Pﬁgmﬁilﬁ |;3Ei T ﬂi};ﬁ;{“ B
L
W L p B itE B L

Minimum-CrossingiLayout Synthesis for

Quantum-Dot Cellular Automata (QCA)

4o dgaE sk

hErE: FRNEL

PEARY e gL



Bl REBNEFBEmE A p B E B LR

Minimum-Crossing Layout Synthesis forQuantum-Dot Cellular Automata

(QCA)

Fyd dgaEk Student : Chan-cheng Lai

iR F0E L Advisor : Dr. Yih-Lang Li

SEREIRE
FAg ey o

L~

A-Thesis
Submitted to Institute of Computer and Engineering
College of Computer Science
National Chiao Tung University
In partial fulfillment of the Requirements
For the Defgree of
Master

in

Computer and Information Science
Nov 2005

Hsinchu, Taiwan, Republic of China

i ] i - 7]



Bl REEN R S BLmr A B E B L&A

Fydo diEs th R FEw L

W22l ~§ FApFeajesey

T @EHS R TR RE A R BRGE SRR,

e
sﬂb
%
e
o
P
&
ot
b
-

Fh L AE B § IR PERE S e B R R i e
©ha o ¥ E BRI B LEEGRE S AiThwm YA 2T B
AR ARt B R T - B LR S e B B
fye @ 50 fREB A AP/ - BATRLE TRV E B A IRETBH
TR MR T B A5 - B AR R AR R R
R LEFAE N o Bt AR MRS B IR D - B TRl
By i E i PR TR E R B AN A PP Rl AP B e
R MERL TR ) I LR R O O ARR o AP £ 3 Bhlwi g F
R F 2.0.3 RERHEA T & = N R H AL AP R R § - R

BRpLe SHRFLF L) - BFREREF]ZAWDUH D REZHRFER S -

N



Minimum-Crossing Layout Synthesis for Quantum-Dot Cellular
Automata (QCA)
Student: Chan-Cheng Lai Advisor: Dr. Yih-Lang Li
Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Quantum-dot cellular automata (QCA) is a novel nano-scale computing mechanism
that can represent binary information based on spatial distribution of electron charge
configuration in molecules. A QCA physical synthesis flow consists of four stages:
partitioning, placement, pin-assignment and channel routing. Because wire crossings
in QCA layout increase the complexity of .circuit layout design, this work focus on
minimizing wire crossings of the circuit-under synthesis. In this paper, the problem
of QCA placement is mapped “to..a famous problem “k-layer bigraph crossing
problem” and a new heuristic is developed for this problem. Pin assignment stage is
prior to channel routing stage, which provides a legal pin assignment for the following
channel routing stage. Finally, a new cycle breaking algorithm to reduce wire
crossings in channel routing stage is presented. Based on our experimental results,
placement and cycle breaking obtain good crossing reduction. We also simulate our
circuit by QCA Design 2.0.3 and obtain correct simulation result and other benchmark
circuits does not have simulation result since they are too large to complete simulation

in time.
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Chapter 1
Introduction

The progress of CMOS technology has already brought the spectacular success of
microelectronics industry. Traditional advancements of CMOS technology are always
based on modifying and scaling paradigm and encourage magnitude of feature size and
packing density to change rapidly over time. The number of devices integrated on a
single die doubles about 18 months according to Moore’s law. Since 1965, the
manufacturing of integrated circuits has been governed by this scaling speed and as early
as 2012, the physical scaling limit.'of - CMQOS, transistor may be reached and future
aggressive packing of device will be impossible. If advancement in chip performance
dominates further miniaturization, we-must escape from the notation of current
architectures and learn to develop-new paradigms even though current standard paradigm
has been significantly improved by recent advances, and molecular transistor may be

practical in the near future.

One such paradigms [1], Quantum-dot cellular automata(QCA) , first proposed in the
early 1990s , which is followed by other studies in [2-5] A cell composed of four
quantum *“dots” encodes useful binary information by its charge configuration. A dot is
simply a region where charge is localized. Each cell has two extra mobile electrons
located at diagonal position and the other two empty dots are recorded as null state. The
current state of a cell is influenced by the electrostatic effect of neighboring cells and

results in a fixed state “1” or “0”.



QCA cells composed of metallic dots operating at cryogenic temperature have
already demonstrated by recent experiments. [4][6][7] Devices such as majority logic
gate, QCA binary wire, and a single-bit memory have all been experimentally

demonstrated. [8][9]

In order to obtain a more realistic outlook for systems in QCA, for the past seven
years, system-level research component is included in QCA. There are two main goal
of system-level work of QCA. One is as technology mature, in order to provide an
infrastructure for more complex designs, the projections for synthesizable QCA circuits
and the CMOS circuit in the context of the same system-level tasks will be compared.
The other is to develop new architecture and system to help driving device development

to get to work nano system faster.

In the context of the above goals, this paper proposes a physical design flow for
generating computationally interesting, -synthesizable QCA circuits.  Conventional
physical design problem usually divided into ‘sub-problems of partitioning, placement,
and channel routing. QCA Partitioning problem is first modeled and solved by
A.Antonelli, et al. [10] Their partitioning model , each cell is labeled and distributed
into different level, is similar with previous CA model [11]. They also provided
problem modeling of placement and channel routing problem. Jean Nguyen, et al [12] [13]
propose another problem formulation about QCA placement problem. They divided
placement problem into zone placement and cell placement. Then Smith, et al followed
Nguyen’s result and provided the first QCA channel routing heuristic in [14]. This year,
the method that eliminates all wire crossing of entire layout by duplicating logic resource

is presented in [15].



