I
2
YR
>3

WAP & # #& #/ai % &k 3+ & 7 IF
Design and Implementation-of WAP-Certificate Converter

Toolkit

¥ 4

oyo4 ipEam
= S I W A &

FEREBE L+HW0 FXA

S BR SR s A P

CRESIEN B e

!

7 fd = (mobile security)— kLT ﬁéﬁi [¥] 3~ FU R %5 (m-commerce)
AR IF ;[EI@@ o SEfF= > EFEGETH |57 E(Wireless Application Protocol, WAP)
LIFETT U= FY[IH EAERYE 5 fﬁ WTLS (Wireless, Transport Layer Security), WPKI
(Wireless Public-Key Infrastructute), -WIM. (Wireless Identity Module), and
WMLScript Crypto Library. 7+ iﬁﬂ*@f‘*ﬂl s THEel VRS [HER LIS (certificate)
AURE] - SRn) - £ ’iif"qu %iiﬁgu[ﬁiﬁf[] » WAP E1FrEs v JePEiR uﬂﬁcfu > [l
[R 2P F RERAREE _Eopi Y X500 W - s T A A S clsrlﬁiliﬂ Y
12 WAP [iu75 Bhee! Filin] -

T F.mﬁw i 25 PIRRAAIE (= [WAP ST 5 R [
R e i LRI R I X 509 TRGEHRS WAP AR
TR R AR WAP S EUERL o S PRI Vig [H WAP RERBELT 5

PRIt 2 E T A RAE 3k & X509 WRGEHVIRGE - (Certification Authority,

_-Ell

CA) » PSR o » BUSTH - B JéE:E,I » FfE FL b PYTELSY WAP Y855 o
BRI S Ed 3 AIRECHS X500 IREHIS A I A T SR AT
Gl e arstvas EaR T R I S S g e B B

il

Design and Implementation of WAP Certificate Converter Toolkit

Student: Chih-Ming Yan Advisor: Shyan-Ming Yuan

Department of Computer and Information Science

National Chiao Tung University

Abstract

Mobile security has been a key factor for development of m-commerce
applications on hand-held devices. To, enhance the mobile security, WAP (Wireless
Application Protocol) has defined several-"standards such as WTLS (Wireless
Transport Layer Security), WPKI (Wireless - Public-Key Infrastructure), WIM
(Wireless Identity Module), and- WMLSeript Crypto Library to regulate it. One
important component of those standards is the use of certificate. However, for fitting
the limitations in the wireless environment, WAP introduces several certificate
formats in those specifications and the existing Internet X.509 certificates can not

download directly to WAP-enabled handsets without any modification.

In this paper, we design and implement a WAP Certificate Converter Toolkit to
provide the convenient interfaces for doing the conversion from the existing Internet
X.509 certificates to WAP compatible certificates that can be deployed in
WAP-enabled mobile devices. The toolkit we provide can be used by the Internet
CA’s (Certification Authority) to dynamically and easily transform their issued
certificates into WAP certificates by the need of users. As far as enhancement of
mobile security and conversion cost from Internet X.509 certificates are concerned,

il

this toolkit is convenient and economic to a large extent and can be used to help the

development of m-commerce applications.

iv

Acknowledgement

[V POV RIS % o 8 | e RS
RG] TR S i o PURRLE S S O] AR
(es A QIR SR B S A B VES A D3R S g 2
FlIR 12 ?'“QEHJ‘F LR R e R e S S NG TR
RG4S o FTRS AT (PR T - SRR TS R A
wuﬁwqw R T BT R B PR R - B B
[FISFIT - B PoRRLREY R e T I S el S E e 9|:

T SRR R AT B S PR T
DR S YR EF ey BRI A FE PR e L TR A B
RN O S R W R T TIPS AR
- @%ﬁi‘ﬁ%ﬁﬁ’ﬁﬂ/ BT PIIED R ISR 1 b s PTRL YR floes
e e et e B P IR R ik I RGBT Y O 3 12
R O R TRV R R B AT S

Table of Contents

ACKNOWIEAGEMENTeiiiieceecie e vV
Table 0f CONTENTSccviiiicceece e e Vi
LIST OF FIQUIES ..ot IX
LISt OF TaDIES......eiiiieece e e Xi
Chapter 1 INtrodUCTION........cooviiie e 1
L1, MOTIVALIONccuiiiiiiie ettt et et e e et e e eaveeesareeeeabeeesseeeaneeans 1
L2, ODBJECLIVES .eviieeiieiiiiieeiiie ettt e ettt e et e e et e e s teeestaeeesaaessaeesssseesssaeesssaeensseeensseenns 2
1.3, Thesis Organizationc.cccueerieeiiienieesiienieeieeseeesieesieeeaeesseeenseesaeeenseensnes 3
Chapter 2 BacKgrouNnds s seeeseeseenieaieesee e s seeesseesessseeans 5
2.1, WAP Concept......oooeee e ieee TN oilini et 5
2.1.1. WAPLx.. 3 Nl B . .., 5

2.1.2. WAP 2.0 ... 500 WSS .. 7

2.2, WAP Security MechaniSms. i i eeiee et eee e eveeesvee e s 9
2.2.1. WITLS et e e e eaaa e e e 10

2220 WPKI oo, 12

2.3, ME Security FUNCtionalityccccoieiiiiiiiiiieiieeieeieeie et 14
2.3.1 WIM ..ot 14

2.3.2. WMLScript Crypto Librarycccocceevieniiienieeiieieeieeeeeeene 15
Chapter 3 Certificates ANalYSIScccvivieiiieiieiie e 18
3.1 X509 CertifiCate....ooeiuiieeiieeciie ettt ettt 18
3.1.1. CONLENL ... e et e e e e e aarareaeaeas 18

3.1.2 ASNL L e e 19

3130 DER e, 22

vi

3.14. BaSEOG ...t e e 22

3.2. WAP CertifiCates....ccueeiuiieiieeiieiie ettt 23
3.2.1. Profiled X.509 Certificatesccceeruereeneerierieneeiereeseeeeeeene 23

3.2.2. WTLS CertifiCate.......cooueeriieiieeiieiieeie et 25

3.2.3. Hashed Certificate..........coeoerieririinieiieiereeeeeeeee e 28

3.2.4. Signed CertifiCate.........cocuerieriiriineiiriieeeeceeeeeee e 29

3.2.5. Resp CertifiCate......ccoiiiiierieeiieiie ettt 30

3.3, Signature AIZOTIthMScoeiiiiiiiiiiiiiiee e 31
3.3.1. SHA-1 Hash Algorithm...........ccoeouieriieciieniieiieieeeeee e 32

3.3.2. RSA Signature Algorithmccoceeviniininiiniiniiinccciceee, 32

3.3.3. ECDSA Signature Algorithm..........c.cccceeveiiiniieniieniieiieeieeeeee, 33
Chapter 4 Toolkit Framework and Implementation........................... 35
4.1. Certificates Conversion Paths ...l if i 35
4.2. Framework Design....oo... b iimmmmsmmmsmms. o deeteeeereeeeneeneenieeeeneenie e sieeseeeanes 37
4.2.1. WAP Certificate Converter Toolkit...........cocevieveniieniniinieee 37

4.2.2. Java Cryptography Architectureccccevveeveeneneenensieneennenn 38

4.2.3. Bouncy Castle CIyplto....ccooieriieiiienieeieeieere et eee e eve e 39

4.2.4. CryptiX JCE. ..o 39

4.2.5. PureTLS TooIKit......ccooiriiiriiiieiirieieeesee e 40

4.2.6. Java Certificate SeTVICEScccveviieiiieriieiieeieeiee et 40

4.3, Converter LiDIary.........cccveiciieiiieiiieiieeie ettt ete et e ve e ees 40
4.3.1. Building BIOCKSoocuiiiiiiiiiiieee e 40

432, CAMOAUIC.....coiiieiieiieiiee s 42

4.3.3. ConverteTFactoryooveiiiiiriiiieeceeeeee e 43

4.4, Converter GUI ...c..ooiiiiiiiiieee et 44
4.4.1. ResourceManageroovviieiiiieniieiniieeeeeeeeee e 45

442, ACHONMANAZET ...c.veeeevieiieeiieeiieeieeriee e eieeereeteeeveeseesaneeseenenas 45

4.4.3. StaAtUSMANAZETc.eeeriiiiiieiieiieeeeecete e e 46

44,4, USCIODJECL .cuvvieiieeiiieiieeie ettt s es 46

445, DISPIAY ettt 47
Chapter 5 Experiment and Evaluation.............c.cccoocviieiinniiiienneennn, 48
5.1. Experiment 1: Certificates Conversion Pathsccoccooiiinininnnn. 48
5.1.1. Environment Configurationcccecceereeerieeneeesieeneeerneenneenees 48

5.1.2. Experiment Result..........ccocieiiiiiiiiiiiiieeeeeeee e 49

5130 Evaluationcccocoiiniiinininiiicicceeseeeseeeeee e 53

5.2. Experiment 2: Import WAP Certificates into WIMc...ccceeeriiniincnncnnnn. 53
5.2.1. Environment Configurationcccecceerveerieerieesieeneeesveenneenees 53

5.2.2. Experiment ReSult..............iila i 54

523, Evaluation f.seieedoe sforeeis 28 et 61

5.3. Experiment 3: A Simple M:Commetce Application with Crypto.signText.61
5.3.1. Environment Configurationccceerererieereeerreeneeereenneennens 61

5.3.2. Experiment Result.........ccoociiiiiiiiiiiiiiiieeceeeee e 62

533, Evaluationcccoooiiniiiiiniiiiicccce e 63
Chapter 6 Conclusions and Future WOrKScccccevvvivveveesie e 64
CONCIUSIONS ...ttt ettt st ettt et s sae e 64
FULUIe WOTKS ...ttt et e 65
RETEIENCE. ... 66

viii

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:

Figure 5-7:

The WAP Programming Modell.Xcccceevieeviiieeeiiieeiieeieens 6
WAP Gateway as Protocol SWitChccooevevieiiiiiiiiiieniiee, 6
WAP 1.x Protocol Stack and TCP/IP equivalent......................... 7
The WAP Programming Model 2.0 (1)cccoovveviieniiiiiieiieienne, 8
The WAP Programming Model 2.0 (2)ooooveeeciveeeiieeeiieeieeens 8
WAP 2.0 Protocol Stack and Architecturecccceevveeiienennn. 9
WTLS Internal Architecture...........ccccoeviiiiiiniiniiiniiiieeeee, 10
SignText and WPKIcccooiiiiiiiiiiiiiiiecee e 12
WAP certificates conversion paths..........ccccoeceeienicinenennen. 36
Architecturg-.of WAPCertificate Converter Toolkit.................. 37
packages of WAP Certificate Converter Toolkit....................... 38
Class Diagram of Building Blocks.............cccccoviininiiniinenene. 41
public methods of CAModule..........c.cccvvevieeiieiieeieeeieeeeee, 42
ConverterFactory Class.........occuevieeciieniieiiieieeieeee e 44
major components of Converter GUIL...........c.ccoecveveviieenieennen. 45
inheritance hierarchy of UserObjectccccoevveviieniinciiennnnns 47
create a CA X.509 certificatecceveeriieenieeiieniiiieenieeeene 50
create a User X.509 certificate.........cooeeverieneinenieneenienienene 50
convert to WTLS certificate.........occeevieiiiiniiiinieniiiieniceeee 51
convert to Hashed certificate.........c..cooceeverieniininiiniinciicnee 51
convert to Signed Certificateoovveeviieerciieeniie e 52
convert to Resp certificate..........ceeeveevieiiiienieniieiecieeeee 52

import a CA X.509 certificate........ccoeevvererreeeniieeriie e 55

X

Figure 5-8: import a CA WTLS certificate.........ccceeveeieneenenienieieciece 56

Figure 5-9: import a CA Hashed certificate...........cooevieniininiinennienicnnene 57
Figure 5-10: import a CA Signed certificate..........ccocvevieeciienieeciienieeneenne, 58
Figure 5-11: import a user X.509 certificate..........coeceeveeeiiienieiiiienieeenne 59
Figure 5-12: import a user Resp certificate..........ccoeeveevieeieenieeciieieeneenne 60
Figure 5-13: download the order for confirmationccccceeveieniennnnne. 62
Figure 5-14: sign the order and submit............cccooeviviieniieiieniicieeeeee 63

