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最小交點式的量子點細胞元自動化布局合成 

研究生 : 賴建丞  指導教授: 李毅郎 博士 

國立交通大學 資訊科學與工程研究所 

摘要 

量子點細胞元自動化是一種新式奈米層級上的計算機制，它可以利用在分子

上電子的表面配置來表示二元資訊。一個量子點細胞元自動化實體設計流程包含

了四個步驟：切割、布置、接頭分派以及隧道繞路。因為在量子點細胞元自動化

布局上的線路交點數目會嚴重影響整個量子點細胞元自動化布局設計的複雜

度，這篇論文的重點將放在減少線路交點的佈局合成。在這篇論文裡，量子點細

胞元自動化布局裡的布置問題將會映射到一個有名的問題「多層雙向圖交點最小

化」。而為了解這個問題，我們提出了一個新的啟發示教育法。接頭分派這個步

驟在隧道繞路之前，其用途是為了提供一個合法的接頭分派方式以便接下來的隧

道繞路可以無礙的完成。最後，在隧道繞路這個步驟裡將提出一個名為『打破循

環』的演算法，同樣是為了減少布局上的交點。基於我們的實驗數據，在布置和

隧道繞路這些步驟裡，交點都有顯著的減少程度。我們利用量子點細胞元自動化

設計者 2.0.3 來模擬驗證我們合成出來的布局線路。在我們的實驗裡，有一些標

準線路已經驗證無誤，但有一些標準線路因為硬體的限制而無法驗證完成。 
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Minimum-Crossing Layout Synthesis for Quantum-Dot Cellular 

Automata (QCA) 

Student: Chan-Cheng Lai Advisor: Dr. Yih-Lang Li 

Institute of Computer Science and Engineering 

National Chiao Tung University 

Abstract 

Quantum-dot cellular automata (QCA) is a novel nano-scale computing mechanism 

that can represent binary information based on spatial distribution of electron charge 

configuration in molecules. A QCA physical synthesis flow consists of four stages: 

partitioning, placement, pin-assignment and channel routing. Because wire crossings 

in QCA layout increase the complexity of circuit layout design, this work focus on 

minimizing wire crossings of the circuit under synthesis.  In this paper, the problem 

of QCA placement is mapped to a famous problem “k-layer bigraph crossing 

problem” and a new heuristic is developed for this problem. Pin assignment stage is 

prior to channel routing stage, which provides a legal pin assignment for the following 

channel routing stage. Finally, a new cycle breaking algorithm to reduce wire 

crossings in channel routing stage is presented. Based on our experimental results, 

placement and cycle breaking obtain good crossing reduction. We also simulate our 

circuit by QCA Design 2.0.3 and obtain correct simulation result and other benchmark 

circuits does not have simulation result since they are too large to complete simulation 

in time.  
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Chapter 1 
Introduction 

The progress of CMOS technology has already brought the spectacular success of 

microelectronics industry. Traditional advancements of CMOS technology are always 

based on modifying and scaling paradigm and encourage magnitude of feature size and 

packing density to change rapidly over time. The number of devices integrated on a 

single die doubles about 18 months according to Moore’s law. Since 1965, the 

manufacturing of integrated circuits has been governed by this scaling speed and as early 

as 2012, the physical scaling limit of CMOS transistor may be reached and future 

aggressive packing of device will be impossible. If advancement in chip performance 

dominates further miniaturization, we must escape from the notation of current 

architectures and learn to develop new paradigms even though current standard paradigm 

has been significantly improved by recent advances, and molecular transistor may be 

practical in the near future. 

One such paradigms [1], Quantum-dot cellular automata(QCA) , first proposed in the 

early 1990s , which is followed by other studies in [2-5]  A cell composed of four 

quantum “dots” encodes useful binary information by its charge configuration.  A dot is 

simply a region where charge is localized. Each cell has two extra mobile electrons 

located at diagonal position and the other two empty dots are recorded as null state. The 

current state of a cell is influenced by the electrostatic effect of neighboring cells and 

results in a fixed state “1” or “0”. 
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QCA cells composed of metallic dots operating at cryogenic temperature have 

already demonstrated by recent experiments. [4][6][7] Devices such as majority logic 

gate, QCA binary wire, and a single-bit memory have all been experimentally 

demonstrated. [8][9] 

In order to obtain a more realistic outlook for systems in QCA, for the past seven 

years, system-level research component is included in QCA.  There are two main goal 

of system-level work of QCA. One is as technology mature, in order to provide an 

infrastructure for more complex designs, the projections for synthesizable QCA circuits 

and the CMOS circuit in the context of the same system-level tasks will be compared. 

The other is to develop new architecture and system to help driving device development 

to get to work nano system faster. 

