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摘         要 
 

 
在訊息傳遞中，在每個接收點是要避免碰撞的事件發生，因此訊息傳送 

路徑中互相獨立的特性是相當重要的。我們說兩條相同長度的路徑是獨 

立的，就代表著除了起始點與終點之外，其餘的時間點中，在同一個時 

間所經過的目標是不會相同的；在這篇論文中，我們探討研究了在 n維 

超立方體中，任意的兩點中可以存在著 (n-1) 條任意長度之互相獨立 

的路徑，其長度由兩點間最短(漢明距離)到最長(漢米爾頓距離)都有。  
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Abstract 

 
We say that two paths P0 = <u0,u1,...uk-1> and P1 = <v0,v1,...,vk-1> are independent 
if u0 = v0, l(P0) = l(P1) and P0(i) ≠ P1(i) fro every 1 < i < k-1. The set of paths  
{P0,P1,...,Ps} of G are mutually independent if any two different paths in the set are  
independent. In this paper, we prove that there exist (n-1) mutually independent  
paths of length l joining any vertices u and v such that h(u,v)+2 ≦l ≦ 2n-1 and  
n≧4.  
 



誌 謝         

首先最感謝的是我的指導教授譚建民老師，在這兩年中用心的教導，時時給

予鼓勵以及共同討論的幫助，以及共同指導教授徐力行老師給予的教導，同時也

高欣欣老師在口試時對這篇論文的指教。在這篇論文形成的階段，堅哥也是給予

我可以順利研究下去不可或缺的人物，感謝你的經驗分享，讓我可以更加順利完

成論文。 

 

此外，感謝我的學長們，在我剛進來的第一年，很受到你們的照顧，在實驗

室的第二年，晃哥和元翔學長繼續就讀博班，而小中中、Panda、史都以及老哲都

畢業了，但是和你們時常的聯係讓我也獲益不少，尤其是小中中，在心思成長及

人生規劃裡，最要感謝你。當然，寶蓮學姐是一定不可以忘卻的大人物，在妳身

旁學習也讓我成長不少，還有妳和弘駿學長的情史，隱蔵得真的讓我們永生難

忘。同時，感謝我的學弟們，聖凱、小廖、尚融、銘皇及宙斯，在你們身上，也

學到不少做人的道理，也提醒了自己真的不可以怠惰下去，也希望你們順利畢業 

 

最後，感謝我的父母以及所有家人，有你們在後面的支持，才能讓我在求學

的旅程上心無旁鶩；還有雅梅，是妳讓我踏上這條成功之路，沒有妳，就沒有現

在的我。 

 

在此獻給許多幫忙我的人、指導我的人最真誠的感謝，謝謝你們。 

 

-iii- 



-iv- 

目 錄       

中文摘要 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ i
英文摘要 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ii
誌謝 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ iii
目錄 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ iv
圖目錄 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ v
Chapter 1 Introduction⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1
Chapter 2 Preliminaries ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3
2.1 Notations and Definitions ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3
2.1.1 Basic properties of Qn⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4

Chapter 3 Mutually independent linear array embeddings⋯⋯ 5
Chapter 4 Conclusion⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 27
Bibliography ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 28
  

 

 
 



-v- 

圖        目 錄       

Figure 3.1 The Hypercube Q3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6
Figure 3.2 Illustration for the Lemma 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7
Figure 3.3 The Hypercube Q4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8
Figure 3.4 Illustration for the Lemma 5⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 13
Figure 3.5 Illustration for the Lemma 7⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 18
Figure 3.6 Illustration for the Case I ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 21
Figure 3.7 Illustration for the Case I ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 22
Figure 3.8 Illustration for the Case II-1⋯⋯⋯⋯⋯⋯⋯⋯⋯ 23
Figure 3.9 Illustration for the Case II-2⋯⋯⋯⋯⋯⋯⋯⋯⋯ 24
Figure 3.10 Illustration for the Case II-2⋯⋯⋯⋯⋯⋯⋯⋯⋯ 25
  

 

 
 



Chapter 1

Introduction

An interconnection network topology is usually represented by a graph where vertices

represent processors and edges represent links between processors. A network connects the

processors of the parallel computer. There are a lot of mutually conflicting requirements

in designing the topology of computer networks. It is almost important to design an

interconnection network that is the parallel system. A number of mutually independent

path for specific multiprocessor architectures have been discussed.

The architecture of an interconnection network is usually represented as a graph. The

nodes and edges in a graph correspond to processors and communication links in an

interconnection network, respectively. In the design and implementation of local area

networks, the ring topology has been used frequently for its good properties such as

simplicity , extensibility, regularity and easiness of implementation. To study the graph

embedding problem, which maps a guest graph into a host graph, is an important issue in

evaluating a network. The problem is mapping each node of the guest graph into a node

of the host graph, and mapping each edge of the guest graph into an edge of the host

graph.
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Many interconnection network topologies have been proposed in the literature for

the purpose of connecting hundreds or thousands of processing elements. Among these

topologies, the binary n-cube (abbreviated as hypercube) [2], denoted by Qn is one of the

most popular topologies. Linear arrays and rings, which are two of the most fundamental

networks for parallel and distributed computation, are suitable for developing simple

algorithms with low communication costs. Some efficient algorithms designed on linear

arrays and rings for solving a variety of algebraic problems and graph problems can be

found in previous works [3, 1].
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Chapter 2

Preliminaries

2.1 Notations and Definitions

For the graph theoretical definitions and notations, we follow [1], a graph G = (V,E)

consists of a finite set V and a subset E of {(u, v) | u 6= v, (u, v) is an unordered pair of

elements of V }. We call V = V (G) the vertex set of G and E = E(G) the edge set of

G. A graph G = (V0

⋃
V1, E) is bipartite if V (G) is the union of two disjoint sets V0 and

V1, such that every edge joins V0 with V1. Two vertices ,u and v, have the same color if

and only if u and v are in the same partite set. A path is a sequence of adjacent vertices,

written as 〈v0, v1, v2, . . . , vm〉, in which all the vertices v0, v1, v2, . . . , vm are distinct except

that possible v0 = vm. We also write the path 〈v0, P, vm〉, where P = 〈v1, v2, ..., vm−1〉.

The length of a path P , denoted by l(P ), is the number of edges in P . Let u and v be two

vertices of G. The Hamming distance h(u, v) between u and v is the number of different

bits in the corresponding strings of both vertices.

An n-dimensional hypercube can be modeled as a graph Qn, with the vertex set V (Qn)

and the edge set E(Qn). Each vertex u of Qn can be distinctly labeled by binary n-bit
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strings, un−1un−2...u1u0. There is an edge between two vertices if and only if their binary

labels differ in exactly one bit position. If u(i) is the neighbor vertex across dimension i

of the vertex u, then the edge between them is said to be on dimension i.

We say that two paths P0 = 〈u0, u1, . . . , uk−1〉 and P1 = 〈v0, v1, . . . , vk−1〉 are indepen-

dent if u0 = v0, l(P0) = l(P1) and P0(i) 6= P1(i) for every 1 < i < k − 1. The set of paths

{P0, P1, . . . , Ps} of G are mutually independent if any two different paths in the set are

independent. In this paper, we prove that there exist (n−1) mutually independent paths

of length l joining any vertices u and v such that h(u, v) + 2 ≤ l ≤ 2n − 1 and n ≥ 4.

