
 i

國 立 交 通 大 學

資訊科學系

碩 士 論 文

W A P 憑 證 轉 換 工 具 設 計 與 實 作

Design and Implementation of WAP Certificate Converter

Toolkit

研 究 生：顏志明

指導教授：袁賢銘 教授

中 華 民 國 九 十 四 年 六 月

 ii

WAP 憑證轉換工具設計與實作

研究生：顏志明 指導教授：袁賢銘 教授

國立交通大學資訊科學研究所

摘要

行動安全(mobile security)一直是在手持裝置上開發行動商務(m-commerce)

程式的一項重要議題。對此，無線運用協定(Wireless Application Protocol, WAP)

已訂製一系列規範標準，包括 WTLS (Wireless Transport Layer Security), WPKI

(Wireless Public-Key Infrastructure), WIM (Wireless Identity Module), and

WMLScript Crypto Library. 在這些標準中，一項重要的組件就是憑證(certificate)

的使用。然而，為了符合無線環境的限制，WAP 重新定義了數種憑證格式，同

時既有網際網路上通用的 X.509 憑證，也無法在未經修改情況下，直接下載到支

援 WAP 的行動裝置上使用。

在本篇論文中，我們設計和實作出一個 WAP 憑證轉換工具，提供方便的程

式及操作介面，可以將網際網路上通用的 X.509 憑證轉換成 WAP 相容憑證格式，

並套用在支援 WAP 的行動裝置上。我們所開發的這個 WAP 憑證轉換工具，可

以用來協助目前網際網路上發行 X.509 憑證的憑證中心(Certification Authority,

CA)，將他們發出的憑證，根據使用者的需要，動態且容易地轉換成 WAP 憑證。

就增進行動安全和考慮現行 X.509 憑證轉換成本而言，這套工具提供了相當程度

的便利性與經濟性，可以用來幫助行動商務程式之開發。

 iii

 Design and Implementation of WAP Certificate Converter Toolkit

Student: Chih-Ming Yan Advisor: Shyan-Ming Yuan

Department of Computer and Information Science

National Chiao Tung University

Abstract

Mobile security has been a key factor for development of m-commerce

applications on hand-held devices. To enhance the mobile security, WAP (Wireless

Application Protocol) has defined several standards such as WTLS (Wireless

Transport Layer Security), WPKI (Wireless Public-Key Infrastructure), WIM

(Wireless Identity Module), and WMLScript Crypto Library to regulate it. One

important component of those standards is the use of certificate. However, for fitting

the limitations in the wireless environment, WAP introduces several certificate

formats in those specifications and the existing Internet X.509 certificates can not

download directly to WAP-enabled handsets without any modification.

In this paper, we design and implement a WAP Certificate Converter Toolkit to

provide the convenient interfaces for doing the conversion from the existing Internet

X.509 certificates to WAP compatible certificates that can be deployed in

WAP-enabled mobile devices. The toolkit we provide can be used by the Internet

CA’s (Certification Authority) to dynamically and easily transform their issued

certificates into WAP certificates by the need of users. As far as enhancement of

mobile security and conversion cost from Internet X.509 certificates are concerned,

 iv

this toolkit is convenient and economic to a large extent and can be used to help the

development of m-commerce applications.

 v

Acknowledgement

回首二年研究所生涯，學習著實收穫良多。其中最要感謝的是我的指導教授

袁賢銘老師，不論在課業或研究領域上，他總是給予學生最大的自由空間，去想

像發揮其創意，這對於喜歡自我安排個性的我十分受用，也因此在這二年學習規

劃裡，沒有絲毫時間被浪費掉，日子過得忙碌而紮實。除了袁老師之外，當然要

感謝的人很多。曾經帶領過我作研究的蕭存喻、吳瑞祥和葉秉哲三位學長，經常

跟我討論論文並提供意見的高子漢學長，謝謝你們的指導跟建議。還有感謝我的

同學們：葉倫武，你總是幫我解決實驗室雜七雜八的問題；於之鈞，有你陪我談

天論地，心情再煩也會變得開朗；柯憲昌，我們一起做了研究討論，也激盪出不

少的想法；沈上謙，從你身上看到如何積極規劃安排自己；吳仁凱，經常和我談

資訊人員的心酸，也許真的有一天可以考慮去賣香雞排；高啟涵，我們二人總是

一起搭檔報告論文；還有另外二位女同學朱文如、林慧雯，妳們是實驗室的唯二

朵花。認識你們，增添二年研究所生活不少色彩。最後當然要感謝我的父母，沒

有你們無私對孩子的愛，就沒有今天的我。謹以這篇論文奉獻給我的雙親。

 vi

Table of Contents

Acknowledgement ...v

Table of Contents .. vi

List of Figures.. ix

List of Tables.. xi

Chapter 1 Introduction...1

1.1. Motivation..1

1.2. Objectives ..2

1.3. Thesis Organization ...3

Chapter 2 Background ...5

2.1. WAP Concept...5

2.1.1. WAP 1.x ...5

2.1.2. WAP 2.0 ...7

2.2. WAP Security Mechanisms..9

2.2.1. WTLS...10

2.2.2. WPKI ...12

2.3. ME Security Functionality...14

2.3.1. WIM...14

2.3.2. WMLScript Crypto Library ...15

Chapter 3 Certificates Analysis ...18

3.1. X.509 Certificate..18

3.1.1. Content...18

3.1.2. ASN.1...19

3.1.3. DER..22

 vii

3.1.4. Base64..22

3.2. WAP Certificates..23

3.2.1. Profiled X.509 Certificates ..23

3.2.2. WTLS Certificate...25

3.2.3. Hashed Certificate..28

3.2.4. Signed Certificate...29

3.2.5. Resp Certificate..30

3.3. Signature Algorithms ...31

3.3.1. SHA-1 Hash Algorithm..32

3.3.2. RSA Signature Algorithm ..32

3.3.3. ECDSA Signature Algorithm...33

Chapter 4 Toolkit Framework and Implementation35

4.1. Certificates Conversion Paths ..35

4.2. Framework Design...37

4.2.1. WAP Certificate Converter Toolkit ..37

4.2.2. Java Cryptography Architecture ..38

4.2.3. Bouncy Castle Crypto ..39

4.2.4. Cryptix JCE..39

4.2.5. PureTLS Toolkit...40

4.2.6. Java Certificate Services ..40

4.3. Converter Library...40

4.3.1. Building Blocks ...40

4.3.2. CAModule..42

4.3.3. ConverterFactory ...43

4.4. Converter GUI ...44

4.4.1. ResourceManager ..45

 viii

4.4.2. ActionManager ..45

4.4.3. StatusManager..46

4.4.4. UserObject ...46

4.4.5. Display ...47

Chapter 5 Experiment and Evaluation...48

5.1. Experiment 1: Certificates Conversion Paths ..48

5.1.1. Environment Configuration ...48

5.1.2. Experiment Result..49

5.1.3. Evaluation ..53

5.2. Experiment 2: Import WAP Certificates into WIM53

5.2.1. Environment Configuration ...53

5.2.2. Experiment Result..54

5.2.3. Evaluation ..61

5.3. Experiment 3: A Simple M-Commerce Application with Crypto.signText .61

5.3.1. Environment Configuration ...61

5.3.2. Experiment Result..62

5.3.3. Evaluation ..63

Chapter 6 Conclusions and Future Works ...64

Conclusions..64

Future Works..65

Reference..66

 ix

List of Figures

Figure 2-1: The WAP Programming Model1.x ...6

Figure 2-2: WAP Gateway as Protocol Switch ..6

Figure 2-3: WAP 1.x Protocol Stack and TCP/IP equivalent.........................7

Figure 2-4: The WAP Programming Model 2.0 (1)8

Figure 2-5: The WAP Programming Model 2.0 (2)8

Figure 2-6: WAP 2.0 Protocol Stack and Architecture9

Figure 2-7: WTLS Internal Architecture..10

Figure 2-8: SignText and WPKI ..12

Figure 4-1: WAP certificates conversion paths..36

Figure 4-2: Architecture of WAP Certificate Converter Toolkit37

Figure 4-3: packages of WAP Certificate Converter Toolkit38

Figure 4-4: Class Diagram of Building Blocks..41

Figure 4-5: public methods of CAModule...42

Figure 4-6: ConverterFactory class..44

Figure 4-7: major components of Converter GUI..45

Figure 4-8: inheritance hierarchy of UserObject ...47

Figure 5-1: create a CA X.509 certificate ..50

Figure 5-2: create a User X.509 certificate..50

Figure 5-3: convert to WTLS certificate..51

Figure 5-4: convert to Hashed certificate...51

Figure 5-5: convert to Signed certificate ...52

Figure 5-6: convert to Resp certificate...52

Figure 5-7: import a CA X.509 certificate ...55

 x

Figure 5-8: import a CA WTLS certificate ..56

Figure 5-9: import a CA Hashed certificate...57

Figure 5-10: import a CA Signed certificate..58

Figure 5-11: import a user X.509 certificate..59

Figure 5-12: import a user Resp certificate..60

Figure 5-13: download the order for confirmation62

Figure 5-14: sign the order and submit ..63

 xi

List of Tables

Table 2-1: classes of security level in WTLS ..11

Table 2-2: Comparison of WPKI and PKI ...13

Table 2-3: Structure of command APDU...15

Table 2-4: Structure of response APDU...15

Table 2-5: Prototype of Crypto.signText..16

Table 3-1: Common fields of all versions of X.509 certificate....................19