In the context of the above goals, this paper proposes a physical design flow for 

generating computationally interesting, synthesizable QCA circuits.  Conventional 

physical design problem usually divided into sub-problems of partitioning, placement, 

and channel routing.  QCA Partitioning problem is first modeled and solved by 

A.Antonelli, et al. [10]  Their partitioning model , each cell is labeled and distributed 

into different level, is similar with previous CA model [11].  They also provided 

problem modeling of placement and channel routing problem. Jean Nguyen, et al [12] [13] 

propose another problem formulation about QCA placement problem. They divided 

placement problem into zone placement and cell placement.  Then Smith, et al followed 

Nguyen’s result and provided the first QCA channel routing heuristic in [14]. This year, 

the method that eliminates all wire crossing of entire layout by duplicating logic resource 

is presented in [15]. 

 2



In this paper, we focus on minimizing QCA wire crossings. Our problem definition 

of QCA physic design is mainly followed by A.Antonelli’s formulation. Besides, we 

insert another stage －  pin-assignment before channel routing. To minimize wire 

crossing, we transform the QCA circuit into the k-layer bigraph crossing problem and 

provide a heuristic solution for it.[16-19]  Our heuristic combines an modified vision of 

guided breath-first search that present in [19] with adaptive insertion that proposed by 

[20]. Experiment shows our heuristic outperform conventional algorithm in k-layer 

bigraph crossing problem in most case, and obtains about 30% crossing improvement 

over conventional method. In addition, we provide a new heuristic in solving the 

Weighted Minimum Feedback Edge Set Problem of the channel routing stage. Our 

heuristic is finished in linear time and the wire crossing results average only 7% above 

the theoretical lower bound. 

Our QCA layout is synthesized and simulated using QCADesigner [21] [22], a tool 

is capable of simulating complex QCA circuits on most standard platforms. We will show 

that our synthesis result is correct by comparing to the synthesis result of modelsim, 

which is capable of simulating CMOS design. 

The remainder of this paper is organized as follows. In chapter 2, we provide a brief 

background to QCA technology. In chapter 3, we present our synthesis model and 

problem formulation of our physical design flow. In chapter 4, solutions of partitioning, 

placement, pin-assignment, channel routing is presented respectively.  Chapter 5 

presents our experimental results, and we conclude our paper in chapter 6. 
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Chapter 2 
Preliminary 

 Before addressing our synthesis algorithm, it is necessary to review some of the 

basic property of QCA circuits. This chapter begins with a brief overview of device 

physics, and then considers basic logic. Clocking and the time rule will be introduced at 

last to ties everything together. 

2.1 QCA basic 

 QCA is a novel nano device that stores logic states based on the configuration of 

electrons location. A quantum cell can be regarded as a set of four dots and those dots are 

positioned at the corners of a square. In addition to those quantum dots, the cell contains 

two mobile electrons that can mechanically tunnel between dots. 

These two electrons are forced to the diagonal corner positions by Coulomb 

repulsion. The two possible polarization states represent logic “0” and logic “1”, as 

shown in Figure 2-1.(This figure comes from[10]) Unlike traditional logic, information is 

transferred with Coulomb iteration between QCA cells and the QCA device is worked by 

spreading the state of one cell to the state of its neighbors. Hence in a QCA circuit, 

interconnection is the same as logic manipulation. Power dissipation in QCA circuits is 

relatively low compared with conventional CMOS circuit. 

 
Figure 2-1 Basic QCA cell 
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2.2 QCA logic devices 

 The basic QCA logic devices include a QCA wire, QCA inverter, and QCA majority 

gate, will be described below. 

 QCA Wire:  Figure 2-2 shows a QCA wire, owing to electrostatic interactions 

between cells, the binary information transmits from input to output. The wire 

propagation direction is shown in the figure. In addition to 90˚ QCA wire, QCA wire also 

used 45˚ QCA cell. In 45˚ QCA wire, cells alternates between the two polarizations to 

complete the propagation of binary information. 

 

Figure 2-2 QCA Wire 

QCA Inverter:  A QCA inverter is shown in Figure 2-3. Cells oriented at 45˚ to its 

all driving cell would be resulted in opposing polarization. This phenomenon is used to 

create the inverter shown in the figure. 

 

Figure 2-3 QCA Inverter  
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QCA Majority Gate: The function of a QCA majority gate is a three-input logic 

function. Assuming A, B, and C are the inputs, the logic function of this majority gate 

would be  

      M (A, B, C) = AB + AC + BC 

 A QCA majority gate is shown in Figure 2- 4. Computation is performed by driving 

the device cell to its lowest energy state, which will occur when the polarization of the 

three input cells is fixed.  