In this paper, we focus on minimizing QCA wire crossings. Our problem definition
of QCA physic design is mainly followed by A.Antonelli’s formulation. Besides, we
insert another stage — pin-assignment before channel routing. To minimize wire
crossing, we transform the QCA circuit into the k-layer bigraph crossing problem and
provide a heuristic solution for it.[16-19] Our heuristic combines an modified vision of
guided breath-first search that present in [19] with adaptive insertion that proposed by
[20]. Experiment shows our heuristic outperform conventional algorithm in k-layer
bigraph crossing problem in most case, and obtains about 30% crossing improvement
over conventional method. In addition, we provide a new heuristic in solving the
Weighted Minimum Feedback Edge Set Problem of the channel routing stage. Our
heuristic is finished in linear time and the wire crossing results average only 7% above

the theoretical lower bound.

Our QCA layout is synthesized and-simulated using QCADesigner [21] [22], a tool
is capable of simulating complex QCA circuits on.most standard platforms. We will show
that our synthesis result is correct by comparing to the synthesis result of modelsim,

which is capable of simulating CMOS design.

The remainder of this paper is organized as follows. In chapter 2, we provide a brief
background to QCA technology. In chapter 3, we present our synthesis model and
problem formulation of our physical design flow. In chapter 4, solutions of partitioning,
placement, pin-assignment, channel routing is presented respectively. Chapter 5

presents our experimental results, and we conclude our paper in chapter 6.



Chapter 2
Preliminary

Before addressing our synthesis algorithm, it is necessary to review some of the
basic property of QCA circuits. This chapter begins with a brief overview of device
physics, and then considers basic logic. Clocking and the time rule will be introduced at

last to ties everything together.
2.1 QCA basic

QCA is a novel nano device that stores logic states based on the configuration of
electrons location. A quantum cell can'be‘regarded as a set of four dots and those dots are
positioned at the corners of a square. In addition. to those quantum dots, the cell contains

two mobile electrons that can mechanically tunnel between dots.

These two electrons are forced’to: the "diagonal corner positions by Coulomb
repulsion. The two possible polarization states represent logic “0” and logic “1”, as
shown in Figure 2-1.(This figure comes from[10]) Unlike traditional logic, information is
transferred with Coulomb iteration between QCA cells and the QCA device is worked by
spreading the state of one cell to the state of its neighbors. Hence in a QCA circuit,
interconnection is the same as logic manipulation. Power dissipation in QCA circuits is

relatively low compared with conventional CMOS circuit.
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Figure 2-1 Basic QCA cell
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2.2 QCA logic devices

The basic QCA logic devices include a QCA wire, QCA inverter, and QCA majority

gate, will be described below.

QCA Wire: Figure 2-2 shows a QCA wire, owing to electrostatic interactions
between cells, the binary information transmits from input to output. The wire
propagation direction is shown in the figure. In addition to 90° QCA wire, QCA wire also
used 45° QCA cell. In 45" QCA wire, cells alternates between the two polarizations to

complete the propagation of binary information.
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Figure 2-2 QCA Wire

QCA Inverter: A QCA inverter is shown in Figure 2-3. Cells oriented at 45° to its
all driving cell would be resulted in opposing polarization. This phenomenon is used to

create the inverter shown in the figure.
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Figure 2-3 QCA Inverter



QCA Majority Gate: The function of a QCA majority gate is a three-input logic
function. Assuming A, B, and C are the inputs, the logic function of this majority gate
would be

M (A, B, C) =AB + AC + BC

A QCA majority gate is shown in Figure 2- 4. Computation is performed by driving
the device cell to its lowest energy state, which will occur when the polarization of the

three input cells is fixed.

By fixing the polarization of one input cell to the QCA majority gate as -1 or 1, and
the QCA majority gate functioned as AND gate or OR gate respectively, as follows:
M(A,B,-1)=AB

M(A, B, I)=A+B

Cell 2(input cell)

O . Cell 4(device cell)

Cell I{input cell)

| @0
ON JHIGN JRION )
| O NOIRl NO

Cell S(output cell)

® O
O @

Cell 3(input cell)

Figure 2- 4 QCA Majority Gate

QCA Wire Crossing: The traditional way to handle wire crossing in QCA layout is
coplanar wire crossing. Figure 2 - 5 shows this way. In this example, the horizontal line
IS transmitting a zero and the vertical line is transmitting a one. In order to cross the line,
the horizontal wire must be converted from 90° cells to 45°cells.  This horizontal wire of

45° cells can transmit information that horizontal line holds completely. When vertical



line come across the horizontal wire of 45° cells, polarization of cell B is both influenced
by cell A and cell C. Owing to polarization of cell A is stronger than that of cell C, cell B
will be polarized as cell A. Coplanar wire crossing is not a robust way to handle layout
with complicate wire crossings. Recently, in need of coping with complex circuits;
some work has examined the multi-layer QCA. [23] On such kind of multi-layer QCA
cells, vertical connection is by stacking cells on top of another. Signals can transmit to
another layer where the signals can again transmit horizontally. For this reason, wire

crossing can be realized in multi-layer QCA cells in the way as in Figure 2 - 6.
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Figure 2-5 Coplanar Wire Crossing