Table 3-2: ASN.1 data types used in X.509 certificate21

Table 3-3: WAP Profiled X.509 certificates of CA and user........................24

Table 4-1: Wrapper classes for WAP certificates ...42

Table 5-1: Experiment 1 Result ...49

Table 5-2: Experiment 2 Result ...54

Table 5-3: Experiment 3 Result ...62

 1

Chapter 1 Introduction

1.1. Motivation

With rapid growth and development of mobile devices, such as mobile phones,

Personal Digital Assistant (PDA) and Pocket PC, today most people possess at least

one of those mobile devices. The pervasiveness and mobility of hand-held devices

lead to more and more demand to do business on them. And one of the major

concerns needed to be solved in mobile e-business is the security issue.

In WAP, it provides two kinds of security for this goal. One is communication

security, defined in WTLS (Wireless Transport Layer Security) and TLS (Transport

Layer Security). The other is end-to-end security, specified in WPKI (Wireless Public

Key Infrastructure), WIM (Wireless Identity Module), and WMLScript Crypto

Library. Both of them use certificates as a mean of proving identity and doing

encryption operations. A certificate is a digital credential that binds the identity of a

subject to a public key. Certificates are usually issued by a trusted third party named

Certification Authority (CA) in a public key infrastructure. Nowadays, most CA’s like

VeriSign and Thawte issue certificates based on X.509 format.

However, the existing Internet X.509 certificate is not suitable to directly bring

into the mobile devices without any modification because of the limitations of mobile

devices such as lower computing power and less memory and storage. Although the

WAP has introduced several certificate formats tailed for mobile devices in different

situations, the overload and convenience to create WAP compatible certificates by the

existing CA’s is still a problem. So, we develop a WAP Certificate Converter Toolkit

 2

to help the CA’s to easily transform the Internet X.509 certificates they issued into

WAP compatible certificates for the mobile devices.

1.2. Objectives

The purpose of this thesis is to enhance the security for increasing the mobile

e-business development. We will focus on providing a convenient toolkit for the

existing Internet CA’s to produce WAP compatible certificates for mobile applications.

The objectives that we want to achieve are as follows:

 We want to be able to produce WAP compatible certificates across different

WAP versions. WAP has defined a set of protocols as the standard for

mobile devices manufacturers and developers to follow in the mobile world,

and is still a continuous job since 1997. Until now, there are several major

changes in the WAP history that result in different requirements over WAP

versions. For example, before WAP 1.2, the security support in WAP is only

through WTLS that just ensures the data transport between mobile devices

and WAP gateways, and the CA certificates stored in the mobile devices for

server authentication must be the WTLS format. Because not all of mobile

devices keep up with the latest version of WAP, we need to consider the

compatibility for different WAP versions. In practice, we can solve this

problem by requesting a mobile device to provide its supporting WAP

capability and accordingly transferring the certificate needed to it on the fly.

 We want to be able to produce WAP compatible certificates from the

existing CA’s that issue X.509 format certificates with little overhead. In the

wired world, the Internet has developed a lot of complete and matured

protocols to engage in e-business. And most Internet CA’s have already built

 3

their public key infrastructures in accordance with those standards. Even for

WAP, it models its protocols by modifying the existing Internet protocols to

fit into mobile environment. So, to request the existing CA’s to build

another mechanism for issuing WAP compatible certificates will increase

the cost of implementation and maintenance. A feasible strategy is to

provide an adaptive layer to transform the existing X.509 certificates into

WAP compatible ones. The major goal of our converter toolkit is to supply

such an adaptive layer to assist CA’s in doing the transformation easily for

mobile applications.

 We want to be able to produce WAP compatible certificates by different

people with a convenient way. We target two kinds of people to use our

converter toolkit. One is the programmers and the other is the operators. For

programmers, we provide a set of application programming interfaces (APIs)

packed in the form of library to be used by them. For the operators, we

supply a visual graphic user interface (GUI) that is friendly to do the

certificates conversion and can see each field of the resulting certificate in a

variety of views.

1.3. Thesis Organization

In Chapter 2, we discuss the background of WAP and its security mechanisms. In

Chapter 3, we introduce the Internet X.509 certificate format, WAP certificate formats,

and signature algorithms used to apply on WAP certificates. In Chapter 4, we discuss

the design and implementation of our proposed converter toolkit. It will cover the

conversion paths from the X.509 certificates to WAP compatible ones and the

components of two interfaces – library and GUI – in detail. In Chapter 5, we conduct

 4

three experiments to verify what we claim in the Objectives section and evaluate the

results. In Chapter 6, we give the conclusions and show some future works.

 5

Chapter 2 Background

2.1. WAP Concept

 The Wireless Application Protocol (WAP) is a set of protocols made by the WAP

Forum which is founded by Ericsson, Motorola, Nokia and Phone.com (formerly

Unwired Planet) in June 1997. It aims to be the mobile equivalent of traditional

Internet by using the existing Internet standards, mainly TCP/IP and WWW, and

extending them for the wireless networks and mobile devices. In contrast to wired

networks, wireless networks have several fundamental limitations. They have less

bandwidth that can cause poor performance, high latency and less connection stability.

Similarly, compared to desktop computers, mobile devices also have limitations to be

considered, including less memory and powerful CPU, smaller displays, limited input

facilities, and restricted power consumption.

2.1.1. WAP 1.x

Programming Model

Based on the request-response pattern of WWW, the WAP programming model

extends it to three-tier architecture: client—gateway—server (see Figure 2-1). The

middle proxy performs a bridge between the wireless network and the wired Internet

(see Figure 2-2). In the side between the client and the proxy, they communicate with

each other via the wireless network like GSM (Global System for Mobile

Communications). On the other side, the proxy talks to the server by using wired

Internet. In addition to the role of networking protocol switch, the gateway also

performs the content encoder and decoder in between to make the data transfer more

 6

compact in the wireless network.

Figure 2-1: The WAP Programming Model1.x (Source: [1])

Figure 2-2: WAP Gateway as Protocol Switch (Source: [2])

Protocol Stack

WAP 1.x means the combination of WAP 1.1 and WAP 1.2, made in June 1999

and December 1999 respectively. Actually, the architectures of WAP 1.1 and WAP 1.2

are the same (see Figure 2-3).

 7

Figure 2-3: WAP 1.x Protocol Stack and TCP/IP equivalent (Source: [1])

In Figure 2-3, it shows the WAP 1.x protocol stack and the equivalent TCP/IP

parts. It takes the layered-architecture and modifies from the Internet TCP/IP protocol.

Each layer can only communicate with its upper layer and lower layer and not all the

layers are required. For example, the WTLS provides the security layer for data

transfer, but it is optional. The major difference between WAP 1.1 and WAP 1.2 is the

enhancement of end-to-end security that was originally lacked in WAP 1.1. The

addition of protocols in WAP 1.2 about security includes WPKI, WIM, and

WMLScript Crypto Library.

2.1.2. WAP 2.0

Programming Model

In WAP 2.0, the WAP gateway is not a required component any more. The

mobile client can make a HTTP request directly to the web server without through the

WAP gateway (see Figure 2-4). However, if you want to offer other mobile services

 8

like location, privacy, and push based services, a WAP gateway is still suggested (see

Figure 2-5)

Figure 2-4: The WAP Programming Model 2.0 (1) (Source: [3])

Figure 2-5: The WAP Programming Model 2.0 (2) (Source: [3])

Protocol Stack

WAP 2.0, published in January 2002, gives a big change to WAP and brings the

wireless world closer to the Internet. It refines the WAP protocol stack by replacing

the four protocols below the WAE layer in WAP 1.x. with the optimized Internet

protocols, including HTTP, TLS, TCP, and IP (see Figure 2-6). Besides, it uses

 9

XHTML/JavaScript in replace of original WML/WML as the new user interface

language of mobile devices.

