
國 立 交 通 大 學 
 

資訊科學系 
 

碩 士 論 文 
 
 
 
 
 

一個以規則為基礎之非集中式資料 

共享安全機制 

 
A Rule-Based, Decentralized Approach to  

Secure Information Sharing 
 
 
 
 

 

 

 

 

 

研 究 生：徐嘉宏 

指導教授：陳俊穎  博士 

 

中 華 民 國  九 十 四  年 七 月 



一個以規則為基礎之非集中式資料共享安全機制 

 

A Rule-Based, Decentralized Approach to  
Secure Information Sharing 

 
 
 
 

研 究 生：徐嘉宏          Student：Cha-Hun Hsu 

指導教授：陳俊穎          Advisor：Jing-Ying Chen 

 
 
 

國 立 交 通 大 學 
資 訊 科 學 系 
碩 士 論 文 

 
 

A Thesis 

Submitted to Institute of Computer and Information Science 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 
Computer and Information Science 

 
July 2005 

 
Hsinchu, Taiwan, Republic of China 

 
 
 
 
 

中華民國九十四年七月



一 個 以 規 則 為 基 礎 之 非 集 中 式 資 料 共 享 安 全 機 制 

學生：徐嘉宏        指導教授：陳俊穎博士 

國立交通大學資訊科學系 

摘要 

隨著網際網路的普及而成為大眾資訊交流的媒介，資訊共享的安全與隱

私權保護的課題益發重要。保護機制不完善的資料共享系統可能會導致機密

的資料洩漏。為了減低這樣的風險，已有許多不同資訊安全的機制與技術被

提出。而這些方法大多採用以標籤為基礎的存取控制機制。進一步地說，這

些安全機制為系統所管理的資料及使用者貼上適當的標籤，並根據這些標籤

來制定及執行不同的安全政策。然而，為了讓安全政策可以正確的運行，這

些方法需要複雜且冗長的管理。另一方面，大多數的方法主要是針對資料的

存取，而對於處理資料的工具本身並沒有進一步的控制。由於判定一個的工

具能否存取某筆資料取決於使用此工具的使用者，使得安全管理的正確性不

易控制。在本篇論文中，我們提出一個資料分享的模型，能提供一個有彈性

且非集中式的方法來控制資訊流動，而不須仰賴集中式的管理。此模型中，

每個使用者可以指定其個人的存取等級，並根據此存取等級對資料及工具貼

上標籤。並且，藉由非集中式的工具降級設定，每個使用者可以個別地增強

或減弱某工具所能存取的資料等級，進而達到更方便且安全的政策制定。最

後，為了減少對每筆資料貼上標籤的麻煩，我們的模型使用了一個以規則為

基礎的標籤機制來處理不同等級的資料。總結來說，我們的模型利用靈活的

政策管理，統合且改進了現存的模型，能作為未來網際網路資訊共享安全機

制的核心。 

 

   i 
  



A Rule-Based, Decentralized Approach to Secure Information Sharing 
student：Cha-Hun Hsu   Advisors：Dr. Jing-Ying Chen 

Department of Computer and Information Science 
National Chiao Tung University 

Abstract 

As the Internet becomes a ubiquitous environment where people with different 

background and purposes can share their information, information security and 

privacy have become an increasingly critical issue. With poor protection, informa-

tion systems may leak sensitive information to the open public. To reduce such 

risks, there have been many security mechanisms and technologies proposed and 

developed. Most of these approaches rely on a mixture of label-based access con-

trol and information flow mechanisms. Specifically, they enforce various security 

policies by attaching suitable labels to information as well as users and grant data 

access based on these labels. However, many labeling approaches often require 

complicated managerial efforts in order to set up and enforce security policies 

correctly. In addition, they focus primarily on labeling data without paying too 

much attention to sharing tools that process these data. As a result, whether a 

given tool can access a piece of data depends on who is invoking the tool, making 

correct security management more challenging. In this thesis, we propose an in-

formation sharing model that permits controlling information flow in a flexible, 

decentralized manner, where each user can specify his/her own access hierarchy 

instead of relying on centralized security management. Based on the access hier-

archy, each user can label both data and tools in a consistent manner, and can real-

ize data declassification by restricting or relaxing the access level of individual 

tools. Finally, to reduce the overhead associated with individual data labeling, we 

introduce a rule-based labeling mechanism to associate data with their access lev-

els correspondingly. In summary, we believe our model is a unification of and 

   ii 
  



improvement over existing access control mechanisms, and can contribute to se-

cure information sharing over the Internet. 

   iii 
  



致謝 

這篇論文的完成，我想要感謝的人很多很多。首先是要感謝實驗室的同學、學

弟、以及已經畢業的學長們。林建宏學長、郭訓宏學長、張舜禹學長、劉許吉學

長，在我的研究生涯中總是不吝給我指導與協助。和我有革命情感的同學們，詹

亦秋、林君翰、莊景棠、鄧嘉源，陪我一同度過充實研究生涯。 

    我也要感謝給我的口試委員曾文貴教授以及王伯堯研究員，在口試的時候給

我許多有用的看法以及建議，讓我的論文能夠更加完整。 

    此外，我要感謝我的爸爸、媽媽、哥哥，他們是我的精神支柱，總是在我背

後默默支持我，讓我有走完這兩年研究生涯的動力。我也要感謝我的女朋友淑

如，在我困頓落寞的時候，總是給我適時的鼓勵，讓我有勇氣與自信能夠完成這

篇論文。 

    最後，我想要感謝我的指導教授陳俊穎老師，在這兩年的日子總是耐心的給

我勉勵與指導，除了學習到的專業知識，我想我在研究生涯中最讓感到充實的，

就是學習何謂作研究應有的態度。我想，對於傳授我這些知識與觀念的指導教

授，言語以及文字的感謝已經太膚淺了。    

 

   iv 
  



List of Contents 
摘要 ............................................................................................................................... i 
Abstract......................................................................................................................... ii 
致謝 ............................................................................................................................. iv 
List of Contents ........................................................................................................... vi 
List of Figures............................................................................................................. vii 
Chapter 1   Introduction................................................................................................ 1 
Chapter 2   Background................................................................................................ 6 

2.1 Internet as an Information Sharing Environment ............................................... 6 
2.2 Security and Access Control Mechanisms ......................................................... 7 
2.3 Information Flow Mechanisms........................................................................... 8 
2.4 Role-Based Access Control .............................................................................. 11 
2.5 Decentralized Information Flow Control ......................................................... 12 
2.6 Declassification ................................................................................................ 13 
2.7 Security Policies and Policy Standards ............................................................ 13 

Chapter 3   Motivation and Objective ........................................................................ 15 
3.1 A Medical Data Analysis Example .................................................................. 15 
3.2 A Bank Example............................................................................................... 17 

Chapter 4 A Rule-Based Decentralized Information Flow Approach........................ 20 
4.1 Overview .......................................................................................................... 20 
4.2 Object and Principal Labeling .......................................................................... 21 
4.3 A Rule-Based Labeling Approach.................................................................... 23 
4.4 Tool Sharing and Declassification.................................................................... 24 

Chapter 5    Type Systems Approach to Information Flow........................................ 27 
5.1 The Volpano Approach .................................................................................... 27 
5.2 Type System of Our Model .............................................................................. 32 

Chapter 6   Comparisons with the ML Model ............................................................ 37 
Chapter 7   System Design and Implementation ........................................................ 43 
Chapter 8   Related Work ........................................................................................... 47 
Chapter 9   Conclusions.............................................................................................. 49 

   vi 
  



List of Figures 
Figure 1. Illustration of a general information sharing system........................... 2 
Figure 2. Access control mechanisms restrict rights for a subject to access 

object ........................................................................................................... 7 
Figure 3. Illustration of an access control matrix, where the row represents 

subjects, the column objects, and each cell corresponds to the privileges 
that subject has over the object. .................................................................. 8 

Figure 4. Information flows from data object A to data object B and from data 
object A to data object C. ............................................................................ 9 

Figure 5. Lattice-based information flow policies. ........................................... 10 
Figure 6. Definition of the can-flows relation from L1 to L2............................. 12 
Figure 7. Definition the join operator L1 ∪ L2................................................. 12 
Figure 8. A medical data analysis scenario where statistical analysis is 

conducted on patient records..................................................................... 16 
Figure 9. The bank example where each customer keeps asset information 

private from other customers and the bank wants to keep its total asset 
private........................................................................................................ 18 

Figure 10. Overview of our information sharing model, that consists of a set of 
principals, data, and tools.......................................................................... 20 

Figure 11. An object label contains sub-labels each indicating the security level 
of the object from each principal’s perspective. ....................................... 22 

Figure 12. Definition of the label structure....................................................... 22 
Figure 13. Definition of the can-flows relation................................................. 22 
Figure 14. Definition of the join operator among labels................................... 23 
Figure 15. Our model allows a principal to attach individual labels on data in 

the realm.................................................................................................... 24 
Figure 16. Each user can specify declassification on each tool. ....................... 25 
Figure 17. Typing rules for the Volpano model................................................ 30 
Figure 18. Evaluation rules for the Volpano model.......................................... 31 
Figure 19. Language syntax definition.............................................................. 32 
Figure 20. Typing rules for our model .............................................................. 33 
Figure 21. Flow declaration and un-declaration for typing rule (letvar) .......... 34 
Figure 22. Evaluation rules in our model.......................................................... 36 
Figure 23. Checking password example which is a procedure to check whether 

the username and password is correct. ...................................................... 37 
Figure 24. Constraints of the password checking example presented by 

decentralized label model.......................................................................... 38 
Figure 25. The constraint solution of password checking example. ................. 38 
Figure 26. Checking password example performed by our model. .................. 39 
Figure 27. Type inference and constraints generation of tool password checker 

using type inference algorithm.................................................................. 40 
Figure 28. Type inference and constraints generation of tool string matcher 

using our type inference algorithm. .......................................................... 40 
Figure 29. Overview of our system implementation......................................... 43 
Figure 30. The flow path of data processing..................................................... 45 
Figure 31. The flow path of policy specification. ............................................. 45 
Figure 32. The flow path of declassification on a tool...................................... 46 

   vii 
  



Chapter 1   Introduction 

Today, people rely extensively on the Internet for information exchange, professionally 

or socially. Many Internet applications such as WWW, e-mail, and instant messengers 

all provide people with different means to exchange information and collaborate with 

each other. As a result, the issue of security and privacy protection is becoming more 

critical. For example, if an information sharing system contains spyware, information 

may be stolen or destructed in an undesired way. The Center for Democracy Technol-

ogy [CDT], a non-profit organization dedicated to promoting civil liberties values on 

the Internet, also summarizes potential security risks resulting from inadvertent sharing 

of sensitive personal information via spyware or adware. [Dav 03] also list some poten-

tial security risks. 