2.2 Basic properties of Qn

This paper is aimed at embedding linear arrays and all possible length of paths into the

hypercubes. We use induction to prove our main results. Lemmas 1 contribute to the

induction basis for inductive proof of our main results.

Lemma 1 [4] The hypercube Qn is bipanconnected if n ≥ 2.
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Chapter 3

Mutually independent linear array

embeddings

Lemma 2 Assume n > 3. Let x be any node of Qn and u and v be any two nodes that

are different color as x of Qn. Then, there exists a path of length l of Qn −{x} joining u

to v for h(u, v) ≤ l ≤ 2n − 2 and l is even.

Proof. We proof this lemma by induction on n. It is easy to construct the path of

length h(u, v), and we claim to prove the length is h(u, v) + 2 ≤ l ≤ 2k − 2 and l is even.

Since Q3 is node transitive, we can assume that x = 000. All of the paths with n = 3 are

listed below:

chose u = 001, v = 010 h(u, v) = 2
(001, 101, 111, 011, 010)
(001, 101, 100, 110, 111, 011, 010)

chose u = 001, v = 111 h(u, v) = 2
(001, 101, 100, 110, 111)
(001, 101, 100, 110, 010, 011, 111)

The lemma hold for n = 3 above list. As the inductive hypothesis, we assume that

the lemma is true for every integer n < k, for all k ≥ 3. Let x = xk−1xk−2...x1x0,

u = uk−1uk−2...u1u0 and v = vk−1vk−2...v1v0. Either xi = ui or xi = ui will satisfy

for some i. Accordingly, Qk can be decomposed into two subcube Q0
k−1 and Q1

k−1 by
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dimension i and either u or v is in the same subcube as x. Without loss of generality, we

may assume that u is in the same subcube as x and {u, x} ∈ V (Q0
k−1). The proof of this

lemma is classified in three cases.

000 010 110 100

101111011001

Figure 3.1: The Hypercube Q3.

Case 1. v ∈ V (Q0
k−1). (see Fig. 3.2(a)).

By induction hypothesis, there exists a path of length l of Q0
k−1 joining u and v for

any h(u, v) + 2 ≤ l ≤ 2k−1 − 2 and l is even. Suppose that 2k−1 ≤ l ≤ 2k − 2 and l is

even. Let R be one of the longest path of Q0
k−1 − {x} joining u and v. Let (w, z) be

any edge on R. We can write R as 〈u,R0, w, z, R1, v〉. By definition, w(1) and z(1) are

vertices in Q1
k−1. By Lemma 1, there exists a path P in Q1

k−1 joining w(1) and z(1) for

1 ≤ l(P ) ≤ 2k−1 − 1 and l(P ) is odd. Thus, 〈u,R0, w, w(1), P, z(1), z, R1, v〉 is a path of

length l in Qn connecting u and v.

Case 2. v ∈ V (Q1
k−1). (see Fig. 3.2(b)).

Let y(1) be one neighbor of v such that y 6= u. Thus, h(u, y) = h(u, v). Suppose that

h(u, v)+2 ≤ l ≤ 2k−2 for l is even. By induction hypothesis, there exist a path R joining

u and y for any h(u, y) ≤ l(R) ≤ 2k−1 − 2 and l(R) is even. Let l1 = l− l(R)− 1. Then l1

is odd and 1 ≤ l1 ≤ 2k−1. By Lemma 1, there exists a path P of length l1 in Q1
k−1 joining

y(1) and v. Thus, 〈u,R, y, y(1), P, v〉 is a path of length l in Qn joining u and v.

6



x

u v

z
w

R1R0
z(1)

w(1)

x

u v

y y(1)
R

P P

(a) (b)

Figure 3.2: Illustration for the Lemma 2.

2

Lemma 3 Let x and y be any two nodes from different partite set of Q4, and let u and

v be any two vertices from different partire set of Q4 − {x, y}. Then, there exists a path

P of Qn − {x, y} joining u and v such that h(u, v) ≤ l(P ) ≤ 13 and l(P ) is odd.

Proof. Since Q4 is node transitive, we can assume that x = 0000. Moreover, we suppose

that y = 0001 or 0111 such that the distance between x and y is either 1 or 3. Q4 can

be decomposed into two subcubes Q0
3 and Q1

3 by dimension 0 or 3 such that x and y are

in the same subcase. Without loss of generality, we may assume that x, y ∈ V (Q0
3). The

proof of this lemma is classified in two cases.

Case I. y=0001.

There exists a hamiltonian cycle C = 〈0100, 0101, 0111, 0011, 0010, 0110, 0100〉 of Q0
3−

{x, y}. We can write the cycle C as 〈a0, a1, a2, a3, a4, a5, a0〉. In the other hand, there exist

a path of length 5 joining ai and aj of Q0
3 − {x, y} if (ai, aj) is lying on C for i 6= j. The
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proof of this situation is classified in three cases.

0000

0010

0001
0011

0100 0110

0101 0111

1000
1010

1001

1011

1100 1110

1101 1111

Figure 3.3: The Hypercube Q4.

Subcase I.1. u, v ∈ V (Q0
k−1).

(a) h(u, v) = 1. Suppose that (u, v) is lying on C. By definition, u(1) and v(1) are

vertices in Q1
3 and u(1) is adjacent to v(1). Suppose that l = 3. We can construct P as

〈u, u(1), v(1), v〉. By above discuss, there exists one path of length 5 joining any edge that

on the C. Suppose that 7 ≤ l ≤ 13 and l is odd. There exist one path R of length 5

joining u and v. Let (w, z) be any edge on R and we can write R as 〈u,R0, w, z, R1, v〉.

By definition, (w(1), z(1)) is in Q1
3. By Lemma 1, there exist a path S of length l1 joining

w(1) and z(1) of Q1
3 for any 1 ≤ l1 ≤ 7 and l1 is odd. Thus, 〈u,R0, w, w(1), S, z(1), z, R1, v〉

is one path of length l joining u and v.

Suppose that (u, v) is not lying on C. In this situation, we only discuss one case

about (u, v) = (0110, 0111). We can find a path of length 3 as 〈a0, a1, a2, a3〉 like

〈0110, 0100, 0101, 0111〉. By definition, a
(1)
1 and a

(1)
2 are in the Q1

3. By Lemma 1, there
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exist a path S of length l1 joining a
(1)
1 and a

(1)
2 of Q1

3 for any 1 ≤ l1 ≤ 7 and l1 is odd. Thus,

u, a1, a
(1)
1 , S, a

(1)
2 , a2, v is a path of length l joining u and v for 5 ≤ l ≤ 11 and l is odd.

Assume that l = 13. P = 〈0110, 0100, 0101, 1101, 1100, 1000, 1001, 1011, 1111, 1110, 1010,

0010, 0011, 0111〉 is the path of length l joining u and v.

(b) h(u, v) = 3. In this situation, we only discuss one case about (u, v) = (0100, 0101).

