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nosability of n-dimensional Hypercube Q, is 3(n — 2) + 1 for n > 5. The conditional diagnosability of Q,, is
about three times larger than the classical diagnosability of Q.
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1. Introduction

With the continuous increase in the size of a multiprocessor sys-
tem, the complexity of the system can adversely affect its reliabil-
ity. In order to maintain reliability, the system should be able to
identify faulty vertices and replace them with fault-free ones. The
process of identifying faulty vertices is called the diagnosis of the
system, and the diagnosability of the system refers to the maximum
number of faulty vertices that can be identified by the system.

Several different problems and models of fault diagnosis have
been studied [6,7,12,13,20,22]. There are two fundamental ap-
proaches to system-level diagnosis: tested-based diagnosis and
comparison-based diagnosis. In 1967, the Preparata, Metze, and
Chien (PMC) model was proposed for system-level diagnosis in
multiprocessor systems [17]. The PMC model uses tested-based
diagnosis approach, under which a processor performs the diagno-
sis by testing on neighboring processors via the communication
links between them. The PMC model was also used [2,4,9,10,12].
Comparison-based diagnosis is an attractive alternative to investi-
gate the problem of fault diagnosis. In 1980, Malek and Maeng
introduced the comparison model using Comparison-based diag-
nosis approach, also known as the MM model [14,15]. In this mod-
el, the number of faulty vertices is limited and all faults are
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permanent. The MM model deals with the faulty diagnosis by
sending the same input (or task) from a vertex w to each pair of
distinct neighbors, u and v, and then comparing their responses.
The vertex w is called the comparator of vertices u and v. Different
comparators may examine the same pair of vertices. The result of
the comparison is either the two responses agreed or two re-
sponses disagreed. Based on the results of all the comparisons,
one need to decide the faulty or fault-free status of the processors
in the system. Using a comparison diagnosis model, Sengupta and
Dahbura described a diagnosable system and presented a polyno-
mial algorithm to determine the set of all faulty vertices [19].

The hypercube structure [18] is a well-known interconnection
topology for multiprocessor systems. An n-dimensional hypercube
can be modeled as a graph Q, with the vertex set V(Q,) and the
edge set E(Qy). There are 2" vertices in Q,, and each vertex has
degree n. Each vertex v in Q, can be distinctly labeled by a binary
n-bit string, v=v,_1v,_»---vV1vo. There is an edge between two
vertices if and only if their binary labels differ in exactly one bit po-
sition. There is also a recursive definition of the Q,. The hypercube
Q; is a complete graph K, with two vertices {0,1}. For n > 2, Q, is
constructed from two copies of Q,,_; by adding a perfect matching
between them.

Reviewing some previous papers [1,3,6-11,13,18,20], the
Hypercube Q,, the Crossed cube CQ,, the Twisted cube TQ,, and
the Mobius cube MQ,, all have diagnosability n under the compar-
ison model or the PMC model. The diagnosability of the Star S, is
shown to be n — 1 under the comparison model [22]. In classical
measures of system-level diagnosability for multiprocessor
systems, if all the neighbors of some processor v are faulty simul-
taneously, it is not possible to determine whether processor v is
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fault-free or faulty. As a consequence, the diagnosability of a sys-
tem is limited by its minimum degree. Therefore, Lai et al. intro-
duced a restricted diagnosability of multiprocessor systems
called conditional diagnosability in [12]. Lai et al. considered a
measure by restricting that, for each processor v in a system, not
all the processors which are directly connected to v fail at the same
time. Under this condition, Lai et al. showed that the conditional
diagnosability of n-dimensional Hypercube Q, is 4(n — 2) + 1 under
the PMC model. In this paper, we study the diagnosability of the
hypercube networks under the comparison model, and prove that
the conditional diagnosability of n-dimensional Hypercube Q, is
3(n —2)+1 for n > 5. The conditional diagnosability of Q,, is about
three times larger than that of the classical diagnosability of Q,,. We
also make some comments in the conclusion section to explain
why the increase in diagnosability under the comparison model
is lower than that under the PMC model.

The rest of this paper is organized as follows: Section 2 provides
preliminaries and previous results for diagnosing a system. In Sec-
tion 3, we study the conditional diagnosability of the hypercube Q,
under the comparison model. Finally, our conclusions are given in
Section 4.

2. Preliminaries and previous results

A multiprocessor system can be represented by a graph
G=(V,E), where the set of vertices V(G) represents processors
and the set of edges E(G) represents communication links between
processors. Throughout this paper, we focus on undirected graphs
without loops and follow [21] for graph theoretical definitions and
notations.

