
國立交通大學

資訊科學與工程研究所

碩士論文

最小交點式的量子點細胞元自動化布局合成

Minimum-Crossing Layout Synthesis for

Quantum-Dot Cellular Automata (QCA)

 研究生: 賴建丞

 指導教授: 李毅郎博士

中華民國九十四年十一月

最小交點式的量子點細胞元自動化布局合成

Minimum-Crossing Layout Synthesis forQuantum-Dot Cellular Automata

(QCA)

 研究生: 賴建丞 Student : Chan-cheng Lai

 指導教授: 李毅郎博士 Advisor : Dr. Yih-Lang Li

國立交通大學

資訊科學研究所

碩士論文

A Thesis

Submitted to Institute of Computer and Engineering

College of Computer Science

National Chiao Tung University

In partial fulfillment of the Requirements

For the Defgree of

Master

in

Computer and Information Science

Nov 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年十一月

最小交點式的量子點細胞元自動化布局合成

研究生 : 賴建丞 指導教授: 李毅郎 博士

國立交通大學 資訊科學與工程研究所

摘要

量子點細胞元自動化是一種新式奈米層級上的計算機制，它可以利用在分子

上電子的表面配置來表示二元資訊。一個量子點細胞元自動化實體設計流程包含

了四個步驟：切割、布置、接頭分派以及隧道繞路。因為在量子點細胞元自動化

布局上的線路交點數目會嚴重影響整個量子點細胞元自動化布局設計的複雜

度，這篇論文的重點將放在減少線路交點的佈局合成。在這篇論文裡，量子點細

胞元自動化布局裡的布置問題將會映射到一個有名的問題「多層雙向圖交點最小

化」。而為了解這個問題，我們提出了一個新的啟發示教育法。接頭分派這個步

驟在隧道繞路之前，其用途是為了提供一個合法的接頭分派方式以便接下來的隧

道繞路可以無礙的完成。最後，在隧道繞路這個步驟裡將提出一個名為『打破循

環』的演算法，同樣是為了減少布局上的交點。基於我們的實驗數據，在布置和

隧道繞路這些步驟裡，交點都有顯著的減少程度。我們利用量子點細胞元自動化

設計者 2.0.3 來模擬驗證我們合成出來的布局線路。在我們的實驗裡，有一些標

準線路已經驗證無誤，但有一些標準線路因為硬體的限制而無法驗證完成。

 I

Minimum-Crossing Layout Synthesis for Quantum-Dot Cellular

Automata (QCA)

Student: Chan-Cheng Lai Advisor: Dr. Yih-Lang Li

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Quantum-dot cellular automata (QCA) is a novel nano-scale computing mechanism

that can represent binary information based on spatial distribution of electron charge

configuration in molecules. A QCA physical synthesis flow consists of four stages:

partitioning, placement, pin-assignment and channel routing. Because wire crossings

in QCA layout increase the complexity of circuit layout design, this work focus on

minimizing wire crossings of the circuit under synthesis. In this paper, the problem

of QCA placement is mapped to a famous problem “k-layer bigraph crossing

problem” and a new heuristic is developed for this problem. Pin assignment stage is

prior to channel routing stage, which provides a legal pin assignment for the following

channel routing stage. Finally, a new cycle breaking algorithm to reduce wire

crossings in channel routing stage is presented. Based on our experimental results,

placement and cycle breaking obtain good crossing reduction. We also simulate our

circuit by QCA Design 2.0.3 and obtain correct simulation result and other benchmark

circuits does not have simulation result since they are too large to complete simulation

in time.

 II

誌謝

 我衷心的感謝我的指導教授 : 李毅郎博士，感謝他這兩年多來耐心的指導

以及在這次研究上多次深入的討論。因為教授他的啟發才讓我能順利完成這篇論

文。同時我也要感謝我們實驗室的同學和學長：建毅、新育、文彬、穎樹、鵬洋

和孟欣，因為他們的協助，讓我的研究順利了許多。也謝謝室友們：士政、琮義

以及欣泓的幫忙，謝謝你們在我研究發生瓶頸時給予的提攜。也感謝

QCADesigner 的作者群們，你們的意見對我很有幫助，感謝你們。

 最後，我要將這篇論文的完成歸功與一直在我背後支持我的家人，因為他們

長期的耐心和鼓勵，才有這篇論文的出現。

 III

Contents

Abstract (in Chinese)………………………………………………………….……….I

Abstract(in English)………………………...II

Acknowledgements…………………………………………………………………..III

List of Figures………………………………………………………………………..VI

List of Tables………………………………………………………………………...VII

1 Introduction ……………………………………………………………………...1

2 Preliminary…...4

 2.1 QCA basic……..4

 2.2 QCA logic devices……………………………………………………………5

 2.3 The QCA clocking………………………………………………...………….8

 2.4 The timing rule……………………………………………………………...10

3 Problem Formulation……………………………………………………...……11

 3.1 Synthesis model……………………………………………………………..11

 3.2 Problem formulation of partitioning………………………………………..12

 3.3 Problem formulation of placement……………………………….................13

 3.4 Problem formulation of pin assignment…... ……………………………….13

 3.3 Problem formulation of channel routing…... ………………………………13

 IV

4 Algorithm………………………………………………………………………….14

 4.1 Partitioning………………………………………………………………….14

 4.2 Placement……………...…………………………………………………....18

 4.2.1 Guided breadth-first search……………………………………………….18

 4.2.2 Multilevel guided breadth-first search……………………………………19

 4.2.3 Adaptive insertion method………………………………………………..23

 4.3 Pin assignment………………………………………………………………26

 4.3.1 Greedy pin assignment……………………………………………………26

 4.3.2 Pseudo routing…………………………………………………………….28

 4.4 Channel Routing…………………………………………………………….28

 4.4.1 Overview………………………………………………………………….28

 4.4.2 Doglegging………………………………………………………………..29

 4.4.3 Crossing edge insertion…………………………………………………...29

 4.4.4 Cycle break………………………………………………………………..30

5 Experimental Result………………………………………………………………34

6 Conclusions………………………………………………………………………42

Bibliography………………………………………………………………………...43

 V

List of Figures

2-1 Basic QCA cell…………………………………………………………………..4

2-2 QCA Wire………………………………………………………………………..5

2-3 QCA Inverter…………………………………………………………………….5

2-4 QCA Majority Gate……………………………………………………………...6

2-5 Coplanar Wire Crossing…………………………………………………...…….7

2-6 QCA wire crossing realized by multilayer notation………………......................7

