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Abstract

We say that two paths Py = <ug,Uy,...Ux.1> and P; = <vg,vy,...,Vk.1> are independent
iIf up= vy, I(Po) = I(P1) and Po(i) = P4(i) fro every 1 < i <k-1. The set of paths
{Po,P1,...,Ps} of G are mutually independent if any two different paths in the set are
independent. In this paper, we prove that there exist (n-1) mutually independent
paths of length | joining any vertices u and v such that h(u,v)+2 | 2"-1 and
n A4
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Chapter 1

Introduction

An interconnection network topology is usually represented by a graph where vertices
represent processors and edges represent links between processors. A network connects the
processors of the parallel computer. There are a lot of mutually conflicting requirements
in designing the topology of computer networks.=, It is almost important to design an
interconnection network that is the-parallel system. A number of mutually independent

path for specific multiprocessor architeetures-have been discussed.

The architecture of an interconnection metwork is usually represented as a graph. The
nodes and edges in a graph correspond to processors and communication links in an
interconnection network, respectively. In the design and implementation of local area
networks, the ring topology has been used frequently for its good properties such as
simplicity , extensibility, regularity and easiness of implementation. To study the graph
embedding problem, which maps a guest graph into a host graph, is an important issue in
evaluating a network. The problem is mapping each node of the guest graph into a node
of the host graph, and mapping each edge of the guest graph into an edge of the host

graph.



Many interconnection network topologies have been proposed in the literature for
the purpose of connecting hundreds or thousands of processing elements. Among these
topologies, the binary n-cube (abbreviated as hypercube) [2], denoted by @, is one of the
most popular topologies. Linear arrays and rings, which are two of the most fundamental
networks for parallel and distributed computation, are suitable for developing simple
algorithms with low communication costs. Some efficient algorithms designed on linear
arrays and rings for solving a variety of algebraic problems and graph problems can be

found in previous works [3, 1].



Chapter 2

Preliminaries

2.1 Notations and Definitions

For the graph theoretical definitions and notations, we follow [1], a graph G = (V, E)
consists of a finite set V' and a subset: £ of {(wjv) | u # v, (u,v) is an unordered pair of
elements of V}. We call V = VAG) the wertex set of G and E = E(G) the edge set of
G. A graph G = (Vo U W, F) isbipartite if V(G) is the union of two disjoint sets V{, and
V1, such that every edge joins V{ with V;. Two wvertices ,u and v, have the same color if
and only if © and v are in the same partite set. A path is a sequence of adjacent vertices,
written as (vg, U1, Vs, . .., Up), in which all the vertices vy, vq,vs, . . ., vy, are distinct except
that possible vy = v,,,. We also write the path (vg, P,v,,), where P = (vy,v9, ..., Upp_1).
The length of a path P, denoted by [(P), is the number of edges in P. Let u and v be two
vertices of G. The Hamming distance h(u,v) between u and v is the number of different

bits in the corresponding strings of both vertices.

An n-dimensional hypercube can be modeled as a graph @,,, with the vertex set V(Q,,)

and the edge set E(Q,). Each vertex u of @), can be distinctly labeled by binary n-bit



strings, t,_1u,_s...u1ug. There is an edge between two vertices if and only if their binary
labels differ in exactly one bit position. If u(7) is the neighbor vertex across dimension i

of the vertex u, then the edge between them is said to be on dimension .

We say that two paths Py = (ug,uq,...,ux_1) and Py = (vg,v1,...,vk_1) are indepen-
dent if ug = vo, ((Fy) = I(P1) and Py(i) # Pi(i) for every 1 < i < k — 1. The set of paths
{Po, P1,..., P} of G are mutually independent if any two different paths in the set are
independent. In this paper, we prove that there exist (n — 1) mutually independent paths

of length [ joining any vertices u and v such that h(u,v) +2 <1 <2"—1 and n > 4.

2.2 Basic properties of (),

This paper is aimed at embedding lineat artays, and all possible length of paths into the
hypercubes. We use induction to prove eur main tesults. Lemmas 1 contribute to the

induction basis for inductive proof of our main results.

Lemma 1 [4] The hypercube Q,, is bipameonnected if n > 2.



Chapter 3

Mutually independent linear array
embeddings

Lemma 2 Assume n > 3. Let x be any node of Q, and u and v be any two nodes that
are different color as x of Q,. Then, there.exists a path of length | of Q, — {x} joining u

tov for h(u,v) <1 <2"—2 and lis_evem

Proof. We proof this lemma+by induction-on n.- It is easy to construct the path of
length h(u,v), and we claim to prove the length'is h(u,v) +2 <1 < 2% —2 and [ is even.
Since (Y3 is node transitive, we can assume that x = 000. All of the paths with n = 3 are

listed below:

chose u = 001, v = 010 h(u,v) =2
(001, 101,111,011, 010)

(001, 101, 100, 110, 111, 011, 010)
chose u = 001, v = 111 h(u,v) =2
(001,101, 100, 110, 111)

(001, 101, 100, 110, 010, 011, 111)

The lemma hold for n = 3 above list. As the inductive hypothesis, we assume that
the lemma is true for every integer n < k, for all & > 3. Let * = xp_125_2...7120,
U = Up_1Ug_2...U1Uy and v = Vg_1Vk_9...0109. Either x; = u; or z; = wu; will satisfy

for some i. Accordingly, Q; can be decomposed into two subcube QY | and Q) , by

bt



dimension ¢ and either u or v is in the same subcube as . Without loss of generality, we
may assume that v is in the same subcube as x and {u,z} € V(Q}_,). The proof of this

lemma is classified in three cases.

000 100

001 101

Figure 3.1: The Hypercube Q5.

Case 1. v € V(Q)_,). (see Fig. 3.2(a)).