Let G = (V,E) be a graph and v € V(G) be a vertex. The neighbor-
hood N(v) of vertex v is the set of all vertices that are adjacent to v.
The cardinality |[N(v)] is called the degree of v, denoted by degq(v)
or simply deg(v). For a subset of vertices V' ¢ V(G), the neighbor-
hood set of the vertex set V' is defined as N(V') = |J,., N(v) \ V'.
For a set of vertices (respectively, edges) S, we use the notation
G\ S to denote the graph obtained from G by removing all the ver-
tices (respectively, edges) in S. The components of a graph G are its
maximal connected subgraphs. A component is trivial if it has no
edges; otherwise, it is nontrivial. The connectivity «(G) of a graph
G =(V,E) is the minimum number of vertices whose removal re-
sults in a disconnected or a trivial graph.

Let S1,S, € V(G) be two distinct sets. The symmetric difference
of the two sets S; and S, is defined as the set S;AS;=(S1\S2) U
(S2\ S1).

The comparison diagnosis model [14,15] is proposed by Malek
and Maeng. In this model, a self-diagnosable system is often repre-
sented by a multigraph M(V,C), where V is the same vertex set de-
fined in G and C is the labeled edge set. Let (u,v),, be a labeled edge.
If (u,v) is an edge labeled by w, then (u,v),, is said to belong to C,
which implies that the vertex u and v are being compared by vertex
w. The same pair of vertices may be compared by different compar-
ators, so M is a multigraph. For (u,v),, € C, we use r((u,v),) to de-
note the result of comparing vertices u and v by w such that
r((u,v)y) = 0 if the outputs of u and v agree, and r((u,v),)=1 if
the outputs disagree. In this model, if r((u,v),) =0 and w is fault-
free, then both u and v are fault-free. If r((u,v),) =1, then at least
one of the three vertices u, v, w must be faulty. If the comparator
w is faulty, then the result of the comparison is unreliable that
means both r((u,v),)=0 and r((u,v),)=1 are possible outputs,
and it outputs only one of these two possibilities. In this paper,
we consider a complete diagnosis that means each vertex diagno-
ses all pairs of distinct neighbors. For an n-dimensional Hypercube

Q,, each vertex has degree 1, and therefore, there are (g > compar-

isons for each vertex acting as a comparator. Furthermore, there

are 2" vertices in Q, so the total number of comparisons is

n n__ 290
2>2 = 0(n*2").

The collection of all comparison results, defined as a function o:
C — {0,1}, is called the syndrome of the diagnosis. A subset F C V is
said to be compatible with a syndrome ¢ if ¢ can arise from the cir-
cumstance that all vertices in F are faulty and all vertices in V\ F
are fault-free. A system is said to be diagnosable if, for every syn-
drome o, there is a unique F C V that is compatible with ¢. In
[19], a system is called a t-diagnosable system if the system is diag-
nosable as long as the number of faulty vertices does not exceed t.
The maximum number of faulty vertices that the system G can
guarantee to identify is called the diagnosability of G, written as
t(G). A faulty comparator can lead to unreliable results. So, a set
of faulty vertices may produce different syndromes. Let gr={o|o
is compatible with F}. Two distinct sets F;,F, c V are said to be
indistinguishable if and only if o, (N 0, #0; otherwise, Fy,F, are said
to be distinguishable. There are several different ways to verify a
system to be t-diagnosable under the comparison approach. The
following theorem given by Sengupta and Dahbura [19] is a neces-
sary and sufficient condition for ensuring distinguishability.

Theorem 1. [19] Let G =(V,E) be a graph. For any two distinct sets
F;,F> C 'V, (Fy, F,) is a distinguishable pair if and only if at least one of
the following conditions is satisfied (see Fig. 1):

1. Juw e W{F; U F>} and 3v € F;AF; such that (u,v),, € C,
2. Ju,v € F; \ F; and 3w € V\ {F; |J F>} such that (u,v)y, € C, or
3. u,v € F; \ F; and 3w € V\ {F; U F>} such that (u,v),, € C.