2-7 The four clocking phase of QCA………………………………………………..9

2-8 Time rule of Majority Gates………………………………………....................10

3-1 Synthesis Model………………………………………………………………..12

4-1 An example of circuit partitioning…………………………………..................15

4-2 An example of level folding……………………………………………………17

4-3 Comparison of different criteria of BFS……………………………………….19

4-4 Another comparison of different criteria of BFS………………………………19

4-5 An example of multilevel guided breadth-first search……………………..21~22

4-6 Adaptive insertion on a simple example………………………………….24~25

4-7 Illustration of wire crossing computation……………………………………...26

4-8 An example of greedy pin assignment…………………………………………27

4-9 Illustration of crossing edge insertion………………………………………….30

4-10 Example of cycle break algorithm………………………………………32~33

4-11 Cycle break algorithm………………………………………………………...34

5-1 C17 circuit……………………………………………………………………...39

5-2 Simulation result of C17 by Modelsim………………………………………...40

5-3 Simulation result of C17 by QCA Designer…………………………………...40

5-4 Simulation result of C432 by QCA Designer………………………………….41

5-5 Simulation result of C432 by Modelsim……………………………………….41

 VI

List of Tables

1 Circuit statistics for QCA Synthesizer…………….……………………………..35

2 QCA placement results…………………………………………………….……..36

3 Memory usage and time usage of algorithms…………………………………….37

4 Compare our placement algorithm with conventional algorithms……………….37

5 Comparison of wire crossing value to the theoretical lower bound……………...38

 VII

Chapter 1
Introduction

The progress of CMOS technology has already brought the spectacular success of

microelectronics industry. Traditional advancements of CMOS technology are always

based on modifying and scaling paradigm and encourage magnitude of feature size and

packing density to change rapidly over time. The number of devices integrated on a

single die doubles about 18 months according to Moore’s law. Since 1965, the

manufacturing of integrated circuits has been governed by this scaling speed and as early

as 2012, the physical scaling limit of CMOS transistor may be reached and future

aggressive packing of device will be impossible. If advancement in chip performance

dominates further miniaturization, we must escape from the notation of current

architectures and learn to develop new paradigms even though current standard paradigm

has been significantly improved by recent advances, and molecular transistor may be

practical in the near future.

One such paradigms [1], Quantum-dot cellular automata(QCA) , first proposed in the

early 1990s , which is followed by other studies in [2-5] A cell composed of four

quantum “dots” encodes useful binary information by its charge configuration. A dot is

simply a region where charge is localized. Each cell has two extra mobile electrons

located at diagonal position and the other two empty dots are recorded as null state. The

current state of a cell is influenced by the electrostatic effect of neighboring cells and

results in a fixed state “1” or “0”.

 1

QCA cells composed of metallic dots operating at cryogenic temperature have

already demonstrated by recent experiments. [4][6][7] Devices such as majority logic

gate, QCA binary wire, and a single-bit memory have all been experimentally

demonstrated. [8][9]

In order to obtain a more realistic outlook for systems in QCA, for the past seven

years, system-level research component is included in QCA. There are two main goal

of system-level work of QCA. One is as technology mature, in order to provide an

infrastructure for more complex designs, the projections for synthesizable QCA circuits

and the CMOS circuit in the context of the same system-level tasks will be compared.

The other is to develop new architecture and system to help driving device development

to get to work nano system faster.

In the context of the above goals, this paper proposes a physical design flow for

generating computationally interesting, synthesizable QCA circuits. Conventional

physical design problem usually divided into sub-problems of partitioning, placement,

and channel routing. QCA Partitioning problem is first modeled and solved by

A.Antonelli, et al. [10] Their partitioning model , each cell is labeled and distributed

into different level, is similar with previous CA model [11]. They also provided

problem modeling of placement and channel routing problem. Jean Nguyen, et al [12] [13]

propose another problem formulation about QCA placement problem. They divided

placement problem into zone placement and cell placement. Then Smith, et al followed

Nguyen’s result and provided the first QCA channel routing heuristic in [14]. This year,

the method that eliminates all wire crossing of entire layout by duplicating logic resource

is presented in [15].

 2

In this paper, we focus on minimizing QCA wire crossings. Our problem definition

of QCA physic design is mainly followed by A.Antonelli’s formulation. Besides, we

insert another stage － pin-assignment before channel routing. To minimize wire

crossing, we transform the QCA circuit into the k-layer bigraph crossing problem and

provide a heuristic solution for it.[16-19] Our heuristic combines an modified vision of

guided breath-first search that present in [19] with adaptive insertion that proposed by

[20]. Experiment shows our heuristic outperform conventional algorithm in k-layer

bigraph crossing problem in most case, and obtains about 30% crossing improvement

over conventional method. In addition, we provide a new heuristic in solving the

Weighted Minimum Feedback Edge Set Problem of the channel routing stage. Our

heuristic is finished in linear time and the wire crossing results average only 7% above

the theoretical lower bound.

Our QCA layout is synthesized and simulated using QCADesigner [21] [22], a tool

is capable of simulating complex QCA circuits on most standard platforms. We will show

that our synthesis result is correct by comparing to the synthesis result of modelsim,

which is capable of simulating CMOS design.