By fixing the polarization of one input cell to the QCA majority gate as -1 or 1, and 

the QCA majority gate functioned as AND gate or OR gate respectively, as follows: 

      M( A , B , -1 ) = AB 

      M( A , B , 1 ) = A + B  

 

Figure 2- 4 QCA Majority Gate 

 QCA Wire Crossing: The traditional way to handle wire crossing in QCA layout is 

coplanar wire crossing. Figure 2 - 5 shows this way. In this example, the horizontal line 

is transmitting a zero and the vertical line is transmitting a one. In order to cross the line, 

the horizontal wire must be converted from 90˚ cells to 45˚cells.  This horizontal wire of 

45˚ cells can transmit information that horizontal line holds completely. When vertical 
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line come across the horizontal wire of 45˚ cells, polarization of cell B is both influenced 

by cell A and cell C. Owing to polarization of cell A is stronger than that of cell C, cell B 

will be polarized as cell A.  Coplanar wire crossing is not a robust way to handle layout 

with complicate wire crossings.  Recently, in need of coping with complex circuits; 

some work has examined the multi-layer QCA. [23] On such kind of multi-layer QCA 

cells, vertical connection is by stacking cells on top of another. Signals can transmit to 

another layer where the signals can again transmit horizontally. For this reason, wire 

crossing can be realized in multi-layer QCA cells in the way as in Figure 2 - 6.  

 
Figure 2-5 Coplanar Wire Crossing 

 

Figure2-6 QCA wire crossing realized by multilayer notation 
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2.3 The QCA clocking 

 The clock in QCA is multi-phased. It plays a key role in controlling the QCA logic 

functionality. To have active computation, signals must pass through clocking zones, 

which is the area where the computation is happened. These clocking zones are the 

successive sequence of QCA logic devices. The clocking zones create the electric field 

which control the lowering and rising of the potential barriers that decides the free 

electrons to tunnel or not. The computation between clocking zones would proceed in the 

sequential order. When a computation is occurring in a particular clocking zone, the 

clocking zone before this clocking zone must hold its cell states steady, and no 

computation is allowed by the clocking zone after this clocking zone.  
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 QCA’s clock was first characterized by Lent, et al. as having 4 phases as shown in 

Figure 2-7. During the switch phase, QCA cells begin unpolarized and their interdot 

electrons are in degenerate state. The electron potentials are then raised during the switch 

phase and the QCA cells eventually become polarized depending on the state of their 

input cell. In this clock phase, the actual computation (or switching) occurs. At the end of 

this clock phase, no electron tunneling is allowed because the electron potentials are high 

enough to suppress all the electron tunneling and cell states are fixed. Electron potentials 

are held high during the second phase, hold phase. The outputs of this clocking phase can 

be used as input to next clocking phase. In the release phase, electron potential is lowered 

and cells become unpolarized again. Cells remain in an unpolarized state during the 

fourth phase, relaxed phase. 

 
Figure 2-7. The four clocking phase of QCA 
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2.4 The timing rule  

The timing rule of QCA circuits is strict and must be obeyed if the circuit is to 

function correctly. For majority gates, its input wire and output wire must be both in 

different clocking zones separate from the cells in the gate. Figure 2 -8 shows an example 

of time rule. Information transfer from one majority gate to another will cross through at 

least one clocking zone. 

 

Figure 2-8 Time rule of Majority Gates 

 10



Chapter 3 
Problem Formulation 

Given a combinational circuit and we could represent it as a directed acyclic graph 

(DAG). We wish to automatically generate a QCA physical layout that realizes the circuit 

using a minimum number of clocking zones, meanwhile minimizing wire crossings and 

maximum height of overall circuit. In this chapter we first discuss our synthesis model, 

and in order to achieve our multiple phase objectives, we envision our QCA physical 

design process as consisting of partitioning, placement, pin assignment and channel 

routing. All steps would be formulated in this chapter later. 

3.1 Synthesis Model 

 In order to obey time rule of QCA layout and avoid logic devices without data 

dependency interfere with each other. We propose our synthesis model as Figure 3-1. 

QCA circuit is considered as set of levels. One level contains two clocking zones in it, 

usually one for wiring, the other one for logic device. Sometimes, both clocking zones 

are used for wiring. A level can horizontally partition to several rows and vertically divide 

into set of tracks. The height of a row is as large as three cells’ height plus two cell 

spacing. Row is used to measure the height of overall QCA circuit and all QCA wire 

route in the middle of row will be apart from other QCA logic devices with at least one 

QCA cell size. It enables every logic devices not to interfere each other. For the same 

season, each track is wide as three cells’ width plus two cell spacing.  
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    In our model, a QCA wire occupy one row, a QCA inverter take over two rows, and 

a QCA majority gate dominate three rows. We will use this measure for the following 

partitioning algorithm. 

 

Figure 3-1 Synthesis Model 

3.2 problem formulation of partitioning 

 This stage divides the input QCA circuit into levels which fit in with the scheduling 

constraint and meantime decrease the maximum level height of entire circuit. 
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3.2 problem formulation of placement 

   This stage rearranges the logic devices within their assigned level such that the total 

number of edge crossings between adjacency levels is minimized. 