Before studying the conditional diagnosability of the hypercube,
we need some definitions for further discussion. Let G=(V,E) be a
graph. For any set of vertices U C V(G), G[U] denotes the subgraph
of G induced by the vertex subset U. Let H be a subgraph of G and v
be a vertex in H. We use V(H;3) = {v € V(H)| degu(v) > 3} to repre-
sent the set of vertices which has degree 3 or more in H. Let
Fi,F, C V(G) be two distinct sets and S=F; (| F,. We use Crar, s
to denote the subgraph induced by the vertex subset (F;AF,) | {u]
there exists a vertex v € F;AF, such that u and v are connected in
G\ S}. The following result is a useful sufficient condition for
checking whether (F;,F,) is a distinguishable pair.

Theorem 2. Let G= (V,E) be a graph. For any two distinct sets
F,F; c Vwith |Fj| <t i=12,and S = F; N Ex. (F;, F>) is distinguishable
if, the subgraph Cg,ar, s of G\ S contains at least 2(t — |S|) + 1 vertices
having degree 3 or more.

Proof. Given any pair of distinct sets of vertices F,F, C V with
IF| <t i=1,2. Let S=F; (F,, then 0<|S|<t—1, and |F;AF| <
2(t — |S|). Consider the subgraph Cg,ar,s, the number of vertices
having degree 3 or more is at least 2(t — |S|) + 1 in Cg,ar, s, the sub-
graph Crar, s contains at least 2(t — |S|)+ 1 vertices. There is at
least one vertex with degree 3 or more lying in Cgar,s \ F1AF,.
Let u be one of such vertices with degree 3 or more. Let i, j, and k
be three distinct vertices linked to u. If one of i, j, and k lies in

Fig. 1. Description of distinguishability for Theorem 1.
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Cr,aF, s \ F1AF,, condition 1 of Theorem 1 holds obviously. Suppose
all these three vertices belong to F;AF,. Without loss of generality,
assume i lies in F; \ F>, one of the two cases will happen: (1) if j lies
in F; \ F,, condition 2 of Theorem 1 holds; or, (2) if j lies in F, \ Fy,
wherever k lies in F; \ F; or F; \ Fy, condition 2 or 3 of Theorem 1
holds. So (F;,F;) is a distinguishable pair and the proof is
complete. O

By Theorem 2, we now propose a sufficient condition to verify
whether a system is t-diagnosable under the comparison diagnosis
model.

Corollary 1. Let G =(V,E) be a graph. G is t-diagnosable if, for each set
of vertices S C V with |S|=p, 0<p <t — 1, every connected compo-
nent C of G\ S contains at least 2(t — p) + 1 vertices having degree at
least three. More precisely, |V(C;3)| = 2(t —p) + 1.

3. Conditional diagnosability of Q,

In classical measures of diagnosability for multiprocessor sys-
tems under the comparison model, if all the neighbors of some pro-
cessor v are faulty simultaneously, it is not possible to determine
whether processor v is fault-free or faulty. For example, consider
an n-dimensional Hypercube Q,, and two faulty sets F;,F, c V(Q,)
as shown in Fig. 2. As we observe the all neighbors of vertex v
are included in F; and F,. Let F; = N(v) J{v} and F, = N(v), then
|[F1]=n+1 and |F;| = n. By Theorem 1, F; and F, are indistinguish-
able under the comparison model. So the diagnosability of a sys-
tem is limited by its minimum vertex degree.

In an n-dimensional Hypercube Q,, Q,, has ( " > vertex subsets

of size n, among which there are only 2" vertex subsets which con-
n

tains all the neighbors of some vertex. Since the ratio 2" <2n ) is

very small for large n, the probability of a faulty set containing all

the neighbors of any vertex is very low. For this reason, Lai et al.
introduced a new restricted diagnosability of multiprocessor sys-
tems called conditional diagnosability in [12]. They consider the
situation that any faulty set cannot contain all the neighbors of
any vertex in a system. In the following, we need some terms to de-
fine the conditional diagnosability formally. A faulty set FC V is
called a conditional faulty set if N(v) /CF for every vertex ve V. A
system G =(V,E) is said to be conditionally t-diagnosable if F; and
F, are distinguishable, for each pair of conditional faulty sets
Fy,F, C V,and F; # F,, with |F;| < t and |F;| < t. The maximum value
of t such that G is conditionally t-diagnosable is called the condi-
tional diagnosability of G, written as tJ{G). It is trivial that
t(G) = t(G).

Lemma 1. Let G be a multiprocessor system. Then, t(G) = t(G).