Figure 2-6: WAP 2.0 Protocol Stack and Architecture (Source: [2])

 One of the problems WAP 2.0 wants to address is the security hole caused by

WTLS and the gateway [9]. In WAP 1.x with WTLS/TLS, the gateway needs to

decode the user’s sensitive data in WTLS format and then encode it into TLS format

for sending to the web server. In such way, it will give a chance for the gateway to

peek user’s sensitive data even though the tunnel between the client and gateway is

safe. So, in WAP 2.0, the gateway is no longer performs the role of switch between

the wireless and wired network. This improvement decreases the processing overhead

in the gateway and effectively enhances the security in the tunnel.

2.2. WAP Security Mechanisms

The security services WAP provided so far can be classified into two categories:

one is communication security, supplied by WTLS; the other is end-to-end security,

provided by WPKI, WIM, and WMLScript Crypto Library. Communication security

requires the client to authenticate the server and encrypt the transfer data between the

client and server. The end-to-end security is achieved by requesting a user certificate

 10

to be stored in the mobile device, and using it as the proof of identity and for

encryption operations.

2.2.1. WTLS

WTLS (Wireless Transport Layer Security) [4] is the security layer for data

transfer in the WAP 1.x architecture. It is adapted from the TLS (Transport Layer

Security) version 1.0 and specifically designed to provide privacy, data integrity, and

authentication within the constraints of wireless networks. WTLS itself consists of

five protocols (see Figure 2-7).

Figure 2-7: WTLS Internal Architecture (Source: [10])

 The WTLS Record Protocol is a layered protocol, which gets messages to be

transmitted from the upper layers, optionally compress the data, applies a MAC,

encrypts, and transmits the result. On the contrary, the received data from the lower

layer is decrypted, verified, decompressed, and then passed to the higher layers. The

Record Protocol takes care of the data integrity and authentication. Above the Record

Protocol, there are four protocols. The Handshake Protocol is responsible for

negotiating the security parameters for a secure session. Security parameters include

protocol version, compression method, and information on the use of authentication

and public key techniques to generate a shared secret. The Alert Protocol is used to

specify the alert messages that convey the security of messages and a description of

 11

this alert. The Application Protocol is the interface for the upper layers of WTLS to

access the WTLS layer. The Change Cipher Spec Protocol defines the messages that

are sent during the handshake phase after the security parameters have been agreed on

[10].

 In addition, there are three classes of security level between the client and server

specified in the WTLS (see Table 2-1).

Security Level Feature

Class 1 Anonymous key exchange is used for creation of an

encrypted channel between the client and server. The

client needs to take care if the public key sent by server

is belonging to the server it really wants to communicate

with.

Class 2 Provide server authentication with the use of server

certificate. The server needs to send the server certificate

to let the client to authenticate its identity.

Class 3 Provide both client authentication and server

authentication. Before building a secure connection, both

of the client and server need to make sure the identity

with each other by means of exchanging their

certificates.

Table 2-1: classes of security level in WTLS

 12

2.2.2. WPKI

Just as WTLS is the optimized version of TLS with respect to mobile

environments, WPKI (Wireless Public Key Infrastructure) [5] is an optimized

extension of a traditional public key infrastructure for the wireless networks. WPKI

requires the same components used in the traditional PKI (Public Key Infrastructure),

including a Certification Authority (CA), a Registration Authority (RA), a repository

to store certificates and Certification Revocation Lists (CRL), and an end-entity

application (EE) [23]. However, the EE and RA are implemented differently and a

new component called the PKI Portal is introduced. The EE is implemented in WPKI

as an embedded module of the micro browser that runs in a WAP device. And the EE

relies on the WMLScript Crypto Library to do the cryptographic operations. The PKI

Portal typically acts as the role of RA and interoperates with the WAP devices on the

wireless network and the CA on the wired network respectively (see Figure 2-8).

Figure 2-8: SignText and WPKI (Source: [5])

 13

 Other wireless-specific adaptation in WPKI, compared to PKI, is summarized in

the following table.

 WPKI PKI

Syntax notation and

encoding rule

WTLS Presentation

Language and binary

encoding

ASN.1/DER/BASE64

Certificate Format 1.WTLS Server/Root CA

certificates[in WAP client

devices]: WTLS

certificate

2.Client/Root CA

certificates[in servers]:

Internet X.509(RFC2459)

3.Client/Root CA

certificates[in WAP client

devices]: WAP Profiled

X.509

Internet X.509 (RFC2459)

Cryptographic Algorithms

and Key Length

1.RSA(1024 bits or

more)

2.ECC(160 bits or more)

No limit

Table 2-2: Comparison of WPKI and PKI

 14

2.3. ME Security Functionality

 WAP puts two security facilities on the Mobile Equipment (ME), usually

meaning the mobile devices, to activate the security functionality in the client end of

WPKI. They are WIM and WMLScript Crypto Library.

2.3.1. WIM

 WIM (Wireless Identity Module) [6] is a module that is tamper-resistant and can

securely store sensitive data, such as certificates and private keys, and perform the

computation of security operations, like generating random numbers and signatures.

The objects and information data described in WIM follow the format of PKCS #15

(Public-Key Cryptography Standards #15). A WIM implementation can be an external

smart card or a component embedded within the SIM (Subscriber Identity Module)

card. The WIM is intended to perform both client and server authentications in WTLS

and prove the user identity for end-to-end security.

 Communication between WIM and the entities using it is via the

command-response protocol in the form of service primitives. A service primitive

describes the semantics of one service and its parameters. When WIM is implemented

in a smart card or SIM card, the service primitives will be implemented as card

commands. A card command is described by using APDU (Application Protocol Data

Units) that is the standard form of smart card command defined in the ISO7816-4.

There are two types of APDU. One is command APDU whose structure is listed in

Table 2-3. The other is response APDU and its structure is shown in Table 2-4.

 15

Part Field Length Description

CLA 1 byte type of command

INS 1 byte command

P1 1 byte parameter 1

Header

(mandatory)

P2 1 byte parameter 2

Lc 1 byte specify the length of data

Data variable data

Body

(conditional)

Le 1 byte indicate the maximum length of data

expected in response

Table 2-3: Structure of command APDU

Part Filed Length Description

Body

(conditional)

Data variable response data for the command APDU

SW1 1 byte status1 after execution of the

command APDU

Trailer

(mandatory)

SW2 1 byte status2 after execution of the

command APDU

Table 2-4: Structure of response APDU

2.3.2. WMLScript Crypto Library

 The WMLScript Crypto Library [7] is a part of WMLScript that is a script

language, like the JavaScript for HTML, to manipulate the WML (Wireless Makeup

Language) for better user interaction. This library is intended to use with WIM to

 16

provide cryptographic operations. Currently, the library only supports digital signature

functionality by the WMLScript function, Crypto.signText, which asks the user to

sign a string of text. The prototype of Crypto.signText is listed in the following table.

Function

Name

Parameter

1

Parameter

2

Parameter

3

Parameter

4

Return

Crypto.signText stringToSign options keyIdType keyeId signedString

Table 2-5: Prototype of Crypto.signText

 stringToSign: String

This parameter is the string to be signed. Before being signed, the string should

be converted to the same encoding if it contains different character sets. The

recommended encoding is UTF-8.

 options: Integer

Both of this and next parameters represent several option values that are ORed

together into an integer. There are three options in this parameter:

INCLUDE_CONTENT, INCLUDE_KEY_HASH, and

INCLUDE_CERTIFICATE. The first option, if it is set, will include the string to

be signed in the result. The second option, if it is set, will include the hash value

of the public key corresponding to the signature key in the result. The third option,

if it is set, will include the certificate or a URL of the certificate in the result.

 keyIdType: Integer

This parameter indicates the type of a key identifier specified in next parameter.

There are three options. NONE means the browser may use any key and

corresponding certificate in WIM. USE_KEY_HASH means the next parameter

will be the SHA-1 hash value of the user public key. TRUSTED_KEY_HASH

 17

means the next parameter is supplied with the SHA-1 hash value of a trusted CA

public key and the browser must use a signature key issued by the trusted CA to

sign the string.

 keyId: String

The specified key based on the previous parameter. It can be an empty string or a

string including the SHA-1 hash value of one public key or multiple,

concatenated SHA-1 hash values of several public keys.

 return: String

If the signText operation is successful, the resulting string will be the Base64

encoding of SignedContent structure defined in [7].

 18

Chapter 3 Certificates Analysis

As we known, most existing Internet CA’s issue certificates in the format of

X.509. Among WAP versions, it introduces several certificates accustomed for the

wireless environment as well. In this chapter, we will elaborate each of them in terms

of content meaning, syntax description, and encoding rule. After that, we introduce

the signature algorithms that are supported in the WAP specification to apply on WAP

compatible certificates.