Figure2-6 QCA wire crossing realized by multilayer notation
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2.3 The QCA clocking

The clock in QCA is multi-phased. It plays a key role in controlling the QCA logic
functionality. To have active computation, signals must pass through clocking zones,
which is the area where the computation is happened. These clocking zones are the
successive sequence of QCA logic devices. The clocking zones create the electric field
which control the lowering and rising of the potential barriers that decides the free
electrons to tunnel or not. The computation between clocking zones would proceed in the
sequential order. When a computation is occurring in a particular clocking zone, the
clocking zone before this clocking zone must hold its cell states steady, and no

computation is allowed by the clocking zone after this clocking zone.



QCA’s clock was first characterized by Lent, et al. as having 4 phases as shown in
Figure 2-7. During the switch phase, QCA cells begin unpolarized and their interdot
electrons are in degenerate state. The electron potentials are then raised during the switch
phase and the QCA cells eventually become polarized depending on the state of their
input cell. In this clock phase, the actual computation (or switching) occurs. At the end of
this clock phase, no electron tunneling is allowed because the electron potentials are high
enough to suppress all the electron tunneling and cell states are fixed. Electron potentials
are held high during the second phase, hold phase. The outputs of this clocking phase can
be used as input to next clocking phase. In the release phase, electron potential is lowered

and cells become unpolarized again. Cells remain in an unpolarized state during the

fourth phase, relaxed phase.

(1) Switch (2) Hold

Figure 2-7. The four clocking phase of QCA



2.4 The timing rule

The timing rule of QCA circuits is strict and must be obeyed if the circuit is to
function correctly. For majority gates, its input wire and output wire must be both in
different clocking zones separate from the cells in the gate. Figure 2 -8 shows an example
of time rule. Information transfer from one majority gate to another will cross through at
least one clocking zone.

wire wire

A A
C gl F C g2 F
B B’

Clocking zone 0 Clocking zone 1 Clocking zone 2 Clocking zone 3

Figure 2-8 Time rule of Majority Gates
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Chapter 3
Problem Formulation

Given a combinational circuit and we could represent it as a directed acyclic graph
(DAG). We wish to automatically generate a QCA physical layout that realizes the circuit
using a minimum number of clocking zones, meanwhile minimizing wire crossings and
maximum height of overall circuit. In this chapter we first discuss our synthesis model,
and in order to achieve our multiple phase objectives, we envision our QCA physical
design process as consisting of partitioning, placement, pin assignment and channel

routing. All steps would be formulated in this chapter later.
3.1 Synthesis Model

In order to obey time rule of QCA layout and avoid logic devices without data
dependency interfere with each other. We propose our synthesis model as Figure 3-1.
QCA circuit is considered as set of levels. One level contains two clocking zones in it,
usually one for wiring, the other one for logic device. Sometimes, both clocking zones
are used for wiring. A level can horizontally partition to several rows and vertically divide
into set of tracks. The height of a row is as large as three cells’ height plus two cell
spacing. Row is used to measure the height of overall QCA circuit and all QCA wire
route in the middle of row will be apart from other QCA logic devices with at least one
QCA cell size. It enables every logic devices not to interfere each other. For the same

season, each track is wide as three cells’ width plus two cell spacing.
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In our model, a QCA wire occupy one row, a QCA inverter take over two rows, and
a QCA majority gate dominate three rows. We will use this measure for the following

partitioning algorithm.
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Figure 3-1 Synthesis Model

3.2 problem formulation of partitioning

This stage divides the input QCA circuit into levels which fit in with the scheduling

constraint and meantime decrease the maximum level height of entire circuit.

12



3.2 problem formulation of placement

This stage rearranges the logic devices within their assigned level such that the total

number of edge crossings between adjacency levels is minimized.

3.3 problem formulation of pin assignment

This stage assigns actual pin position of each logic devices of all levels which must
provide a legal pin assignment for later channel routing stage while simultaneously

minimize the wire length of pin-to-pin connection.

3.4 problem formulation of channel routing

This stage finishes connection amongthe pins.in every two adjacency levels so that

the total wire crossing is minimized.

13



Chapter 4
Algorithm

This chapter states our total flow of QCA layout synthesis. First we partition input
combinational circuit into several levels. Then we transform the circuit into the k-layer
bigraph representation and focus on minimizing the total edge crossings in this graph.
After that we convert this graph to physical circuit representation by pin assignment.

Eventually, we implement our QCA physical layout through channel routing step.
4.1 Partitioning

This section presents our partitioning,algorithm, which consists of wire-block insertion,
wire-block fan-out sharing, and-level folding steps. In order to construct a valid schedule
constraint, we do wire-block insertion that-is putting each logic device into the level
based on the topological ordering of these devices and then inserting wire blocks in all
paths shorter than the longest reconvergent path. Two paths are reconvergent if they have
the same starting device and the same destination device. After wire blocks are inserted
into our circuit, there should be many identical wire blocks in the circuit. To remove
those identical wire blocks, wire-block fan-out sharing is needed. In wire-block fan-out
sharing, we merge those wire blocks which have the same input signal to maximize the

sharing among the fan-outs of a logic device output.

