
 
國 立 交 通 大 學 

 

資訊科學系 
 

碩 士 論 文 
 
 
 
 
 

基於同代像加密法秘密計算富翁問題 
 

An Efficient Solution to The Millionaires’ Problem based 
on Homomorphic Encryption Schemes 

 
 
 
 
 

研 究 生：林孝盈 

指導教授：曾文貴  教授 

 

 
 
 
 
中 華 民 國  九 十 四  年 六 月 



基 於 同 代 像 加 密 法 秘 密 計 算 富 翁 問 題 
 
 
 

學 生：林孝盈                 指導教授：曾文貴 博士          

 
 

國立交通大學資訊科學研究所 
 
 
 
摘要 

 

我們提出了一個可以秘密計算富翁問題的協定, 而這個協定可

以在 semi-honest 假設下被證明是安全的。我們的協定可以透

過加法或者乘法的同代像加密法(homomorphic encryption 

schemes)來建構。在以前提出的協定中,都是以加法或者 XOR特

性的同代像加密法來建構。在計算量與傳輸量上, 我們的協定與

之前的協定是在同樣的漸近等級(asymptotic order)。然而因為

乘法同代像加密法在實作上比加法同代像加密法來得有效率, 

使得我們的協定在實作上可以保有這樣的優點。 

 

 

關鍵詞: 秘密計算、大於問題、富翁問題、同代像加密法 



An Efficient solution to the Millionaires’ Problem based on 
Homomorphic Encryption Schemes 

 
 
 

Student：Hsiao-Ying Lin             Advisor：Dr. Wen-Guey Tzeng 

 
 

Institute of Computer and Information Science 
National Chiao Tung University 

 
 

ABSTRACT 
 

We proposed a two-round protocol for solving the Millionaires' Problem 

in the setting of semi-honest parties. Our protocol uses either 

multiplicative or additive homomorphic encryptions. Previously proposed 

protocols used additive or XOR homomorphic encryption schemes only. 

The computation and communication costs of our protocol are in the 

same asymptotic order as those of the other efficient protocols. 

Nevertheless, since multiplicative homomorphic encryption scheme is 

more efficient than an additive one practically, our construction saves 

computation time and communication bandwidth in practicality. 

 

 

Keywords: secure computation, the greater than problem, the socialist 

millionaires' problem, homomorphic encryption schemes. 



 

 

誌謝 

首先要感謝我的指導教授曾文貴博士, 在這兩年來的指導與教誨, 

讓我在學習與研究上獲益良多。再者要感謝我的男友明智以及我的家

人, 兩年來在生活鎖事上無微不致的照顧,以及精神上無比的支持。

同時也感謝實驗室的康康學長, 季穎學姊, 以及所有成員們平時提

供的諮詢服務以及數不清的歡樂時光。僅以此文獻上我誠摯的感謝。 



Contents

1 Introduction 3

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries and Definitions 7

2.1 Secure two-party computation . . . . . . . . . . . . . . . . . . . . . 7

2.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Homomorphic encryption with scalaring . . . . . . . . . . . . . . . 9

2.4 0-encoding and 1-encoding . . . . . . . . . . . . . . . . . . . . . . . 12

3 Our Protocols against semi-honest adversaries 15

3.1 Correctness and Security . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Malicious adversaries 25

5 Other protocols 28

5.1 Fischlin’s GT protocol . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Blake and Kolesnikov’s GT protocol . . . . . . . . . . . . . . . . . 31

1



6 Comparison 33

2



Chapter 1

Introduction

In recent years, there are many applications in processing private data over the

network, such as the private bidding. The need for privacy can be met by secure

computation. Secure computation is to compute a public function with each

party’s private input. After computation, only the evaluation result is known

and the private inputs are not exposed except those derived from the result.

Secure two-party computation was first proposed [Yao82]. The two-party case

was subsequently generalized to the multi-party case.

For secure two-party computation, there are two kinds of approaches. One

provides the general solution to all functions that can be expressed as the cir-

cuits. The other one provides a solution to a specific function, which is often

an important or a fundamental function. We illustrate the equality function and

the mean function as examples. The equality function is to check whether the

two inputs are equal or not. Secure computation of the equality function is also

called the private matching. The mean function is to find the mean value from

the union of the two private databases. It can be applied in some statistically

analysis over databases that belong to different departments.

3



In this paper, we want to solve the greater than function. It is also called the

Millionaires’ problem. The Millionaires’ problem is to determine who is richer

between two parties such that no information about a party’s amount of assets

is leaked to the other party. The problem can be expressed by the greater than

function. The greater than function is to determine whether one input is larger

than the other or not. Secure computation of the greater than function has

many applications, such as in private bidding. Consider the situation that in the

internet a seller wants to sell an item at least y dollars while a buyer wants to

buy it at price x. The deal can be done if and only if x > y, but the seller doesn’t

want to expose the base price before the deal is done. We call the application

as the private bidding and it can be constructed by secure computation of the

greater than function.

In the history of secure computation of the greater than function, Yao [Yao82]

first proposed a solution to the problem. Thereafter, many other protocols with

great improvement are proposed. Some protocols [BK04, IG03, Fis01] solve the

problem directly by analyzing the special properties of the problem. Some oth-

ers [ST04] solve it in the content of secure two-party computation in which the

problem is represented as secure evaluation of the ”greater than” boolean circuit

with encrypted inputs. The former solutions are more efficient, while the later

ones are more general.