3.1. X.509 Certificate

3.1.1. Content

An X.509 certificate [11] binds a public key to a subject represented by a naming

convention called Distinguished Name (DN). Such a certificate is also named an

identity certificate in that it is used to authenticate the identity of the subject. A

Distinguished Name is a global name composed of the combination of Common

Name (CN), Organization Unit (OU), Organization Name (O), Locality Name (L),

State Name (S), and Country (C). Currently, there are four versions of X.509

certificate. Version 1 specifies the basic fields; version 2 introduces the unique

identifiers of subject and issuer, and CRL (Certificate Revocation List); version 3

adds the notation of extensions; version 4 supports for the attribute certificate that is

not binding a public key to a DN but to one or more attributes. Table 3-1 shows the

common fields of all versions of X.509 certificate [25].

 19

Field Description

version the X.509 version, 1 to 4

serial number a unique number, assigned by the CA to identify this certificate

signature

algorithm

identifier

the algorithm used by the CA to sign the certificate

issuer the Distinguished Name of the entity that signs the certificate

period of validity the begin and end times of the certificate in valid

subject the Distinguished Name of the entity that owns the public key

subject’s public

key

the information about the public key of the subject

signature the signature of the certificate

Table 3-1: Common fields of all versions of X.509 certificate

3.1.2. ASN.1

The X.509 standard [11] describes a certificate using the notation known as

Abstract Syntax Notation One (ASN.1). As the name indicated, ASN.1 is not tied to

any programming language and is designed to abstractly describe messages to be

exchanged between communicating applications on different computer systems.

ASN.1 consists of a set of well-defined primitive data types and methods to construct

more complex data types from the primitive data types. Here, we only list some

important data types that are used in the X.509 certificate in Table 3-2.

 20

Data Type Description

Boolean two possible values are TRUE and FALSE

INTEGER any positive or negative integer whatever its length

CHOICE like the union type in C language, providing several

alternatives to choose one

SEQUENCE like the struct type in C language, containing data items in

order

SEQUENCE OF same to SEQUENCE except the type of each data item is the

same

SET similar to SEQUENCE except that the data items are no

ordered

SET OF same to SET except the type of each data item is the same

OBJECT

Identifier

a global naming convention used to point to an object within a

predefined hierarchy of naming space

GeneralizedTime a way to model a date and time by means of a character

string: four digits for the year, two digits for the month, two

digits for the day, two digits for the hour, two digits for the

minute, and optionally a dot or comma and two digits for the

second. By default, this way describes the local date and time.

You can also use a positive (+) or negative (-) delay with

respect to the universal time coordinate (UTC) to express the

 21

local date and time. If this format wants to describe the UTC,

just append the ‘Z’ to the end of the character string to

indicate it.

UTCTime same to GeneralizedTime except only two digits for the year

BIT STRING a binary string of ‘0’ and ‘1’

Octet String same to BIT STRING, emphasizing on an octet as a unit; an

octet has 8 bits.

PrintableString the alphabet that can be printable includes spaces, uppercase

and lowercase letters, digits and the symbols “’”, “(“, “)”, “+”,

“,”, “-“, “.”, “/”, “:”, “=”, and “?”.

UniversalString the UCS (Universal multiple-octet coded Character Set)

standard define 231 cells (each cell contains a single character)

to accommodate all the alphabets of all the languages in the

world. It plans 128 groups of 256 planes of 256 rows of 256

cells. Currently, only the first plane (38,885 cells) called Basic

Multilingual Plane (BMP) is allocated. A character will be

encoded by four bytes (UCS-4) [29].

BMPString represent the first plane of UCS. It uses two bytes to encode a

character.

UTF8String use “UCS Transformation Format, 8-bit form” (UTF-8) to

efficiently encoding a character of BMPString into variable

length.

Table 3-2: ASN.1 data types used in X.509 certificate

 22

3.1.3. DER

 Although ASN.1 provides a good way to describe messages in an abstract

manner, the content of messages requires to be encoded by some rules for transfer

between communicating applications. Several encoding rules for ASN.1 exist [29].

 Basic Encoding Rules (BER) is the first encoding rules of ASN.1 and the basis

for the other encoding rules. BER has the format of a 3-tuple <Type, Length, Value>,

TLV for short. T indicates a data type in the ASN.1. For each type, there exists an

adjacent encoding rule. L points out the number of bytes that V occupies.

 Based on BER, there are another two encoding rules – Canonical Encoding

Rules (CER) and Distinguished Encoding Rules (DER). The reason why CER and

DER are created is BER allows too many encoding options for the same value such

that the intermediate relaying parties may re-encode the transfer data with different

options, which is not accepted for secured data like digital signature. So, CER and

DER put constraints on BER to make the encoding of the same value with no degree

of freedom. The major difference between CER and DER is CER allows the

indefinite-length format while DER only uses a definite-length format. In practice,

DER is the mostly used encoding rules for X.509 certificates.

3.1.4. Base64

 The result of DER encoding of an X.509 certificate is binary content that is not

human readable and not suitable to transmit over a text-only medium like e-mail.

Base64 is a way to convert unreadable characters of 8-bit ASCII character set into

readable characters. The principle of Base64 is as follows. For each three bytes

(8*3=24 bits) of the binary content, cut them into 4 chunks of 6-bit and encode each

chunk into a Base64 character (26 = 64 characters ,‘A’ to ‘Z’, ‘a’ to ‘z’, ‘0’ to ‘9’, ‘+’ ,

 23

‘/’, plus ‘=’) [14].

3.2. WAP Certificates

 There are several kinds of certificates specified in WAP for different purposes.

The WTLS provides the communication security for data transfer in WAP 1.x and

defines three classes of security level. WTLS Class 2 requires sever authentication

and thus brings the format of WTLS certificate. Moreover, the WPKI supports the

end-to-end security for the need of m-commerce to ensure the not-repudiation service.

In WPKI, certificates are intended to be stored in the WIM which is usually embedded

in the mobile device. How to download CA certificates into WIM correctly and make

user certificates more efficiently stored in WIM become two important issues. For

these issues, WAP creates a profile of the X.509 certificate accustomed to the wireless

environments and defines several certificate formats for the downloading

mechanisms.

3.2.1. Profiled X.509 Certificates

To make the X.509 certificates to be used in the wireless networks, WAP has set

profiles for X.509 certificates of different roles [8]. For the CA, it defines the least

required fields for certificates stored in WIM or sent over-the-air via WAP protocols.

For the user, it defines two types of certificates stored in WIM for user authentication

and digital signature, respectively. In general, the WAP Profiled X.509 certificates of

CA and user contain the same common fields as existing Internet X.509 certificates.

The fields specific to WAP are listed in the following table.

 24

Field CA User

certificate serial number less than 8 bytes

signature algorithm sha1withRSAEncryption

 ecdsa-with-SHA1

subject public key RSA, ECC

key length RSA key: at least 1024 bits

 ECC key: at least 160 bits

keyUsage N.A. (not available) RSA key:

digitalSignature,

keyEncipherment,

nonRepudiation

 ECC key:

keyAgreement

nonRepudiation

subjectKeyIdentifier RSA: SHA-1 hash of the modulus of public key of

the subject

 ECC: SHA-1 hash of the x-coordinate of the

elliptic curve point

authorityKeyIdentifier same to

subjectKeyIdentifier

the subjectKeyIdentifier

of the issuer

basicConstraints isCA N.A.

extKeyUsage id-kp-codeSigning N.A.

Table 3-3: WAP Profiled X.509 certificates of CA and user

 25

3.2.2. WTLS Certificate

 Before WAP 2.0, WTLS is the only way to create secure connections for data

transfer. In the process of building a secure connection between the client and server,

the client will need to identify the server to ensure which server it is talking to. One of

ways to prove identity is using a certificate. The WTLS introduces a compact, binary

encoding certificate called WTLS certificate for server authentication.

 Basically, the fields in the WTLS certificate are similar to the common fields of

X.509 certificates. However, the WTLS certificate omits the extensions of the X.509

certificate and uses a more efficiently binary encoding rule than the DER to reduce

the size in large. The presentation language of data structure in WTLS is explained as

follows [4]:

 The basic block size is one byte (8 bits) and the byte ordering for a multi-byte

value is big-endian that the leftmost bit is the most significant bit.

 A comment is enclosed by the “/*” and “*/”.

 An optional component is denoted by enclosing it in “[[]]” double brackets.

 An opaque means one byte which the data is not interpreted.