To simplify discussion, in this thesis we are concerned with information sharing sys-

tems in general. As depicted in Figure 1, an information sharing system consists of data 

elements, tools that create and operate on these data, and users that establish connec-

tions with the system to gain access to the data and tools inside. Information sharing is 

achieved when data created by one user can be accessed by another. Note that informa-

tion sharing systems need not maintain data or tools in a centralized place. Many impor-

tant Internet applications can be regarded as information sharing systems. For example, 

the most popular and successful one, i.e. WWW, conceptually forms a global informa-

tion space that contains numerous Web pages interconnected through hyperlinks, and 

people use Web browsers to access Web pages created by others behind Web servers. 

   1 
  



access

 

Figure 1. Illustration of a general information sharing system

 

Information security concerns the control of use and dissemination of information 

within an information sharing system. Privacy protection is the ability of a user to con-

trol the availability of information about oneself, and is becoming an important topic of 

information security nowadays. Security policies are security and/or privacy require-

ments that an information system needs to enforce. Some systems allow administrators 

or individual users to define security policies in terms of rules about different conditions 

under which certain data can be access by a particular user. Policy management is a 

general term that includes policy specification, deployment, and reason over policies, 

updating and maintain policies and enforcement. For example, Internet Explorer allows 

user to configure security and privacy settings. Security setting is done through config-

uring the degree of trust for various web sites in terms of download permissions and 

execution permissions such as blocking advertisements from specific sites. Privacy pro-

tection is done through setting the permissions for particular web sites to obtain sensi-

tive information about the use through cookies. 

Enforcing security policies within a complex system to prevent careless information 

leakage is nontrivial. There has been numerous security mechanisms developed over the 

last decades to address this challenge. Common security mechanisms include authenti-

User 
User 

access

User 

Information Sharing 
Environment 

access 

   2 
  



cation, authorization, discretionary access control, and information flow. Authentication 

is the process of verifying whether a person is really someone he/she claims to be, while 

authorization is the process of checking whether that person is permitted to access a 

given system or resource. Further introduction to authentication and authorization is 

beyond the scope of this thesis. 

Discretionary access control (DAC) is a kind of security mechanisms that prevents 

destruction of information by defining or restricting the rights of subjects (users, some-

times also called principals) as well as processes that act for them to access a particular 

data object. One main objective of DAC is to protect information from accident or un-

desired destruction. The mechanism provided by Internet Explorer as described above is 

an example of DAC. In general, DAC-based systems grant access rights based on data 

and subject labeling. For example, most operating systems provide DAC mechanisms 

that allow users to specify the access rights for individual directories and files they own, 

such as read, write, and execute operations, for different classes of users within the sys-

tem. However, most DAC based systems support labeling an inefficient way, especially 

when the volume of data is large. Consider, for example, the strategies and amount of 

work needed to properly set access rights for all the files a user own in an operating 

system, to make sure no accidental leak of information occurs from time to time. 

A more serious problem of DAC is that it does not control the dissemination of in-

formation, that is, how a user uses the data objects after he/she gains access to them, 

including improper propagation of the information to other people. To prevent such 

information leakage, information flows, also called mandatory access control (MAC), is 

an approach to preventing unauthorized propagation of information. With data objects 

properly classified, MAC mechanisms ensure that high level information can not flow 

to low level user, and users are greatly relieved from otherwise tedious policy manage-

ment. 

Despite the advantage of MAC over DAC where information flow can be controlled 

more rigorously, such restriction also prevents user from releasing part of his/her infor-

mation to other users or tools for further analysis – an important requirement for many 

information systems. To remedy this problem, certain declassification mechanisms are 

proposed to “breach” security requirements in an acceptable degree. For example, the 

"acts-for" relation proposed in [Mye97] allows one principle to grant all access right to 

another principal, which also implies some trust relation between the two. That is, if 
   3 
  



subject A acts for subject B, subject A can get all information that principal B can get, 

even to change principal B's policy temporarily to facilitate certain data processing 

tasks principal A needs. However, as with most DAC mechanisms, the acts-for ap-

proach to declassification relies heavily on mutual trust among principals, thus careful 

design and management of the acts-for relations are required. 

Take a medical information system as an example, where a doctor may own certain 

diagnosis information that a statistician wants for further statistical analysis. To achieve 

this goal, the doctor can declassify such sensitive data by permitting the statistician to 

act for him, assuming certain agreement or mutual understanding has been established 

between the two, so that the statistician can get access to the diagnosis data. Obviously, 

once the act-for permission is granted, the doctor has no explicit control about how the 

statistician can evaluate the data. Moreover, even if the statistician has no bad intention, 

he may leak some sensitive information by accident, or when he/she under security at-

tack unknowingly. 

The discussion above about permitting one subject to act on behave of another, either 

through the acts-for mechanisms in [Mye97] or through other comparable mechanisms, 

brings up the issue of controlling privacy policies. Many systems, including both DAC 

and MAC-based systems, often rely on centralized security administration governing 

the protection and closure about private data. Individuals often have limited options 

about how their personal data can be protected and used. To deal with this problem, 

[Mye97] also proposes decentralized information flow model, so that different users can 

specify their own policies, respectively, yet the overall information flow is under con-

trol. 

When the complexity of policy management is concerned, MAC also faces the prob-

lem of correctly managing security policies. It is easy to prevent improper dissemina-

tion of information in small systems. In large system, however, controlling information 

flow is difficult, especially when the data, tools, and users involved are diverse and the 

relations among them become complicated. 

In this thesis we propose a decentralized information flow model that attempts to ad-

dress security and privacy issues highlighted above. Following Myers and Liskov’s 

work, we focus on mechanisms supporting decentralized policy management in a gen-

eral information sharing environment. Specifically, in our model, users define their own 

information flow lattice structures, respectively, and associate data with security levels 
   4 
  



drawn from such lattice structures using user-defined rules. Tools that process and gen-

erate data are also an integral part of the model, to enable true secure information shar-

ing. 

Normally, tools respect the information flow jointly defined by the users. When de-

classification is needed, our model does not rely on the acts-for relation. Instead, tools 

are labeled individually in a decentralized manner similar to data labeling, but with 

downgrading specification describing the tolerable range for each user using the same 

user-defined lattice. With this approach, users can grant different tools with different 

capacities based on their understanding of the input-output characteristics of the tools, 

thereby eliminating the dependency on mutual trust among users. To further reduce po-

tential security risks, we also define a simple yet flexible programming language such 

that for tools written in the language, automated analysis and verification can be per-

formed to give users definite security guarantee about these tools. 

We have developed a prototype system implementing our ideas using Prolog, and de-

scribed the system using type theoretical approach. Specifically, our system accepts a 

user query or processing request only when no security breach can happen. The rest of 

this thesis is organized as follows. In chapter 2, we first present some important back-

ground on security mechanisms such as access control and information flow models, 

and the decentralized approach to information flows pioneered by Myers and Liskov. In 

chapter 3, we use two information sharing examples to help present the motivation be-

hind our research. In chapter 4, we describe our decentralized information flow model 

in detail, followed by some analysis of the model using type systems in chapter 5. In 

chapter 6, we differentiate our model from the work by Myers and Liskov and explain 

how to achieve similar information sharing policies using our model. Finally we give 

some discussion about related work and conclude with some future research directions. 

   5 
  



Chapter 2   Background 

2.1 Internet as an Information Sharing Environment 

As the Internet rose during mid-1990, new forms of digital information exchange such 

as e-mail, FTP, and WWW emerged and gradually transform how people work and col-

laborate with each other ([Jap00, Gaw03, Xu04]). A typical information worker spends 

over one and half an hour on e-mails each day in average - 20% of the working hours. 

Employees get 50% to 75% of their relevant information directly from other people, and 

more than 80% of enterprises reside in hard drives. Thus we can see that information 

sharing plays an important role in modern human life. 

However, using public media such as the Internet for information exchange and shar-

ing among people also created many problems and pose challenges for companies. 

Among the most important issues is security and privacy protection. As pointed out by 

the Center for Democracy and Technology ([CDT]), potential security risks include 

− Inadvertent sharing of sensitive personal information – users may leak sensitive per-

sonal information by inadvertent mistake. 

− Spyware and adware – software may collect user's personal information to third party 

without user's knowledge. 

− Security concern – information exchange also introduces the risks similar to those 

faced by Internet users generally, where people should be careful to only execute 

tools whose source they trust, and they should safeguard their computers when online. 

 

To ensure security and privacy of information, one needs to prevent sensitive informa-

tion from leaking out inadvertently. Privacy and security are inextricably linked; both 

are need to establish a complete protection mechanism for an information sharing sys-

tem, since one can not ensure privacy without suitable security control. 

   6 
  



2.2 Security and Access Control Mechanisms 

Information security concerns the protection of data against unauthorized access. In-

formation security mechanisms are ways to deal with the particular access requests, 

which contain authentication, authorization, and access control (Figure 2). Authentica-

tion is the process of checking whether a person or software agent is permitted to access 

a particular resource. Typical authentication involves password checking, although 

other methods such as fingerprinting or other biometrics are also common nowadays. 

Access Request

Figure 2. Access control mechanisms restrict rights for a subject to access object 

 

Authentication is part of the more general access control topic that concerns the protec-

tion of computer resources against undesired access. Basic access control concepts in-

clude objects, subjects and access rights. Objects are a general concept that refers to 

any computer resources providing information, ranging from files, to memory and other 

IO devices, to complete network accessible systems. Subjects include both users and 

tools that access objects on behave of the users who use them. Access rights describe 

which operations (e.g. read, write, and execute operations) are permitted for a subject to 

perform on a given object. Since early 1960s, access control has been a major research 

topic for information systems such as database management systems and operation sys-

tems. Modern access control systems can grant or deny access requests from a particular 

Data Retrieval 

Process Requests 

Access Control  

Mechanism 

Data Management Server 

Access Request

Access Request 

Subject 

Subject 

Objects 

Data Pool 
Subject 

   7 
  



subject according a wide variety of criteria, such as time, current location, or domain of 

the subject. 

Popular access control mechanisms include discretionary access control (DAC) and 

mandatory access control (MAC). DAC was originated from the academic area. In a 

DAC model, each object belongs to an owner, who can restrict or grant the access re-

quest from other users. One of the most commonly used approaches to DAC is access 

control matrices [San92]. Figure 3 shows an example of access control matrix in which 

each row represents a subject and each column represents an object. Each cell in the 

matrix contains the privileges the corresponding subject has over the corresponding 

object. The access control matrix may change when modification to the subjects, objects, 

and/or privileges in each cells are made. 