List of Tables

Table 2-1: classes of security level in WTLSc.cccoiiiiiiiniiiieeeeee 11
Table 2-2: Comparison of WPKI and PKI.........c.cccocovviiniiiiniininienieee, 13
Table 2-3: Structure of command APDUcoccoiiiiiiiiiiiiiieecee, 15
Table 2-4: Structure of response APDU.........cccoociiiiiiiiiiniiieieieeeeee e 15
Table 2-5: Prototype of Crypto.SignText.......ccceeviieeiiienciieeniieeeeee e 16
Table 3-1: Common fields of all versions of X.509 certificate.................... 19
Table 3-2: ASN.1 data types used in X.509 certificate.........cccceeevveerureeeneen. 21
Table 3-3: WAP Profiled X.509 certificates of CA and user........................ 24
Table 4-1: Wrapper classes for, WAP certificates.........cccccveeveiieenieeenneeennee. 42
Table 5-1: Experiment J Resultmmmaie, ..ol e i 49
Table 5-2: Experiment 2 Result ..o i 54
Table 5-3: Experiment3:Result i . ai e, 62

X1

Chapter 1 Introduction

1.1.Motivation

With rapid growth and development of mobile devices, such as mobile phones,
Personal Digital Assistant (PDA) and Pocket PC, today most people possess at least
one of those mobile devices. The pervasiveness and mobility of hand-held devices
lead to more and more demand to do business on them. And one of the major

concerns needed to be solved in mobile e-business is the security issue.

In WAP, it provides two kinds of security for this goal. One is communication
security, defined in WTLS (Wireless Transport Layer Security) and TLS (Transport
Layer Security). The other is end-to-end seeurity, specified in WPKI (Wireless Public
Key Infrastructure), WIM (Wireless~Identity, Module), and WMLScript Crypto
Library. Both of them use certificates as a<mean of proving identity and doing
encryption operations. A certificate is a digital credential that binds the identity of a
subject to a public key. Certificates are usually issued by a trusted third party named
Certification Authority (CA) in a public key infrastructure. Nowadays, most CA’s like

VeriSign and Thawte issue certificates based on X.509 format.

However, the existing Internet X.509 certificate is not suitable to directly bring
into the mobile devices without any modification because of the limitations of mobile
devices such as lower computing power and less memory and storage. Although the
WAP has introduced several certificate formats tailed for mobile devices in different
situations, the overload and convenience to create WAP compatible certificates by the

existing CA’s is still a problem. So, we develop a WAP Certificate Converter Toolkit

to help the CA’s to easily transform the Internet X.509 certificates they issued into

WAP compatible certificates for the mobile devices.

1.2.0bjectives

The purpose of this thesis is to enhance the security for increasing the mobile

e-business development. We will focus on providing a convenient toolkit for the

existing Internet CA’s to produce WAP compatible certificates for mobile applications.

The objectives that we want to achieve are as follows:

We want to be able to produce WAP compatible certificates across different
WAP versions. WAP has defined a set of protocols as the standard for
mobile devices manufacturets-and developers to follow in the mobile world,
and is still a continuois job since 1997. Until now, there are several major
changes in the WAP history, that result in different requirements over WAP
versions. For example, before WAP 1.2; the security support in WAP is only
through WTLS that just ensures the data transport between mobile devices
and WAP gateways, and the CA certificates stored in the mobile devices for
server authentication must be the WTLS format. Because not all of mobile
devices keep up with the latest version of WAP, we need to consider the
compatibility for different WAP versions. In practice, we can solve this
problem by requesting a mobile device to provide its supporting WAP

capability and accordingly transferring the certificate needed to it on the fly.

We want to be able to produce WAP compatible certificates from the
existing CA’s that issue X.509 format certificates with little overhead. In the
wired world, the Internet has developed a lot of complete and matured

protocols to engage in e-business. And most Internet CA’s have already built

2

their public key infrastructures in accordance with those standards. Even for
WAP, it models its protocols by modifying the existing Internet protocols to
fit into mobile environment. So, to request the existing CA’s to build
another mechanism for issuing WAP compatible certificates will increase
the cost of implementation and maintenance. A feasible strategy is to
provide an adaptive layer to transform the existing X.509 certificates into
WAP compatible ones. The major goal of our converter toolkit is to supply
such an adaptive layer to assist CA’s in doing the transformation easily for

mobile applications.

We want to be able to produce WAP compatible certificates by different
people with a convenient way, We target two kinds of people to use our
converter toolkit. One i$ the programimers.and the other is the operators. For
programmers, we provide a set of application programming interfaces (APIs)
packed in the form of library to-be used by them. For the operators, we
supply a visual graphic user interface (GUI) that is friendly to do the
certificates conversion and can see each field of the resulting certificate in a

variety of views.

1.3.Thesis Organization

In Chapter 2, we discuss the background of WAP and its security mechanisms. In

Chapter 3, we introduce the Internet X.509 certificate format, WAP certificate formats,

and signature algorithms used to apply on WAP certificates. In Chapter 4, we discuss

the design and implementation of our proposed converter toolkit. It will cover the

conversion paths from the X.509 certificates to WAP compatible ones and the

components of two interfaces — library and GUI — in detail. In Chapter 5, we conduct

3

three experiments to verify what we claim in the Objectives section and evaluate the

results. In Chapter 6, we give the conclusions and show some future works.

Chapter 2 Background

2.1.WAP Concept

The Wireless Application Protocol (WAP) is a set of protocols made by the WAP
Forum which is founded by Ericsson, Motorola, Nokia and Phone.com (formerly
Unwired Planet) in June 1997. It aims to be the mobile equivalent of traditional
Internet by using the existing Internet standards, mainly TCP/IP and WWW, and
extending them for the wireless networks and mobile devices. In contrast to wired
networks, wireless networks have several fundamental limitations. They have less
bandwidth that can cause poor performance, high latency and less connection stability.
Similarly, compared to desktop eomputers, mobile devices also have limitations to be
considered, including less memory and pewerful CPU, smaller displays, limited input

facilities, and restricted power consumption.

2.1.1. WAP 1.x

Programming Model

Based on the request-response pattern of WWW, the WAP programming model
extends it to three-tier architecture: client—gateway—server (see Figure 2-1). The
middle proxy performs a bridge between the wireless network and the wired Internet
(see Figure 2-2). In the side between the client and the proxy, they communicate with
each other via the wireless network like GSM (Global System for Mobile
Communications). On the other side, the proxy talks to the server by using wired
Internet. In addition to the role of networking protocol switch, the gateway also

performs the content encoder and decoder in between to make the data transfer more

5

compact in the wireless network.

Encoded Requests Requests >

Response (Content)

WAE User Agent

Encoded Response

Encoders and Decoders

Figure 2-1: The WAP Programming Model1.x (Source: [1])

wir oo e s
WAE WAE
WsP WSP
HTTP HTTP
WTP WTP
WTLS WTLS SSL SsSL
WDP WDP TCP TCP
Bearer Bearer IP P

Figure 2-2: WAP Gateway as Protocol Switch (Source: [2])

Protocol Stack

WAP 1.x means the combination of WAP 1.1 and WAP 1.2, made in June 1999
and December 1999 respectively. Actually, the architectures of WAP 1.1 and WAP 1.2

are the same (see Figure 2-3).

Wireless Application Other Services and
Environment (WAE) Applications

Wireless Session
Protocol (WSP)

Wireless Transaction
Protocol (WTP)

Wireless Transport

Layer Security (WTLS)

Wireless Bearers:

| sms [USSL] csp [EREH coma BN copo [Tl Etc...

Figure 2-3: WAP 1.x Protocol Stack and TCP/IP equivalent (Source: [1])

b RABTY S
In Figure 2-3, it shows the WTX protocol stack and the equivalent TCP/IP
-h?"'}lf [' ;_“_L'ﬂ\‘r .‘q*.‘faﬂ‘
o A
parts. It takes the layered-archit@_‘l _urEarl'!i Yio

odifies from the Internet TCP/IP protocol.

o

= W o
Each layer can only communicate W;itij-f T la;xér and lower layer and not all the
.!,l_:‘J

2 SN

layers are required. For examplé’}i&%ﬁW_TL’ﬁgjﬁ%Vides the security layer for data

TrrRyn

transfer, but it is optional. The major difference between WAP 1.1 and WAP 1.2 is the

L

A

enhancement of end-to-end security that was originally lacked in WAP 1.1. The
addition of protocols in WAP 1.2 about security includes WPKI, WIM, and

WMLScript Crypto Library.

2.1.2. WAP 2.0

Programming Model

In WAP 2.0, the WAP gateway is not a required component any more. The
mobile client can make a HTTP request directly to the web server without through the

WAP gateway (see Figure 2-4). However, if you want to offer other mobile services

like location, privacy, and push based services, a WAP gateway is still suggested (see

Figure 2-5)

Al
e Appfic' ation Server
I

| T ::)@

Micro amiw

Browser i

(WANTA) L I Initiator

Qﬁﬂmﬂ

Figure 2-4: The WAP Programming Model 2.0 (1) (Source: [3])
a5,

!'-_\l I. ;::I‘ = ¥ a -
s é E =
G L

Client Pm Appﬁcﬂiron Server

N
o Enmunm:um;jj» i mm:unu - [i.nur i
Syl amw -
l m
"I

Figure 2-5: The WAP Programming Model 2.0 (2) (Source: [3])

Protocol Stack

WAP 2.0, published in January 2002, gives a big change to WAP and brings the
wireless world closer to the Internet. It refines the WAP protocol stack by replacing
the four protocols below the WAE layer in WAP 1.x. with the optimized Internet

protocols, including HTTP, TLS, TCP, and IP (see Figure 2-6). Besides, it uses

XHTML/JavaScript in replace of original WML/WML as the new user interface

language of mobile devices.

oo

WAE WAE
HTTP WAP Proxy HTTP
TLS TLS
TCP* TCP
IP IP
Wireless Wired
—— PR

Figure 2-6: WAP 2.0 Protocol Stack and Architecture (Source: [2])

One of the problems WAP 2.0 wants'tor address is the security hole caused by
WTLS and the gateway [9]. IFI."WAPE_]'JI-__.}:(yv1th WTLS/TLS, the gateway needs to

decode the user’s sensitive data-in WTLS'férmat' andli then encode it into TLS format

for sending to the web server. Insuchway, 1t wi_.llll-;give a chance for the gateway to
peek user’s sensitive data even tholléﬁ the tﬁhrlél between the client and gateway is
safe. So, in WAP 2.0, the gateway is no longer performs the role of switch between
the wireless and wired network. This improvement decreases the processing overhead

in the gateway and effectively enhances the security in the tunnel.

2.2.WAP Security Mechanisms

The security services WAP provided so far can be classified into two categories:
one is communication security, supplied by WTLS; the other is end-to-end security,
provided by WPKI, WIM, and WMLScript Crypto Library. Communication security
requires the client to authenticate the server and encrypt the transfer data between the

client and server. The end-to-end security is achieved by requesting a user certificate

9

to be stored in the mobile device, and using it as the proof of identity and for

encryption operations.