3.3 problem formulation of pin assignment 

   This stage assigns actual pin position of each logic devices of all levels which must 

provide a legal pin assignment for later channel routing stage while simultaneously 

minimize the wire length of pin-to-pin connection. 

3.4 problem formulation of channel routing 

 This stage finishes connection among the pins in every two adjacency levels so that 

the total wire crossing is minimized. 
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Chapter 4 
Algorithm 

 This chapter states our total flow of QCA layout synthesis. First we partition input 

combinational circuit into several levels. Then we transform the circuit into the k-layer 

bigraph representation and focus on minimizing the total edge crossings in this graph. 

After that we convert this graph to physical circuit representation by pin assignment. 

Eventually, we implement our QCA physical layout through channel routing step. 

4.1 Partitioning 

This section presents our partitioning algorithm, which consists of wire-block insertion, 

wire-block fan-out sharing, and level folding steps. In order to construct a valid schedule 

constraint, we do wire-block insertion that is putting each logic device into the level 

based on the topological ordering of these devices and then inserting wire blocks in all 

paths shorter than the longest reconvergent path. Two paths are reconvergent if they have 

the same starting device and the same destination device.  After wire blocks are inserted 

into our circuit, there should be many identical wire blocks in the circuit. To remove 

those identical wire blocks, wire-block fan-out sharing is needed. In wire-block fan-out 

sharing, we merge those wire blocks which have the same input signal to maximize the 

sharing among the fan-outs of a logic device output.  

Figure 4-1(a) shows the initial circuit partition with valid scheduling. Figure 4-1(b) 

shows the result of wire-block insertion approach, wire blocks are those circle filled with 

blue. And as shown in Figure 4-1(c), two wire blocks coming from E are combined into 

one. 
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(a)  

 

(b) 

 

(c) 

Figure 4-1. (a) An example circuit partition with valid scheduling; (b) The circuit 

partition after wire-block insertion approach; (c) The circuit partition after 

wire-block fan-out sharing approach. 
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The algorithm of wire-block insertion is proposed by [11], and we use this algorithm 

between different levels. 

Algorithm: Wire-block Insertion 

Input: A directed graph G (V, E), V is logic device and E denote data dependency  

between devices. 

Begin 

   n = E.pop(); 

S denotes the source vertex of E; 

T denotes the destination vertex of E; 

D = level (T) – level (S);  

   if ( D is bigger than one) 

      Create new wire-blocks g1 , g2 , … , gD-1  and add them into G ; 

   for (each new wire-block)  

gn-1 = parent(gn ); 

gn  = child(gn-1); 

level (gn) = level(gn-1) + 1; 

S = parent (g1); 

T = child (gD-1); 

End 

In this algorithm, we traverse edges one by one in the graph.  For a given edge, if 

its two endpoints are not on the adjacent levels, a series of new wire-blocks are added 

between the two endpoints. These wire-blocks form a connection for the two terminals of 

this edge. 

  After wire blocks are inserted and fan-out sharing is finished, we calculate the height 
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of each level. The heights of all levels are uniformed by level folding. We first calculate 

the average height of all levels and set a value of little higher than the average height as 

the maximum height among all levels. Therefore, the height of some levels may exceed 

the maximum height.  We can reduce the height of those levels by folded those level 

into two or more levels to satisfy our maximum height constraint.  This is done by 

inserting wire blocks in place of logic devices and placing these devices into the next 

level. A logic device is moved into the next new level only if replacing this device with 

wire blocks can decrease the level height. Figure 4-2 shows an example that move a logic 

device to a new level and the level height is decreased from 12 to 8. After level-folding is 

completed, we perform fan-out sharing again to guarantee no identical wire blocks exist. 

 

Figure 4-2. An example of level folding 
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4.2 Placement 

This stage reorders the logic devices level by level to minimize the wire crossing 

between logic devices. Placement algorithm involves multilevel guided breadth-first 

search and adaptive insertion. First, multilevel guided breadth-first search method is 

performed to get an initial placement. Then, placement refinement is achieved by 

performing adaptive insertion on each adjacent level from the last level to first level. The 

result of adaptive insertion is tentative and the reduction value for crossing number on 

each level is stored. Scanning from rightmost level toward left, a series of levels are 

selected for realizing placement such that this series of levels have maximum total 

number of crossing reduction. 

4.2.1 Guided breadth-first search 

Guided breadth-first search is first proposed by [19]. The main breadth-first search is 

preceded by another breadth-first search whose function is to find out the longest path in 

the graph. After the longest path is identified, the main search begins at on end of this 

path and continuing attaches all other shorter paths at any branch point. 