The remainder of this paper is organized as follows. In chapter 2, we provide a brief

background to QCA technology. In chapter 3, we present our synthesis model and

problem formulation of our physical design flow. In chapter 4, solutions of partitioning,

placement, pin-assignment, channel routing is presented respectively. Chapter 5

presents our experimental results, and we conclude our paper in chapter 6.

 3

Chapter 2
Preliminary

 Before addressing our synthesis algorithm, it is necessary to review some of the

basic property of QCA circuits. This chapter begins with a brief overview of device

physics, and then considers basic logic. Clocking and the time rule will be introduced at

last to ties everything together.

2.1 QCA basic

 QCA is a novel nano device that stores logic states based on the configuration of

electrons location. A quantum cell can be regarded as a set of four dots and those dots are

positioned at the corners of a square. In addition to those quantum dots, the cell contains

two mobile electrons that can mechanically tunnel between dots.

These two electrons are forced to the diagonal corner positions by Coulomb

repulsion. The two possible polarization states represent logic “0” and logic “1”, as

shown in Figure 2-1.(This figure comes from[10]) Unlike traditional logic, information is

transferred with Coulomb iteration between QCA cells and the QCA device is worked by

spreading the state of one cell to the state of its neighbors. Hence in a QCA circuit,

interconnection is the same as logic manipulation. Power dissipation in QCA circuits is

relatively low compared with conventional CMOS circuit.

Figure 2-1 Basic QCA cell

 4

2.2 QCA logic devices

 The basic QCA logic devices include a QCA wire, QCA inverter, and QCA majority

gate, will be described below.

 QCA Wire: Figure 2-2 shows a QCA wire, owing to electrostatic interactions

between cells, the binary information transmits from input to output. The wire

propagation direction is shown in the figure. In addition to 90˚ QCA wire, QCA wire also

used 45˚ QCA cell. In 45˚ QCA wire, cells alternates between the two polarizations to

complete the propagation of binary information.

Figure 2-2 QCA Wire

QCA Inverter: A QCA inverter is shown in Figure 2-3. Cells oriented at 45˚ to its

all driving cell would be resulted in opposing polarization. This phenomenon is used to

create the inverter shown in the figure.

Figure 2-3 QCA Inverter

 5

QCA Majority Gate: The function of a QCA majority gate is a three-input logic

function. Assuming A, B, and C are the inputs, the logic function of this majority gate

would be

 M (A, B, C) = AB + AC + BC

 A QCA majority gate is shown in Figure 2- 4. Computation is performed by driving

the device cell to its lowest energy state, which will occur when the polarization of the

three input cells is fixed.

By fixing the polarization of one input cell to the QCA majority gate as -1 or 1, and

the QCA majority gate functioned as AND gate or OR gate respectively, as follows:

 M(A , B , -1) = AB

 M(A , B , 1) = A + B

Figure 2- 4 QCA Majority Gate

 QCA Wire Crossing: The traditional way to handle wire crossing in QCA layout is

coplanar wire crossing. Figure 2 - 5 shows this way. In this example, the horizontal line

is transmitting a zero and the vertical line is transmitting a one. In order to cross the line,

the horizontal wire must be converted from 90˚ cells to 45˚cells. This horizontal wire of

45˚ cells can transmit information that horizontal line holds completely. When vertical

 6

line come across the horizontal wire of 45˚ cells, polarization of cell B is both influenced

by cell A and cell C. Owing to polarization of cell A is stronger than that of cell C, cell B

will be polarized as cell A. Coplanar wire crossing is not a robust way to handle layout

with complicate wire crossings. Recently, in need of coping with complex circuits;

some work has examined the multi-layer QCA. [23] On such kind of multi-layer QCA

cells, vertical connection is by stacking cells on top of another. Signals can transmit to

another layer where the signals can again transmit horizontally. For this reason, wire

crossing can be realized in multi-layer QCA cells in the way as in Figure 2 - 6.

Figure 2-5 Coplanar Wire Crossing

Figure2-6 QCA wire crossing realized by multilayer notation

 7

2.3 The QCA clocking

 The clock in QCA is multi-phased. It plays a key role in controlling the QCA logic

functionality. To have active computation, signals must pass through clocking zones,

which is the area where the computation is happened. These clocking zones are the

successive sequence of QCA logic devices. The clocking zones create the electric field

which control the lowering and rising of the potential barriers that decides the free

electrons to tunnel or not. The computation between clocking zones would proceed in the

sequential order. When a computation is occurring in a particular clocking zone, the

clocking zone before this clocking zone must hold its cell states steady, and no

computation is allowed by the clocking zone after this clocking zone.

 8

 QCA’s clock was first characterized by Lent, et al. as having 4 phases as shown in

Figure 2-7. During the switch phase, QCA cells begin unpolarized and their interdot

electrons are in degenerate state. The electron potentials are then raised during the switch

phase and the QCA cells eventually become polarized depending on the state of their

input cell. In this clock phase, the actual computation (or switching) occurs. At the end of

this clock phase, no electron tunneling is allowed because the electron potentials are high

enough to suppress all the electron tunneling and cell states are fixed. Electron potentials

are held high during the second phase, hold phase. The outputs of this clocking phase can

be used as input to next clocking phase. In the release phase, electron potential is lowered

and cells become unpolarized again. Cells remain in an unpolarized state during the

fourth phase, relaxed phase.

Figure 2-7. The four clocking phase of QCA

 9

2.4 The timing rule

The timing rule of QCA circuits is strict and must be obeyed if the circuit is to

function correctly. For majority gates, its input wire and output wire must be both in

different clocking zones separate from the cells in the gate. Figure 2 -8 shows an example

of time rule. Information transfer from one majority gate to another will cross through at

least one clocking zone.