 

 

Figure 3. Illustration of an access control matrix, where the row represents subjects, 
the column objects, and each cell corresponds to the privileges that subject has over 
the object. 

 

DAC mechanisms are commonly used in multi-user operating systems.  However, ac-

cess control mechanisms control immediate access request without taking into account 

information flow path implied by a given, outstanding collection of access rights 

[Den76]. Thus they can not prevent dissemination of objects [Li03] [Mye97] [Zan04]. 

Also, DAC lacks a theoretical base to ascertain that objects are protected without any 

mistakes made by users, and careful specification and management of policies is needed. 

2.3 Information Flow Mechanisms 

MAC mechanisms, also called information flow models, are another approach to infor-

mation security, with the objective to prevent unauthorized information flow among 

   8 
  



objects and subjects. As shown in Figure 4, information is said to flow from object A to 

object B whenever information associated with object A affects the content of which 

associated with B. Information also flows between objects and subjects (e.g. from B to 

C in the figure). Information flow is transitive, thus in Figure 4 an information flow also 

occurs from object A to subject C. 

 

Figure 4. Information flows from data object A to data object B and from data object 
A to data object C. 

 

Secure information flow is usually achieved by assigning each object and subject a se-

curity class, or security label, where possible security classes are drawn from an access 

hierarchy, or more generally, a lattice structure. Since security classes have ordering 

relations among each other reflecting their relative sensitiveness or secrecy, MAC 

mechanisms ensure that information cannot flow from higher security classes to lower 

ones. As also shown in Figure 4, object A, B and subject C are assigned security classes 

x, y, and z, respectively, and the information flow among A, B, and C implies that x, y, 

and z are in an ascending order. Note that it is usually assumed that labels on data ob-

jects and subjects would not change, and the assumption is known as tranquility [San93]. 

The most widely known information flow models are the Bell-LaPadula model 

[Blp75] which deals with information confidentiality, and the Biba model [Bib77] that 

deals with information integrity. Confidentiality is concerned with disclosure of infor-

mation, i.e. preventing information from flowing downwards from higher security label 

to lower one. Information integrity, on the other hand, is concerned with the modifica-

tion of information. For example, in a bank information system, confidentiality is con-

cerned with preventing clients from finding other clients’ cash balances, while integrity 

is concerned with preventing the clients from changing the balances. 

The Bell-LaPadula model defines two properties: the simple security property and the 

star property. The simple security property prescribes the so-called no-read up princi-

flow flow 

Data Object A 
class x 

Subject C 
class z 

Data Object B 
class y 

   9 
  



ple, that is, a subject can not read an object higher than its own security class. The star 

property prescribes the no-write down principle, that is, a subject can not write to an 

object lower than its own security level. The basic idea of the Biba model is similar to 

Bell-LaPadula model, which also defines two similar properties from the integrity per-

spective: the simple integrity property and the integrity star property. The simple integ-

rity defines no-write up, that is, a subject can not write to an object higher than its own 

integrity level. The integrity stat property defines no read down, that is, a subject can 

not read an object higher than its own integrity level. 

Formally, an information flow model is defined as a set of security classes, a binary 

relation between security classes, and join operator on security classes. For example, the 

information flow model by Denning [Den76] is defined as a triple < SC, →, ♁>, where 

SC is a set of security classes, → ⊆ SC × SC is a binary relation (denoted as "can flow" 

relation) on SC, and ♁: SC × SC → SC is a binary class-combining or join operator on 

SC. Under the assumptions below, the information flow model forms a lattice structure:  

1. The set of security classes SC is finite 

2. The can-flow relation → is a partial order on SC. 

3. SC has a lower bound with respect to →. 

4. The join operator ♁ is totally defined least upper bound operator. 

Figure 5 shows an example lattice-based information flow policy that says information 

can only flow from low level objects to high level objects, but not the other way around.  

 

Figure 5. Lattice-based information flow policies. 

 

   10 
  



Information flow models provide more precise control of information than DAC models. 

In DAC, an object becomes accessible to some subject when appropriate permission is 

specified in the access control matrix. But once the subject gets access to the object, it 

can propagate the content of the object in an arbitrary way. Information flow models 

realizes the so called non-interference [Gog82] property, which states that low level 

output should not be affected by high level input. This assures that a low level agent 

cannot get information about the high level inputs. With non-interference property, in-

formation sharing system can prevent low level subjects to observe change of high level 

subjects. 

2.4 Role-Based Access Control 

One problem DAC-based systems encounter in practice is when access control policies 

change frequently. As stated in [Clk87], earlier access control models could not satisfy 

the practical requirements needed by commercial organizations. It is realized that large 

voluminous data in organization are not owned by individual users but the organization 

itself. In addition, individual users may have various access rights under different cir-

cumstances. These considerations inspired the so called Role-Based Access Control 

(RBAC) proposed in 1988, when Lochovsky and Woo defined roles and organized them 

into a hierarchy [LW88]. 

The basic idea of role-based access control is to define roles as the entities and au-

thorize them rather than authorize subjects directly. In real environments, a user can 

play different roles under different contexts. Instead of granting access to an object of a 

subject, the authorization is represented as a role’s access to an object, and the subjects 

can be assigned to different roles. RBAC models often form relation of roles as a hier-

archy reflecting different positions in an enterprise, and support more dynamic policy 

changing and relax the otherwise rigid constraints. 

Although role-based access control supports more flexibility than DAC, there are 

some scenarios can not be supports well by role-based access control. An example is 

that a team has a goal and member work collaboratively. It is hard to express real world 

policy by role manipulations [Bel04]. More importantly, information flow addressed by 

MAC is also not addressed by RBAC. 

   11 
  



2.5 Decentralized Information Flow Control 

Traditional information flow models form a multi-level security system, which is useful 

for centralized administration. For example, the Biba model and the Bell-LaPadula 

model originated from a centralized, military setting. However, these models are not 

suitable for commercial environment where each user has his/her own security policy 

on information sharing. 

Myers and Liskov [Mye97] developed a decentralized information flow model, which 

we refer to as the ML model from here on, permits setting information flow policy in a 

decentralized manner. In the ML model, a label of an object contains an owner set, 

whereas each owner in the owner set maintains a set of readers. The set of valid readers 

to the object is defined as the intersection of all the reader sets. For example, a label L 

can be described as {O1: R1, R2; O2: R2, R3} where O1, O2, R1, R2, R3 are subjects. The 

owner set of L, denoted as owners(L), is {O1 , O2}. The reader set of O1 in L, denoted as 

readers(L, O1), is {R1, R2} and the reader set of O2 in L is {R1, R2}. The valid readers 

of L is defined as the intersection of {R1, R2} and {R2, R3}, namely, {R2}. The can-

flows relation between to labels L1 to L2, i.e. whether L1 can flow to L2, is shown in 

Figure 6, which indicates that L1 should contain fewer owner and more readers than L2.  

owners (L1) ⊆  owners(L2),  
∀ O ∈owners(L1),  readers(L1, O) ⊇  readers(L2, O). 

 

Figure 6. Definition of the can-flows relation from L1 to L2

The join operator of two values Label of L1∪L2, as shown in Figure 7, is defined as the 

join of readers and union of owners. The upper bound is data which is owned by every 

principals and no reader allowed, and the lower bound corresponds to data can flow 

anywhere. We can see that information can flow from more readers and fewer owners to 

fewer readers and more owners, and a global lattice is formed. 

owners (L1 L∪ 2)     =  owners (L1)  owners (L∪ 2),  
readers (L1 L∪ 2, O) =  readers (L1, O) ∩ readers (L2, O). 

 

Figure 7. Definition the join operator L1 ∪ L2 

 

   12 
  



In addition to the definition of the lattice structure, another important component of the 

decentralized model is the constraint that a subject has the right to modify his/her own 

reader set in the label for a given object without influencing other users’ policies. This 

decentralized policy specification, compared with centralized downgrading approaches, 

are more suitable for secure information sharing in a complex, distributed environment. 

2.6 Declassification 

During information processing in mandatory information flow models, the resulting 

object labels become increasingly restrictive and make the information less available for 

subjects. Sometimes, the security levels of the objects need to be relaxed so that other 

parties can read it. This kind of label relaxation is called declassification. From the per-

spective of information flow control, declassification allows high level entities to flow 

to low level entities. 

The ML model described in the previous section also introduces the acts-for relation 

indicating whether a subject subsumes all privileges of another subject. That is, if the 

subject A gets the right to act for the subject B, then A has all the access rights B pos-

sesses. The acts-for relation facilitates declassification due to the fact that once subject 

A acts for subject B, subject A can temporally modify subject B’s reader sets of the la-

bels for all involving objects.  

As [Sam00] states, however, the acts-for mechanism is powerful but dangerous, and 

users must be careful to allow only trusted principals to act on their behalf. 

2.7 Security Policies and Policy Standards 

Information security policy defines a set of rules for information availability within an 

information sharing system. How to specify and enforce security policy precisely is a 

long standing problem because managing policies involving sharing tools among sub-

jects with diverse goals, which can involve complicated declassification management. 

There are currently many standards supporting information security and privacy 

([Appel], [PHI], [ASS], [XACML]). For example, HIPAA (The Health Insurance Port-

ability and Accountability Act, [HIPAA]) established rules such as those in [PHI], [ASS] 

to protect the confidentiality and other personal health information. Another example is 

   13 
  



Appel (A P3P Preference Exchange Language, [Appel]) for website privacy defined by 

P3P ([P3P]). P3P specifies an architecture comprising user agents, privacy reference 

files, and privacy policies. Appel allows webmasters to specify a standard set of multi-

ple-choice questions, which result in tags embedded in the web site's home page. On the 

other hand, P3P-enabled Web browsers allow users also define their own privacy re-

quirements, such as stating whether they allow their names disclosed to third parties. 

Together, P3P and Appel help Web sites announce their privacy practices while letting 

users automate their accepting and rejecting decisions. Note that P3P does not attempt 

to enforce or ensure privacy through technology—for example, by cryptographic or 

anonymization techniques. Instead, it relies on social and legal pressures to compel or-

ganizations to comply with their stated policies 

XACML (eXtensible Access Control Markup Language, [XACML]) is a policy lan-

guage standard developed by OASIS (Organization for the Advancement of Structured 

Information Standards, [OASIS]), which aims at protecting content during enterprise 

data exchange by defining flexible way to express and enforce access control policies in 

a variety of environments. XACML also ratify the e-business standards. 

   14 
  



Chapter 3   Motivation and Objective 

Our goal is to develop an information sharing system that permits decentralized specifi-

cation and management of information flow policies for individual users, yet reduces 

the burden of policy management as well as the risks of accidental information leakage. 

