
Chapter 2  

Channel Backscattering Theory and Modeling  

 

2.1 Introduction  

As the mobility degradation and process complexities become the bottleneck for 

device scaling, to target the drive current and device performance according to the 

international technology roadmap for semiconductors (ITRS) [2.1], there are a lot of 

alternative techniques, such as strained materials replacing Si channel to provide 

higher carrier mobility [2.2], high-k dielectrics facilitating the continuously shrinking 

of equivalent oxide thickness (EOT) and reducing gate leakage current [2.3], new 

device architectures for more effectively controlling the electrostatic field in the 

channel [2.4], and so on. Despite lots of techniques being proposed to boost the device 

performance of state-of-the-art CMOSFETs, there are two basic and important 

features where all these techniques inevitably have to face, i.e., improved carrier 

transport properties relative to Si and reduced source/drain (S/D) parasitic resistance 

(RSD) (which will be studied later in this thesis) [2.5]. Unfortunately, conventional 

current-voltage (I-V) modeling approaches based on drift-diffusion carrier transport in 

the bulk Si is inadequate to predict the electrical characteristics of short channel 

MOSFETs [2.6]. This is attributed to the potential quantum confinement in the 

vertical direction due to high impurity concentration [2.7] as well as the 

off-equilibrium carrier transport owing to large potential gradient along the 

longitudinal direction and partially quasi-ballistic transport [2.10] becoming more 

evident, as device dimension scales into mesoscopic regime.  

Recently, Lundstrom et al. [2.10]–[2.14] developed a simple and analytic 

compact expression, based on one-flux approaches [2.15][2.16], for modeling 
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electrical characteristics of ultrasmall MOSFETs when channel lengths become 

comparable with carrier scattering mean-free-path (MFP). Fig. 2.1 shows a schematic 

view of channel backscattering for a MOSFET biased at high drain voltage, where the 

solid line represents the conduction subband energy profile. According to one-flux 

approaches, carrier transport from source to drain in a MOSFET can be treated as a 

flux with velocity (υinj) injecting into a scattering matrix, where both reflection and 

transmission coefficients of the scattering matrix are affected by the channel potential 

profile [2.10]. Owing to sharp potential profile near the drain side, scattering occurred 

in a thickness (l0) with an energy drop of kBT from the beginning of source-to-channel 

barrier primarily determines the ratio of backscattering, where part of injecting flux, 

rsat, is scattered back to the source, and the remainder part, 1 – rsat, moves toward the 

drain. Once scattering occurs beyond l0, it is unlikely that carriers will have sufficient 

energy to surmount the source-to-channel barrier and return to the source [2.14]. So 

the total drain current is related to the amount of carriers reaching the drain. In other 

words, drain current is mainly controlled by two key factors in the channel 

backscattering theory, i.e., carrier injection velocity and channel backscattering ratio. 

In the following sections, we will introduce the channel backscattering theory and its 

current-voltage (I-V) modeling, and the methods of assessing channel backscattering 

ratio for comparison. Here, we will focus on a specific extraction method featuring the 

temperature power dependence, and deduce the related analytic expressions of 

calculating channel backscattering ratio under the consideration of nondegenerate and 

degenerate carrier statistics. Moreover, the influence of total S/D parasitic resistance 

on this method will also be included.  

 

2.2 Channel Backscattering Theory and Modeling  

In this section, we will introduce the full-range I-V expression with degenerate 
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carrier statistics, where the physical definitions of all items comprising the drain 

current will also be included. In addition, a compact analytic equation of saturation 

drain current with nondegenerate carrier statistics will be shown as well.  

 

2.2.1 Full-Range Expression of Drain Current with Degenerate Carrier 

Statistics  

As mentioned earlier, based on one-flux approaches introduced by Mckelvey 

[2.15] and Shockley et al. [2.16], Lundstrom et al. [2.10]–[2.14] developed a 

full-range analytic expression for modeling drain current (Id) characteristics of a 

MOSFET in terms of carrier backscattering ratio (r) and injection velocity (υinj0) as 

follows [2.11]:  
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Eq. (2.1) is adequate for arbitrary levels of carrier degeneracy featuring the 

Fermi-Dirac integral [ℑn(ηF – UD)] as a function of reduced Fermi energy (ηF) and 

reduced drain voltage (UD), where ηF and UD are defined as ηF= (EF – E1) / kBT and 

