Ak L SAERBP IRN LT LHRT AN

fH0RR ) RBRERT RELFY

FLL i s TR 2SRRI R R

LA

i &

Awme ¥ o AP LRSI REMES HI A EF L H0T K H(CMOS)2
FARL i (carrier transport) 2 f i B & 7 48 LINBTD R 3« £ = @ﬁig?l" oo A kY
i F @ {78 (channel backscattering)BlBE k@SR L B4 HFHe R F T+ @ ﬁ,,]

P HE B e A S g R cd e TR N e T - el A S T

# o $7 54 7% #c(channel backscattering ratio)2 48 b 28> 313 ok £ 8% L HA BT on
T > TP o P AEE N R A RT e S T o AP R4
(6% B A '?iﬁih SIEF o F o APRD - R UM KT Fot S @ﬁe?']l:"i’ I
THEF P AT o Ry HR > AR AR - ZPORBEF LTINS T
AN R RS CMOS A £ F ARl BB TR FLEAANEEF XL
ROBEKX 0 M7 e Bl ARH e CMOS Kz 3T X H hated 2 T o B
AR A B RRE AR AR T(NBTD)hiE* o

s

E“Ed

;3.0'

FOAFIRIEFBEAL F S FF A BLFET o ACILH 2 RS
A RFVRBBIFEEF 24T F 0 54 o RG24 AP B o ST i
SRR EFE HENZF P oA S Pk F N P T g I E S T
FroofcFai B 5 =% &% WP (PSS) CMOS » 38 i % » $ootpLgk k=
RS HETHPS @% P NP F R B €% CMOS 2 4 » f78 5 >

PEFAE R R A TR OgR G B P o R e B K



d 4t Ap B 0 £ W EJE 4 9 nMOSFETs € " M4 » 4785 5 R ﬂ@{ﬁ}'@x m
PMOSFETs ¢ & it & o f7of 5 o iplt 1L ST IR eni®h o gr3g o8 gt R G il 4] 7r i

Lr;l:; F\ o

fu
s

h

ES -ﬁ-?‘" s A dn - B *“Jﬁ]u,)g-,/,\ﬁg:g‘ 4 7 ope \133@ Fe \ﬁ.g@ﬁ%}? ¥
FATEORLES e BRESAAI RORTHAFEB I Z AP FEE{oR A

BT AR o AR E DR E Ao AT E T A 5B
Fohdidt g BRFEL L EFS FRORTE S REABRTIEHEE R L F 5 M o
B 7 R R 5 B e B F R R S MR
PF s fo® BB T ORH F T o gt BOR > AP F R D - g F 5k =
Aak%r CMOS H: B hated 2 1o 2 o 571 348> 17 b @iz
P CMOS AFHA BT MM E BB IHFPM B ¥ FdF4 7
R it ) W ARPURH R e N RS - GRS T AR EF 2T
R R VR R F A R TS ke A Y 3 L % # nMOSFETs 2
pMOSFETs # i 1& % /i 5 &7 8 B 5 # &5 - 2 I 0 5B % o 3 nMOSFETs » H s+
FHECRABRTIAME AN T EREAME G S ERBFHF - Lo RA
4 pMOSFETs » H S T ia & T in s 5 - e fr R chkent > B F BB FHF < | 4p
W20 3g o P I R e8] R EE S 2 o

>

AFRFZEEHEYFHERBRERI R Fd o nz BRI kg o KA

*3-51

FRRD v R ORGES 3G FN TR A T e A H NBTIF R -
F & 7 47 31 5 85 (dynamic)NBTI # 39 i w4 ] > &3 3 B4 51 k#+ ca NBTL ¥ 1+
2R Fe RS H S R AP FHER THAKY U FEA RS » -

-

il



Study of Carrier Transport and Negative Bias Temperature Instability
(NBTI) of Nanoscale Process-Strained Si (PSS) CMOSFETSs

Student: Hong-Nien Lin Advisors: Dr. Horng-Chih Lin
Dr. Tiao-Yuan Huang

Department of Electronics Engineering & Institute of Electronics
National Chiao-Tung University

Abstract

In this dissertation, we primarily investigate the impact of process-induced uniaxial
strain of CMOSFETs on low-field carrier transport and high-field channel backscattering
phenomenon. By utilizing the temperature power-dependence of drain current, we can deduce
an analytic expression for extracting the channel backscattering ratio and related factors, and
then analyze and discuss the mechanism responsible for strain-induced backscattering factor
modulation. Here, we also propose-a model for correlating the low-field carrier transport and
high-field channel backscattering. According'to-this model, we develop a new methodology
to extract the total source/drain (S/D) parasitic resistance for nanoscale strained MOSFETs.
Then, we employ strained CMOSFETs by different technology nodes to examine our model
and demonstrate the new extraction method. Finally, we study the effect of channel stress on
negative bias temperature instability (NBTI) of pMOSFETs.