  At first search, we calculate height[v], the distance form the root for each node v, and 

also record the depth[v], maximum value of height[u] achieved by any descendant u of v 

in the breadth-first search tree. Then at main search, the node s for which depth[s] is 

maximum will be the beginning node of this search. The reason that we select node s to 

be the begging node of the main search would be illustrated as Figure 4-3. In Figure 

4-3(b), BFS starting from an end point of a path results in no edge crossing in the graph. 

This result is better than the result shown in Figure 4-3(a).  When one node k has two or 

more children, we traverse its children ki by increasing order of depth [ki] and ties are 
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broken by traversing the node with larger height [ki] first. We would illustrate this in 

Figure 4-4. In Figure 4-4(a), we complete our BFS traversal with smaller depth[v] first, 

and complete the traversal with larger depth[v] first in Figure 4-4(b). As shown in graph, 

traversing with smaller depth[v] first results in less edge crossing. While main search is 

finished, a series of numbers are assigned to each node based on the order of visitation in 

the main search. And we use these numbers to rearrange nodes on each level of the graph. 

              

                 (a)                                    (b) 

Figure 4-3. (a) BFS starting not from a end point (b) BFS starting from a end point 

          
(a)                                    (b) 

Figure 4-4. (a) BFS traversal order with smaller depth[v] first (b) BFS traversal 

order with larger depth[v] first  
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4.2.2 Multilevel guided breadth-first search  

  In our heuristic, we would like to minimize total offset between levels. Thus we apply 

guided breadth-first search to entire circuit, i.e. all logic devices are traversed in this 

search. In the first search, current traversed node will collect the neighbor nodes in the 

pre-level first and then collect nodes in the post-level. This method could provide an 

initial placement that the longest path (or largest component) of the graph will be 

decomposed from this circuit first and shorter path (or smaller component) of the graph 

start to attach to the largest component. And if there are several disjoint component in this 

graph, those components will separate from each other.  We would illustrate multilevel 

guided breadth-first search through Figure 4-5(a) to Figure 4-5(d). 

Figure 4-5(a) shows a 4-level bigraph with initial presentation. We select node A as 

the seed for the first breadth-first search and result is shown in Figure 4-5(b). In Figure 

4-5(b), depth number is listed aside the node, for instance, depth number of node A is 

seven. Figure 4-5(c) shows the result of the main breadth-first search.  In this graph, 

node L has three children T, Q, G. Because depth (T) < depth (Q) < depth (G), we traverse 

these nodes in the order of T, Q and G. Figure 4-5(d) is the placement of multilevel 

guided breadth-first search. All nodes are sorted by the increasing order of the number 

listed by Figure 4-5(c). 

In our example of multilevel guided breadth-first search, there are 18 wire crossings 

in the initial presentation. After applying multilevel guided breadth-first search, only 8 

wire crossings remain in the graph, in other words, 10 wire crossings is reduced in the 

graph after multilevel guided breadth-first search. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4-5. (a) An example of the initial placement of a 4-level bigraph; (b) The first 

breadth-first search result of (a), number aside the node is the depth of this node; (c) 

The main breadth-first search result of (a), numbers aside the node is the visitation 

of the main search; (d) Placement after multilevel guided breadth-first search, nodes 

in a level is sorted by numbers in (c). 
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4.2.3 Adaptive Insertion method 

 Local search [20] is a popular way to improve solutions in bigraph crossing problem. 

Repeat simple operation on the current ordering until no instance of the operation would 

improve reducing number of crossings. An example of an operation is neighbor swapping, 

which is swapping nodes (at position) i and i + 1 on level l. Such operation would be 

repeated until no choice of i could decrease the number of crossings. 

Adaptive insertion is a kind of local search based on neighbor swapping in the way: 

each operation inserts a node at any position among other nodes on its level, and each 

node is inserted mostly once during a pass. Assume node i is inserted before node j, 

where j < i ,  The resulting cost change,  Dl(i,j) , is  ─ the effect of the 

insertion is that of a succession of swaps of node i with node j , j + 1, … , i -1. The 

condition node i is inserted after node j is similar with the resulting cost change D

∑
=

),(
jk

l kiD
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−1j

l(i,j) = 

. ∑
+= 1

),(
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In our heuristic, one pass of adaptive insertion does a bottom-to-top sweep of logic 

devices on a level l. Devices are not allowed to stay in place even if no insertion would 

decrease the number of crossings.  If device i is already inserted in a pervious operation, 

node i is marked and it is not selected any more during the remainder of the current pass. 