We analyze the special properties of the greater than function. We find that

the greater than function can be reduced to the intersection problem of two sets

by a special coding for the private inputs. We could tackle the set intersection

problem by the method in [FNP04]. Nevertheless, the protocol for the greater

than function by using the set intersection protocol in [FNP04] directly is less

efficient in both computation and communication. This is the same case when

4



we use the disjointness protocol [KM05]. We also can use the equality proto-

col [FNP04, Lip03, BST01] to construct the set intersection protocol. However,

it will need n2 equality tests (or secure comparisons) to compute the set intersec-

tion, where n is the size of the set. We solve the greater than function by further

probing the property of our coding method.

Our protocol is two-round and it can be based on either an additive or

a multiplicative homomorphic encryption scheme, while most previous proto-

cols [BK04, Fis01] are based on additive or XOR encryption schemes only.

1.1 Related Work

Secure multiparty computation (or secure function evaluation) is to compute a

public function with each party’s private input such that in the end only the

evaluation result is known and the private inputs are not exposed except those

derived from the result. Yao [Yao82] first proposed such a protocol for the greater

than problem, which is an instantiation of secure computation. Nevertheless, the

cost of the protocol is exponential in both time and space. Later one, Yao [Yao86]

and Goldreich, etc [GMW87] used the technique of scrambled circuits to solve

the general multiparty computation problem. By applying this technique to the

greater than problem, the cost of the resulting protocol in computation and com-

munication is linear. Recently, Schoenmakers and Tuyls [ST04] used threshold

homomorphic encryption schemes as a tool to solve the multiparty computation

problem. Applying to the concrete greater than problem, it provides a threshold

greater than protocol, in which the private inputs are shared among a group of

parties. The protocol takes O(n) rounds.

On the other hand, protocols for solving the greater than problem directly are

5



more efficient. These protocols usually take a constant number of rounds. Ioan-

nidis and Grama [IG03] used 1-out-of-2 oblivious transfer scheme to construct

the greater than protocol that runs n copies of the OT scheme in parallel, where

n is the length of the private inputs. However, the length of the private inputs

is restricted by the secure parameter of the based OT schemes. Fischlin [Fis01]

used the Goldwasser-Micali encryption scheme (GM-encryption) to construct a

two-round greater than protocol. The GM encryption scheme has the XOR, NOT

and re-randomization properties. They modified the scheme to get an AND prop-

erty, which can be performed once only. The computation cost O(λn) modular

multiplications which is very efficient, where λ is the secure parameter. Nev-

ertheless, the overall communication cost is O(λn log N) is less efficient, where

N is the modulus. In [BK04], Blake and Kolesnikov used the additive homo-

morphic Paillier cryptosystem to construct a two-round greater than protocol.

The computation cost is O(n log N) and the communication cost is O(n log N).

Our protocol keep the same communication cost as [BK04] while saving the

computation cost 68%.

6



Chapter 2

Preliminaries and Definitions

2.1 Secure two-party computation

We first introduce some important properties of secure two-party computation.

Secure two-party computation is the two-party case of secure computation.

To classify the level of privacy, we have the semi-honest case and the malicious

case. Semi-honest and malicious cases are used to describe the behaviors that

players can perform in the protocol. In the semi-honest setting, players can only

follow the protocol and try to get some extra information from the transcripts

of the protocol. In the malicious setting, players can perform any behaviors and

gain extra information via those ”bad” behaviors. Our protocol is secure in the

semi-honest setting.

Another issue of secure two-party computation is fairness. When the protocol

output the final result, does each party get the result at the same time? One

party may get the result first and then abort the protocol while the other one

doesn’t get the result yet. This is not a fair case. The fairness is satisfied when

two parties don’t take too much advantages than each other. Traditionally, two

7



parties can exchange the messages bit by bit. In every phase in the exchange

process, one party get at most one more bit information than the other party.

2.2 Problem definition

The greater problem is a two-party secure computation problem of the greater

than function. We define the greater than function f such that f(x, y) = 1 if and

only if x > y. We say that the two parties are Alice and Bob where x is Alice’s

private input and y is Bob’s. To formally define Alice’s privacy, we need describe

that the private input of Alice doesn’t reveal to Bob via the exchange messages.

We use a simulator to simulate a real view of Bob without the private input of

Alice. If the simulator can generate an indistinguishable view from the real one,

we say that Bob can not get extra information about the private input of Alice

from the protocol. In the same way, we define the privacy of Bob.

A solution protocol Π to the GT problem should meet the following require-

ments.

1. The involved parties Alice and Bob are both polynomial-time bounded

probabilistic Turing machines. We assume that Alice and Bob are semi-

honest. That is, they shall follow the protocol step by step, but try to get

extra information by more computation.

2. Correctness: After execution of Π, Alice returns 1 if and only if x > y.

3. Alice’s privacy: Holdings of x or x′ (x′ �= x) are not computationally dis-

tinguishable by Bob. Let V iewΠ
B be the real view of Bob when interacting

with Alice with private input x. We say that Alice’s privacy is guaranteed

if there exists a simulator SimB such that for any x, SimB(y) generates

8



a view indistinguishable from the view of Bob in the execution of the real

protocol, that is,

SimB(y) ≡c V IEWΠ
B (A(x), y)

4. Bob’s privacy: Alice cannot get extra information except those derived from

x and b = f(x, y). Bob’s privacy is guaranteed if there exists a simulator

SimA, such that for any y′ with f(x, y′) = b, SimA(x, b) can generate a

view indistinguishable from the view of Alice in the real execution, that is

SimA(x, f(x, y)) ≡c V IEWΠ
A (x,B(y′))

2.3 Homomorphic encryption with scalaring

We review multiplicative and additive homomorphic encryption schemes with

the property of scalaring. Multiplicative homomorphic encryption schemes are

usually more efficient than additive homomorphic encryption schemes,

An encryption scheme is multiplicative homomorphic if and only if

D(E(m1) � E(m2)) ∼= m1 × m2,

where � is an operator, E(·) is the encryption function of the scheme, and D(·)
is the decryption function of the scheme.