2.2.1.WTLS

WTLS (Wireless Transport Layer Security) [4] is the security layer for data
transfer in the WAP 1.x architecture. It is adapted from the TLS (Transport Layer
Security) version 1.0 and specifically designed to provide privacy, data integrity, and
authentication within the constraints of wireless networks. WTLS itself consists of

five protocols (see Figure 2-7).

Handshake | Alert Application | Change Cipher
WTLS Protocol Protocol Protocol Spec Protocol

Record protocol

H"""-

Figure 2-7: WTLS Internal Architecture (Source: [10])

The WTLS Record Protocol is a layered protocol, which gets messages to be
transmitted from the upper layers, optionally compress the data, applies a MAC,
encrypts, and transmits the result. On the contrary, the received data from the lower
layer is decrypted, verified, decompressed, and then passed to the higher layers. The
Record Protocol takes care of the data integrity and authentication. Above the Record
Protocol, there are four protocols. The Handshake Protocol is responsible for
negotiating the security parameters for a secure session. Security parameters include
protocol version, compression method, and information on the use of authentication
and public key techniques to generate a shared secret. The Alert Protocol is used to

specify the alert messages that convey the security of messages and a description of

10

this alert. The Application Protocol is the interface for the upper layers of WTLS to
access the WTLS layer. The Change Cipher Spec Protocol defines the messages that
are sent during the handshake phase after the security parameters have been agreed on

[10].

In addition, there are three classes of security level between the client and server

specified in the WTLS (see Table 2-1).

Security Level Feature

Class 1 Anonymous key exchange is used for creation of an
encrypted channel between the client and server. The
client needs to take care if the public key sent by server
is belonging to the server it really wants to communicate

with

Class 2 Provide: server =authentication with the use of server
certificate. The server needs to send the server certificate

to let the client to authenticate its identity.

Class 3 Provide both client authentication and server
authentication. Before building a secure connection, both
of the client and server need to make sure the identity
with each other by means of exchanging their

certificates.

Table 2-1: classes of security level in WTLS

11

2.2.2.WPKI

Just as WTLS is the optimized version of TLS with respect to mobile
environments, WPKI (Wireless Public Key Infrastructure) [5] is an optimized
extension of a traditional public key infrastructure for the wireless networks. WPKI
requires the same components used in the traditional PKI (Public Key Infrastructure),
including a Certification Authority (CA), a Registration Authority (RA), a repository
to store certificates and Certification Revocation Lists (CRL), and an end-entity
application (EE) [23]. However, the EE and RA are implemented differently and a
new component called the PKI Portal is introduced. The EE is implemented in WPKI
as an embedded module of the micro browser. that runs in a WAP device. And the EE
relies on the WMLScript Crypto-Lilbraryto ndo"‘ ”the: “"‘C(yptographic operations. The PKI

Portal typically acts as the role‘of RA and ‘iﬁtéroperaffes with the WAP devices on the

wireless network and the CA on’the wiréd‘n"e’ﬁWofk*respectively (see Figure 2-8).

CA PRIVATE KEY

; PKI)
Portal CA

3 4

y

CA ROOT PK

DATABASE

USER PRIVATE
KEY

CA ROOT PK

SERVER PRIVATE

SignText

SERVER PK CERTIFICATE

Figure 2-8: SignText and WPKI (Source: [5])

12

Other wireless-specific adaptation in WPKI, compared to PKI, is summarized in

the following table.

WPKI PKI
Syntax notation and | WTLS Presentation | ASN.1/DER/BASE64
encoding rule Language and binary

encoding

Certificate Format

1.WTLS Server/Root CA

certificates[in WAP client

devices]: WTLS
certificate

2.Client/Root CA
certificates[in-~ servers]:
Internet X:509(RFC2459)
3.Client/Root CA

certificates[in WAP client

devices]: WAP Profiled

Internet X.509 (RFC2459)

X.509
Cryptographic Algorithms | .RSA(1024 bits or | No limit
and Key Length more)

2.ECC(160 bits or more)

Table 2-2: Comparison of WPKI and PKI

13

2.3.ME Security Functionality

WAP puts two security facilities on the Mobile Equipment (ME), usually
meaning the mobile devices, to activate the security functionality in the client end of

WPKI. They are WIM and WMLScript Crypto Library.

2.3.1.WIM

WIM (Wireless Identity Module) [6] is a module that is tamper-resistant and can
securely store sensitive data, such as certificates and private keys, and perform the
computation of security operations, like generating random numbers and signatures.
The objects and information data described in WIM follow the format of PKCS #15
(Public-Key Cryptography Standards #15):/A-WIM ‘implementation can be an external
smart card or a component embedded within the SIM (Subscriber Identity Module)
card. The WIM is intended to pérform both-client and server authentications in WTLS
and prove the user identity for end-to-end security.

Communication between WIM and the entities using it is via the
command-response protocol in the form of service primitives. A service primitive
describes the semantics of one service and its parameters. When WIM is implemented
in a smart card or SIM card, the service primitives will be implemented as card
commands. A card command is described by using APDU (Application Protocol Data
Units) that is the standard form of smart card command defined in the ISO7816-4.
There are two types of APDU. One is command APDU whose structure is listed in

Table 2-3. The other is response APDU and its structure is shown in Table 2-4.

14

Part Field Length | Description
Header CLA 1 byte type of command
(mandatory) INS 1 byte command
P1 1 byte parameter 1
P2 1 byte parameter 2
Body Lc 1 byte specify the length of data
(conditional) Data variable | data
Le 1 byte indicate the maximum length of data
expected in response
Table 2-3: Structure of command APDU
Part Filed Length .| Description
Body Data variable ' | response data for the command APDU
(conditional)
Trailer SW1 1 byte status] after execution of the
(mandatory) command APDU
SW2 1 byte status2 after execution of the
command APDU

Table 2-4: Structure of response APDU

2.3.2.WMLScript Crypto Library

The WMLScript Crypto Library [7] is a part of WMLScript that is a script
language, like the JavaScript for HTML, to manipulate the WML (Wireless Makeup

Language) for better user interaction. This library is intended to use with WIM to

15

provide cryptographic operations. Currently, the library only supports digital signature

functionality by the WMLScript function, Crypto.signText, which asks the user to

sign a string of text. The prototype of Crypto.signText is listed in the following table.

Function Parameter | Parameter | Parameter | Parameter Return
Name 1 2 3 4
Crypto.signText | stringToSign | options keyldType | keyeld signedString

Table 2-5: Prototype of Crypto.signText

stringToSign: String

This parameter is the string to be signed. Before being signed, the string should
be converted to the same encoding ifrit.contains different character sets. The
recommended encoding is UTF:8.

options: Integer

Both of this and next parameters represent several option values that are ORed
together into an integer. There "are three options in this parameter:
INCLUDE CONTENT, INCLUDE KEY HASH, and
INCLUDE CERTIFICATE. The first option, if it is set, will include the string to
be signed in the result. The second option, if it is set, will include the hash value
of the public key corresponding to the signature key in the result. The third option,
if it is set, will include the certificate or a URL of the certificate in the result.
keyldType: Integer

This parameter indicates the type of a key identifier specified in next parameter.
There are three options. NONE means the browser may use any key and

corresponding certificate in WIM. USE_KEY HASH means the next parameter

will be the SHA-1 hash value of the user public key. TRUSTED KEY HASH

16

means the next parameter is supplied with the SHA-1 hash value of a trusted CA
public key and the browser must use a signature key issued by the trusted CA to
sign the string.

keyld: String

The specified key based on the previous parameter. It can be an empty string or a
string including the SHA-1 hash value of one public key or multiple,
concatenated SHA-1 hash values of several public keys.

return: String

If the signText operation is successful, the resulting string will be the Base64

encoding of SignedContent structure defined in [7].

17

Chapter 3 Certificates Analysis

As we known, most existing Internet CA’s issue certificates in the format of
X.509. Among WAP versions, it introduces several certificates accustomed for the
wireless environment as well. In this chapter, we will elaborate each of them in terms
of content meaning, syntax description, and encoding rule. After that, we introduce
the signature algorithms that are supported in the WAP specification to apply on WAP

compatible certificates.

3.1.X.509 Certificate

3.1.1.Content

An X.509 certificate [11] binds a public key to a‘subject represented by a naming
convention called Distinguished”Name (DN). Such a certificate is also named an
identity certificate in that it is used to authenticate the identity of the subject. A
Distinguished Name is a global name composed of the combination of Common
Name (CN), Organization Unit (OU), Organization Name (O), Locality Name (L),
State Name (S), and Country (C). Currently, there are four versions of X.509
certificate. Version 1 specifies the basic fields; version 2 introduces the unique
identifiers of subject and issuer, and CRL (Certificate Revocation List); version 3
adds the notation of extensions; version 4 supports for the attribute certificate that is
not binding a public key to a DN but to one or more attributes. Table 3-1 shows the

common fields of all versions of X.509 certificate [25].

18

Field Description

version the X.509 version, 1 to 4

serial number a unique number, assigned by the CA to identify this certificate
signature the algorithm used by the CA to sign the certificate

algorithm

identifier

issuer the Distinguished Name of the entity that signs the certificate

period of validity | the begin and end times of the certificate in valid

subject the Distinguished Name of the entity that owns the public key

subject’s public | the information aboutthe public key of the subject

key

signature the signature of the certificate

Table 3-1: Common fields of all versions of X.509 certificate

3.1.2.ASN.1

The X.509 standard [11] describes a certificate using the notation known as
Abstract Syntax Notation One (ASN.1). As the name indicated, ASN.1 is not tied to
any programming language and is designed to abstractly describe messages to be
exchanged between communicating applications on different computer systems.
ASN.1 consists of a set of well-defined primitive data types and methods to construct
more complex data types from the primitive data types. Here, we only list some

important data types that are used in the X.509 certificate in Table 3-2.
19

Data Type

Description

Boolean two possible values are TRUE and FALSE

INTEGER any positive or negative integer whatever its length

CHOICE like the union type in C language, providing several
alternatives to choose one

SEQUENCE like the struct type in C language, containing data items in
order

SEQUENCE OF same to SEQUENCE except the type of each data item is the
same

SET similar tosSEQUENCE except that the data items are no
ordered

SET OF same to SET.except the type of each data item is the same

OBJECT a global naming convention used to point to an object within a

. predefined hierarchy of naming space
Identifier
GeneralizedTime a way to model a date and time by means of a character

string: four digits for the year, two digits for the month, two
digits for the day, two digits for the hour, two digits for the
minute, and optionally a dot or comma and two digits for the
second. By default, this way describes the local date and time.
You can also use a positive (+) or negative (-) delay with

respect to the universal time coordinate (UTC) to express the

20

local date and time. If this format wants to describe the UTC,
just append the ‘Z’ to the end of the character string to

indicate it.

UTCTime

same to GeneralizedTime except only two digits for the year

BIT STRING

a binary string of ‘0’ and ‘1’

Octet String

same to BIT STRING, emphasizing on an octet as a unit; an

octet has & bits.

PrintableString

the alphabet that can be printable includes spaces, uppercase

€EI9% e ce ¢

and lowercase letters, digits and the symbols “’, “(*, ©)”, “+”,

€6 9% C¢ ¢ 6 66/” 66,9 ¢ and C“?”
2 9 3 A b JFD. > * M

UniversalString

the UCS- (Universal: multiple-octet coded Character Set)
standard define 2°"cells (each ¢ell contains a single character)
to accommodate all the alphabets of all the languages in the
world. It plans 128 groups of 256 planes of 256 rows of 256
cells. Currently, only the first plane (38,885 cells) called Basic
Multilingual Plane (BMP) is allocated. A character will be

encoded by four bytes (UCS-4) [29].

BMPString

represent the first plane of UCS. It uses two bytes to encode a

character.

UTF8String

use “UCS Transformation Format, 8-bit form” (UTF-8) to
efficiently encoding a character of BMPString into variable

length.