The channel backscattering theory, the current-voltage modeling, and the deduction of
the analytic expression for evaluating the channel backscattering ratio are shown in Chapter 2.
Then, we used process-strained Si (PSS) CMOSFETs to estimate its effect on carrier
transport in terms of the backscattering factor modulation in Chapter 3. It is found that the
channel stress results in the modulation of channel backscattering ratio, which becomes more
evident with increasing channel stress. Moreover, the backscattering ratio modulation is

dependent on stress polarity, i.e., tensile PSS nMOSFETs have decreased backscattering ratio
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whereas compressive PSS pMOSFETs exhibit increased backscattering ratio. The mechanism
accounting for this observation is also discussed.

In Chapter 4, we proposed a model for correlating the strain-induced low-field channel
mobility gain, linear drain current gain, and saturation drain current gain in terms of the S/D
resistance, the channel resistance, the ballistic efficiency, and the reduction of S/D resistance.
It is demonstrated for the first time that the linear and saturation drain current gains can be
modeled as linear functions of channel mobility gain with the intercept of S/D resistance
reduction, where the S/D-to-channel resistance ratio and the ballistic efficiency determine the
translating efficiency of channel mobility gain to the linear and saturation drain current gains,
respectively. Based on this model, we also developed a new methodology for extracting the
total S/D parasitic resistance of nanoscale strained MOSFETs.

In Chapter 5, we employed state-0f-the-art strained CMOSFETs by different technology
nodes to examine the correlation between the channel mobility gain and drain current gain.
We found that the S/D parasitic resistance gradually.diminishes the benefit of strain-enhanced
drain current gain regardless of adopting technoloegy nodes. In addition, for PSS nMOSFETs,
the linear and saturation drain current gains are comparable, where both current gains are
around half of channel mobility gain. However, for PSS pMOSFETs, the linear drain current
gain is comparable to the channel mobility gain and larger than the saturation one. The
reasons accounting for this phenomenon are discussed as well.

In Chapter 6, we studied the NBTI of PSS pMOSFETs with different channel stress
levels. It is noted that decreasing the channel compressive stress along the channel width
direction not only improves the drain current but also the device reliability of NBTI.
Moreover, mechanisms for degradation recovery during dynamic NBTI stress and aggravated
NBTI degradation for pMOSFETs with larger channel stress are also discussed.

Finally, in Chapter 7, we summarize key findings and suggest the future works of this

study.
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TABLE CAPTIONS

Chapter 3
Table 3.1. Splits of process-strained Si (PSS) CMOSFETs, where “HS” and “LS” represent
high stress and low stress in the channel by modulating process conditions,

respectively.

Chapter 4

Table 4.1. Summary of essential equations correlating the low-field channel mobility gain
(Ap), linear drain current gain (Alg;n), and saturation drain current gain (Algs,) of
process-strained Si (PSS) MOSFETs. Several key indexes employed in the

equations are also defined.

Chapter 5
Table 5.1. Splits of process-strainéd -Si-(PSS)~EMOSFETs [5.31] fabricated by different
process technologies A, B, and'C; where the channel strain of CMOSFETs are

primarily achieved by tensile and compressive CESL, and SiGe S/D, respectively.

xiii



Xiv



FIGURE CAPTIONS

Chapter 2

Fig. 2.1. Schematic diagram of channel backscattering phenomenon in a MOSFET. When
carriers are injected from source into channel, they may encounter scattering
within a short distance |y with a potential drop of kgT / g beginning from the top of
source-to-channel barrier. Some carriers (Is,) may be scattered back to the source,
and the remaining carriers (1 — I'sy) reach the drain.

Fig. 2.2. Flow chart of temperature-dependent extraction technique for evaluating channel
backscattering ratio (Is,0) and ballistic efficiency (Bsa). The a and m represent the
temperature sensitivities of saturation drain current (lgs,) and threshold voltage
(Vrsat), respectively, where Vyg,is . determined by maximum transconductance
(Gmmax) method with. drainfinduced * ‘barrier lowering (DIBL, AVpigr)
consideration. By extracting o, | and Vg, We can calculate the ratio of channel
backscattering mean-freé-path (MEP;Xo) to-kgT layer thickness (lp), so o and

B.aio can be calculated.