By induction hypothesis, there exists a path of length [ of QY , joining u and v for
any h(u,v) +2 < 1 < 21 — 2 andsliis even. Suppose that 2¥~1 <[ < 2¥ — 2 and [ is
even. Let R be one of the longést path of- Q% —{z} joining v and v. Let (w,z) be
any edge on R. We can write R as (u, Rg,w, 2, R1,v). By definition, w® and 2 are
vertices in Qi_,. By Lemma 1, there ‘exists a path P in Q}_, joining w* and ™) for
1 <I(P) < 2! —1and I(P) is odd. Thus, (u, Ry,w,w™, P, zY 2 R, v) is a path of

length [ in @), connecting u and v.

Case 2. v € V(Q}_,). (see Fig. 3.2(b)).

Let 5™ be one neighbor of v such that y # u. Thus, h(u,y) = h(u,v). Suppose that
h(u,v)+2 <1 < 2%—2 for [ is even. By induction hypothesis, there exist a path R joining
u and y for any h(u,y) < I(R) < 2! —2and I(R) is even. Let [y =1 —I(R) — 1. Then [,
is odd and 1 < [; < 2*-!. By Lemma 1, there exists a path P of length [; in Q}_, joining

y1) and v. Thus, (u, R,y,y", P,v) is a path of length [ in @, joining v and v.

6
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Figure 3.2: Hlustration for the Lemma 2.

Lemma 3 Let x and y be any two nodes from different partite set of Q4, and let u and
v be any two vertices from different partire setof Qs — {x,y}. Then, there exists a path

P of Q. —A{z,y} joining v and v suchthat h(u,v) < [(P) < 13 and [(P) is odd.

Proof. Since ()4 is node transitive; we:can-assume.that z = 0000. Moreover, we suppose
that y = 0001 or 0111 such that the distance between z and y is either 1 or 3. @4 can
be decomposed into two subcubes QY and Q1 by dimension 0 or 3 such that x and y are
in the same subcase. Without loss of generality, we may assume that x,y € V(Q9). The

proof of this lemma is classified in two cases.

Case 1. y=0001.

There exists a hamiltonian cycle C' = (0100,0101,0111,0011,0010,0110,0100) of Q5 —
{z,y}. We can write the cycle C' as (ag, a1, as, as, a4, as, ap). In the other hand, there exist

a path of length 5 joining a; and a; of Q3 — {x,y} if (a;, a;) is lying on C for i # j. The



proof of this situation is classified in three cases.

0000 1010

0001 1011

0011 1001

Figure 3.3: The Hypercube Q,.

Subcase L.1. u,v € V(Q_,).

(a) h(u,v) = 1. Suppose that (u,v) is Jying on-C. By definition, u" and v(") are
vertices in Q} and u!) is adjacent to W Suppose-that | = 3. We can construct P as
(u,u™, v v). By above discuss, there exists one path of length 5 joining any edge that
on the C. Suppose that 7 < [ < 13 and [ is odd. There exist one path R of length 5
joining u and v. Let (w, z) be any edge on R and we can write R as (u, Ro,w, z, Ry, v).
By definition, (w™, (") is in Q}. By Lemma 1, there exist a path S of length [; joining
w® and 2V of Q) for any 1 <I; < 7 and [y is odd. Thus, (u, Ry, w,w®, S, 21 2 R v)

is one path of length [ joining u and v.

Suppose that (u,v) is not lying on C. In this situation, we only discuss one case
about (u,v) = (0110,0111). We can find a path of length 3 as (ag,aq,as,as) like

(0110,0100,0101,0111). By definition, agl) and agl) are in the Q. By Lemma 1, there



exist a path S of length [, joining agl) and agl) of Qé forany 1 <l; < 7and [y is odd. Thus,
u,al,agl), S, agl),ag,v is a path of length [ joining u and v for 5 < [ < 11 and [ is odd.
Assume that [ = 13. P = (0110,0100,0101, 1101, 1100, 1000, 1001, 1011, 1111, 1110, 1010,

0010,0011,0111) is the path of length [ joining v and v.

(b) h(u,v) = 3. In this situation, we only discuss one case about (u,v) = (0100, 0101).
There exists a path R of length 5 joining v and v of Q3 — {z,y} as R = (0100,0101,0111,
0110,0010,0011). Let w be R(4) on R. We can write the path R as (u, Ry, w,v). By
definition, w™ v are both in Q3. By Lemma 1, there exist a path S of length I, joining
w® and vV of Q) for any 1 <1, <7 and [y is odd. Thus, (u, Ry, w,w™, S v v) is the

path of length [ joining v and v for any 7 <[ < 13.

Subcase 1.2. u € V(Q)_,) and n&€V (@}, or u € V(Q;_;) and v € V(Q)_,).

Without loss of generality, we assume that.w € VA(Q9 ) and v € V(Qi_,).

(a) h(u,v) = 1. Let w be themneighborofwfor w € V(QY) and w # {z,y} and (u,w)
is lying on C. In addition, let z be the'neighbor of v for z € V(Q9) and z is adjacent to w.
By Lemma 1, there exist a path S of length /; joining z and v of @} for any 1 < [; < 7 and
l1 is odd. Therefor, (u,w, z, S,v) is the path of length [ joining u and v for any 3 <[ <9
and [ is odd. Suppose that 11 <[ < 13 and [ is odd. By above discuss, there exists a
path R of length 5 joining v and w of Q% — {x,y}. Thus, (u, R,w, z,S,v) is the path of

length [ joining u and v.

(b) h(u,v) = 3. The same case (a). Let w be the neighbor of u for w € V(Q%) and
w # {z,y} and (u,w) is lying on C. In addition, let z be the neighbor of v for z € V(Q9)

and 2(® = w. This proof is similar to that of above (a) and hence the detailed proof is



omitted.