Figure 4-1(a) shows the initial circuit partition with valid scheduling. Figure 4-1(b)
shows the result of wire-block insertion approach, wire blocks are those circle filled with
blue. And as shown in Figure 4-1(c), two wire blocks coming from E are combined into

one.

14
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©

Figure 4-1. (a) An example circuit partition with valid scheduling; (b) The circuit

partition after wire-block insertion approach; (c) The circuit partition after

wire-block fan-out sharing approach.
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The algorithm of wire-block insertion is proposed by [11], and we use this algorithm

between different levels.

Algorithm: Wire-block Insertion
Input: A directed graph G (V, E), V is logic device and E denote data dependency
between devices.
Begin
n = E.pop();
S denotes the source vertex of E;
T denotes the destination vertex of E;
D = level (T) - level (S);
if ( D is bigger than one)
Create new wire-blocks g1, g2, -...5, Op-1 “and:add them into G ;
for (each new wire-block)
Gn1 = parent(gn );
gn = child(gn-1);
level (g,) = level(gn-1) + 1;
S = parent (g1);
T = child (gp-1);

End

In this algorithm, we traverse edges one by one in the graph. For a given edge, if
its two endpoints are not on the adjacent levels, a series of new wire-blocks are added
between the two endpoints. These wire-blocks form a connection for the two terminals of

this edge.

After wire blocks are inserted and fan-out sharing is finished, we calculate the height

16



of each level. The heights of all levels are uniformed by level folding. We first calculate
the average height of all levels and set a value of little higher than the average height as
the maximum height among all levels. Therefore, the height of some levels may exceed
the maximum height. We can reduce the height of those levels by folded those level
into two or more levels to satisfy our maximum height constraint. This is done by
inserting wire blocks in place of logic devices and placing these devices into the next
level. A logic device is moved into the next new level only if replacing this device with
wire blocks can decrease the level height. Figure 4-2 shows an example that move a logic
device to a new level and the level height is decreased from 12 to 8. After level-folding is

completed, we perform fan-out sharing again to guarantee no identical wire blocks exist.

Q00 O

Level height = 12 Level height = 8

Figure 4-2. An example of level folding
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4.2 Placement

This stage reorders the logic devices level by level to minimize the wire crossing
between logic devices. Placement algorithm involves multilevel guided breadth-first
search and adaptive insertion. First, multilevel guided breadth-first search method is
performed to get an initial placement. Then, placement refinement is achieved by
performing adaptive insertion on each adjacent level from the last level to first level. The
result of adaptive insertion is tentative and the reduction value for crossing number on
each level is stored. Scanning from rightmost level toward left, a series of levels are
selected for realizing placement such that this series of levels have maximum total

number of crossing reduction.

4.2.1 Guided breadth-first search

Guided breadth-first search is first proposed by [19]. The main breadth-first search is
preceded by another breadth-first'search whose function is to find out the longest path in
the graph. After the longest path is identified, the main search begins at on end of this

path and continuing attaches all other shorter paths at any branch point.

At first search, we calculate height[v], the distance form the root for each node v, and
also record the depth[v], maximum value of height[u] achieved by any descendant u of v
in the breadth-first search tree. Then at main search, the node s for which depth[s] is
maximum will be the beginning node of this search. The reason that we select node s to
be the begging node of the main search would be illustrated as Figure 4-3. In Figure
4-3(b), BFS starting from an end point of a path results in no edge crossing in the graph.
This result is better than the result shown in Figure 4-3(a). When one node k has two or

more children, we traverse its children k; by increasing order of depth [ki] and ties are

18



broken by traversing the node with larger height [ki] first. We would illustrate this in
Figure 4-4. In Figure 4-4(a), we complete our BFS traversal with smaller depth[v] first,
and complete the traversal with larger depth[v] first in Figure 4-4(b). As shown in graph,
traversing with smaller depth[v] first results in less edge crossing. While main search is
finished, a series of numbers are assigned to each node based on the order of visitation in

the main search. And we use these numbers to rearrange nodes on each level of the graph.

Seed A (not a end pomt) Seed: C (a end point)
C; er f/E; \C' \A' \D' \B'
(@ (b)

Figure 4-3. (a) BFS starting not from a end point (b) BFS starting from a end point

I'/; ,l |l ,l |l ,l |l } |l A ‘l |l D\,l f I'E ,l
G \ H ' \ \l \ G ' \ E '
(@) (b)

Figure 4-4. (a) BFS traversal order with smaller depth[v] first (b) BFS traversal

order with larger depth[v] first
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4.2.2 Multilevel guided breadth-first search

In our heuristic, we would like to minimize total offset between levels. Thus we apply
guided breadth-first search to entire circuit, i.e. all logic devices are traversed in this
search. In the first search, current traversed node will collect the neighbor nodes in the
pre-level first and then collect nodes in the post-level. This method could provide an
initial placement that the longest path (or largest component) of the graph will be
decomposed from this circuit first and shorter path (or smaller component) of the graph
start to attach to the largest component. And if there are several disjoint component in this
graph, those components will separate from each other. We would illustrate multilevel

guided breadth-first search through Figure 4-5(a) to Figure 4-5(d).