 A vector (single dimensioned array) is a stream of homogeneous data elements,

expressed in the form of “T T’[n];” . T means a data type. T’ is a new type that is

a fixed length vector of type T. The size of T’ is n bytes, where n is a multiple of

the size of T.

 A variable length vector is denoted by “T T’<floor..ceiling>”, where flooring and

ceiling represent the minimum and maximum length of bytes, inclusively.

 The basic numeric data type is unsigned by unit8. Extended numeric data types

like unit16, unit24, and unit32 are the fixed length vectors of uint8.

 They type enum is represented by “enum {e1(v1), e2(v2),…, en(vn), [[n]]} Te;”.

 26

The e1(v1) means the first element and its value of enum type Te which may take

n bytes as the maximum length. Without explicitly specifying n, the space of Te

will be the number of bytes that can contain the largest value of its elements.

 A structure type that is much like the struct of C language is defined by:

struct{

 T1 f1;

 T2 f2;

 …

 Tn fn;

} [[T]];

 A WTLS certificate is defined as a structure type [4]. The syntax and meaning

are listed in the following:

struct {

 ToBeSignedCertificate to_be_signed_certificate;

 Signature signature;

} WTLSCertificate;

struct {

 uint8 certificate_version;

 SignatureAlgorithm signature_algorithm;

 Identifier issuer;

 uint32 valid_not_before;

 uint32 valid_not_after;

 Identifier subject;

 PublicKeyType public_key_type;

 27

 ParameterSpecifier parameter_specifier;

 PublicKey public_key;

} ToBeSignedCertificate;

select(SignatureAlgorithm)

{

 case anonymous: { };

 case ecdsa_sha:

 digitally-signed struct {

 opaque sha_hash[20];

 }

 case rsa_sha:

 digitally-signed struct {

 opaque sha_hash[20];

 }

} Signature;

 The certificate_version is always 1. The supporting signature algorithms are

SHA1/RSA and SHA1/ECDSA. The public key types are RSA and EC. The content

of the subject and issuer is organized as follows:

<servicename>; <organization>; <country>[; <commonname>[; <extension>

[; <extension>[…]]]]

where:

 “; “ is a 2-character field separator.

 <servicename> is equivalent to Organization Unit (OU).

 <organization> is equivalent to Organization (O)

 <country> is equivalent to Country (C)

 28

 <commonName> is equivalent to Common Name (CN)

 <extension> is an attribute in the form of <type>=<value>

3.2.3. Hashed Certificate

 Either in WTLS or in TLS, to verify the server identity by means of server

authentication needs the trusted CA certificate that issued the server certificate,

directly or indirectly. In order to provide integrity, the trusted CA certificate is

downloaded in self-signed format. However, this way does not provide authentication.

To provide the authentication of the trusted CA certificate, the WPKI has specifies

two downloading mechanisms and each mechanism brings a new certificate format

[5].

 The first mechanism is called out of band hash verification and the certificate

syntax is as follows:

struct {

 uint8 version;

 CertDisplayName displayName;

 Certificate trustedCACert;

 opaque cainfo_url <0..28-1>;

 HashAlgorithm hash_alg;

} TBHTrustedCAInfo;

 The presentation language of the hashed certificate is same to the WTLS

certificate. The version must be 1 and the displayName is a name for display on the

WAP client device. The trustedCACert is the original CA certificate that can be an

X.509 certificate or WTLS certificate. The cainfo_url contains the CA’s URL for the

client to get further information about it. The hash algorithm is SHA-1.

 The essential of this method is that firstly wrapping the CA certificate into a

 29

TBHTrustedCAInfo structure and then hashing it with SHA-1 to calculate a hash

value of 30 decimal digits. The steps to work out the hash value are as follows:

Step 1: Apply SHA-1 to TBHTrustedCAInfo to get the SHA-1 digest of 160 bits.

Step 2: Take the leftmost 80 bits of the SHA-1 digest and divide them into five groups,

each group with 16 bits.

Step 3: Each of the five groups can be expressed as a 5 decimal digits (from ‘00000’

to ‘65535’). Then, for each group, calculate the check digit by

(a) Double the values of digits located at the odd positions from the left, leaving

the digits at even positions unchanged, and then combine all of the digits, newly

double digits and unchanged digits, into a new group of decimal digits.

(b) Add the individual digits of the new group. The sum must be a number

ending in zero (30, 40, 50, etc.). If the sum is not ending in zero, then the check

digit (0~9) is added to make it end in zero. So, each original group of 5 decimal

digits will get a check digit to append in the end.

Step 4: Combine the five groups of 6 decimal digits; we get the hash value of 30

decimal digits.

3.2.4. Signed Certificate

 The second mechanism for authentication of the trusted CA certificate is called

signature verification method. This method is simple. It also uses the same

presentation language as WTLS. To make a signed certificate, wrapping the CA

certificate into a TBSTrustedCAInfo structure, signing it to get the signature, and

finally putting both the TBStrustedCAInfo and signature into the

SignedTrustedCAInfo structure. The syntax is stated as follows [5].

struct {

 TBSTrustedCAInfo tc_info;

 30

 Signature signature;

} SignedTrustedCAInfo;

struct {

 uint8 version;

 CertDisplayName displayName;

 Certificate trustedCACert;

 opaque cainfo_url <0.. 28-1>;

 Certificate signerCert;

 SignatureAlgorithm sig_alg;

} TBSTrustedCAInfo;

 Several fields of the signed certificate are same to those of the hashed certificate.

The only difference is that a signed certificate will take the signer’s certificate with it

for the client to verify the signature in the SignedTrustedCAInfo structure.

3.2.5. Resp Certificate

 The user certificates defined in WAP are WAP Profiled X.509 user certificates

[8]. They can be saved in a LDAP directory or a database, or delivered to the mobile

device. If the user certificate has to be delivered, the WPKI specifies three possible

downloading types for it. WPKI use the certificate format defined in the following to

accommodate these downloading types [5].

struct {

 unit8 version;

 CertRespType type;

 select (type) {

 case cert_info:

 31

 CertDisplayName display_name;

 Identifier ca_domain;

 Identifier subject;

 opaque url<0..255>;

 case cert:

 CertDisplayName display_name;

 Identifier ca_domain;

 Identifier subject;

 X509Certificate cert;

 case referral:

 opaque url<0..255>;

 uint32 seconds_to_wait;

 }

} CertResponse;

 The first type just provides the URL about where the user certificate is located.

This is the preferred downloading type of the user certificate due to the less storage in

the client device. The second type will take the whole user certificate to be

downloaded. The third type is only used for requesting a new user certificate from a

CA and the CA responds it with the waiting time to retrieve the user certificate again.

3.3. Signature Algorithms

This section will introduce two signature algorithms – RSA and ECDSA--

supported in the WPKI. Both of these two algorithms use the SHA-1 as the hash

algorithm to generate the hash value of the message before creating the signature.

 32

3.3.1. SHA-1 Hash Algorithm

In cryptography, a hash algorithm is a function that takes a message of arbitrary

length as input, and outputs a fixed-size unique value, namely hash value or digest.

Such a function has several good properties. First, for any message of large size, the

length of output is short and fixed. Second, for any two different messages, there will

be two unique hash values. Third, it is very hard to derive the original message from a

hash value. Therefore, a hash value can be used to serve as a representation of the

input message.

Secure Hash Algorithm 1 (SHA-1) [12], based on MD4, is the hash algorithm

proposed by the U.S. National Institute for Standards and Technology (NIST), and

adopted by WAP to calculate the hash numbers for hashed certificates. The hash value

SHA-1 will produce is 160 bits of length. In addition to provide the identity of a

message, SHA-1 often coordinates with the signature algorithm to provide data

integrity. The algorithm details of SHA-1 and the difference between SHA-1 and

MD4 can be found in [26] [27].

3.3.2. RSA Signature Algorithm

RSA signature algorithm is the first and most popular signature algorithm

invented by R. L. Rivest, A. Shamir, and L. Adleman in 1978 [15]. It is belonging to

the public-key cryptosystem whose security is based on the hardness of solving the

factoring problem for a very big prime number.

To create and verify a signature, you first need to have a key pair -- private key

and public key. Below is the algorithm to create a RSA key pair [26].

Step 1: Generate two large distinct primes p and q with roughly same size

Step 2: Calculate n = p*q and φ(n) = (p-1)*(q-q), where φ(n) means the number

 33

of primes less and equal to n.

Step 3: Choose a random positive integer e, less than φ(n) and relative prime to

φ(n).

Step 4: Compute d = e-1 mod φ(n), where e* e-1 ≡ 1 (mod φ(n))

Step 5: (n, e) is the public key; (n, d) is the private key

With the key pair, we can generate a signature by a private key and verify it with

the corresponding public key. The algorithms are as follows. Suppose m represents

the message to be signed by the private key and H means the hash algorithm.