UD= qVD / kBT, and EF, E1, and VD represent the Fermi level, first subband energy 

level and drain voltage, respectively. The Id expression is composed of four factors, 

i.e., inversion charge density (Qinv), ballistic efficiency (B) (= [1 – r] / [1 + r], where r 

is the channel backscattering ratio), nondegenerate carrier injection velocity (υinj0) 

with factor of degenerate effect [ℑ1/2(ηF) / ℑ0(ηF)], and VD dependence.  
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2.2.2 Inversion Charge Density  

Here, Qinv(0) refers to the inversion charge density at the top of 

source-to-channel barrier, and can be approximately evaluated by the following 

expression from MOS electrostatics [2.13]  

 

(2.1a)                               ),()0()0( TGeffS1inv VVCnqQ −≈=  

 

where nS1 represents the carrier density in the first energy subband, and Ceff is the 

effective gate capacitance (as influenced by quantum mechanical confinement, 

polysilicon depletion, etc.) [2.17], and VG and VT are the gate and threshold voltages, 

respectively. In (2.1a), Lundstrom et al. assumed that only carriers occupying the first 

energy subband are included, i.e., one subband approximation. This assertion is 

reasonable because about 90% of the inversion carrier density and drain current arises 

from carriers in the first energy subband [2.13][2.18]. Moreover, it is worthy to 

mention that Qinv(0) is essentially equal to its equilibrium value in the presence or 

absence of channel backscattering and/or VD bias, which is a key feature of 

self-consistent MOS electrostatics [2.14]. Based on this assumption, the device can be 

treated as a “well-tempered MOSFET,” which is designed to electrostatically isolate 

the drain from the source [2.19].  

 

2.2.3 Channel Backscattering Ratio and Ballistic Efficiency  

For nanoscale MOSFETs, it is necessary to modify the drain current equation to 

account for the off-equilibrium carrier transport induced by the large potential 

gradient across the entire channel [2.8][2.9]. On the other hand, according to the 

property of current continuity, the steady-state Id of nanoscale MOSFETs can also be 

evaluated by how rapidly (e.g., υinj) the carriers transport across the low-field region 
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near the beginning of the channel and by how many (e.g., B) carriers injecting into the 

channel eventually reach the drain. Here, B is to evaluate how close to the ballistic 

transport regime a MOSFET operates. The ideal ballistic transport means that carriers 

transporting from source to drain encounter no scattering events, i.e., B= 1, however B 

actually ranges from zero to unity in the spirit of one-flux approaches [2.15][2.16]. 

The magnitude of B depends on both the scattering physics and the self-consistent 

potential within the channel, so B (or r) is a function of VG and VD [2.11]. Assuming 

that channel backscattering occurs in an electric-field-free semiconductor slab of 

length L, Lundstrom et al. defined r as [2.20]  
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which is further generalized to 
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where λ and l are the degenerate mean-free-path (MFP) for channel backscattering 

and thickness of a potential drop of kBT / q from the top of source-to-channel barrier, 

i.e., kBT layer thickness, with degenerate carrier statistics, respectively. Eq. (2.1b) is 

for a MOSFET in linear region (i.e., V

B

D << kBT / q or nearly zero electric field), while 

(2.1c) is for saturation region (i.e., VD >> kBT / q) [2.21], where both λ in (2.1b) and 

(2.1c) are the same and defined as [2.11]  

 

( )[ ]
( ) ( ) (2.1d)                                      , 

ηη
ημ

υ
2λ

F21F1

2 
F0

inj0

B

ℑℑ
ℑ

=
−q

Tk  

 9



 

where μ is the low-field carrier mobility near the source side of channel region and 

υinj0 is the nondegenerate carrier injection velocity. It is noted that even at saturation 

region (with high lateral electric field), λ is also affected by the low-field, 

quasi-equilibrium μ in the source, owing to the property of current continuity, as 

stated above [2.14]. Here, carriers in the source-side is under quasi-equilibrium since 

the energy gain experienced by carriers is no more than about kBT / q as channel 

backscattering occurs [2.10], which is also verified by Monte Carlo simulation [2.22]. 

Furthermore, Lundstrom et al. also refers to λ as the MFP for channel backscattering 

rather than MFP itself, where more details can be found in [2.14].  