Chapter 3

Fig. 3.1. Schematic view of process-strained silicon (PSS) MOSFETs.

Fig. 3.2. (a) Drain current versus gate voltage (I14—V), and (b) drain current versus drain
voltage (I4—Vp) characteristics of the control and high-stress process-strained Si
(PSS_HS) CMOSFETs, where V1, is the saturation threshold voltage.

Fig. 3.3. Capacitance versus gate voltage (C-V) characteristics in inversion region for the
control and PSS HS CMOSFETs. The capacitance is normalized with respect to
the capacitance of the control at [Vg/= 1 V. Nominally identical inversion C-V

curves are observed.
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Fig. 3.4.

Fig. 3.5.

Fig. 3.6.

Fig. 3.7.

Fig. 3.8.

Fig. 3.9.

Percentage change of lys,; measured at low-temperatures (T= 0, —15, -30, -457C)
relative to that measured at room-temperature (T= 23°C) as a function of physical
gate length (Lphysical) for the control and PSS_HS (a) nMOSFETS (Lphysica= 55—195
nm), and (b) pMOSFETs (Lphysica= 75—315 nm). The fitting slope of Algac / ldsat
versus AT represents the temperature coefficient of lyss (0t), as shown in (c).

Shift of low-temperature (T= 0, —15, —30, —45°C) saturation threshold voltage
(Vrsat) relative to room temperature (T= 23°C) Vs as a function of physical gate
length (Lphysica) for the control and PSS_HS (a) nMOSFETS (Lyhysicai= 55195 nm),
and (b) pMOSFETs (Lphysica= 75—315 nm). The fitting slope of AVrg, versus AT
represents the temperature coefficient of AVyg: (1), as shown in (c).

(a) Ratio of carrier mean-free-path (MFP) for channel backscattering (1) to kgT
layer thickness (lp) extracted by the temperature-dependent analytic model. From
Ao / ly, channel backscattering ratio (rso=1 /{1 + A / lg] ) and ballistic efficiency
(Bsato= [1 — Tsao] / [15+ rasol)-can-be found for the control and PSS HS
CMOSFETs, as shown in (b) and (c), respectively.

Comparisons of the extracted (a) inversion charge density (Q,,,), and (b) carrier
injection velocity (vinjo) between the control and PSS_HS CMOSFETs.
Dependence of strain-induced injection velocity enhancement (Aviyjo= [Vinjo,pss —
Vinjo,ctrl] / Vinjo,cut, Y-axis in left), and ballistic efficiency modulation (ABgu0=
[Bsato.pss — Bsato.cl] / Bsato.cul, Y-axis in right) on saturation drain current gain
(Algsa= [lasapss — lasatcut] / lasarcet) for tensile PSS _HS nMOSFETs (Lphysica=
55-195 nm) and compressive PSS _HS pMOSFETSs (Lyhysica= 75—315 nm), where
the subscripts “PSS” and “Ctr]” represent the PSS and control devices,
respectively. The solid line is the linear proportional line.

Mo pss-to-Ao cyi Tatio (Agpss / Agcu) versus lopss-to-locar ratio (lopss / locut) for

tensile PSS HS nMOSFETs (Lphysica= 55-85 nm) and compressive PSS HS
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Fig. 3.10.

Fig. 3.11.

Fig. 3.12.

Fig. 3.13.

Fig. 3.14.

PMOSFETSs (Lphysica= 75105 nm).

Cross-sectional transmission electron microscopy (TEM) image of PSS HS
pMOSFETs and the energy dispersive spectroscopy (EDS) spectrum. It is noted
that Ge signal drops abruptly in the adjacent region of SiGe S/D and Si channel.
No Ge diffusion into the channel is observed.

Comparisons of extracted (a) channel backscattering ratio (rg,), (b) carrier
injection velocity (vinjo), and (c) Agpss-to-Agcy ratio (Agpss / Aocyi) Versus
lo,pss-to-lo,cui ratio (lopss / locui) for the control and PSS pMOSFETs (Lphysica™=
75-105 nm) with different splits, where “LS” and “HS” represent low stress and
high stress devices, respectively.

Ballistic efficiency modulation (ABs,) versus carrier injection velocity
enhancement (Avinjo) for PSS HS and PSS.LS CMOSFETs. PSS _HS nMOSFETs
depict enhanced ABg, and.Aviyjo relative to control devices. PSS _HS pMOSFETs
show enhanced Aviyjo but degraded-ABgo, suggesting a trade-off in overall drain
current enhancement.