Let G=(V,E)be a graph and Fy,F, C V, F; # F,. We say (Fy,F>) is a
distinguishable conditional-pair (an indistinguishable conditional-
pair, respectively) if F; and F, are conditional faulty sets and are
distinguishable (indistinguishable, respectively). Before discussing
the conditional diagnosability, we have some observations as fol-
lows: Let F,F; C V be an indistinguishable conditional-pair. Let
X=V\(Fi UF). Since F; and F, are an indistinguishable condi-

F

Fig. 2. An indistinguishable pair (Fy,F>).

tional-pair, none of the three conditions of Theorem 1 holds and
every vertex has at least one fault-free neighbor. Let vertex u € X.
If N(u)X#0, then N(u) ) (F1AF,)=0 (see Fig. 3a); otherwise
IN(u) N (F1 \ F2)| =1 and |[N(u) N (F2 \ F1)| =1 (see Fig. 3b). Let ver-
tex veFiAF,. If N(v)NX=0, then [N(v)N(F;\F) >1 and
IN(v)N (F2\ F1)| = 1 (see Fig. 3c). We state this fact in the follow-
ing lemma.

Lemma 2. Let G= (V,E) be a graph and Fi,F, C V be an indistin-
guishable conditional-pair. Let X =V\(F;|JF>). The following three
conditions holds:

1. IN(u) N (F1AF;)| =0 for u € X and N(u) N X # 0,

2. INu)N(F;\E)|=1 and |IN(u)(\(F2\F)|=1 for ueX and
N(u)N X=0, and
3. [INV)N (Fy \Fz)l
Nv)NX=0

1 and [N(v) N (F2 \ F1)| = 1 for v € F;AF, and

Now, we give an example to show that the conditional diagnos-
ability of the hypercube Q, is no greater than 3(n — 2)+2,n > 5. As
shown in Fig. 4, we take a cycle of length four in Q,. Let {vq,v5,
v3,V4} be the four consecutive vertices on this cycle, and let
Fy=N({vi,v3,va}) U{v1} and F,=N({v1,v3,va}) U{vs}, then [F;|=
|F5| =3(n — 2) + 2. It is straightforward to check that F; and F, are
two conditional faulty sets, and F; and F, are indistinguishable
by Theorem 1. Note that the hypercube Q, has no cycle of length
3 and any two vertices have at most two common neighbors.
As we can see, |[F;\ Fp|=|F,\Fi|=1 and [F;NF|=3(n—-2)+1.
Therefore, Q, is not conditionally (3(n — 2) + 2)-diagnosable and
t{Qn) <3(n—2)+1, n > 3. Then, we shall show that Q,, is condi-
tionally t-diagnosable, where t =3(n — 2) + 1.

Lemma 3. t(Q,)<3(n-2)+1 forn > 3

Let F be a set of vertices F Cc V(Q,) and C be a connected compo-
nent of Q, \ F. We need some results on the cardinalities of F and
V(C) under some restricted conditions. The results are listed in
Lemmas 4 and 8. In Lemma 4, Lai et al. proved that deleting at most
2(n — 1) — 1 vertices from Q,, the incomplete hypercube Q, has one
connected component containing at least 2" — |F| — 1 vertices. We
expand this result further. In Lemma 8, we show that deleting at
most 3n — 6 vertices from Q,, the incomplete hypercube Q, has
one connected component containing at least 2" — |F| — 2 vertices.

Lemma 4 [12]. Let Q, be an n-dimensional hypercube, n > 3, and let
F be a set of vertices F C V(Q,) with n < |F| < 2(n — 1) — 1. Suppose
that Q, \ F is disconnected. Then Q, \ F has exactly two components,
one is trivial and the other is nontrivial. The nontrivial component of
Q,, \ F contains 2" — |F| — 1 vertices.

In order to prove Lemma 8, we need some preliminary results as
follows.

Lemma 5 [18]. Let Q, be an n-dimensional hypercube. The connec-

tivity of Q, is k(Q,) =n.
Lemma 6. For any three vertices x, y, z in Qq, [N({x,y,2})| = 7

Proof. A four-dimensional hypercube Q4 can be divided into two
Qs’s, denoted by Qé and Q§. Any two vertices in the Q, have at most
two common neighbors. If these three vertices x, y, z all fall in Q5,
then x, y, z have at least four neighboring vertices, all in Qé. Besides,
X, ¥, z have three more neighboring vertices in Qf. Therefore,
IN({x,,z})| = 4+3 =7. Suppose now x, y fall in Q5, z falls in QX.
Vertex x and y have at least four neighboring vertices, all in Qé.
Vertex z will bring in at least three neighboring vertices in Q§.
Therefore, [IN({x,y,2})| > 4+3=7. O
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Fig. 3. An indistinguishable conditional-pair (Fy,F>).