In the channel backscattering model, the steady-state Id is limited only by 

channel backscattering that occurs within a critical length l, where the potential drop 

from the peak of source-to-channel barrier is kBT / q and was first noted by Price 

[2.23]. Performing Monte Carlo simulations of carrier transport down a potential 

barrier, Price observed that once carriers penetrated even only a very short distance 

into the potential drop, carriers were unlikely to return to the original injection point 

even if they did scatter. Similarly, for a metal-semiconductor junction, Bethe [2.24] 

showed that thermionic-limited current occurs, when the potential drop of first kBT / q 

at the junction occurs over a distance much less than the carrier MFP. Here, the 

degenerate l is defined as [2.11]  

 

(2.1e)                                                    , 
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where ε(0) is the electric field at the top of source-to-channel barrier, and β is a 

numerical factor (β≅ 1 for nondegenerate carrier statistics, and is slightly larger than 
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unity for the degenerate case).  

 

2.2.4 Carrier Injection Velocity  

Except the ballistic efficiency (or channel backscattering ratio), carrier injection 

velocity is a critical parameter in determining the drain current. The degenerate υinj is 

defined as follows 
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where υinj0 is for nondegenerate carrier statistics, and m* is the carrier effective mass. 

So the carrier injection velocity is almost constant and approximately equals to the 

carrier thermal velocity (≈ 1.2 × 107 cm/s) at low carrier density, but significantly 

increases with the VG once carriers become degenerate (or VG > VT) [2.14].  

 

2.2.5 Compact Analytic Model of Saturation Drain Current 

Removing the factors of degenerate carrier statistics from (2.1), we can deduce a 

full-range nondegenerate analytic model as follows  
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where r0 represents the nondegenerate channel backscattering ratio. Furthermore, 

when the MOSFET is operating under saturation region, the VD-dependent factor in 
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the bracket of (2.2) is close to unity, and then (2.2) can be reduce as follows:  
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where Idsat is the saturation drain current, and rsat0 and BBsat0 are the nondegenerate 

channel backscattering ratio and ballistic efficiency at saturation region. Eq. (2.3) is 

the compact expression of (2.1). So at a given Qinv, both ballistic efficiency and 

carrier injection velocity are critical parameters in determining the saturation drain 

current.  

 

2.3 Extraction of Channel Backscattering Ratio  

The channel backscattering ratio (or ballistic efficiency) is used to evaluate how 

close to the ballistic transport limit the MOSFET operates by modifying fabrication 

processes and/or device architectures. There are some techniques, such as fitting 

ballistic model to measured I–V characteristics [2.21][2.25][2.26], transconductance 

method [2.8][2.9], drain current method [2.27], and temperature-dependent analytic 

method [2.26][2.28], for assessing the channel backscattering ratio. In this section, we 

will briefly introduce the first three techniques and compare with each other, whereas 

the last one, adopted in this work, will be discussed in detail in Section 2.4.  

 

2.3.1 Fitting Ballistic Model to Measured Current–Voltage Characteristics  

This extraction method is to reproduce experimental measured I–V 

characteristics by simulated ballistic current. First, by inputting some process 

parameters, such as physical oxide thickness (tOX), bulk doping concentration (NB), 

and poly-Si gate doping concentration (NPoly), into a self-consistent 
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Schrődinger-Poisson simulator, the Qinv and υinj can be calculated [2.21][2.25][2.26]. 

Then, the drain current at ballistic transport limit can also be obtained from (2.3) with 

the input of BBsat being equal to unity. Here, fitting the experimental measured I–V 

characteristics by simulated ballistic current with an iteratively modulated BsatB , we can 

find the rsat (or BBsat) of the characterized MOSFET until the simulated I–V exactly 

reproduces the measured one. Since this technique evaluates the rsat (or BsatB ) directly 

from simulations, it is free from the extraction complexities probably experienced by 

pure experimental extraction methodology (as introduced later). In addition, by virtue 

of simulation the effect of degenerate carrier statistics involving complicated 

numerical calculations can be also included for rsat evaluation. However, the I–V 

equation of each ballistic model is not entirely the same, which results in the rsat value 

being dependent on the specific ballistic I–V model employed 

[2.7][2.11][2.18][2.29][2.30].  