Earlier models do not meet these requirements, and several common problems still re-

main. They either handle declassification in an inefficient way, or fail to manage large 

volume of data properly, mainly due to the cost of manual data labeling. 

In a medical data analysis system, for example, patients may want to share their own 

information with researchers to help advance medical research, yet they want to control 

the exposure of their private information according to their own policies, respectively, 

such as permitting the access to his diagnosis record only for certain statistical analyses. 

To better illustrate the decentralized policy specification and management problem, in 

this section we describe two motivating information sharing examples adopted from 

[Mye97]. These examples will be used later to help describing our model and compar-

ing it with other related work. 

3.1 A Medical Data Analysis Example 

Consider a medical data analysis system illustrated in Figure 8. The purpose of the 

medical system is to permit statistical analysis on a large number of patient records. 

While patients would like to keep their own patient information private, they may allow 

their own patient history to be accessed by statisticians and researchers, provided that 

they perform statistical research without exposing personal information to public. 

In Figure 8, there are four important principals: patient P1 and P2, researcher R, and 

statistician S. There are also two kinds of tools: patient record exactor (PRE) and analy-

sis package (AP), whose purpose are to make a brief summary of and to produce a sta-

tistical report based on patient records, respectively. 

The label structure has the form: {P1: L1, P2: L2, P3: L3 …}, meaning the subject Pi 

classifies the labeled object as level Li according to his/her own judgment. Since the 

patient record is labeled {P1: H, P2: H, R: M, S: L} in this case, it is considered private 

   15 
  



from both P1 and P2 perspective since both label the object as H (High). Likewise, the 

analysis result is labeled {P1: L, P2: L, R: L, S: L}. In such a setting, information can 

not flow from patient records to analysis report. 

Patient History H 

 

Figure 8. A medical data analysis scenario where statistical analysis is conducted on 
patient records. 

 

In this model, a label of a tool contains a parameter set, a constraint set for parameters, 

and a declassification specification. For example, the utility tool PRE exacts informa-

tion from patient histories and summarizes them as patient records. PRE is labeled for 

each of its parameters: the input patient history is labeled H and the output summary is 

labeled R. The constraint set states that R should be more restrictive than H, whereas 

the declassification specification declares that the input with label R can be dropped to 

M temporarily, for both P1 and P2, provided that the actual output has label the same or 

Patient Record 
Exactor 

Analysis  
Package 

{P1: H; P2: H; R: M; S: L} 

{P1: M; P2: M; R: H; S: L} {P1: L; P2: L; R: M; S: H} 

{P1: L; P2: L; R: L; S: L} 

In: Patient history H 

Constraint: 

 H ≤ R 

Declassification: 

H: P1: H↓ M  
    P2: H↓M 

Out: Patient record R 

Statistical DB C Patient Record R 

 Stat record C,  
In: Patient record O 

Constraint: 

 
H ≤ O 

Declassification: 

O:  P1: M↓L 
      P2: M↓L Analysis Result A 
      R: H↓L 
C:  R: M ↓ L   
      S: H ↓ L 

Out: Patient record O 

   16 
  



more restrictive than M. Similarly, the results of the statistical study are made public for 

all users with patient records kept private, with the understanding that AP would not 

leak private information through its output. In this way statistic record and patient re-

cord can flow to analysis result when AP is invoked. Note that users declassify tools 

individually, and changing the declassification specification of one tool does not affect 

the specifications of other tools. However, since a tool may invoke other tools during its 

own computation, automated analysis of the chain of tool invocations is needed to de-

termine whether information flow is violated in the presence of declassification. 

The example above shows that it is possible to sharing private information with other 

users without giving all privileges to them. 

3.2 A Bank Example 

Consider another bank example, as shown in Figure 9, where the bank serves many cus-

tomers and both the bank and the customers would like to keep their assets private. The 

bank would like to keep its own total asset safe from all customers and the customers 

would like to keep their own asset safe from other customers. 

This example contains three subjects: bank B and customers C1 and C2. One require-

ment of this example is that depositing money into personal account and updating the 

total bank deposit are done without leaking individual account information to unex-

pected customers and non-customers. There are also two tools in this example: the asset 

depositor (AD) and total asset updater (TAU), which take account information and de-

posit money into individual asset, and updates the total bank asset, respectively. A cus-

tomer can make deposit request through these tools. 

The object DepositRequest of C2 is labeled {B: L, C1: L, C2: H} because that the de-

posit is requested by principal C2. C2 can always use the tool AD to deposit money into 

his account. The deposit request should contain information about his account, or the 

invoking of depositor would fail. 

 Since the functionality of AD is to deposit money into a personal account, the con-

straint of AD is that the resulting asset should be more restrictive than the deposit. Now 

asset is labeled as {B: M; C1: L; C2: H} which is more restrictive than the deposit, 

which is labeled {B: L; C1: L; C2: H}, so declassification is not needed here. 
 

   17 
  



 

Figure 9. The bank example where each customer keeps asset information private 
from other customers and the bank wants to keep its total asset private. 

 

After completing deposit transactions for individual customers, the bank needed to up-

date its total asset, which is done by TAU. However, the constraint set of TAU states 

that the label of the total bank asset must be more restrictive than the label of individual 

asset, which goes against the object labeling where the total bank asset is labeled {B: H; 

C1: M; C2: M} and is less restrictive than the label of asset C2 with label {B: M; C1: L; 

C2: H}.  

The conflict can be solved by proper declassification, by the customers, such that the 

customer asset can be dropped to level L if it has level H originally. Thus the total asset 

of bank can be updated when customers can control propagation of their own account 

and asset information.  

DepositRequest D 
 

Depositor 

Total Asset 
 Updater 

{B: L; C1: L; C2: H} 

{B: M; C1: L; C2: H} 

{B: H; C1: M; C2: M} 

In: Deposit Request D 

Constraint: 

 D ≤ C 

Declassification: 

 

Out: Customer Asset C 

Customer Asset C 

 In: New asset N 

Constraint: 

 H ≤ O 

Declassification: 

N:  C1: H↓L 
      C2: H↓L Total Bank Asset A 

Out: Total Asset A 

   18 
  



This scenario shows a bank example making processing normally and also keeping 

each principal’s information private without any rigid constraints. Customers can keep 

their own personal account information and asset private from other customers and non-

customers. 

   19 
  



Chapter 4 A Rule-Based Decentralized Information Flow 

Approach 

In this section we define a decentralized model fulfilling the objective discussed in the 

previous section, by allowing individual principals to specify their own policies based 

on user-defined lattice structures. This model handles declassification in a selective way, 

through tool declassification, rather than by giving all access rights to other principals. 

As a result, policy management becomes easier to handle with our model.  

 

Figure 10. Overview of our information sharing model, that consists of a set of prin-
cipals, data, and tools. 

4.1 Overview 

Figure 10 depicts our overall secure information sharing model, which is basically a 

realm of secure environment that contains a set of (data) objects, a set of tools, and a set 

of principals representing users. Within the realm, objects are created and manipulated 

only through tools, whereas tools are created by principals only. Specifically, principals 

do not access objects directly but through tools instead. Technically, to access tools, 

each user needs to first establish a communication channel with the realm, during the 

call 

call 

User 

User 

User 

Realm 

Tool 

Data 

ToolTool 

Data 

Data 

call 

call 

query 

process 

process 

 

 

 

Data 

   20 
  



process the channel is bound with the corresponding principal and assumes the identity 

and associated privileges of that principal. 

Each object inside the realm is attached with a label that is further divided into multi-

ple sub-labels each corresponding to a principal. In other words, each principal assigns 

a sub-label to each object representing the security level of the object from the princi-

pal’s perspective, and the total sub-labels to the object constitute the actual label. 

Tools are considered an integral part in our model. Informally, each tool is associated 

with certain documentation indicating what the tool do and the information flow it in-

duces when invoked. A tool can be invoked only when its execution will not violate the 

information flow requirement, i.e. causing information flowing from high-level objects 

to low-level ones. 

In our model, data are imported into the realm through tools. The label of the im-

ported data is decided according to the setting of declassification. For example, a doctor 

can specify declassification on the tool which is used for importing new data by statisti-

cians about the output values imported from the tool can rise to level M. This approach 

is similar to importing data through channels in decentralized label model.  

4.2 Object and Principal Labeling 

As mentioned, security labels represent the security levels of the objects they denote 

from the perspective of all participating principals, respectively. Different from other 

models, we view principals as a special kind of objects which information may flow 

from and into. Whether a principal can read or modify the content of an object is subject 

to the same information flow constraint. Furthermore, a principal can assign security 

labels to other principals in exactly the same way he/she labels objects.  

Our model excludes the concept of ownership – objects are considered shared and 

administrated by all principals “collectively.” As illustrate in the Figure 11, the label of 

a diagnosis record contains sub-labels P1, P2, and P3 which represents security level of 

patient, statistician, and researcher, respectively. 

   21 
  



 

Figure 11. An object label contains sub-labels each indicating the security level of 
the object from each principal’s perspective. 

 

Figure 12 illustrate the general lattice structure of object labels. It is assumed that the 

sub-labels coming from the same principal are drawn from a lattice defined by that prin-

cipal so that the can-flows relations among labels can be defined, as shown in Figure 13. 

The rule from L to L’ must be restriction which implies each sub-label of L should be 

more restrictive than L’. This rule for information flow is more precise because the la-

bel is formed as Cartesian product of sub-labels of all principals. 

 

Figure 12. Definition of the label structure. 

 

 

Figure 13. Definition of the can-flows relation 

Definition of the can-flows relation from L to L’: 

L = (p1:l1; p2:l2; …) ≤ L’ = (p1:l1’; p2:l2’; …) iff li ≤ li’ ∀i 

Definition of the label structure: 

L = { p1:l1; p2: l2 ; p3: l3 ; … } 

where pi represents a principal and li ∈ Li a sub-label 
drawn from the lattice Li associated with pi. 

 

Label 

Patient Statistician  Researcher

P1 

P3P2 

P4 

P1

P2 P3

P4

P1

P2 P3

P4

Diagnosis 

   22 
  



When the content of an object is derived from the contents from other objects, such 

derivation should respect the information flow constraint. For example, consider a com-

putation x = y + z where x would contain information about y and z, the label of x 

should be more restrictive than y and z. More generally, if an object labeled L contains 

information derived from the objects labeled L1 and L2, respectively, L should be more 

restrictive than both L1 and L2. The least restrictive label that is more restrictive than L1 

and L2, denoted L1∩ L2, is defined as follows: 

 

Definition of the join operator L ∩ L’: 

L ∩ L’ = (p1:l1∩l1’; p2: l2∩l2’; …)  

where L = (p1:l1; p2:l2; …) , L’ = (p1:l1’; p2:l2’; …) 

and li ∩ li’ the join of li and li’ defined in Li  

Figure 14. Definition of the join operator among labels 

 

It is easy to see that the labels in our model form a lattice, since the can-flows relation is 

a partial order relation, with the least restrictive label denoted as ⊥, and the most re-

strictive label denote as ┬ well defined. 