In the same way, an encryption scheme is additive homomorphic if and only

if

D(E(m1) � E(m2)) ∼= m1 + m2.

.

An encryption is scalarable if c = E(m) can be mapped randomly to a cipher-

9



text c′ = E(mk) or E(km) for a random k. If the encryption scheme is additive

homomorphic, the scalaring process doesn’t influence the encryption of 0.

E(0)k = E(k × 0) = E(0).

If the encryption scheme is multiplicative homomorphic, the scalaring process

doesn’t influence the encryption of 1.

E(1)k = E(1k) = E(1).

In both cases, if the message is not the specific value we mentioned, the result of

the scalaring process will be a randomized value since we select k randomly. Later

in our construction, we will need the property to randomize some computation

result in order to protect the secret.

The ElGamal encryption scheme is a multiplicative homomorphic encryption

scheme with the scalaring property. For efficiency of computation, we modify

the scheme so that each decryption takes 1 modular exponentiation. This mod-

ification does not affect the security of the scheme. Let r ∈R S denote that r is

chosen from S uniformly and independently.

- Key generation: Let p = 2q + 1, where p and q are both primes. Let Gq be

the subgroup QRp and g is a generator of Gq. The public key is h = g−α,

where α ∈ Zq is the corresponding private key.

- Encryption: The encryption of message m ∈ Gq is a pair E(m) = (a, b) =

(gr,mhr), where r ∈R Zq.

- Decryption: For a ciphertext c = (a, b), the message is computed from

D(c) = b × aα = m.

10



- Scalaring: We can scalarize a ciphertext c = E(m) = (a, b) by computing

c′ = E(mk) = (ak, bk) for k ∈R Zq. If m = 1, the scalaring operation does

not change the content of encryption. Scalaring makes c′ indistinguishable

from a random pair due to the DDH assumption (below).

The ElGamal encryption scheme is multiplicative homomorphic since

E(m1) � E(m2) = (gr1 ,m1h
r1) � (gr2 ,m2h

r2)

= (gr1+r2 , (m1 × m2)hr1+r2)

= E(m1 × m2)

The security of ElGamal scheme is based on the DDH assumption, which

states that it is computationally infeasible to distinguish the following two dis-

tribution ensembles:

- D = (ga, gb, gab), where a, b ∈R Zq.

- R = (ga, gb, gc), where a, b, c ∈R Zq.

If we only need an encryption of a random number, we need not choose a

random number and encrypt it. This costs an encryption time. Instead, we

choose a random pair c = (a, b) ∈R G2
q , which is an encryption of some random

number. By this technique, we save the encryption cost, which is crucial to the

efficiency of our GT protocol.

The Paillier encryption scheme is additive homomorphic, which is as follows:

- Key generation: Let N = pq be the RSA-modulus and g be an integer of

order αN modulo N2 for some integer α. The public key is (N, g) and the

private key is λ(N) = lcm((p − 1), (q − 1)).

11



- Encryption: The encryption of message m ∈ ZN is E(m) = gmrN mod N2,

where r ∈R Z∗
N .

- Decryption: For ciphertext c, the message is computed from

m =
L(cλ(N) mod N2)
L(gλ(N) mod N2)

,

where L(u) = u−1
N .

- Scalaring: For ciphertext c = E(m), the scalaring is done by computing

c′ = E(km) = ck for k ∈ Z∗
N . If m = 0, the scalaring operation does not

change the content of encryption.

The security of the scheme is based on the CRA (Composite Residuosity as-

sumption, which states that it is computationally infeasible to distinguish whether

an element z ∈ Z∗
N2 is an n-residue or not.

The scheme is additive homomorphic since

E(m1) � E(m2) = (gm1rN
1 ) · (gm2r2

N )

= gm1+m2(r1r2)N

= E(m1 + m2).

2.4 0-encoding and 1-encoding

The main idea of out construction is to reduce the GT problem to the set inter-

section problem. We use two special encodings, 0-encoding and 1-encoding.

Let s = snsn−1...s1 ∈ {0, 1}n be a binary string of length n. The 0-encoding

12



of s is the set S0
s of binary strings such that

S0
s = {snsn−1...si+11|si = 0, 1 ≤ i ≤ n}

The 1-encoding of s is the set S1
s of binary strings such that

S1
s = {snsn−1...si|si = 1, 1 ≤ i ≤ n}

Both S1
s and S0

s have at most n elements.

If we encode x into its 1-encoding S1
x and y into its 0-encoding S0

y , we can see

that

x > y if and only if S1
x and S0

y has a common element.

We give an example. Let x = 6 = 1102 and y = 2 = 0102 of length 3 (we fill in

the leading zeros.) We have S1
x = {1, 11} and S0

y = {1, 011}. Since S1
x ∩ S0

y �= ∅,
we have x > y indeed. If x = 2 = 0102 and y = 6 = 1102, we have S1

x = {01} and

S0
y = {111}. Since S1

x ∩ S0
y = ∅, we have x ≤ y.

We note that the strings in S1
x have a prefix relation and the strings in S0

y

also have a prefix relation when removing the last bit. Our protocol exploits this

relation.

Theorem 2.4.1. x is greater than y if and only if S1
x and S0

y have a common

element.