Figure 4-5(a) shows a 4-level bigraph with initial presentation. We select node A as
the seed for the first breadth-first search and resultis shown in Figure 4-5(b). In Figure
4-5(b), depth number is listed :aside the-node, for instance, depth number of node A is
seven. Figure 4-5(c) shows the result of the main breadth-first search. In this graph,
node L has three children T, Q, G. Because depth (T) < depth (Q) < depth (G), we traverse
these nodes in the order of T, Q and G. Figure 4-5(d) is the placement of multilevel
guided breadth-first search. All nodes are sorted by the increasing order of the number

listed by Figure 4-5(c).

In our example of multilevel guided breadth-first search, there are 18 wire crossings
in the initial presentation. After applying multilevel guided breadth-first search, only 8
wire crossings remain in the graph, in other words, 10 wire crossings is reduced in the

graph after multilevel guided breadth-first search.

20
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(d)
Figure 4-5. (a) An example of the initial placement of a 4-level bigraph; (b) The first
breadth-first search result of (a), number aside the node is the depth of this node; (c)
The main breadth-first search result of (a), numbers aside the node is the visitation

of the main search; (d) Placement after multilevel guided breadth-first search, nodes

in a level is sorted by numbers in (c).
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4.2.3 Adaptive Insertion method

Local search [20] is a popular way to improve solutions in bigraph crossing problem.
Repeat simple operation on the current ordering until no instance of the operation would
improve reducing number of crossings. An example of an operation is neighbor swapping,
which is swapping nodes (at position) i and i + 1 on level I. Such operation would be

repeated until no choice of i could decrease the number of crossings.

Adaptive insertion is a kind of local search based on neighbor swapping in the way:
each operation inserts a node at any position among other nodes on its level, and each

node is inserted mostly once during a pass. Assume node i is inserted before node j,

i-1
where j <i, The resulting cost change; 1 :Dy(i,j) , is ZD| (i,k) — the effect of the

k=]

insertion is that of a succession of swaps of node.i with node j,j+1, ... ,i-1.The

condition node i is inserted after.node j is:similar with the resulting cost change Di(i,j) =

jiDl(i,k).

k=i+1

In our heuristic, one pass of adaptive insertion does a bottom-to-top sweep of logic
devices on a level |. Devices are not allowed to stay in place even if no insertion would
decrease the number of crossings. If device i is already inserted in a pervious operation,

node i is marked and it is not selected any more during the remainder of the current pass.

To illustrate one pass of adaptive insertion, we use an example starting from Figure
4-6 (a) to perform a series of node swapping. The first node we selected to perform
inserting operation is node a. Figure 4-6(b) shows the best position for node a is to
insert it above node d, yielding a decrease of two. The next unmarked node is b. Node

b is forced to move and finds its best position is below node d as shown in Figure 4-6(c).
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After moving node b, the total crossings number is increase by one. Next we select
node ¢ as our seed to do operation. Node ¢ will be placed above node b and gain a
crossing reduction of one as shown in Figure 4-6(d). Next operation is swapped node a
and node d with no change in number of crossings. Finally node e is placed to uppermost

position as shown Figure 4-6(f) with total wire crossing number of eight.

(-2}

10 crossings 9 crossings

(c) (d)
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9 crossings 8 crossings

(€) (f)

Figure 4-6. Adaptive insertion on a simple example

To finish adaptive insertion is time-consuming because we should compute variations
of wire crossings after every node swapping. Thus we use the adjacency matrix to

compute the number of wire crassings to save the computing time.

In a bipartite graph, there is a wire ¢rossings between two layers x and y if x; connects
to ym , Xj connects to y, and X < Xj, Ym > Yo Where i, j, m, n denotes the relative
positional ordering of the nodes. In terms of an adjacency matrix, this can be considered
as if point (i,j) is included in the lower left sub-matrix of (m,n) or vice versa. Therefore
the total crossing is computed by adding the product of every matrix element and the sum
of its left lower sub-matrix entries. Because this is very computational expensive, we
implement it with the incremental wire crossing method proposed by [13] instead of
computing the matrix directly. Figure 4-7 shows an instance of wire crossing
computation .In this method, we firs calculate the row-wise sum of all entries as in Figure
4-7(c). Then we compute the column-wise sum of this row-wise sum matrix as in Figure
4-7(d). Finally, we calculate the sum of all the entries(r,c) in the original matrix by the

entries (r + 1, ¢ - 1) in the column-wise sum matrix to obtain the total wire crossing.
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Incremental wire crossing method enables us to perform node insertion without
computing wire crossing individually. In stead, we just update the value of rows after

every operation to get the total number of wire crossings.

alb|c alb | c al b| ¢
Al 01110 Al 01111 A 3| 4
Bl1l0]1 Bl 1|1]|2 Bl1] 2] 3
ClOol1]0 Clo|1]1 0ol 1] 1
(a) (b} (c) (d)

Figure 4-7 lllustration of wire crossing computation. (a) given graph, (b) initial

adjacency matrix, (c) row-wise sum, (d) column-wise sum.