There exists a path R of length 5 joining u and v of Q0
3 −{x, y} as R = 〈0100, 0101, 0111,

0110, 0010, 0011〉. Let w be R(4) on R. We can write the path R as 〈u,R0, w, v〉. By

definition, w(1), v(1) are both in Q1
3. By Lemma 1, there exist a path S of length l1 joining

w(1) and v(1) of Q1
3 for any 1 ≤ l1 ≤ 7 and l1 is odd. Thus, 〈u,R0, w, w(1), S, v(1), v〉 is the

path of length l joining u and v for any 7 ≤ l ≤ 13.

Subcase I.2. u ∈ V (Q0
k−1) and v ∈ V (Q1

k−1) or u ∈ V (Q1
k−1) and v ∈ V (Q0

k−1).

Without loss of generality, we assume that u ∈ V (Q0
k−1) and v ∈ V (Q1

k−1).

(a) h(u, v) = 1. Let w be the neighbor of u for w ∈ V (Q0
3) and w 6= {x, y} and (u,w)

is lying on C. In addition, let z be the neighbor of v for z ∈ V (Q0
3) and z is adjacent to w.

By Lemma 1, there exist a path S of length l1 joining z and v of Q1
3 for any 1 ≤ l1 ≤ 7 and

l1 is odd. Therefor, 〈u,w, z, S, v〉 is the path of length l joining u and v for any 3 ≤ l ≤ 9

and l is odd. Suppose that 11 ≤ l ≤ 13 and l is odd. By above discuss, there exists a

path R of length 5 joining u and w of Q0
3 − {x, y}. Thus, 〈u,R,w, z, S, v〉 is the path of

length l joining u and v.

(b) h(u, v) = 3. The same case (a). Let w be the neighbor of u for w ∈ V (Q0
3) and

w 6= {x, y} and (u,w) is lying on C. In addition, let z be the neighbor of v for z ∈ V (Q0
3)

and z(0) = w. This proof is similar to that of above (a) and hence the detailed proof is

9



omitted.

Subcase I.3. u, v ∈ V (Q1
k−1). In this situation, we only discuss one case about

(u, v) = (1110, 1111). By Lemma 1, there exist a path S of length l1 joining u and v of

Q1
3 for any 3 ≤ l1 ≤ 7 and l1 is odd. Let w be the node S(l1−1) on S. The path S can be

wrote as 〈u, S0, w, v〉. By definition, w(0) is in Q0
3. It is easy to check that w(0) is adjacent

to v(0) and (w(0), v(0)) is lying on C. By above discuss, there exist a path R of length 5

joining w(0) and v(0). Thus, 〈u, S0, w, w(0), R, v(0), v〉 is the path of length l joining u and

v.

Case II. y=0111.

There exists a hamiltonian cycle C = 〈0100, 0101, 0001, 0011, 0010, 0110, 0100〉 of Q0
3−

{x, y}. We can write the cycle C as 〈a0, a1, a2, a3, a4, a5, a0〉. In the other hand, there exist

a path of length 5 joining ai and aj of Q0
3 − {x, y} if (ai, aj) is lying on C for i 6= j. The

proof of this case is similar to than Case I and hence the detailed proof is omitted.

2

Lemma 4 Assume n = 3, 4. Let {ei | ei = (wi, bi) ∈ E(Qn), bi is black node and wi

is white node, 1 ≤ i ≤ n − 1} be any n-1 disjoint edges in Qn. Then, there exist n-1

independent paths P1, ..., Pn−1 of length l in Qn joining wi and bi for 1 ≤ l ≤ 2n − 1.

Proof. It is easy to construct the path of length 1, and the path of length 3 ≤ l ≤ 7

such that l is even are listed below:

10



chose (000, 001) and (101, 100)
l = 3
(000, 010, 011, 001)
(101, 111, 110, 100)
l = 5
(000, 010, 110, 111, 011, 001)
(101, 111, 011, 010, 110, 100)
l = 7
(000, 010, 110, 100, 101, 111, 011, 011)
(101, 111, 011, 001, 000, 010, 110, 100)
chose (000, 001) and (110, 111)
l = 3
(000, 010, 011, 001)
(110, 010, 101, 111)
l = 5
(000, 010, 110, 111, 011, 001)
(110, 100, 000, 001, 101, 111)
l = 7
(000, 010, 110, 100, 101, 111, 011, 001)
(110, 100, 000, 010, 011, 001, 101, 111)
chose (000, 001) and (110, 100)
l = 3
(000, 010, 011, 001)
(110, 111, 101, 100)
l = 5
(000, 010, 110, 111, 011, 001)
(110, 111, 011, 001, 101, 100)
l = 7
(000, 010, 110, 100, 101, 111, 011, 001)
(110, 111, 101, 001, 011, 010, 000, 100)
chose (000, 001) and (101, 111)
l = 3
(000, 010, 011, 001)
(101, 100, 110, 111)
l = 5
(000, 010, 110, 111, 011, 001)
(101, 100, 000, 010, 110, 111)
l = 7
(000, 010, 110, 100, 101, 111, 011, 001)
(101, 100, 000, 010, 011, 001, 101, 111)

By above list, the lemma holds for n = 3.

Suppose that n = 4. There are 4 dimensions in Q4, so Q4 can be decomposed into Q0
3

and Q1
3 two subcubes by dimension j such that ei are not cross edges for all 1 ≤ i ≤ 3.

Then, the number of the black nodes is equal to the white nodes in Qi
3, i = 0, 1. Therefor,

the proof is divided into two major cases.

Case 1. Not all of the disjoint edges are in the same subcube.

Without loss of generality, we may assume that e1,e2 ∈ E(Q0
3) and e3 ∈ E(Q1

3).

Assume that i = 1, 2. Suppose that 1 ≤ l ≤ 7 and l is odd. By above discuss, there exist

2 mutually independent path of length l joining wi and bi. By Lemma 1, there exists

one path of length l joining w3 and b3 of Q1
3. Suppose that 9 ≤ l ≤ 13 and l is odd.

Let Ri be the longest paths of Q0
3 joining wi and bi and R3 be the longest path of Q1

3

11



joining w3 and b3. Obviously, l(R1) = l(R2) = l(R3) = 7. In addition, let xj be the node

Rj(6) and we can write Rj as 〈wj, R
0
j , xj, bj〉 for all 1 ≤ j ≤ 3. By definition, x

(1)
i and

b
(1)
i are the vertices in Q1

3. By above discuss, there exist 2 mutually independent path Si

of length l1 joining w
(1)
i and b

(1)
i for any 1 ≤ l1 ≤ 7. By definition, x

(0)
3 and b

(0)
3 are the

vertices in Q0
3. By Lemma 1, there exist one path S3 of length l1 joining w

(0)
3 and b

(0)
3

for any 1 ≤ l1 ≤ 7. Thus, 〈wi, R
0
i , xi, x

(1)
i , Si, b

(1)
i , bi〉 and 〈w3, R

0
3, x3, x

(0)
3 , S3, b

(0)
3 , b3〉 are 3

mutually independent path of length l joining wj and bj for any 1 ≤ l ≤ 13 and 1 ≤ j ≤ 3.

Case 2. All of the disjoint edges are in the same subcube.