Table 3-2: ASN.1 data types used in X.509 certificate

21

3.1.3.DER

Although ASN.1 provides a good way to describe messages in an abstract
manner, the content of messages requires to be encoded by some rules for transfer
between communicating applications. Several encoding rules for ASN.1 exist [29].

Basic Encoding Rules (BER) is the first encoding rules of ASN.1 and the basis
for the other encoding rules. BER has the format of a 3-tuple <Type, Length, Value>,
TLV for short. T indicates a data type in the ASN.1. For each type, there exists an
adjacent encoding rule. L points out the number of bytes that V occupies.

Based on BER, there are another two encoding rules — Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER). The reason why CER and
DER are created is BER allows tee many encoding options for the same value such
that the intermediate relaying parties may re-encode the transfer data with different
options, which is not accepted for secured-data like digital signature. So, CER and
DER put constraints on BER to make the encoding of the same value with no degree
of freedom. The major difference between CER and DER is CER allows the
indefinite-length format while DER only uses a definite-length format. In practice,

DER is the mostly used encoding rules for X.509 certificates.

3.1.4.Baseb4

The result of DER encoding of an X.509 certificate is binary content that is not
human readable and not suitable to transmit over a text-only medium like e-mail.
Base64 is a way to convert unreadable characters of 8-bit ASCII character set into
readable characters. The principle of Base64 is as follows. For each three bytes
(8%3=24 bits) of the binary content, cut them into 4 chunks of 6-bit and encode each

chunk into a Base64 character (26 = 64 characters ,"A’ to ‘Z’, ‘a’to ‘z’, ‘0’ to ‘9’, ‘“+’,

22

‘/’, plus *=") [14].

3.2.WAP Certificates

There are several kinds of certificates specified in WAP for different purposes.
The WTLS provides the communication security for data transfer in WAP 1.x and
defines three classes of security level. WTLS Class 2 requires sever authentication
and thus brings the format of WTLS certificate. Moreover, the WPKI supports the
end-to-end security for the need of m-commerce to ensure the not-repudiation service.
In WPKI, certificates are intended to be stored in the WIM which is usually embedded
in the mobile device. How to download CA certificates into WIM correctly and make
user certificates more efficiently stored in WIM become two important issues. For
these issues, WAP creates a profile’of the X.509 certificate accustomed to the wireless
environments and defines several certificate | formats for the downloading

mechanisms.

3.2.1.Profiled X.509 Certificates

To make the X.509 certificates to be used in the wireless networks, WAP has set
profiles for X.509 certificates of different roles [8]. For the CA, it defines the least
required fields for certificates stored in WIM or sent over-the-air via WAP protocols.
For the user, it defines two types of certificates stored in WIM for user authentication
and digital signature, respectively. In general, the WAP Profiled X.509 certificates of
CA and user contain the same common fields as existing Internet X.509 certificates.

The fields specific to WAP are listed in the following table.

23

Field

CA

User

certificate serial number

less than 8 bytes

signature algorithm

® shalwithRSAEncryption

® ccdsa-with-SHA1

subject public key RSA, ECC
key length ® RSAkey: at least 1024 bits
® ECC key: at least 160 bits

keyUsage N.A. (not available) ® RSAkey:
digitalSignature,
keyEncipherment,
nonRepudiation

® ECC key:

keyAgreement
nonRepudiation

subjectKeyldentifier ® RSA:SHA-1 hash of the modulus of public key of

the subject

® ECC: SHA-1 hash of the x-coordinate of the

elliptic curve point

authorityKeyldentifier same to the subjectKeyldentifier
subjectKeyldentifier of the issuer

basicConstraints isCA N.A.

extKeyUsage 1d-kp-codeSigning N.A.

Table 3-3: WAP Profiled X.509 certificates of CA and user

24

3.2.2.WTLS Certificate

Before WAP 2.0, WTLS is the only way to create secure connections for data

transfer. In the process of building a secure connection between the client and server,

the client will need to identify the server to ensure which server it is talking to. One of

ways to prove identity is using a certificate. The WTLS introduces a compact, binary

encoding certificate called WTLS certificate for server authentication.

Basically, the fields in the WTLS certificate are similar to the common fields of

X.509 certificates. However, the WTLS certificate omits the extensions of the X.509

certificate and uses a more efficiently binary encoding rule than the DER to reduce

the size in large. The presentation language of data structure in WTLS is explained as

follows [4]:

The basic block size is one byte (8 bits) and the byte ordering for a multi-byte
value is big-endian that the-leftmost-bit.is-the most significant bit.

A comment is enclosed by the /%> and “*/”.

An optional component is denoted by enclosing it in “[[]]” double brackets.

An opaque means one byte which the data is not interpreted.

A vector (single dimensioned array) is a stream of homogeneous data elements,
expressed in the form of “T T’[n];” . T means a data type. T’ is a new type that is
a fixed length vector of type T. The size of T is n bytes, where n is a multiple of
the size of T.

A variable length vector is denoted by “T T’<floor..ceiling>", where flooring and
ceiling represent the minimum and maximum length of bytes, inclusively.

The basic numeric data type is unsigned by unit8. Extended numeric data types
like unit16, unit24, and unit32 are the fixed length vectors of uint8.

They type enum is represented by “enum {el(vl), e2(v2),..., en(vn), [[n]]} Te;”.
25

The el(v1) means the first element and its value of enum type Te which may take
n bytes as the maximum length. Without explicitly specifying n, the space of Te
will be the number of bytes that can contain the largest value of its elements.
® A structure type that is much like the struct of C language is defined by:
struct{
T1 fl;

T2 £2;

Tn fn;

HIRNIE

A WTLS certificate is defined as a structure.type [4]. The syntax and meaning
are listed in the following:
struct {

ToBeSignedCertificate to_be signed_cerstificate;

Signature signature;

} WTLSCertificate;

struct {
uint8 certificate_version;
SignatureAlgorithm signature algorithm,;
Identifier issuer;
uint32 valid not_before;
uint32 valid not_after;
Identifier subject;

PublicKeyType public_key type;
26

ParameterSpecifier parameter specifier;
PublicKey public_key;

} ToBeSignedCertificate;

select(SignatureAlgorithm)
{

case anonymous: { };

case ecdsa_sha:

digitally-signed struct {
opaque sha_hash[20];

}

case rsa_sha:

digitally-signed struct-{
opaque sha_hash{20];

}

} Signature;

The certificate version is always 1. The supporting signature algorithms are
SHA1/RSA and SHA1/ECDSA. The public key types are RSA and EC. The content
of the subject and issuer is organized as follows:
<servicename>; <organization>; <country>[; <commonname>[; <extension>
[; <extension>[...]]]]
where:

“; “1is a 2-character field separator.
<servicename> is equivalent to Organization Unit (OU).
<organization> is equivalent to Organization (O)

<country> is equivalent to Country (C)

27

<commonName> is equivalent to Common Name (CN)

<extension> is an attribute in the form of <type>=<value>

3.2.3.Hashed Certificate

Either in WTLS or in TLS, to verify the server identity by means of server
authentication needs the trusted CA certificate that issued the server certificate,
directly or indirectly. In order to provide integrity, the trusted CA certificate is
downloaded in self-signed format. However, this way does not provide authentication.
To provide the authentication of the trusted CA certificate, the WPKI has specifies
two downloading mechanisms and each mechanism brings a new certificate format
[5].

The first mechanism is called-out of band hash verification and the certificate
syntax is as follows:
struct {

uint8 version;

CertDisplayName displayName;

Certificate trustedCACert;

opaque cainfo_url <0..2°-1>;

HashAlgorithm hash_alg;

} TBHTrustedCAlInfo;

The presentation language of the hashed certificate is same to the WTLS
certificate. The version must be 1 and the displayName is a name for display on the
WAP client device. The trustedCACert is the original CA certificate that can be an
X.509 certificate or WTLS certificate. The cainfo url contains the CA’s URL for the
client to get further information about it. The hash algorithm is SHA-1.

The essential of this method is that firstly wrapping the CA certificate into a
28

TBHTrustedCAlnfo structure and then hashing it with SHA-1 to calculate a hash

value of 30 decimal digits. The steps to work out the hash value are as follows:

Step 1: Apply SHA-1 to TBHTrustedCAlnfo to get the SHA-1 digest of 160 bits.

Step 2: Take the leftmost 80 bits of the SHA-1 digest and divide them into five groups,

each group with 16 bits.

Step 3: Each of the five groups can be expressed as a 5 decimal digits (from ‘00000’

to ‘65535”). Then, for each group, calculate the check digit by
(a) Double the values of digits located at the odd positions from the left, leaving
the digits at even positions unchanged, and then combine all of the digits, newly
double digits and unchanged digits, into a new group of decimal digits.
(b) Add the individual digits of the new group. The sum must be a number
ending in zero (30, 40, 50, et¢:). If the sum is not ending in zero, then the check
digit (0~9) is added to make it.end in zero. So, each original group of 5 decimal
digits will get a check digit-to append.in-the end;

Step 4: Combine the five groups of 6.decimal digits; we get the hash value of 30

decimal digits.

3.2.4.Signed Certificate

The second mechanism for authentication of the trusted CA certificate is called
signature verification method. This method is simple. It also uses the same
presentation language as WTLS. To make a signed certificate, wrapping the CA
certificate into a TBSTrustedCAlnfo structure, signing it to get the signature, and
finally putting both the TBStrustedCAInfo and signature into the
SignedTrustedCAlnfo structure. The syntax is stated as follows [5].
struct {

TBSTrustedCAlnfo tc_info;
29

Signature signature;

}+ SignedTrustedCAlnfo;

struct {

uint8 version;

CertDisplayName displayName;

Certificate trustedCACert;

opaque cainfo_url <0.. 2%-1>;

Certificate signerCert;

SignatureAlgorithm sig_alg;
} TBSTrustedCAlInfo;

Several fields of the signed cettificate are same to those of the hashed certificate.
The only difference is that a signed.certificate will take the signer’s certificate with it

for the client to verify the signature in the-Signed TrustedCAlnfo structure.

3.2.5.Resp Certificate

The user certificates defined in WAP are WAP Profiled X.509 user certificates
[8]. They can be saved in a LDAP directory or a database, or delivered to the mobile
device. If the user certificate has to be delivered, the WPKI specifies three possible
downloading types for it. WPKI use the certificate format defined in the following to
accommodate these downloading types [5].
struct {

unit8 version;

CertRespType type;

select (type) {

case cert_info:

30

CertDisplayName display name;
Identifier ca_domain;
Identifier subject;
opaque url<0..255>;

case cert:
CertDisplayName display name;
Identifier ca_domain;
Identifier subject;
X509Certificate cert;

case referral:
opaque url<0..255>;
uint32 seconds_to_wait;

}
}+ CertResponse;

The first type just provides the URL abeut where the user certificate is located.
This is the preferred downloading type of the user certificate due to the less storage in
the client device. The second type will take the whole user certificate to be
downloaded. The third type is only used for requesting a new user certificate from a

CA and the CA responds it with the waiting time to retrieve the user certificate again.

3.3.Signature Algorithms

This section will introduce two signature algorithms — RSA and ECDSA--
supported in the WPKI. Both of these two algorithms use the SHA-1 as the hash

algorithm to generate the hash value of the message before creating the signature.

31

3.3.1.SHA-1 Hash Algorithm

In cryptography, a hash algorithm is a function that takes a message of arbitrary
length as input, and outputs a fixed-size unique value, namely hash value or digest.
Such a function has several good properties. First, for any message of large size, the
length of output is short and fixed. Second, for any two different messages, there will
be two unique hash values. Third, it is very hard to derive the original message from a
hash value. Therefore, a hash value can be used to serve as a representation of the
Input message.