4.3 Pin assignment

This section presents our pin assignment algorithm, which consists of greedy pin

assignment and pseudo routing steps:

4.3.1 Greedy pin assignment

In this step, we assign the input pin positions of all device blocks from the device on
topmost position of the level to the device on bottommost position of the level. Then if
there are some empty rows below all device blocks in this level, we begin to move device
block from bottom to top of this level to their best position. The best position of the
device block is the position that makes wire length of pin-to-pin connection of the device
minimized. Sometimes, best position of a device block is not unique. In such condition,
we would shift this device block to the bottommost best position for the reason that
preserve most moving space for other device blocks. If best position of a device block

is already occupied by other devices, this device block would be placed to an unoccupied
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position that is closest to best position. We would illustrate this step from Figure 4-8(a)

to Figure 4-8(g)

[o] [o] [o] [o]  [p1]
o] o] 71| vl [o[®)
o] o] [o] lo] P3
0] 0] o] o [®
[v2] w2 7] w [B©
o] o] lo] lo| [0
[p3] P3| P3| les| [0
0] 0] 0] o] [m®
P4 P4 P4 lpa]  [p2]
] o] o] DEEG
[ps| [ps| [ps| P3| Ps
o] o o] o [of
Fix Fix Variable Fix Variable Fix Variable
level level level level level level level
(a) (b) (c) (d)
[o] [o] [o]
o1 o] = ]
o] o ER I
o o] o]
o] lo] lo]
Ip3 ]| P3| P3|
Lol o] o]
P4 P4 ] P4 ]
o o] o]
[ps| [ps] [ps]
o o] o]
Fix Variable Fix Variable Fix Variable
level level level level level level
(e) ) (9)

Figure 4-8. An example of greedy pin assignment

In Figure 4-8(a), the left side is the fixed level (pins are already assigned); right side
is the device set of the variable level. Figure 4-8(b) shows the initial pin assignment of
the variable level. Because three empty rows remain in this level, we begin to shift
devices from E to A to their best position. In Figure 4-8(c), device E is shifted to its best

position. Then we can notice that the best position of device D was occupied by device E
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already, thus we place it to the position closest to best position as shown in Figure 4-8(d).
Other devices above device D is able to shift to the best position, Figure 4-8(e-g) show

those results.

4.3.2 Pseudo routing

After greedy pin assignment, there may be still some unroutable nets. A net is
unroutable if it forms a cycle in vertical constraint graph and can’t resolve this cycle by
doglegging. We would verify such case exists or not by pseudo routing. When an
unroutable net is found, we would insert a new row into this level or slightly shift the
position of pins nearby the pin of this unroutable net to make this net routable. Pseudo

routing will be repeated until no unroutable nets found in our pin assignment results.

4. 4 Channel Routing

This stage will finish the wire routing inside every level. Although in our synthesis
model, level is a horizontal column, in this section we would like to lie down all levels as
Figure 4-9. This is because channel routing like Figure 4-9 is a well-known form of

channel routing.

4.4.1 Overview

We would finish the wire routing for each level in 5 steps. First, the level pins are
scanned from left to right, and the VCG is constructed (step 1). Since there can’t be any
cycle existed in VCG, cycles in the VCG are removed by doglegging (step 2). Once the
VCG is acyclic, we would add crossing edges to VCG to reduce wire crossing (step 3). If
cycles exist in the VCG, minimal weighted crossing edge set are removed and to make

VCG becoming acyclic again (step 4). Eventually, we apply the LEF algorithm to assign
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track to each net and finish routing of this level. Channel routing process is applied to

every level to implement entire circuit.

4.4.2 Doglegging

Doglegging is to split of horizontal segments of a net. This is used, not only to
remove cycles in the VCG, but also used to minimize the number of horizontal tracks. We
can apply DFS to determine whether VCG contains cycles or not. Once a cycle is found,
the net in this cycle is divided into several subnets and a vertical dogleg is inserted. Each

of these subnets is created and added into the VCG to remove these cycles.

4.4.3 Crossing edge insertion

It’s clear that wire crossing-can ionly-occur-between nets which overlap horizontally.
And the number of wire crossings between any arbitrary pair of horizontally overlapping

nets is strongly influenced by their vertical ordering.

Therefore, in order to reduce crossing, we use the notation “crossing edges™ which
is first proposed by [14], between nets in the VCG. In order to drive those horizontally
overlapping nets to form the vertical relationship which results in the minimum number
of crossing between them. Each crossing edge is a directed edge and assigned a weight
that determines the number of wire crossings saved by placing the net that denotes the

source point above the net that denotes the destination point.

For example, consider Net 1 and Net 2, which overlap horizontally in Figure 4-9.

Figure 4-9(a) shows if Net 1 places above Net 2 then they will crossover three times. But
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if Net 1 places below Net 2 as shown in Figure 4-9(c), there is only one crossing between
them. Therefore, we modify VCG shown in Figure 4-9(b) to Figure 4-9(d). Crossing edge
sources form Net 1 is weighted by two and points to Net 1. Figure 4-9(c) is the result

channel routing of VCG shown in Figure 4-9(d) which is the fewest wire crossings.

1 000 2 0 3 00
F &~ {/—.\\

012101230

(@) (b)

1 0 0 0 2 3 00

w

(c) (d)
Figure 4-9. (a-b) A channel and VCG with minimum channel width. (c) Optimum

solution for minimizing wire crossing. (d) Modified VCG with inserting crossing

edge.
4.4.4 Cycle break

As stated in previous section, the weight of crossing edges determines the number of
wire crossings reduction. Hence if VCG is acyclic after crossing edge insertion, we

preserve all crossing edges to obtain a result with minimum wire crossings. Otherwise, if
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VCG is not acyclic after insert crossing edges, the cycles must be removed before track
assignment begins. Because if we reserve the crossing edge set with higher total weight,
the result of channel routing has fewer wire crossings. Our goal is to find a set of crossing
edges A c E with the minimum total weight such that G — A is acyclic.