Figure 2-8 Time rule of Majority Gates

 10

Chapter 3
Problem Formulation

Given a combinational circuit and we could represent it as a directed acyclic graph

(DAG). We wish to automatically generate a QCA physical layout that realizes the circuit

using a minimum number of clocking zones, meanwhile minimizing wire crossings and

maximum height of overall circuit. In this chapter we first discuss our synthesis model,

and in order to achieve our multiple phase objectives, we envision our QCA physical

design process as consisting of partitioning, placement, pin assignment and channel

routing. All steps would be formulated in this chapter later.

3.1 Synthesis Model

 In order to obey time rule of QCA layout and avoid logic devices without data

dependency interfere with each other. We propose our synthesis model as Figure 3-1.

QCA circuit is considered as set of levels. One level contains two clocking zones in it,

usually one for wiring, the other one for logic device. Sometimes, both clocking zones

are used for wiring. A level can horizontally partition to several rows and vertically divide

into set of tracks. The height of a row is as large as three cells’ height plus two cell

spacing. Row is used to measure the height of overall QCA circuit and all QCA wire

route in the middle of row will be apart from other QCA logic devices with at least one

QCA cell size. It enables every logic devices not to interfere each other. For the same

season, each track is wide as three cells’ width plus two cell spacing.

 11

 In our model, a QCA wire occupy one row, a QCA inverter take over two rows, and

a QCA majority gate dominate three rows. We will use this measure for the following

partitioning algorithm.

Figure 3-1 Synthesis Model

3.2 problem formulation of partitioning

 This stage divides the input QCA circuit into levels which fit in with the scheduling

constraint and meantime decrease the maximum level height of entire circuit.

 12

3.2 problem formulation of placement

 This stage rearranges the logic devices within their assigned level such that the total

number of edge crossings between adjacency levels is minimized.

3.3 problem formulation of pin assignment

 This stage assigns actual pin position of each logic devices of all levels which must

provide a legal pin assignment for later channel routing stage while simultaneously

minimize the wire length of pin-to-pin connection.

3.4 problem formulation of channel routing

 This stage finishes connection among the pins in every two adjacency levels so that

the total wire crossing is minimized.

 13

Chapter 4
Algorithm

 This chapter states our total flow of QCA layout synthesis. First we partition input

combinational circuit into several levels. Then we transform the circuit into the k-layer

bigraph representation and focus on minimizing the total edge crossings in this graph.

After that we convert this graph to physical circuit representation by pin assignment.

Eventually, we implement our QCA physical layout through channel routing step.

4.1 Partitioning

This section presents our partitioning algorithm, which consists of wire-block insertion,

wire-block fan-out sharing, and level folding steps. In order to construct a valid schedule

constraint, we do wire-block insertion that is putting each logic device into the level

based on the topological ordering of these devices and then inserting wire blocks in all

paths shorter than the longest reconvergent path. Two paths are reconvergent if they have

the same starting device and the same destination device. After wire blocks are inserted

into our circuit, there should be many identical wire blocks in the circuit. To remove

those identical wire blocks, wire-block fan-out sharing is needed. In wire-block fan-out

sharing, we merge those wire blocks which have the same input signal to maximize the

sharing among the fan-outs of a logic device output.

Figure 4-1(a) shows the initial circuit partition with valid scheduling. Figure 4-1(b)

shows the result of wire-block insertion approach, wire blocks are those circle filled with

blue. And as shown in Figure 4-1(c), two wire blocks coming from E are combined into

one.

 14

(a)

(b)

(c)

Figure 4-1. (a) An example circuit partition with valid scheduling; (b) The circuit

partition after wire-block insertion approach; (c) The circuit partition after

wire-block fan-out sharing approach.

 15

The algorithm of wire-block insertion is proposed by [11], and we use this algorithm

between different levels.

Algorithm: Wire-block Insertion

Input: A directed graph G (V, E), V is logic device and E denote data dependency

between devices.

Begin

 n = E.pop();

S denotes the source vertex of E;

T denotes the destination vertex of E;

D = level (T) – level (S);

 if (D is bigger than one)

 Create new wire-blocks g1 , g2 , … , gD-1 and add them into G ;

 for (each new wire-block)

gn-1 = parent(gn);

gn = child(gn-1);

level (gn) = level(gn-1) + 1;

S = parent (g1);

T = child (gD-1);

End

In this algorithm, we traverse edges one by one in the graph. For a given edge, if

its two endpoints are not on the adjacent levels, a series of new wire-blocks are added

between the two endpoints. These wire-blocks form a connection for the two terminals of

this edge.

 After wire blocks are inserted and fan-out sharing is finished, we calculate the height

 16

of each level. The heights of all levels are uniformed by level folding. We first calculate

the average height of all levels and set a value of little higher than the average height as

the maximum height among all levels. Therefore, the height of some levels may exceed

the maximum height. We can reduce the height of those levels by folded those level

into two or more levels to satisfy our maximum height constraint. This is done by

inserting wire blocks in place of logic devices and placing these devices into the next

level. A logic device is moved into the next new level only if replacing this device with

wire blocks can decrease the level height. Figure 4-2 shows an example that move a logic

device to a new level and the level height is decreased from 12 to 8. After level-folding is

completed, we perform fan-out sharing again to guarantee no identical wire blocks exist.

Figure 4-2. An example of level folding

 17

4.2 Placement

This stage reorders the logic devices level by level to minimize the wire crossing

between logic devices. Placement algorithm involves multilevel guided breadth-first

search and adaptive insertion. First, multilevel guided breadth-first search method is

performed to get an initial placement. Then, placement refinement is achieved by

performing adaptive insertion on each adjacent level from the last level to first level. The

result of adaptive insertion is tentative and the reduction value for crossing number on

each level is stored. Scanning from rightmost level toward left, a series of levels are

selected for realizing placement such that this series of levels have maximum total

number of crossing reduction.

4.2.1 Guided breadth-first search

Guided breadth-first search is first proposed by [19]. The main breadth-first search is

preceded by another breadth-first search whose function is to find out the longest path in

the graph. After the longest path is identified, the main search begins at on end of this

path and continuing attaches all other shorter paths at any branch point.