Subcase 1.3. u,v € V(QL_,). In this situation, we only discuss one case about
(u,v) = (1110,1111). By Lemma 1, there exist a path S of length [; joining u and v of
Q3 for any 3 <[; < 7 and [y is odd. Let w be the node S(l; —1) on S. The path S can be

©)is in QY. It is easy to check that w® is adjacent

wrote as (u, S, w, v). By definition, w
to v and (w®,v®) is lying on C. By above discuss, there exist a path R of length 5
joining w® and v®. Thus, (u, Sp, w,w®, R, v(® v) is the path of length [ joining u and

V.

Case II. y=0111.

There exists a hamiltonian cycle C' =0100,0101,0001,0011,0010,0110,0100) of Q9 —
{z,y}. We can write the cycle C' a§ {ao, a{slsyds, agyas, ag). In the other hand, there exist
a path of length 5 joining a; and a; of @ —{@,y} 1f:(a;, a;) is lying on C for i # j. The

proof of this case is similar to than Case [ and hence the detailed proof is omitted.

Lemma 4 Assume n = 3,4. Let {e; | e; = (w;,b;) € E(Q,),b; is black node and w;
is white node, 1 < i < n — 1} be any n-1 disjoint edges in Q,. Then, there exist n-1

independent paths Py, ..., P,_1 of length | in Q, joining w; and b; for 1 <[ < 2" — 1.

Proof. It is easy to construct the path of length 1, and the path of length 3 <1 <7

such that [ is even are listed below:

10



chose (000, 001) and (101, 100)

=3

(000, 010, 011, 001)
(101, 111, 110, 100)

=5

(000, 010,110,111, 011, 001)
(101,111, 011, 010, 110, 100)

=17

(000, 010, 110, 100, 101, 111, 011, 011)
(101,111,011, 001, 000, 010, 110, 100)

chose (000, 001) and (110, 111)

1=3

(000, 010, 011, 001)
(110,010,101, 111)

=5

(000,010,110, 111,011, 001)

(110, 100, 000, 001, 101, 111)

1=7

(000, 010, 110, 100, 101, 111,011, 001)
(110, 100, 000, 010, 011, 001, 101, 111)

chose (000, 001) and (110, 100)

1=3

(000,010, 011, 001)

(110, 111, 101, 100)

l=5

(000,010, 110,111, 011, 001)
(110,111,011, 001, 101, 100)

=7
(000,010, 110, 100, 101, 111, 011, 001)
(110,111, 101, 001, 011, 010, 000, 100)

chose (000, 001) and (101,111)

1=3

(000, 010, 011, 001)
(101,100, 110, 111)

=5

(000, 010, 110,111,011, 001)

(101, 100, 000, 010, 110, 111)

=7

(000, 010, 110, 100, 101, 111, 011, 001)
(101, 100, 000, 010,011, 001, 101, 111)

By above list, the lemma holdsfor n = 3.

Suppose that n = 4. There are 4 dimensions in @4, so Q4 can be decomposed into Q9
and @} two subcubes by dimension j such-that e;.are not cross edges for all 1 < i < 3.

Then, the number of the black nodes i$ equalito the white nodes in Q%, i = 0, 1. Therefor,

the proof is divided into two major cases.

Case 1. Not all of the disjoint edges are in the same subcube.

Without loss of generality, we may assume that e;,eo € E(Q9) and e3 € E(QL).
Assume that ¢ = 1,2. Suppose that 1 <[ <7 and [ is odd. By above discuss, there exist
2 mutually independent path of length [ joining w; and b;. By Lemma 1, there exists
one path of length [ joining w3 and b3 of Q3. Suppose that 9 < [ < 13 and [ is odd.

Let R; be the longest paths of QY joining w; and b; and R3 be the longest path of Q3

11




joining ws and bs. Obviously, I(Ry) = I(R2) = I(R3) = 7. In addition, let z; be the node
R;(6) and we can write R; as (wj, R),z;,b;) for all 1 < j < 3. By definition, xz(»l) and
bz(-l) are the vertices in 3. By above discuss, there exist 2 mutually independent path S;
of length [; joining wgl) and bgl) for any 1 < [y < 7. By definition, :Eéo) and béo) are the
vertices in 3. By Lemma 1, there exist one path S3 of length [; joining wéo) and béo)

for any 1 <1y < 7. Thus, (w;, R?,xi,xgl),Si,bgl), b;) and (ws, Rg,xg,xgo), Sg,b§0)7b3> are 3

mutually independent path of length [ joining w; and b; forany 1 <[/ <13and 1 <j < 3.

Case 2. All of the disjoint edges are in the same subcube.

Without loss of generality, we may assume that ej,eq,e3 € E(QY). In this situation, we
only discuss one case about any two edges are lying on different dimensions. Since ()4 is
vertex transitive, we can assume thatey'=1(0003001), e; = (100, 110) and e3 = (111,011).
Suppose that 3 < | < 7 and ks bdd.- With above discuss, there exist 2 mutually
independent path of length [ joining w; and ;. In addition, , wél) and bgl) are the vertices
in Q1. By Lemma 1, there exists:ohe path"R of.length [ — 2 joining wél) and bgl) of
QX. Thus, (wg,wgl),R, bél),b?)) is the path of length [ joining ws and b3. Suppose that

9 <[ < 15. The paths are listed below:

1=9

(0000, 0010, 0110, 0100, 0101, 0111, 1111, 1011, 0011, 0011)

(0101, 0111, 0011, 0001, 0000, 0010, 1010, 1110, 0110, 0100)

(0011, 1011, 1010, 1110, 1100, 1000, 1001, 1101, 1111,0111)

=11

(0000, 0010, 0110, 0100, 0101, 0111, 1111, 1011, 1001, 1011, 0011, 0011)

(0101, 0111, 0011, 0001, 0000, 0010, 1010, 1000, 1100, 1110, 0110, 0100)

(0011, 1011, 1010, 1110, 1100, 1000, 1001, 0001, 0101, 1101, 1111, 0111)

1 =13

(0000, 0010, 0110, 0100, 0101, 0111, 1111, 1110, 1100, 1011, 1001, 1011, 0011, 0011)