1. Signature Production:

 (a) Calculate m’ = H(m), where m’ is the hash value of m

 (b) Compute s = (m’)d mod n

 (c) s is the signature for m

2. Verification:

 (a) Calculate m’ = se mod n

(b) Compute m’’ = H(m), where m is the message attached with the

signature s

 (c) compare m’ to m’’; if not equal, verify failed.

3.3.3. ECDSA Signature Algorithm

Digital Signature Algorithm (DSA) is another signature algorithm that is adopted

as the Digital Signature Standard by NIST. Like RSA signature algorithm, it also

needs a key pair before doing signature related operations. The details about DSA key

pair generation, and signature creation and verification can be found in [16].

Elliptic Curve DSA (ECDSA) is the elliptic curve analogue of the DSA by using

the elliptic curve cryptosystems (ECC) as the underlying basis. The advantages of

ECC include smaller key sizes, less bandwidth requirements, lower power

 34

consumption. So, ECC shows its attractiveness to limited computing environments

such as mobile devices. The background about ECC and the algorithms of ECDSA are

also clearly explained in [16].

 35

Chapter 4 Toolkit Framework and

Implementation

In last chapter, we have explored the Internet X.509 certificate and WAP

compatible certificates in detail and discussed the signature algorithms supported by

WAP. In this chapter, we will introduce the design and implementation of our

proposed converter toolkit for WAP. The ultimate goal of our toolkit is to enhance the

mobile security for m-commerce.

To provide the WAP compatible certificates for different purposes across several

WAP versions and to assist the existing Internet CA’s easily porting their issued X.509

certificates to wireless networks with little afford, we design a converter toolkit that

provides two interfaces – a library and a GUI – to decode the content of Internet

X.509 certificates and then encode into WAP compatible certificates. Our target

certificates include both CA certificates and user certificates. And the supporting

signature algorithm we choose to implement is RSA. This is because most Internet

CA’s issue X.509 certificates by using RSA signature algorithm.

4.1. Certificates Conversion Paths

 Before we do the conversion, we need to have the Internet X.509 certificates first.

In addition to using the existing Internet X.509 certificates as the source of conversion,

out converter toolkit can also generate the WAP Profiled X.509 certificates for CA and

user, respectively.

 With the X.509 certificates, we can make them as input to the converter toolkit to

do the conversion for outputting the desired WAP certificates. In principle, the

 36

certificates conversion paths can be divided into two categories (See Fig. 4-1).

 Figure 4-1: WAP certificates conversion paths

The first kind of conversion paths is for the CA X.509 certificates that are

self-signed by their own private keys. For a CA X.509 certificate, it can be converted

into three different WAP compatible certificates. One is the WTLS certificate, which

is specified in the WTLS specification for providing server authentication to build a

secure connection between the client and server. The other two are essentially the

wrapping of CA X.509 certificates for the downloading mechanisms defined in the

WPKI specification.

The second kind of conversion paths is for the user X.509 certificates that are

issued by the CAs. For a user X.509 certificate to be delivered to the mobile device, it

needs to be converted to the downloading format specified in the WPKI specification.

As described in section 3.2.5, the user X.509 certificate can be wrapped into three

 37

kinds of forms. Out converter toolkit implements the URL form which is suggested in

the WPKI.

4.2. Framework Design

 We implement the WAP certificate converter toolkit in Java (JDK 1.4) and build

it upon the Java Cryptography Architecture. The whole framework is shown in Figure

4-2. In this section, we first describe the components of our toolkit and the utility

libraries underlying it. And then, in next two sections, we discuss the implementation

details of our converter toolkit.

Figure 4-2: Architecture of WAP Certificate Converter Toolkit

4.2.1. WAP Certificate Converter Toolkit

 Our proposed WAP Certificate Converter Toolkit is made up of a library and a

 38

friendly GUI application based on the library to provide a variety of views of all

certificates talked in the Chapter 3. It contains four Java packages, shown in Figure

4-3. The library consists of dcslab.wap and dcslab.wap.cert two packages. The GUI

application is implemented in the dcslab.wap.ui package. The dcslab.wap.util package

provides convenient facilities supporting for both the library and the GUI application.

Figure 4-3: packages of WAP Certificate Converter Toolkit

4.2.2. Java Cryptography Architecture

One of the famous features in Java language is the tightly binding with security.

Two architectures about security defined in Java are the Java Security Architecture

and Java Cryptography Architecture. The former regulates the security mechanism of

Java platform while the latter emphasizes on the cryptographic functionality for Java

language [24].

 Java Cryptography Architecture and its extension, Java Cryptography Extension,

provide a service provider framework that they define the interfaces of cryptographic

API, the Java Security API, and leave the implementation of those API to the

 39

cryptographic service providers. Currently, in Java platform, Sun has supplied a few

cryptographic service providers such as Sun, SunJCE, Sun JSSE, and SunJGSS to

provide default implementation of Java Security API.

4.2.3. Bouncy Castle Crypto

 Even though Sun has already supplied several cryptographic service providers, it

still lacks many demanding security functionalities. For example, we can not create an

X.509 certificate from the standard Java Security API, not to mention other low-level

cryptographic manipulations. Moreover, the source code of Sun’s cryptographic

implementation is not completed, even it can be downloaded freely, and can not be

modified with arbitrary. Therefore, we need other cryptographic service providers to

overcome above deficiencies.

 The Bouncy Castle Crypto package is an open source project that provides a Java

implementation of cryptographic algorithms [17]. It makes up for the insufficiency of

Sun’s service providers. In addition to easily modifying it to fit our need, it also

provides quite a few convenient low-level API to manipulate cryptographic

algorithms and X.509 certificates. Our converter toolkit makes use of these API to

deal with ASN.1 syntax, DER encoding, and X.509 certificates.

4.2.4. Cryptix JCE

Cryptix JCE is another Java cryptographic service provider [18]. It is the chosen

service provider by the PureTLS toolkit (see next section). The Java Certificate

Services (see below section) also uses it to transform the binary format of X.509

certificates to the BASE64 format.

 40

4.2.5. PureTLS Toolkit

PureTLS Toolkit is the Java version of SSL implementation developed by Eric

Rescorla [28]. It provides the API for Java Certificate Services to create the RSA key

pair and the X.509 certificate request in PKCS #10 format. Besides, it also provides

the utility for our converter toolkit to wrap a string of Distinguished Name into an

X509Name object.

4.2.6. Java Certificate Services

 Java Certificate Services (JCS), developed by Vladimir Silva, provide the

management of X.509 certificates, including certificate request creation (CSR), CSR

signature, user certificate creation, and self-signed (CA) certificate creation [13]. JCS

has implemented a simple Internet CA and can create Internet X.509 certificates for

CA and user. Our converter toolkit modifies it for generating the WAP Profiled X.509

certificates of CA and user.

4.3. Converter Library

4.3.1. Building Blocks

From the previous introduction, we take advantage of the underlying libraries,

especially the Bouncy Castle Crypto package, to process the stuff about X.509

certificates. However, to convert X.509 certificates to WAP compatible certificates,

we need to be able to deal with the syntax and binary encoding of WAP certificates.

So, we implement the presentation language specified in WTLS specification as Java

classes in the dcslab.wap.cert package to provide the high-level value access and

 41

low-level data encoding.

A data type defined in the presentation language will extend the abstract class

AbstractEncoder that implements the Encodable interface and supply the

implementation of method getData() with binary encoding of its value (see Figure

4-4). The binary encoding of a data type is a 2-tuple <length, value>. The length is

either explicitly defined with the data type or the least space to contain the largest

value of the data type.

Figure 4-4: Class Diagram of Building Blocks

 In addition, we provide four wrapper classes for WAP certificates as the unified

interface for outside access. They are WTLSCert, HashedCert, SignedCert, and

RespCert. The essential information encapsulated in these wrapper classes is listed in

the following table.

Wrapper Class WAP certificate MIME Type

WTLSCert WTLSCertificate application/vnd.wap.wtls-ca-certificate

HashedCert TBHTrustedCAInfo application/vnd.wap.hashed-certificate

SignedCert SignedTrustedCAInfo application/vnd.wap.signed-certificate

 42

RespCert CertResponse application/vnd.wap.cert-response

Table 4-1: Wrapper classes for WAP certificates

4.3.2. CAModule

This class and its supporting classes provide the functionality of creation of key

pairs and X.509 certificates, parsing of X.509 certificates, and DER encoding of

ASN.1 syntax. CAModule acts as a CA and the Figure 4-5 shows its public methods.