Proof. Let x = xnxn−1...x1 ∈ {0, 1}n and y = ynyn−1...y1 ∈ {0, 1}n. For the

forward direction, we can see that if x > y, there is a position i such that xi = 1

and yi = 0, and for all j, n ≥ j > i, xj = yj. We have xnxn−1 . . . xi ∈ S1
x by

1-encoding and ynyn−1 · · · yi+11 ∈ S0
y by 0-encoding. Thus, S1

x and S0
y have a

common element.

13



For the backward direction, let t = tntn−1...ti ∈ S1
x ∩ S0

y for some ti = 1.

Since t ∈ S1
x, xnxn−1 . . . xi = tntn−1 . . . ti, and since t ∈ S0

y , ynyn−1 . . . yi+1ȳi =

tntn−1 . . . ti. We can see that x > y.

14



Chapter 3

Our Protocols against

semi-honest adversaries

If Alice and Bob compare the elements in S1
x and S0

y one by one, it would

need O(n2) comparisons. Nevertheless, they can only compare the corresponding

strings of the same length (if both of them exist) in S1
x and S0

y . This reduces the

number of comparison to O(n).

Let (G,E,D) be a multiplicative homomorphic encryption scheme. Alice uses

a 2 × n-table T [i, j], i ∈ {0, 1}, 1 ≤ j ≤ n, to denote its input x = xnxn−1 · · · x1

with

T [xj, j] = E(1) and T [x̄j , j] = E(r) for some random r ∈ Gq.

Since Alice need not know r (each entry uses a distinct r), she randomly selects

(a, b) ∈ G2
q for E(r). When Bob wants to compare a string t = tntn−1 · · · ti in S0

y

with the corresponding string of the same length in S1
x, he computes

ct = T [tn, n] � T [tn−1, n − 1] · · · � T [ti, i].

15



We can see that ct is an encryption of 1 if and only if t ∈ S1
x except with a

negligible probability of incorrectness. Furthermore, since strings in S0
y have

some sort of prefix relations, Bob can compute all ct’s in at most 2n homomorphic

operations, instead of n2 homomorphic operation.

Based on the previous discussion, our GT protocol is as follows:

Protocol 1

1. Alice with private input x = xnxn−1 · · · x1 does the following:

• run G to choose a key pair (pk, sk) for (E,D).

• prepare a 2 × n-table T [i, j], i ∈ {0, 1}, 1 ≤ j ≤ n, such that

T [xi, i] = E(1) and T [x̄i, i] = E(ri) for some random ri ∈ Gq

• send T to Bob.

2. Bob with private input y = ynyn−1 · · · y1 does the following:

• for each t = tntn−1 · · · ti ∈ S0
y , compute

ct = T [tn, n] � T [tn−1, n − 1] · · · � T [ti, i].

• prepare l = n − |S0
y | random encryptions zj = (aj , bj) ∈ G2

q , 1 ≤ j ≤ l.

• scalarize ct’s and permutate ct’s and zj ’s randomly as c1, c2, . . . , cn.

• send c1, c2, . . . , cn to Alice.

3. Alice decrypts D(ci) = mi, 1 ≤ i ≤ n, and determine x > y if and only if

some mi = 1.

16



When x ≤ y, there is a negligible probability that our GT protocol returns a

wrong answer due to randomization.

Our GT protocol can use additive homomorphic encryption. We only replace

E(1) by E(0) in setting up the table T . In the end, Alice determines x > y if

and only if some mi = 0.

3.1 Correctness and Security

Theorem 3.1.1. The protocol constructed as above is a solution to the GT prob-

lem and is secure in the semi-honest setting.

Proof. At first, we verify the correctness. If x > y, the error probability is

Pr(b = 0 | x > y)

where b is the output of the protocol. Since x > y, there must be an encryption

of 1 in the sequence c1, c2, . . . , cn. Thus the output of the protocol must be 1. In

other words,

Pr(b = 0 | x > y) = 0.

If x ≤ y, the error probability is

Pr(b = 1 | x ≤ y).

Since x ≤ y, c1, c2, . . . , cn must be made from random numbers. The output of

the protocol is 1, it means that there exists an encryption of 1 in the sequence.

Now we can conclude that the error happens in three possible situations (events).

1. A pair of random numbers forms an encryption of 1.

17



2. A product of those random numbers forms an encryption of 1.

3. In the scalaring phase, the random numbers become an encryption of 1

after the scalaring.

We use the union bound to bound the total error probability. So what we need to

know is the probabilities of those events happen. In the protocol, we choose the

random numbers from G2
q as a random encryption. A pair of random numbers

forms an encryption of 1 with probability 1/q. The probability of the product

of random numbers becomes an encryption of 1 is equal to the probability of

a random pair being an encryption of 1. The probability of a pair of random

numbers forms an encryption of 1 after scalaring is O(1/q). There are n elements

in the sequence of the ciphertexts, and the error happens when one of the events

happens in one element of the sequence. The total error probability when x ≤ y

is

Pr(b = 1 | x ≤ y) ≤ n × (1/q + c/q + 1/q) = O(n/q).

Since n 
 q, the error probability when x ≤ y is negligible. The total error

probability of the protocol is

∑

x,y

Pr(b = 1 | x ≤ y)Pr(x ≤ y) + Pr(b = 0 | x > y)Pr(x > y) = O(n/q),

which is negligible. We can conclude our protocol satisfies the correctness since

the error probability is negligible.