Without loss of generality, we may assume that e1,e2,e3 ∈ E(Q0
3). In this situation, we

only discuss one case about any two edges are lying on different dimensions. Since Q4 is

vertex transitive, we can assume that e1 = (000, 001), e2 = (100, 110) and e3 = (111, 011).

Suppose that 3 ≤ l ≤ 7 and l is odd. With above discuss, there exist 2 mutually

independent path of length l joining wi and bi. In addition, , w
(1)
3 and b

(1)
3 are the vertices

in Q1
3. By Lemma 1, there exists one path R of length l − 2 joining w

(1)
3 and b

(1)
3 of

Q1
3. Thus, 〈w3, w

(1)
3 , R, b

(1)
3 , b3〉 is the path of length l joining w3 and b3. Suppose that

9 ≤ l ≤ 15. The paths are listed below:

l = 9
(0000, 0010, 0110, 0100, 0101, 0111, 1111, 1011, 0011, 0011)
(0101, 0111, 0011, 0001, 0000, 0010, 1010, 1110, 0110, 0100)
(0011, 1011, 1010, 1110, 1100, 1000, 1001, 1101, 1111, 0111)
l = 11
(0000, 0010, 0110, 0100, 0101, 0111, 1111, 1011, 1001, 1011, 0011, 0011)
(0101, 0111, 0011, 0001, 0000, 0010, 1010, 1000, 1100, 1110, 0110, 0100)
(0011, 1011, 1010, 1110, 1100, 1000, 1001, 0001, 0101, 1101, 1111, 0111)
l = 13
(0000, 0010, 0110, 0100, 0101, 0111, 1111, 1110, 1100, 1011, 1001, 1011, 0011, 0011)
(0101, 0111, 0011, 0001, 0000, 0010, 1010, 1000, 1001, 1101, 1100, 1110, 0110, 0100)
(0011, 1011, 1010, 1110, 1100, 1000, 1001, 0001, 0101, 0000, 0100, 1101, 1111, 0111)
l = 15
(0000, 0010, 0110, 0100, 0101, 0111, 1111, 1110, 1010, 1000, 1100, 1011, 1001, 1011, 0011, 0011)
(0101, 0111, 0011, 0001, 0000, 0010, 1010, 1000, 1001, 1011, 1111, 1101, 1100, 1110, 0110, 0100)
(0011, 1011, 1010, 1110, 1100, 1000, 1001, 0001, 0101, 0000, 0010, 0110, 0100, 1101, 1111, 0111)

2
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Lemma 5 Assume n ≥ 4. Let x and y be any two nodes from different partite set of Qn,

and let u and v be any two vertices from different partite set of Qn − {x, y}. Then, there

exists a path P joining u and v of Qn − {x, y} for h(u, v) ≤ l(P ) ≤ 2n − 3 and l(P ) is

odd.

Proof. We prove this lemma by induction on n. By Lemma 3, we observe that the

lemma holds for n = 4. For k ≥ 4, we assume that the lemma is true for every integer

n < k. Let x = xk−1xk−2...x1x0 and y = yk−1yk−2...y1y0. Hence xi = yi for some i.

Accordingly, Qk can be decomposed into two subcube Q0
k−1 and Q1

k−1 by dimension i

and x and y are in the same subcube. Without loss of generality, we may assume that

x, y ∈ V (Q0
k−1). Therefor, the proof is divided into three major cases.

(a) (b) (c)

x
y

z(1)z

w

u v

w(1)
R
0

R
1

S

x
y

x
y

u

w w(1)

v

R S

u

v

u(0)

w w(1)

R
S

Figure 3.4: Illustration for the Lemma 5.

Case 1. u, v ∈ V (Q0
k−1). By inductive hypothesis, there exists a path of length l0

connecting u and v of Qk − {x, y} for any h(u, v) ≤ l0 ≤ 2k−1 − 3 such that l0 is odd.

Suppose that 2k−1 − 1 ≤ l ≤ 2k − 3 with l is odd. Let R be one of the longest path of

Q0
k−1 joining u and v. Since l(R) = 2k−1 − 3 ≥ 5 if k ≥ 4, there exists an edge (w, z) in

R. We can write the path R as 〈u,R0, w, z, R1, v〉. In subcube Q1
k−1, let w(1) and z(1) be

the neighbors of w and z. By Lemma 1, we can find a path S joining w(1) and z(1) for

13



1 ≤ l(S) ≤ 2k−1 − 1 with l(S) is odd. Therefor, P = 〈u,R0, w, w(1), S, z(1), z, R1, v〉 is a

path of length l joining u and v of Qk − {x, y}.

Case 2. u ∈ V (Q0
k−1) and v ∈ V (Q1

k−1) or u ∈ V (Q1
k−1) and v ∈ V (Q0

k−1). Without

loss of generality, we may assume that u ∈ V (Q0
k−1) and v ∈ V (Q1

k−1). Let w(1) be

one neighbor of v and w(1) ∈ V (Q1
k−1). By definition, w is the neighbor of w(1) and

w ∈ V (Q0
k−1). Obviously, h(u,w) = h(w(1), v) = 1. By inductive hypothesis, there exists

a path R of length l0 connecting u and w of Qk − {x, y} for 1 ≤ l0 ≤ 2k−1 − 3 and l0

is odd. Let l1 = l − l0 − 1. By Lemma 1, there exists a path S of length l1 joining

w(1) and v. Thus, P = 〈u,R,w,w(1), S, v〉 is a path joining u and v of Qk − {x, y} for

h(u, v) ≤ l(P ) ≤ 2k − 3.

Case 3. u, v ∈ V (Q1
k−1). In this subcase discussion, we assume that at most one

vertex in {u, v} is adjacent to {x, y}. Otherwise, Qk can be decomposed into another

two subcubes by another dimension j for x and y in the same subcube and the proof is

the same as Case 1. Without loss of generality, we may assume that u is not adjacent

to {x, y}. By Lemma 1, there exists a path of length l joining u and v of Q1
k−1 for any

h(u, v) ≤ l ≤ 2k−1−1 such that l is odd. Suppose that 2k−1+1 ≤ l ≤ 2k−3 and l is odd. By

definition, u(0) is vertex in Q0
k−1. Let w be any vertex that are different color as u(0) of Q0

k−1

and w 6= {x, y}. Let w(1) be the neighbor of w and w(1) ∈ V (Q1
k−1). By Lemma 2, there

exist a path S joining w(1) and v of Q1
k−1−{u} for any h(w(1), v) ≤ l(S) ≤ 2k−1−2 and l(S)

is even. Let l0 = l−l(S)−2. Then l0 is odd and 1 ≤ l0 ≤ 2k−1−3. By induction hypothesis,

there exists a path R of length l0 joining u(0) and w. Thus, P = 〈u, u(0), R, w, w(1), S, v〉

is a path joining u and v of Qk − {x, y} for h(u, v) ≤ l(P ) ≤ 2k − 3.

14



2

Lemma 6 Assume n ≥ 3. Let {ei | ei = (wi, bi) ∈ E(Qn), bi is black node and wi is white

node, 1 ≤ i ≤ n − 1} be any n-1 disjoint edges in Qn. Then, there exist n-1 independent

paths P1, ..., Pn−1 of length l in Qn joining wi and bi for 1 ≤ l ≤ 2n − 1.