(a) Extracted ballistic efficiency, and (b) dependence of saturation drain current
gain (Algsst) on ballistic efficiency modulation for the control and PSS HS
CMOSFETs with nondegenerate and degenerate-limited carrier statistics.
Comparisons of extracted ballistic efficiency of the control and PSS HS
CMOSFETs with and without the consideration of parasitic source/drain (S/D)

resistance (Rsp).

Chapter 4

Fig. 4.1.

Schematic view showing the extrinsic S/D parasitic resistance (Rgp) and intrinsic
channel resistance (Rcy) of a MOSFET, where the Rgp generally is composed of

the four components, i.e., the accumulation layer resistance (Ry), the spreading
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Fig. 4.2.

resistance (Rsp), the sheet resistance (Rq), and the contact resistance (Rc), as
defined in [4.12].

Flow chart of the proposed methodology to extract the ratio of S/D parasitic
resistance (Rsp) to channel resistance (Rcp) for nanoscale strained MOSFETs
where the formula of each item is shown next to the corresponding pattern [4.24].
The flow of extracting ballistic efficiency (Bsao), as mentioned in Chapter 2, is
shown in the left part enclosed by the dash line, where a and m represent the
temperature coefficients of saturation drain current (lgsar) and threshold voltage
(V1sat), respectively. Vrg is determined by maximum-transconductance (G max)
method with drain-induced barrier lowering (DIBL, AVppL) consideration.
Extracting o, n and Vrse, we can calculate the ratio of channel backscattering
mean-free-path (A) to kgT.layer thickness:(ly), channel backscattering ratio (Fsa)
and Bg,y, according to the definitionss Combining B, and fitting slope of Algin
versus Algsr, we can obtainithe-Rsp-to-Reyr ratio. Then, the Rsp of nanoscale
strained MOSFETs can be ‘easily. found by substituting the Rgp-to-Rcy ratio into

(4.1).

Chapter 5

Fig. 5.1.

Fig. 5.2.

Drain current (l;) versus gate voltage (Vi) characteristics of PSS and control
CMOSFETs of Process (a) A, (b) B, and (¢) C.

Drain current (l4) versus drain voltage (Vp) characteristics of PSS and control
CMOSFETs of Process (a) A, (b) B, and (¢) C. The enhancement of saturation
drain current (Aly,) was measured at [V — Vyg =1 V and [Vp|= 1V, where Vg,

represents the threshold voltage at saturation region.

Fig. 5.3. Comparisons of DIBLs between PSS and control CMOSFETs of Process (a) A, (b)

B, and (c) C at various physical gate lengths (Lpysica)- For all Lpnysical, PSS
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Fig. 5.4.

Fig. 5.5.

Fig. 5.6.

Fig. 5.7.

Fig. 5.8.

Fig. 5.9.

MOSFETs depict similar DIBL as control devices.

Inversion capacitance (C) versus gate voltage (V) characteristics for control and
PSS CMOSFETs of Process (a) A, (b) B, and (¢) C. The capacitance is normalized
with respect to the capacitance of the control at [Vg|=1 V.

Dependence of linear drain current gain (Aly;,) and saturation drain current gain
(Algse) on Lopogicar Of PSS CMOSFETS of Process (a) A, (b) B, and (¢) C, where
Algi, and Algg, are defined as Algi= (lainpss — laincn) / laincu, and Algg=
(lasatpss — lasatcirt) / Vasar.con. 1t 18 noted that Al g, is comparable to Alyg,, for all PSS
nMOSFETs but much higher than Al for PSS pMOSFETs except Process B.
Dependence of ballistic efficiency (Bsao,pss) On Lphysicat for PSS CMOSFETs of
Process A, B, and C. Irrespective of process technologies, the B pss of all PSS
MOSFETs increases with Lpnysical scaling,“which indicates that carrier transport is
closer to ballistic transport.regime, i.e., Buworss= 1, where carriers encounter no
scattering events from source/to drain.

(a) Aly;, versus Alyg,, for PSS'€EMOSFEETs of Process A (Lphysica= 39—-124 nm), B
(Lphysica= 5585 nm), and C (Lphysica= 75—125 nm). (b) The best fitting slope, and
(¢) corresponding intercept, obtained by linearly fitting a group of devices with
nominally identical Lphysical-

Ratio of S/D parasitic resistance (Rgp pss) to channel resistance (Rcy pss) of PSS
CMOSFETs at various Lphysical. It is found that the Rgp pgs-t0-Rcy pss ratios of all
PSS CMOSFETs increase with Lphysical sScaling regardless of process technologies.
In addition, the Rgp pgs-t0-Rcy pss ratios of PSS nMOSFETs at smaller Lppysica are
higher than unity, while for PSS pMOSFETs the ratios still are smaller than unity.
Ap versus Algin (Ieft part), and Ap versus Al gsy (right part) for PSS CMOSFETs of
Process (a) A, (b) B, and (c) C. The solid line represents the best fitting line. In the

left side of parenthesis below the fitting slope is related factors, i.e., (1 + Rsppss /
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Fig. 5.10.