For Alice’s privacy, we construct a simulator SimB which simulates the view

of Bob in the real protocol. If SimB generates an indistinguishable view from the

real one, we can say that Bob doesn’t get extra information in the real protocol

or we can break the encryption scheme by using the distinguisher (which can

18



distinguish the view of Bob from the view generated by SimB). SimB takes y

and the output of the protocol b as input and randomly select x′ as input of

Alice in the simulation. Then SimB generates the table T (x′) according to x′.

The view generated by SimB is (y, Tx′) and the view in the real execution is (y,

Tx). Now, we need to prove that Tx and T ′
x are indistinguishable. We prove it

by contradiction. Assume that Tx and T ′
x are distinguishable by a distinguisher

DT with advantage ε. We can use DT to construct an adversary to break the

security of the encryption scheme with advantage ε/n. Due to the security of the

ElGamal encryption, Tx and T ′
x are indistinguishable. Thus SimB(y) and the

real view V iewΠ
B(A(x), y) are indistinguishable.

For Bob’s privacy, we construct a simulator SimA to simulate the view of Alice

without the private input of Bob. We need the view generated by SimA being

indistinguishable from the view of Alice in the real execution. SimA simulates

as follows. The input of SimA are the comparison result b ∈ {0, 1} and Alice’s

private input x. SimA uses x to construct the table T for the first step. For the

second step, SimA generates the sequence c1, c2, . . . , cn according to the result

value b. If b = 1, SimA generates n − 1 random encryptions and one encryption

of 1, then SimB randomly permutates them as c1, c2, . . . , cn. If b = 0, SimA

generates n random encryptions as c1, c2, . . . , cn. The view generated by SimA

is (x, Tx, c1, c2, . . . , cn, b).

Since Tx is constructed by using the value x, the distribution is identical to

that in the real execution. For fixed output b, the sequence of the ciphertexts are

computationally indistinguishable from the sequence in the real execution due to

the scalaring property. Thus, Alice cannot compute Bob’s private input y except

knowing its relation with x.

19



3.2 Efficiency

In this analysis, the base encryption scheme is the ElGamal scheme. Let p be the

modulus.

Computation Complexity. Let n be the length of the private inputs. We

neglect the cost of choosing random numbers. The cost of choosing a public key

pair for Alice is neglected either since this can be done in the setup stage. We

don’t count the cost of selecting keys in other protocols, either.

In Step 1, Alice encrypts n 1′s. In Step 2, Bob computes ct, t ∈ S0
y , by

reusing intermediate values. This takes (2n− 3) multiplications of ciphertexts at

most. Step 2 uses n scalaring operations at most. In Step 3, Alice decrypts n

ciphertexts.

To compare fairly, we convert all operations to the number of modular mul-

tiplications. For the ElGamal scheme, each encryption takes 2 log p modular

multiplications, each decryption takes log p modular multiplications, and each

scalaring operation takes 2 log p modular multiplications. Overall, our GT pro-

tocol needs 5n log p + 4n− 6 (= n× 2 log p + 2× (2n− 3)+ n× 2 log p + n× log p)

modular multiplications.

Communication complexity. The size of exchanged messages between Alice

and Bob is the size of T and c1, c2, . . . , cn, which is 6n log p (= 3n × 2 log p) bits.

3.3 Extensions

We can use the collision resistant hash function to construct a simpler protocol.

The protocol uses less communication bits.

The protocol is as follows:

Protocol 2

20



Let h be a public collision-free hash function.

1. Alice encodes x as S1
x and lets hl be the hash value of the length-l string t

in S1
x if t exists.

2. Alice encrypts hl as cl for existent hl’s and randomly selects cl′ for missing

hl′ , 1 ≤ l′ ≤ n.

3. Alice sends c1, c2, . . . , cn to Bob.

4. Bob encodes y as S0
y and computes the hash value h′

l for the length-l string

t in S0
y if t exists.

5. Bob computes zl = (al, bl/h
′
l) for existent h′

l and zl = cl for inexistent h′
l,

where cl = (al, bl), 1 ≤ l ≤ n.

6. Bob scalarizes and permutates z1, z2, . . . , zn and sends them to Alice.

7. Alice decrypts z1, z2, . . . , zl and outputs 1 if and only if some message is 1.

Correctness. In the protocol, we assume that h is a collision resistant func-

tion. The protocol is correct with overwhelming probability. We assume that the

collision probability of the hash function h is ε. Let the output of the protocol

be b ∈ {0, 1}.There are two error cases.

1. If x > y, the error probability is

Pr(b = 0|x > y).

The protocol outputs 0 if the sequence z1, z2, . . . , zn contains no encryption

of 1. When x > y, the encoding set of x and the encoding set of y have a

common element. After hashing, the results of the common element in two

21



sets are also the same. Thus it is impossible that the sequence z1, z2, . . . , zn

contains no encryption of 1 when x > y. We can conclude that

Pr(b = 0|x > y) = 0.

2. If x ≤ y, the error probability is

Pr(b = 1|x ≤ y).

The protocol output 1 if the sequence z1, z2, . . . , zn contains at least one

encryption of 1. Under the following situations when x ≤ y, the sequence

will contain at least one encryption of 1:

- When Alice pads elements to missing items, she randomly select num-

bers which is an encryption of 1 in accident. This happens with prob-

ability 1/q for one random element being an encryption of 1.

- There exists a element in the encoding set of x and a element in the

encoding set of y such that they have the same length and their hash

value collide but their value are not the same. This happens with

probability ε for a pair of elements.

- After scalaring, a ciphertext becomes an encryption of 1 while it is not

originally. This happens with probability 1/q for a ciphertext.

We compute the error probability when x ≤ y by the union bound.