To illustrate one pass of adaptive insertion, we use an example starting from Figure 

4-6 (a) to perform a series of node swapping. The first node we selected to perform 

inserting operation is node a.  Figure 4-6(b) shows the best position for node a is to 

insert it above node d, yielding a decrease of two.  The next unmarked node is b.  Node 

b is forced to move and finds its best position is below node d as shown in Figure 4-6(c). 
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After moving node b, the total crossings number is increase by one.  Next we select 

node c as our seed to do operation. Node c will be placed above node b and gain a 

crossing reduction of one as shown in Figure 4-6(d). Next operation is swapped node a 

and node d with no change in number of crossings. Finally node e is placed to uppermost 

position as shown Figure 4-6(f) with total wire crossing number of eight.   

              

(a)                                   (b) 

              

         (c)                                   (d) 
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         (e)                                   (f) 

Figure 4-6. Adaptive insertion on a simple example 

To finish adaptive insertion is time-consuming because we should compute variations 

of wire crossings after every node swapping. Thus we use the adjacency matrix to 

compute the number of wire crossings to save the computing time.  

In a bipartite graph, there is a wire crossings between two layers x and y if xi connects 

to ym , xj connects to yn and xi < xj , ym > yn where i , j , m , n denotes the relative 

positional ordering of the nodes. In terms of an adjacency matrix, this can be considered 

as if point (i,j) is included in the lower left sub-matrix of (m,n) or vice versa. Therefore 

the total crossing is computed by adding the product of every matrix element and the sum 

of its left lower sub-matrix entries. Because this is very computational expensive, we 

implement it with the incremental wire crossing method proposed by [13] instead of 

computing the matrix directly. Figure 4-7 shows an instance of wire crossing 

computation .In this method, we firs calculate the row-wise sum of all entries as in Figure 

4-7(c). Then we compute the column-wise sum of this row-wise sum matrix as in Figure 

4-7(d). Finally, we calculate the sum of all the entries(r,c) in the original matrix by the 

entries (r + 1, c - 1) in the column-wise sum matrix to obtain the total wire crossing.  
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Incremental wire crossing method enables us to perform node insertion without 

computing wire crossing individually. In stead, we just update the value of rows after 

every operation to get the total number of wire crossings. 

 
Figure 4-7 Illustration of wire crossing computation. (a) given graph, (b) initial 

adjacency matrix, (c) row-wise sum, (d) column-wise sum. 

4.3 Pin assignment 

 This section presents our pin assignment algorithm, which consists of greedy pin 

assignment and pseudo routing steps. 

4.3.1 Greedy pin assignment  

    In this step, we assign the input pin positions of all device blocks from the device on 

topmost position of the level to the device on bottommost position of the level. Then if 

there are some empty rows below all device blocks in this level, we begin to move device 

block from bottom to top of this level to their best position. The best position of the 

device block is the position that makes wire length of pin-to-pin connection of the device 

minimized. Sometimes, best position of a device block is not unique. In such condition, 

we would shift this device block to the bottommost best position for the reason that 

preserve most moving space for other device blocks.  If best position of a device block 

is already occupied by other devices, this device block would be placed to an unoccupied 
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position that is closest to best position.  We would illustrate this step from Figure 4-8(a) 

to Figure 4-8(g) 

             
(a)               (b)               (c)               (d) 

         
(e)               (f)               (g)                

Figure 4-8. An example of greedy pin assignment 

 In Figure 4-8(a), the left side is the fixed level (pins are already assigned); right side 

is the device set of the variable level. Figure 4-8(b) shows the initial pin assignment of 

the variable level. Because three empty rows remain in this level, we begin to shift 

devices from E to A to their best position. In Figure 4-8(c), device E is shifted to its best 

position. Then we can notice that the best position of device D was occupied by device E 
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already, thus we place it to the position closest to best position as shown in Figure 4-8(d). 

Other devices above device D is able to shift to the best position, Figure 4-8(e-g) show 

those results. 

4.3.2 Pseudo routing 

    After greedy pin assignment, there may be still some unroutable nets. A net is 

unroutable if it forms a cycle in vertical constraint graph and can’t resolve this cycle by 

doglegging.  We would verify such case exists or not by pseudo routing. When an 

unroutable net is found, we would insert a new row into this level or slightly shift the 

position of pins nearby the pin of this unroutable net to make this net routable.  Pseudo 

routing will be repeated until no unroutable nets found in our pin assignment results. 

4. 4 Channel Routing 

    This stage will finish the wire routing inside every level. Although in our synthesis 

model, level is a horizontal column, in this section we would like to lie down all levels as 

Figure 4-9. This is because channel routing like Figure 4-9 is a well-known form of 

channel routing. 

4.4.1 Overview 

We would finish the wire routing for each level in 5 steps. First, the level pins are 

scanned from left to right, and the VCG is constructed (step 1). Since there can’t be any 

cycle existed in VCG, cycles in the VCG are removed by doglegging (step 2). Once the 

VCG is acyclic, we would add crossing edges to VCG to reduce wire crossing (step 3). If 

cycles exist in the VCG, minimal weighted crossing edge set are removed and to make 

VCG becoming acyclic again (step 4). Eventually, we apply the LEF algorithm to assign 
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track to each net and finish routing of this level. Channel routing process is applied to 

every level to implement entire circuit. 