Proof. We prove this lemma by induction on n. By Lemma 4, we observe that the

lemma holds for n = 3, 4. As the inductive hypothesis, we assume that the lemma is true

for 3 ≤ k < n. There are k dimensions in Qk, so Qk can be decomposed into Q0
k−1 and

Q1
k−1 two subcubes by dimension j such that ei are not cross edges for all 1 ≤ i ≤ k − 1.

Then the number of the black nodes is equal to the white nodes in Qi
k−1, i = 1, 2. The

proof is divided into two major cases.

Case 1. Not all of the disjoint edges are in the same subcube.

Without loss of generality, we may assume that ei ∈ E(Q0
k−1) and ej ∈ E(Q1

k−1) for

1 ≤ i ≤ j ≤ k − 1 and |ei|+ |ej| = k − 1. Suppose that 1 ≤ l ≤ 2k−1 − 1 and l is odd. By

above discuss, there exist i mutually independent path of length l of Q0
k−1 joining wi and

bi and j mutually independent path of length l of Q1
k−1. joining wj and bj. Suppose that

2k−1 + 1 ≤ l ≤ 2k − 1 and l is odd. Let Ri be the longest paths of Q0
k−1 joining wi and bi

and Rj be the longest path of Q1
k−1 joining wj and bj. Obviously, l(Ri) = l(Rj) = 2k−1−1.

In addition, let xi be the node Ri(2
k−1 − 2) and we can write Ri as 〈wi, R

0
i , xi, bi〉. By

definition, x
(1)
i and b

(1)
i are the vertices in Q1

k−1. By above discuss, there exist i mutually

independent path Si of length l1 joining w
(1)
i and b

(1)
i for any 1 ≤ l1 ≤ 2k−1 − 1. The

same as above proof. Let xj be the node Rj(2
k−1 − 2) on Rj and we can write Rj as

〈wj, R
0
j , xj, bj〉. By definition, x

(0)
j and b

(0)
j are the vertices in Q0

k−1. By above discuss,
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there exist j mutually independent path Sj of length l1 joining w
(0)
j and b

(0)
j for any

1 ≤ l1 ≤ 2k−1 − 1. Thus, 〈wi, R
0
i , xi, x

(1)
i , Si, b

(1)
i , bi〉 and 〈wj, R

0
j , xj, x

(0)
j , Sj, b

(0)
j , bj〉 are

k − 1 mutually independent path of length l for any 1 ≤ l ≤ 2k − 1.

Case 2. All of the disjoint edges are in the same subcube.

Without loss of generality, we may assume that all edges are in Q0
k−1. For convenience,

we assume that 1 ≤ i ≤ k−2. It is trivial to construct the path of length 1 connecting wi

and bi. Suppose that 3 ≤ l ≤ 2k−1 − 1. By induction hypothesis, there exist k − 2 paths

Pi of length l joining wi and bi in Q0
k−1. By definition, w

(1)
k−1 and b

(1)
k−1 are the neighbors

of wk−1 and bk−1 for w
(1)
k−1 ∈ Q1

k−1 and b
(1)
k−1 ∈ Q1

k−1. By Lemma 1, we can find a path R

with length l− 2 joining w
(1)
k−1 and b

(1)
k−1. Thus, 〈wk−1, w

(1)
k−1, R, b

(1)
k−1, vk−1〉 is the path Pk−1

of length l in Qk joining wk−1 and bk−1.

Suppose that 2k−1 + 1 ≤ l ≤ 2k − 1. Assume that 2k−1 − 3 ≤ l0 ≤ 2k−1 − 1. With

above discussion, let Ri be k − 2 mutually independent paths with length l0 joining wi

and bi. Let xi and yi be the nodes Ri(l0 − 2) and Ri(l0 − 1) on Ri. We can write Ri as

〈wi, R
0
i , xi, yi, bi〉. Let x

(1)
i and y

(1)
i be the neighbors of xi and yi in Q1

n−1. By Lemma 6,

there exist k − 2 path Si joining x
(1)
i and y

(1)
i in Q1

k−1 for 3 ≤ l(Si) ≤ 2k−1 − 1. Thus,

Pi = 〈wi, R
0
i , xi, x

(1)
i , Si, y

(1)
i , yi, bi〉 are k − 2 paths with length l in Qk joining wi and bi.

By definition, w
(1)
k−1 and b

(1)
k−1 are the neighbors of wk−1 and bk−1 for w

(1)
k−1 ∈ Q1

k−1 and

b
(1)
k−1 ∈ Q1

k−1. Let z be one neighbor of bk−1 and z 6= yi. Otherwise, bk−1 is adjacent to yi

and we can construct Pj as 〈wi, R
0
i , xi, x

(1)
i , Si, y

(1)
i , yi, bk−1〉 such that one neighbor of bj is

not equal all yi for j ∈ [1, k− 2]. In addition, let a be any node that are different color as

wk−1 and a 6= xi. By definition, z(1) and a(1) are the vertices in V (Q1
k−1) and z(1) 6= y

(1)
i
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and a(1) 6= x
(1)
i . By Lemma 5, there exist a path Rk−1 with length l0 − 2 connecting w

(1)
k−1

and a(1) of Q1
k−1 − {z(1), b

(1)
k−1}. By Lemma 3, there exist a path St−1 with length |Si| − 2

joining a and z. Thus, Pk−1 = 〈wk−1, w
(1)
k−1, Rk−1, a

(1), a, Sk−1, z, z
(1), b

(1)
k−1, bk−1〉 is the k−1

mutually independent path with length l joining wk−1 and bk−1.

2

Lemma 7 Assume that n ≥ 3. Let v be any vertex of Qn. There exist n-1 independent

path P1, ..., Pn−1 of length l in Qn from v to vi such that vi is the neighbor of v for

1 ≤ i ≤ n − 1 and 1 ≤ l ≤ 2n − 1.

Proof. We prove this lemma by induction on n. Since Q3 is node transitive, we can

assume that v = 000 and v1 = 001 and v2 = 010. The required path of n = 3 are listed

below:

chose v = 000, v1 = 001 v2 = 010
l = 1
(000, 001)
(000, 010)
l = 3
(000, 100, 101, 001)
(000, 001, 011, 010)
l = 5
(000, 100, 110, 111, 101, 001)
(000, 001, 101, 100, 110, 010)
l = 7
(000, 100, 110, 010, 011, 111, 101, 001)
(000, 001, 011, 111, 101, 100, 110, 010)

The lemma hold for n = 3 above list. As the inductive hypothesis, we assume that

the lemma is true for 3 ≤ k < n.

Without loss of generality, we may assume the subcube is Q0
t−1. The proof of this

subcase is classified in three parts.

For convenience, we assume that 1 ≤ i ≤ k − 2. It is trivial to construct the path of

length 1 connecting v and vi. Suppose that 3 ≤ l ≤ 2k−1 − 1. By induction hypothesis,
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Figure 3.5: Illustration for the Lemma 7.

there exist k−2 paths Pi of length l joining v and vi in Q0
k−1. By definition, v(1) and v

(1)
k−1

are the neighbors of v and vk−1 for v(1) ∈ Q1
k−1 and v

(1)
k−1 ∈ Q1

k−1. By Lemma 1, we can

find a path R with length l − 2 joining v(1) and v
(1)
k−1. Thus, 〈v, v(1), R, v

(1)
k−1, vk−1〉 is the

path Pk−1 of length l in Qk joining v and vk−1.