Pr(b = 1|x ≤ y) ≤ n × 1/q + n × ε + n × 1/q

When the collision probability of the hash function is negligible, the error

22



probability when x ≤ y is negligible, too.

The total error probability can be bounded.

Pr(b = 1|x ≤ y)Pr(x ≤ y) + Pr(b = 0|x > y)Pr(x > y)

= (n × 1/q + n × ε + n × 1/q) × Pr(x ≤ y) + 0

< (n × 1/q + n × ε + n × 1/q)

With ε is negligible, we can claim the protocol is correct with overwhelming

probability.

Security. The privacy for Alice and Bob is guaranteed by the semantic secure

public key encryption scheme.

For Alice’s privacy, we construct a simulator SimB to simulate the view of Bob

in the real protocol. If the simulated view is indistinguishable from the real one,

we can claim that Bob can not get extra information from the transcript in the real

protocol. The Bob’s view in the real protocol is y, z1, z2, . . . , zn, b. Now we show

how we construction the simulator SimB. With Bob’s input y and the output

of the protocol b, simulator randomly selects x′ as Alice’s input. Then SimB

computes z′1, z
′
2, . . . , z

′
n according to x′. We need the sequence (z′1, z

′
2, . . . , z

′
n)

being indistinguishable from (z1, z2, . . . , zn). We prove it by contradiction.

If the sequence (z′1, z′2, . . . , z′n) can be distinguished from (z1, z2, . . . , zn), there

exists a distinguisher DZ . We can use DZ to break the encryption scheme or find

a collision of the hash function. Given x, x′, (Z1, Z2, . . . , Zn), we assume that DZ

can distinguish that (Z1, Z2, . . . , Zn) are computed from x or x′ with probability

σ. By triangular theorem, there exists a position i such that zi and z′i can be

distinguished with probability σ n where h(xi) �= h(x′
i). Since zi = E(h(xi)) and

z′i = E(h(x′
i)) can be distinguished with probability σ/n, and h(xi) �= h(x′

i). We

23



can use the distinguisher to break the encryption scheme with probability σ/n.

As above, we can see that if DZ can distinguish with a non-negligible probability,

we can break the encryption scheme with a non-negligible probability. We can

conclude that (z1, z2, . . . , zn) and (z′1, z′2, . . . , z′n) are indistinguishable. Therefore,

the requirement of Alice’s privacy can be satisfied.

For Bob’s privacy, we can use the same proof as in the original protocol.

Communication complexity. In the protocol, Alice sends n ciphertexts to Bob,

and Bob sends n ciphertexts back to Alice. The size of a ciphertext is 2 log p bits.

Thus, the total communication cost of the protocol is 4n log p bits.

Computation comlixity. In the protocol, the computation of Bob for each

value from Alice can be completed by inversion of the hash value, a multiplication

and a scalaring of the ciphertext. Thus the computation cost in the protocol of

Bob is 2n log p + 2n modular multiplications. The computation cost of Alice is

3n log p modular multiplications. The total computation cost of the protocol is

5n log p + 2n modular multiplications.

24



Chapter 4

Malicious adversaries

Our construction in the previous chapter is secure in the semi-honest setting. In

the malicious setting, each round requires additional messages to assure legality

of the sent messages. The techniques are mostly based on non-interactive zero-

knowledge proof of knowledge. Here we give some discussion of how to make the

protocol secure in the malicious setting.

For a malicious Alice, we need to prevent Alice to put specific values in the

table and get extra information. For example, Alice can put encryption of 1’s in

each blank of the table. After all, Alice can know that how many 0’s in Bob’s

private input.

To make sure of legality of Alice’s message, we need Alice to prove that

each column in the table has exactly one encryption of 1 and the other is an

encryption of a random number. For existence of the encryption of 1, we can

use the technique of non-interactive zero-knowledge proof. For existence of the

encryption of the random number, we let Bob to re-randomize the table and

whatever Alice puts in the table (except encryption of 1), it will be randomized.

Due to the special property of the encryption of 1, the randomization will not

25



affect the correctness of the protocol. Thus, for malicious Alice, Alice need to

prove that each column in the table has exactly one encryption of 1, and Bob

must re-randomize the table after he receives it.

We describe how Alice prove that each column in the table has exactly one

encryption of 1.

1. Each column in the table has at least one encryption of 1.

Let (A,B) = (gr,m ·yr), (A1, B1) = (gr′ ,m1 ·yr′) be the values in a column

of the table. If at least one of m,m1 is 1, then (AA1, BB1) = (A2, B2) will

be an encryption of the same message as one of (A,B), (A1, B1). It means

that either logg A2/A = logy B2/B = r or logg A2/A1 = logy B2/B1 = r′.

Alice proves it by non-interactive zero knowledge proof as follows:

Let h be a one way hash function. W.l.o.g. we assume that m = 1.

• Alice randomly selects β ∈ Zq and computes W1 = gβ,W2 = yβ.

• Let c = h(W1,W2) be the challenge message. Alice computes c2 such

that mc2
1 = 1 mod p and lets c1 = c − c2 mod q.

• Let D1 = β − r′c1 mod q and D2 = β − rc2 mod q. Alice sends the

proof c, c1, c2,D1,D2 to Bob.

Bob is convinced if

• c = c1 + c2

• c = h(gD1 · (A2/A)c1 , yD1 · (B2/B)c1)

• c = h(gD2 · (A2/A1)c2, yD2 · (B2/B1)c2)

2. Each column in the table has at most one encryption of 1.

Let (A,B) = (gr,m ·yr), (A1, B1) = (gr′ ,m1 ·yr′) be the values in a column

of the table. If at most one of m,m1 is 1, then (AA1, BB1) = (A2, B2) will

26



be NOT an encryption of 1. Alice need to prove that (A2, B2) is not an

encryption of 1.

