list, then select
ﬁ: BTy @ LTy ©-0] conscl (5) the install or start icons,
utl Crinson TML i DK lib bundlereposiiony) examgle (5)
) experiment (1)
EERE
Ty Comimons-Logging
o 8o by b 9 Crimsm- XML
N b Wb Wb W % JDK-LIB
Device Manager Tser Admin HTTP Server FW Commands - KIML-LIB
[] srvice (31)
vl ()
~re ~F e P
"1@; '{F‘" 'w@; "ﬁ@;
Log Commands CM Comomnands TTY Consale Telnet Console
y s e e
3 w b = " - @ v » URLs
Deskiop HTTF oot omar-shell code bundle
Bundle Repository | Manifeet | Clomure | Bervices | Packages | Log
veptlectich GG frameork, version 3.2.6
Copyright 205-204 Knopflarfish. 411 Rights Reserved
[ee hutp: f . Yropflerfish org for more infommtion.
ype "help' for help or 'aliss’ for 3 list of ocomon commands
> |

-]

5

However, these deployment mechanisms foc.'us on managing downloaded modules which
often depend on each other in a static, predefined way, and they are not designed for users to
assemble novel applications. In other words, deployment mechanisms are currently separated
from component or service composition frameworks. In contrast, we are more interested in an

environment where both aspects are considered.

31

Chapter 7. Conclusion and Future Work

We have presented the vision of UVW as a unification of current trends in
component-based, service-oriented computing, and user-centric Web 2.0 movement. In

realizing the UVW objective, we have also proposed a generic SOA that is

® resource-oriented, in a way similar to hyper-linked Web pages and multimedia

resources in WWW,

® ontology-based, where resources and their composition can be described using

user-definable metaphors,

® a unified deployment, composition, and execution platform, where the role of

containers is made explicit, and
® user-centric, targeting groups of users with diverse skills and background.

To facilitate quality service compositionygwe also proposed a testing-based framework on
top of the SOA that can synthesize and execute. test plans automatically based on service
descriptions and additional test “scripts -accompanying published service interfaces or

implementations.

Of course, there are far more obstacles and challenges than we can address in this thesis
in pursuing the UVW goal. One issue is the research and development of satisfactory software
engineering environment that even non-technical persons can become productive. EXisting
development environments are not satisfactory in this aspect, mainly because they rely on the
target audience, i.e. developers, to handle the potentially complicated gluing logic among
services. Apparently, substantial efforts are needed in order to make the workbench

sufficiently intelligent, robust, self-diagnosing, and self-healing.

Also, we leave the security aspect unattended, because the issue is further intensified for
every additional requirement we propose for the UVW. In this thesis we focus more on the
functional aspects of UVW and the corresponding infrastructure support for flexible
composition of distributed, heterogeneous resources. Instead of inventing a security
framework ourselves, currently we are working on ways to leverage existing security

mechanisms such as those supported by the Globus Toolkit [17].

32

References

[1] Web Services Activity, http://www.w3.0rg/2002/ws/

[2] WS-BPEL, OASIS, http://www.0asis-open.org/

[3] Apache, Web Services - Axis, http://ws.apache.org/axis/

[4] The Eclipse platform, http://www.eclipse.org/

[5] T. Berners-Lee, “Realising the Full Potential of the Web”, W3C notes,
http://www.w3.0rg/1998/02/Potential .html

[6] W3C, Architecture of the World Wide Web, Volume One, W3C Recommendation,
http://www.w3.0rg/TR/webarch/

[7] J. Kubiatowicz and D. P. Anderson, “The Worldwide Computer: An operating system
spanning the Internet would bring the power of millions of the world's Internet-connected

PCs to everyone's fingertips”, Scientific American, March 2002, pp. 40-47.

[8] L. Smarr and C.E. Smarr, “Metacomputing”; Communications of the ACM, 35(6), (1992),
pp. 74-84.

[9] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual

Organizations”, International J. Supercomputer Applications, Vol. 15, No. 3, 2001.

[10] The myGrid Consortium, “myGrid: Middleware for in silico experiments in biology”.

http://www.myarid.org.uk/

[11] Wikipedia, http://www.wikipedia.org

[12] T. O'Reilly, “What Is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software”, http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/

what-is-web-20.html

[13] W3C, Semantic Web Working Group. http://www.w3.0rg/2001/sw/

[14] T. Berners-Lee, J. Hedler, and O. Lassila, “The semantic web”, Scientific American, May
issue, 2001.

[15] OWL-S, http://www.daml.org/services/owl-s/

[16] The OGSi Alliance, http://www.0sgi.org/

33

[17] Globus Toolkit, The Globus Alliance, http://www.globus.org/

34