Fig. 4. An indistinguishable conditional-pair (F;,F;), where |F;| = |F>| =3(n — 2) + 2.

We are going to prove Lemma 8 by induction on n, and we need
a base case to start with. As we observed, for n=4, we found a
counter example that the result of Lemma 8 does not hold. So we
have to start with n=5.

Lemma 7. Let Qs be a five-dimensional hypercube, and let F be a set
of vertices F C V(Qs) with |F| < 3n — 6 =9. Then Qs \ F has a connected
component containing at least 2" — |F| — 2 = 30 — |F| vertices.

Proof. A five-dimensional hypercube Qs can be divided into two
Qu’s, denoted by Q% and Qf. Let F, = FNV(Q}),0 <| F, |[< 9 and
Fr =FNV(Q}),0 <| Fr |< 9. Then |F|=|F,| + |Fg|. Without loss of
generality, we may assume that |F;| > |Fg|. In the following proof,
we consider three cases by the size of Fg: (1) 0 < |Fg| <2, (2)
|Fr| =3, and (3) |Fg| = 4.

Case 1: 0 < |Fg| < 2.

Since #(Q4) =4, Q¥ \ Fg is connected and |V(Q¥\ Fg) |=2%— | F|.
Let F}QL) c V(Q4) be the set of vertices which has neighboring
vertices in Fg. For each vertex v e Q4 \ F, \ FY", there is exactly one
vertex v in QF\Fg such that (vy®)ecE(Qs). Besides,
| V(Q4\ FL\ F¥) |= 2%~ | F, | — | Fr |. Hence Qs \ F has a connected
component that contains at least [2% — |Fg|]+[2% — |F;| — |Fz|]] =
32 — |F| — |Fg| = 30 — |F| vertices.

Case 2: |Fg| =3.

Since k(Q4) =4, QX \ Fg is connected and |V(QR\ Fg) |=2%—|Fg|.
Let Fg={xyz} and Fy = {xL y® z0} c V(QY), where (xxP),
.y, (z,2P) € E(Qs). For each vertex v e Q4 \ F.\ FY), there is
exactly one vertex v(® in QR \ Fg, such that (v,v®) € E(Qs). If at least
one of the three vertices x2), yU, z1) belongs to F;, then | V(Q%\
FL\ F,(;L)) |> 2%~ | F, | —2. Hence Qs \ F has a connected component
that contains at least [2% — |Fg|] +[2* — |F;| — 2] =30 — |F| vertices;
otherwise, |V(Q4\F \Fy)|>2%—|F | -3. Since |F|<6, by
Lemma 6, x, yB, zD have at least one neighboring vertex in
Qfl \Fr\ F,(QL). Hence Qs\F has a connected component that
contains at least [2% — |Fg|] +[2% — |[F| — 3] + 1 = 30 — |F] vertices.

Case 3: |Fg|=4.

Since |Fg| = 4 and |F;| < 5, by Lemma 4, Q} \ F; (Q®\ Fg, respec-
tively) has a connected component C; (Cg respectively) that
contains at least 24 — |F;| — 1 (2% — |Fg| — 1, respectively) vertices.
Since |V(C.)| > |Fg| + 1, there exists a vertex u € C; and a vertex
ve Cg such that (u,v)€E(Qs). Hence Qs\F has a connected

component that contains at least [2% — |F| — 1] +[2% — |Fg| — 1] =
30 — |F| vertices.
Consequently, the lemma holds. O

We now prove Lemma 8.

Lemma 8. Let Q, be an n-dimensional hypercube, n > 5, and let F be
a set of vertices Fc V(Q,) with |[F|<3n—6. Then Q,\F has a
connected component containing at least 2" — |F| — 2 vertices.

Proof. We prove the lemma by induction on n. By Lemma 7, the
lemma holds for n = 5. As the inductive hypothesis, we assume that
the result is true for Q,_1, for |F| < 3(n — 1) — 6, and for some n > 6.
Now we consider Q,, |F| < 3n — 6. An n-dimensional hypercube Q,
can be divided into two Q,_;’s, denoted by Q% , and QF . Let
FL=FNV(Q._,),0<|F. |<3n—6and Fr = FNV(Q®_,),0<| Fr <
3n—6. Then |F| = |F| + |Fg|]. Without loss of generality, we may
assume that |F;| > |Fg|. In the following proof, we consider two
cases by the size of Fg: 1) 0 < |Fg| < 2 and 2) |Fg| > 3.