4.3 A Rule-Based Labeling Approach 

In our model, instead of labeling objects individually, a principal associates labels with 

objects through user-defined predicates. A predicate is a rule-based assignment of a 

sub-label to a subset of objects within the realm. Specifically, the subset is defined 

through a set of user-defined rules. Using the example in Figure 11 for illustration, the 

patient may define a predicate stating that (from the patient’s perspective) “all diagnosis 

information is P1,” then all diagnosis information of the patient in the realm would be 

attached P1. The situation is similar for the statistician and the researcher, with diagno-

sis attached P2 and P3, respectively. In this thesis, we leave concrete definition of such 

rules open, although we have implemented some rule-based labeling mechanisms using 

Prolog. However, we do require that any such rule-based predicate mechanism should 

partition the objects statically, such that once an object is attached a label, such assign-

ment never change. A simpler rule of thumb is that object labeling should base solely on 
   23 
  



object identities without relying on object contents or other external (dynamic) envi-

ronmental conditions. For example, assuming all medical data are stored in a file system, 

a predicate by a doctor may prescribe that all records in the directory storing diagnoses 

are all labeled private. In this example, the directory is part of the object identities for 

all the diagnoses, and the predicate even asserts that “future” diagnosis records to be 

placed in the directory will have the same security level from the doctor’s perspective. 

 

Figure 15. Our model allows a principal to attach individual labels on data in the 
realm. 

4.4 Tool Sharing and Declassification 

A tool executes by processing data from its input parameters (or channels) and gener-

ates output into its output parameters. Therefore, a tool should contain explicit docu-

ment about the information flow it may cause among its input/output parameters. For 

“system” tools, possible written in system programming languages, the system adminis-

trator is responsible of ensuring that these tools do not cause information flow exceed-

ing what they claim in their documents. Therefore, system tools are outside the control 

of principals and used as is.  However, principals can still create tools using the pro-

gramming languages allowed by the system, as long as the system can analyze and gen-

 Predicate 

Realm 

H 

M2 M1 

L 

Patient 

attach label M1

attach label H 

 

attach label L 

   24 
  



erate correct documents for these tools automatically. We will describe a simple pro-

gramming language for tool definition in the next chapter. 

specifies declassification

 H: H↓ M 

 

Figure 16. Each user can specify declassification on each tool. 

 

An example of information flow documents is shown in Figure 16, where the constraint 

set of the tool PRE indicates that information would flow from patient history to patient 

record. That is, the label of patient record should be more restrictive than patient history; 

otherwise, the invocation of the tool would be denied by the system. The signature of 

tools helps user recognize the constraints for what flow would happen after using the 

tool and also help users for specify declassification.  

The purpose of declassification is to relax the constraints of tools so as to enable 

more useful data analysis. Declassification refers to the permission of information flow 

from higher-level objects to lower-level ones. In earlier systems for controlling informa-

tion flow, declassification relies on the trust relation outside the model. In our model, on 

the other hand, declassification comes with tools. For example, in Figure 16, a patient 

may specify declassification such that the output data patient record can raise level from 

M to H temporally. Originally, information flow from patient history to patient record is 

denied because that input parameter corresponding to patient record is lower than M in 

the patient's part. After specifying declassification by patient, the constraint of the tool 

User P2 

User P1 

specifies declassification:

In: Patient history H 

Constraint: 

 H ≤ R 

Declassification: 
Patient Record 

Exactor H: P1: H↓ M  
    P2: H↓M 

Out: Patient record R 

H: H↓ M

   25 
  



is relaxed such that information can flow from patient history which labeled level L 

patient record which labeled level M in processing of the tool patient record extractor. 

In summary, our model represents a flexible approach to sharing and protection of in-

formation in a decentralized manner. We use consistent labeling approach base on lat-

tice to specify policies on data and other user. Unlike existing models focus on who can 

share and declassify information, our model focuses on how to share and declassify. 

Without giving all access rights to another parties, our model deal declassification in a 

safer way. Moreover, the use of predicates also reduces the complexity of managing 

policies for large volume of data. 

   26 
  



Chapter 5    Type Systems Approach to Information Flow 

In this chapter we present a program certification mechanism by defining a program-

ming language for tools and developing a verifier for the language. There are three main 

advantages of program certification mechanisms over run-time enforcement mecha-

nisms [Den76]. First, to prevent purposely security violations, the program execution is 

guaranteed to be secure before it executes. Second, a certification mechanism would not 

blemish the speed of program execution since all security checks are performed before 

the program execution. Third, to be comprehended and corrected conveniently, the cer-

tification mechanism can be specified in terms of higher level languages rather than low 

level hardware instruction. We present our program certification framework via type 

theoretical approach following Volpano’s method. In particular, we define the syntax 

and operational semantics of a simple programming language and augment it with de-

classification specification.. 

5.1 The Volpano Approach 

Volpano [Vop96, Vop97] adopts a type system approach to information flow analysis. 

A type system for a procedural language guarantees that well-typed programs do not 

cause undefined value conversions during execution. In the context of information 

flows, the type system approach is adapted so that well-typed programs do not cause 

information flow from high-level objects to low-level ones, which are often termed non-

interference property. In short, a system has the noninterference property if no matter 

how high-level data object change during computation, low-level data objects remain 

the same. Using the following procedure contains two parameters as an example, 

proc p( in x: high , out y: low ) 
 

where x and y are variables with high and low security levels, respectively. Now two 

calls p(a: high, b: low) and p(c: high, b: low) end with final values a, b, and c. If the 

procedure p is noninterference, then a and c may change and the final value of b would 

remain the same in both cases no matter how a and c change. 

The syntax definition of the Volpano model is given below:  
   27 
  



(Phrase)    p ::= e | c 
(Expr)       e ::= x | n | l | e + e' | e - e' | e = e' | e < e' | 

 c | letvar x := e in c | 

 proc (in x1,inout x2,out x3)c 
(comm)     c ::= c   e := e' | c; ' | e(e1, e2, e3) |

 doif e then c else c' | when e
letproc x(in x1, inout x2, out x3) c in c’ 

 

eta-variable x ranges over identifiers, where m l ranges 

its security level. For example, 

ea

n ranges over integer literals and 

over external storage locations which can be used for input and output in the language. 

The initial values of external locations represent inputs to a program and final values of 

external locations represent the output of the program.  

Variables in a program should be labeled to denote 

ch variable x, y has a security class denoted as x, y, respectively. Information flow 

from x to y is permitted if and only if  x ≤ y.  The type definition of core language in the 

Volpano model is shown below,  

 

eta-variable s ranges over a set of security levels which is partial ordered by 

τ := s   
π := τ | 
ρ

τ proc (τ1, τ2 var, τ3 acc) |  τ cmd 
 := π | τ var | τ acc 

where m ≤. 

fe

nd give e' τ var then the com-

 

The typing of variables, i.e. assignment of labels to variables, is done through type in-

rence. Consider the assignment x: = y. If the identifier typing γ give x low and give y 

high, that is, x ≤ y, then the assignment is rejected by the typing rule since the content in 

variable y would affect the final value of x. Thus a typing rule is introduced to cover 

assignment:  

 

The rule says that if the identifier typing γ give e τ var a

mand e: = e' is typed as τ cmd. As another example, suppose that we try to copy x to y 

indirectly as follows:  

while ( x > 0 ) do 
        y = y + 1; 

            x = x - 1 
end 

λ; γ├ e : τ var 
λ γ├

     
 cmd 

;  e': τ    

λ; γ├ e := e': τ

   28 
  



The final value of y is affected by x. This is so-called implicitly information flow from 

x to y. Thus it is needed to insist while statement such that the guard 

and the body should be typed a y level:   

 

erence. Security type in-

ference attem

straints which are in t  variables must sat-

isfy for the program to b he Volpano model are given 

) to any identifier x' other than x. Meta-variable λ ranges over location 

ty

typing rule for the 

t the same securit

λ; γ├ e :  τ 
λ; γ├ c :  τ cmd 

 
λ; γ├  while e then c  : τ cmd

It is possible check a program is well type by security type inf

pted to use type variables to presents unknown types and collect con-

he form of type inequalities such that the type

e well typed. The typing rules of t

in Figure 17. 

In the typing rule λ;γ ├ p : ρ, meta-variable γ ranges over identifier typing. An identi-

fier typing is a finite function mapping identifiers to types of the form τ; γ(x) is the type 

assigned to x by γ, and γ[x: ρ] is a modified identifier typing assigning type ρ to x and 

assigning γ(x'

ping, where a location typing is a finite function mapping from locations to τ types. 

   29 
  



 

(letvar)            λ; γ├ e :  τ 
                         λ; γ [x:  τ var]├ c :  τ' cmd 
                         
                         λ; γ├  letvar x := e in c : τ' cmd 

  
(if)                        λ; γ├e :  τ 

                         λ; γ├c :  τ cmd 
                         λ; γ├c' : τ cmd 
                           
                         λ; γ├ if e then c else c' : τ cmd 
  

(while)           λ; γ├ e :  τ 
                         λ; γ├ c :  τ cmd 
                           
          λ; γ├  while e then c : τ cmd 
 

(procedure)          λ; γ [x1 :τ1, x2: τ2 var, x3: τ3 acc] ├ c: τ cmd 
  

              λ; γ├  proc (in x1, inout x2, out x3) c : 
τ proc(τ1, τ2 var, τ3 acc )  

  
(apply)            λ; γ├ e : τ proc (τ1, τ2 var, τ3 acc)  

               λ; γ├ e1: τ1 ; λ; γ ├ e2 : τ2 var ; λ; γ├ e3 : τ3 acc 
  

                        λ; γ├  e (e1, e2, e3) : τ cmd 
  

(letproc)         λ; γ├ proc (in x1, inout x2, out x3) c : π 
         λ; γ├ [proc (in x1, inout x2, out x3) c/x ] c' : τ cmd 
                       

λ; γ├ letproc x(in x1, inout x2, out x3)c in c': τ cmd 

Figure 17. Typing rules for the Volpano model 

 

The evaluation rules for the Volpano model are shown in the Figure 18, in which a 

closed phrase is evaluated relative to a memory µ. An evaluation is a finite function 

mapping from location to integers. The semantics uses µ├ e ⇒ n for the expression 

evaluation and µ├ c ⇒ µ' for the command evaluation. The content of a location l∈ 

dom(µ) is the integer µ(l), and µ[l := n] denotes that memory assigns n to location l and 

assigns µ( l') to location l' other than l. They write [e'/x] to denote the capture-avoiding 

substitution of e' for all free occurrences of x in c.   