Figure 4-5: public methods of CAModule

We use the RSA algorithm to generate a key pair and the key length is either

1024 bits or 2048 bits that corresponds to the requirement of WAP. The signature

algorithm of the X.509 certificate is SHA-1/RSA. The process of creating a new CA

X.509 certificate is as follows. Step 1, we create a public/private key pair with a

random number as the seed. Step 2, we wrap the string of CA name into a X509Name

object and use it, the generated public key, and other information to fill out the

TBSCertificate structure. Step 3, we apply SHA-1 hash algorithm on the

TBSCertificate structure to get a digest of 160-bit length and then sign the digest with

RSA signature algorithm to get the signature. Step 4, the combination of

TBSCertificate structure and the signature is what so called an X.509 certificate. Step

5, the content of an X.509 in Step 4 is DER encoding; that is, certain binary format.

To make it human readable and can be transmitted through textual medium, we

 43

transform it into the text form by Base64 encoding. Then, we insert the header

“-----BEGIN CERTIFICATE-----“before it and append the footer “-----END

CERTIFICATE-----“after it. The resulting text is usually what we apply for an X.509

certificate from the Internet CA.

The creation of a user X.509 certificate is similar to that of a CA X.509

certificate. However, there are two differences. First, the CA certificate is self-signed;

that is, the fields of subject and issuer are with the same value and the whole

certificate is signed by the subject’s private key. Second, the extension fields such as

keyUsage, extKeyUsage, basicConstraints, subjectKeyIdentifer, and

authorityKeyIdentifier have different meanings between a CA certificate and a user

certificate.

4.3.3. ConverterFactory

The task of CAModule is to create X.509 certificates of CA and user. Once we

have the X.509 certificates, we can convert them into WAP compatible certificates by

the need. The conversion is done via the ConverterFactory class (see Figure 4-6).

ConverterFactory is designed as an abstract class that its subclasses have to

implement four abstract methods. They are generateWTLSCert(),

genereateHashedCert(), generateSignedCert(), and generateRespCert(). The first three

methods are to convert a CA X.509 certificate into WTLSCert, HashedCert,

SignedCert, respectively. The last method is used to convert a user X.509 certificate

into a RespCert.

A conversion path means the transforming process from one certificate to another.

For each conversion path, we design a dedicated class for the conversion job and put

it as an inner static class in the ConverterFactory. The reason why we do such design

 44

is we hope to concentrate the conversion capabilities on the ConverterFactory abstract

class so that the concrete classes inheriting from it can easily and flexibly choose the

conversion classes to fulfill the abstract methods. For example, the

X509ConverterFactory class is a subclass of ConverterFactory and implements the

four abstract methods by using the four conversion classes embedding in the

ConverterFactory.

 Figure 4-6: ConverterFactory class

4.4. Converter GUI

 The Converter Library provides the API for programmers to do the entire

conversion job. To use it needs writing programs. For convenience of use and for

operators who are not good at programming, we design a GUI application to make the

conversion more easily. The GUI is not only based on the Converter Library, but also

further provides a variety of views for a certificate. There are four views of a

certificate that our GUI can support. The field view can see the high-level value of

 45

each field of the certificate. The syntax view can show the data structure of a field.

The binary view can watch the low-level binary encoding of the field. The Base64

view can look the text form of the certificate.

 The major components of the GUI application are depicted in Figure 4-7.

 Figure 4-7: major components of Converter GUI

4.4.1. ResourceManager

ResourceManager is responsible for the creation of menus, popup menus, toolbar,

menu items, and buttons. It reads a configuration file that records the information of

all resources and generates above described UI stuff to hook in the main frame.

4.4.2. ActionManager

 ActionManager is the manager of the states of all action objects. Basically, for a

GUI application, several UI items may trigger the same action object when they are

activated. To reflect the states of those UI items linking with the same action object in

 46

time, ActionManager will maintain a state database to record the recent status of all

action objects.

4.4.3. StatusManager

StatusManager takes responsibility for managing the status bar. The job it

performs is to show the helpful information in the status bar when the mouse pointer

moves on the UI items.

4.4.4. UserObject

 The UserObject is a data object set in a tree node. Actually, it is a data container

that encapsulates the certificate object. The inheritance hierarchy of UserObject and

the containing certificate objects (in the parentheses) are shown in Figure 4-8. When a

tree node is selected, the UserObject it links with will be passed to the Display (see

next section) to show the detailed information of the certificate.

 47

Figure 4-8: inheritance hierarchy of UserObject

4.4.5. Display

The Display is just a collection concept. In fact, it is the displaying panel of field

view, syntax view, binary view, and Base64 view. For each certificate object, there

will have a corresponding Display to it. Each time the selected tree node passed the

UserObject to its corresponding Display, the information of the certificate object

within the UserObject will be retrieved and shows in the right regions of the

displaying panel.

 48

Chapter 5 Experiment and Evaluation

To evaluate our proposed converter toolkit, we conduct three experiments. The

first experiment is to create WAP compatible certificates from X.509 certificates. We

use the GUI version of our toolkit to do this experiment. The second experiment is to

test the correctness of those certificates from the first experiment. We will import the

WAP certificates created by the first experiment into a simulated WAP cell phone to

see whether those WAP certificates can be accepted. In the final experiment, we

demonstrate a small m-commerce application that will make a digital signature via the

Crypto.signText() method with a user private key.

5.1. Experiment 1: Certificates Conversion Paths

This experiment wants to verify the conversion paths described in section 4.1.

Those conversion paths will create WAP compatible certificates.

5.1.1. Environment Configuration

To do the conversion, we need to have the Internet X.509 certificates of CA and

user. For simplicity, we create them directly from the GUI application. In fact, the

X.509 certificates produced by our toolkit have already been the WAP Profiled ones.

Even so, they still can be used as the sources of the conversion.

 49

5.1.2. Experiment Result

The test items and results are shown in the following table.

Test Item Description Result

create a CA X.509

certificate

the CA X.509 certificate is used as the

source of conversion

see Figure 5-1

create a user

X.509 certificate

the user X.509 certificate is used as

the source of conversion

see Figure 5-2

convert to WTLS

certificate

convert the CA X.509 certificate into a

WTLS certificate

see Figure 5-3

convert to Hashed

certificate

convert the CA X.509 certificate into a

Hashed certificate

see Figure 5-4

convert to Signed

certificate

convert the CA X.509 certificate into a

Signed certificate

see Figure 5-5

convert to Resp

certificate

convert the user X.509 certificate into

a Resp certificate

see Figure 5-6

Table 5-1: Experiment 1 Result

 50

Figure 5-1: create a CA X.509 certificate

Figure 5-2: create a User X.509 certificate

 51

Figure 5-3: convert to WTLS certificate

Figure 5-4: convert to Hashed certificate

 52

Figure 5-5: convert to Signed certificate

Figure 5-6: convert to Resp certificate

 53

5.1.3. Evaluation

The six test items will create two private keys, six certificates, and a hash value

of 30 digital numbers. Four of six certificates are the converted WAP certificates

whose filename extensions are .wtls, .hashed, .signed and .resp. The hash value is

stored in a file with extension .hashnumbers. From the view of certificate size, DER

encoding of X.509 certificates really produces more bytes than the binary encoding of

WTLS certificates.

5.2. Experiment 2: Import WAP Certificates into WIM

This experiment will check the correctness of those certificates created by

Experiment 1 by importing them to the WIM within a mobile phone.

5.2.1. Environment Configuration

We use the Nokia Mobile Browser 4.0 (NMB 4.0) [19] as the simulated mobile

phone. Within the NMB 4.0, there is software-based WIM called Nokia SoftID to

store the imported certificates. We will import the certificates from locally and

remotely. To locally import a certificate, we use the tool provided by Nokia SoftID.

For remotely downloading certificates, we need the WAP gateway and the PKI Portal.

We use the Nokia WAP Gateway Simulator 4.0 (NWGS 4.0) [20] and Tomcat 4.1 [22]

to simulate the WAP gateway and the PKI Portal, respectively.

 54

5.2.2. Experiment Result

The test items and results are shown in the following table.