 At first search, we calculate height[v], the distance form the root for each node v, and

also record the depth[v], maximum value of height[u] achieved by any descendant u of v

in the breadth-first search tree. Then at main search, the node s for which depth[s] is

maximum will be the beginning node of this search. The reason that we select node s to

be the begging node of the main search would be illustrated as Figure 4-3. In Figure

4-3(b), BFS starting from an end point of a path results in no edge crossing in the graph.

This result is better than the result shown in Figure 4-3(a). When one node k has two or

more children, we traverse its children ki by increasing order of depth [ki] and ties are

 18

broken by traversing the node with larger height [ki] first. We would illustrate this in

Figure 4-4. In Figure 4-4(a), we complete our BFS traversal with smaller depth[v] first,

and complete the traversal with larger depth[v] first in Figure 4-4(b). As shown in graph,

traversing with smaller depth[v] first results in less edge crossing. While main search is

finished, a series of numbers are assigned to each node based on the order of visitation in

the main search. And we use these numbers to rearrange nodes on each level of the graph.

 (a) (b)

Figure 4-3. (a) BFS starting not from a end point (b) BFS starting from a end point

(a) (b)

Figure 4-4. (a) BFS traversal order with smaller depth[v] first (b) BFS traversal

order with larger depth[v] first

 19

4.2.2 Multilevel guided breadth-first search

 In our heuristic, we would like to minimize total offset between levels. Thus we apply

guided breadth-first search to entire circuit, i.e. all logic devices are traversed in this

search. In the first search, current traversed node will collect the neighbor nodes in the

pre-level first and then collect nodes in the post-level. This method could provide an

initial placement that the longest path (or largest component) of the graph will be

decomposed from this circuit first and shorter path (or smaller component) of the graph

start to attach to the largest component. And if there are several disjoint component in this

graph, those components will separate from each other. We would illustrate multilevel

guided breadth-first search through Figure 4-5(a) to Figure 4-5(d).

Figure 4-5(a) shows a 4-level bigraph with initial presentation. We select node A as

the seed for the first breadth-first search and result is shown in Figure 4-5(b). In Figure

4-5(b), depth number is listed aside the node, for instance, depth number of node A is

seven. Figure 4-5(c) shows the result of the main breadth-first search. In this graph,

node L has three children T, Q, G. Because depth (T) < depth (Q) < depth (G), we traverse

these nodes in the order of T, Q and G. Figure 4-5(d) is the placement of multilevel

guided breadth-first search. All nodes are sorted by the increasing order of the number

listed by Figure 4-5(c).

In our example of multilevel guided breadth-first search, there are 18 wire crossings

in the initial presentation. After applying multilevel guided breadth-first search, only 8

wire crossings remain in the graph, in other words, 10 wire crossings is reduced in the

graph after multilevel guided breadth-first search.

 20

(a)

(b)

 21

(c)

(d)

Figure 4-5. (a) An example of the initial placement of a 4-level bigraph; (b) The first

breadth-first search result of (a), number aside the node is the depth of this node; (c)

The main breadth-first search result of (a), numbers aside the node is the visitation

of the main search; (d) Placement after multilevel guided breadth-first search, nodes

in a level is sorted by numbers in (c).

 22

4.2.3 Adaptive Insertion method

 Local search [20] is a popular way to improve solutions in bigraph crossing problem.

Repeat simple operation on the current ordering until no instance of the operation would

improve reducing number of crossings. An example of an operation is neighbor swapping,

which is swapping nodes (at position) i and i + 1 on level l. Such operation would be

repeated until no choice of i could decrease the number of crossings.

Adaptive insertion is a kind of local search based on neighbor swapping in the way:

each operation inserts a node at any position among other nodes on its level, and each

node is inserted mostly once during a pass. Assume node i is inserted before node j,

where j < i , The resulting cost change, Dl(i,j) , is ─ the effect of the

insertion is that of a succession of swaps of node i with node j , j + 1, … , i -1. The

condition node i is inserted after node j is similar with the resulting cost change D

∑
=

),(
jk

l kiD
−1i

−1j

l(i,j) =

. ∑
+= 1

),(
ik

l kiD

In our heuristic, one pass of adaptive insertion does a bottom-to-top sweep of logic

devices on a level l. Devices are not allowed to stay in place even if no insertion would

decrease the number of crossings. If device i is already inserted in a pervious operation,

node i is marked and it is not selected any more during the remainder of the current pass.

To illustrate one pass of adaptive insertion, we use an example starting from Figure

4-6 (a) to perform a series of node swapping. The first node we selected to perform

inserting operation is node a. Figure 4-6(b) shows the best position for node a is to

insert it above node d, yielding a decrease of two. The next unmarked node is b. Node

b is forced to move and finds its best position is below node d as shown in Figure 4-6(c).

 23

After moving node b, the total crossings number is increase by one. Next we select

node c as our seed to do operation. Node c will be placed above node b and gain a

crossing reduction of one as shown in Figure 4-6(d). Next operation is swapped node a

and node d with no change in number of crossings. Finally node e is placed to uppermost

position as shown Figure 4-6(f) with total wire crossing number of eight.

(a) (b)

 (c) (d)

 24

 (e) (f)

Figure 4-6. Adaptive insertion on a simple example

To finish adaptive insertion is time-consuming because we should compute variations

of wire crossings after every node swapping. Thus we use the adjacency matrix to

compute the number of wire crossings to save the computing time.