Since a acyclic directed graph has a topological ordering, we develop our cycle
break algorithm as shown in Figure 4-11. The main idea of our algorithm is to enforce a
topological ordering of VCG and remove all violating edges that violate this topological
ordering, i.e. edge start from the vertex with larger order to the vertex with smaller order.
Therefore our goal is to find a topological ordering of VCG that has the violating edges

set with minimum total weight.

In our algorithm, we prune.the vertices which.have no outward edges first because
these vertices wouldn’t introduce any violating edges if we place them in the tail of
topological ordering list. Then"we calculate'the cost of the candidate vertex that has no
inward vertical constraint edge. Cost'of ‘candidate vertex determines that if we want to
break a cycle, how many crossing reduction we would lose. Thus we pick the vertex with
lowest cost into the front of topological ordering list and update VCG. After update VCG,
if any vertices which have no outward edges exist, we would prune them as the reason
stated above. When the list of topological ordering is completely formed, we start to
traverse this list from the begging to record all violating edges. Because VCG is a
directed graph, not all violating edges introduce a cycle; each violating edge must be
verified. If this violating edge actually introduces a cycle, we remove it form VCG,
otherwise we would preserve it. For example, Figure 4-10(a) is a cyclic VCG. We first
prune vertex that has no outward edge in the order of H, A, G. Figure 4-10(b) shows the

result after pruning. In Figure 4-10(b), vertex I, E, and J is candidate vertex and vertex J
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has the lowest cost of 1. Therefore, we remove J form VCG and Figure 4-10(c) shows
this result. In Figure 4-10(c), vertex E has the lowest cost of 3/2, thus vertex J would be
the next node removes from the graph. When all vertices are removed form the graph, a
topological ordering would be developed. In Figure 4-10(d), such topological ordering
is shown below the graph and violating edge is colored with blue. In this example, all
violating edge actually introduces a cycle. Consequently, all violating edge must be

removed. Final result is shown in Figure 4-10(e).

Topological order:

(@) (b)

Topological order: J
Prunc node : G, A, H Topological order: JEIFCBGAH

(©) (d)
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Topological order: JEIFCBGAH

(e)

Figure 4-10. Example of cycle break algorithm
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Algorithm: Cycle Break
Input: A cyclic directed graph G(V , E)
output: A acyclic directed graph G* (V ° ,E" )=G(V,E-A)
Begin
Repeat
remove all vertices of G which has no outward edges from G ;
push those vertices to a stack Sgq
Until (all vertex of G has at least one outward edge)
Repeat

if( vertex V; has no inward vertical constraint edge)

Total weight of inward crossing edges of Vi

Cost(Vj) =
L Number of outward crossing edges of Vi

Select a vertex V;with lowest cost , remove V; form G ;
Insert V; into a list Lq ;
if( G exists vertices which has no outward edges)
Remove those vertices from G and push them to Sg ;
Until no more vertices in G
while(Sq is not empty)
Pop vertex form Sq and insert this vertex to Lg :
All Edges in Lgthat violate topological ordering of Lo and results in a cycle of
VCG will be removed from VCG ;

End

Figure 4-11 Cycle Break Algorithm
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Chapter 5
Experimental Results

Our QCA synthesizer was implemented in C++/STL and complied with Borland
C++ Builder running on 2.4 GHz Pentium 4 PC with 256 RAM. Ten combinational

circuits were selected from ISCAS85 benchmark. Table 1 shows these circuit and report

their functionality.

Tabk 1. Cirruit Statistics for Q CA synthesizer

Test Casze Function
C17 Mot Specified
C431 Prionty Decoder
499 Errar Correction and Translation
CEED ALTT and Control
C1355 Error Correction and Translation
1905 Error Correction and Translation
3540 ATTT and Control
5315 ATTT and Control
CAZES 1 é-bit TWhdtiplier
C75i2 ALTT and Control
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Table 2 shows the edge crossing results after placement stage. We list our algorithm
in two ways: with or without adaptive insertion and compare our results with
conventional placement algorithm: barycenter ordering and median ordering. Each entry
list in Table 2 is the value of total edge crossings. Our placement algorithm was
outperformed conventional placement method in most cases except for C432. We
conclude the memory usage and time usage of these algorithms in table 3. In table 4,
we normalize our algorithm results with results of conventional method in addition to
C17 and C432. In comparison, the method present here obtains average 27% crossing

improvement over barycenter ordering and 38% crossing improvement over median

ordering. Even without adopting adaptive insertion, improvement over barycenter

ordering and median ordering is still obtained.