 

2.3.2 Transconductance Method  

This technique first evaluates the υinj0 according to the following equations 

[2.8][2.9]  
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G
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where Gmi is the intrinsic peak transconductance of the MOSFET, and can be obtained 

from the measured maximum transconductance (Gm) with Gmi= Gm / (1 – 0.5RSDGm – 

RSDGD) [2.8], where GD and RSD are the output conductance and total source/drain 

(S/D) parasitic resistance, respectively. As the MOSFET reaches the ballistic transport 

limit, carrier injection velocity is assumed to be equal to the thermal velocity (υth, 
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1.2 – 2 × 107 cm/s) from the source accumulation layer into the channel [2.20][2.21], 

and then BBsat0 can be treated as s gap of extracted υinj to υth as the following expression 

[2.18] 

 

(2.5)                                                        ,
υ
υ

th

inj0
sat0 =B  

 

where υth is the thermal velocity as mentioned above.  

 

2.3.3 Drain Current Method  

Similar to the transconductance method, drain current method estimates the BBsat0 

by (2.5), whereas the υinj0 is extracted by the following expression [2.27] 
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where the integral in the denominator represents the Qinv at saturation region. Here, 

based on the above statement, both transconductance and drain current methods can 

be employed to find rsat0 by (2.4)–(2.6) easily, but there are still some issues for 

estimating rsat0. Firstly, once the extracted υinj0 exceeds the thermal velocity, the 

magnitude of BBsat0 from (2.5) will be larger than unity, which violates the key 

assumption of one-flux approaches, i.e., 0 ≤ Bsat0B  ≤ 1, and is unreasonable in physics. 

Secondly, both extraction techniques generally overestimate BBsat0 (or underestimate 

rsat0) because the extracted υinj0 is more close to the average carrier velocity in the 

channel rather than the carrier velocity at the peak of source-to-channel barrier 

[2.7][2.31]. The higher carrier velocity in the channel is ascribed to the fact that 
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carriers already start to be accelerated by the potential profile. That is, larger 

extraction error will be induced as long as the position of source-to-channel barrier 

peak is shifted toward the drain more, which is confirmed by energy balance 

simulations [2.31].  

 

2.4 Temperature-Dependent Analytic Model for Extracting Channel 

Backscattering Ratio  

In this section, we introduce an extraction technique of evaluating the channel 

backscattering ratio by a temperature-dependent analytic expression based on 

scattering theory [2.10]–[2.14]. Firstly, an analytic expression with nondegenerate 

carrier statistics will be deduced step by step. Secondly, the expression with 

degenerate-limited carrier statistics will also be included and compared with the 

nondegenerate one. Finally, the expression accounting for the influence of RSD on 

drain current will be shown as well.  

 

2.4.1 Nondegenerate Carrier Statistics  

In references [2.26] and [2.28], it was demonstrated that by measuring saturation 

drain current against a range of temperature, the channel backscattering ratio (or 

ballistic efficiency) as a function of the ratio of carrier MFP for channel 

backscattering (λ0) to kBT layer thickness (l0), as shown in (2.1c), at a specific 

temperature (T) can be simply extracted. Here, we employ the full-range 

nondegenerate I–V expression [2.11], as shown in (2.2), and differentiate the drain 

current expression with respect to T as follows  
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where UD is the reduced drain voltage and defined as UD= qVD / kBT. In this work, we 

only consider the situation where the MOSFET is biased at saturation region, i.e., VD 

>> kBT / q [2.11]. Then, (2.7) can be further reduced as follows 
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where the exponent of order –UD approaches zero and is removed in (2.8). Then, 

according to [2.20], the items comprising the Idsat have the following power 

dependence of temperature: the carrier injection velocity υinj0 ∝ T –1 / 2; the carrier 

MPF for channel backscattering λ0 ∝ T –1; kBT layer thickness l0 ∝ T; and the 

low-field carrier mobility μ0 ∝ T –3 / 2. Based on these temperature dependences, the 

derivatives of υinj0 and rsat0 are deduced as follows: ∂υinj0 / ∂T= υinj0 / 2T and ∂rsat0 / 

∂T= 2rsat0(1 – rsat0) / T. Substituting these two derivatives into (2.8), we obtain the 

following results [2.32]  
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where α and η represent the temperature coefficients of Idsat and VT,sat, respectively, 

i.e., α= ∂Idsat / (Idsat)∂T and η= ∂VT,sat / ∂T. Rearranging (2.9), we obtain an analytic 

expression of λ0 / l0 in terms of α, η, VG, and VT,sat at a specific temperature T as 

follows  
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Fig. 2.2 shows the flow chart of temperature-dependent extraction technique for 

estimating the rsat0 (or BBsat0). This technique utilizes the temperature-dependent 

property to deduce a simple and analytic expression for evaluating the rsat0 directly 

from experimental I–V characteristics without involving the complication issues, as 

discussed in Section 2.3.  