In a bipartite graph, there is a wire crossings between two layers x and y if xi connects

to ym , xj connects to yn and xi < xj , ym > yn where i , j , m , n denotes the relative

positional ordering of the nodes. In terms of an adjacency matrix, this can be considered

as if point (i,j) is included in the lower left sub-matrix of (m,n) or vice versa. Therefore

the total crossing is computed by adding the product of every matrix element and the sum

of its left lower sub-matrix entries. Because this is very computational expensive, we

implement it with the incremental wire crossing method proposed by [13] instead of

computing the matrix directly. Figure 4-7 shows an instance of wire crossing

computation .In this method, we firs calculate the row-wise sum of all entries as in Figure

4-7(c). Then we compute the column-wise sum of this row-wise sum matrix as in Figure

4-7(d). Finally, we calculate the sum of all the entries(r,c) in the original matrix by the

entries (r + 1, c - 1) in the column-wise sum matrix to obtain the total wire crossing.

 25

Incremental wire crossing method enables us to perform node insertion without

computing wire crossing individually. In stead, we just update the value of rows after

every operation to get the total number of wire crossings.

Figure 4-7 Illustration of wire crossing computation. (a) given graph, (b) initial

adjacency matrix, (c) row-wise sum, (d) column-wise sum.

4.3 Pin assignment

 This section presents our pin assignment algorithm, which consists of greedy pin

assignment and pseudo routing steps.

4.3.1 Greedy pin assignment

 In this step, we assign the input pin positions of all device blocks from the device on

topmost position of the level to the device on bottommost position of the level. Then if

there are some empty rows below all device blocks in this level, we begin to move device

block from bottom to top of this level to their best position. The best position of the

device block is the position that makes wire length of pin-to-pin connection of the device

minimized. Sometimes, best position of a device block is not unique. In such condition,

we would shift this device block to the bottommost best position for the reason that

preserve most moving space for other device blocks. If best position of a device block

is already occupied by other devices, this device block would be placed to an unoccupied

 26

position that is closest to best position. We would illustrate this step from Figure 4-8(a)

to Figure 4-8(g)

(a) (b) (c) (d)

(e) (f) (g)

Figure 4-8. An example of greedy pin assignment

 In Figure 4-8(a), the left side is the fixed level (pins are already assigned); right side

is the device set of the variable level. Figure 4-8(b) shows the initial pin assignment of

the variable level. Because three empty rows remain in this level, we begin to shift

devices from E to A to their best position. In Figure 4-8(c), device E is shifted to its best

position. Then we can notice that the best position of device D was occupied by device E

 27

already, thus we place it to the position closest to best position as shown in Figure 4-8(d).

Other devices above device D is able to shift to the best position, Figure 4-8(e-g) show

those results.

4.3.2 Pseudo routing

 After greedy pin assignment, there may be still some unroutable nets. A net is

unroutable if it forms a cycle in vertical constraint graph and can’t resolve this cycle by

doglegging. We would verify such case exists or not by pseudo routing. When an

unroutable net is found, we would insert a new row into this level or slightly shift the

position of pins nearby the pin of this unroutable net to make this net routable. Pseudo

routing will be repeated until no unroutable nets found in our pin assignment results.

4. 4 Channel Routing

 This stage will finish the wire routing inside every level. Although in our synthesis

model, level is a horizontal column, in this section we would like to lie down all levels as

Figure 4-9. This is because channel routing like Figure 4-9 is a well-known form of

channel routing.

4.4.1 Overview

We would finish the wire routing for each level in 5 steps. First, the level pins are

scanned from left to right, and the VCG is constructed (step 1). Since there can’t be any

cycle existed in VCG, cycles in the VCG are removed by doglegging (step 2). Once the

VCG is acyclic, we would add crossing edges to VCG to reduce wire crossing (step 3). If

cycles exist in the VCG, minimal weighted crossing edge set are removed and to make

VCG becoming acyclic again (step 4). Eventually, we apply the LEF algorithm to assign

 28

track to each net and finish routing of this level. Channel routing process is applied to

every level to implement entire circuit.

4.4.2 Doglegging

 Doglegging is to split of horizontal segments of a net. This is used, not only to

remove cycles in the VCG, but also used to minimize the number of horizontal tracks. We

can apply DFS to determine whether VCG contains cycles or not. Once a cycle is found,

the net in this cycle is divided into several subnets and a vertical dogleg is inserted. Each

of these subnets is created and added into the VCG to remove these cycles.

4.4.3 Crossing edge insertion

It’s clear that wire crossing can only occur between nets which overlap horizontally.

And the number of wire crossings between any arbitrary pair of horizontally overlapping

nets is strongly influenced by their vertical ordering.

Therefore, in order to reduce crossing, we use the notation “crossing edges” which

is first proposed by [14], between nets in the VCG. In order to drive those horizontally

overlapping nets to form the vertical relationship which results in the minimum number

of crossing between them. Each crossing edge is a directed edge and assigned a weight

that determines the number of wire crossings saved by placing the net that denotes the

source point above the net that denotes the destination point.

For example, consider Net 1 and Net 2, which overlap horizontally in Figure 4-9.

Figure 4-9(a) shows if Net 1 places above Net 2 then they will crossover three times. But

 29

if Net 1 places below Net 2 as shown in Figure 4-9(c), there is only one crossing between

them. Therefore, we modify VCG shown in Figure 4-9(b) to Figure 4-9(d). Crossing edge

sources form Net 1 is weighted by two and points to Net 1. Figure 4-9(c) is the result

channel routing of VCG shown in Figure 4-9(d) which is the fewest wire crossings.

 (a) (b)

 (c) (d)

Figure 4-9. (a-b) A channel and VCG with minimum channel width. (c) Optimum

solution for minimizing wire crossing. (d) Modified VCG with inserting crossing

edge.

4.4.4 Cycle break

 As stated in previous section, the weight of crossing edges determines the number of

wire crossings reduction. Hence if VCG is acyclic after crossing edge insertion, we

preserve all crossing edges to obtain a result with minimum wire crossings. Otherwise, if

 30

VCG is not acyclic after insert crossing edges, the cycles must be removed before track

assignment begins. Because if we reserve the crossing edge set with higher total weight,

the result of channel routing has fewer wire crossings. Our goal is to find a set of crossing

edges A⊂E with the minimum total weight such that G – A is acyclic.