Case 1: 0 < |Fg| < 2.

Since 0 < |Fg| <2, QR |\ Fg is connected and | V(QR |\ Fg) |=
21 | Fr . Let F,(QL) C V(Qﬁfl) be the set of vertices which has
neighboring vertices in Fi. For each vertex v € Qﬁ_l \ Fr\ F(L), there
is exactly one vertex v® in QF |\ Fg, such that (v,v®)e E(Qy).
Besides, | V(QL ;\Fi\FV)|>2"""—|F |- |Fg|. Hence Q,\F
has a connected component that contains at least [2"! — |Fg|] +
(2% 1 — |F| — |Fg|]=2" — |F| — |Fg| = 2" — |F| — 2 vertices.

Case 2: |Fg| = 3.

Since |Fg| > 3,3 < |F/<3(n—1)—6,and 3 < |Fg| <3(n—1) - 6.
By the inductive hypothesis, Q% _, \ F; (QX_, \ Fz, respectively) has a
connected component C; (Cg, respectively) that contains at least
2"V _|F| -2 (2" ! —|Fg| — 2, respectively) vertices. Next, we
divide the case into three subcases: (2.1) |V(C)|=2""! - |F;| — 2
and Q’,L] \ Fg is disconnected, (2.2) |V(C;)|=2"""—|F| -2 and
QR |\ Fg is connected, and (2.3) V()| =2"'—|F|-1 and
V(CR)| = 2" — |Fe — 1.

Case 2.1: |V(C})|=2""! — |F;| — 2 and QR _, \ Fy is disconnected.

This is an impossible case. Since k(Q,_1)=n — 1, |Fg| > n — 1. By
Lemma 4, |F;| > 2((n — 1) — 1). Then the total number of faulty
vertices is at least (n — 1)+ 2((n — 1) — 1) = 3n — 5 which is greater
than 3n — 6, a contradiction.

Case 2.2: |V((})|=2""' — |F,| — 2 and QF_, \ Fy is connected.

Since QF_, \ F is connected, | V(QR |\ F) |= 2"'— | Fg |. Since
[V(CL)| = |Fg| + 1, there exists a vertex u € C; and a vertex v € Cg
such that (u,v) € E(Q,). Hence Q, \ F has a connected component
that contains at least [2™ ! — |Fg|] +[2" ! — |F| — 2] =2"— |F| - 2
vertices.

Case 2.3: |V(Cy)| = 2" 1 — |F;| — 1 and |V(GR)| = 2™ ! — |Fg| — 1.

Since |V(C;)| > |Fg| *+ 1, there exists a vertex u € C; and a vertex
v e Cg such that (u,v)€E(Q,). Hence Q,\F has a connected
component that contains at least [2" ' —|F|—1]+[2"! -
|Fg| — 1] = 2™ — |F| — 2 vertices.

This completes the proof of the lemma. O
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By Lemma 8, we have the following corollary.

Corollary 2. Let Q, be an n-dimensional hypercube, n > 5, and let F
be a set of vertices F C V(Q,) with |F| <3n — 6. Then Q, \ F satisfies
one of the following conditions:

1. Q, \ F is connected.

2. Q, \ F has two components, one of which is Ky, and the other one
has 2" — |F| — 1 vertices.

3. Qn \ F has two components, one of which is K5, and the other one
has 2" — |F| — 2 vertices.

4. Q, \ F has three components, two of which are Ky, and the third one
has 2" — |F| — 2 vertices

Let G = (V,E) be a graph. A subset M of E(G) is called a matching
in G if its elements are links and no two are adjacent in G; the two
ends of an edge in M are said to be matched under M. A vertex cov-
er of G is a subset " of V(G) such that every edge of G has at least
one end in 7. A subset I of V(G) is called an independent set of G if
no two vertices of I are adjacent in G. To prove the conditional diag-
nosability of the hypercube, we need the following classical results.

Theorem 3 [21]. Let G=(V,E) be a bipartite graph. The maximum
size of a matching in G equals the minimum size of a vertex cover of G.

Proposition 1 [21]. Let G=(V,E) be a bipartite graph. The set
I c V(G) is a maximum independent set of G if and only if V\1is a
minimum vertex cover of G.