 

2.4.2 Degenerate-Limited Carrier Statistics  

Eq. (2.10) is adequate only for a MOSFET operating at low inversion carrier 

densities (nS < 1012 cm–2) or at low VG (VG < VT). When nS becomes comparable to 

1013 cm–2 (or the MOSFET is biased at high VG, i.e., VG > VT), the effect of carrier 

degeneracy causes the channel backscattering factors to be significantly affected not 
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only by T but also VG [2.12]. The extraction expression for Idsat with degenerate carrier 

statistics can be deduced similarly, albeit more complicated mathematics will be 

involved in the deduction. Therefore, the limit of carrier degeneracy, i.e., ηF → ∞, is 

assumed here for simplicity [2.13]. Then, the limit of degenerate carrier injection 

velocity (υinj), degenerate carrier MFP for channel backscattering (λ), and degenerate 

channel backscattering ratio (rsat) can be reduced as follows:  

 

( )
( )

( )

(2.11a)                                                                       , 

π
)(2

3
4

π
η2

3
4

)e1ln(
η

π
2lim

η
η

π
2limυlim

TG

TGeff
**2

FB

η
F21

*
B

η
F0

F21
*

B

ηinjη FFFF

VVA

q
VVC

mm
Tk

m
Tk

m
Tk

−′=

−
==

+

ℑ
=

ℑ
ℑ

=
∞→∞→∞→

h  

 

( )[ ]
( ) ( )
[ ]

( )

(2.11b)                                                               , 

μ
4

η2π3
4
πη3

μ
2π

η)e1(e
)e1ln(μ

2π
lim

ηη
ημ

2π
limλlim

TG
5.1

0
FB

*2
F

0
B

*

F21
1ηη

2 η

0
B

*

η

F21F1

2 
F0

0
B

*

ηη

FF

F

F

FF

VVTB

q
Tkm

q
Tkm

q
Tkm

q
Tkm

−′=

==

ℑ+
+

=

ℑℑ
ℑ

=

−

−∞→

−
∞→∞→

 

   

and  

 

 18



( ) ( )[ ]
( ) ( )

[ ]
( )

( ) (2.11c)                                                               .1

η2π
4β
μ)0(3ε1

η)e1(e
)e1ln(2π

β
μ)0(ε1lim

ηη
η2π

β
μ)0(ε1limλ1limlim

1

TG
5.2

1

B

F
*2

0

1

F21
1ηη

2 η

B

*
0

η

1

F21F1

2 
F0

B

*
0

η

1

ηη

FF

F

F

FFF

−−

−

−

−∞→

−

−
∞→

−

∞→∞→

−′+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ℑ+
+

+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ℑℑ
ℑ

+=+=

VVTC

Tk
m

Tk
m

Tk
mlr

 

 

where ℑn(ηF) is the Fermi-Dirac integral with order n, as stated earlier, and ηF is the 

reduced Fermi energy and defined as ηF= (EF – E1) / kBT. At the limit of carrier 

degeneracy, i.e., EF >> E1 (or at large VG), ℑn(ηF) can be simplified and expressed in 

terms of (VG – VT) [2.33], where the channel backscattering model assumes that 

carriers only occupy the first energy subband, and then total inversion charge density 

can be expressed as Qinv= qns= Ceff(VG – VT)= qm*(EF – E1) /  (h  is the reduced 

Planck constant) [2.13]. Based on this assumption, (2.11a)–(2.11c) can be reduced as 

a function of (V

2πh

G – VT) and T, where A′, B′, and C′ are constants. In (2.11c), the 

degenerate kBT layer thickness (l) is defined as l= β(kBT / q), where β is a constant and 

slightly larger than unity [2.11]. Differentiating (2.11a)–(2.11c) with respective to T, 

we can modify (2.8) as follows  
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r , and the definitions of α and η are 