4.4.2 Doglegging 

 Doglegging is to split of horizontal segments of a net. This is used, not only to 

remove cycles in the VCG, but also used to minimize the number of horizontal tracks. We 

can apply DFS to determine whether VCG contains cycles or not. Once a cycle is found, 

the net in this cycle is divided into several subnets and a vertical dogleg is inserted. Each 

of these subnets is created and added into the VCG to remove these cycles. 

4.4.3 Crossing edge insertion 

It’s clear that wire crossing can only occur between nets which overlap horizontally. 

And the number of wire crossings between any arbitrary pair of horizontally overlapping 

nets is strongly influenced by their vertical ordering. 

Therefore, in order to reduce crossing, we use the notation “crossing edges” which 

is first proposed by [14], between nets in the VCG. In order to drive those horizontally 

overlapping nets to form the vertical relationship which results in the minimum number 

of crossing between them. Each crossing edge is a directed edge and assigned a weight 

that determines the number of wire crossings saved by placing the net that denotes the 

source point above the net that denotes the destination point. 

For example, consider Net 1 and Net 2, which overlap horizontally in Figure 4-9. 

Figure 4-9(a) shows if Net 1 places above Net 2 then they will crossover three times. But 
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if Net 1 places below Net 2 as shown in Figure 4-9(c), there is only one crossing between 

them. Therefore, we modify VCG shown in Figure 4-9(b) to Figure 4-9(d). Crossing edge 

sources form Net 1 is weighted by two and points to Net 1. Figure 4-9(c) is the result 

channel routing of VCG shown in Figure 4-9(d) which is the fewest wire crossings.  

 

                      (a)                                  (b) 

 

                      (c)                                  (d) 

Figure 4-9. (a-b) A channel and VCG with minimum channel width. (c) Optimum 

solution for minimizing wire crossing. (d) Modified VCG with inserting crossing 

edge. 

4.4.4 Cycle break 

 As stated in previous section, the weight of crossing edges determines the number of 

wire crossings reduction. Hence if VCG is acyclic after crossing edge insertion, we 

preserve all crossing edges to obtain a result with minimum wire crossings. Otherwise, if 
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VCG is not acyclic after insert crossing edges, the cycles must be removed before track 

assignment begins. Because if we reserve the crossing edge set with higher total weight, 

the result of channel routing has fewer wire crossings. Our goal is to find a set of crossing 

edges A⊂E with the minimum total weight such that G – A is acyclic.  

 Since a acyclic directed graph has a topological ordering, we develop our cycle 

break algorithm as shown in Figure 4-11. The main idea of our algorithm is to enforce a 

topological ordering of VCG and remove all violating edges that violate this topological 

ordering, i.e. edge start from the vertex with larger order to the vertex with smaller order. 

Therefore our goal is to find a topological ordering of VCG that has the violating edges 

set with minimum total weight. 

In our algorithm, we prune the vertices which have no outward edges first because 

these vertices wouldn’t introduce any violating edges if we place them in the tail of 

topological ordering list.  Then we calculate the cost of the candidate vertex that has no 

inward vertical constraint edge. Cost of candidate vertex determines that if we want to 

break a cycle, how many crossing reduction we would lose. Thus we pick the vertex with 

lowest cost into the front of topological ordering list and update VCG. After update VCG, 

if any vertices which have no outward edges exist, we would prune them as the reason 

stated above. When the list of topological ordering is completely formed, we start to 

traverse this list from the begging to record all violating edges. Because VCG is a 

directed graph, not all violating edges introduce a cycle; each violating edge must be 

verified. If this violating edge actually introduces a cycle, we remove it form VCG, 

otherwise we would preserve it.  For example, Figure 4-10(a) is a cyclic VCG. We first 

prune vertex that has no outward edge in the order of H, A, G. Figure 4-10(b) shows the 

result after pruning. In Figure 4-10(b), vertex I, E, and J is candidate vertex and vertex J 
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has the lowest cost of 1. Therefore, we remove J form VCG and Figure 4-10(c) shows 

this result. In Figure 4-10(c), vertex E has the lowest cost of 3/2, thus vertex J would be 

the next node removes from the graph.  When all vertices are removed form the graph, a 

topological ordering would be developed.  In Figure 4-10(d), such topological ordering 

is shown below the graph and violating edge is colored with blue. In this example, all 

violating edge actually introduces a cycle. Consequently, all violating edge must be 

removed. Final result is shown in Figure 4-10(e).  