For malicious Bob, we need to make sure of that Bob indeed obeys the pro-

tocol, or Bob can get extra information of Alice’s secret. For example, if Bob

selects and computes values for the first n/2 elements of the sequence legally,

and puts random numbers for the rest. After getting the output of the protocol,

Bob can know whether Alice’s input is greater than his or not in the first n/2

bits. To protect Alice’s privacy, Bob needs to prove every computation he does is

legal. This is more complicated since the computation of Bob in the protocol is

the major part. After all, Bob needs to prove that the sequence is made legally,

too.

27



Chapter 5

Other protocols

For readability, we review the protocols in [BK04, Fis01].

5.1 Fischlin’s GT protocol

Fischlin’s GT protocol [Fis01] uses the GM-encryption scheme and a modified

GM-encryption. The GM-encryption scheme is as follows:

- Key generation: Let N = pq be the RSA-modulus and z be a quadratic

non-residue of Z∗
n with Jacobi symbol +1. The public key is (N, z) and the

secret key is (p, q).

- Encryption: For a bit b, the encryption is E(b) = zbr2 mod N , where r ∈R

Z∗
N .

- Decryption: For a ciphertext c, its plaintext is 1 if and only if c is a quadratic

non-residue. If c is a quadratic residue in ZN , c is a quadratic residue in

both Z∗
p and Z∗

q .

- xor-property: E(b1)E(b2) = E(b1 ⊕ b2)

28



- not-property: E(b) × z = E(b ⊕ 1) = E(b̄)

- re-randomization: we can re-randomize a ciphertext c by multiplying an

encrytion of 0.

Modified GM-encryption. To get the AND-homomorphic property, we need

modify the GM encryption:

- Encryption: For encrypt a bit b = 1, XE(b) is a sequence of quadratic

residues. If b = 0, XE(b) is a sequence of quadratic residues and non-

residues. The length of the sequence is determined by a parameter λ.

- Decryption: For decrypting a ciphertext, we need check quadratic residu-

soity of all elements in the ciphertext.

- AND-property: For two ciphertext XE(b1) and XE(b2), their product

XE(b1) � XE(b2) is computed by multiplying elements pairwisely. The

product of two ciphertexts is an encryption of b1 AND b2.

Protocol and Efficiency. The protocol in [Fis01] uses the properties of the GM-

and modified-GM-encrytion schemes.

We use our notation to represent the (optimized) protocol in [Fis01] as follows:

1. Alice with private input x = xnxn−1 · · · x1 does the following:

- generate GM-instance N, z.

- encrypt each bit of x and get Xi = E(xi) for i = 1, . . . , n

- send N, z,X1, . . . ,Xn to Bob

2. Bob with private input y = ynyn−1 · · · y1 and messages N, z,X1, · · · ,Xn

from Alice does the following:

29



- encrypt y by the extended encryption and get the result �Yi = (Yi,1, . . . , Yi,λ) =

XE(yi), where Yi,j = E(z1−yi) or E(0) randomly.

- embed [xi = yi]=[¬(xi ⊕ yi)] into extended encryption �Ei for i =

1, . . . , n. �Ei = (Ei,1, . . . , Ei,λ) = XE(¬(xi ⊕ yi)), where Ei,j = Xj · zyi

mod N or 1 ∈ QRN randomly.

- compute extended encryptions �Pi = �Pi+1 · �Ei+1 mod N = XE(pi),

where �Pn = (1, . . . , 1) and pi =
∧n

j=i+1[xj = yj] for i = n − 1, . . . , 1.

- embed ¬xi into extended encryption �̄
iX for i = 1, . . . , n. �̄

iX =

(X̄i,1, X̄i,λ) = XE(¬xi), where X̄i,j = Xi or 1 ∈ QRN randomly.

- compute terms ti = yi ∧ x̄i
∧n

j=i+1[xj = yj] in the extended encryption

form: For i = 1, . . . , n, �Ti = �Yi · �̄
iX · �Pi mod N = XE(ti).

- randomly permute �T1, . . . , �Tn and send to Alice

3. Alice receives n sequences of λ elements from Bob and does the following:

- If there exists a sequence of λ quadratic residues then output y > x,

else output y ≤ x.

For computation, the protocol needs n GM-encryptions and n modified GM-

decryptions in the client side (Alice in our protocol).1 The server side (Bob in

our protocol) needs n modified GM-encryptions and 4nλ modular multiplications

only.

The exchanged messages are n GM-ciphertexts and n modified GM-ciphertexts.

Overall, the size is (1 + λ)n log N (= n log N + nλ log N) bits.
1In [Fis01], the computation cost of the client side is neglected.

30



5.2 Blake and Kolesnikov’s GT protocol

The GT protocol in [BK04] is based on the Paillier’s encryption scheme. The

additive homomorphic property is essential to their construction. Their protocol

can be summarized as follows: Let Enc(m) be the encryption of the message m.

1. Alice with private input x = xnxn−1 · · · x1 does the following:

(a) runs key generation phase

(b) encrypts x bit-wise and sends pk,Enc(xn), . . . , Enc(x1) to Bob.