   30 
  



(val)                    µ├ n ⇒ n' 
(contents)           µ├ l  ⇒ µ(l)   l ∈ dom(µ)  
  
(add)               µ├ e ⇒ n 

                        µ├ e ⇒ n' 
                         
                        µ├ e + e' ⇒ n + n' 
  

(sequence)       µ├ c ⇒ µ' 
                       µ'├ c' ⇒ µ'' 
                        
                        µ├ c; c' ⇒ µ'' 

 
(branch)            µ├ e ⇒ 1 

                         µ├ c ⇒ µ' 
                         
                         µ├ if e then c else c' ⇒ µ' 
                    
                         µ├ e ⇒ 0 
                         µ├ c' ⇒ µ' 
                         
                         µ├ if e then c else c' ⇒ µ' 

 
 (update)            µ├ e ⇒ n 

                         l ∈ dom(µ)  
                        
                        µ├ l:=e ⇒ µ'[l := n] 
 

(update)    µ├ e ⇒ n 
                     l ∈ dom(µ)  
                     
                     µ├ l:=e ⇒ µ'[l := n] 
  

(loop)               µ├ e ⇒  0 
                     
                     µ├ while e do c ⇒ µ 
                      µ├ e ⇒  1 
                     µ├ c ⇒ µ' 
                     µ'├ while e do c ⇒ µ'' 
                      
                     µ├ while e do c ⇒ µ''  

Figure 18. Evaluation rules for the Volpano model 

   31 
  



5.2  Type System of Our Model 

In this section we follow Volpano’s approach and describe our model by defining a type 

system. The syntax definition of our language is given below:  

(phrase)            ρ ::= e | c 
(expression)     e ::= x | l | n    
(commands)     c ::= e := e' | c; c' | e(e1, e2) | 

if e then c else c' | when e do c | letvar x = e in c | 
lettool x(in x1, inout x2) c in c' 

 

Figure 19. Language syntax definition 

 

In the definition, meta-variable x ranges over identifiers, n ranges over integer literals, 

and l ranges over external locations (such as files). Like in the Volpano model, the ini-

tial contents of the externals locations represent inputs and final values of external re-

sources represent the output. For simplicity, we assume that each tool has two parame-

ters: the parameters of type in cannot be assigned values to while the parameters of type 

inout can. Therefore, inout parameters accept only locations but not literal values. 

The typing rules of our model are shown in Figure 20. In a typing rule θ├ e : θ ', 

meta-variable θ ranges over contexts. A context contains information about the total 

security level of the “environment” under which e is evaluated, and contains a set of 

bound variables in actuality. That is, intuitively, all expressions or commands under a 

context can see the contents of all the variables in that context. In the typing rule φ ;θ ├ 

c : φ ', meta-variable φ ranges over flow constraints. A flow constraint is a finite set of 

dependencies among variables, which is defined (informally) below. 

 

Definition 5.2.1 (Flow Declaration): for a flow constraint φ and a variable x, φ[x] is a 

flow constraint extended with the declaration of x (Figure 21b). Intuitively, declaration 

introduces a fresh variable x shadowing those in φ, so that it captures the occurrences of 

x introduced later on when additional flow constraints are included. 

 

   32 
  



(assign)           θ├ e : θ '  
                      

φ ;θ ├  x:=e : φ [x⇐ θ '] 
 

(compose)       φ ;θ ├ c : φ '    φ '; θ├ c' : φ '' 
                      

φ ;θ├ c;c' : φ '' 
 

(if)                   θ ├ e : θ ' 
φ ;θ ' ├ c1 : φ ' 

                    φ ';θ ' ├ c2 : φ '' 
                     

φ ;θ├ if(e, c1, , c2) : φ '' 
 

(while)            θ ├ e : θ ' 
φ ;θ ' ├ c : φ '' 

                     
                   φ ; θ├ while(e, c): φ '' 
  

(letvar)           θ ├ e : θ ' 
                   φ [x][x⇐ θ '];θ '├ c : φ '' 
                    
                  φ ;θ├  let x = e in c : φ ''<x> 
 

(call)           θ ├ e: θ '      θ ├  l: θ '' 
{}[x1][x2]; {}├ c : φ ' 
φ '' = φ [x1][x2][φ '[θ '/x1][θ ''/x2]] <x2><x1> 

                  
                     φ ; θ├ (tool (in x1, inout x2) c)(e, l): φ ''  

Figure 20. Typing rules for our model 

 

Definition 5.2.2 (Flow Constraints): for a flow constraint φ, a context θ, and a variable 

x , φ[x⇐ θ] is a flow constraint with additional flow dependencies from θ to x, that is, 

from all variables in θ to x (Figure 21c) 

Definition 5.2.3 (Flow Un-declaration): for a flow constraint φ and a variable x declared 

in φ, φ<x> is a flow constraint by removing the declaration of x and “redirect” all flow 

dependencies into x in φ to all the other variables in φ that depends on x (Figure 21d).  

   33 
  



Definition 5.2.4 (Flow Instantiation): for a flow constraint φ, a context θ, and a variable 

x declared in φ, φ[θ/x] is a flow constraint in which each occurrence of x are replaced 

with all variables from θ in φ (and the dependencies “inherited”). 

Definition 5.2.5 (Flow Embedding): for flow constraints φ and φ’, φ[φ’] is a flow con-

straint such that, φ[φ’] = φ [x1⇐ θ1] [x2⇐ θ2] … for all xi⇐ θi in φ’. Intuitively, flow 

embedding joins two flow constraints by joining all their variable dependencies together. 

 

Figure 21 illustrate diagrammatically the typing rule (letvar) involving flow declara-

tion and undeclaration. The typing rule (letvar) first declares flow variable x by φ [x], 

then analyzes flow from context θ to x written as φ [x] [x⇐ θ] and undeclares variable x 

by φ [x] [x⇐ θ] <x> finally. 

 a φ  
 
 
 
 

。x  φ [x]   b 
 

 

Figure 21. Flow declaration and un-declaration for typing rule (letvar)  

The evaluation rules are shown in the Figure 22. A closed phrase is evaluated relative to 

a memory µ. An evaluation is a finite function mapping from location to integers. Our 

semantics uses µ ├ e → n for the expression evaluation and µ ├ c → µ' for the com-

mand evaluation. The content of a location l ∈ dom(µ) is the integer µ(l), and µ[l := n] 

denotes that memory assigns n to location l and assigns µ(l') to location l' other than l. 

 

 

φ [x] [x⇐ θ] 

φ [x][x⇐ θ]<x> 

。x  

 
 
 
c 
 
 
 
 
 
d

   34 
  



We write [e'/x] to denote the capture-avoiding substitution of e' for all free occurrences 

of x in c.   

(val)                    v;µ├ n ⇒ n' 
(contents)           v;µ├ l  ⇒ µ(l)   l ∈ dom(µ)  
(variable)            v;µ├ x  ⇒ v(x)   x ∈ dom(v) 
(add)              v;µ├ e ⇒ n 

                       v;µ├ e ⇒ n' 
                         
                       v;µ├ e + e' ⇒ n + n' 

(sequence)      v;µ├ c ⇒ v';µ' 
                       v';µ'├ c' ⇒ v''; µ'' 
                        
                        v;µ├ c; c' ⇒ v''; µ'' 

 
(branch)           v;µ├ e ⇒ 1 

                         v;µ├ c ⇒ v';µ' 
                         
                         v;µ├ if e then c else c' ⇒ v';µ' 
                    
                         v;µ├ e ⇒ 0 
                         v;µ├ c' ⇒ v';µ' 
                         
                         v;µ├ if e then c else c' ⇒ v';µ' 

  
(update)           v;µ├ e ⇒ n     l ∈ dom(µ)  

                         
                        v;µ├ l:=e ⇒ v;µ'[l := n] 
  

(loop)              v;µ├ e ⇒  0 
                         
                         v;µ├ while e do c ⇒ v;µ 
                          

v;µ├ e ⇒  1 
                          v;µ├ c ⇒ v';µ' 
                        v';µ'├ while e do c ⇒ v''; µ'' 
                         
                         v;µ├ while e do c ⇒ v''; µ'' 

 

   35 
  



(call)              v;µ├ e ⇒  n 
                       v;µ├[n, l/x1, x2]c ⇒ v';µ' 
                         
                      v;µ├ (proc (in x1, inout x2) c)(e, l) ⇒ v';µ' 

 
(bindvar)          v;µ├ e ⇒  n 

                     y is a fresh variable not used during evaluation 
                        v[y=n]; µ ├ [y/x]c ⇒ v';µ' 
                          
                         v;µ├ letvar x = e in c ⇒ v'-y;µ' 
  
(bindproc)        v;µ├ [ proc (in x1, inout x2) c / x] c' ⇒  v';µ' 
                         

                     v;µ├ letproc x( in x1, inout x2) c in c' ⇒  v';µ' 
 

Figure 22. Evaluation rules in our model 

 

In this thesis we only give informal treatment of the type system. We have implemented 

an inference algorithm conforming to the typing rules described above using Prolog and 

tested our implementation on many scenarios, including those described in the ML 

model. Further analysis for the correctness of the algorithm as well as the type system 

as a whole is necessary, and is left as future work. 

   36 
  



Chapter 6   Comparisons with the ML Model 

In this chapter, we compare our model with ML by discussing several examples de-

scribed in [Mye97, Mye98] and showing how to use our model to achieve similar access 

control policies. 

The Password Checking Example 

The example password checker in [Mye97] shows that a procedure checks whether the 

input username and password are consistent by comparison to db, as shown in Figure 23.  

chek_password (db:array[ ], user:string, pwd:string) 
return(return: boolean {∪user ∪pwd ∪db })  
 
 i : int=0 
match : bool = false 
while i<db.length() do 
 if db[i].names = user & 
    db[i].passwords = pwd then 
  match = true 
 end 
 i = i +1 
End 
return = false 
If_acts_for(check_password,checker) then 
 return = declassify( match, {client:chkr}) 
end 
 
End check_password 

 

Figure 23. Checking password example which is a procedure to check whether the 
username and password is correct. 

 

Two principals are mentioned in this example: checker who acts a password checker, 

and client who calls the procedure.  The input parameters of this procedure include a 

password database containing records of user names and corresponding passwords, 

username and password inputted by client. This procedure would return a result indi-

cating whether password and username are matched against the password database. 