           
            (a)                                   (b) 

            

            (c)                                   (d) 
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            (e)                                                            

Figure 4-10. Example of cycle break algorithm 
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Algorithm: Cycle Break 

Input: A cyclic directed graph G( V , E ) 

output: A acyclic directed graph G＇( V ＇, E＇) = G( V , E – A) 

Begin 

     Repeat  

    remove all vertices of G which has no outward edges from G； 

push those vertices to a stack SQ； 

     Until (all vertex of G has at least one outward edge) 

     Repeat 

         if( vertex Vi has no inward vertical constraint edge) 

             Cost(Vi) =  Vi of edges crossing outward ofNumber 
Vi of edges crossing inward of weight Total

 

         Select a vertex Vt with lowest cost , remove Vt  form G； 

            Insert Vt  into a list LQ；  

                  if( G exists vertices which has no outward edges) 

                  Remove those vertices from G and push them to SQ； 

     Until no more vertices in G 

     while(SQ is not empty)  

         Pop vertex form SQ and insert this vertex to LQ；    

All Edges in LQ that violate topological ordering of LQ and results in a cycle of 

VCG will be removed from VCG； 

End 

Figure 4-11 Cycle Break Algorithm 
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Chapter 5 
Experimental Results 

Our QCA synthesizer was implemented in C++/STL and complied with Borland 

C++ Builder running on 2.4 GHz Pentium 4 PC with 256 RAM. Ten combinational 

circuits were selected from ISCAS85 benchmark. Table 1 shows these circuit and report 

their functionality. 
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Table 2 shows the edge crossing results after placement stage. We list our algorithm 

in two ways: with or without adaptive insertion and compare our results with 

conventional placement algorithm: barycenter ordering and median ordering. Each entry 

list in Table 2 is the value of total edge crossings.  Our placement algorithm was 

outperformed conventional placement method in most cases except for C432. We 

conclude the memory usage and time usage of these algorithms in table 3.  In table 4, 

we normalize our algorithm results with results of conventional method in addition to 

C17 and C432.  In comparison, the method present here obtains average 27% crossing 

improvement over barycenter ordering and 38% crossing improvement over median 

ordering. Even without adopting adaptive insertion, improvement over barycenter 

ordering and median ordering is still obtained.  
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In our physical design flow, pseudo routing stage would check unroutable net 

existed or not and expand the height of the level. This is harmful to the area size of QCA 

layout. Fortunately, those unroutable net are rarely seen in the circuit. In our experiment, 

there were at most 2 expanded rows in a circuit. 

In table 5, we compare our channel routing result based on our placement method 

with or with adaptive insertion to the theoretical lower bound. The theoretical lower 

bound of wire crossing for each circuit is equal to the sum of the minimum values of wire 

crossing for each pair of nets. Our channel routing heuristic result in average wire 

crossing only 7 ~ 8% above the theoretical lower bound.  
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Figure 5-1 shows our synthesis result of C17 circuit, and Figure 5-3 shows its 

simulation result. We simulate our C17 circuit with 96000 samples, converge tolerance 

was set to 0.0001; radius of effect was set to 40.0 nm and at moat 1000 samples per 

iteration is allowed. In our synthesizer, C17 circuit is divided into 10 clocking zone, i.e. 

22 1  QCA clock period.  Thus there were 22 1  volatile output values before 

simulation output of the first input pattern. We mark those volatile output values by red 

rectangle in Figure 5-3.  

To verify our simulation result, we simulate C17 circuit with the same input patterns 

with Modelsim and the result was shown in Figure 5-2. There were no different output 

values comparing of Figure 5-2 and Figure 5-3. In other word, our C17 circuit was 

correctly synthesized. 

 

Figure 5-1 C17 circuit 
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Besides C17 circuit, we also verified C432 circuit with 100 random selected patterns. 

Figure 5-4 shows the simulation result of QCA Designer and Figure 5-5 shows the 

simulation result of Modelsim. Differing form simulating C17 circuit, we simulated each 

input pattern 25000 samples to obtain the correct simulation result.  In C432 circuit, 

there were 18 volatile output values because there were 72 clocking zones in our C432 

circuit. Due to the limitation of hardware resource, we didn’t verify other synthesis circuit 

in ISCAS85. 

 

Figure 5-2 Simulation result of C17 by Modelsim 

 
Figure 5-3 Simulation result of C17 by QCA Designer 
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Figure 5-4 Simulation result of C432 by QCA Designer 

 

Figure 5-5 Simulation result of C432 by Modelsim 
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Chapter 6 
Conclusions 

In this paper we describe a physical design flow of QCA layout synthesis and wish 

to help generating synthesizable QCA circuits. From the experimental test, we found out 

wire crossing were strongly influenced the correctness of QCA circuit functionality. For 

this reason, we focus on generating QCA layout with minimum wire crossings. QCA 

layout of ISCAS benchmark circuit C17 and C432 were synthesized and verified 

functionality successfully.   
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