(0101, 0111, 0011, 0001, 0000, 0010, 1010, 1000, 1001, 1101, 1100, 1110, 0110, 0100)

(0011, 1011, 1010, 1110, 1100, 1000, 1001, 0001, 0101, 0000, 0100, 1101, 1111, 0111)

=15

(0000, 0010, 0110, 0100,0101, 0111, 1111, 1110, 1010, 1000, 1100, 1011, 1001, 1011, 0011, 0011)
(0101,0111, 0011, 0001, 0000, 0010, 1010, 1000, 1001, 1011, 1111, 1101, 1100, 1110, 0110, 0100)
(0011, 1011, 1010, 1110, 1100, 1000, 1001, 0001, 0101, 0000, 0010, 0110, 0100, 1101, 1111, 0111)

12



Lemma 5 Assumen > 4. Let x and y be any two nodes from different partite set of Q.,,
and let u and v be any two vertices from different partite set of Q, — {x,y}. Then, there
exists a path P joining u and v of @, — {x,y} for h(u,v) < I(P) < 2" — 3 and I(P) is

odd.

Proof. We prove this lemma by induction on n. By Lemma 3, we observe that the
lemma holds for n = 4. For k > 4, we assume that the lemma is true for every integer
n < k. Let v = xp_xp_9..7129 and ¥y = Yr_1Yr_2..-¥1Yo. Hence x; = y; for some 1.
Accordingly, @) can be decomposed into two subcube Q% | and @Q; _; by dimension i
and = and y are in the same subcube. Without loss of generality, we may assume that

z,y € V(QY_,). Therefor, the proof is divided into three major cases.

IS u v u(o
Z(1) R S R
(1) W w ) w
®x ®x
Oy Oy
() (c)

Figure 3.4: Ilustration for the Lemma 5.

Case 1. u,v € V(QY_,). By inductive hypothesis, there exists a path of length [,
connecting u and v of Qy, — {x,y} for any h(u,v) < ly < 2871 — 3 such that Iy is odd.
Suppose that 2¥71 —1 <[ < 2 — 3 with [ is odd. Let R be one of the longest path of

9 | joining u and v. Since [(R) = 2871 —3 > 5 if k > 4, there exists an edge (w, 2) in
R. We can write the path R as (u, Ry, w, z, R1,v). In subcube Qi ,, let w™ and 2™ be

the neighbors of w and z. By Lemma 1, we can find a path S joining w™® and z() for

13



1 <1(S) < 2F' — 1 with I(S) is odd. Therefor, P = (u, Ry, w,w™, S, 2V 2 Ry v) is a

path of length [ joining u and v of Q) — {z,y}.

Case 2. w € V(QY ) and v € V(Q}_,) or u € V(Q}_,) and v € V(QY_,). Without
loss of generality, we may assume that v € V(Q}_,) and v € V(QL ;). Let w» be
one neighbor of v and w" € V(Q}_,). By definition, w is the neighbor of w() and
w € V(QY_,). Obviously, h(u, w) = h(w™?,v) = 1. By inductive hypothesis, there exists
a path R of length Iy connecting u and w of Q — {wz,y} for 1 < [y < 2¥1 — 3 and I,
is odd. Let [y =1 —1Ilp — 1. By Lemma 1, there exists a path S of length [; joining
w® and v. Thus, P = (u, R,w,w", S, v) is a path joining v and v of Qy — {x,y} for

h(u,v) <I(P) < 2% —3.

Case 3. u,v € V(Q}_,). In_this subcase discussion, we assume that at most one
vertex in {u,v} is adjacent to {&,y}. Otherwise, @) can be decomposed into another
two subcubes by another dimension g for z and y in' the same subcube and the proof is
the same as Case 1. Without loss of generality, . we may assume that v is not adjacent
to {z,y}. By Lemma 1, there exists a path of length [ joining v and v of @} ; for any
h(u,v) <1 < 281—1suchthat [ is odd. Suppose that 28714+1 < < 2¥—3 and [ is odd. By

9 is vertex in Q) _,. Let w be any vertex that are different color as u(® of Q9_,

definition, uf
and w # {z,y}. Let wM) be the neighbor of w and w» € V(Q4 ). By Lemma 2, there
exist a path S joining w® and v of Qi _, —{u} for any h(w™, v) <1(S) < 2¥1—2and I(S)
is even. Let [y = [—1(S)—2. Then lyisodd and 1 < [y < 2¥-1—3. By induction hypothesis,
there exists a path R of length Iy joining u® and w. Thus, P = (u,u?, R, w,w™, S, v)

is a path joining u and v of Qy, — {x,y} for h(u,v) <I(P) < 2% — 3.
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Lemma 6 Assumen > 3. Let {e; | e; = (w;,b;) € E(Q,),b; is black node and w; is white
node, 1 <i <n— 1} be any n-1 disjoint edges in Q. Then, there exist n-1 independent

paths Py, ..., P,_1 of length | in Q, joining w; and b; for 1 <[ < 2™ —1.

Proof. We prove this lemma by induction on n. By Lemma 4, we observe that the
lemma holds for n = 3,4. As the inductive hypothesis, we assume that the lemma is true
for 3 < k < n. There are k dimensions in Qy, so @}, can be decomposed into QY _, and
Q3 two subcubes by dimension j such that e; are not cross edges for all 1 <i <k — 1.
Then the number of the black nodes is equal to the white nodes in Q% _,, i = 1,2. The

proof is divided into two major cases.

Case 1. Not all of the disjoiut edges are: in the same subcube.