Secure Hash Algorithm 1 (SHA-1) [12], based on MD4, is the hash algorithm
proposed by the U.S. National Institute for Standards and Technology (NIST), and
adopted by WAP to calculate the hash numbers fot.hashed certificates. The hash value
SHA-1 will produce is 160 bits of length. In addition to provide the identity of a
message, SHA-1 often coordinatesiwith.-the signature algorithm to provide data
integrity. The algorithm details of*SHA-1 and ‘the difference between SHA-1 and

MD#4 can be found in [26] [27].

3.3.2.RSA Signature Algorithm

RSA signature algorithm is the first and most popular signature algorithm
invented by R. L. Rivest, A. Shamir, and L. Adleman in 1978 [15]. It is belonging to
the public-key cryptosystem whose security is based on the hardness of solving the
factoring problem for a very big prime number.

To create and verify a signature, you first need to have a key pair -- private key
and public key. Below is the algorithm to create a RSA key pair [26].

Step 1: Generate two large distinct primes p and q with roughly same size

Step 2: Calculate n = p*q and ¢(n) = (p-1)*(q-q), where ¢(n) means the number
32

of primes less and equal to n.
Step 3: Choose a random positive integer e, less than @(n) and relative prime to
¢(n).
Step 4: Compute d = ¢ mod ¢(n), where e* e'=1(mod o(n))
Step 5: (n, e) is the public key; (n, d) is the private key
With the key pair, we can generate a signature by a private key and verify it with
the corresponding public key. The algorithms are as follows. Suppose m represents
the message to be signed by the private key and H means the hash algorithm.
1. Signature Production:
(a) Calculate m’ = H(m), where m’ is the hash value of m
(b) Compute s = (m’)* mod n
(c) s is the signature for m
2. Verification:
(a) Calculate m’ = s° mod ni
(b) Compute m” = H(m), where m.is'the message attached with the
signature s

(c) compare m’ to m”’; if not equal, verify failed.
3.3.3.ECDSA Signature Algorithm

Digital Signature Algorithm (DSA) is another signature algorithm that is adopted
as the Digital Signature Standard by NIST. Like RSA signature algorithm, it also
needs a key pair before doing signature related operations. The details about DSA key
pair generation, and signature creation and verification can be found in [16].

Elliptic Curve DSA (ECDSA) is the elliptic curve analogue of the DSA by using
the elliptic curve cryptosystems (ECC) as the underlying basis. The advantages of

ECC include smaller key sizes, less bandwidth requirements, lower power

33

consumption. So, ECC shows its attractiveness to limited computing environments
such as mobile devices. The background about ECC and the algorithms of ECDSA are

also clearly explained in [16].

34

Chapter 4 Toolkit Framework and

Implementation

In last chapter, we have explored the Internet X.509 certificate and WAP
compatible certificates in detail and discussed the signature algorithms supported by
WAP. In this chapter, we will introduce the design and implementation of our
proposed converter toolkit for WAP. The ultimate goal of our toolkit is to enhance the

mobile security for m-commerce.

To provide the WAP compatible certificates for different purposes across several
WAP versions and to assist the existing Internet CA’s easily porting their issued X.509
certificates to wireless networks with little afford, we design a converter toolkit that
provides two interfaces — a library and a GUI = to decode the content of Internet
X.509 certificates and then encode.into WAP compatible certificates. Our target
certificates include both CA certificates and-user certificates. And the supporting
signature algorithm we choose to implement is RSA. This is because most Internet

CA’s issue X.509 certificates by using RSA signature algorithm.

4.1.Certificates Conversion Paths

Before we do the conversion, we need to have the Internet X.509 certificates first.
In addition to using the existing Internet X.509 certificates as the source of conversion,
out converter toolkit can also generate the WAP Profiled X.509 certificates for CA and

user, respectively.

With the X.509 certificates, we can make them as input to the converter toolkit to

do the conversion for outputting the desired WAP certificates. In principle, the

35

certificates conversion paths can be divided into two categories (See Fig. 4-1).

WTLS
Certificate

Hashed
Certificate

CA X508
Certificate

Signed
Certificate

User X.509
Certificate

Resp
Cerificate

Figure 4-1: WAP certificates conversion paths

The first kind of conversion paths is for the CA X.509 certificates that are
self-signed by their own private keys. For a CA X.509 certificate, it can be converted
into three different WAP compatible certificates. One is the WTLS certificate, which
is specified in the WTLS specification for providing server authentication to build a
secure connection between the client and server. The other two are essentially the
wrapping of CA X.509 certificates for the downloading mechanisms defined in the

WPKI specification.

The second kind of conversion paths is for the user X.509 certificates that are
issued by the CAs. For a user X.509 certificate to be delivered to the mobile device, it
needs to be converted to the downloading format specified in the WPKI specification.

As described in section 3.2.5, the user X.509 certificate can be wrapped into three

36

kinds of forms. Out converter toolkit implements the URL form which is suggested in

the WPKI.

4.2.Framework Design

We implement the WAP certificate converter toolkit in Java (JDK 1.4) and build
it upon the Java Cryptography Architecture. The whole framework is shown in Figure
4-2. In this section, we first describe the components of our toolkit and the utility
libraries underlying it. And then, in next two sections, we discuss the implementation

details of our converter toolkit.

Converter GUI

WAP Cerificate
Converter Toolkit

Converter Library

Java Certificate Services Pure TLS Toolkit

Java Security API
Java Security <

Java Cryptography Architecture

Cryptographic

Service Provider Bouncy Castle Crypto Cryptix JCE

Figure 4-2: Architecture of WAP Certificate Converter Toolkit

4.2.1.WAP Certificate Converter Toolkit

Our proposed WAP Certificate Converter Toolkit is made up of a library and a

37

friendly GUI application based on the library to provide a variety of views of all
certificates talked in the Chapter 3. It contains four Java packages, shown in Figure
4-3. The library consists of dcslab.wap and dcslab.wap.cert two packages. The GUI
application is implemented in the dcslab.wap.ui package. The dcslab.wap.util package
provides convenient facilities supporting for both the library and the GUI application.

= deslab
== wap

|| AuthoritvEevldentifier java

|J| BowneyCastleOpenSSLE ey java
)| CAModule java

|J| CAModuleException java

)| ConverterFactorys java

)| ConvertException java

)| OpensiLEey java

|| KS0OConverterFactory java

Figure 4-3: packages of WAP Certificate Converter Toolkit

4.2.2.Java Cryptography Architecture

One of the famous features in Java language is the tightly binding with security.
Two architectures about security defined in Java are the Java Security Architecture
and Java Cryptography Architecture. The former regulates the security mechanism of
Java platform while the latter emphasizes on the cryptographic functionality for Java
language [24].

Java Cryptography Architecture and its extension, Java Cryptography Extension,
provide a service provider framework that they define the interfaces of cryptographic

API, the Java Security API, and leave the implementation of those API to the

38

cryptographic service providers. Currently, in Java platform, Sun has supplied a few
cryptographic service providers such as Sun, SunJCE, Sun JSSE, and SunJGSS to

provide default implementation of Java Security API.

4.2.3.Bouncy Castle Crypto

Even though Sun has already supplied several cryptographic service providers, it
still lacks many demanding security functionalities. For example, we can not create an
X.509 certificate from the standard Java Security API, not to mention other low-level
cryptographic manipulations. Moreover, the source code of Sun’s cryptographic
implementation is not completed, even it can be downloaded freely, and can not be
modified with arbitrary. Therefore, we need other cryptographic service providers to
overcome above deficiencies.

The Bouncy Castle Crypto-package 1s an-open source project that provides a Java
implementation of cryptographie algorithms [17]. It makes up for the insufficiency of
Sun’s service providers. In addition te.easily modifying it to fit our need, it also
provides quite a few convenient low-level API to manipulate cryptographic
algorithms and X.509 certificates. Our converter toolkit makes use of these API to

deal with ASN.1 syntax, DER encoding, and X.509 certificates.

4.2.4.Cryptix JCE

Cryptix JCE is another Java cryptographic service provider [18]. It is the chosen
service provider by the PureTLS toolkit (see next section). The Java Certificate
Services (see below section) also uses it to transform the binary format of X.509

certificates to the BASE64 format.

39

4.2.5.PureTLS Toolkit

PureTLS Toolkit is the Java version of SSL implementation developed by Eric
Rescorla [28]. It provides the API for Java Certificate Services to create the RSA key
pair and the X.509 certificate request in PKCS #10 format. Besides, it also provides
the utility for our converter toolkit to wrap a string of Distinguished Name into an

X509Name object.

4.2.6.Java Certificate Services

Java Certificate Services (JCS), developed by Vladimir Silva, provide the
management of X.509 certificates, including certificate request creation (CSR), CSR
signature, user certificate creations’and self-signed.(CA) certificate creation [13]. JCS
has implemented a simple Internet. CA and can create Internet X.509 certificates for
CA and user. Our converter toolkit modifies it-for generating the WAP Profiled X.509

certificates of CA and user.

4.3.Converter Library

4.3.1.Building Blocks

From the previous introduction, we take advantage of the underlying libraries,
especially the Bouncy Castle Crypto package, to process the stuff about X.509
certificates. However, to convert X.509 certificates to WAP compatible certificates,
we need to be able to deal with the syntax and binary encoding of WAP certificates.
So, we implement the presentation language specified in WTLS specification as Java

classes in the dcslab.wap.cert package to provide the high-level value access and

40

low-level data encoding.

A data type defined in the presentation language will extend the abstract class
AbstractEncoder that implements the Encodable interface and supply the
implementation of method getData() with binary encoding of its value (see Figure
4-4). The binary encoding of a data type is a 2-tuple <length, value>. The length is
either explicitly defined with the data type or the least space to contain the largest

value of the data type.

<<Intefaces>
AbstractEncoder
Encodable

vorite Tofin butfer @ DutpulStream) @ woid

getlata () : bytef]
withe Jofr duffer | CedputSrean) | void

Other Building Blocks

getD atad) : byte[]

Figure 4-4: Class Diagram of Building Blocks

In addition, we provide four wrapper classes for WAP certificates as the unified
interface for outside access. They are WTLSCert, HashedCert, SignedCert, and
RespCert. The essential information encapsulated in these wrapper classes is listed in

the following table.

Wrapper Class WAP certificate MIME Type

WTLSCert WTLSCertificate application/vnd.wap.wtls-ca-certificate
HashedCert TBHTrustedCAlnfo application/vnd.wap.hashed-certificate
SignedCert SignedTrustedCAlnfo application/vnd.wap.signed-certificate

41

RespCert CertResponse application/vnd.wap.cert-response

Table 4-1: Wrapper classes for WAP certificates
4.3.2.CAModule

This class and its supporting classes provide the functionality of creation of key
pairs and X.509 certificates, parsing of X.509 certificates, and DER encoding of

ASN.1 syntax. CAModule acts as a CA and the Figure 4-5 shows its public methods.

@, CaAModule
@ ° readPrivateKey(Sting, String)
® ¥ read X509 et icate (String)
® ¥ read X509 et icateS s ture (String)
@ 5 ead X509CertificateS trus ture (X 509Certificate)
et 2etd SN 1 EncodableBartes{A SN 1 Encodable)
et createC AR evPairAnd CertiBtring, int, String, String, int, String, String, String, String)
et createTserKevPairhnd Cert(itring, inf, String, int, String, String, String, Sting, String, String)

Figure 4-5: public methods of CAModule

We use the RSA algorithm to*generate-a key pair and the key length is either
1024 bits or 2048 bits that corresponds to the requirement of WAP. The signature
algorithm of the X.509 certificate is SHA-1/RSA. The process of creating a new CA
X.509 certificate is as follows. Step 1, we create a public/private key pair with a
random number as the seed. Step 2, we wrap the string of CA name into a X509Name
object and use it, the generated public key, and other information to fill out the
TBSCertificate structure. Step 3, we apply SHA-1 hash algorithm on the
TBSCertificate structure to get a digest of 160-bit length and then sign the digest with
RSA signature algorithm to get the signature. Step 4, the combination of
TBSCertificate structure and the signature is what so called an X.509 certificate. Step
5, the content of an X.509 in Step 4 is DER encoding; that is, certain binary format.