 Since a acyclic directed graph has a topological ordering, we develop our cycle

break algorithm as shown in Figure 4-11. The main idea of our algorithm is to enforce a

topological ordering of VCG and remove all violating edges that violate this topological

ordering, i.e. edge start from the vertex with larger order to the vertex with smaller order.

Therefore our goal is to find a topological ordering of VCG that has the violating edges

set with minimum total weight.

In our algorithm, we prune the vertices which have no outward edges first because

these vertices wouldn’t introduce any violating edges if we place them in the tail of

topological ordering list. Then we calculate the cost of the candidate vertex that has no

inward vertical constraint edge. Cost of candidate vertex determines that if we want to

break a cycle, how many crossing reduction we would lose. Thus we pick the vertex with

lowest cost into the front of topological ordering list and update VCG. After update VCG,

if any vertices which have no outward edges exist, we would prune them as the reason

stated above. When the list of topological ordering is completely formed, we start to

traverse this list from the begging to record all violating edges. Because VCG is a

directed graph, not all violating edges introduce a cycle; each violating edge must be

verified. If this violating edge actually introduces a cycle, we remove it form VCG,

otherwise we would preserve it. For example, Figure 4-10(a) is a cyclic VCG. We first

prune vertex that has no outward edge in the order of H, A, G. Figure 4-10(b) shows the

result after pruning. In Figure 4-10(b), vertex I, E, and J is candidate vertex and vertex J

 31

has the lowest cost of 1. Therefore, we remove J form VCG and Figure 4-10(c) shows

this result. In Figure 4-10(c), vertex E has the lowest cost of 3/2, thus vertex J would be

the next node removes from the graph. When all vertices are removed form the graph, a

topological ordering would be developed. In Figure 4-10(d), such topological ordering

is shown below the graph and violating edge is colored with blue. In this example, all

violating edge actually introduces a cycle. Consequently, all violating edge must be

removed. Final result is shown in Figure 4-10(e).

 (a) (b)

 (c) (d)

 32

 (e)

Figure 4-10. Example of cycle break algorithm

 33

Algorithm: Cycle Break

Input: A cyclic directed graph G(V , E)

output: A acyclic directed graph G＇(V ＇, E＇) = G(V , E – A)

Begin

 Repeat

 remove all vertices of G which has no outward edges from G；

push those vertices to a stack SQ；

 Until (all vertex of G has at least one outward edge)

 Repeat

 if(vertex Vi has no inward vertical constraint edge)

 Cost(Vi) = Vi of edges crossing outward ofNumber
Vi of edges crossing inward of weight Total

 Select a vertex Vt with lowest cost , remove Vt form G；

 Insert Vt into a list LQ；

 if(G exists vertices which has no outward edges)

 Remove those vertices from G and push them to SQ；

 Until no more vertices in G

 while(SQ is not empty)

 Pop vertex form SQ and insert this vertex to LQ；

All Edges in LQ that violate topological ordering of LQ and results in a cycle of

VCG will be removed from VCG；

End

Figure 4-11 Cycle Break Algorithm

 34

Chapter 5
Experimental Results

Our QCA synthesizer was implemented in C++/STL and complied with Borland

C++ Builder running on 2.4 GHz Pentium 4 PC with 256 RAM. Ten combinational

circuits were selected from ISCAS85 benchmark. Table 1 shows these circuit and report

their functionality.

 35

Table 2 shows the edge crossing results after placement stage. We list our algorithm

in two ways: with or without adaptive insertion and compare our results with

conventional placement algorithm: barycenter ordering and median ordering. Each entry

list in Table 2 is the value of total edge crossings. Our placement algorithm was

outperformed conventional placement method in most cases except for C432. We

conclude the memory usage and time usage of these algorithms in table 3. In table 4,

we normalize our algorithm results with results of conventional method in addition to

C17 and C432. In comparison, the method present here obtains average 27% crossing

improvement over barycenter ordering and 38% crossing improvement over median

ordering. Even without adopting adaptive insertion, improvement over barycenter

ordering and median ordering is still obtained.

 36

 37

In our physical design flow, pseudo routing stage would check unroutable net

existed or not and expand the height of the level. This is harmful to the area size of QCA

layout. Fortunately, those unroutable net are rarely seen in the circuit. In our experiment,

there were at most 2 expanded rows in a circuit.

In table 5, we compare our channel routing result based on our placement method

with or with adaptive insertion to the theoretical lower bound. The theoretical lower

bound of wire crossing for each circuit is equal to the sum of the minimum values of wire

crossing for each pair of nets. Our channel routing heuristic result in average wire

crossing only 7 ~ 8% above the theoretical lower bound.

 38

Figure 5-1 shows our synthesis result of C17 circuit, and Figure 5-3 shows its

simulation result. We simulate our C17 circuit with 96000 samples, converge tolerance

was set to 0.0001; radius of effect was set to 40.0 nm and at moat 1000 samples per

iteration is allowed. In our synthesizer, C17 circuit is divided into 10 clocking zone, i.e.

22 1 QCA clock period. Thus there were 22 1 volatile output values before

simulation output of the first input pattern. We mark those volatile output values by red

rectangle in Figure 5-3.

To verify our simulation result, we simulate C17 circuit with the same input patterns

with Modelsim and the result was shown in Figure 5-2. There were no different output

values comparing of Figure 5-2 and Figure 5-3. In other word, our C17 circuit was

correctly synthesized.

Figure 5-1 C17 circuit

 39

Besides C17 circuit, we also verified C432 circuit with 100 random selected patterns.

Figure 5-4 shows the simulation result of QCA Designer and Figure 5-5 shows the

simulation result of Modelsim. Differing form simulating C17 circuit, we simulated each

input pattern 25000 samples to obtain the correct simulation result. In C432 circuit,

there were 18 volatile output values because there were 72 clocking zones in our C432

circuit. Due to the limitation of hardware resource, we didn’t verify other synthesis circuit

in ISCAS85.