Without loss of generality, we may assume.that e; € F(Q)_,) and e; € E(Q;_,) for
1<i<j<k—1and|e|+|ej| =k=1. Supposethat 1 <[ < 2k=1 _ 1 and [ is odd. By
above discuss, there exist 4 mutually independent path of length [ of QY_, joining w; and
b; and j mutually independent path of length [ of Q}_;. joining w; and b;. Suppose that
271 +1 <1< 2" —1and lis odd. Let R; be the longest paths of QY _; joining w; and b;
and R; be the longest path of Q}_, joining w; and b;. Obviously, I(R;) = I(R;) = 2*"1—1.
In addition, let z; be the node R;(2*"! — 2) and we can write R; as (w;, RY, z;,b;). By
definition, :1:1(-1) and bgl) are the vertices in Q}_,. By above discuss, there exist 7 mutually
independent path S; of length [; joining wgl) and b,gl) for any 1 < I, < 28! — 1. The
same as above proof. Let z; be the node R;(2"! — 2) on R; and we can write R; as

(wj, R?,xj,bj>. By definition, asgp) and b§0) are the vertices in QY _,. By above discuss,
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there exist j mutually independent path S; of length [; joining w ) and b( ) for any
1 <1l <21 —1. Thus, (wi,Rg,Jzi,xi ,Si,bil),bi> and (w;, R}, x5, 2; ,S],bgo),b> are

k — 1 mutually independent path of length [ for any 1 <[ < 2F — 1.

Case 2. All of the disjoint edges are in the same subcube.

Without loss of generality, we may assume that all edges are in QY_,. For convenience,
we assume that 1 <1¢ < k—2. It is trivial to construct the path of length 1 connecting w;
and b;. Suppose that 3 <[ < 2¥~! — 1. By induction hypothesis, there exist k — 2 paths
P; of length [ joining w; and b; in QY ;. By definition, w,(flzl and bl(i)l are the neighbors
of wy_; and by_; for 'w,(:_)1 € Q}_, and bg_)l € Qi_,. By Lemma 1, we can find a path R
with length [ — 2 joining w'”, and 6", Thus, (wy_1,w\"”,, R,b", v;_,) is the path Py_;

of length [ in Q) joining wy_1 and by=j!

Suppose that 287! + 1 < [ < 2F =1 "Assume that 2F-! — 3 < [, < 2F-1 — 1. With
above discussion, let R; be k —2 mutually independent paths with length [y joining w;
and b;. Let z; and y; be the nodes Ri(lyp — 2) and"R;(lp — 1) on R;. We can write R; as
(wi, RY, i, y;, b;). Let x ) and yZ ) be the neighbors of x; and y; in QL ;. By Lemma 6,
there exist k — 2 path ; joining z\" and y{" in Q1_, for 3 < I(S;) < 28! — 1. Thus,
P, = (w;, R, z;,x Z ,Sl,yl ,y,,b,) are k — 2 paths with length [ in Qj, joining w; and b;.

By definition, w,(j_)l and bg_)l are the neighbors of wy_; and by_; for w,(:_)1 € Q}_, and

b,(:_)l € Qk_l. Let z be one neighbor of by_; and z # y;. Otherwise, b,_; is adjacent to y;
and we can construct P; as (w;, RY, x;, xz(-l), S;, yi(l), Yi, bg—1) such that one neighbor of b; is

not equal all y; for j € [1,k —2]. In addition, let a be any node that are different color as

wy_1 and a # r;. By definition, 2 and aV) are the vertices in V(Q}_,) and 2 # ygl)
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(1)

and a() # IEI). By Lemma 5, there exist a path Rj,_; with length {; — 2 connecting w, ’,

and a® of Q1_, — {z®,b" }. By Lemma 3, there exist a path S,_; with length |S;| — 2
joining a and z. Thus, P, = (wy_1, w,(cl_)l, Ri_1,aM,a, Sk 1, z, 21, b,(:_)l, br_1) is the k—1

mutually independent path with length [ joining wy_; and bg_1.

Lemma 7 Assume that n > 3. Let v be any vertex of Q),,. There exist n-1 independent
path Py, ..., P, 1 of length | in Q, from v to v; such that v; is the neighbor of v for

1<i<n—1land1 <[ <2"—1.

Proof. We prove this lemma by induction on n. Since ()3 is node transitive, we can
assume that v = 000 and v; = 001 andts'=2010. The required path of n = 3 are listed

below:

chose v = 000,03y = 001 vs = 010
= 1

(000, 001)

(000,.010)

=8

(0005 106, 101, 001)

(000, 001, 011;-010)

l=5

(000, 100, 110, 111, 101, 001)

(000, 001, 101, 100, 110, 010)

=7

(000, 100, 110,010,011, 111, 101, 001)
(000,001,011, 111,101, 100, 110, 010)

The lemma hold for n = 3 above list. As the inductive hypothesis, we assume that

the lemma is true for 3 < k < n.

Without loss of generality, we may assume the subcube is QY ;. The proof of this

subcase is classified in three parts.

For convenience, we assume that 1 < i < k — 2. It is trivial to construct the path of

length 1 connecting v and v;. Suppose that 3 <[ < 2¥~! — 1. By induction hypothesis,
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Figure 3.5: Illustration for the Lemma 7.

1)

there exist k — 2 paths P; of length [ joining v and v; in QY_,. By definition, v(*) and v,i_l

;(gl,)l € @Q;_,. By Lemma 1, we can

are the neighbors of v and v,_; for'w® € Q1 “and v
find a path R with length [ — 2joining ™) and v,(cl_)l. Thus, (v,vW| R, v,iljl, v_1) is the

path P._; of length [ in Q) joining vand u,_;.