Table 2. QC A placement results

Each entry denotes total edge crossings among levels

TESTCAZE Barycerter Iedian Without AT With A1
c17 f 8 1 1
C432 FLL ala 1585 1487
c400 4544 5083 3730 3014
Al 4376 4543 35870 3305
C1355 647 a1y 3667 3017
1908 350 4471 4615 35823
T340 19415 2195 16182 13781
C5315 e g0329 45400 43775
Ca2Es B5150 91935 43456 37815
7521 FI05T FET16 70494 G3037
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Table 3 Memory usage and time usage of algorithms of tahle 2
M denotes the maximur memory usage during this algorithm, and T denotes

time usage of this algorithm

TEST CASE BaryCenter Median Without AT TWith A T

Tizec) | Mik) [Tizec)| M) |Tisec)| MMk) | Tizec) | Mk

17 =0.001 4 <0001 4 |=0001 3 <0.001 B

0432 0.015 4 0015 4 0.015 96 2.204 120

C4R9 0.014 4 0016 4 0063 128 | 18574 | 288

CEE0 0.016 4 0.016 4 D047 %2 23203 [ 284

21355 0.015 4 0.015 4 0047 | 104 1736 268

1908 0.014 4 0016 4 0047 | 156 | 21.953 | 260

23540 0.014 4 0.016 4 D080 | 208 | 91.281 | éé4d

25315 0.032 4 0032 4 0,188 | 448 2658 1140

CH2EE 0.047 4 0.047 4 0,325 | 708 3513 24386

7522 0.032 4 0032 4 0265 | 960 4457 1732

Table 4

Conpare our placement algorithm with conventional placernent algorithm

Mortralized with Baryeenter Mommalized with Median

Without AT With & [ Without AT With &
499 0.77 0.62 0.62 0.50
CEE0 0.83 0.78 0.85 0.75
1355 0.65 0.53 0.55 0.44
C1908 1.16 0.97 1.04 0.86
3540 0.83 0.70 0.74 0.63
5315 0.69 0.63 0.460 0.54
CH2E3 0.74 0.58 0.53 0.41
7522 0.91 0.83 0.92 0.83
AV G 0.83 0.70 073 062
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In our physical design flow, pseudo routing stage would check unroutable net
existed or not and expand the height of the level. This is harmful to the area size of QCA
layout. Fortunately, those unroutable net are rarely seen in the circuit. In our experiment,

there were at most 2 expanded rows in a circuit.

In table 5, we compare our channel routing result based on our placement method
with or with adaptive insertion to the theoretical lower bound. The theoretical lower
bound of wire crossing for each circuit is equal to the sum of the minimum values of wire
crossing for each pair of nets. Our channel routing heuristic result in average wire

crossing only 7 ~ 8% above the theoretical lower bound.

Table 5 . Comparison of wire crossing value to the theoretical lower howmds.

# XNing denotes the total wire crossing after chiannel routing

TEET CARE Without Adaptive Insertion With Adaptive Insertion

#2ing | Theordical | Ratio #Xing |Theordical| Ratio

low hound low hound
o17 | | 1.000 | 1 1.000
4312 1705 1654 1.030 1504 1523 1.046
404 2838 2ran 1.032 2560 2407 1.0209
CEEN 3354 3426 1.040 3098 2950 1.047
1355 2672 2520 1.060 2383 2106 1.038
C1908 4237 3932 1.075 4116 3818 1.078
3540 13280 11711 1.135 11527 10501 1.098

5315 39371 33565 1.173 37003 32493 1.138

CA2EE 21308 20690 1.030 10957 19243 1.037

C7512 52441 43027 1.214 50942 41759 1.219
AVG 1.079 1.073
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Figure 5-1 shows our synthesis result of C17 circuit, and Figure 5-3 shows its
simulation result. We simulate our C17 circuit with 96000 samples, converge tolerance
was set to 0.0001; radius of effect was set to 40.0 nm and at moat 1000 samples per

iteration is allowed. In our synthesizer, C17 circuit is divided into 10 clocking zone, i.e.

2 % QCA clock period. Thus there were 2 % volatile output values before

simulation output of the first input pattern. We mark those volatile output values by red

rectangle in Figure 5-3.

To verify our simulation result, we simulate C17 circuit with the same input patterns
with Modelsim and the result was shown in Figure 5-2. There were no different output
values comparing of Figure 5-2 and Figure 5-3. In other word, our C17 circuit was

correctly synthesized.
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Figure 5-1 C17 circuit
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Besides C17 circuit, we also verified C432 circuit with 100 random selected patterns.
Figure 5-4 shows the simulation result of QCA Designer and Figure 5-5 shows the
simulation result of Modelsim. Differing form simulating C17 circuit, we simulated each
input pattern 25000 samples to obtain the correct simulation result. In C432 circuit,
there were 18 volatile output values because there were 72 clocking zones in our C432
circuit. Due to the limitation of hardware resource, we didn’t verify other synthesis circuit

in ISCASSS5.

ighipSpSeiiginSelighigluySoBagdptnSgh

e i R e i

Figure 5-2 Simulation result.of C17 by Modelsim
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Figure 5-3 Simulation result of C17 by QCA Designer
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meee: 1.00e+000
MEG
mir: -1.00e+000

maee 9.51e-001
223
min: -9.51e-001

max: 9512001 ]
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M370
min: -9.51e-001

Figure 5-5 Simulation result of C432 by Modelsim
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Chapter 6
Conclusions

In this paper we describe a physical design flow of QCA layout synthesis and wish
to help generating synthesizable QCA circuits. From the experimental test, we found out
wire crossing were strongly influenced the correctness of QCA circuit functionality. For
this reason, we focus on generating QCA layout with minimum wire crossings. QCA
layout of ISCAS benchmark circuit C17 and C432 were synthesized and verified

functionality successfully.
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