Figure 5-2 Simulation result of C17 by Modelsim

Figure 5-3 Simulation result of C17 by QCA Designer

 40

Figure 5-4 Simulation result of C432 by QCA Designer

Figure 5-5 Simulation result of C432 by Modelsim

 41

Chapter 6
Conclusions

In this paper we describe a physical design flow of QCA layout synthesis and wish

to help generating synthesizable QCA circuits. From the experimental test, we found out

wire crossing were strongly influenced the correctness of QCA circuit functionality. For

this reason, we focus on generating QCA layout with minimum wire crossings. QCA

layout of ISCAS benchmark circuit C17 and C432 were synthesized and verified

functionality successfully.

 42

Bibliography

[1] Craig S.Lent, P. Douglas Tougaw, and Wolfgang Porod. “Quantum Cellular

Automata.” Nanotechnology 4, 49 , 1993.

[2] Michael T. Niemier. “Designing Digital Systems in Quantum Cellular Automata.” MS

CSE Thesis, University of Notre Dame, 2000.

[3] Michael T. Niemier and Peter M. Kogge. “Exploring and Exploiting Wire-Level

Pipelining in Emerging Technologies.” ISCA, 2001.

[4] Islamshah Amlani, Alexei O.Orlov, Geza Toth, Gary H. Bernstein, Craig S. Lent,

Gregory L. Snider. “Digital Logic Gate Using Quantum-Dot Cellular Automata”. Science

Vol 284 pp. 289 – 29, 1999.

[5] Gary H. Bernstein, “Quantum-dot cellular automata: computing by field polarization”,

Proceedings of the 40th conference on Design automation, 2003.

[6] A.O.Orlov I. Amlani, G.H. Bernstein, C.S. Lent, and G.L. Snider, “Realization of a

Functional Cell for Quantum-Dot Cellular Automata”, Science Vol. 277, pp. 928, 1997.

[7] G. L. Snider , A.O. Orlov, I. Amlani, X. Zuo, G. H. Bernstein, C. S. Lent, J. L. Merz,

W. Porod, “Quantum-dot cellular automata: Review and recent experiments” , Journal of

Applied Physics , Vol. 85, No. 8, pp. 4283-4285 , 1999.

[8] Tougaw, P. Douglas; Lent, Craig S.” Logical devices implemented using quantum

cellular automata”. Journal: Journal of Applied Physics, Volume75, Issue 3,

pp.1818-1825, 1994.

 43

[9] D. Berzon, T.Fountain , “Computer Memory Structures using QCAs”, Report

No.98/1.

[10] Dominic A. Antonelli, Danny Z. Chen, Timothy J. Dysart, Xiaobo S. Hu, Andrew B.

Kahng, Peter M. Kogge, Richard C. Murphy, Michael T. Niemier “New ideas in

placement: Quantum-Dot Cellular Automata (QCA) circuit partitioning: problem

modeling and solutions” Proceedings of the 41st annual conference on Design

automation , 2004.

[11] Yih Lang Li and Cheng Wen Wu, “Cellular Automata for Efficient Parallel Logic

and Fault Simulation ," IEEE Trans. Computer-Aided Design, Vol. 14, no. 6, pp. 740-749,

1995.

[12] J. Nguyen, R. Ravichandran, S.K. Lim, M. Niemier , “Global placement for

quantum-dot cellular automata based circuits” Technical Report GIT-CERCS-03-20,

Georgia Institute of Technology ,2003.

[13] Ramprasad Ravichandran, Sung Kyu Lim, Mike Niemier , “Automatic cell

placement for quantum-dot cellular automata” INTEGRATION , the VLSI journal , pp.

541-548, 2005.

[14] Brian Stephen Smith, Sung Kyu Lim “QCA channel routing with wire crossing

minimization.” ACM Great Lakes Symposium on VLSI, pp. 217-220 , 2005.

[15] Ramprasad Ravichandran, Mike Niemier, “Eliminating Wire Crossings for
Molecular Quantum-dot Cellular Automata Implementation.” ICCAD 2005

 44

[16] Eade, P. and Whiteside S. “Drawing graphs in two layers.” Theoretical Computer

Science 131, pp.361-374, 1994

[17] Matusewski, C. Schonfeld , R., and Molitor, P. “Using sifting for k-layer straightline

crossing minimization” Proc. 7th Graph Drawing Conference , Number 1731 in LNCS ,

pp.217-224, 1999.

[18] Schonfeld, R., Gunter, W., Becker, B., and Molitor, P. “K-layer straightline crossing

minimization by soeeding up shifting.” Proc. 8th Graph Drawing Conference, Number

1984 in LNCS, pp.253-258, 2000.

[19] Matthias Stallmann, Franc Brglez, Debabrata Ghosh, “Heuristics, Experimental

Subjects, and Treatment Evaluation in Bigraph Crossing Minimization”, Journal of

Experimental Algorithmics , 2001.

[20] Kernighan, B. W. and Lin, S. “An efficient heuristic procedure for partitioning

graphs.” Bell System Technical Journal, pp. 291-307, 1970.

[21] Walus, K.; Dysart, T.J.; Jullien, G.A.; Budiman, R.A. “QCADesigner: a rapid design

and Simulation tool for quantum-dot cellular automata”, Nanotechnology, IEEE

Transactions on Volume 3, Issue 1, pp.26 – 31 , 2004.

[22] G. Toth, "Correlation and coherence in quantum-dot cellular automata", Ph.D. Thesis,

University of Notre Dame, pp. 56-63, 2000.

[23] A. Gin, P. D. Tougaw, and S. Williams. “An alternative geometry for quantum-dot
cellular automata”. J. Appl. Phys., 85(12):8281–8286, 1999.

 45