Suppose that 2k−1 + 1 ≤ l ≤ 2k − 1. Assume that 2k−1 − 3 ≤ l0 ≤ 2k−1 − 1. With

above discussion, let Ri be k − 2 mutually independent paths with length l0 joining v

and vi. Let xi and yi be the nodes Ri(l0 − 2) and Ri(l0 − 1) on Ri. We can write Ri as

〈v,R0
i , xi, yi, vi〉. Let x

(1)
i and y

(1)
i be the neighbors of xi and yi in Q1

n−1. By Lemma 6,

there exist k − 2 path Si joining x
(1)
i and y

(1)
i in Q1

k−1 for 3 ≤ l(Si) ≤ 2k−1 − 1. Thus,

Pi = 〈v,R0
i , xi, x

(1)
i , Si, y

(1)
i , yi, vi〉 are k− 2 paths with length l in Qk joining v and vi. By

definition, v(1) and v
(1)
k−1 are the neighbors of v and vk−1 for v(1) ∈ Q1

k−1 and v
(1)
k−1 ∈ Q1

k−1.

Let z be one neighbor of vk−1 and z 6= yi. Otherwise, vk−1 is adjacent to yi and we can

construct Pj as 〈v,R0
i , xi, x

(1)
i , Si, y

(1)
i , yi, vk−1〉 such that one neighbor of vj is not equal
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all yi for j ∈ [1, k − 2]. In addition, let a be any node that are different color as vk−1

and a 6= xi. By definition, z(1) and a(1) are the vertices in V (Q1
k−1) and z(1) 6= y

(1)
i and

a(1) 6= x
(1)
i . By Lemma 5, there exist a path Rk−1 with length l0 − 2 connecting u(1) and

a(1) of Q1
k−1 − {z(1), v

(1)
k−1}. By Lemma 3, there exist a path Sk−1 with length |Si| − 2

joining a and z. Thus, Pk−1 = 〈v, v(1), Rk−1, a
(1), a, Sk−1, z, z

(1), v
(1)
k−1, vk−1〉 is the k − 1

mutually independent path with length l joining v and vk−1.

2

Theorem 1 Assume n ≥ 4. Given any two vertices u, v in Qn and the distance d(u, v) =

d. There exist n-1 mutually independent path P1, ..., Pn−1 of length l joining u and v in

Qn for l = d + 2, d + 4, ..., 2n − 1 − d (−1)d+1
2

e.

Proof. We prove this lemma by induction on n. The required path of n = 4 are listed

below:
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chose u = 0000, v = 0001, h(u, v) = 1
(0000, 0100, 0101, 0001)
(0000, 0010, 0011, 0001)
(0000, 1000, 1001, 0001)
(0000, 0100, 0110, 0111, 0101, 0001)
(0000, 0010, 1010, 1011, 0011, 0001)
(0000, 1000, 1100, 1101, 1001, 0001)
(0000, 0100, 0110, 0010, 0011, 0111, 0101, 0001)
(0000, 0010, 1010, 1110, 1111, 1011, 1001, 0001)
(0000, 1000, 1001, 1011, 1010, 0010, 0011, 0001)
(0000, 0100, 0110, 0010, 1010, 1011, 0011, 0111, 0101, 0001)
(0000, 0010, 0011, 0111, 0110, 0100, 0101, 1101, 1001, 0001)
(0000, 1000, 1010, 1110, 1100, 1101, 1111, 1011, 0011, 0001)
(0000, 0100, 0110, 0010, 1010, 1110, 1111, 1011, 0011, 0111, 0101, 0001)
(0000, 0010, 0011, 0111, 0110, 0100, 0101, 1101, 1100, 1000, 1001, 0001)
(0000, 1000, 1100, 1101, 1111, 0111, 0110, 1110, 1010, 1011, 0011, 0001)
(0000, 0100, 0101, 0111, 0011, 1011, 1010, 1000, 1100, 1101, 1001, 1011, 0011, 0001)
(0000, 0010, 0110, 0100, 0101, 0111, 0011, 1011, 1010, 1000, 1100, 1101, 1001, 0001)
(0000, 1000, 1010, 1011, 1001, 1101, 1100, 1110, 1111, 0111, 0110, 0100, 0101, 0001)
(0000, 0100, 0101, 0111, 0110, 0010, 1010, 1000, 1100, 1110, 1111, 1011, 1001, 1011, 0011, 0001)
(0000, 0010, 0110, 0100, 0101, 0111, 0011, 1011, 1010, 1000, 1100, 1110, 1111, 1101, 1001, 0001)
(0000, 1000, 1010, 1011, 1001, 1101, 1100, 1110, 1111, 0111, 0011, 0010, 0110, 0100, 0101, 0001)

chose u = 0000, v = 0111, h(u, v) = 3
(0000, 0100, 0110, 0010, 0011, 0111)
(0000, 0010, 0011, 0001, 0101, 0111)
(0000, 1000, 1010, 1011, 1111, 0111)
(0000, 0100, 0110, 0010, 0011, 0001, 0101, 0111)
(0000, 0010, 0011, 0001, 0101, 0100, 0110, 0111)
(0000, 1000, 1100, 1110, 1010, 1011, 1111, 0111)
(0000, 0100, 0110, 0010, 0011, 0001, 1001, 1011, 0011, 0111)
(0000, 0010, 0011, 0001, 0101, 0100, 1100, 1110, 0110, 0111)
(0000, 1000, 1010, 1110, 0110, 0010, 0011, 1011, 1111, 0111)
(0000, 0100, 0110, 0010, 0011, 0001, 1001, 1000, 1100, 1101, 1111, 0111)
(0000, 0010, 0011, 0001, 0101, 0100, 1100, 1101, 1111, 1110, 0110, 0111)
(0000, 1000, 1010, 1110, 0110, 0010, 0011, 1011, 1001, 0001, 0101, 0111)
(0000, 0001, 0101, 0100, 0110, 0010, 0011, 1011, 1001, 1000, 1010, 1110, 1111, 0111)
(0000, 0010, 0011, 0001, 0101, 1101, 1001, 1000, 1010, 1110, 1100, 0100, 0110, 0111)
(0000, 1000, 1001, 1011, 1010, 1110, 1100, 0100, 0110, 0010, 0011, 0001, 0101, 0111)
(0000, 0001, 0101, 0100, 0110, 0010, 0011, 1011, 1001, 1101, 1100, 1000, 1010, 1110, 1111, 0111)
(0000, 0010, 0011, 0001, 0101, 1101, 1001, 1000, 1010, 1011, 1111, 1110, 1100, 0100, 0110, 0111)
(0000, 1000, 1001, 1011, 1010, 1110, 1111, 1101, 1100, 0100, 0110, 0010, 0011, 0001, 0101, 0111)