Test Item Description Result

import a CA X.509

certificate

import the CA X.509 certificate

locally to the WIM

see Figure 5-7

import a CA WTLS

certificate

import the CA WTLS certificate

locally to the WIM

see Figure 5-8

import a CA

Hashed certificate

download the CA Hashed certificate

remotely to the WIM

see Figure 5-9

import a CA Signed

certificate

download the CA Signed certificate

remotely to the WIM

see Figure 5-10

import a user X.509

certificate

import the user X.509 certificate

locally to the WIM

see Figure 5-11

import a user Resp

certificate

download the user X.509 certificate

remotely to the WIM

see Figure 5-12

Table 5-2: Experiment 2 Result

 55

Figure 5-7: import a CA X.509 certificate

 56

Figure 5-8: import a CA WTLS certificate

 57

Figure 5-9: import a CA Hashed certificate

 58

Figure 5-10: import a CA Signed certificate

 59

Figure 5-11: import a user X.509 certificate

 60

Figure 5-12: import a user Resp certificate

 61

5.2.3. Evaluation

All of the test items are done well except the one of importing CA Signed
certificate. According to the WPKI specification, a CA Signed certificate will have
both inner and outer signatures within it. The inner signature is the signature within
the signerCert. The outer signature is the signature of TBSTrustedCAInfo structure
signed by the signerCert. The client must trust the signerCert before using the
certificate embedded in the TBSTrustedCAInfo structure. In our implementation, the
signerCert and the CA certificate to be downloaded are the same because the CA is
the Root CA. One possible reason to explain this failure is the NMB 4.0 can not trust
our CA as a Root CA.

5.3. Experiment 3: A Simple M-Commerce Application

with Crypto.signText

This experiment shows a simple m-commerce application to provide

non-repudiation service via Crypto.signText method with the user certificate created

by our toolkit.

5.3.1. Environment Configuration

The simple m-commerce application is modified from the sample provided by

the Nokia Mobile Internet Toolkit (NMIT) 4.1 [21]. We use the same environment

configuration in Experiment 2. The only difference is that the role of Tomcat server is

changed to be a web fast-food store. The scenario of the simple m-commerce

application is as follows. The user has ordered a pizza and a cup of coffee from the

web fast-food store. The store sent the order back to the user for requesting

confirmation. After make sure the order recorded in the web fast-food store is correct,

the user signs the order by calling Crypto.signText() with his signature key stored in

 62

the WIM and then submits the order with its signature to the web fast-food store to

accomplish the transaction.

5.3.2. Experiment Result

The test items and result are shown in the following table.

Test Item Description Result

download the order

for confirmation

download the order recorded in the

web fast-food store

see Figure 5-13

sign the order and

submit

confirm the order by signing it and

send back to web fast-food store

see Figure 5-14

Table 5-3: Experiment 3 Result

Figure 5-13: download the order for confirmation

 63

Figure 5-14: sign the order and submit

5.3.3. Evaluation

This experiment successfully illustrates how to use a private key and

corresponding user certificate stored in the WIM with the Crypto.signText method to

provide the non-repudiation service in a typical m-commerce application.

 64

Chapter 6

Conclusions and Future Works

Conclusions

To promote more m-commerce applications developed on mobile devices,

security undoubtedly plays the key role among them. To bring the public-key

cryptography into wireless networks for mobile security, WAP has devoted itself for

setting up several standards for it.

In this paper, we try to solve a problem related to the public-key cryptography in

the wireless world. The problem is how to use existing Internet X.509 certificates on

mobile devices. To figure it out, we consider three dimensions of the problem domain.

The first dimension is the compatibility over WAP versions. The second one is the

limitations in the wireless environment and mobile devices. The last one is the current

situation about PKI in the Internet. The solution we propose to address those issues is

the design of WAP Certificate Converter Toolkit.

The main merits of our developed toolkit can be concluded as follows:

 It can produce certificates compatible over all of WAP versions.

 The existing Internet CAs can easily transform their issued X.509

certificates into WAP certificates.

 Each field of the certificate produced by it can be seen in variable views.

 It provides two interfaces – Library API and GUI – for programmers and

operators respectively.

 65

Future Works

With our toolkit, it is easy to build the skeleton of WPKI. However, to

completely build up the WPKI to provide full support of mobile security for

m-commerce applications, there are several things to be done. Some of them are

concerning about the extension of our toolkit; the others are with respect to the

implementations of related WPKI facilities.

The future development of our toolkit can go to three directions. First is the

support of ECDSA. Even though RSA is the widely used signature algorithm in the

Internet, the advantages of ECDSA, compared to RSA, show it is suitable to be

applied in limited computing environments. Another reason to add ECDSA support is

it is another signature algorithm specified by WAP. The second is the design of

decoder for SignedContent structure generated by Crypto.signText function. Before

the web server verifies the signature signed by the user, it need to first decode the

structure to retrieve the signature and related information about the public key.

As to the related facilities to build a complete WPKI, storage for certificates

saving, either a database or a LDAP directory, a PKI Portal to check and audit the

identity of users, web interface to do all the management, and a real e-commerce

application are considered important issues to be further solved.

 66

Reference

[1] WAP Forum (2000), “Wireless Application Protocol White Paper”, June 2000.

URL: http://www.wapforum.org

[2] WAP Forum (2002), “Wireless Application Protocol WAP 2.0 Technical

White Paper”, January 2002. URL: http://www.wapforum.org

[3] WAP Forum (2001), “WAP Architecture”, WAP-210-WAPArch-20010712-a, 12

July 2001. URL: http://www.wapforum.org

[4] WAP Forum (2001), “Wireless Transport Layer Security”,

WAP-261-WTLS-20010406-a, 6 April 2001. URL: http://www.wapforum.org

[5] WAP Forum (2001), “WPKI”, WAP-217-WPKI-20010424-a, 24 April 2001.

URL: http://www.wapforum.org

[6] WAP Forum (2001), “Wireless Identity Module”, WAP-260-WIM-20010712-a,

12 July 2001. URL: http://www.wapforum.org

[7] WAP Forum (2001), “WMLScript Crypto Library”,

WAP-161-WMLScriptCrypto-20010620-a, 20 June 2001. URL:

http://www.wapforum.org

[8] WAP Forum (2001), “WAP Certificate and CRL Profiles”,

WAP-211-WAPCert-20010522-a, 22 May 2001. URL:

http://www.wapforum.org

[9] G. Radhamani, K. Ramasamy, “Security Issues in WAP WTLS Protocol”, IEEE

2002 International Conference on Communications, Circuits and Systems and

West Sino Expositions, Volume 1, Number 29, July 2002, 483-487.

[10] Thanh V. Do, “WAP Security: WTLS”, 2001. Available from

http://ece.gmu.edu/courses/ECE636/project/reports/TDo.pdf

 67

[11] RFC2459, "Internet X.509 Public Key Infrastructure Certificate and CRL

Profile", January 1999.

[12] RFC3174,”US Secure Hash Algorithm 1 (SHA1)”, September 2001.

[13] Vladimir Silva, “Manage X.509 certificates in your grid with Java Certificate

Services”, 2003. Available from

http://www-106.ibm.com/developerworks/grid/library/gr-jsc/?ca=dgr-lnxw06M

anageX.509

[14] Chris Melnick, “How to translate into base64 and back”, 2004. Available from

http://www.aardwulf.com/tutor/base64/index.asp

[15] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems”, Communications of the ACM,

Volume 21, Issue 2, February 1978, 120-126.

[16] Don B. Johnson and Alfred J. Menezes, “Elliptic Curve DSA (ECDSA): An

Enhanced DSA”, 1999. Available from http://www.certicom.com

[17] Bouncy Castle Crypto, http://www.bouncycastle.org

[18] Cryptix JCE, http://www.cryptix.org

[19] Nokia, Nokia Mobile Browser 4.0 (NMB 4.0), http://www.forum.nokia.com

[20] Nokia, Nokia WAP Gateway Simulator 4.0 (NWGS 4.0),

http://www.forum.nokia.com

[21] Nokia, Nokia Mobile Internet Toolkit (NMIT) 4.1, http://www.forum.nokia.com

[22] Apache Jakarta Tomcat 4.1, http://jakarta.apache.org/tomcat

[23] Andrew Nash, Bill Duane, Derek Brink and Celia Joseph, PKI: implementing

and managing E-security, McGraw-Hill, 2001.

[24] Li Gong, Gary Ellison and Mary Dageforde, Inside Java 2 Platform Security:

Architecture, API Design and Implementation, second version, Sun, 2003

[25] Rich Helton, Johennie Helton 著，楊松諺/上官飛鳳 譯，Java Security 全方

 68

位解決方案，碁峰，2002.

[26] Alfred Menezes, Paul van Oorschot, Scott Vanstone, Handbook of Applied

Cryptography, CRC, 1997

[27] Charlie Kaufman, Radia Perlman, Mike Speciner, Network Security, second

version, Prentice Hall, 2002.

[28] Eric Rescorla, SSL and TLS, Addison Wesley, 2001.

[29] Olivier Dubuisson, translated from French by Philippe Fouquart, ASN.1 -

Communication Between Heterogeneous Systems, , Morgan Kaufmann, 2001.