2. Bob with private input y = ynyn−1 · · · y1 does the following for each i =

1, . . . , n:

(a) computes Enc(di) = Enc(xi − yi)

(b) computes Enc(fi) = Enc(xi − 2xiyi + yi)

(c) computes Enc(γi) = Enc(2γi−1 + fi) where γ0 = 0

(d) computes Enc(δi) = Enc(di + ri(γi − 1)) where ri ∈R ZN

(e) randomly permutates Enc(δi) and sends to Alice

3. Alice obtains Enc(δi) from Bob, then decrypts. If there exists a value

v ∈ {+1,−1} and output v.

In the protocol, if x > y, the output value v = +1; if x < y , v = −1.

For computation, the receiver (Alice) needs n encryptions and n decryptions.

The sender (Bob) needs n modular multiplications in the 2a step, n modular

multiplications and n inversions in the 2b step, 2n modular multiplications in

the 2c step, and (2 + log N)n modular multiplications in the 2d step. Each

inversion takes 1 modular multiplications. Overall, the protocol needs 4n modular

exponentiations (modN2) and 7n modular multiplication (modN2)

31



The communication cost is n ciphertexts for the receiver and n ciphertexts

for the sender. The overall communication cost is 4n log N bits

32



Chapter 6

Comparison

Now, we compare our GT protocol with those in [Fis01, BK04] in computation

and communication cost. We summarize the cost of operations for the protocols:

- Each GM-encryption needs 2 modular multiplications (modN).

- Each modified GM-encryption needs 2λ modular multiplication (modN)

since each encryption contains λ GM-encryptions.

- Each modified GM-decryption needs λ modular multiplications (modN),

since there λ elements in a modified GM-ciphertext and quadratic residu-

osity can be checked in equivalent one modular mulltiplication.

- Each Paillier’s encryption requires 2 log N modular multiplications (mod

N2). In [BK04], they encrypt 0 or 1 only, the encryption for m ∈ {0, 1}
needs log N modular multiplications (modN2).

- Each Paillier’s decryption requires 2 log N modular multiplications (mod

N2).

33



Alice’s Bob’s total computation communication
computation computation

Protocol 1 3n log p 2n log p + 4n − 6 5n log p + 4n − 6 6n log p

Protocol 2 3n log p 2n log p + 2n 5n log p + 2n 4n log p

[Fis01] λn + 2n 6nλ 7nλ + 2n (1 + λ)n log N

[BK04] 12n log N 4n log N + 28n 16n log N + 28n 4n log N

*computation cost is measured in the number of modular multiplication
*communication cost is measured in bits
*Alice is called ”receiver” in [BK04] and ”client” in [Fis01].
*λ is set to 40 ∼ 50 in [Fis01]

Table 6.1: Comparison in computation cost and communication cost.

- Each Paillier’s inversion requires one modular multiplications ( mod N2),

where the inversion is done by the extended Euclidean algorithm.

- For Paillier’s encryption, each modular multiplication (modN2) needs 4

modular multiplication (modN).

Based on the above discussion, we summarize the comparison in Table 6.1.

In the table, the modular multiplication for the protocols in [Fis01, BK04] is

modN and ours is modp. Notice that Protocol 2 requires a collision resistant

hash function while others do not.

34



Bibliography

[BK04] Ian F. Blake and Vladimir Kolesnikov. Strong conditional oblivious

transfer and computing on intervals. In Proceedings of Advances in

Cryptology - ASIACRYPT ’04, volume 3329 of LNCS, pages 515–529.

Springer-Verlag, 2004.

[BST01] Fabrice Boudot, Berry Schoenmakers, and Jacques Traoré. A fair

and efficient solution to the socialist millionaires’ problem. Discrete

Applied Mathematics, 111(1-2):23–36, 2001.

[Fis01] Marc Fischlin. A cost-effective pay-per-multiplication comparison

method for millionaires. In Proceedings of the 2001 Conference on Top-

ics in Cryptology: The Cryptographer’s Track at RSA, volume 2020 of

LNCS, pages 457–472. Springer-Verlag, 2001.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient pri-

vate matching and set intersection. In Proceedings of Advances in

Cryptology - EUROCRYPT ’04, volume 3027 of LNCS, pages 1–19.

Springer-Verlag, 2004.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play and mental

game. In Proceedings of the 16th Annual ACM Symposium on the

35



Theory of Computing (STOC ’87), pages 218–229. ACM, 1987.

[IG03] Ioannis Ioannidis and Ananth Grama. An efficient protocol for yao’s

millionaires’ problem. In Proceedings of the 36th Hawaii Internatinal

Conference on System Sciences 2003, 2003.

[KM05] Aggelos Kiayias and Antonina Mitrofanova. Testing disjointness of

private datasets. In Proceedings of Financial Cryptography 2005 - FC

’05, LNCS. Springer-Verlag, 2005.

[Lip03] Helger Lipmaa. Verifiable homomorphic oblivious transfer and pri-

vate equality test. In Proceedings of Advances on Cryptology - ASI-

ACRYPT ’03, volume 2894 of LNCS, pages 416–433. Springer-Verlag,

2003.

[ST04] Berry Schoenmakers and Pim Tuyls. Pratical two-party computa-

tion based on the conditional gate. In Proceedings of Advances in

Cryptology - ASIACRYPT ’04, volume 3329 of LNCS, pages 119–136.

Springer-Verlag, 2004.

[Yao82] A. C. Yao. Protocols for secure computations. In Proceedings of 23th

Annual Symposium on Foundations of Computer Science (FOCS ’82),

pages 160–164. IEEE, 1982.

[Yao86] A. C. Yao. How to generate and exchange secrets. In Proceedings of

27th Annual Symposium on Foundations of Computer Science (FOCS

’86), pages 162–167. IEEE, 1986.

36