chose u = 0000, v = 0110, h(u, v) = 2
(0000, 0001, 0011, 0010, 0110)
(0000, 0010, 1010, 1110, 0110)
(0000, 0100, 0101, 0111, 0110)
(0000, 0001, 0011, 0111, 0101, 0100, 0110)
(0000, 0010, 1010, 1011, 1111, 1110, 0110)
(0000, 0100, 0101, 0001, 0011, 0111, 0110)
(0000, 0001, 0011, 0111, 0101, 1101, 1100, 0100, 0110)
(0000, 0010, 1010, 1011, 1111, 1011, 1010, 1110, 0110)
(0000, 0100, 0101, 0001, 0011, 1011, 1111, 0111, 0110)
(0000, 0001, 0011, 0111, 0101, 1101, 1001, 1000, 1100, 0100, 0110)
(0000, 0010, 1010, 1011, 1111, 1110, 1100, 0100, 0101, 0111, 0110)
(0000, 0100, 0101, 0001, 0011, 0111, 1111, 1011, 1010, 1110, 0110)
(0000, 0001, 0011, 0111, 0101, 1101, 1001, 1000, 1010, 1011, 1111, 1110, 0110)
(0000, 0010, 1010, 1011, 1111, 0111, 0011, 0001, 1001, 1101, 1100, 0100, 0110)
(0000, 1000, 1001, 1101, 1100, 1110, 1010, 1011, 1111, 0111, 0011, 0010, 00110)
(0000, 0001, 0011, 0111, 0101, 0100, 1100, 1000, 1001, 1101, 1111, 1011, 1010, 0010, 0110)
(0000, 0010, 1010, 1110, 1100, 1000, 1001, 1101, 1111, 1011, 0011, 0111, 0101, 0100, 0110)
(0000, 1000, 1001, 1011, 1010, 0010, 0011, 0001, 0101, 0100, 1100, 1101, 1111, 1110, 0110)

chose u = 0000, v = 1111, h(u, v) = 4
(0000, 0001, 0011, 0010, 0110, 0111, 1111)
(0000, 0010, 0110, 0100, 0101, 1101, 1111)
(0000, 1000, 1100, 1101, 1001, 1011, 1111)
(0000, 0001, 0011, 0010, 0110, 0111, 0101, 1101, 1111)
(0000, 0010, 0110, 0111, 0101, 1101, 1100, 1110, 11111)
(0000, 1000, 1100, 1101, 1001, 0001, 0101, 0111, 1111)
(0000, 0001, 0011, 0111, 0101, 0100, 0110, 0010, 1010, 1011, 1111)
(0000, 0010, 0110, 0100, 1100, 1101, 1001, 0001, 0101, 0111, 1111)
(0000, 1000, 1100, 1101, 1001, 0001, 0101, 0111, 0110, 1110, 1111)
(0000, 0001, 0011, 0111, 0101, 0100, 0110, 0010, 1010, 1000, 1001, 1011, 1111)
(0000, 0010, 0110, 0100, 1100, 1000, 1010, 1011, 1001, 0001, 0101, 0111, 1111)
(0000, 1000, 1100, 1101, 1001, 0001, 0011, 0111, 0101, 0100, 0110, 1110, 1111)
(0000, 0001, 0011, 0111, 0101, 0100, 0110, 0010, 1010, 1110, 1100, 1000, 1001, 1101, 1111)
(0000, 0010, 0110, 0100, 1100, 1110, 1010, 1000, 1001, 1101, 0101, 0001, 0011, 0111, 1111)
(0000, 0100, 0101, 0001, 0011, 1011, 1001, 1101, 1100, 1000, 1010, 0010, 0110, 1110, 1111)

The lemma holds for n = 4 above list. As the inductive hypothesis, we assume that

the lemma is true for every integer n < k, for all k ≥ 4. Therefor, the proof is divided
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into two major cases.

Case I. u and v are the same colored vertices.

In this case, let u = uk−1uk−2...u1u0 and v = vk−1vk−2...v1v0. Hence ui 6= vi for some

i. Accordingly, Qk can be decomposed into two subcube Q0
k−1 and Q1

k−1 by dimension i.

Therefor, u and v are in the different subcube. Without loss of generality, we may assume

that u ∈ V (Q0
k−1) and v ∈ V (Q1

k−1).

For convenience, we assume that 1 ≤ i ≤ k − 2.

u

v

w
iw1

w(1)1 w(1)
i

v(0)

R01 R0k-2

w(1)
k-1

u(0)

R
k-1

Figure 3.6: Illustration for the Case I.

Suppose that h(u, v) + 2 ≤ l ≤ 2k−1 and l is even. Let v(0) be the neighbor of v and

v(0) ∈ V (Q0
k−1). Thus, h(u, v(0)) = h(u, v)− 1. Assume that h(u, v(0)) + 2 ≤ l0 ≤ 2k−1 − 1

for l0 is odd. By induction hypothesis, there are k − 2 mutually independent path Ri of

length l0 connecting u and v(0). Let wi be the nodes Ri(l0−1) on Ri. We can write the path

Ri as 〈u,R0
i , wi, v

(0)〉. Let w
(1)
i be the neighbors of wi for w

(1)
i ∈ V (Q1

k−1). Obviously, w
(1)
i

are the neighbors of v. Therefor, Pi = 〈u,R0
i , wi, w

(1)
i , v〉 are k − 2 mutually independent

path of length l joining u and v. By definition, u(1) is the neighbor of u and u(1) ∈ V (Q1
k−1).

Let w
(1)
k−1 be the neighbor of v and w

(1)
k−1 ∈ V (Q1

k−1) and w
(1)
k−1 6= w

(1)
i . Obviously, u(1) and
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w
(1)
k−1 are the same colored vertices. By Lemma 2, there is a path Rk−1 with length l − 2

of Q1
k−1 − {v} joining u(1) and w

(1)
k−1. Thus, Pk−1 = 〈u, u(1), Rk−1, w

(1)
k−1, v〉 is the k − 1

mutually independent path of length l joining u and v.

u

v

w
iw1

w(1)1 w(1)i

v(0)
w(1)k-1wk-1

v(0) v

u(1)u
x

R01 R0k-2

Sk-2S1

Rk-1Sk-1

(a) (b)

Figure 3.7: Illustration for the Case I.

Suppose that 2k−1 +2 ≤ l ≤ 2k−2 and l is even. By above discussion, there exist k−2

path R0
i of length 2k−1 − 2 joining u and wi in Q0

k−1 and one path Rk−1 of length 2k−1 − 2

joining u(1) and w
(1)
k−1 in Q1

k−1. By Lemma 7, there exist k− 2 mutually independent path

Si in Q1
k−1 from v to w

(1)
i for 3 ≤ l(Si) ≤ 2k−1 − 1. Thus, Pi = 〈u,R0

i , wi, w
(1)
i , Si, v〉

are k − 2 mutually independent path with length l joining u and v. Let x be any vertex

that are different color as u of Q0
k−1 and x 6= v(0). By Lemma 5, there exists a path

Sk−1 joining wk−1 and v(0) of Q0
k−1 − {u, x} for 1 ≤ l(Sk−1) ≤ 2k−1 − 3. Therefore,

Pk−1 = 〈u, u(1), Rk−1, w
(1)
k−1, wk−1, Sk−1, v

(0), v〉 is the k − 1 mutually independent path

with length l joining u and v.