 19



the same as those of (2.9). After rearrangements, the analytic expression with 

degenerate-limited carrier statistics is given as follows 
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2.4.3 Consideration of Source/Drain Parasitic Resistance  

The I–V equation, as shown in (2.3), neglects the influence of total source/drain 

(S/D) parasitic resistance (RSD) on current performance. In reality, significant 

degradation of drain current, e.g., 30% decrease of Idsat [2.21], is observed when RSD 

is taken into consideration. Therefore, we modify (2.3) with the effect of RSD as 

follows  

 

( ) ( )( )[ ] (2.14)      , 5.0
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1υ SDdsatDDIBLTlinSDdsatG
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where the terms (VG – 0.5IdsatRSD) and (VD – IdsatRSD) are the intrinsic VG and intrinsic 

VD, respectively, and the term (VT,lin – ΔVDIBL(VD – IdsatRSD)) represents the saturation 

threshold voltage later designated as VT,sat [2.26]. In addition, VT,lin is the linear 

threshold voltage and is determined by maximum transconductance method, and 

ΔVDIBL is the VG difference between linear and saturation region by constant current 

method. Then, differentiating (2.14) with respect to T, we obtain the following 

expression  
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In (2.15), we temporarily assign “P” to represent the expression in the bracket of 

(2.14), i.e., [(VG – 0.5IdsatRSD) – (VT,lin – ΔVDIBL (VD – IdsatRSD))], for simplifying the 

expression. By further rearranging (2.15), we can obtain the following result  
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where α is shown as follows 
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From (2.16′ ) the analytic expression of λ0 / l0 with RSD effect for evaluating the rsat0 

(or BBsat0) has the following expression 
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2.5 Conclusions  

In this chapter, we introduce the theory and current-voltage modeling of channel 

backscattering. Firstly, a full-range drain current expression with degenerate carrier 

statistics is shown. The meaning of the related items constituting the current 

expression, i.e., inversion charge density, channel backscattering ratio, ballistic 

efficiency, carrier mean-free-path for channel backscattering, kBT layer thickness and 

carrier injection velocity, are physically defined. Secondly, for a MOSFET being 

biased at saturation region with the assumption of nondegenerate carrier statistics, we 

can reduce the full-range degenerate current expression to a compact one. From the 

compact analytic expression, it is noted that for a given inversion charge density both 

ballistic efficiency and carrier injection velocity are critical parameters in determining 

the drain current, where the ballistic efficiency is also employed to evaluate how close 

to ballistic transport limit a MOSFET operates. Thirdly, we show some techniques of 

assessing the ballistic efficiency and make comparisons with each other. Among these 

extraction techniques, we adopt the technique of utilizing the power dependence of 

temperature and deduce an analytic expression for evaluating the nondegenerate 

channel backscattering ratio and/or ballistic efficiency. Similarly, the expression with 

degenerate-limited carrier statistics is also deduced for comparison. Finally, the 

influence of total source/drain parasitic resistance on drain current is taken into 

consideration in the analytic expression as well.  
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υinj 
(1-rsat) 

Source Drain
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Fig. 2.1.  Schematic diagram of channel backscattering phenomenon in a 
MOSFET. When carriers are injected from source into channel, they 
may encounter scattering within a short distance l0 with a potential drop 
of kBT / q beginning from the top of source-to-channel barrier. Some
carriers (rsat) may be scattered back to the source, and the remaining 
carriers (1 – rsat) reach the drain.  
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Fig. 2.2.   Flow chart of temperature-dependent extraction technique for evaluating 
channel backscattering ratio (rsat0) and ballistic efficiency (BBsat0). The α and 
η represent the temperature coefficients of saturation drain current (Idsat) and 
threshold voltage (VT,sat), respectively, where VT,sat is determined by 
maximum transconductance (Gm,max) method with drain-induced barrier 
lowering (DIBL, ΔVDIBL) consideration. By extracting α, η and VT,sat, we can 
calculate the ratio of channel backscattering mean-free-path (MFP, λ0) to 
kBT layer thickness (l0), so rsat0 and Bsat0B  can be calculated.  

 24


	Channel Backscattering Theory and Modeling  