Suppose that 271 41 < [ < 2F &0 Assume that 2871 — 3 < [ < 2F-1 — 1. With
above discussion, let R; be k — 2 mutually independent paths with length [, joining v
and v;. Let x; and y; be the nodes R;(ly — 2) and R;(ly — 1) on R;. We can write R; as
(v, R, z;, yi,v;). Let :I?Z(l) and ygl) be the neighbors of z; and y; in Q. ;. By Lemma 6,
there exist k — 2 path S; joining 2" and 3" in QL_, for 3 < I(S;) < 2¢~! — 1. Thus,
P, = (v, R, x;, xl(l), Si, yfl), Yi, v;) are k — 2 paths with length [ in @) joining v and v;. By
definition, v® and v, are the neighbors of v and vy_; for v € QL_, and v{", € QL_,.
Let z be one neighbor of v,_; and z # y;. Otherwise, vy_; is adjacent to y; and we can

construct P; as (v, R?,xi,xgl),si,yi(l),yi,vk_1> such that one neighbor of v; is not equal
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all y; for j € [1,k — 2|. In addition, let @ be any node that are different color as vg_;
and a # x;. By definition, 2(!) and a™ are the vertices in V(Qi_,) and 211 # ygl) and
a) £ %(1)' By Lemma 5, there exist a path Rj,_; with length Iy — 2 connecting u(!) and
a® of QL_; — {z®, 4.} By Lemma 3, there exist a path Sj_;, with length |S;| — 2
joining @ and z. Thus, P, = (v,oW, R_1,aW, a, Sk,l,z,z(l),v,iljl,vk,1> is the k — 1

mutually independent path with length [ joining v and vy_;.

Theorem 1 Assumen > 4. Given any two vertices u, v in Q,, and the distance d(u,v) =
d. There exist n-1 mutually independent path Py, ..., P,_1 of length | joining u and v in

Qn forl=d+2,d+4,..,2" —1— [EL=],

Proof. We prove this lemma by induction on.n. The required path of n = 4 are listed

below:
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chose u = 0000, v = 0001, h(u,v) =1

(0000, 0100, 0101, 0001)

(0000, 0010, 0011, 0001)

(0000, 1000, 1001, 0001)

(0000, 0100, 0110,0111, 0101, 0001)

(0000, 0010, 1010, 1011, 0011, 0001)

(0000, 1000, 1100, 1101, 1001, 0001)

(0000, 0100, 0110, 0010, 0011,0111, 0101, 0001)

(0000, 0010, 1010, 1110, 1111, 1011, 1001, 0001)

(0000, 1000, 1001, 1011, 1010, 0010, 0011, 0001)

(0000, 0100, 0110, 0010, 1010, 1011, 0011, 0111, 0101, 0001)

(0000, 0010, 0011, 0111, 0110, 0100, 0101, 1101, 1001, 0001)

(0000, 1000, 1010, 1110, 1100, 1101, 1111, 1011, 0011, 0001)

(0000, 0100, 0110, 0010, 1010, 1110,1111,1011,0011, 0111, 0101, 0001)

(0000, 0010, 0011, 0111, 0110, 0100, 0101, 1101, 1100, 1000, 1001, 0001)

(0000, 1000, 1100, 1101,1111,0111, 0110, 1110, 1010, 1011, 0011, 0001)

(0000, 0100, 0101, 0111, 0011, 1011, 1010, 1000, 1100, 1101, 1001, 1011, 0011, 0001)

(0000, 0010, 0110, 0100, 0101, 0111, 0011, 1011, 1010, 1000, 1100, 1101, 1001, 0001)

(0000, 1000, 1010, 1011, 1001, 1101, 1100, 1110, 1111, 0111, 0110, 0100, 0101, 0001)

(0000, 0100, 0101, 0111, 0110, 0010, 1010, 1000, 1100, 1110, 1111, 1011, 1001, 1011, 0011, 0001)
(0000, 0010, 0110, 0100, 0101, 0111, 0011, 1011, 1010, 1000, 1100, 1110, 1111, 1101, 1001, 0001)
(0000, 1000, 1010, 1011, 1001, 1101, 1100, 1110,1111, 0111, 0011, 0010, 0110, 0100, 0101, 0001)
chose u = 0000, v = 0111, h(u,v) =3

(0000, 0100, 0110, 0010, 0011, 0111)

(0000, 0010, 0011, 0001, 0101, 0111)

(0000, 1000, 1010, 1011, 1111, 0111)

(0000, 0100, 0110, 0010, 0011, 0001, 0101, O111)

(0000, 0010, 0011, 0001, 0101, 0100, 0110, 0111)

(0000, 1000, 1100, 1110, 1010, 1011, 1111, 0111)

(0000, 0100, 0110, 0010, 0011, 0001, 1001, 1011, 0011, 0111)

(0000, 0010, 0011, 0001, 0101, 0100, 1100, 1110, 0110, 0111)

(0000, 1000, 1010, 1110, 0110, 0010, 0011, 1011, 1111,0111)

(0000, 0100, 0110, 0010, 0011, 0001, 1001, 1000, 1100, 1101, 1111, 0111)

(0000, 0010, 0011, 0001, 0101, 0100, 1100, 1101, 1111, 1110, 0110, 0111)

(0000, 1000, 1010, 1110, 0110, 0010, 0011, 1011, 1001, 0001, 0101, 0111)

(0000, 0001, 0101, 0100, 0110, 0010, 0011, 1011, 1001, 1000, 1010, 1110, 1111, 0111)

(0000, 0010, 0011, 0001, 0101, 1101, 1001, 1000, 1010, 1110, 1100, 0100, 0110, 0111)

(0000, 1000, 1001, 1011, 1010, 1110, 1100, 0100, 0110, 0010, 0011, 0001, 0101, 0111)

(0000, 0001, 0101, 0100, 0110, 0010, 0011, 1011, 1001, 1101, 1100, 1000, 1010, 1110, 1111, 0111)
(0000, 0010, 0011, 0001, 0101, 1101, 1001, 1000, 1010, 1011, 1111, 1110, 1100, 0100, 0110, 0111)
(0000, 1000, 1001, 1011, 1010, 1110, 1115 11011100, 0100, 0110, 0010, 0011, 0001, 0101, 0111)
chose u = 0000, v = 0110, h(u,p) =2 |
(0000, 0001, 0011, 0010, 0110)

(0000, 0010, 1010, 1110, 0110y

(0000, 0100, 0101, 0111, 0110)