The hypercube can be described as follows: Let Q,, denote an n-
dimensional hypercube. Q; is a complete graph with two vertices
labeled with 0 and 1, respectively. For n > 2, each Q, consists of
two Q,_1’s, denoted by Qf,’fl and Q,IH, with a perfect matching M
between them. That is, M is a set of edges connecting the vertices
of Q°_, and the vertices of Q;_, in a one-to-one manner. It is easy
to see that there are 2"~! edges between QY , and Q; ,. The hyper-
cube is a bipartite graph with 2" vertices. Hence, we have the fol-
lowing Lemma.

Lemma 9. Let Q, be an n-dimensional hypercube. In hypercube Q,,
the maximum size of a matching, the minimum size of a vertex cover
and the maximum size of an independent set are all 2",

We are now ready to show that the conditional diagnosability of
Q, is 3(n—2)+1 for n > 5. Let F{,F, c V(Q,) be two conditional
faulty sets with F; <3(n—-2)+1and F,<3(n-2)+1,n > 5. We
shall show our result by proving that (F;,F,) is a distinguishable
conditional-pair under the comparison diagnosis model.

Lemma 10. Let Q, be an n-dimensional hypercube with n > 5. For
any two conditional faulty sets F;,F> c V(Q,), and F; #F, with
Fi<3(n—-2)+1and F> <3(n—2)+ 1. Then (F},F;) is a distinguish-
able conditional-pair under the comparison diagnosis model.

Proof. We use Theorem 2 to prove this result. Let S = F; () F5, then
0 < |S| < 3(n — 2). We will show that, deleting S from Q,, the sub-
graph Cr, ar, s containing F;AF, has “many” vertices having degree
3 or more. More precisely, we are going to prove that, in the sub-
graph Cr ar, s the number of vertices having degree 3 or more is
at least 2[3(n—-2)+1—|S|]+1=6n-2|S| -9. In the following
proof, we consider three cases by the size of S: (1) 0 < |S|<n -1,
(2)IS]=n,and 3)n+1<|S|<3(n—2).

Case1: 0<|S|<n—1.

Since the connectivity of Q, is n, Q,\S is connected, the
subgraph Crar,s is the only component in Q,\S. Since the
hypercube Q, has no cycle of length three and any two vertices
have at most two common neighbors, it is straightforward, though
tedious, to check that the number of vertices which has degree 2 or

1 is at most 2 in Cg,ar,s. Hence, the number of vertices having
degree 3 or more is at least 2" — |S| — 2 which is greater than
6n — 2|S| — 9, for n > 5. By Theorem 2, (F,F,) is a distinguishable
conditional-pair under the comparison diagnosis model.

Case 2: S| =n.

If Q,\S is disconnected, by Lemma 4, Q,\ S has one trivial
component {v} such that N(v) c F; and N(v) C F,. Since F; and F; are
two conditional faulty sets, this is an impossible case. So Q, \ S is
connected, and the subgraph Cr,af, s is the only component in
Q,\ S. Let U=Q,\(F; JFy). If there exist two vertices u and v in
V(U) such that u is adjacent to v, then the condition 1 of Theorem 1
holds and therefore (Fy,F,) is a distinguishable conditional-pair;
otherwise V(U) is an independent set. Since |S|=n and
|[F1AF,| <2(2n —5), [V(U)| = 2" —2(2n —5)—n=2"-5n+10. By
Lemma 9, the maximum size of a independent set is 2"~! in Q,.
Comparing the lower bound 2" —5n+ 10 and the upper bound
2"1 we have 2" — 5n+ 10> 2""! for n > 5, a contradiction.

Case3:n+1<|S|<3(n-2).

By Corollary 2, there are four cases in Q,\S we need to
consider. For case 1 of Corollary 2, Q,)\ S is connected, the proof is
exactly the same as that of Case 2, and hence the detail is omitted.
For case 2 and 4 of Corollary 2, Q,\ S has at least one trivial
component {v} such that N(v) c F; and N(v) c F,. Since F; and F, are
two conditional faulty sets, the two cases are disregarded. There-
fore, we only need to consider that Q, \ S has two components, one
of which is K> and the other one has 2" — |S| — 2 vertices. Let (x,y)
be the component with only one edge. Since N({x,y}) C S and F;
and F, do not contain all the neighbors of any vertex, vertex x and y
cannot belong to F;AF,. So the subgraph C ar, s is the other large
connected component of Q, \ S. Let U = Q,\(F: U F2)\{x.y}. If no two
vertices of V(U) are adjacent, then V(U) is an independent set and
[V(U)| = 2" — 6n+|S|+8. By Lemma 9, the maximum size of a
matching is 2"~! — 1 in Q,\{x,y}. By Theorem 3 and Proposition 1,
the maximum size of a independent set is 2"~! — 1 in Q,\{x.y}.
Comparing the lower bound 2" — 6n + |S| + 8 and the upper bound
2"1_1, we have 2"—6n+|S|+8>2"1_1 for n > 5, n+1<
|S] < 3(n — 2), a contradiction. Hence, there exist two vertices u and
v in V(U) such that u is adjacent to v, then condition 1 of Theorem 1
is satisfied and therefore (F;,F,) is a distinguishable conditional-
pair.