Case II. u and v are different colored vertices.

For convenience, we assume that 1 ≤ i ≤ k − 2.
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Subcase II-1. h(u, v) < k.

u

Si

x
i

y
i

R0i

(a)

v

u

v

(b)

R0k-1Sk-1

v(1)
k-1

x(1)
i

x
k-1

y
k-1

y(1)
i

u(1)
k-1

y(1)k-1

x(1)
k-1

Figure 3.8: Illustration for the Case II-1.

In this case, let u = uk−1uk−2...u1u0 and v = vk−1vk−2...v1v0. Hence ui = vi for some

i. Accordingly, Qk can be decomposed into two subcube Q0
k−1 and Q1

k−1 by dimension i.

Therefor, u and v are in the same subcube. Without loss of generality, we may assume

that u and v are both in Q0
k−1.

Suppose that h(u, v) + 2 ≤ l ≤ 2k−1 − 1 and l is odd. By inductive hypothesis, there

are k − 2 mutually independent paths of length l joining u and v in Q0
k−1. By definition,

u(1) and v(1) are the neighbors of u and v for u(1), v(1) ∈ V (Q1
k−1). By Lemma 1, we can

find a path R with length l − 2 joining u(1) and v(1) in Q1
k−1. Thus, 〈u, u(1), R, v(1), v〉 is

the path Pk−1 of length l in Qk joining u and v.

Suppose that 2k−1 +1 ≤ l ≤ 2k − 3 for l is odd. With above discussion, let Ri be k− 2

mutually independent paths of length l0 joining u and v in Q0
k−1 for any l0 = 2k−1−1. Let

xi and yi be the nodes Ri(2) and Ri(3) on Ri. We can write Ri as 〈u,Ri(1), xi, yi, R
0
i , v〉.

By definition, x
(1)
i and y

(1)
i are the neighbors of xi and yi for {x

(1)
i , y

(1)
i } ∈ V (Q1

k−1).
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By Lemma 6, there exist k − 2 independent path Si joining x
(1)
i and y

(1)
i in Q1

k−1 for

1 ≤ l(Si) ≤ 2k−1 − 3. Thus, Pi = 〈u,Ri(1), xi, x
(1)
i , Si, y

(1)
i , yi, R

0
i , v〉 is k − 2 mutually

independent paths of length l in Qk joining u and v.

By definition, u(1) and v(1) are neighbors of u and v for u(1), v(1) ∈ V (Q1
k−1). By Lemma

1, there exists a path Rk−1 of length |Ri|−2 joining u(1) and v(1). Let x
(1)
k−1 and y

(1)
k−1 be the

nodes Rk−1(1) and Rk−1(2) on Rk−1. We can write Rk−1 as 〈u(1), x
(1)
k−1, y

(1)
k−1, R

0
k−1, v

(1)〉.

By definition, xk−1 and yk−1 are vertices in Q0
k−1. By Lemma 5, there exists a path

Sk−1 joining xk−1 and yk−1 of Q0
k−1 − {u, v} for 1 ≤ l(Sk−1) ≤ 2k−1 − 2. Thus, Pk−1 =

〈u, u(1), x
(1)
k−1, xk−1, Rk−1, yk−1, y

(1)
k−1, R

0
k−1, v

(1), v〉 is the k − 1 mutually independent path

with length l joining u and v.

Subcase II-2. h(u, v) = k. We may choose a dimension i with the same way of the

proof of Case (I) to split Qk into two subcubes Q0
k−1 and Q1

k−1. Without loss of generality,

we assume that u ∈ V (Q0
k−1) and v ∈ V (Q1

k−1).

u

v

wiw1

w(1)1 w(1)
i

v(0)

R01 R0k-2

u(0)

Rk-1

w(1)
k-1

v

u

z

(a) (b)

Figure 3.9: Illustration for the Case II-2.
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Suppose that h(u, v)+2 ≤ l ≤ 2k−1 −1 and l is odd. Let v(0) be the neighbor of v and

v(0) ∈ V (Q0
k−1). Assume that h(u, v(0)) + 2 ≤ l0 ≤ 2k−1 − 2 for l0 is even. By induction

hypothesis, there are k − 2 mutually independent path Ri of length l0 connecting u and

v(0). Let wi be the nodes Ri(l0 − 1) on Ri. We can write the path Ri as 〈u,R0
i , wi, v

(0)〉.

Let w
(1)
i be the neighbors of wi for w

(1)
i ∈ V (Q1

k−1). Obviously, w
(1)
i are the neighbors of

v. Therefor, Pi = 〈u,R0
i , wi, w

(1)
i , v〉 are k − 2 mutually independent path with length l

joining u and v. By definition, u(1) is the neighbor of u and u(1) ∈ V (Q1
k−1). Let w

(1)
k−1

be the neighbor of v and w
(1)
k−1 ∈ V (Q1

k−1) and w
(1)
k−1 6= w

(1)
i . Obviously, u(1) and w

(1)
k−1 are

different colored vertices. Let z be any vertex that are different color as v and v 6= w
(1)
k−1.

By Lemma 5, there is a path Rk−1 with length l0 − 1 of Q1
k−1 − {z, v} joining u(1) and

w
(1)
k−1. Thus, Pk−1 = 〈u, u(1), Rk−1, w

(1)
k−1, v〉 is the k − 1 mutually independent path of

length l joining u and v.

u

v

w
iw1

w(1)1 w(1)i

v(0)

R01 R0k-2

Sk-2S1

(a)

u(0)

Rk-1

w(1)
k-1

v

u

z

x

w
i

v(0)

S
k-1

(b)

Figure 3.10: Illustration for the Case II-2.

Suppose that 2k−1 +1 ≤ l ≤ 2k −3 and l is odd. By above discussion, there exist k−2

path R0
i of length 2k−1 − 3 joining u and wi in Q0

k−1 and one path Rk−1 of length 2k−1 − 3

joining u(1) and w
(1)
k−1 in Q1

k−1. By Lemma 7, there exist k− 2 mutually independent path
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Si in Q1
k−1 from v to w

(1)
i for 3 ≤ l(Si) ≤ 2k−1 − 1. Thus, Pi = 〈u,R0

i , wi, w
(1)
i , Si, v〉

are k − 2 mutually independent path with length l joining u and v. Let x be any vertex

that are different color as u of Q0
k−1 and x 6= v0. By Lemma 5, there exists a path

Sk−1 joining wk−1 and v0 of Q0
k−1 − {u, x} for 1 ≤ l(Sk−1) ≤ 2k−1 − 3. Therefore,

Pk−1 = 〈u, u(1), Rk−1, w
(1)
k−1, wk−1, v

(0), v〉 is the k − 1 mutually independent path with

length l joining u and v.

2
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Chapter 4

conclusion

Since every component in the interconnection network may have different reliability, it

is important to consider properties of a network with mutually independent linear array

embeddings. In this paper, the n-dimensional hypercube with (n − 1) mutually indepen-

dent path of any length l joining any vertices u and v for h(u, v) ≤ l ≤ 2n − 1. It is also

impossible to make n mutually independent paths and cycles except one case that u is

adjacent to v.
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