(0000, 0001, 0011, 0111, 0101,0100; 0110)

(0000, 0010, 1010, 1011, 1141, 1110, 0110)

(0000, 0100, 0101, 0001, 00%1, 0111, 0110)

(0000, 0001, 0011, 0111, 0101, 1101, 1100;0%00, 0110)

(0000, 0010, 1010, 1011, 1111, 1011}:1030, 1110, 0110)

(0000, 0100, 0101, 0001, 0011, 1011,1111, 0111,0110)

(0000, 0001, 0011, 0111, 0101,101, 1601, 1000, 1100, 01005 0110)

(0000, 0010, 1010, 1011, 1111, ¥11051100, 0100, 0101,0111, 0110)

(0000, 0100, 0101, 0001, 0011, 0111,1131,1011,1010,1110,0110)

(0000, 0001, 0011, 0111, 0101, 1101, 1001, 1000, 1010, 1011, 1111, 1110, 0110)

(0000, 0010, 1010, 1011, 1111, 0111, 0011, 0001, 1001, 1101, 1100, 0100, 0110)

(0000, 1000, 1001, 1101, 1100, 1110, 1010, 1011, 1111, 0111, 0011, 0010, 00110)

(0000, 0001, 0011, 0111, 0101, 0100, 1100, 1000, 1001, 1101, 1111, 1011, 1010, 0010, 0110)
(0000, 0010, 1010, 1110, 1100, 1000, 1001, 1101, 1111, 1011, 0011, 0111, 0101, 0100, 0110)
(0000, 1000, 1001, 1011, 1010, 0010, 0011, 0001, 0101, 0100, 1100,1101,1111,1110,0110)
chose u = 0000, v = 1111, h(u,v) =4

(0000, 0001, 0011, 0010,0110,0111, 1111)

(0000, 0010, 0110, 0100, 0101, 1101, 1111)

(0000, 1000, 1100, 1101, 1001, 1011, 1111)

(0000, 0001, 0011, 0010, 0110, 0111, 0101, 1101, 1111)

(0000, 0010, 0110, 0111, 0101, 1101, 1100, 1110, 11111)

(0000, 1000, 1100, 1101, 1001, 0001, 0101, 0111,1111)

(0000, 0001, 0011, 0111, 0101, 0100, 0110, 0010, 1010, 1011, 1111)

(0000, 0010, 0110, 0100, 1100, 1101, 1001, 0001, 0101, 0111, 1111)

(0000, 1000, 1100, 1101, 1001, 0001, 0101, 0111,0110, 1110, 1111)

(0000, 0001, 0011, 0111, 0101, 0100, 0110, 0010, 1010, 1000, 1001, 1011, 1111)

(0000, 0010, 0110, 0100, 1100, 1000, 1010, 1011, 1001, 0001, 0101, 0111, 1111)

(0000, 1000, 1100, 1101, 1001, 0001, 0011, 0111,0101, 0100, 0110,1110,1111)

(0000, 0001, 0011, 0111, 0101, 0100, 0110, 0010, 1010, 1110, 1100, 1000, 1001, 1101, 1111)
(0000, 0010, 0110, 0100, 1100, 1110, 1010, 1000, 1001, 1101, 0101, 0001, 0011, 0111, 1111)
(0000, 0100, 0101, 0001, 0011, 1011, 1001, 1101, 1100, 1000, 1010, 0010, 0110, 1110, 1111)

The lemma holds for n = 4 above list. As the inductive hypothesis, we assume that

the lemma is true for every integer n < k, for all k£ > 4. Therefor, the proof is divided
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into two major cases.

Case 1. © and v are the same colored vertices.

In this case, let u = ug_1up_2...u1up and v = vy_1Vg_s...v109. Hence u; # v; for some
i. Accordingly, Q; can be decomposed into two subcube QY _; and @}, by dimension i.
Therefor, v and v are in the different subcube. Without loss of generality, we may assume

that u € V(Q}_;) and v € V(Q;._,).

For convenience, we assume that 1 <i < k — 2.

Figure 3.6: Tustration for the Case L.

Suppose that h(u,v) +2 < 1 < 257! and [ is even. Let v(?) be the neighbor of v and

© e V(QY_,). Thus, h(u,v®) = h(u,v) — 1. Assume that h(u,v@) +2 <[y <281 -1
for [y is odd. By induction hypothesis, there are k£ — 2 mutually independent path R; of
length [y connecting u and v(?). Let w; be the nodes R;(ly—1) on R;. We can write the path
R; as (u, RY, w;, v). Let w ) be the neighbors of w; for w ) e V(Q}_,). Obviously, w!
are the neighbors of v. Therefor, P; = (u, R?, w;, w (1), v) are k — 2 mutually independent
path of length [ joining v and v. By definition, u*) is the neighbor of u and uY) € V(Q}_,).

Let wk , be the neighbor of v and wk | € V(Q}_,) and w,€ | F w Obviously, u® and
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w,(cljl are the same colored vertices. By Lemma 2, there is a path Rj;_; with length [ — 2

of Q1_, — {v} joining u® and w",. Thus, Po_y = (u,u®, Re_y,w'"”,v) is the k — 1

mutually independent path of length [ joining u and v.

W (1)1 w
aseaaasaas

(1)
i

Figure 3.7: Hlustration for the Case I.

Suppose that 2871 +2 < [ < 2%%92 and.is.even: By above discussion, there exist k& — 2
path R? of length 28~ — 2 joining @and w; in'@QY} ", and one path Rj_; of length 281 —2
joining u") and w,(cl_)l in Q; ,. By Lemma 7;1there exist k — 2 mutually independent path
S; in Qi _, from v to wgl) for 3 <U(Sp)-<28°Y— 1. Thus, P, = (u, R?,wi,wgl),si,w
are k — 2 mutually independent path with length [ joining v and v. Let x be any vertex
that are different color as u of Q) , and = # v(®. By Lemma 5, there exists a path
Si_1 joining wy_; and v of QY — {u,z} for 1 < I(S)_;) < 2k=1 _ 3. Therefore,
Py = {(u, u(l),Rk,l,w,(gl_)l,wk,l,Sk,l,v(O),'U) is the k& — 1 mutually independent path

with length [ joining v and v.