To make it human readable and can be transmitted through textual medium, we

42

transform it into the text form by Base64 encoding. Then, we insert the header
“-----BEGIN CERTIFICATE-----“before it and append the footer “-----END
CERTIFICATE-----“after it. The resulting text is usually what we apply for an X.509

certificate from the Internet CA.

The creation of a user X.509 certificate is similar to that of a CA X.509
certificate. However, there are two differences. First, the CA certificate is self-signed;
that is, the fields of subject and issuer are with the same value and the whole
certificate is signed by the subject’s private key. Second, the extension fields such as
keyUsage, extKeyUsage, basicConstraints, subjectKeyldentifer, and
authorityKeyldentifier have different meanings between a CA certificate and a user

certificate.

4.3.3.ConverterFactory

The task of CAModule is to-create X.509 certificates of CA and user. Once we
have the X.509 certificates, we can convert them into WAP compatible certificates by
the need. The conversion is done via the ConverterFactory class (see Figure 4-6).
ConverterFactory is designed as an abstract class that its subclasses have to
implement four abstract methods. They are generateWTLSCert(),
genereateHashedCert(), generateSignedCert(), and generateRespCert(). The first three
methods are to convert a CA X.509 certificate into WTLSCert, HashedCert,
SignedCert, respectively. The last method is used to convert a user X.509 certificate

into a RespCert.

A conversion path means the transforming process from one certificate to another.
For each conversion path, we design a dedicated class for the conversion job and put

it as an inner static class in the ConverterFactory. The reason why we do such design

43

is we hope to concentrate the conversion capabilities on the ConverterFactory abstract
class so that the concrete classes inheriting from it can easily and flexibly choose the
conversion classes to fulfill the abstract methods. For example, the
X509ConverterFactory class is a subclass of ConverterFactory and implements the
four abstract methods by using the four conversion classes embedding in the

ConverterFactory.

9& ConverterFactonr
me
(25 X500ToaWTLE
& doConvertZ 509 Certificate, PrivateEen
(23 ¥500ToHashed
& doConvertZ 509 Certificate, Steing, Stoing)
(27 X500Toligned
& doConvertZS09C ertficate, String, String, PrivateKey)
(25 ¥500ToResp
& doConvert Cert(509 ertficate, String, Sting)
& doConvert_Certlnfo G509 ertficate, String, String)
@ % mve W TLICert(W TLECer, String)
5 saveHashed Cert(Hashed Cert, String)
5 saveSigned Cert(SignedCert, String)
S sveRespCert(FespCert, String)
""‘ zenerate W TLACert (R 509 ertifizate, String, String)
,q
,q
,q
s

zenerateHashed Cert(Certificate, String, String)

zeneratedigned Cert(Certificate, String, String, String, String)
zenerateRespCert (i S09C ertificate, String, String)
zeflnstance (S tring, boolean)

Figure 4-6: ConverterFactory class

4.4.Converter GUI

The Converter Library provides the API for programmers to do the entire
conversion job. To use it needs writing programs. For convenience of use and for
operators who are not good at programming, we design a GUI application to make the
conversion more easily. The GUI is not only based on the Converter Library, but also
further provides a variety of views for a certificate. There are four views of a

certificate that our GUI can support. The field view can see the high-level value of

44

each field of the certificate. The syntax view can show the data structure of a field.
The binary view can watch the low-level binary encoding of the field. The Base64
view can look the text form of the certificate.

The major components of the GUI application are depicted in Figure 4-7.

ResourceManager

Figure 4-7: major components of Con

4.4.1.ResourceManager

ResourceManager is responsible for the creation of menus, popup menus, toolbar,
menu items, and buttons. It reads a configuration file that records the information of

all resources and generates above described Ul stuft to hook in the main frame.

4.4.2.ActionManager

ActionManager is the manager of the states of all action objects. Basically, for a
GUI application, several Ul items may trigger the same action object when they are

activated. To reflect the states of those UI items linking with the same action object in

45

time, ActionManager will maintain a state database to record the recent status of all

action objects.

4.4.3.StatusManager

StatusManager takes responsibility for managing the status bar. The job it
performs is to show the helpful information in the status bar when the mouse pointer

moves on the Ul items.

4.4.4.UserObject

The UserObject is a data object set in a tree node. Actually, it is a data container
that encapsulates the certificate object. The inheritance hierarchy of UserObject and
the containing certificate objects (in the parentheses) are shown in Figure 4-8. When a
tree node is selected, the User@bject it links.with will be passed to the Display (see

next section) to show the detailed information.of the certificate.

46

UserObject

AliasUserObject

X509UserObject (X509Certificate)

WTLSUserObject (WTLSCert)

HashedUserObject (HashedCert)

SignedUserObject (SignedCert)

RespUserObject (RespCert)

Figure 4-8: inheritance hierarchy of UserObject

4.4.5.Display

The Display is just a collection concept. In fact, it is the displaying panel of field
view, syntax view, binary view, and Base64 view. For each certificate object, there
will have a corresponding Display to it. Each time the selected tree node passed the
UserObject to its corresponding Display, the information of the certificate object
within the UserObject will be retrieved and shows in the right regions of the

displaying panel.

47

Chapter 5 Experiment and Evaluation

To evaluate our proposed converter toolkit, we conduct three experiments. The
first experiment is to create WAP compatible certificates from X.509 certificates. We
use the GUI version of our toolkit to do this experiment. The second experiment is to
test the correctness of those certificates from the first experiment. We will import the
WAP certificates created by the first experiment into a simulated WAP cell phone to
see whether those WAP certificates can be accepted. In the final experiment, we
demonstrate a small m-commerce application that will make a digital signature via the

Crypto.signText() method with a user private key.

5.1.Experiment 1: Certificates Conversion Paths

This experiment wants to=verify the conversion paths described in section 4.1.

Those conversion paths will create WAP compatible certificates.

5.1.1.Environment Configuration

To do the conversion, we need to have the Internet X.509 certificates of CA and
user. For simplicity, we create them directly from the GUI application. In fact, the
X.509 certificates produced by our toolkit have already been the WAP Profiled ones.

Even so, they still can be used as the sources of the conversion.

48

5.1.2.Experiment Result

The test items and results are shown in the following table.

Test Item

Description

Result

create a CA X.509

the CA X.509 certificate is used as the

see Figure 5-1

certificate source of conversion
create a user | the user X.509 certificate is used as | see Figure 5-2
X.509 certificate the source of conversion

convert to WTLS

certificate

convert the CA X.509 certificate into a

WTLS certificate

see Figure 5-3

convert to Hashed

certificate

convert the CA X.509 certificate into a

Hashed certificate

see Figure 5-4

convert to Signed

certificate

convert the CA X.509 certificate.into a

Signed certificate

see Figure 5-5

convert to Resp

certificate

convert the uséer Xi509:certificate into

a Resp certificate

see Figure 5-6

Table 5-1: Experiment 1 Result

49

M- SR v e

B [e
B e
=] Ja

HangikE

ﬂ User

FIRESTE ¢
Bk
SRR
EEREE
IR

Public Exponent =

Public Modulus =

|C:lec||pse\workspaceIWapcertConvenendatalCAla\a.cen

3 (3] TP = Sun May 22 143745 CST 2005 | (7§
7B] EBMERGE) | |Wed May 17 14:37:46 CST 2006 |)

SHATRSEA 13}

IEHEA - ‘!leA,0U=DCSLah,O=C\B,C:TW

a

BATHEH = 51CA,0U=DCELab,0=CI5,C=TW

a

010001

(1]

O0BC1BADZOBS39ZF4C4EFBEECSFEEDSTACYCDFEIS0BOSCED
BEDC3ZCFBFSD3DFOFD3ESNCDE3 63 6EBOCIOF1A4ADE7O19E7

BTEFBZEOEDT4051DDCEA4976D0B4A0CDETO48BE4CDCFEDSA

48DFZ3E25EFOFEAGAGACEBATEEEAF3 5815000072838 E46AE |

keyllsage = |dig\ta\5ignature, keyCenSign (T |
SubjectKeyidentifier |0414E?0534QESAFDDCSBECFFQFEHDESWAD1 FD2EBB1Y (|
AuthorityKeyidentifier = |3U16801 4E70534 2E5AF0DCSBBCFFIFE220681AD1FD2ZEBET9 (|
ExtendedKeyl)sage = |id-kp-cod98igning (T |
BasicCanstraints = |isr: ™ -
certificate ::= SEQUENCE | %
thaCertificate TESCertificate,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING }
TE3Certificate ::= SEQUENCE |
wversion [0] EXPLICIT Version DEFAULT wil,
CertificateSeriallNuwber, =

seriallunber

1 ithmTdantifi

& Syntax I & E-% > %m G

NzERB%xe

B mamen
B e
B
0><5093E$
B ﬂ User

= Jh
O

TEIRDETE - |C eclipseworkspaceiWWapCenComverteridatalUserbib cert ‘

B : R ABHARRER) [Sun May 22 14:40:38 05T 2005 |
B [fr @ ESuReE : wed May17 14:40:38 CST 2006 | (3
FERRGE [sHauRSA | EERZEHEE: User,0U=DCSLan,0=CI5,C=TW [
EAE ARG RATHEH ¢ 0=CI5,0U=DCSLab,CN=TestCA)

Public Exponent :

Public Modulus =

keyllsage =

010001

| By

008775DCFFOT7DC461A4F51194FEQC49B9136C142000F1E11

O9ACEDBEBBO1F417F 15BBVCEVAEI IETADOZGETE4EZARAFIE
2B8002CBZ97D2E156FESTS2ESCDE0BDIFBEAFZDICDIZECENE

416BBOFTE1CEZ0C3TFE3RB3DZT7A12D75D8DDZCO0DSDAFZESA |

|dig\ta\8ignature, nonRepudiation, keyEncipherment ‘ 0
SubjectKeyldentifier = |D414TFTACDFTE?53AECQECQFFCSDQDM TBBEBATHE3ARD ‘ T2
AuthorityKeyidentifier = |3016801 4ET05342E5AF0DCSEBCFFAFE22DER1ADTFDZERBET ‘ T2

B1B14E19F30C543574621364D003560F9EE1C1BBZ9A35573
F486Z6FFAFZ1DEB8EOCCAB43ET0Z643A1671D1EZBEDDCSST

o

BE: CZAIATEFORCADIICTINDARICTSC A1 EIRIOFADSIAAZTCCI7] =
Certificate ::= SEQUENCE | %

thacertificate TESCertificate,

signatureAlgorithm AlgorithmIdentifier,

signatureValue BIT STRING |}
TBSCertificate ::= SEQUENCE

version [0] EXPLICIT Version DEFAULT w1,

seriallunber Certificateleriallurber,

4 Tava Tl

+if

4]

1
2 Symtax r)—my] & Basgﬁ-l

s

Figure 5-2: create a User X.509 certificate

50

N @Ry e

0 HSOOEER

Public Exponent :

Public Modulus =

0003010001

(12}

008 100BC1EADZOEBI392F4C4EFEREGS FEEDSTECTCDFE3S0ED
BCEDBEDC3IZCFEFEDIDFSFDIESOCDO3 63 6EE0CSSF1A4A0870
1O9B74BDFZ3EZSBFOFEGGAGGCRBBTEEESFISE 15000972ZE38E
46AEBVEFEZ 6YEDTA051DDCEA49TED0BAAICDETO48EE4CDCE |w