   37 
  



To prevent information leakage, this procedure is checked statically for generating 

constraints for invoking this procedure. Figure 24 shows the constraints for the proce-

dure. Constant variables are all labeled  which represents the least r⊥ estrictive label. L1 

⊆ L2 represents relabeling from L1 to L2, which is legal when L1 contains more readers 

and few owners than L2. Note that Ld represents the label of the declassification result, 

match ⊆ Ld  {chkr: Ø} indicating that the declassification is legal if not effec∪ ting 

reader sets of other owners. 

constraints  
i   ⊥   ⊆ i 
match = F  ⊥   ⊆match 
while  ⊥∪ db  = L1 
 
if   i∪user ∪pwd ∪db∪ 
  {chkr:chkr}∪L1  = L2 
 
match=T  L1∪L2  ⊆match 
 
i = i+1  i∪L1  ⊆ i 
return = F  ⊥  ⊆user ∪pwd ∪db 
Declassify  match  ⊆Ld∪{chkr:Ø} 
return  Ld  ⊆user ∪pwd ∪db 

 

Figure 24. Constraints of the password checking example presented by decentralized 
label model. 

 

Figure 25 shows the solution of the constraints of the password example. Input parame-

ters should satisfy the solution of the constraints or the invoking of the procedure would 

fail. For example, if the label of match is less restrictive than user pwd db  {chkr:∪ ∪ ∪  

ø}, then it is not satisfied the constraints. 

i, match, L1, L2 = user ∪pwd ∪db ∪{chkr:Ø} 
             Ld = user ∪pwd∪db 

 

Figure 25. The constraint solution of password checking example. 

   38 
  



 

In contrast, our model divides the procedure into two tools shown in Figure 26: pass-

word checker and string matcher. The principal client invokes the tool password 

checker with four parameters: username and password provided by the client, data-

base usernames, and database passwords. The tool password checker would invoke 

tool string matcher to verify whether the input username and password are consistent to 

the record in the database db.  

Tool Password Checker (user, pwd, db, return) 
 
i : int=0 
match : bool = false 
while (i<db.length() & match=false) do 

match=String_Matcher(user, pwd, db[i].names, 
db[i].passwords) 

 i = i +1 
end 
return=match 
end 
 

Tool String Matcher (user, pwd, db_name, db_pwd) 
 
if db_name = user & db_pwd = pwd 

return true 

 

Figure 26. Checking password example performed by our model. 

 

As mention above, we allow principals to specify declassification in the signature of 

tool.  Thus principal password checker can specify declassification on the tool string 

which drops the level of match result to L, such that principal can get the information of 

match result. 

The static check of procedure in decentralized label model is the similar with the typ-

ing rules we described in chapter 5, where labels of variables in the body like if and 

while should reflect the label of the guard of statement. For example, the variable 

   39 
  



match in the if and while statements in this example would reflect the labels of L1 and 

L2, respectively. 

 

Figure 27. Type inference and constraints generation of tool password checker using 
type inference algorithm. 

 

Figure 28. Type inference and constraints generation of tool string matcher using 
our type inference algorithm. 

 

We can use type inference algorithm described in chapter 5 to inference type and the 

constraints of a program phrase.  According to recursive call of the type inference algo-

rithm, we can get inference result of tool password checker and string matcher which is 

showed in Figure 27 and 28, respectively. After putting together the constraints we 

know that the label of match should be higher than the join of username, password, 

and db. The value of match can be dropped to lowest level in tool string matcher be-

cause the declassification specified by checker, such that value of match can flow to 

result.  

Label Checking Rules 

The process of verifying programs in decentralized label model involves two steps: first, 

basic block labels are propagated; then each individual statement is verified in the con-

text of the basic block that contains it. For example, considering the statement while e 

    constraints    
return   user ∪pwd ∪db≤ return  

Tool String Matcher 

     constraints   

Tool Password Checker 

match = F    ⊥≤ match   
while     L1 ≤ match 

  
match= string_matcher() i ∪ user ∪ pwd ∪ db≤ 

match  
i = i+1    L1≤ i 
return = match   match≤ return 

   40 
  



do c. First the label of block while should be invented which denoted as L. Then the 

statement c is verified as c∪L which c represents the type of statement c. 

The label checking rules of our model are similar with Denning and Denning [Den77] 

w

Assignment 

n example of assignment v := e, where v is a variable with type v

hich are also similar with decentralized label model. Assuming that the statement 

while e do c is verified as τ and the type of statement c is verified as τ'. Then type τ' 

must be more restrictive than type τ, denoted as τ ≤ τ'. And the upper bound of τ and τ' 

is the less restrictive constraint satisfied the inequality, which is similar with decentral-

ized label model. 

 and e is Considering a

an expression with typed e. In decentralized label model, this assignment is legal if 

e∪B ⊆ v where B represents the label for the basic blocks containing this assignment. 

For example, consider if “e then c”, the whole if statement is a basic block. This implies 

that v should be more restrictive than e and B and vice versa. 

Applying to the typing rule in our model, v should be more restrictive than e accord-

in

If and While 

 e is a legal Boolean expression with label e

g to the rule (assign) and rule (assign'). And v should be more restrictive than B ac-

cording to the rules (If) and (If '), or (While) and (While'). Thus we can see that the con-

straints of decentralized label model are the same as the typing rules in our model, re-

spectively. 

, and c is a statement with Assuming that

label c. Then the statement "if e then c" is legal in decentralized label model if the label 

of c is more restrictive than e∪B where B represents the label for the basic block con-

taining the statement. The case of "while e do c" is similar as the case "if e then c".  

In contrast, in our model, the statement "if e then c" is legal if the label of c is more 

re

Authority and Revocation 

In the ML model, a procedure can execute with some authority which is granted 

through the principal hierarchy or granted to have right for the caller of the procedure. 

strictive than whole statement, which implies the label of c is more restrictive than e 

and the basic block B. The situation is similar to the case "while e do c". 

   41 
  



Whether a procedure has authority granted by a principal is tested according to the 

 if a procedure acts-for a principal, then it would have right to 

ac

. Consider-

ing the password checking example above, declassification is needed to return the 

ssword checking to client. Their model allows explicit declassification 

gement clear. Declassification is legal in our model if it does not exceed the 

ra

statement "if_acts_for(P1, P2) then S1 [else S2] end". In this statement, P2 corresponds to 

a principal in the principal hierarchy and P1 corresponds to the current procedure. If the 

test succeeds then S1 is executed, or S2 is executed. Assuming the underlying can halt a 

running process, it is also possible to revoke the authority of a procedure by changing 

the principal hierarchy. 

Our model does not allow a principal to assume another principal’s privilege but al-

lows a tool to grant authority for another principal. The acts-for relation in decentralized 

label model implies that

cess all data belonging to the principal. Instead of granting all access right to a princi-

pal, our model allows granting partial authority to a principal on a per-tool basis. If a 

principal allows the authority in certain range in his own lattice definition, then the pro-

cedure has access right of data in the range granted by the principal. Thus it is possible 

for a tool to grant authority to a procedure for access all data in our model.  

Declassification 

Declassification in decentralized label model depends on the acts-for relation

match result of pa

in the procedure, and the declassification is legal as long as removed readers belong to 

the principal whom the procedure acts-for.  However, declassification specification 

which is not separate from program logic may incur policy management complexity 

greatly. 

In our model, declassification is specified by each individual principal on signature of 

tools which separates programming logic and declassification specification, makes pol-

icy mana

nge of the authorized range. 

   42 
  



Chapter 7    System Design and Implementation 

In this section we outline the design of our system and some details about implementa-

tion. Our system is an information sharing system constructed in decentralized envi-

ronment which equipped capability of policy mechanism for users to control informa-

tion flow. The system provides a consistent approach to specify policy on both data and 

tools such that users can control the information flow as they want. 

 

Figur

 

Our syste

− Realm

channe

system

nel wh

− Comm

from u

− Data s

 
 

DISP
 

Command 
Processor 

Channel 

User   

Channel 

User   

Labeling 
Engine 

Evaluator Verify 
Engine 

Policy Store Tool Store Data Store
 

e 29. Overview of our system implementation. 

m contains these basic components: 

, Channel: In our system, data, tool and their labels are stored in a realm. And a 

l is the medium for a user connect to a realm. When a person wants to use our 

, he must connect to the channel and then sends his requests through the chan-

ich he has connected 

and processor: A command processor is an interface which receives commands 

sers and then sends them into our internal system to processing. 

tore: A date store unit stores data and their labels. 

  43 
 



− Tool store and management: A tool store unit stores the tools both system build-in 

and created by users, and also manages these tools for user to add/ delete, and modify. 

A tool store also stores and manages labels of tools which specifying the signature of 

tools. 

− Policy store and Labeling engine: A policy stores predicates defined by users and a 

labeling engine attaches labels on data in data store according to policy store 

− Evaluator: An evaluator processes using tools to process data; this unit causes the 

information flow. 

− Verify engine: A verifier verifies the flow of tools and generates labels and check 

whether input parameters satisfy the constraints of the tool when it is called. 

 

Here we show how our system process uses' command in some scenario cases: 

Creating tool and importing data: Tools can be creates by users, a tool should be 

verified before it is called. Importing data can be done by a tool which produces new 

data. If a user wants to import new data into the realm, he can only use a tool to import. 

The label of new data is also determined by the tool. 

Data processing: A user wants to process data using tools, and then he can send his 

command to command processor through the channel. The command processor parses 

the users’ commands. Before calling tools to do operations, the verify engine would 

check whether the input data conform the tool's input parameter's type. If type match 

succeeds, then the tool processes the data which cause information flow. If type match 

fails, then the command also results in fail. 

   44 
  



 

Figure 30. The flow path of data processing. 

 

Policy specification of data: Our system uses a logic-based approach to specify policy 

on data. A policy can see as a program which contains a set of facts and a set of rules. A 

labeling engine can always decide what kind of label should be attached according to 

policy store.  

 

Figure 31. The flow path of policy specification. 

4. Attach label 
on data 

2. Start policy engine

User   

Command  
Processor 

Policy Store 

Labeling Engine 

Data Store 

3. Infer label accord-
ing to policy store 

1. Specify policy 

5. Invoke data   processor 

User   

Command 
 Processor 

ToolA

Data Store 

Evaluator 

Tool Store 

2. Get invoked data and 
t l

1. Check whether    
constraints are satisfied

Verify Engine 

3. Verify 

4. Passed 

6. Process data 

   45 
  



Declassification on tool: After a user creating a tool to our system, the user can present 

what the tool does. For example, a statistician may create a tool which making statistics. 

After analyzed by verify engine, the tool would be attached a label in a document form 

and other users can know the effect would happen after using the tool. After under-

standing the document completely, a doctor can declassify the diagnosis record for this 

tool such that the diagnosis record only leak outside for making statistic record. 