Fig. 5.11.

Rempss) and (1 / [1 — Baopss]) in the left and right figures, respectively. The
deviation relative to fitting slope is also shown in the right side of parenthesis.
Ratios of S/D parasitic resistance (Rgppss) to total resistance (Rrorappss) (i-€.,
Algin-to-ARsp sensitivity) and k factor (i.e., Algsa-to-ARgp sensitivity) for PSS
pMOSFETs of Process A and C. Both factors increase with Lynysicar scaling. It is
also noted that the Rsppss-to-Rrorarpss ratio is roughly two times of k factor,
which suggests Rsp reduction of SiGe S/D is more beneficial to lgi, improvement
than lgs,¢ gain.

Dependence of Algiin and Algse on Lppysicat for PSS pMOSFETS of Process (a) A,
and (b) C. The filled region of each column represents the drain current gain
entirely attributed to the reduction of Lhysica. It 1s noted that the contribution of

reduced Rgp to both lgin andilgsa: increases with Lppysica scaling.

Chapter 6

Fig. 6.1.

Fig. 6.2.

Fig. 6.3.

Fig. 6.4.

Schematic view of process-strained Si(PSS) pMOSFETs, where channel stress is
engineered from the combination of shallow trench isolation (STI), silicide and
contact etch stop layer (CESL).

Simulated stress profile for (a) PSS HS, and (b) PSS LS pMOSFETs by
TSuprem4. PSS _HS and PSS LS devices exhibit about —520 and —220 MPa in the
center of channel region, respectively, where minus sign denotes compressive
stress.

(a) Drain current (lg) versus gate voltage (Vi), and (b) off-current (log) versus
on-current (l,,) characteristics for PSS HS and PSS LS pMOSFETs.

(a) Capacitance (C) versus gate voltage (Vg), (b) gate current (|Jg|), and (c)
cumulative probability of normalized gate dielectric breakdown voltage (|Vpp|) for

PSS HS and PSS LS pMOSFETs.
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Fig. 6.5. Negative bias temperature instability (NBTI)-induced threshold voltage shift

Fig. 6.6. (

Fig. 6.7.

Fig. 6.8.

Fig. 6.9.

Fig. 6.10.

Fig. 6.11.

(AVrpr) versus (a) channel width (W), and (b) lateral length of active region for
both PSS _HS and PSS LS pMOSFETs.

a) Dependence of NBTI-induced threshold voltage shift (AVrgr) on stress time (1)
with stress temperature (T= 75, 100, 125, 150°C) as parameter for PSS HS and
PSS LS pMOSFETs. According to the power-law relation of AVrpr= ct’, the
exponent (N) of various stress temperatures in (b) can be extracted by linearly
fitting the plot of AVt (in log scale) versus t (in log scale).

Dependence of (a) NBTI-induced V; shift (AVrgr), and (b) device lifetime on the
inverse of stress temperature (1000 / T) for PSS HS and PSS LS pMOSFETs,
where stress temperatures are T= 75, 100, 125, and 150°C. In (b), the lifetime of
all PSS devices are normalized with respect to that of PSS HS stressed at T= 150
C.

Comparisons of NBTI-induced V-shift (AVrpsr) under static and dynamic stress in
(a) linear-scale, and (b) log-scale plots: Static NBTI consists of only stress cycles
(Vg= 24V@T= 1257C), while dynamic NBTI includes stress and relax cycles
(Vo= 1V@T= 125°C) for simulating the real circuit operation.

(a) NBTI-induced V; shift (AVrpr) versus stress time, and the corresponding
AVrgpr of each stress/relax cycle for (b) PSS HS, and (c) PSS LS pMOSFETs,
where AVrpr of each stress/relax cycle is normalized to pre-stressed Vr.

Dynamic NBTI-induced interface trap density change (AN;j) and subthreshold
swing shift (AS) for PSS HS and PSS LS pMOSFETs.

Dependence of (a) dynamic NBTI-induced V shift (AVrgt), and (b) the projected
device lifetime on stress frequency for PSS HS and PSS LS pMOSFETs. In (b),
the lifetime of all devices are normalized to that of PSS HS split under static

NBTI stress.
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