EASEZ3ABFEACCZEEZIBFDIZECZIIDIEAFSB05A382B25E113 |~
3Z41EF3CT780401A8513AB5A508164637B603ABDFCIOFEIF
TFD3CO384C4900EETEL3805662071BCEFTEBABTI613098E10
ESFACIEZES0SAFBEOLGIFEEFOFEICOBETOAOZSBACS300120 |«

B g
g A
.é‘]Ja TEIRESTE - [ceclipsetwarkspaceiiapC ertc anvertendatalC Alata.wtis |
0 HSDSERE B : ;) HBMBRGE) * [Sun May 32 14:37.45 GST 2005 | £
a WTLSIER wEEEL: [SHMRss D HAMHAIRGE) * [ved May 17 14:37:46 CST 2005 |
B usr BATHEM : [DCSleb IS TwiTestcA | () BEFIE&HRE = [DCSLak; CIS; T, TestCA 5]
L IR AR -

T T

1 WILSCertificate;

struct |

uint® certificate_version;
SignatureAlgorithm signature algorithm;
Identifier issuer;

ToBeSignedCertificate to_be signed certificate;
Signature signature;

el [»

4

NyERXxe

B mamen
B e
B
0 HEOSER
é WTLSIERE
’ Hashedifsg
= ﬂ User
= J b

0 PGIE =

TERRBGIE ¢

MIME-TYPE =

B :

|C:lec|\pselworkspacelWapCertConvenendatalCAlala.hashed

|apphcatmm\md wap hashed-cerificate

(-

i BT : [Hashed CA

CAilRES =

CAURL =

(]

a 0

|hﬂp Sidesw3 cis.nciu.edu b

[}

Hash Algorithm = |SHA-1 0

Hash Numbers = |F2S388083?33120790309609247585

struct {

uint8 wersion;
CertDisplayName displayName;
Certificate trustedCACert;
opaque cainfo url <0..2°8-1>;
Hashalgorithm hash_alg;

1 TEHTrustedCAInfo;

4]

|-

Figure 5-4: convert to Hashed certificate

51

N @Ry e

0 HENHESE
a WTLSIESE
a HashediE
a SigneciBEE
B ﬂ User
= _“b
" a09R
a RespiFE

B g
g ._;I CA TR TE = ‘C eclipselworkspacelWapCenConverteridatalCAlala. signed |
2
- MIME-TYPE = [applicationimd.wap.signed-certificate |

B £ =

0

[

Fidk FRIRERE - Signed CA
CRifSE * a B0
CAURL : ttp:iiccsw. cis.netu.edu.w
WRUIRE ¢ a 0
WEEE - RSA_SHA 0
026748 A0A5DBACEZOC3DE78 1DVECDE2A2 7AIOEFE45AB542E
e 6CEZ07F04D230AAAGBEE146D87390EE75822803E3FOFB43F

1E73DC4a063Z 14FBF115AZCSDDFBCAZ69140A7582CEF4BZ0
0C14756876B228D7AD3988EZ33D030B145798 109DF3.587DS

struct |
TE3TrustedCAInfo te info;
Signature signature;

1 SignedTrustedCAInfo;

struct {

uint8 wersion;

CertDisplayName displayName;
£ f +. 1 +

NyERXxe

B mamen
B e
B
0 HANHEE
é WILSEE
’ Hashedifsg
a GignediFsE
B ﬂ User
ERT)
0 HANGHEEE
a Resni®s®

TAONTU2ELMAkGA1TEEWMCVFe=6 sn=AgFN

TFhRREHE = |C"Lec|\pselwnrkspacelWapCenCnnvenendatalUsenhlh resp |
MIME-TYPE = |apph|:atmni\md wap.cert-response |
FHE ERRER - |Resp User 0
BTHEH - |C=TW‘O=CIS,OU:DCSLah,CN:TestCA 0
R R - [ch=TestUser,0U=DCSLab,0=CI8,C=TW 0
http://deswl . cis.netu. edu. tw/cert? in=MDE xETAPBGNVE
BSBURL BMICFR1le3 RVedVyMOSwD QYD VOCOLEWZEQLNMYW Ix DDAKEGNVEAD]

554542 684D435646633D26736E3DE16T464E

0100006A0952 657370205073 65 7201006A1E433D 34572 C4F3D4340532C4F053D04443534C01622C43
MEIDS4E5TIT4434101006A20434EADS4R5TITA55TIRSTIZCAFS53D4443534C61622CAF3D4349532C
433D54578 5687474703 AZFIF6463TITTI3ZE6RIGOTIZECERITATSZERSEATIZETATTZFE3I65T2743F68
GE3D4D4438754554415042674E5642414D044346526C63330256633206794D513877445159445651
514c457754845513 1484050574978 4444414842 AT4ES642416F5441304E4A5572454CAD416E4 74131

"3 syntax | 5 Binary

|-

Figure 5-6: convert to Resp certificate

52

5.1.3.Evaluation

The six test items will create two private keys, six certificates, and a hash value
of 30 digital numbers. Four of six certificates are the converted WAP certificates
whose filename extensions are .wtls, .hashed, .signed and .resp. The hash value is
stored in a file with extension .hashnumbers. From the view of certificate size, DER
encoding of X.509 certificates really produces more bytes than the binary encoding of

WTLS certificates.

5.2.Experiment 2: Import WAP Certificates into WIM

This experiment will check the_ correctness of those certificates created by

Experiment 1 by importing them.to the WIM within.a mobile phone.

5.2.1.Environment Configuration

We use the Nokia Mobile Browser 4.0 (NMB 4.0) [19] as the simulated mobile
phone. Within the NMB 4.0, there is software-based WIM called Nokia SoftID to
store the imported certificates. We will import the certificates from locally and
remotely. To locally import a certificate, we use the tool provided by Nokia SoftID.
For remotely downloading certificates, we need the WAP gateway and the PKI Portal.
We use the Nokia WAP Gateway Simulator 4.0 (NWGS 4.0) [20] and Tomcat 4.1 [22]

to simulate the WAP gateway and the PKI Portal, respectively.

53

5.2.2.Experiment Result

The test items and results are shown in the following table.

Test Item

Description

Result

import a CA X.509

certificate

import the CA X.509 certificate

locally to the WIM

see Figure 5-7

import a CA WTLS

certificate

import the CA WTLS certificate

locally to the WIM

see Figure 5-8

import a CA

Hashed certificate

download the CA Hashed certificate

remotely to the WIM

see Figure 5-9

import a CA Signed

certificate

download the CA Signed certificate

remotely to.the WIM

see Figure 5-10

import a user X.509

certificate

import the puser X.509 certificate

locally to'the WIM

see Figure 5-11

import a user Resp

certificate

download the ‘user-X:509 certificate

remotely to the WIM

see Figure 5-12

Table 5-2: Experiment 2 Result

54

Figure 5-7: import a CA X.509 certificate

@ Nokia Mobhile Browser 4.0 = || O[]

Gol e H
Eookimarks vJ £ m[@‘

EM - Siewe (Wbl
® §

i Mokiz SoftlD

WIM Import Wizard

Select File and Format to Innport
You can specity the file and format to be imported.

~File Mame

| CHODocuments and Settings\Wark\hy Documents'a.cert | [Brovese. .]

[Impart RS Key [DER]

—izedificate Format

(&) X503 [DER]

) TLE

() User Certificate Responze
() Hash Trusted CA Info

{3 Sign Trusted CA Info

Finish

Nokia Mohile Browszer 4.0

[|'|.-"-.|'|MS

® erzion = [1]
#® tanufacturer Il = [MhF]
= Serial Number
Ig Security Enviornments
Supported Algarithms
\ Flags
B2 pins o]
Keyws (21
Cerificates (3]
IEI Soft |0 User Authentication Cert (L=es)
EH softiD Mon Repudition Cert (Lien
= EE wsoaca A
#® ocation = [Mokia Softil]
® Type = [CA]
Key 1D (5HA-1 hash): 20 bytes
= [E4 petails
® erzion = [X500 3]
#® Serial Humber= [74]

H # O EEE

M

S Subject= [C=TW, 0=CIS, OU=DCSLab, CH=TestCA]

U lssuer= [C=TW, O=CIS, OU=DCSLat, CH=TestCA]

Not Befare = [ZO055E5 421 _LAF03RF21 51730 S T]
® Hot Atter= [20065R5 816 B _EAF03RE 151183 GRT]

"ﬁ‘ Fublic Key: 1024 bits

- Signature Algaorithm = [SHA with R S A]
@ Signature128 bytes

55

Figure 5-8: import a CA WTLS certificate

 Hokia Mobile Browser 4.0
Gl]
[Eoakmarks vJ‘_(@L" i
(=) pwara ~ Views Wi
m B

B Hokiz Softin

WIM Import Wizard

Select File and Format to Import
You can specify the file and format to be imported.

File Mame

| ChDocuments and Settingsharkihly Documentsha wtls | L Erowese. . J

[] Import RS Key [DER]

—Certificate Format
{3 %509 [DER]
(21 WILS
() User Certificate Response
() Hash Trusted CA Info

(3 Sign Trusted CA Infa

Nokia Mobile Browser 4.0

ookmarks «| € m{@]' Eeit ~|

= E |Wﬂv13 il
#® tianutacturer 1D = [HMF] &

&= Serial Mumber

I% Security Enviornments

Supported Algorithms

~ Flag=s

B2 pins o1

Keys (2]

= Certificates (4)

E=E Soft|D User Authentication Cert (Lises)
E=l softiD Mon Repudition Cert (Liaed
E= wsoaca ca)
= EE wrisca qoan
® Location R‘Jokia SoftiD]
® Type = [CA]
Ky ID (SHA-1 hash) 20 bytes
= EL petails
® ‘aerzion = [rTLS]
#® Fublic Key Algorithm = [REA]

BfEH subject= [DCSLab; CIS; TW; TestCa]

BfEE imuer= [DCSLab; CIS; T TestCa]

#® Not Before = [Eat May 21 11:21:17 CST 2005]
® Mot After= [Tue May 16 11:31:18 CST 2006]

“ﬁ‘ Fublic Key: 1024 bits

- Signature Algorithm = [SHA-1/RSA]
@ Signature128 bytes

&

56

Figure 5-9: import a CA Hashed certificate

exarmplesia hashed

okia Mobile Browser 4.0
i Fil: Tool: Help

Hashed CA

A CA certificate downloaded
successfully.
Certificate owner : TestCA DCSLab
CIS Tw
Valid from : 21.May.2005
Valid until : 16.May.2006
To autharize use of the cenificate,
you need to enter its hash code.
For more information go to http:
Hdocsw3.cis.nctu.edu.tw.
Do you want to save it?