 

Figure 32. The flow path of declassification on a tool. 

 

We have implemented our model using Prolog, which is suitable for type checking and 

inference. In particular, it is easy for each user to specify policy on data and other users 

by a simple program in Prolog predicates. 

6. Specify    
declassification 

7. Attach declassification 
label on tool 

5. Find document of tool
4. See document 
of tool 

3. Analyze and Generate Document 

User   

Command Processor 

Tool Store 

1. Create Tool 

Verify Engine User   2. Send Tool to 
Tool Store 

   46 
  



Chapter 8   Related Work 

Andrew. C. Myers and Barbara Liskov developed many techniques in the area of decen-

tralized information flow. They have improved traditional information flow model in 

decentralized settings. [Mye97] allows collaborative computation by mutually distrust-

ing principals. Users can specify personal policy without traditional rigid multi-level 

constraints. [And 98] retains the advantages and extends it by safer relabelings that 

[Mye97] does not permit. The relabeling work depends on the acts-for relations. There-

fore they incorporate the principal hierarchy into account management. The model also 

defines a rule for static checking that checks that a rule is both sound and complete:  it 

allows all and only safe relabelings. 

However, these models are quite powerful and too dangerous to use since the acts-for 

relation relies on mutual trusting among entities. Declassification in their work also 

depends on the acts-for relation which is not trivial to manage for a given policy re-

quirement. Also, without a consistent approach to policy specification, declassification 

is not easily to handle in decentralized label model [Zan04]. For example, the examples 

in the ML model require mixing access control logics with program logics, making se-

curity policy enforcement and validate difficult. In contrast, our model separate security 

related specification from program logic and thus ease the management burden. 

When it comes to control information flow with fine granularity at programming lan-

guage level, [And99] provides a language called JFow, which extends their earlier work 

and Java language as adding statically-checked information flow annotations. The lan-

guage they propose provides more flexibility by label polymorphism, run-time label 

checking, and type inference [And00].  

[Fer97] introduces a form of dynamically-checked declassification through special 

waivers to strict flow checking. Some of the need for declassification in their frame-

work would be avoided with fine-grained static analysis because waivers are applied 

dynamically and mention specific data objects, they seem likely to have administrative 

and run-time overheads. Unlike traditional centralized setting, one key advantage of 

their model structure is that it is decentralize; principals in the system do not need to 

trust the declassification of other principals. However their work also focuses on who 

   47 
  



can access an object and faces similar complexity issue when managing large volume of 

objects.  

   48 
  



Chapter 9   Conclusions 

This thesis is motivated by the desire to provide a secure information sharing model 

with a more flexible decentralized policy mechanism than existing models. The pur-

posed policy mechanism improves existing models and meets particular requirements of 

users. The limitations of existing models are that they either lack supporting declassifi-

cation well or lack a consistent approach to specify policies when the volume of data is 

large. Many mechanisms allow acts-for relation which can make declassification risky. 

Policies of these models relies on per-object labeling, it would have a bottleneck when 

volume is large. This drawback also introduces the policy management problem. That is, 

when the volume of data grows, it is more likely for users to make mistakes. 

The basic idea of our model is attaching labels both on data and other principals. A 

label represents a security level correspond to a lattice defined by a principal himself. 

This consistent approach improves the decentralized label model and also possesses the 

security properties as traditional information flow models. This model supports princi-

pals to specify individual policies, makes information flow policy management as a 

decentralized way. 

In summary, our model contributes for decentralized information sharing as follows: 

− Flexible declassification. Our model makes the declassification in a conditional way 

and avoids the possibility of unintended operations of a principal who acts for another. 

− Simplified policy management, Our model also simplifies policy management with 

consistent approach to specify policies on data and tools. 

− Separation of policy specification from programming logic. Our model allows users 

to specify policy for each of tools in terms of their interfaces but not the program 

body. 

− Ability to handle large volume of data. Our rule-based approach for data labeling is 

simpler and easier to handle when the volume of data is high. 

− Focus on how to share and declassify. The main difference between existing woks 

and ours is that our model concerns more about how to share and declassify informa-

tion instead of who can share and declassify information by flexible concerns of tool 

manipulation. 

   49 
  



We have implemented the decentralized model by a rule-based approach, makes the 

information flow policies mechanism meeting the real world requirements more. 

References 

[Mye97] Andrew C.Myers , Barbara Liskov, "A Decentralized Model for Information 

Flow Control", ACM SIGOPS Operating Systems pages.129 - 142, December 1997. 

[Mye98] Andrew C.Myers , Barbara Liskov, "Complete, Safe Information Flow with 

Decentralized Labels", IEEE Symposium on Security and Privacy pages 186-197, 

May 1998. 

[M 01] M. Satyanarayanan "Preserving Privacy in Environments with Location-Based 

Applications" IEEE Pervasive Computing, vol. 2,. no. 1, pages56-64, March 2003 

[Jef 01] Jeffrey Hightower Gaetano Borriello "A Survey of Context-Aware Mobile 

Computing Research", Technical Report, Dartmouth College, November 2001 

[San 92]  Ravi's Sandhu "The typed access matrix model." In Proceedings of the Elev-

enth IEEE ymposium on Security and Privacy (SSP’92), pages 122–136, 1992. 

[Rav 93] Ravi's Sandhu "Lattice-based access control models", IEEE Computer Society 

pages 9-19, November, 1993 

[Woo 93] Woo and Simon S.Lam"Authorization in Distributed Systems: A New Ap-

proach", Journal of Computer Security pages107-136 ,1993 

[Mic 01]"ichael J. Covingtony, Prahlad Fogla, Zhiyuan Zhan, Mustaque Ahamad "A 

Context-Aware Security Architecture for Emerging Applications", 18th Annual Com-

puter Security Applications Conference, December 2002  

[Han04] Hannover, Heraklion, Linkoping, Naples, St-Gallen, Turin, Zurich, Enigmatec 

"Rule-based Policy Specification: State of the Art and Future Work", Project deliver-

able D1, Working Group I2, EU NoE REWERSE, September 2004. 

[Vol97] Dennis Volpano and Geoffrey Smith "A Type-Based Approach to Program 

Security" Proceedings of TAPSOFT '97, Colloquium on Formal Approaches in Soft-

ware Engineering, pages14-18 April, 1997. 

[Vol96] Dennis Volpano Geoffrey Smith, and Cynthia Irvine "A Sound Type System 

For Secure Flow Analysis" ,Journal of Computer Security pages1-20 , Jul 1996  

   50 
  



[Dav03] Tom Davis and Henry A. Waxman, "File-Sharing Programs and Peer-to-Peer 

Networks Privacy and Security Risks", United States House of Representatives Com-

mittee on Government Reform – Staff Report Prepared for Rep. T ,May 2003. 

[Zan04] Steve Zancewic, "Challenges for Information-flow Security" In Proceedings of 

the 1st International Workshop on the Programming Language Interference and De-

pendence, 2004. 

[Sam00] Sameer Ajmani, "A Trusted Execution Platform for Multiparty Computation" 

Masters thesis, Massachusetts Institute of Technology, July 2000. 

[Fer97] Ferrari. E., Samarati.P., Bertino.E., and Jajodias.S." Providing flexibility in in-

formation flow control for object-oriented systems". In Proc. IEEE Symposium on 

Security and Privacy, pages. 130–140. 

[Zda01] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers." Untrusted hosts and 

confidentiality: Secure program partitioning." In Proc. 18th 

ACM Symp. on Operating System Principles , pages 1–14, Banff, Canada, Oct. 2001. 

[Clk87] David D. Clark and David R. Wilson. “A comparison of commercial and mili-

tary computer security policies”. In Proceedings of the 1987 IEEE Symposium on Se-

curity and Privacy (SSP’87), pages 184–195,  April 1987.  

[LW88] Frederick H. Lochowsky and Carson C. Woo. "Role-based security in data base 

management systems", In Landwehr Ed., editor, Database Security: Status and Pros-

pects, pages 209–222, Amsterdam, The Netherlands, 1988. 

[Bel04] Andr'as Belokosztolszki "Role-based access control policy administration" 

Technical Report Number 586, Computer Laboratory University of Cambridge , 

March 2004. 

[Blp75] Bell, D.E. and L. LaPadula, Secure Computer System: Unified Exposition and 

Multics Interpretation. 1975 

[Bib77] Biba, K., Integrity Considerations for SecureComputer Systems. 1977, 

ESD/AFSC, Hanscom AFB: Bedford, MA. 

[Den77] Dorothy E. Denning and Peter. J. Denning, "Certification of programs for Se-

cure Information Flow", Communications of the ACM 20,7 pages 504- 513, 1977. 

[Den76] Dorothy. E. Denning. “A lattice model of secure information flow”. Communi-

cations of the ACM pages 236-243, May 1976. 

[Gog82] Goguen, J.A. and J. Meseguer. “Security Policies and Security Models.” in 

Proceedings of IEEE, 1982 
   51 
  



[Xu04] Y. Xu, M. Lewis, K. Sycara, and P. Scerri, “Information Sharing in Large Scale 

Teams”, AAMAS'04 Workshop on Challenges in Coordination o f Large Scale Mul-

tiAgent Systems, 2004. 

[Gaw03] Deiter Gawlick Shailendra Mishra, “Information sharing with the oracle data-

base”, Proceedings of the 2nd international workshop on Distributed event-based sys-

tems, pages 1-6, 2003. 

[Jap00] Tullio Jappelli, Marco Pagano, “Information Sharing in Credit Markets: A Sur-

vey”, Centre for Studies in Economics and Finance, Mar 2000. 

[Li03] Peng Li, Yun Mao, and Steve Zdancewic. “Information Integrity Policies.” In 

Proceedings of the Workshop on Formal Aspects in Security & Trust (FAST), Sep-

tember 2003. 

[Sun] Sun Microsystems http://www.sun.com 

[Math]MathWorld http://mathworld.wolfram.com/ 

[OASIS] OASIS http://www.oasis-open.org/ 

[CDT] CDT (Center for Democracy and Technology) http://www.cdt.org/ 

[HIPAA] HIPAA(The Health Insurance Portability and Accountability Act) 

http://www.hipaa.org/4. 

[PHI] National Standards to Protect the Privacy of Personal Health Information 

http://www.hhs.gov/ocr/hipaa/finalreg.html 

[ASS] HIPAA Administrative Simplification – Security http://www.cms.hhs.gov/ 

hipaa/hipaa2/regulations/security/default.asp 

[Appel] Appel (A P3P Preference Exchange Language) http://www.w3.org/TR/P3P-

preferences/#P3Ppolicies 

   52 
  