Case II. v and v are different colored vertices.

For convenience, we assume that 1 <1 < k — 2.
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Subcase II-1. h(u,v) < k.

Figure 3.8: Illustration for the Case II-1.

In this case, let u = up_1ug_s...u1ug and v = vg_1Vk_o...v10y. Hence u; = v; for some
i. Accordingly, @ can be decomposed into two'subcube Q9 | and @}, by dimension i.
Therefor, u and v are in the same subcube. Without loss of generality, we may assume

that u and v are both in Q9_,.

Suppose that h(u,v) +2 <1 <2821 — 1 and ["is odd. By inductive hypothesis, there
are k — 2 mutually independent paths of length [ joining v and v in QY_,. By definition,
uM) and v are the neighbors of u and v for ¥, v € V(Qi ). By Lemma 1, we can
find a path R with length [ — 2 joining «Y and v in Qi ,. Thus, (u,u®, R, oM v) is

the path P,_; of length [ in )% joining v and v.

Suppose that 287141 < [ < 2% — 3 for [ is odd. With above discussion, let R; be k — 2
mutually independent paths of length [y joining u and v in QY , for any ly = 2871 —1. Let
z; and y; be the nodes R;(2) and R;(3) on R;. We can write R; as (u, R;(1), z;, y;, RY, v).

By definition, xl(»l) and ygl) are the neighbors of z; and y; for {:cgl),yi(l)} e V(Qi_,).

1
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By Lemma 6, there exist & — 2 independent path S; joining w ) and y in Q;_, for

1 < I(S;) <21 —3. Thus, P, = (u, R;(1), 24, 1, Vg 4 ,yZ,RO v) is k — 2 mutually

7

independent paths of length [ in )} joining v and v.

By definition, «(") and v™") are neighbors of u and v for u! ) € V(Q4i_,). By Lemma
1, there exists a path R;_; of length |R;| —2 joining u™™) and v»). Let :c(l_)l and y,gl_)l be the
nodes R;_1(1) and R;_1(2) on R_;. We can write R_; as (u(!), x,(c)l,yk LRy ).
By definition, x;_; and y;_; are vertices in QY ;. By Lemma 5, there exists a path
Sk_1 joining zx_; and yx_1 of Q% — {u,v} for 1 < I(Sk_1) < 2¥1 —2. Thus, P, =

)

(u,u ,x,(gl_)l,xk_l,Rk_l,yk_l,y,gljl, RY ;oW v) is the k — 1 mutually independent path

with length [ joining v and v.

Subcase II-2. h(u,v) = k. We may chodse a dimension i with the same way of the
proof of Case (I) to split Qy, into two subcubes Q) | ‘and Q;_,. Without loss of generality,

we assume that v € V(QY_|) and v € V(Qy ).

Figure 3.9: Illustration for the Case II-2.
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Suppose that h(u,v) +2 <1 < 2¥1 —1 and [ is odd. Let v(® be the neighbor of v and

© e V(QY_,). Assume that h(u,v®) +2 < Iy < 2871 — 2 for [ is even. By induction
hypothesis, there are £ — 2 mutually independent path R; of length [, connecting u and
v©®. Let w; be the nodes R;(lp — 1) on R;. We can write the path R; as (u, RY, w;, v(®).
Let w ) be the neighbors of w; for w ) e V(Q4i_,). Obviously, wgl) are the neighbors of

v. Therefor, P; = (u, RY, w;, w (1),v> are k — 2 mutually independent path with length [

U is the neighbor of u and u® € V(QL_,). Let w”,

be the neighbor of v and w,(gl_)l € V(Qi_,) and w,(:_)1 # wl(l). Obviously, u™) and w,(:_)1 are

different colored vertices. Let z be any vertex that are different color as v and v # w,(gl_)l.

joining v and v. By definition, u(

By Lemma 5, there is a path R;_; with length Iy — 1 of Q}_, — {2,v} joining u™" and
w,(fl_)l. Thus, Pr_; = (u,u), Ry 1,11)/,(€ )17 ) is the & — 1 mutually independent path of

length [ joining u and v.

u
. O u(O)
X
S Ry
(1) (1)
w 1 w i W w (D
assaaasaan k-1
v o, -
(a) (b)

Figure 3.10: Illustration for the Case II-2.

Suppose that 2871 +1 <[ < 2¥ —3 and [ is odd. By above discussion, there exist k — 2
path RY of length 2¥=! — 3 joining u and w; in QY _, and one path Rj_; of length 2¥~1 —3

joining u(") and w,(gljl in Q;_,. By Lemma 7, there exist k — 2 mutually independent path
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S; in Qi _, from v to w for 3 < I(S;) < 2! —1. Thus, P, = (u,R?,wi,wgl),Si,w

are k — 2 mutually independent path with length [ joining v and v. Let x be any vertex
that are different color as u of QY ; and z # v°. By Lemma 5, there exists a path
Sk_1 joining wy_; and v° of QY ; — {u,z} for 1 < I(S,_;) < 281 — 3. Therefore,

0)

P, = (u,u(l),Rk_l,w,gljl,wk_l,v( ,v) is the k£ — 1 mutually independent path with

length [ joining v and v.
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Chapter 4

conclusion

Since every component in the interconnection network may have different reliability, it
is important to consider properties of a network with mutually independent linear array
embeddings. In this paper, the n-dimensional hypercube with (n — 1) mutually indepen-
dent path of any length [ joining any vertices u and v for h(u,v) <1< 2™ —1. It is also
impossible to make n mutually independent.paths and cycles except one case that u is

adjacent to v.
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