In Case 1, we prove that at least one of the conditions of
Theorem 1 is satisfied in subgraph Cr,ar,s. In Case 2 and 3, the
condition 1 of Theorem 1 holds in subgraph Cg ar,s. Therefore,
(F1,F>) is a distinguishable conditional-pair under the comparison
diagnosis model. O

We now present our main result which can be stated as follows.

Theorem 4. The conditional diagnosability of Q, is t{(Q,)=3(n —
2)+1 forn =5, t{Qz)=3 and t{Qq) = 5.

Proof. By Lemma 3, t(Q,) < 3(n—2)+1, and by Lemma 10, Q, is
conditionally (3(n — 2) + 1)-diagnosable for n > 5. Hence, t(Q,) =
3(n—2)+1forn > 5. For Q3 and Qq4, we observe that Qs is not con-
ditionally four-diagnosable and Q4 is not conditionally six-diagnos-
able, as shown in Fig. 5. So, t{Qs3) <3 and t(Q4) < 5. Hence, the
conditional diagnosabilities of Q3 and Q4 are both strictly less than
3(n—2)+1.

For the three-dimensional hypercube Qs, Qs is three-diagnos-
able and it is not conditionally four-diagnosable. It follows from
Lemma 1 that t/(Q3) = 3. For the four-dimensional hypercube Qy,
we can use the similar technique used in proving Lemma 10 to
prove that for any two conditional faulty sets F;,F, ¢ V(Qq), and
F; # F,, with |F;] <5 and |F;| < 5, then (Fy,F,) is a distinguishable
conditional-pair under the comparison model. Hence, the condi-
tional diagnosability of Q4 is 5. O
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Fig. 5. Two indistinguishable conditional-pairs for Qs and Q4.

4. Conclusions

In the real world, processors fail independently and with differ-
ent probabilities. The probability that any faulty set contains all the
neighbors of some processor is very small [5,16] so we are inter-
ested in the study of conditional diagnosability. A new diagnosis
measure proposed by Lai et al. [12], it restricts that each processor
of a system is incident with at least one fault-free processor. In this
paper, we use the hypercube as an example and show that the con-
ditional diagnosability of Q, is 3(n — 2)+ 1 under the comparison
model. This number 3(n — 2)+1 is about three times as large as
the classical diagnosability.

In this paper, we study the conditional diagnosability of Q, un-
der the comparison model. Under the PMC model, however, the
conditional diagnosability of Q, is shown to be 4(n — 2) + 1 by Lai
et al. [12]. In order to understand why the increase in diagnosabil-
ity under the comparison model is lower than that under the PMC
model, we take a look at Fig. 4. As shown in Fig. 4, there are two
conditional faulty sets F; and F, with |F;|=|F;|=3(n—2)+2. As
shown, F; and F, are indistinguishable, and therefore the condi-
tional diagnosability of Q,, is no greater than 3(n — 2)+ 2 under
the comparison model. We now consider the same conditional
faulty sets under the PMC model in Fig. 4, either the edge (v4,v1)
or the edge (v4,v3) provides “effective” test to distinguish the syn-
drome of F; and F, under the PMC model, namely v, tests vy or v4
tests v3. Therefore F; and F, are distinguishable. However, v4 com-
pares v and vs is not an effective comparison to distinguish the
syndrome of F; and F, under the comparison model. On the other
hand, see Fig. 1, every effective comparison under the comparison
model provides effective test under the PMC model. So the condi-
tional diagnosability of Q, under the comparison model is intui-
tively lower than that under the PMC model. In this paper, we
give a complete proof to support our intuition and finally obtain
the main result.

Several different fault diagnosis models have gained much
attention in the study of fault diagnosis. It is worth to investigate
the conditional diagnosability of a system under various models.
It is also an attractive work to develop more different measures
of diagnosability based on network topology and network
reliability.
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