File Tool: Help

4123 Hashed CA

Enter the code to authorize use of
the certificate. For more
information go to hitp://dcsw3.cis.
nctu.edu.tw

5688810499572849766042490
08763

57

B

%' Nokia Mobile Browser 4.0

Go:ﬁp: Mocalhost: 80500 xamplesfa hashed E]

iEookmarks '].(|
|
|

Ig Security Enviornments
Suppored Algorithms
~ Flags
5 pine 1)
Keys (2]
Cetificates (&)
SoftID User Authentication Cert (LEes)
Soft |0 Mon Repudition Cert (LEer)
HEODCA (0A)
WTLSCA (54
®EOSUser (e
Hashed CA (CA)
L4 Locatic{}f [Mokia SoftiD]
® Type = [CA]
Key 1D (SHA-1 hash): 20 bytes
= [E4 petails
® ersion = X500 3]
® Serial Humbar= [74]

0 &HEEEE

=]

0 #

Subject= [C=TW, O=CIS, OU=DCSLab, CH=TestCA]

IS lssuer= [C=TWi, O=CIS, OU=DCSLab, CH=Tastsa)

® ot Before = [20055E5 A21 B L0 15H17Fr GMT]
® Not After= [20065R5 516 B _EAF03RE 151830 GRT]

“ﬁi Public Key: 1024 bits

- Signature Algorithm = [SHATwith R SA]
m Signature128 bytas

Nokia Mohile Erow... |Z”E|g|
g Fil= Tool: Help MNMB 4.0

Certificate download
result:
The certificate is invalid or
no certificate

58

Figure 5-11: import a user X.509 certificate

%! Nokia Mobile Browser 4.0
o

IEDkaarkS 'l. £ .@].‘
]

E’ Serial Number
Ig Security Enviarnments
Supported Algorithms
~ Flags
‘;}%. PINs (1)
Keys (2]
Certificates (5)
Soft|D User Authentication Cert (Leer)
Soft|D Mo Repudition Cert (Lizer)
HEDICA (GA)
WTLSCA (G
= EE ysoauser fiser
#® | goation = i%kia SoftiD)
- Type = [Uszear]
Kew ID (SHA-1 hash) 20 bytes
= E2 Details
#® ersion = [%509 3]
Serial Number= [75)

WlEny |WIMS

O

m

Subject= [C=Tili, O=CIS, OU=DCSLab, CN=Testliser]

Issuer = [CHN=TesttA, OU=DCSLab, O=CIS, C=Til]

® ot Before = [200555 921 B _FEF0BFR3520%0 GMT]
® ot After= [200655 316 B _EAF0FESA208 GMT]

% Public Key: 1024 bits

* Signature Algorithm = [SHATwithRE5A]
@ Signature128 bytes

59

Figure 5-12: import a user Resp certificate

(% Nokia Mobile Browser 4 .0 |Z E|rz|
Fie Tools Help NME 4.0

Resp User
Your certificate can be found at the

following URL: http://dcsw3.cis.
nctu.edu.tw/cert?
in=MDBxETAPByNVYBAMTCFRIC3RY
c2vyMOBwDOYDYOOLEwWSEQTHMY
WilxDDAKEgNYEA0TADNJUZEL MAK
GATUEEhMCWFc=&sn=AgFL
Do you want to save it?

Nokia Mobhile Browszer 4.0
Go: hitpe Mocalhost: 30800examplesb resp

iEUkaarkls v]L‘

H nokiz softiD
® version = [1]
#® tanufacturer ID = [MhdF]
&= Serial Number
Ig Security Enviornments
@ Supported Algorithms
~ Flags
B2 pins I
Keys (2)
Certificates (7)
SoftID User Authentication Cert (L)
SoftID Mon Repudition Cert (LEer)
HEOICA (54)
WTLSCA (A
HE0SU=er (Lizes)
Hazhed CA (GA)
Resp U=ser (Lize])

M FEEERE

5.2.3.Evaluation

All of the test items are done well except the one of importing CA Signed
certificate. According to the WPKI specification, a CA Signed certificate will have
both inner and outer signatures within it. The inner signature is the signature within
the signerCert. The outer signature is the signature of TBSTrustedCAlInfo structure
signed by the signerCert. The client must trust the signerCert before using the
certificate embedded in the TBSTrustedCAlnfo structure. In our implementation, the
signerCert and the CA certificate to be downloaded are the same because the CA is
the Root CA. One possible reason to explain this failure is the NMB 4.0 can not trust
our CA as a Root CA.

5.3.Experiment 3: A Simple M-Commerce Application

with Crypto.signText

This experiment shows: a* simple” m-commerce application to provide
non-repudiation service via Crypto.signText-method with the user certificate created

by our toolkit.

5.3.1.Environment Configuration

The simple m-commerce application is modified from the sample provided by
the Nokia Mobile Internet Toolkit (NMIT) 4.1 [21]. We use the same environment
configuration in Experiment 2. The only difference is that the role of Tomcat server is
changed to be a web fast-food store. The scenario of the simple m-commerce
application is as follows. The user has ordered a pizza and a cup of coffee from the
web fast-food store. The store sent the order back to the user for requesting
confirmation. After make sure the order recorded in the web fast-food store is correct,

the user signs the order by calling Crypto.signText() with his signature key stored in

61

the WIM and then submits the order with its signature to the web fast-food store to

accomplish the transaction.

5.3.2.Experiment Result

The test items and result are shown in the following table.

Test Item Description Result

download the order | download the order recorded in the | see Figure 5-13

for confirmation web fast-food store

sign the order and | confirm the order by signing it and | see Figure 5-14

submit send back to web fast-food store

Table 5-3: Experiment 3 Result

Figure 5-13: download the order for éghfirma&ioii

Nokin Mobile Brow [)(E1)[5X) Y & Wokia Mobile Brow... [|[1)[X)
File Tool: Help MNMB 4.0 File Toolz Help

Authenticate order Browser

Flease sign the arder Large pizza: $10.50,
Large pizza: $10.50 Coffee: $2.50
Coffee: $2.450

62

Figure 5-14: sign the order and submit

[k Hkkia Mobile Browse. .. |Z”E|rz|
File Toolz Help NMB 4.0

Sign-Result

Select certificate
O SoftiD User Authenticati. ..

O SoftliD Mon Repudition ...

estllser

Thank you for the arder
[Signature Result]:
AQEAQKARCDATLUIOIDBFA1 FERET
DT R MER gL avEYYJB+ED
Propdzpogy+ 749k Lu0zkmLlzo
FCw CILCEdT TSW T 1vRLOIZ
ittt enDBELs2AQInFbdTIdxMuED
RDOb 2O FaJrP A Sv+ pluvPY R
FhhiL
YG+HeAThYhyEC+hAR+LplLUWR 2AK
gDAK U wgJBMIIBEggADAD
ECAgFLMADGCSqGSIb3DOERBE
GLLAMD O C

ZA B g MVBAY TAIRH M Crann C gV
AakEwMDEVMxDZANEgHNYBAST
BkRDUOxhYEPMADGATUEA

5.3.3.Evaluation

This experiment successfully illustrates how to use a private key and
corresponding user certificate stored in the WIM with the Crypto.signText method to

provide the non-repudiation service in a typical m-commerce application.

63

Chapter 6

Conclusions and Future Works

Conclusions

To promote more m-commerce applications developed on mobile devices,
security undoubtedly plays the key role among them. To bring the public-key
cryptography into wireless networks for mobile security, WAP has devoted itself for

setting up several standards for it.

In this paper, we try to solve a problem related to the public-key cryptography in
the wireless world. The problem,is how toruse.existing Internet X.509 certificates on
mobile devices. To figure it out, we consider three dimhensions of the problem domain.
The first dimension is the compatibility over-WAP: versions. The second one is the
limitations in the wireless environmentand mebile devices. The last one is the current
situation about PKI in the Internet. The solution we propose to address those issues is

the design of WAP Certificate Converter Toolkit.

The main merits of our developed toolkit can be concluded as follows:

® [t can produce certificates compatible over all of WAP versions.

® The existing Internet CAs can easily transform their issued X.509

certificates into WAP certificates.

® Each field of the certificate produced by it can be seen in variable views.

® [t provides two interfaces — Library API and GUI — for programmers and

operators respectively.

64

Future Works

With our toolkit, it is easy to build the skeleton of WPKI. However, to
completely build up the WPKI to provide full support of mobile security for
m-commerce applications, there are several things to be done. Some of them are
concerning about the extension of our toolkit; the others are with respect to the

implementations of related WPKI facilities.

The future development of our toolkit can go to three directions. First is the
support of ECDSA. Even though RSA is the widely used signature algorithm in the
Internet, the advantages of ECDSA, compared to RSA, show it is suitable to be
applied in limited computing environments. Anether reason to add ECDSA support is
it is another signature algorithm specifted by WAP. The second is the design of
decoder for SignedContent structure generated by Crypto.signText function. Before
the web server verifies the signdture signed by the user, it need to first decode the

structure to retrieve the signature and related information about the public key.

As to the related facilities to build a complete WPKI, storage for certificates
saving, either a database or a LDAP directory, a PKI Portal to check and audit the
identity of users, web interface to do all the management, and a real e-commerce

application are considered important issues to be further solved.

65

Reference

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

WAP Forum (2000), “Wireless Application Protocol White Paper”, June 2000.
URL: http://www.wapforum.org

WAP Forum (2002), “Wireless Application Protocol WAP 2.0 Technical

White Paper”, January 2002. URL: http://www.wapforum.org

WAP Forum (2001), “WAP Architecture”, WAP-210-WAPArch-20010712-a, 12
July 2001. URL: http://www.wapforum.org

WAP Forum (2001), “Wireless Transport Layer Security”,
WAP-261-WTLS-20010406-a, 6 April 2001. URL: http://www.wapforum.org
WAP Forum (2001), “WPKI”, WAP-217-WPKI-20010424-a, 24 April 2001.
URL: http://www.wapforum.org

WAP Forum (2001), “Wireless Identity Module”’, WAP-260-WIM-20010712-a,
12 July 2001. URL: http://www.wapforum.org

WAP Forum (2001), “WMLScript Crypto Library”,
WAP-161-WMLScriptCrypto-20010620-a, 20 June 2001. URL:
http://www.wapforum.org

WAP Forum (2001), “WAP Certificate and CRL Profiles”,
WAP-211-WAPCert-20010522-a, 22 May 2001. URL:
http://www.wapforum.org

G. Radhamani, K. Ramasamy, “Security Issues in WAP WTLS Protocol”, IEEE
2002 International Conference on Communications, Circuits and Systems and
West Sino Expositions, Volume 1, Number 29, July 2002, 483-487.

Thanh V. Do, “WAP Security: WTLS”, 2001. Available from

http://ece.gmu.edu/courses/ECE636/project/reports/TDo.pdf

66

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

RFC2459, "Internet X.509 Public Key Infrastructure Certificate and CRL
Profile", January 1999.

RFC3174,”US Secure Hash Algorithm 1 (SHA1)”, September 2001.

Vladimir Silva, “Manage X.509 certificates in your grid with Java Certificate
Services”, 2003. Available from
http://www-106.ibm.com/developerworks/grid/library/gr-jsc/?ca=dgr-Inxw06M
anageX.509

Chris Melnick, “How to translate into base64 and back”, 2004. Available from
http://www.aardwulf.com/tutor/base64/index.asp

R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”, Communications of the ACM,
Volume 21, Issue 2, February 1978, 120-126.

Don B. Johnson and Alfred J..Menezes,‘Elliptic Curve DSA (ECDSA): An
Enhanced DSA”, 1999. Available from-http://www.certicom.com

Bouncy Castle Crypto, http://www.bouncycastle.org

Cryptix JCE, http://www.cryptix.org

Nokia, Nokia Mobile Browser 4.0 (NMB 4.0), http://www.forum.nokia.com
Nokia, Nokia WAP Gateway Simulator 4.0 (NWGS 4.0),
http://www.forum.nokia.com

Nokia, Nokia Mobile Internet Toolkit (NMIT) 4.1, http://www.forum.nokia.com
Apache Jakarta Tomcat 4.1, http://jakarta.apache.org/tomcat

Andrew Nash, Bill Duane, Derek Brink and Celia Joseph, PKI: implementing
and managing E-security, McGraw-Hill, 2001.

Li Gong, Gary Ellison and Mary Dageforde, Inside Java 2 Platform Security:
Architecture, API Design and Implementation, second version, Sun, 2003

Rich Helton, Johennie Helton < » =7/ HH{JRE 7 - Java Security = 7
67

[26]

[27]

[28]

[29]

AL T % Bk 5 2002.

Alfred Menezes, Paul van Oorschot, Scott Vanstone, Handbook of Applied
Cryptography, CRC, 1997

Charlie Kaufman, Radia Perlman, Mike Speciner, Network Security, second
version, Prentice Hall, 2002.

Eric Rescorla, SSL and TLS, Addison Wesley, 2001.

Olivier Dubuisson, translated from French by Philippe Fouquart, ASN.1 -

Communication Between Heterogeneous Systems, , Morgan Kaufmann, 2001.

68

